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1. Scope of Report
This report summarizes the results of our analysis of the suitability of the Department of Defense

(DOD) programming language Ada for Artificial Intelligence (A) applications. As Ada is expected to

become a major programming language in the 1980's with widespread usage in both the military and

commercial sectors, a reasonable question to be asked is whether Ada could benefit the efforts of Al

system development or transfer. A large store of language and environment support tools are expected

to appear within the next several years. The ability for the Al community to avail th emselves of such

technology would serve the needs of both Al systems developers and the ultimate recipients of the

developed technology.

In this report, we consider the suitability of the Preliminary Ada Language Specification, as described

in IlI, either as a language for the development of' Al systems or as a language for the transfer of

already-developed Al technology. We focus our attention on the language capabilities required to

support Al paradigms and their realization in Ada.

2. Executive Summary

Our conclusion is that Ada, as it now stands or with any mall set of changes, would not be suitable

as a mainstream artificial intelligence research language. But, with some relatively modest extensions to

Ada within the spirit of the language, it would be possible to translate a substantial proportion of Al

algorithms from the research language in which the algorithm was originally developed into Ada. Such

translation would not be a literal transcription but would be rather closer to a reimplementation of the
program, retaining the complex heuristic algorithms that provide the artificial intelligence.

The report does not regard the unsuitability of Ada as an Al research language as being in any way a

condemnation of Ada. Ada was designed for programming production-level real-time embedded

computer applications, and the report is strongly supportive of the design of Ada for that purpose.

There are some fundamental, and necessary, mismatches between the pnilosophy of design behind Ada

as a standard DOD embedded computer programming language and that appropriate for a research
language to support Al paradigms. The report recognizes that the addition of yet more features to Ada

could detract from the suitability of the language for embedded systems de.elopment.

For some Al applications, the report considers that it may be possible to develop and refine the

algorithm in Lisp. Sail, or some other Al language, and then translate, or perhaps more accurately,

reimplement, the final version of the program into Ada. It is felt that Ada would make a strong

contribution in providing a standard medium of expression for the remainder of the life cycle of the Al
program. The completed Lisp or Sail program would act as a prototype for the coding of the
"production" Ada program. Such a recoding would be accomplished by a software house familiar with Al
paradigms and both the Al language and Ada. One must realize of course that, perhaps to an even

greater extent than with embedded systems programs, there may never he a "completed" version of an

Al program. Thus there remains the problem of updating the Ada version of the Al program to reflect

the continuing evolution of the Al development version.

S7., ~ . .
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Clearly, in theoretical terms, almost any programming language is expressive enough to support the
recoding of a Lisp or Sail program. In practical terms. however, the target language must be capable of

expressing the Al algorithm in a manner that produces a readable, reasonably efficient final program.

since it is the final program that must be maintained over the life-cycle. As maintenance has been

shown to account for about 60% of the life-cycle cost of a progranm, this is a crucial requirement. The
report suggests several extensions to Ada that would facilitate the expression of a wider range of Al[

algorithms.

The report presents the following crucial deficiencies of' Ada, critical to the clear expression of' Al
paradigms:

o Procedures as Values,

0 Garbage Collection.

o Additional Tasking Control, and

0 Consistent Definition of Parameter Binding.

Without these changes to Ada. sonme programs will not be expressible within Ada and others will lead to

obscure coding techniques in order to obtain the desired ct 'fect.

K The report presents the following desirable but non-essential capabilities, that would contribute to the
clearer expression of higher-level concepts:

o3 True Abstract Data Type Facility,

o Expanded Exception Ihandling, and

0 Partial Parameterization.

Of the above identitied issues, the report recommends that serious consideration be given to the

following extensions to Ada. while remaining within its original objectives and spirit:

0 procedures as parameters,

o3 a pragma requiring the presence of garbage collection.

o greater generality in type initialization,

o generic types.

0 parameters to the instantiation of a typc.

3. Characteristics of Al Programs and Programming Languages
As with many fields of research, it is difficult, if not impossible, to characterize the large and

amorphous body of research calling itself artificial intelligence research. It is not the intent of' the

current study to address this question. Rather, we focus on the narrower technical question oft the

characteristics and language requirements of a sampling of systems being developed for image

understanding. natural language understanding, and distributed computation. Many of our conclusions

stemming from analysis of these areas of research will carry over to other Al research directions as well.
Hlaving acknowledged the difficulties of characterizing the entirety of artificial intelligence, we proceed
with our analysis based on our chosen areas of' Al research.
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3.1. Application Characteristics

If a single characteristic of Al research and systems development could be isolated, it would probably

be that of an algoritl, milux. Al programs, in general, have a far longer development and redesign

cycle than that for the intended Ada community, and a far shorter period of use and maintenance.

Frequently, this is coupled with considerable initial uncertainty as to the objectives and methods to be

used, and thus a greater degree of evolution over the life-cycle of the program. It is common for there

to be personal involvement and continuing support by the individual developer throughout the life of

the program, and large programming teams are rare. This tends to lead to program practices

emphasizing writeability over readability and thus tends to discourage program transfer.

Typically, an Al project is attempting to solve a problem involving great numbers of alternaiives and

considering large amounts of input data. In such areas, it is not possible to investigate every possible

alternative in order to determine the "best fit". Rather, it is necessary to use iicuristic i('chiqus to make

best guesses as to the proper decision to take at an), given point. Classically (within the appropriate time

frame), expansion of' promising alternatives has taken place in a serial manner, using breadtl firsi or

depv: first expansion strategies. If it becomes apparent that a previous decision was incorrect, the

program hactdracAs to the decision point and expands a different decision path. More recently, parallel

processing techniques have been used to achieve multi-programming or true multi-process solutions to

the exploration of multiple alternati\ cs.

It is characteristic for these heuristic techniques to be developed and honed on the fly. As flaws in

each technique are discovered by exercising the system, changes are made and the perturbations to the

system are observed. Based on these observations, further refinement of the algorithm is made.

Frequently, alternative versions of an algorithm are constructed and dynamically bound in the system in

order to probe the characteristics of each.

During Al systems development, data structures evolve as changes in the algorithm are made and as

more is learned about the nature of the problem and about the developing approach. Associative and

attribute access to information stored in data structures are frequently used structuring. These allow

functional access to data without requiring knowledge of the exact data structure. Later, as the system

characteristics become better understood, it may become desirable to specify more exactly the data

structuring to be used.

Another structuring tool fiequently employed is the embedding of algorithms within data structures.

By allowing procedures to be used as values storable within data structures, the accessing algorithm can

be closely coupled with the relevant data. As procedures are treated as storable values of a procedural

data type, it is also common to pass procedures as parameters to manipulate and control data access. As

a consequence, a general framework may be provided for parameteri~ed transformation of a given

general structure (e.g.. for an arbitrary function to be performed on a standard tree or graph structure).

•4
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4. Programming Language Characteristics

In our discussion, we concentrate on two of the principal languages in use today for programming Al
applications: Lisp 1211 and Sail [291 . Each language enjoys widespread use and supports an active user

con munity.

Lisp, developed in the early 1960s by McCarthy, is a language uniformly based on the manipulation of

list structures. Programs and data are both represented as list structures. Consequently, it is possible to

create functional abstractions on the fly, embed them in other data structures, and pass them as

arguments to other abstractions. Functional abstraction is expressed in the language bN lambda

calculus (201 list expressions.

A large percentage of Al systems re ;earch carried out in Lisp centers around the Interlisp

programming system 1181. a compth'u' ingranmpun.g em'romcm built around Lisp. The environment

includes a structure-oriented editor, a "programmer's assistant", a "do-what-l-mean" (not "what I say")

package, a complete backtrackable transaction history, the ability to interpret, incrementally compile or
block- compile, extensive debugging facilities, and various file and program management capabilities.

Within the Interlisp environment, there is no real distinction between user program and environment

-- each environment function is a user-callable routine. It is thus possible for the application program to
call the interpreter, the program editor, or the run-time debugger. This allows, for example, the user

program to interrogate its own run-time context -- examining its run-time stack, nesting height, etc. As
a consequence, programs developed in such an environment may become inseparable from their

environment.

In addition to Interlisp, several other sophisticated programming environments have been built

around Lisp, notably MACLISP [23] and CADR LISP [61.

Sail, another major Al programming language, is a reasonably high-level programming language based

on Algol 60, and designed specifically For the DEC-System-10 computer. Unlike Interlisp, it is oriented

toward a more conventional compiler-based system. It does, however, provide a set of execution-time

debugging routines. In addition to the usual Algol features, Sail includes complete access to the
DEC-10 I/O facilities, a flexible macro facility, event-based task management primitives, a user

modifiable error handling facility, an associative data base, backtracking, and interrupt facilities. The

language includes the standard assortment of built-in data types and a limited notion of user-defined

types. One of the most important and widely used aspects of Sail is its very efficient STRING

management facility, which includes a fast garbage collection algorithm. Sail is a moderately strongly

typed language, providing sonic compile-time type checking but still allowing type breaching to occur.

Within Sail there is a distinction between program and data. It therefore is not possible to create and

evaluate algorithms on the fly (its one can with i'VAI in Lisp), Because Sail allows procedure variables,
however, it is possible to embed procedures in data structures. pass them as parameters, etc.

Using the LEAP associative data base feature of the language, it is possible to store and retrieve

information by attribute, without having to specify explicitly a data structure representation. As more is

.|4
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learned about the problem domain, one can refine this into a more efficient representation (assuming

that the machine hardware does not support associative memory access).

Sail, in general, provides a reasonably high-level language framework while allowing the user to delve

into implementation details where necessary. It is possible to modify the system-provided memory

allocation routine, interrogate the internal representation of data, and perform user-defined type

conversion. Many of these capabilities are possible only because Sail is defined specifically for

implementation with the DEC-10 architecture. The Sail language specification indicates the bit-le~el

representation of each of the higher-level program features, thus allowing the user lower-level access to

objects, while obviously eliminating any hope of a machine independent program. Herein lies a major

difference between Sail and Ada. Despite the fact that both language are, in the general sense,

derivatives of the Algol 60 tradition and share common control and data structuring tools. there is a

fundamental difference in the level of implementation control that the languages allow. This distinction

is explored in Section 5.

Mainsail 1241, a MAchine INdependent version of Sail, was developed to satisl the needs of those

wishing to transfer the style of Sail programming to other machine architectures. It includes many of

the characteristics of Sail but lacks the ability to delve into implementation details to the same extent as

is possible in Sail. Several fundamental deficiencies of Mainsail, such as the lack of procedures as

values, have limited its use thus far. There are hopes however that a redesigned superset version of

Mailsail will soon appear.

5. Unsuitability of Ada as a General Al Research Language

Fundamentally, the unsuitability of Ada as a general Al research language can be traced to its

determination to enforce a particular programming discipline. There is a goal of the designers of Ada

(mandated in fact by the Ironman 1191 and Steelman 1311 Requirements) to foment an environment
.encouraging good programming practices". The programming style imposed by Ada is not imposed

arbitrarily, but is the result of years of research into programming methodology by the computer science

community. While not everybody is agreed, and of course many might differ about the actual details of'

the language, the great majority of the computer science community strongly support the ideas on which

Ada is based. All the comparisons known to us, using skilled programmers and non-trivial but

well-understood programs, between highly disciplined programming languages such as Ada. Fuclid,
Mesa, or Simula, and less disciplined languages such as C, BCPL, or Fortran, have shown a clear

advantage to the more highly disciplined languages.

Such attempts to mandate a programming style are prop'r and h'neflica for the targeted Ada user

community. systems programmers in software teams developing and maintaining computer software. In

such environments, Ada is a major improvement for both the systems programmer and the program

manager. Systems programmers who previously developed systems in Jovial, CMS-2. or other

military-provided languages, will generally find Ada to be a major improvement. Ada provides control

structures and data structuring tools not found in their previous languages and, because of the high

degree of redundant specification in the language, it is able to provide the programmer with more

- ''t.J
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consistency checks than before. For the program manager. Ada contributes toward making
programming an engineering discipline rather than an art by providing more standard ways of expressing
solutions to design problems. The additional consistency checks which can be performed by the
programming environment also provide more assurance that the coding of an algorithm is correct.

Thus, Ada should provide significant gains for both the systems programmer and program manager.

The above characteristics of Ada. beneficial for a production environment, make it unsuitable as a
general Al research language. As discussed in Section 3. Al research usually involves working within a
problem domain for which techniques and approaches are developed on the fly. In such cases, there

isn't always a clear understanding in advance of all that will be necessary for problem solution. Al
systems being developed are experimental systems, and ats such, additional freedom must be given to
the developer of' the system. Since it is difficult to provide just exactly the right degree of freedom.
current Al languages cannot constr. in the programmer's means of expression, but rather give him
considerable expressive power to allow him the most natural means of expression. It is this role that Al
languages like Lisp and Sail play.

Because of the intense redevelopment and change *cycle that an Al program experiences, it is crucial
that the language allow, and the programming environment support. incremental compilation. This is a
language issue to the extent that the language should not preclude effective incremental compilation by

excessive coupling of' program segments. It appears that Ada language definition may preclude the
development of an effective incremental compilation strategy. This is due in part to the partial ordering
on the compilation sequence of modules imposed by the separate compilation facility. Such an imposed

ordering is an environmental concern rather than a language concern and does not belong in the
language specification. Whether such partial orderings on the compilation sequence are in fact necessary

to support program modification is at function of how the environment is implemented.

For the reasons given above, we believe that Ada would be inadequate as at general Al research

language.' It deliberately does not permit the flexibility necessary to support the type of development
process inherent in the bulk of artificial intelligence research. The possible role of Ada is then ats a
target language for the expression of' completed Al systems. An analysis of' Ada with this role in mind

is given in the following three sections.

This is not to say that there is not a sizeable body of' Al programs that fall more into the category of'
being simply large systems programs than that of expressing heuristic algorithms. These specific
sufficiently well understood applications may well be programmable with the set of' primitives available

in Ada.

Our conclusion that Ada is not suitable as at general Al research language should not be construed ats
implying that Lisp and Sail leave no room for improvement in designing languages for Al research

'Mans of the .iNoc argumntsl. of cnurse, .ppl as. well to ihe ge~neral comptetr scienc rewcarch conrnlunhit



applications. There is room for improvement over existing Al languages and the opportunity to design a
more effective Al programming language. We believe that the stylistic and structuring characteristics of
Ada would be of value in a language for Al research, even though Ada itself cannot be that language.
The Al community has resisted, and rightly so, the use of existing structured languages for. Al
programming because They do not provide the features and flexibility essential to Al applications.
However, there is no reason to believe that either the nature of the Al applications, or the programming
language features necessary for them, preclude the use of more recent concepts of programming style
and structure. Indeed the more complex the program is, the more important is its structure, otherwise
the intent of' the program can be lost in the details of its implementation.

An Al research language should provide a powerful set of medium-level primitives in an extensible
framework, with the necessary control to allow the researcher to build up the higher-level concepts
relevant to his particular task, so that these higher-level constructs form a consistent and well-structured

extension to the language. Lisp and Sail both provide a set of medium (and in some cases, low) level
primitives in a framework allowing some degree of abstraction. While both languages contain some
concept of associative or attribute access to a data base, neither language supports any notion of
hierarchical construction of abstract data types, or of consistent language extension to support a user's
abstractions (in the sense of the Simula CLASS structure 1301). These capabilities would enhance the
ability to tailor the language to a particular problem area.

Also lacking in Lisp, and, to a lesser extent in Sail, is the ability to express within the program
information either about the problem domain that is known initially or additional information that is
gained during system development. In even the most experimental programs, many component data
structures are well understood in advance and the structuring concepts underlying Ada are directly
applicable with advantage. For other structures, less is known in advance but it is still desirable to
express and enforce that which is known, and to add to this information as the program develops. An
example of this would be the ability to refine the typing constraints as one learns more about the values
associated with some variable or to state more general assertional constraints concerning those particular
values. This capability could be used to detect inconsistencies , to achieve greater implementation
efficiency and to enhance the readability of the program.

Within Al programs, as elsewhere, typing is beneficial for expressing and enforcing the domain of
values over which a variable will range. For many simple variables, this domain is as well-understood in
Al programs as in any other programs and strong typing is as desirable and helpful. Even where
understanding is incomplete and flexibility is required, the total license of a typeless language is still
inappropriate. A structure which expresses general constraints, allowing a few general operations and
attributes for a wide class of objects, can then be refined to provide more detailed operations and
attributes to a restricted subset of them. Possibly a highly developed version of the Simula class and
subc-lass mechanism might meet this requirement. The Cedar project [71 at Xerox PARC, attempting to
convert Mesa [261 into a language suitable for Al applications by postponing the degree of compile-time

type specification required and allowing greater program interaction with the translator, linker and
run-time environment, is another experimental step in this direction.
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6. Features of Ada Appropriate for Re-Implementation of AI Programs

6.1. Programming Style and Structuring for Large Systems
The objectives of Ada undoubtedly differ from those of the various Al languages. Ada is intended,

deliberately, to impose a highly disciplined style of programming, for use in complex projects involving

large teams of programmers. In such projects it is not easy to ensure that a program is manipulated only

by its original programmer even during development, let alone during maintenance over its in-service
lifetime. Consequently Ada is designed to be readable and understandable rather than writable, and to

minimize the cost of program maintenance. It is clear that these objectives of Ada are highly pertinent
to a project to reimplement an Al program for use in an embedded system context.

Particularly important stylistic and structuring characteristics of Ada include:

Eo declaration of everything before use,

o strict type checking ( but see Section 6.2),

El derived types and user defined types,

E] packages for structuring large systems,

El use and restricted clauses to control access to non-local identifiers,

O block structure to allow declaration of local identifiers.

0 lexical binding of all identifiers,

o nested control flow constructs,

Ol records and variant records for data structuring.

6.2. List Processing in Ada
Ada provides the language features necessary for list processing, though the language definition is

equivocal about garbage collection ( see Section 7.2), and without special consideration to list processing
in the implementation, efficiencies may be very low.

The definition of lists in Ada could follow closely the traditions of Lisp. A list cell is a record of two

components, CAR and CDR, each a list pointer. A list pointer is a record with only a variant part,
whose variant discriminator, the atom flag, assumes two values, List and Atom, corresponding to the

list pointer component being a list reference or an atom reference. ListReference and AtomReference

are access types to dynamically allocated list cells and atom cells. Only the atom cell differs significantly

from Lisp in that the type checking of Ada requires that it be declared to be variant record with

discrimination on the type of the atom. Garbage collection (if available) is hidden from the Ada
programmer and he need not include any garbage collection flags in the list definition, though of course

the actual implementation may need to conceal such flags in the list cells.

Using an Ada list is also highly similar to using a list in Lisp, though Ada draws more attention to the

need to discriminate between list references and atom references and between different types of atoms.

The main inconvenience to the programmer comes in the need to gather together all the various types

4*'8'
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that might be list atoms so that the atom cell type can be defined. The atoms themselves could be set

up as variant components of the atom cell, or the atom cell might contain only references to the actual

atoms.

While it is unlikely that an Ada compiler designed without reference to list processing would be able

to package and access list cells efficiently, the structure required in Ada is no different from that in a

typical Lisp implementation and could be contained in a predefined package library associated with

special optimization built into the compiler. The user could then make use of the list processing types as

one would a built-in data type. As described in Section 7.2, garbage collection, beyond that to be

expected of a typical Ada implementation, would also be required.

Typical type declarations for list processing in Ada might be:

type List-Cell, ListPointer, ListReference;

type AtomCell, Atom_Reference;

type List Cell is
record

CAR,CDR: ListPointer;
end record;

end type;

type ListPointer is
record

AtomFlag: constant (List,Atom);
case AtomFlag of
when List = > LIST: ListReference;
when Atom = > ATOM: AtomReference;
end case;

end record;
end type;

type ListReference is access ListCell;
type Atom-Reference is access AtomCell;

type AtomCell is
record

Atom Type:constant (int,str,..),
case AtomType of
when int -> i: Integer;
when str - > s: String;
when ....

end case,
end record;

end type

I.



6.3. Association In Ada
Al programs make use of association to represent large sparse data structures. as illustrated by the

* property list facilities of lnterlisp and the much more extensive associative data base facilities of Sail.
* The use of such facilities causes of course a performance penalty in exchange for the space saving. We

see no reason why a package could not be programmed in Ada to provide essentially the same
associative data base facilities as are available in Sail. No modification or addition to Ada would be
required. The form of expression might be held to be slightly less elegant than that in Interlisp, but
would be very close to that in Sail. As was the case with list processing in Ada, it would be necessary to
declare an item in the associative data base to be a variant record with a variant field for each possible
item type. In addition, in order to meet the requisite efficiency considerations, it would be necessary to
resort to UNSAFE PROGRAMMING within the package.

7. Crucial Deficiencies of Ada for Translation of Al Programs

7.1. Procedures as Values
As discussed in Section 3.1, Al paradigms rest heavily on the ability to use procedures as storable

denotable objects. Procedures are often used as a way of' representing knowledge about a particular
domain. A common programming practice is to allow a variety of' knowledge representations to coexist
within data structures. Typically, this involves data structures where knowledge is either stated explicitly
or given by a procedure which derives the necessary knowledge when called. The desirability of'one
knowledge representation over another may depend on the variability of the information, which in turn
may be at function of the context in which the knowledge is required. The use of procedural knowledge

rather than explicit knowledge could even apply to the data structure itself', where connectivity betweenI

nodes could be given procedurally rather than by explicit connection.

Procedures in Ada are neither storable nor passable objects. It is not possible to pass a procedure as at
parameter to a function or a procedure, to return a procedure as the result of a function call, or to store
a procedure within a data structure. The procedure falls within the category of a control structure rather
than a value in a data type domain.

Clearly, the above capabilities can be simulated within Ada --at sonme cost, after all, one has the ability
to simulate a Turing machine. The important question is whether it can be dlone in a clearly expressed
and easily maintainable fashion.

A procedural value, as defined in a language such as Algol 68 131. consists 01 an instruction pointer
* and that part of the environment enclosing the procedure declaration which is necessary for its

execution. Thus, a procedural value is noi just a pointer to the appropriate code segment, but also
(functionally) carries with it the static environment in which it is declared. Recall that for at
block -structured language allowing recursive procedures, this environment is not in general known at
compile-time, since the local environment in which a procedure is declared could be it recursive
instantiation of an outer procedure. One cannot therefore replace the use of' a procedural value h at
simple index value indicating the proper procedure to be called and at CASE statement for accessing the
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denoted procedure. This works only if the environment of each use of the procedural value is identical
to the environment of the procedure declaration. For this reason, it is not possible to provide an Ada
package which would simulate procedural values in a transparent manner. In many cases, the program
could be restructured to obtain this by moving any variables referenced by the procedure to a more
global position in order that it be visible at any position from which the procedure could be called. Such
a move destroys the advantages that block structure is to provide however, and can lead to obscure
programming techniques.

Adding procedural variables to Ada is not a simple task. The ability to store procedures in data
structures for later access leaves open the possibility that the lifetime of variables referenced from within
the body of the procedure is shorter than that of the procedural variable to which the procedure is
assigned. This leads to the dangling reikrenc'e and intposter environtnet problems 1251 which must be
checked for in languages such as Algol 68 and Euler [III. This check, in the absence of further
language restrictions. must be performed at run-time (or more likely, ignored -- leaving open the
possibility of type breaches). Further investigation would be required to derive language restrictions
allowing compile-time determination of possible lifetime errors.

While adding the full capability of procedural variables may fall beyond the scope of the current Ada

design, there is a very useful subcapability that could be easily added: allowing procedures to be passed
as parameters.

Adding procedures as parameters to Ada does not add a redundant capability. The full power of
allowing procedures to be passed as parameters is not subsumed by the generic procedure facility found
in Ada. This is again due to the fact that a procedural value is characterized by its instruction pointer
together wit/i its necessary environment.

The use of a generic procedure with a procedure as the generic parameter achieves the same effect as
the instruction component of a procedural value, and avoids the use of a CASE statement that would be
necessary for accessing the procedure if an explicit index to the indicated procedure were used. It
carries with it the name of the "passed" procedure (in the sense of a macro) but does not carry the
environment of the procedure. Thus it cannot be used to access variables in environments that are not
visible at the point of procedure call.

Even for the situations where generic procedures can suffice in place of procedures as parameters.
their use may produce programs that are more difficult to read and write. A procedure that accepts a
procedural parameter,such as

PROCEDURE apply(q:PROCEDURE(Integer) ):
BEGIN

x:lnteger;
compute(x):
q(x)-.

END:
could in principle be simulated in Ada by
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GENERIC(PROCEDURE q(y:lnteger)) PROCEDURE apply() IS
DECLARE

x:integer,
BEGIN

compute(x);

END;

ttowever, for each call to the procedure with a different procedural parameter, it is necessary to
instantiate the generic procedure by

PROCEDURE applyf i IS NEW apply(f i);

For a large number of possible procedures that could be passed as parameters, this becomes both

lengthy to write and difficult to understand. In addition, one must rely on the language translator to
realize (perhaps with the assistance of a pragma) that one is attempting to simulate a procedure as a

parameter in order to bundle all generic instantiations together into one parameterized copy of the

procedure. Otherwise, each generic instantiation of the generic procedure will be treated as a macro

expansion, and will generate multiple copies of the procedure. Thus an efficient (and rather complex)
translator will determine that one is attempting to make use of a procedure as a parameter and
reconstruct its use in the implementation of the procedure. Furthermore, we feel that the source-level

statement of the algorithm is cleaner and easier to understand when expresses with procedure

parameters.

In our opinion, adding procedures as parameters to Ada poses no difficult implementation issues, does

not introduce any possibility of type breaches if done properly 2, and would have a minimal impact on

the rest of Ada. Its primary impact on the present version of Ada would be to increase the complexity

of the transitive closure algorithm necessary to determine side-effects and aliasing characteristics of

procedures and functions. ttowever, restrictions on side-effects of functions and on aliasing will

disappear as of the next released draft of the language 1161. Thus, in return for a slight addition in

compile- and run-time 3 complexity, allowing procedures as parameters would provide an important

expressive tool not just for A] programs, but also for a wide range of embedded computer applications.
While this would not completely alleviate the need for procedural values during translation of Al

programs, it would allow clearer expression of a significant body of Al algorithms.

l'Prtoedurcs passed its prarameters should b full) tylvt ais in Algol 68. not as is (tone in Pascal

'ile onl, run-time comiplication shoul he that procedure eit m, involve restoring t variable rather than liseil numhcl oI
d- pla, .osti ..
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7.2. Garbage Collection

As discussed in Section 3.1, Al programs typically operate in a domain with large numbers of alternate

approaches to problem solution. In the course of investigating these alternatives, attempting to

determine the best alternative to follow, a tremendous amount of storage related to each particular path

may be generated. The lifetime of the gonerated objects is frequently tied not to the control flow of the
program but rather to the duration of utitity of the data (and thus is a function of the context of use).

For this reason, storage for such objects htust be allocated in a global heap, allowing storage to remain at

least as long as it is referenced elsewhere in the system.

In many embedded system applications, the amount of data that must be allocated in heap storage is

small, and the question of when and how to reclaim heap storage is unimportant. It may even suffice

not to attempt to reclaim allocated heap space. If the designated pool of storage is sufficiently large to

handle the expected number of allocations, one can avoid the expense of determining which storage is

no longer needed and thus reclaimable.

Such a "no deposit, no return" aliproach to heap allocation is inconsistent with Al program operation.

It is the case that no amount of initial heap allocation will be sufficient for the continued operation of

many Al programs. For these programs, exhaustion of the heap is a normal and frequent facet of

program operation. Thus it's not a matter of i/the heap will be exhausted, but when it will happen.

There must be an effective way of reclaiming obsolete storage, either by reference counts 191 or

incremental tracing strategies [271, or by a full tracing of accessible objects when storage is fully

exhausted.

Ada does not preclude garbage collection, but neither is it intended that Ada run-time systems will

provide garbage collection capabilities. Ada provides a limited mechanism (FOR-USE) by which the

user, when declaring an access type, may state the maximum number of objects that may be generated.

With this information, the compiler may allocate the maximum number of objects in advance on the

stack, to be deallocated when the most global access variable of that type is deallocated. For objects

with limited scope of use, this provides a method of heap-type allocation with automatic reclamation.
Again however, it ties allocation and deallocation to control flow (block entry and exit) rather than to

data connectivity. This will not suffice for most Al applications.

What is required is either a system-provided incremental garbage collection (in the style of 1171) or a

provision for the data type implementor to define a garbage collection scheme for each user-defined data

type.

We wish to make a strong point that an explicit FREE operation provided to the user is nom a viiah

.sOhIUionI. Such an approach is only marginally better than for the user to use unsafe programming to

achieve storage reclamation. The premature FREF.ing of storage by the user leads to type breaches in

the form of the dangling reference and imposter environment mentioned earlier. A FREE operation is

a low-level machine dependent concept and violates the precepts of higher-level language that Ada is to

provide. Embedded system programs which cannot afford to use garbage collection will also not be able

to use a FREE operation as an alternative, because of the risk of heap exhaustion to which dynamic

allocation exposes them. Such programs must use the FOR-USE capability.
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Since garbage collection can occur only after all references to an object disappear, the logical function

of a program cannot be affected by the system providing a garbage-collected finite heap as opposed to a

conceptually infinite heap. 4 System performance may suffer of course. This possible degradation of

performance, intolerable for many real-time applications for which Ada is targeted, is a necessary aspect

of a majority of Al programs. While it can be expected that most of the 1)OD Ada implementations will

not contain system provided garbage collection, it is crucial that any implementation intended to support
Al programs contain such a capability. The inclusion of the garbage collector would presumably be

requested via a pragma.

The second alternative, that of user-defined garbage collection, cannot be achieved in Ada as it is now

defined. To do so would require either:

0 that the system call a user provided subprogram when an out-of-space exception is raised.
The user program would then use unsafe programming practices to do low level
manipulation of the heap and associated bookkeeping,

" that the user provide a language-level "heap" implementation as an abstract data type. As
discussed in Section 8.1, however, Ada does not currently provide the abstract data type
implementor with sufficient control over the allocation and deallocation of abstract objects to
perform the necessary bookkeeping information. To do so would require a more extensive
initialization and finalization capability than is now possible. This can only be accomplished
by allowing the user a direct Free command, leaving open the possibilil that the user will
free a still active cell.

7.3. More Tasking Control

At the time of writing this evaluation, the tasking features of Ada are undergoing redesign. As we

have not had access to the proposed revision, our comments for the moment are quite general.

There is no reason to believe that the requirements of Al applications for parallel processing are an)

more demanding than those of the embedded systems applications for which Ada is intended, indeed

quite the reverse. It remains to be seen whether Ada tasking control will be sufficient for embedded

systems and Al applications.

A number of research projects are investigating parallel processing for programming environments,

for distributed processing, or high performance computation, and are using languages with verv novel

tasking features. There is no reason to expect that the Ada facilities, constrained by the requirement of

proven' techniques, should be able to express all of the programs of these research projects. Ilowever

the existing proposals for Ada are particularly stylied in this area and show verv little flcxibilit. to

accommodate structures other than those envisaged by the designers. In contrast for instance the

proposals for the Red language show a much greater degree of lexibility. and would come much closer

to meeting the requirements of the research community.

I ''tI hir. ,.ru'lrrn... Ihi I tht" gir~lhig i c II ir'h~ wilt ai|dA i i, .ihk ,| l i rctlai n ,,ut lcnt .tiraige hi tit lue p'rgramfl op.crd Iii i
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In the Appendix, Carl liewitt of MIT provides a view of these concerns. When we have seen the

revised Ada language design we will be more able to estimate the extent to which Ada will be able to

meet the needs of the more demanding Al applications.

Notes on requested features ( pending revised language design

--scheduling discipline

The requirements on a scheduling discipline separate into two classes: those necessary for the logically

correct operation of the system and those intended to ensure efficient allocation of a scarce resource.

Irrespective of the scheduling discipline employed, there are certain guarantees that must be provided

by the implementation in order for the system to function in a logically correct manner. One such

guarantee is that ofr./irness, that is, that each process demanding service will eventually receive it. The

assumption of a fair scheduling policy is needed to derive hiveness, or progress, properties of a '
multi-process system. These guarantees should part of the tasking specification in language definition.

In addition to guaranteeing the fairness of a scheduling discipline, performance requirements of

real-time systems dictate that the user must have some capability for specifying performance aspects of

the scheduling policies employed. For the allocation of the processing resource, the designers of Ada

have chosen to define into the language a specific implementation mechanism rather than to simply

define the desired result. The mechanism they have chosen is appropriate for sonic applications,

particularly those involving very short tasks on a single processor, but it will be quite difficult to

implement on a multi-processor. For longer tasks (greater than about 200 instructions) other scheduling

mechanisms, such as deadline scheduling, are usually more effective, and can carry up to 40% more load

without overloading 1321.

Further, the priority scheduling mechanism defined for Ada has poor overload characteristics. It is

important to distinguish between tasks that are "urgent", in that if they are to be run at all they should

be run very promptly, and tasks that are "important", which may not need such rapid response but

which musi be run. To be effective under overload conditions, a scheduling strategy needs to be able to
detect the presence of an overload and to know which unimportant tasks should not be processed for

the duration of the overload.

Another important characteristic of a scheduling strategy for embedded systems applications is the

aeility to ensure that, when i low priority tsk blocks one of high priorit, the low priority task is

expedited until that of the higher priority is able to resume. Without such a feature, real-time response

is difficult to ensure and consequently undesirable programming practices may be encouraged.

The common characteristic of these aspects of the scheduling disciplinc is that they arc invisible to the

programmer and have no place in the language definition. Rather the) represent the strategies by which

a implementation of the language achieves the best performance by the appropriate allocation of its

processing resource. By explicitly predefining an implementation mechanism and by making that

mechanism visible to the programmer, the precepts of' higher-level language design are compromised.

In addition, the particular implementation chosen for the language specification may result in a less

efficient system than might have otherwise resulted.

4
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-- process variables

Process variables are necessary for the expression of certains kinds of programs without a fixed task

configurations (e.g., operating systems, distributed load balancers). Such a capability exposes the r

language to all of the pitfalls resulting from the use of procedure variables, namely, dangling task
references, imposter task environments, type breaches, and an inconsistent run-time stack. Run-time

detection of the validity of process variables will be significantly complicated by the asynchronism. For

this reason, the addition of process variables should only be considered after procedure variables have

been included in Ada with resolution of the resulting problems.

-- distributed computation

It is clear that Ada has no provision to support distributed computation, which is hardly surprising in

that there is no agreement on what is appropriate to support it. Distributed computations could, with
very great care, be written as a single Ada program. Iowever we assume that the intention was that

such systems are at present best written as a number of separate Ada programs, with any load balancing,

etc., being programmed specially by the user. These issues are discussed further in the Appendix.

7.4. Resolution of Parameter Binding
Currently in Ada there are three subprogram parameter binding classes defined. These are defined in

the Ada Preliminary Reference Manual (6.3) as follows:

IN The parameter acts as a local constant whose value is
provided by the corresponding actual parameter.

OUT The parameter acts as a local variable whose value is
assigned to the corresponding actual parameter as a
result of the execution of the subprogram.

IN OUT The parameter acts as a local variable and permits access
and assignment to the corresponding actual parameter.

In defining the three modes of parameter passing, there is a deliberate attempt (Rationale 7.2) to not

specify a value transfer mechanism. For IN OUT parameters. fler example, there is no specification of

how or when the access and assignment to the corresponding actual parameter takes place. Thus, an

abstract model (as well as an actual implementation) using a call-by-reference or a call-by-return-value

mechanism would satisfy the IN OUT specification. In fact, any number of intermediate reflections of
the value of the local formal parameter back to the corresponding actual parameter during subprogram

execution would satislf the specification. The intent of this is to allow an implementation to tailor the

parameter passing strategy to the characteristics of the object being passed, e.g., depending on the siue
of the object one might wish to use a by-reference rather than return-value strategy. It is defined that

a program that relies on some assumption regarding the actual mechanism used for parameter passing is
erroneous."

As mentioned in the Ada Rationale, the parameter transfer mechanisms exhibit a semantic difference
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in programs that utilize certain combinations of aliased subprogram parameters and in the use of
exception handlers to handle exceptions raised during subprogram execution. Such programs therefore
are defined to be erroneous (we read this as "illegal" -- see comments on the proposed revision to Ada).
In addition to these cases, passing recursively defined data structures as parameters to subprograms can
lead to "erroneous" (but otherwise legal) programming practices.

Aliased subprogram parameters will in general be difficult in Ada to determine (see 12, 51 for a
discussion). In the case of variables aliased (shared) between parallel tasks, it may be impossible for the
translator or run-time system to prove that access of the same variable by identifiers within

non-mutually exclusive tasks will occur. In the case of sharing within recursively defined data
structures, sharitig is one olth major reasons lbr using recurswe pottler cktnains. To consider such uses

erroneous is to eliminate much of the utility of allowing such data structures!

As mentioned, the use of exception handlers to deal with exceptions raised during subprogram
execution can also lead to semantic differences between different parameter transfer mechanisms. If it
happens that control is transfered to an exception handler which interrogates a variable passed as an IN
OUT or OUT parameter to the subprogram, the current state wilt depend on the parameter mechanism

employed for that variable.

This complication is acknowledged in the Rationale (7.2b), with the justification being that "the

uncertainty introduced by not knowing about the implementation is of the same order as the uncertainty
that already exists about the point of the exception". It is difficult to assess "the order of magnitude" of
uncertainty: however, it can be pointed out that one uncertainty of exactl. where the exception was
raised is under programmer control and can be reduced. This is not the case for the uncertainty of

when and where actual parameters are updated to reflect changes to the formal parameters. Attempts to
reduce this uncertainty by interrogating the current state of global vasiables may result in erroneous
programs: it may not be determinable from within the exception handler which variables were passed as

actuals to the procedure raising the exception, and thus not determinable which variables should not be
interrogated during the cleanup operations.

As the rule is currently phrased. an erroneous program can result from accessing any variable passed
as an IN OUT parameter to an aborted procedure,/or it, remainder ol tihe proigra,,, (at least before any

subsequent assignment is made) -- since the value referenced can depend on the parameter transfer
mechanism used during the procedure call. This clearly is not the desired effect.

It would seem that no generality would be sacrificed by establishing a particular parameter transfer
mechanism for each binding class. Thus, for example, one could specify that the functional model for IN
OUT parameters is based on a by-reference transfer mechanism. As this is a functional requirement,
any other transfer mechanism ,'arng Il .same/fiwmclonal cjthve may be used by the translator in place of
by-reference transfer. In certain situations, it may prove to be beneficial to use a by-return-value
semantics in place of by-reference, having guaranteed that upon any raised exception the values of the
formal parameters are copied back to the actual parameters.

Once the abstract model of parameter transfer is fixed, it becomes possible to perform effective
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exception handling, and to completely define the semantics of recursive data structures passed as IN

OUT parameters and of shared variables. As discussed in Section 8.1, it is also a necessary step toward

allowing true abstract data types to be defined in Ada -- having paved to way toward allowing an

implementation of an abstract data type to specify the semantics of assignment over the data t) pe

domain.

Note added In Revision to Evaluation: Since the time that the above analysis of the problems with

the Ada parameter binding was circulated in the first draft of our evaluation, changes have been made

to the definition of parameter binding 1141. In the next version of the language, the semantics of IN

OUT and OUT parameter binding will be defined as a non-deterministic choice between by-reference

and by-return-value parameter transfer mechanisms. The notion of an "erroneous" program then

becomes purely a matter of whether the programmer anticipated such behavior in his understanding of

the functioning of his program.

This definition of parameter binding is entirely consistent but not the definition that we would have

chosen. The new definition guarantees that it is not possible by testing to ensure the portability of

programs -- regardless of whether a given implementation makes a deterministic or non-deterministic

choice for the binding of each parameter. This coupled with the elimination of aliasing and side-effects

restrictions from the language places on the programmer the burden of determining whether the use of

a possibly non-deterministic parameter mechanism will affect his (or her) program.

8. Desirable Features Lacking in Ada for Re-Implementation of AI Programs

8.1. True Abstract Data Type Facility

Currently, Ada provides sonic capability to define abstract data types, but does not actively support

such efforts. While there is no explicit abstract type construction facility, it is possible to define an

encapsulated data type using the PACKAGE facility. PACKAGES in Ada provide an encapsulation

mechanism with which one can restrict visibility to a set of variable, type and subprogram declarations.

Declarations within the PACKAGE are elaborated upon entry to the environment in which the

PACKAG- is contained. Thus the PACKAGE acts as a "fence" restricting visibility to enclosed

declarations without affecting their allocation scope (lifetime). PACKAGES are similar to modules in

Modula 1281 -- principally information hiding and data encapsulation mechanisms avoiding the

complexity of abstract data type facilities such as CLIJ's clusters 181 or ALPIIARD's forms 141.

Using the PACKAGE facility, an abstract data type as follows (using the proverbial Stack example):
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PACKAGE fencefor stack IS

TYPE stack IS PRIVATE-
FUNCTION push(x:stack.y:lnteger) RETURN stack,
FUNCTION pop(x:stack) RETURN stack-

PRIVATE

TYPE stack IS RECORD s: ARRAY(L..n) OF Integer :=(l..n > 0);
t: Integer =1

END RECORD

END;

PACKAGE BODY fence for stack IS

FUNCTION push(x:stacky:Integer) RETURN stack IS
BEGIN ... END:

FUNCTION pop(x:stack) RETURN stack IS
BEGIN ... END-.

BEGIN
... -- Initialization code executed when package
END --is elaborated

END fence for stack:

Within the scope in which the package fence forstack is defined, one can declare variables of type

stack -- as one would with other built-in or user-defined unencapsulated data types. The representation

of stack is not visible outside the package body, and thus can be modified only via the provided

operations (push, pop, etc.). The above definition of stack provides for initialization of the

fence for stack PACKAGE via the BEGIN-END clause at the end of the PACKAGE BOI)Y and for

initialization of instantiations of the stack data type via the assignments specified within the stack type

declaration.

In general, a PACKAGE supports the definition of an abstract data type by providing the type

declaration for the representation of the abstract data type, the declaration of any associated procedures

and functions, and the declaration of auxiliary data structures common to all instantiations of the

abstract data type. The auxiliary data structures contained in the PACKAGE would be used for

communication and bookkeeping between instantiations -- as we explain later, this leads to a weak

cousin of a "type generator" as found in Alphard.

The user cannot, however:

O1 define individual initialization of an instantiated object,

o provide for the updating of auxiliary structures within the PA('KAGE to reflect the
instantiation of abstract objects,

" -' "2 ,, ,
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0 define finalization of the object,

C3 provide type instantiation parameters,

o or have generic types.

Curiously, initialization of an instantiation is possible only in the case where the representation is in
the form of a record structure. For this case, one can perform initialization of each record field by using

a type declaration such as

TYPE abstract IS RECORD field1 : T:=e,1:

fieldn: Tn:=en-

END RECORD:-

Within the above type declaration, it is possible to specify object initialization direcu/t p'riamitg to ..

fields within the actual record representation. Ada defines that a type declaration is evaluated upon

elaboration of the declaration, including all expressions in the right hand side of the type declaration and
in any contained initialization clause. As a consequence, any functions used to initialize components of'

the record representation are evaluated once upon elaboration of the type declaration. Thus, one can

specify only an initialization common to all instantiations of the abstract data type. This then precludes

any initialization specific to a particular instantiation or to a particular context. 5

There is also no way to update any auxiliary structures residing within the package to record object

instantiation. Thus one cannot implement a type generator, responsible for generating instantiations of

the abstract type and containing data structures relevant to the control and coordination of instantiations.

Such data structures would be used in order to selectively initialize abstract objects and would serve to

communicate between instantiations. While Ada allows such auxiliary data structures to be defined

within the type manager, the only means of the appropriate updating of such structures upon obiect

creation is to rely upon the user to call an explicit initialization routine.

Lacking also in the Ada facilities for type definition is an ability for the user to specify a final action to

occur when an abstract object is deallocated. Such an action, termed flinah:ation, is necessary in order to
define data type which interact with their environment, either with other data structures within the type
generator or in a more global context.

As an indication of this interaction, consider the problem of defining garbage collection for an abstra.t
data type such as STRING. In order to attempt garbage collection, it is necessary to know at any given

time the set of active string variables. To determine this information, the data type implementation

must in some way record the allocation and deallocation of declared string variables. Such information
will be used to trace the set of accessible strings when string space becomes exhausted.

' an iniptc cliniwin con ,ideraion it alsto rcquircs that a (tumll) ifl'.OilflI iai iM thi eh ahIrIat ila 1i 1v h- crectd Inld

ifitiili/lid u 11 f ciahorition ot lhe I pc declaralion
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Currently, the user has the capability to record the allocation of a string variable by forcing the user to
call an explicit initialization of each string object before performing any other operation. However,
deallocation of declared string variables occurs automatically upon scope exit, with no provision for the
data type implementation to regain control in order to do final clean up and bookkeeping, and no
method of enforcing any user-invoked reporting. Without this control, it is not possible for the data
type implementation to maintain the information necessary to trace through the set of active strings to
perform garbage collection (that is, without resorting to unsafe programming practices and interrogation
of the run-time stack).

There are many additional examples of data types involving resource control, storage management,
and other environmental interactions that cannot be implemented without finalization control.

Ada cannot be faulted for not including a finalization capability. Of the recent research languages Clu,
Alphard, Mesa [261, Gypsy [131, and Euclid (101 designed to support data abstraction, only Euclid and
the most recent specification of Alphard 6 include a finalization capability. The task of defining (and

guaranteeing) finalization within Ada is far more difficult than is the case within Euclid and Alphard.
due to the interaction with exception handling, dynamic storage allocation, and tasking.

We have developed [121 a language proposal and semantic model for adding finalization and arbitrary
initialization to a language such as Ada. We believe it provides a consistent extension to Ada and
similar languages and, in conjunction with the existing PACKAGE structure, results in a powerful
abstract data type facility. The proposed facility guarantees in all conditions that each abstract object
which has been created and initialized will be finalized before its scope is exited. The model applies to

both statically and dynamically created abstract objects.

As mentioned early in this section, there are two other capabilities that would enhance the abstract

data type facilities in Ada: type instantiation parameters and generic types. As type declarations are now
defined, it is not possible to declare either compile-time parameters, through a generic type mechanism,
or run-time parameters, through a type instantiation parameters.

Without these facilities, it is not possible to have user-defined type constructors or to associate

attributes with user-defined types. 7 To see the desirability of such capabilities, consider the built-in Ada I

ARRAYOF type constructor. The use of ARRAYOF in a declaration such as

x:ARRAY(i..n,I..m) OF INTEGER

'Alphard allows a finali/ation clause to he attached to any object declaration. either within or outside of a FORM. This does not
conform to our conception of what finalization should provide and has several difficulties which we discuss in (12).

7Technically. it would e possible to do this, in a roundabout manner, by declaring the package containing the type definition to
he generic with the parameter being that necessary for the type declaration. One could then have a generic instantiation of the
package for each desired instantiation of the contained declared type. Each such use of the type declaration would produce a new
and hiioct ntxw however. Ior a type manager package containing auxiliary data structures, this would therefore not he equivalent

"
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accepts as parameters a type mark to be used as the element type and bounds specifications which
compose the attributes of the array. Thus, the type constructed is a two-dimensional array of Integers

with attributes L.n for the first dimension and I..m for the second dimension.

A type constructor with run-time attributes can not be defined by the user in Ada. Thus a

user-defined type such as STRING could not define string length as an attribute (keeping in mind that

we require the use of a single package to perform necessary bookkeeping), and a user-defined

QUEUE OF constructor could not be (succinctly) defined. To define type constructors as generic types

and to allow type instantiation parameters, only a simple mechanism is needed. Consider the following
as an example (using a user defined array type as an example):

GENERIC TYPE(T:TYPE) ARRAY_CONSTR(ab,c,d:lnteger) IS
ARRAY a..bc..d) OF T

The generic instantiation

TYPE ARRAYINT IS NEW ARRAYCONSTR(INTEGER):

would produce a new ARRAYINT type, and the declaration

x:ARRAYINT(I,n, I,m)

would then declare x to be an instantiation of ARRAY(I..n,l..m) OF INTEGER.

The addition of these capabilities introduces compile-time complication but little additional run-tine

overhead. There is considerable potential gain in the flexibility of construction and use of abstract data
types -- flexibility that may prove crucial for the effective use of Ada for large-scale embedded systems

development.

8.2. Expanded Exception Handling Capability

Exception handling is a relatively new feature in language design, and existing Al languages provide

no exception handling facilities, though the Interlisp environment does allow a form of exception
interception. We do not have any examples of the use of exception handling in real Al programs, and

do not feel that the Ada facility will be a serious problem during reimplementation of such programs.

Much of the experience of use of exception handling from the PL/I, Mesa, and Bliss languages

indicates that abuse is as common as use and that the facility particularly lends itself to the construction

of obscure programs. C.A.R.tloare, in his evaluation of Ada exception handling facilities [151, stated
the opinion that even the restricted form of exception handling present in Ada is close to the limits of

the ability of programmers to construct sound systems, and that he would prefer an even simpler

construct. Consequently we view with caution the quite widespread conviction amongst the Al

community that they need a much more comprehensive exception handling facility.

The needs expressed for enhanced exception handling are for an ability to resume computation in the

context in which the exception was generated, and for parameters to exception handlers. These two
features could be provided without too much difficulty. They are both present in Mesa, although in a

rather messy and ill-defined form, and D.Lomet at Yorktown Ileights 1221 has established the sets of'

.. . ', .. . . . " :" " ,!
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restrictions required to ensure consistency in their use. Their omission fromi Ada is based on a
judgment as to the level of complexity appropriate to the language, and for the intended Ada user
community, we have no quarrel with that judgment. Whether the Al community requires an expanded
exception handling capability must be settled on the basis of future research.

8.3. Partial Parameterization (Contributed by Peter Hibbard)

By partial parameterization we mean the ability to supply a procedure with a subset of' its parameters:
a new procedure is thereby created which may subsequently be called in the normal way, by supplying
the remaining parameters.

For example, if we have the procedure

PROCEDURE write (elem : IN integer, f: IN file-name)

we can create a new procedure

PROCEtDURE writelp (elem : IN integer) IS write (,line printer)-,

and call it by

writelp (3),

Partial parameterization is one way of permitting knowledge to be bound to a procedure in order to

affect subsequent calls of the procedure In ibis section we show that the more usual way of doing this,
via global variables, is inadequate for many purposes.

One particular case where these facilities are required in Al applications is where a decision procedure

has a need for the service of "experts" -- procedures which are able to provide information on sonie area
of the problem domain. Self-adapting experts start out as generalists, and they are subsequently turned
into specialists as information is derived about the problem. The way in which they become experts is
of no concern to the clients who use their services-, also, the numiber of'such experts and their areas of'

specialization are not known a priori -- as the prograni executes specialists are created on the fly.

Below is an analysis of the language features needed to support this paradigm. As we will show, these

facilities are of use in other application areas than Al.

We intend to model experts by procedures which, when called will perform the services required of'
them. There arc the following requirements:

o3 That experts can- be passed to clients (as parameters) who are able to call them with
parameters indicating the particular service required-,

o That experts are created from generalists as the program executes, by associating with the
generalists some body of knowledge which they use to perform their actions,

o1 That the number of experts which are needed is not known before the program starts to
execute',

o1 That the creation of an expert in general occurs as a response to some change in the data
base associated with the program, and not as a consequence of the control flow of the
program;



0 All the usual requirements of good program structure and good abstraction properties must
be retained.

We first of all briefly review the problems of creating and manipulating procedure values. There arc

several Formulations used in Algol-like languages to create procedure values:
I. The Ada case. The declaration of a procedure binds the environment necessary for its

execution to the text of the procedure. Because the lifetime of the identifier to which (he
procedure value is bound is less than the lifetime of all the globally accessed identifiers, no
environment retention problems can exist.

2. The Algol60 case. A procedure value may be passed as a parameter to a procedure. For
the same reason as for (I), no lifetime problems exist. The only complication with respect
to the execution of the program is to ensure that the necessary environment is made
current when the procedure parameter is called.

We note in both these cases that the number of procedure values which is callable at any point in the
elaboration of the program is statically fixed and known at compile time, since procedure values may
only be called through the current bindings of' the identifiers bound to procedure values. Thus the
facilities above will not satisfy our requirements for an indefinite and unbounded number of procedure
values existing at arbitrary points in the execution of the program.

3. Generic procedures as in Ada. These allow compile-time parametrization. effectively by
textual macro substitution, this macro expansion occurring in the context of the generic
definition rather than in the context of' the macro call. Since generic instantiation may only
be performed in a procedure declaration, generic procedures do not increase the
functionality of' the language beyond that present in (I), though they do add to its
convenience.

4. The Algolb8 case. Procedures can be manipulated in the same way as other values. It is
thus possible to create an unbounded number of procedure variables (by using arrays and
access variables). Note, however, that the number of' different procedure values which can
exist, whilst also unbounded, is determined solely by the (static) number of procedure
texts, and by the current (dynamic) depth of recursive calls of procedures which contain
procedure texts lexically embedded in themselves. For example there may be several
instances of a procedure value derived from text P, each of' which is bound to a different
environment obtained by recursively calling procedure Q in which the text of P resides.
,ach of these instances of P may be called from the same point in the program since access

paths to them may he constructed using procedure variables. Thus we have now obtained a
part of' the functionality required. It is unlikely, however, that this language mechanism on
its own will provide us with an adequate technique for the creation of specialist procedures
on the fly, for the following reasons:

E The technique of associating specialist knowledge with a. general procedure through
the necessary environment of' an instance of' the procedure value is clumsy,
error-prone, and has little relation to the abstraction we are trying to use-

0 It is improbable that the dynamic, recursive control structure required to create the
experts will mesh suitably with the structure of the program which needs to make use
of these experts.

We feel we can trace the cause of this problem to the following feature of algebraic block-structured

languages as so far described -- that one cannot dynamically bind a value to the body of a procedure in
order to cause it to have different effects when it is called. One can only place different environments
at the ends of the access paths out of the procedure; this has poor abstraction properties and may only

I|
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be invoked through mechanisms unsuited to the effect it is desired to achieve. Note that this argues
against using environment retention alone to obtain the required effect.

5. Partial parametrization is permitted. In this model it is possible to specialize the behaviour
of a procedure by supplying it with a subset of its parameters. The procedure is not thereby
called, but instead the values are bound to a new instance of the procedure value which
may be subsequently called with the missing parameters.

The following example succinctly illustrates this facility, by direct application of a recurrence relation
to compute the Legendre Function of degree n:

PROCEDURE legendre (n: IN integer; x IN float) RETURN float IS
result : float;

BEGIN
IF n = 0 THEN

float := I
ELSIF n = I TEN

float x
ELSE

floatee=
((2*n- ) * x * legendre (n-l,x) - (n-

R legendre (n-2,x)) / n
END IF'
RETURN float;

END legendre;

with calls such as

PROCEDURE legendrel (x : IN float)
RETURN float IS legendre (1,).

...... legendrel (x) .....

We reject any solution to the problem of dynamically creating specialist procedures which involves
methods of conveying the specializing information other than in a data object closely associated with the
procedure value itself. For example,

0 Translating

n : integer;
get (n);
PROCEDURE legendren (x : IN float)

RETURN float IS legendre (n,):

... legendren (x) ...

into

n : integer;
get (n);

... legendre (nx) ...
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both fails to deal adequately with the abstraction we wish to capture since we should notI need to carry throughout the program the additional context to the call represented by the
variable n, and permits accidental changes to be made to it between the point of reading it
and using it.

El In order to pass a specialist P to a procedure Q as a parameter to Qto enable it to perform
some task, we write:

PROCEDURE client (server :PROCEDURE (float)
RETURN float) IS

BEGIlN
-body which includes a call

-... server (x)
ENI) client-,

and a call of' the client:

client (legendren):,

Without partial parametrization it is necessary to pass an additional paranmeter:

PROCEDURE client (server : PROCEDURE (integer, float)
RETURN float, n :integer) IS

BEGIN
-same body but with call
-... server (n, x)

END client-,

and a call of the client:

client (legendre, n):,

There are two objections -- first, client should not need to be aware of the means by which
the server performs its task, and should not need to be aware of any additional information
the server requires: second, it is unlikely that all servers which are being used by the client
will have their functionality specialized in the same way: some may have their specialization
done with boolean values, some with real values, etc. In this case, there is no feasible way
of encoding the client unless type breaches are permitted.

A use of partially parameterized procedures that is particularly important for Al applications involves
procedure variables as components of' the data structures describing the objects to be processed.
Partially parameterized procedures are assigned to these procedure variables to customize the processing
required for each particular object.

The need to associate a value with an instance of a procedure arises frequently in all application areas.F
Our example shows that the more usual ways -- global variables, generic procedures, retention of'

* environments -- are inelegant at best, and impractical in general.
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9. Conclusions
It is our opinion that a useful proportion of Al programs could be reimplemented in Ada by

appropriate software teams, using the original experimental version of the program as a prototype and
following its algorithms, though not necessarily its detailed code. A number of relatively minor
extensions to Ada would increase the proportion of Al programs that could be expressed in Ada without
the use of program structures that destroy the readability or modularity of the resulting Ada program.

We have also discussed more drastic extensions to Ada that would allow the expression of almost all
normal Al algorithms with relatively little modification. These extensions would have substantial
interactions with other Ada language features and might conflict with other Ada objectives. We do not
recommend that Ada be modified to include such extensions without further investigation.

We are particularly concerned about imprecise definition of the parameter binding in Ada; interacting

with the access type, exception handling, and parallel processing features of the language to yield
different results according to which parameter binding is implemented. We do not accept the definition
as erroneous of any program whose results could be affected by this imprecision. For it is then
extremely difficult if not impossible to determine whether any substantial program is erroneous, and
consequently real systems may be expected to yield surprising results occasionally. We recogni7e the
efficiency considerations that encouraged this dubious compromise, hut we are appalled by the
consequences, for any kind of programming.

We recommend that serious consideration be given to the extension of' Ada to allow:
o procedures as parameters,

o] a pragma requiring the presence of garbage collection,

EO greater generality in type initialization,

O.generic types,

o parameters to the instantiation of a type.

We do not believe that Ada will be suitable as a general research programming language for Al
applications, and we do not believe that the extensions to Ada needed to meet the requirements for an
Al research language are either immediately feasible or appropriate to the embedded system context for
which Ada is intended.

If the advantages of modern programming language technology are desired for Al research and for
the development of experimental Al applications, consideration might he given to the development of a
language specifically suited to that purpose. Such a language could be part of a programming.lookf
surrounding Ada, attempting to maintain the basic overall structure and "flavor" of the language.
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1. Ada and Multiprocessor Systems

Contributed by Carl Hewitt

It seems reasonable to expect that multiprocessor systems connected by extremely high bandwidth

local networks will appear in embedded systems within the next decade. Ada has been designed for
current generation hardware systems which are quite different from the new systems which are being

created in advanced research laboratories. These new systems pose a number of problems which are not

adequately addressed in the current Ada design. Among the most important are the following:
1. LOAD) BALANCING is the ability to redistribute the computational load among the nodes

on a network.

2. MIGRATION is the ability to move objects between nodes on a network. It can be used to
relieve overpopulation on the nodes of a network as well as to increase efficiency by

moving an object closer to where it is being actively used.
3. RECOVERY is the ability to restore an object (such as a checking account) without losing

information after a crash occurs.

4. MESSAGE PASSING is the ability to communicate with objects regardless of' their current
location on the network.

5. REPLACEMENT is the ability to change one object into another. This capability is needed
to implement continuously available systems whose objects must evoi'e while the system is
in operation.

6. INhIERITANCE provides that all objects are part of' a network of descriptions in which
attributes and behaviors are shared in a modular fashion. Type inheritance is needed to
implement REPLACEMENT.

7. EFFICIENT REAL-TIME GARBAGE COLLECTION is the automatic reclamation of, the
storage of objects which are no longer accessible. Garbage collection will be needed on a
network wide-basis in many future systems.

I expect that Al systems will make increasing use of parallelism in the course of the coming decade.

The ability to provide the above capabilities will be crucial to any language which attempts to transt ,er

these s%'stcms to the LDo[).

Achievement of the above capabilities has a pervasive influence on the design decisions of a
programming language. For example in such systems, only objects which cannot change state can be
safely copied. Objects which change stale cannot be safely copied because of the inconsistency which

results when one machine updates one copy while another machine updates another copy. Thus the
parameter passing mechanism of Ada should not provide for making copies ~f objects which can change

state.
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The greatest threat to the achievement of the above capabilities in Ada lies in the use of

UNCHIECKED PROGRAMMING. Instead of providing UNCHECKED PROGRAMMING, Ada
should provide a small number of primitives which accomplish the goals of UNCHIECKED)
PROGRAMMING without the effect of' lowering the level of the language to essentially machine code.
These primitives will allow implementations of Ada to evolve as more appropriate technology becomes

available.

For example Ada should provide a FREE command which is not completely checked to recover the
storage of' objects. The provision of the FREE command should be regarded as a temporary engineering
compromise because most current generation machines do not yet provide the micro-code support to

make real-time garbage collection efficient. The F-REE command is extrenmely dangerous in that its use
can easily result in system crashes. The cause of these system crashes is often extremely- difficult to
isolate since it usually happens a considerable time after the offending use of the FREE command.
When real-time garbage collection becomes available, programs will not have to be modified since the
FREE conmnand will be compiled as a null operation. In contrast programs using UNCHEICKED)
PROGRAMMING will have to be extensively modified in order to use real-time garbage collection.

The original design for the programming language Mesa included the ability 1 to nke use of a

"LOOPHOLE" mechanism which is very sinilar to !he UNCIIECKI:I) PROGiRAMMINGi in Ada. Alter

several years of experience in using the language in programming real-time systems, the designers have
decided that the loopholes must be closed in order to implement garbage collection.

11. Papers Prepared as a Result of Contrat Research
The following papers have been prepared during this project:

0"The Suitability of Ada for Artificial Intelligence Applications". Final Report for
AA629-79-C-02 16, June 1980.

0 "D~ata Abstraction in Ada". submitted to the Ada Symposium, May 1980.

0 "The Finalization Operation for Abstract Data Types", submitted to the 5th International
Conference on Software Engineering. June 1980.

o3 "An Abstract Data Type Facility for Ada", to be submitted to ACM Transactions on
Programming Languages and Systems.
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