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ABSTRACT

A simple necessary and sufficient condition, on a trace-class

kernel K , is given in order for the existence of a measurable

(relative to the completed product a-algebra) Gaussian process with

covariance K . Using this result, sufficient conditions are given

on the means and the covariances (relative to two equivalent (-)

Gaussian measures P and P ) of a process X so that the Radon-

Nikodym (R-N) derivative dp /dP is the exponential of the diagonal

form in X . Analogues of the last two results in the set up of

Hilbert space are also proved.
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1. INTRODUCTION

Let (T,T,v) be an arbitrary a-finite measure space and K a

trace-class kernel on T x T . We give a simple necessary and sufficient

condition on K for the existence of a measurable (relative to the

completed product a-algebra) Gaussian process with covariance K

(Theorem 1).

Assume that K satisfies the condition of the above theorem, so

that there exists a measurable Gaussian process X on a probability

space (n,F, P) with covariance K . Assume, further, that the mean

8 of X belongs to L2 (v); then we, explicitly, evaluate

ffTexP{l/2 Xjf(t)1X2 (t,wM)(dt)}P(dw) , where X is a certain number

and f is a certain measurable function (Theorem 2, Corollary 2).

Assume the hypotheses and notation of the previous result and let,

for each A , a function e A on T and a covariance function KX

on T x T be given; then we give sufficient conditions on 8X and

KA in order that (1) 8A and K X determine a probability measure
PA on (1,F) with respect to which X is Gaussian, (ii) P P

and (iii) the R-N derivative dPx/dP is of the diagonal form in

X ; i.e., is expressible as rTexp {1/2 2f(t)IX2(t,w)}v(dt) (Theorem 3,

Corollary 2).

The results of the previous paragraph are motivated by some of

the work of D. E. Varberg (7] and L. A. Shepp [6], and they are

generalizations of two results of the former author and are related to

similar results of the latter. We may point out that these results are

central and are best possible in the sense that they are proved under

i -•
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minimal hypotheses on the functions e and K (see Remark 2). Analogues

of Theorem 2 and 3 , in the set up of separable Hibert spaces, are also

proved (Theorem 4(i) and 4(11)).

All results are stated and discussed in Section 2 and their proofs

are given in Section 3.

2. STATE4ENT AND DISCUSSION OF RESULTS

We begin by stating a few definitions, notation, and conventions

that will be used throughout the paper.

(A.1) (T,T,v) denote an arbitrary a-finite measure space; whenever

we write T , it is implicitly assumed that T and v are associated

with it. If (r, A,y) is a measure space, then T and L2 (y) denote,

respectively, the completion of A relative to y and the Hilbert

space of real v-square integrable functions.

(A. 2) A real, nonnegative definite, symmetric and measurable

function K on T x T is called a kernel; if, in addition,

fT K(t, t)v(dt) < -, K is called a trace-class kernel. Let K

be a trace-class kernel, and (A d and (0 n be, respectively, the

positive eigenvalues (including multiplicities) and the corresponding

(normalized) eigenfunctions of the integral equation

(2.1) A(s) = fT K(s, t)#(t)v(dt)

then K is called a M 12tk a (M-kernelXi) for short), if K

admits the representation
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(2.2) V~s, t) =K 1(s, t) + K 2(s, t) , ,t e T

where K1 and K2 are trace-class kernels such that K2(t, t) -0

a.e. [A) and

(2.3) KJ(s, t) = I X~ n~ (s) * (t) s, t e T
n-1

where the series converges absolutely, for all s, t £ T .We note

that there exist numerous examples of such kernels.

(A-3) If K denotes an M-kernel on T x T , then we denote,

consistently, by {X n) and {0nl respectively, the positive eigen-

values (including multiplicities) and the corresponding (normalized)

eigenfunctions of the equation (2.1), and by K1 and K2 the kernels

related to K as in (2.2). We will assume that the set {An ) (and

hence (* n)) is not finite, since it is the only case of interest here.

(A.14) We consider here only real linear spaces and real stochastic

processes.

Now, we are ready to state the first result of the paper.

THEOREM 1. Let K be a trace-class kernel on T x T ; then we

have the following:

(a) If K is an M-kernel, then there exists a Tx -measurable

Gaussian Process X on some probability space (n,F, P) such that K

is the covariance of X ; further, if KV K21 (4n and "d are realted

to K as, described in (A.3), then X can be so chosen that

Xt X + , t cT,
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where Y and Z are independent Gaussian processes with covariances

K1 and K2 , respectively, and

(2.4) Et /7 (nt ) Y
Y7-n~l n n n

where Yn 's are independent N(O, 1) r.v.'s and the series converges

in L2 (P) and also a.s. [P] , for each fixed t c T . Finally,

(2.5) Y., W)- A- n() yk)
n-1 n

where the series converges in L2 (v) and also a.e. [v] , for every

W outside a P-null set.

(b) Conversely, if K is the covariance function of a T77-

measurable Gaussian process X on a probability space (l,F, P) ,

then K is an M-kernel.

R RAEK 1. It should be noted that, for a given M-kernel, Theorem

4 .l(a) guarantees the existence of a Gaussian process which has the

given kernel as its covariance and is measurable relative to the

completed product a-algebra. The question, whether for every M-kernel

K there exists a Gaussian process which has covariance K and is

measurable relative to the uncompleted product a-algebra, has a negative

answer. (see Remark 1, [2, p. 470]).

For the statements and the proofs of some of the following results,

we need a few more notation and conventions which we record in the

following:

IL
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(A.5) If K denotes an M-kernel on T x T (so that, in view of

(A.3), {An } and (n } are, respectively, the eigenvalues and

corresponding eigenfunctions of (2.1)) and 8 a v-square integrable

function on T , then we denote, consistently, by 0 , the orthogonal

projection of e onto the space orthogonal to the L(v)-closure of

the linear space of {O } , by A , a real number such that

1 - AAn > 0 , for all n ,and by X , and KA the functions

defined as follows

(2.6) e (t) = e(t) + A z A (I -A )-l<0 ,e> (t) , t T
n-i n n n n

(2.7) KA(s,t) = n-l An ( An) -  n(s) on(t) + K2 (s, t), s, t c T,

where <,> is the inner product in L2 (v) and K2  is related to K

as in (2.2). Further, we consistently use the notation D(A) and W(A)

respectively, for

(2.8) n) (-Ax)
nal

and

(2.9) D(A)1/2 exp[-1/2 A(11112 + (1 -A 1 )l , 2fl
n-i n nn-1

where 11-11 is the norm in L2(v) . The series in (2.6) and (2.7)

converge absolutely, respectively, for t e T and s, t e T . This

follows from the boundedness of the sequence (1 - AA )- 1 }(recall thathn

I A ( -) , Cauchy inequality for sequences and (2.3). Since
nol
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1-AA > 0, A > 0 for all n ,and r A < ,we have that
nn nul n

0 < D(A) < 1 From this and the boundedness of the sequence

M - AA n)-1} , it follows that W(A) is a well defined positive

real number.

In Theorem 2 and 3 and Corollaries 1 and 2, it will be assumed

that the space L2(v) is separable.

We are now ready to state the following two results.

THEOREM 2. Let K be an M-kernel on T x T and 6 e L2(v) ; then

there exists a T -measurable Gaussian process & on a probability

space (0,F, P) such that 8 and K are , respectively, the mean

and the covariance of F ; further, if A and W(A) are related

to e and K as in (A.5), then

(2.10) f1exp {112 A fT w2(t'")v(dt)} P(dw) = W(A) -  < .

THEOREM 3. Let K ,8, F and (n,F, P) be as in Theorem 2,

and let A ,8X, KA and W(A) be related to e and K as in (A.5).

Then KA is a covariance function, and there exists a probability

measure PA on (0,F) such that F is Gaussian on (0,F, P) with

mean OX and covariance KA , P - PA , and the R-N derivative

dPAIdP is given by

(2.11) dPAIdP(w) -W(A) exp{1/2 A fT &2(t w)v(dt)} &.a (P].

Met;
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REMARK 2. It is clear, from (2.10) and (2.11), that in order to

obtain results similar to Theorems 2 and 3 the functions e and K

appearing in these results must guarantee the existence of the process

~ which is measurable and whose almost all paths are v-square

integrable. Since, in view of Proposition 3.4 of (5] and Theorem 1,

these conditions on & are equivalent to the facts that K is an

M-kernel and that 8 is v-square integrable, it follows that Theorems

2 and 3 are best possible, i.e., they are proved under the weakest

possible hypotheses on e and K

In order to point out the relation between the above two theorems

and the corresponding results of Varberg (Theorems 1 and 2 of (17])

and Shepp (6, p. 352], we now state two corollaries. These corollaries

are, essentially, the restatements of Theorems 1 and 2; nevertheless,

their inclusion is necessary in order to compare our results with the

corresponding results of Shepp and Varberg.

COROLLARY 1. Let r be a kernel on T x T (see (A.2)), and

p and f be measurable with f(t)j > 0 on T such that (i) K(s,t) -

r(s, t)f(s)l/2lf(t)l /2 , s, t e T , is an M-kernel, and

(ii) e(t) _ p(t)lf(t)l1/2 , t £ T ,is v-square integrable (both of

these conditions are satisfied, for instance, when r is an M-kernel,

p e L2(v) , and f is bounded, this follows from Theorem 1). Then

there exists a "77 -measurable Gaussian process 4 on a probability

space (A, F, P) such that P and r are, respectively, the mean

and the covariance of ; . Further, if X and W(W) are related

to 8 and K as in (A.5), then

-N

J.1

-~~~~l W,~.y b~Nt
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(2.12) f exp{l/2XfTf(t) 2 (tw)v(dt)1P(dw) = W(X)-

COROLLARY 2. Let r, p, f, K and 8 be as in Corollary 1 and

let C and (a,F, P)

be as obtained in Corollary 1 and let X,8, K, and W() be related

to e and K as in (A.5). Then there exists a probability measure

PX on (Q,F) such that ; is Gaussian on (0,j, PX) with mean

If(t) 1-1/2 e(t), t c T , and covariance lf(s)1-s/2,f(t)1 - 1 /2 KX(s,t) , s,t c T,

PI P , and the R-N derivative dPIdP is given by

(2.13) dP /dP(w) = W() exp(l/2 XfTlf(t)l 2 (t,,)v(dt)} a.s. [P].

REMARK 3. If T = [a, b] ,T the class of Borel subsets of T

v = the Lebesgue measure, and if r is a continuous kernel on T x T

then, by Mercer's theorem, r is an M-kernel on T x T . Now if

f is any bounded measurable function on T , then, as indicated in

Corollary 1, r(s, t)If(s)Ill21f(t)I1/2 , s, t c T , is an M-kernel.

From this it is now clear that Theorem 1 and Theorem 2 of Varberg [7]

are special cases, respectively, of Corollary 1 and Corollary 2. These

corollaries are also related to two results of Shepp that are given

on pp. 350 and 352 of [6].

We shall now state two more results (Theorems 4(i) and 4(ii)).

Theorem 4(i) is important in that it is needed for the proofs of

Theorem 2 . Theorem 4 (iii) is included here to show

that the analogue of Theorem 3 can be forumated for Gaussian measures

defined on abstract separable Hilbert spaces.
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We assume that the reader is familiar with the elementary

properties of Gaussian measures in separable Hilbert spaces.

In the following theorem, H and B(H) denote, respectively,
a separable Hilbert space and the a-algebra generated by open sets

f H ; and ,> and 1Ii denote, respectively, the inner product

and the norm in H

THEOREM 4. Let u be a Gaussian measure on (H, B(H)) with

mean m and covariance operator S . Denote by {6 n } and {'Pn ,

the positive eigenvalues (including multiplicities) and the corresponding

normalized eigenvectors of S , by 6 , a real number such that

66n 1 , for all n , and, by m , the orthogonal projection of m

onto the space orthogonal to the closed linear space generated by

{* }  " Define

S6(x) = E 6n (1 - 66 )-i q n' X> n x e H,
n

n-l

m a m + 6S6(m)

and

U(6) - [nl (1-66n)]i12 exp[-l/2 (1 -66 )-l<, m>2 ].
n1l n 6{~~+n1 n n

Then we have

i) /H exp 1/2 611xJ12} 4(dx)

(2.14) n12 6{11rn11 2+ ZVnm -1nm
(2.14) C J1 U( -66n)i/exp[1/2 {lml2 nul(1-66 n)-lq n m>2}

S -U(-1 < Co
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(ii) if uis the Gaussian measure (2) on (H, 5(H)) with mean m6  and

covariance operator S6, then P, ^- P and the R-N derivative

dp6/du is given by

(2.15) du6/du(x) = U() exp{l/2 6 Ilx 12} , a.s. (u],

where U(6) is as in (i)

3. PROOFS

Proof of Theorem 1(a). For clarity, we devide our proof into

three parts. In parts (i) and (ii), two auxilary processes Yl and ZI

are defined; and, in part (iii), these are used to construct the required

process X

(i) There exists a T x" -measurable Gaussian process Y with

covariance K1  defined on a probability space (Q1 ,F,, PI) . Further,

yl can be so chosen that, for every fixed t e T ,

t n=l n n( n

where the series converges in L2(P I ) and also a.s. (PI] ,and n's

are independent N(O, 1) r.v.'s on (al. F1, PI) 1 Further

/XI - CW

na nn



where the series converges in L2 (v) and a.e. [v] , for every w

outside a PI-null set.

Proof of _(j . Let (Yl} be a sequence of independent N(O, 1)

r.v.'s defined on a probability space ( 1 ,F1 , P1 ) . We nov define

two processes & and 4 in terms of A Is I t Is and ns I and
n n n

then define the required process y1 in terms of and .

We first define the process For each n ,let

V(tsW) - (t) Y 1(w) ,(t,w) e TX x *

Since Z A <- and <0' m > L - 6
J=l n m n,m

(6 is the Kronecker 6 ) , it follows that

I .m 12 ,,

IIr 431 " = EA 0
Jun L2 (v X p 1 Jun

n
as n, m *0 . Thus, { E J ) converges in L2(v x P ; and, so,

J3l a1
there exists a subsequence { N I which converges pointwise off

Jul

a v x P1-null set A . Define

lii J1* (t,W) off A

0 on A

then, clearly, is T x Fl-measurable. Further, by Fubini's Theorem,

there exists a v-null set T1  such that, for every fixed t T1 ,

Si,
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the set At [w: (t,w) c A} haa P1-measure zero, and, for every

w At,

(t,w) a nlim E 0 (t, i,).
k Jul

Nov we define the process 4 Since for every fixed t c T ,

E 1ni *(t) < - (see (2.3)) and Y's are independent mean 0

variance 1 r.v.'s, Z A 0(t Yl converges in L2 (P1 ) and
n=l

also pointvise off a P1-null set Bt , for each t c T (4, p. 14T].

For each t e T , define

n ~1
lisZa X( W) Y(W) , if we

0 9 ~if w EBt

Cwhere Bt denotes the complement of Bt

Clearly, if t e C then P (ACnBt)- 1 ; further, ifTlary n. t t T

AnBt , then,sine J(t, W)I is a subsequence of
~n

(r 4 (t,w)} , &(t, w) 4 (t, w) . Thus, for every t .c

(3.1) &t a ct a.s. (P1]

Finally, define

(3.2) Y(tw) Vt,'4 if (tw) C T, X

(c(tw) if (t,w) C T .

.777TT<.L
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We now show that yl is a required process.

Since, from (3.2), the set ((t, w): Y2 (t,w) C C(t,w)} is contained

in V X P1-null set T1 X al , and since E is shown T x F1 -. easurable ,

it follows that Y1 is T'-l-measurable. Since, as shown above, the

series E 47ne(t) Yn converges to c in L2(P1) and also a.s. [P11,n-i n n n t1

for each fixed t e T ,and sincefrcm (3.1) and (3.2), Y1 ' a.s. [P1 ]

for each t e T , we have that nW V'n*n(t) Yn converges to Y in

L2 (P1 ) and also a.s. [P1 1 ,fbr each t c T . Also, from L2(P 1 ) convergence

of the series to Y , t £ T , we have that yl is Gaussian (recall that

's are Gaussian) and that the covariance of Y i K,(s,t) - n *n()4 (t)
n Go ninon n
a, t e T , where E n n )(t) converges absolutely for s, t £ T

To complete the proof of (i), it remains to prove that nr 1 n(.)Yn(w)

converges to Y(. ,w) in L2(v) and a.e. jv] , for almost all w . Since,

for t c T, nZA" X-n(t) Y is shown to converge to Yt a.s. [P1] , we

have, by an application of Fubini's theorem, that n 4 n ( w) (w) converges
n1l n n n

to Yl(., w) a.e. [v] , for almost all w . Now we show the L2(v)
W2

convergence of n_ An -Y() to yl(.,w) a.e.[P1] " Since

[ (n n n n - n "

E~n~ X (yli2,p (dw) - nal. <

we have that n An(Yl(w))2 < o a.s. (P1] . Therefore,
n-i n n

a m ( l w )ITI4V'~ ~ rt r(Wrv(dt) E A ( 1 w)
fI ona j n an

L9.

-. -3.. .. .. .. . .. .. .. . .. .. .. . --------
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a.s. [PI( as n, m - ; consiquently, nzi 47 f Yn(w) converges

in L2(v) , a.s. [PI. Nov using the fact that L2 (v) convergence

implies the existence of a subsequence that converges to the same

function a.e. (A and the fact that E AN 0 lY1(w) converges to

Yl(.,w) a.e. [v] , for almost all w , we have that nz x fn Yl(w)

converges to Yl(.,w) in 1(v) , for almost all w . The proof of

(i) is nov complete.

(ii) There exists a ' --measurable Gaussian process Z with

covariance K2  defined on some probability space (02',F2 , P2 )

Proof of (ii). By Kolmogorov's existence theorem, there exists

a Gaussian process n with covariance K2  defined on some probability

space (02 F2 , P2 ) Let T2  be the v-null set of T such that

K2(t,t) - 0 off T2 . Define

Z1 (t,w) - n(t,w) XT2 x f(t,w)

here X T2 x n2 is the indicator of T2 x 02 .Then, clearly, Z1

is Gaussian with covariance K2 ; further, since Zl(t,w) - 0

S.. [ x P21 I Z is T x 2-measurable.

(iii) Let (ll, FI, P1 ),Y
1 ,'1'sand (n2' F P2' , ' be as in

(1) and (Ii), respectively. Let (9,F, P) - (al x 02, F1 x F2 , PI ' P2
) '

and 11 be the projection of T x fl onto T x , j .1,2 . Let

Y aYl o R ,Y Y o 11n, Z Z 012 and

S(3.3) Xt: Yt + Zt 't c T;
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then the processes X, Y, Z and the r.v.'s Yn 's satisfy the required

properties of Theorem l(a).

Proof of (iii). It is clear that Hi is measurable from

(0l, T ) onto (T x Sl7, 7-=x j = 1, 2. Therefore, since by

(i) and (ii) Y1  and Z1  are T-7 and T'x2 -measurable,
12

respectively, Y and Z are r-7 7-measurable. The rest of the

proof follows from (i) and (ii) and the observation that for any

tl, ..., tn, l, .. , sm € T and any A c 8(Rn), B c B(Im) ,

P{(Yt, ... , Yt) £ A, (z , ... , Z ) £ B1 - P l(Y , "' ) £ A).
ttn 8sm1 t n

P {(Z .. Z1 ) c B) , where B(Rk) is the class of Borel subsets

of the k-Euclidian space R . We omit the details.

Proof of Theorem l(b): This follows from Theorem 1 of [1] due

to S. Cambanis.

Proof of Theorem 1. Let X be the Guassian process on (0, F, P)

as constructed in Theorem l(a) subject to the additional condition

that E(Xt) - 0 , t £ T . Note that, as follows from the proof of

Theorem 1, this additional condition is satisfied by X if we choose

the process Z1  in the proof of Theorem l(a) to have zero mean. Let

(3.4) Ct a Xt + e(t) , t c T

then, clearly, C is a 7 -7 -measurable Gaussian process with mean

0 and covariance K .

Since IT K(t, t) v(dt) <- and e c L2 (v) , C(, c 12(v)

a.s. (P] , and since L2(v) is asuned separable, 4 induces a Gaussian
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measure u on L2 (v) via the map w I- E(.,w) if &(',w) c L2(v),

w 1 0 If &(,w) j L2 (v) (5, Theorem 3.21. For each f c L2 (v)

define (pointvise)

S(f)(s) U J K(s, t)f(t)v(dt)
T

Then it follows from Lemma 3.2 and Proposition 3.5 of (5]; that 8

and the operator S are, respectively, the mean and covariance

operator of u . Further, it is clear from the definition of S

that its eigenvalues and corresponding eigenvectors, are respectively

{A n  and {#n) (see (A.3)). The proof of (2.10) now follows from Theorem 4(1),

the above observations, and the following equation

fa exp{1/2 A fT C2 (tw)v(dt)}P(dw) 'fL2(v) exp(1/2 A fTx2 (t)v(dt)}u(dx),

which is a direct consequence of the change of variable formula

(3, p. 163].

Proof of Theorem a. Define, for every B c F,

(3.5) PA(B) - W(A) fB exp(l/2 A fT&2 (tw)v(dt)}P(dw)

then it is clear, from (2.10), that Px in a probability measure

on (GF) , and, from (3.5), that Px %P with the R-9 derivative

dP /dP equal to the right side of (2.11) a.s. [P] . Thum, the proof

rA

vI-?, .- . ... . - J,'
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of Theorem 3 will be complete, if we can show that is Gaussian

with mean eA and covariance K, . We prove this in the following

by showing that E-I[expfi E1 a t } is the right n-dimensional

characteristic function, where E is the expectation relative to

PA , and $1, ... , sn  and t1 , ... , t n  are arbitrary elements of

R and T , respectively.

Recall that t Yt + Zt + 0(t) , t c T ,(see (3.3) and (3.4)),

and that Z (-) Y (w) converges to Y(.,w)in I 2 (v)a.s. [P
n 1l n n L2v '$ F

(see (2.5)). Using these, the independence of the families

fYt: t c T) , {Zt: t c T} and the facts E(Y ) -

E(Z 0 , t e T ,and E(Z2 )= 0 a.e. [v] , we have
t t

(3.6) fTC2 (tw)v(dt) = . Y(,) + 2 w ,, <,e>Y (w) + 118112 &.s. [P]

Using (3.5) and (3.6 ),we have

m

(3-T) -W(A) E[expfi Z a

h +p Zt + 0(t), t c T , and that ntl dt(t) Yn

Noting o. e ) nhe ni sd o n

convvrges to Y t asa. CPJ (see(2.i4)), the right aide of (3.T) in
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m k
a WM)E Biz texp~i JU. 8 V O(t )yn + +0t)

k nt)

k 2 k
exp(1/2 A y + 2 z=/A- <*n'0> Y, +  1

x e a/ nal e )An

( ext (te ix Ax-( <4' > y

m
X exp ~ (zt + 0(t3)) + 12 A 118112]

e i J=z"(Ztj J

which, by the dominated convergence theorem, is

(3 8) =W(".) lir E ff [expfi Yn "
3 

+  1/2 2,n Y }

k tn n 1, 2T

-ep( 1z + q(tj) + 1/2 A l lell 2
e i h- j (t j

where

n
(3-9) B M An j S(tj ix X 8 ,~ >

Now using the Independence of the r.v. 's Yn ' s and the independence

of the two families {Y, : n - 1, 2, .. } Zt : t T)

and recalling that

E(exp(i n Bn+ 1/2 AXn Y] " (i - . )-/2 exp{-1/2 B2 (l - )' ,
Ann U

It follows that the expression in (3.8) is
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(3.10) = W(A) D(A) - 1/2 exp {-1/2 nZ1 - )-B2 1
nzl n n

m m m
X exp(i ill sjO(tj) - 1/2 J11 kil sJSk K2 (til t k 1

x exp (1/2 A I 2 1

Subsituting the value of Bn  from (3.9) in (3.10) and observing that
an

lell 2 a .l e llll2 (see (A.5)) , ws see that the expression

in (3.10) is

(3.11) ' W() D(A)- /2 ex [i {(t) + E XXn(l - XX )-l* (tJ)<%n'

ili J n=1 n n ne)

m m a

Jul k-i ssi k(K2(~t ~k nu n1 (t n * J texp(-1/2 t l( + ni xn(1 " n1 + E n t

exp [1/2 x(IIeI 2 + nal(l - x ) < .,e 21]

which, in view of (2.6) - (2.8), is

-12m a a

a W(A) D(A) "I/2 expli l IeA(tJ) " 1/2 l k-i iJk Kx(ta, tk)}

eip (1/2 X{llell 2  I (1 - xnI'(UA ,.e> 21]
m M M

- W(A) W(A) " exp{i Z sje(tj) " 1/2 J kIL'Sk Kx(tj, tk))

by the definition of W(X) (see (2.9)). Thus,

, , : , .:;; 'i - .' jt
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m m m m
E [exp {i J sJ~ 11 = expfi I se ) - 1/2- klSSkK(tJ9tk)}'

A iz 'Jt Xs8(t)l''kX

as desired.

Proof of Corollary 1. Since K is an M-kernel and e e L2(v) ,

there exists, by Theorem 2, a T -xF-measurable Gaussian process E on

a probability space (n,F, P) with mean 8 and covariance K . Let

C If( ) -l2 , t £ T ; then, clearly, ; is 7"x-measurable and

Gaussian with mean P and covariance r ; further, the proof of (2.12)

follows immediately from (2.10).

Proof of Corollary 2. Define P as in (3.5) replacing t

by (tj - /2 C Then by (2.12), PX is a probability measure, and,

by the definition of PX ) P X 1% P with the R-NI derivative dP,/dP

equal to the right side of (2.13) a.s. [P] . Since the process

of Theorem 3 is related to C by t = !f(t)ll/2 t and since it

is shown to be Gaussian on (fl,F, P with mean 0 and covariance

KA , it follows that C is Gaussian on (fl, F, P with mean

if~~i1/2e 1/21ft11/2
X (t),t c T, ;r'd covariancelf(si-/ft)- KA(s,t)

s,t cT.

hroof of Theorem 4(i): Choose an orthonormal set {ip: k = 1,2,...,L}

of H so that {wn)U0{j is a Hilbert basis of H ,where I is

finite or + . It follows that (Vn } is a family of independent

r.v.'s on (, B(H),U) , that q 's are degenerate at <41, m> and

that *n 's are Gaussian with mean -on, m> and variance 6n . Using

these facts, Parseval's relation and the monotone convergence theorem,

Ve have
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H U(dx) = h xl({/26(j x>2 + 1 1 < >2 21)}u(dx)

n

lim{IH expfl/2 6 1 <,J, x>2}u(d)}
n

x ffH exp{1/2 6 jE <,0, x>2 }u(dx)}

a lrn ( exp (1/2 6<*,, x>2hiGx)}
n

x IJl f. exp (1/2 6 <)P, x>2) )

n )-1/2 n 2  
- 1

£

z(1 _ 66 ei [12 6f1jr112 + a ,M>2(1 - 6a)-}]

u(M - I < CO.

Proof of Theorem 4ii). Define, for every B c 8(H)

(3.12) P6 (B) a U(6) f. exp (1/2 6IIx11 2 }4(dA)

then it in clear, from (2.14), that P. is a probability measure on

(R, B()), and, from (3.12), that u 1 P6  vith the R-N derivative

dP6 /du equal to right side of (2.15) a.s. (ul. Let x be a fixed

elment of H , then, using argments similar to the ones used in the

.. .. ... . . . . .. - - - . -, , ,
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proof of Theorem 3, it can be shown that

'H exp(i<x,y>1P6 (dy') =exp{i<x,e6> -1/2 <x, S>

This shows that P 6is Gaussian on H with mean eand covariance

operator S, * Therefore, since in a separable Hilbert space the mean

and the covariance operator determine the Gaussian measure uniquely

(see, for example, [5, p. 3991), it follows that P 6 . The proof

is now complete.
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FOOTNOTES

1. This terminology is motivated by the classical theorem of Mercer,

which asserts, in the present terminology, that every continuous

(hence trace-class, relative to Lebesgue measure) kernel K on

[0, 1] x [0, 1] admits expansion of the type given in (2.3).

2. Note that, since S is a bounded, linear, nonnegative, self-

adjoint and trace-class operator on H and m6 E H , the measure

1 exists (see, for example, [5, p. 398]).

-c. .-i---.
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