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ABSTRACT

A simple necessary and sufficient condition, on a trace-class
kernel K , is given in order for the existence of a measurable
(relative to the completed product o-algebra) Gaussian process with
covariance K . Using this result, sufficient conditions are given
on the means and the covariances (relative to two equivalent (-~)
Gaussian measures P and Px) of a process X so that the Radon-
Nikod§m (R-N) derivative dpA/dP is the exponential of the diagonal
form in X . Analogues of the last two results in the set up of

Hilbert space are also proved.
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1. INTRODUCTION

Let (T,T,v) be an arbitrary o-finite measure space and K a

trace-class kernel on T x T . We give a simple necessary and sufficient

condition on K for the existence of a measurable (relative to the

completed product o~algebra) Gaussian process with covariance K
(Theorem 1).

Assume that K satisfies the condition of the above theorem, so
that there exists a measurable Gaussian process X on a probability
space (Q,F, P) with covariance K . Assume, further, that the mean
C) of X belongs to L,(v); then we, explicitly, evaluate

foTexp{l/Z Alf(t)lxa(t,w)v(dt)}P(dm) , where A is a certain number

and f 1is a certain measurable function (Theorem 2, Corollary 2).
Assume the hypotheses and notation of the previous result and let,
5 om T and a covariance function KA
on T x T be given; then we give sufficient conditions on 8

for each A , a function @
A and

KA in order that (i) 8, and KA determine a probability measure

PA on (9,F) with respect to which X 1is Gaussian, (ii) P, VP,
and (1ii) the R-N derivative dPA/dP is of the diagonal form in

X ; i.e., 18 expressible as I exp {1/2 Alf(t)lxz(t,w)}v(dt) (Theorenm 3,
T

Corollary 2).

The results of the previous paragraph are motivated by some of
the work of D. E. Varberg (7] and L. A. Shepp [6], and they are
generalizations of two results of the former author and are related to
similar results of the latter. We may point out that these results are

central and are best possidble in the sense that they are proved under




minimal hypotheses on the functions © and K (see Remark 2). Analogues

of Theorem 2 and 3 , in the set up of separable Hibert spaces, are also

proved (Theorem 4(i) and 4(ii)).
All results are stated and discussed in Section 2 and their proofs

are given in Section 3.

2, STATEMENT AND DISCUSSION OF RESULTS

We begin by stating a few definitions, notation, and conventions

that will be used throughout the paper.

(A.1) (T,T,v) denote an arbitrary o-finite measure space; whenever

we write T , it is implicitly assumed that T and v are assaciated

v A g == re LT

with it. If (I, A,y) is a measure space, then A and Ly(y) denote,
respectively, the completion of A relative to y and the Rilbert
space of real y-square integrable functions.

(A.2) A real, nonnegative definite, symmetric and measurable
function K on T x T is called a kernel; if, in addition,
fT K(t, t)v(dt) <= , K is called a trace—class kernel. Let K
be a trace-class kernel, and {An} and {‘n} be, respectively, the
positive eigenvalues (including multiplicities) and the corresponding

(normalized) eigenfunctions of the integral equation

(2.1) re(s) = [ K(s, t)e(t)v(at) ;

then K 1is called a Mercer kermel (wl)

admits the representation

for short), if K




(2.2) K(s, t) = xl(s, t) + Ka(s, t) , s, teT,

where Ki and Ké are trace-class kernels such that Ké(t, t) =0

a.e. [v] , and

o«
(2.3) , xl(s, t)= L A ¢n(s) o,(t) , s, teT,
n=l
where the series converges absolutely, for all s, t e T . We note

that there exist numerous examples of such kernels.

(A.3) If K denotes an M-kernel on T x T » then we denote,
consistently, by {An} and {¢n} , respectively, the positive eigen-
values (including multiplicities) and the corresponding (normalized)
eigenfunctions of the equation (2.1), and by K, and K, the kernels
related to K as in (2.2). We will assume that the set {x,} (and
hence (on}) is not finite, since it is the only case of interest here.

(A.4) We consider here only real linear spaces and real stochastic
processes.

Now, we are ready to state the first result of the paper.
THEOREM 1. Let K be a trace-class kernel on T x T 3 then we

have the following:

(a) If K is an M-kernel, then there exists a T < F -measurable
Gaussian process X on some probability space (Q,F, P) such that K
is the covariance of X ; further, if K, K {On} and (Xn} are realted

to K as described in (A.3), then X can be so chosen that

xt-yt+zt s teT,




where Y and Z are independent Gaussian processes with covariances

Kl and Ké » respectively, and

[
(2.4) Yp= & AL e (8)y
n=1l
wvhere Yn's are independent N{(0, 1) r.v.'s and the series converges

in L2(P) and also a.s. [P] , for each fixed t ¢ T . Finally,

™
(2.5) (-, w) = L /J: 0,0*) ¥ W),
n=1
vhere the series converges in L2(v) and also a.e. [v] , for every
w outside a P-null set.

(b) Conversely, if K is the covariance function of a 7 x F -
measurable Gaussian process X on a probability space (a,F, P) ,
then K is an M-kernel.

REMARK 1. It should be noted that, for a given M-kernel, Theorem
L.1(a) guarantees the existence of a Gaussian process which has the
given kernel as its covariance and is measurable relative to the
completed product o-algebra. The question, whether for every M-kernel
K there exists a Gaussian process which has covariance K and is
measurable relative to the uncompleted product o-algebra, has a negative
ansver. (see Remark 1, [2, p. 470]).

For the statements and the proofs of some of the following results,
we need & few more notation and conventions which we record in the

following:

N ST N T
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(A.5) If K denotes an M-kernel on T x T (so that, in view of
(A.3), {An} and {¢n} are, respectively, the eigenvalues and
corresponding eigenfunctions of (2.1)) and 6 a v-square integrable
function on T , then we denote, consistently, by é , the orthogonal
projection of 6 onto the space orthogonal to the LQ(v)-closure of
the linear space of {¢n} , by A , a real number such that
l - xxn >0, for all n , and by 0A , and Kx the functions

defined as follows

(2.6) ek(t) = 6(t) + A a1 An(l —Mn)'l<¢n,9>¢n(t) . tefT,
(2.7) K (s,t) = I A (1 - )™ 6 (s) 6 (t) + Ky(s, t), s, teT,

vhere <,> 1is the inner product in Lz(v) and K, is related to K
as in (2.2). Further, we consistently use the notation D(A) and W(1) ,
respectively, for

(2.8) I (1-a)
n=1 n
and
(2.9) (1172 expl-1/2 A([]6][2 + £ (1 -m)7ley ,05%)]
n=l

vhere [|°|| 1s the norm in Lo(v) . The series in (2.6) and (2.7)
converge absolutely, respectively, for ¢t ¢ T and s, t ¢ T . This

follows from the boundedness of the sequence ((1 - Akn)'l}(recull that
[

I o, < «) , Cauchy inequality for sequences and (2.3). Since
n=]1




e v e

l - xxn >0, An >0 for alln , and nil An < » , we have that
0 <D(A) <1 . From this and the boundedness of the sequence

{(1 - xxn)'l} , it follows that W(A) is a well defined positive
real number.

In Theorem 2 and 3 and Corollaries 1 and 2, it will be assumed
that the space L,(v) is separable.

We are now ready to state the following two results.

THEOREM 2. Let K be an M-kernel on T x T and 8 € L,(v) ; then
there exists a T x F -measurable Gaussian process & on a probability
space (Q,F, P) such that @ and K are , respectively, the mean
and the covariance of £ ; further, if A and W()A) are related

to 8 and K as in (A.5), then
(2.10) fnexp {1/2 A fT £2(t,w)v(dat)} P(dw) = w(a)L < =,

THEOREM 3. Let K ,8, &€ and (9,F, P) be as in Theorem 2,
and let 1 ,8,, K, and W(A) be related to 8 and K as in (A.5).
Then KA is a covariance function, and there exists a probability
measure P, on (2,F) such that £ is Gaussian on (Q,F, PA) with
mean 6X and covariance K, , P~ PA » and the R-N derivative

dPAIdP is given by

(2.11) ap, [aP(w) = W(A) exp(1/2 A [y E(t,wlv(at)}  a.s [P].
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REMARK 2. Tt is clear, from (2.10) and (2.11), that in order to
obtain results similar to Theorems 2 and 3 the functions 6 and K
appearing in these results must guarantee the existence of the process
£ which is measurable and whose almost all paths are v-square
integrable. Since, in view of Proposition 3.4 of [5] and Theorem 1,
these conditions on § are equivalent to the facts that K is an
M-kernel and that @ is v-square integrable, it follows that Theorems
2 and 3 are best possible, i.e., they are proved under the weakest
possible hypotheses on 6 and K .

In order to point out the relation between the above two theorems
and the corresponding results of Varberg (Theorems 1 and 2 of [7])
and Shepp [6, p. 352], we now state two corollaries. These corollaries
are, essentially, the restatements of Theorems 1 and 2; nevertheless,
their inclusion is necessary in order to compare our results with the

corresponding results of Shepp and Varberg.

COROLLARY 1. Let r be a kernel on T x T (see (A.2)), and
o and f be measurable with |f(t)| > 0 on T -such that (i) K(s,t) =
r(s, t)|f(s)|1/2|f(t)|l/2 ,8,teT, is an M-kernel, and
(11) eo(t) = p(t)lf(t)ll/2 ,t eT,is v-square integrable (both of
these conditions are satisfied, for instance, vhen r is an M-kernel,
p € L2(v) , and f 1is bounded, this follows from Theorem 1). Then
there exists a T x F -measurable Gaussian process % on a probability
space (Q, F, P) such that o and r are, respectively, the mean
and the covariance of § . Further, if A and W(A) are related

to 8 and K as in (A.5), then

e Y Y 5

e e e R T T

i e s = e




(2.12) [ expii/anf | r(2) 2% (£ 0)v(at) }P(d) = wooL .

COROLLARY 2. Let r, o, f, K and € be as in Corollary 1 and
let ¢ and (2,F, P)
be as obtained in Corollary 1 and let A,BA, K, and W()A) be related
to 6 and K as in (A.5). Then there exists a probability measure
P, on (2,F) such that f 1is Gaussian on (Q,F, Px) with mean

lf(t)]"l/2 ex(t), t €T, and covariance |f(s)|-l/2|f(t)|-l/2 Kx(s,t) ,» S,t €T,

PX ~ P , and the R-N derivative dPX|dP is given by
(2.13) ap, /aP(w) = W(X) exp{1/2 Mol [P (twivae))  aus. [P).

REMARK 3. If T = [a, b] ,T = the class of Borel subsets of T ,
v = the Lebesgue measure, and if r is a continuous kernel on T x T ,
then, by Mercer's theorem, r is an M~kernel on T x T . Now if
f {s any bounded measurable function on T , then, as indicated in
Corollary 1, r(s, t)li’(s)l]‘/elf(t)lll2 , 8, t ¢T, is an M-kernel.
From this it is now clear that Theorem 1 and Theorem 2 of Varberg [7]
are special cases, respectively, of Corollary 1 and Corollary 2. These
corollaries are also related to two results of Shepp that are given

on pp. 350 and 352 of [6].

We shall now state two more results (Theorems 4(1i) and 4(ii)).
Theorem 4(1) is important in that it is needed for the proofs of
Theorem 2 . Theorem 4 (iii) is included here to show
that the analogue of Theorem 3 can be forumated for Gaussian measures

defined on abstract separable Hilbert spaces.




We assume that the reader is familiar with the elementary
properties of Gaussian measures in separable Hilbert spaces.

In the following theorem, H and B(H) denote, respectively,

-t T R AT
natrth e R o Sl

a separable Hilbert space and the o-algebra generated by open sets

of H;and <,> and ||'|] denote, respectively, the inner product
and the norm in H . r:

THEOREM 4. Let u be a Gaussian measure on (H, B(H)) with

mean m and covariance operator S . Denote by {6n} and {wn} .

the positive eigenvalues (including multiplicities) and the corresponding

N0 5y NSO

normalized eigenvectors of S , by 6§ , a real number such that

Gén <1, for alln , and, by m , the orthogonal projection of m
onto the space orthogonal to the closed linear space generated by

{wn} . Define

-1
Ss(x) a I Gn(l - ssn) W, x>y, ,xeH,
n=l

mg =m + §85(m) ,

and
a

u(8) = [0, (1 - 680172 expl-1/2 6¢|Im| |3+ g (1 -66 ) ey o2},

Then we have

e T DMLl 1,

(1) [y exp 1/2 s|1x| |2} u(ax)

(2.14) (5,1 -66n)]'1/2exp[1/2 6{||&|[2+ ngl(l-ssn)'1<¢n,m>2}]

u() ™t <=

11}

ond s o 9 - -zt A s
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(i1) if wu, is the Gaussian measure(Z) on (H, B(H)) with mean m, and

covariance operator S_, then Mg VB and the R-N derivative

6’
dud/du is given by

(2.15) au /au(x) = U(8) expl1/2 § [x|]%} , a.s. [u] ,

vhere U(s) is as in (1) .

3. PROOFS
Proof of Theorem ligl. For clarity, we devide our proof into
three parts. In parts (i) and (ii), two suxilary processes Y+ end 2+
are defined; and, in part (iii), these are used to construct the required
process X .
(i) There exists a TF:_?I -measurable Gaussian process ' with
covariance K, defined on a probability space (ﬂl,Fl, Pl) . Further,

Yl can be so chosen that, for every fixed t ¢ T ,

where the series converges in L,(P,) and also a.s. [P1] , and Yi 's

are independent N(0, 1) r.v.'s on (Ql, Fl’ Pl) . Further

Hw) = g A e () te) ,
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where the series converges in La(v) and a.e. [v] , for every w

outside a Pl-null set.

Proof of (i). Let {Yi} be a sequence of independent N(0O, 1)
r.v.'s defined on a probability space (ﬂl,Fl, Pl) . We now define
two processes £ and ¢ in terms of An’s R ¢n's and Yi 's , and
then define the required process vt in terms of £ and ¢ .,

We first define the process € . For each n , let

bplt,0) = /X 6 (8) Yo(w) , (t,0) €T x8 .

Since J:l AJ < and <wn’ wm > L2(V X Pl) = A—n ',);1- Gn,m

(5n is the Kronecker & ) , it follows that

oI

m
2 = L A, +0

m
[z w 3
L2(v x Pl) J=n

J=n

N

n

as n,m*+>, Thus, { I wJ} converges in L,(v x Pl) ; and, so,
J=1

there exists a subsequence { Tv,} which converges pointwise off

=1
a v X Pl-null set A . Define
1;m ng wJ(t,w) off A
E(t p“‘) =

then, clearly, £ 1s T x Fl-ncnaurlble. Further, by Fubini's Theorem,

there exists a v-null set T, such that, for every fixed t ¢ Ty »

-
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the set At = {w: (t,w) € A} has P, -measure zero, and, for every

wé A,

E(t,w) = lim I wJ(t, w) .
k J=1

Now we define the process ¢ . Since for every fixed t e T ,

[ ]
oA ¢:(t) <o (gsee (2.3)) and Yi's are independent mean 0
n=l

-4
variance 1 r.v.'s, £ /r;%(t)l’i converges in L2(P1) and
n=1

also pointvise off a P,-null set B, , for each t €T (46, p. 147].

For each t € T , define

n
Lim I k8, (t) rw), if we B
n J=1 J
Ct(w) =
0 ’ it we Bt R

where B: denotes the complement of Bt .
Clearly, if t €Ty , then P (AJ(\Bf) = 1 ; further, if
c c

w : A ﬂBt , then,since (ng WJ(t, w)} 1s & subsequence of

(ng%(t,w)} , E(t, w) = ¢(t, w) . Thus, for every t ¢ T° ,
(3.1) §, = &y a.8. [Pll .

Finally, define

g(t,w) 1r (t,w) ¢ Ty x @

(3.2) (t,w) =

g(t,w) 1r (t,0) ¢ 'r§ xq ) .




We now show that Yl is a required process.
Since, from (3.2), the set {(t, w): Yl(t.u) $ £(t,w)} 1s contained

in v x P,-null set Tlx Ql , and since € 4is shom T x quneasuruble,

it follows that v is Tx Fl-measurable. Since, as shown above, the

]
series I, /K;bn(t) Yi converges to ., 1in Iz(Pl) and also a.s. [P1] ,
for each fixed t € T ,and since, from (3.1) and (3.2), Yi =L, a.s. [Pll .

for each t € T , ve heve that I, JT;bn(t) Yi converges to Yt in
Ly(P}) and also a.s. [Pl] ,for each t € T . Also, from Iz(Pl) convergence

of the geries to Yt s t €T , we have that Yl is Gaussian (recall that

Yi 's are Gsussian) and that the covariance of Y is K (s,t) = nglkn¢n(s)¢n(t) ,

s, t ¢ T, where n£1 Xnon(s)¢n(t) converges absolutely for s, t € T .

W
To complete the proof of (i), it remains to prove that nglfr ¢n(-)Yi(u)
converges to Yl(-,m) in Lz(v) and a.e. {v] , for almost all w . Since,
-]
for teT, ngl/i;'¢n(t) Yi is shown to converge t: Y% a.8. [PI] , We 2
have, by an application of Fubini's theorem, that n£l JT;3n(o) Yi(w) converges
to Yl(’, w) a.e. [v] , for almost all w . Now we show the Lz(v)

convergence of n£l /X; on(-)Yi(w) to Yl(-,m) a.e.[Pll . Since

2 a
IQ n-l An(Yl) }Pl(dw) = nEl An < @ .

we have that n£l An(Yi(u))z < @™ a.s. [PI] . Therefore,

fT[ 0(6) T(al Polar) = I 3 (T2 + 0
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-]
a.s. [Pll as n, m > = ; consiquently, I, /7;'¢n Yi(w) converges

in L2(v) ,» 8.8, [Pl] . Now using the fact that L,(v) convergence

implies the existence of a subsequence that converges to the same

D
n=1

1.
Y*(:,w) a.e. [v] , for almost all w , we have that o1 /T;'¢n Yt(w)

converges to Yl(-,u) in Ip(v) , for almost all w . The proof of

function a.e. [v] and the fact that _I /3;'¢n Yi(w) converges to
(-]

(1) is now complete.

(1) There exists a T x F-measurable Gaussian process z! with
covariance K, defined on some probability space (92,F2, Pa) .
Proof of (ii). By Kolmogorov's existence theorem, there exists
a Gaussian process n with covariance K_, defined on some probability

2
space (f,, Fy, Py) . Let T, be the v-null set of T such that

Kz(c,t) = 0 off T2 . Define

1
2(t,w) = n(t,w) x (t,w) ,
w n(t,w) xT2 x 92 w

vhere X is the indicator of T, x Q, .Then, clearly, zl
T2 x 92 2 2
is Gaussian with covariance K, ; further, since zl(t,w) =0
s.e. [v x P2] , 2l 18 Tx Fz-measurable.
1

(111) Let (Ry, F, P)),Y",Y 's,and (ay, F,, By) , Z' be as in
(1) and (11), respectively. Let (q,F, P) = (@) x @,, F, x Fae Py x B,),
and nJ be the projJection of T x Q onto T x QJ sy J=1,2 . Let

Y = rﬁ ol , Y= fom ,z=zlo M, aad

(3.3) X =Y, +2 ,teT;

5 ———
* .

P
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then the processes X, Y, Z and the r.v.'s Y;"s satisfy the required
properties of Theorem 1(a).

Proof of (iii). It is clear that II‘1 is measurable from
(2, TxF) onto (T x QJ’ TTFJ), J =1, 2. Therefore, since by
(1) and (i1) Y' anda 2% are ml and mz-measurable,
respectively, Y and 2Z are T x F-measurable. The rest of the
proof follows from (i) and (ii) and the observation that for any
tys cees Bos 8y cees By € T and any A ¢ B(R"), B ¢ B(R®) ,

PI(Y. , ..., ¥, YeA, (2 , ..., 2 )eBl =P {(, ..., Y )¢eal
tl tn s Sy 1 tl tn

Pz{(zi Y eees zi ) € B} , where B(RK) is the class of Borel subsets
of thelk-Euclidi:n space RE . We omit the details.

Proof of Theorem 1(b): This follows from Theorem 1 of [1] due
to S. Cambanis.

Proof of Theorem 2. Let X be the Guassian process on (%, F, P)
as constructed in Theorem 1(a) subject to the additional condition
that E(xt) =0 ,¢teT. Note that, as follows from the proof of
Theorem 1, this additional condition is satisfied by X 1if we choose

the process z1 in the proof of Theorem l(a) to have zero mean. Let
(3.4) g =X, +0(t) ,teT;

then, clearly, £ is a T x F-measurable Gaussian process with mean
® and covariance K .
Since f,r K(t, t) v(at) <= and 0 ¢ Ly(v) , &(*,w) € Ly(v)

a.s. [P] , and since l.2(v) is assumed separable, { induces a Ceussian
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measure u on L,(v) via the map w [» €(+,w) 1 E(-,0) € Ly(v) ,

w|+0 1f E(*,w) ¢ Ly(v) [5, Theorem 3.2]. For esch f e Ly(v) ,
define (pointwise)

e et g Y

sl£)(s) = | K(s, t)£(t)v(dat) .
T

»
<
3
3

Then it follows from Lemma 3.2 and Proposition 3.5 of [5]; that o
and the operator S are, respectively, the mean and covariance
operator of u . Further, it is clear from the definition of S

that its eigenvalues and corresponding eigenvectors, are respectively

{An} and {4,} (see (A.3)). The proof of (2.10) now follows from Theorem 4(1),

the above observations, and the following equation

fn exp{1/2 A IT £2(¢t,w)v(dt)IP(dw) 'sz(v) exp(1/2 A foz(t)v(dt)}u(dx),

which is a direct consequence of the change of varisble formula
(3, p. 163].

Proof of Theorem 3. Define, for every B¢ F,

(3.5) P,(B) = W) [p exp(1/2 A [p£2(t w)v(at)}P(aw) ,

then it is clear, from (2.10), that P, 1s a probability measure
on (4,F) , and, from (3.5), that P, VP with the R-N derivative

dP, /4P equel to the right side of (2.11) a.s. [P] . Thus, the proof

e




e
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of Theorem 3 will be complete, if we can show that £ 1is Gaussian

with mean OA and covariance K& . We prove this in the following

by showing that E,[exp(1 }] is the right n-dimensional

n
11 2 EtJ
characteristic function, vwhere EA is the expectation relative to

PA , and 815 +c0» 8 and tl, +eey £t are arbitrary elements of

n n

R snd T , respectively.

Recall that £, =Y + 2, + 8(t) , t €T ,(see (3.3) and (3.4)),

and that ngllf;'ouf-) Y, (w) converges to Y(:,w) in L,(v) a.s. [P]
(see (2.5)). Using these, the independence of the families

{Y,: t €T}, {2,: t € T} and the facts E(y,) =

s
E(Zt) =0 ,teT, and E(Zi) =0 a.e. {v] , we have

(3.6) fTﬁa(t,w)V(dt) = nglxnrﬁ(w) +2 I /T;'<¢n,e>Yn(w) + |iel|? a.s. [P] .

1

Using (3.5) and (3.6),we have

m
Eylexp {1 ,I, 'JEtJ}]

= W(A)E[exp(i +1/2 AfTﬁz(t,u)v(dt)}]

m

L, s,
=] t
J J s

(3.7) = W(A) E(exp(4 }

m
I.s.£
=1"J"t

J=17J )

exp(1/2 AL A Y2 ¢+ 2 3 Ao .05 Y, 4 |]0]]2))) .

L]
Noting sgein that £ = Y, + 2, + 6(t), t ¢ T, and that I /X ¢(t) ¥,

converges to Y, a.s. [P] (see(2.4)), the right side of (3.7) is
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= W(A)E E.im [expii 3 I, J(n}:l % (t ) Y, ¢ zJ + 6(t ))

k 2 k 2
x exp(1/2 (5, A, Yo + 2 ) AL <0 .05 ¥+ |le]] )1)

k
- W(A)EE.I? oh lexptt (AT (I sy 0 (6) - 12 /AT <4,0)#1/2 21 Y2)]
b 2
x exp{i ng 'J(th + e(td))+ 1/2 x |]e]| }J .
vhich, by the dominated convergence theorem, is

K
. 2
(3.8) = W) im El I lexp{i ¥ B, +1/2 0 Yn}]

x exp {1 zl J(z +9(t ))+1/2x Hellz}]
where

n
(3.9) By = Ay jE) syinlty) -1 A <o .00

Now using the independence of the r.v.'s Yn's and the independence

of the two families (Y :n=1, 2, S {Zt: t T}

and recalling that

Elexp{i ¥ B+ 1/2 M Y2}] = (1 - A.\n)'l/2 exp(-1/2 B2(1 - M )7,

it follows thet the expression in (3.8) is

e ——p

s AR
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o«

(3.200 =) DN exp -1/72 g (1 - 7D

m m
x exp{i ng sje(tJ) -1/2 ng kgl 85y K2(t3, tk)}

x exp {1/2 A |[0]|%} .

Subsituting the value of B from (3.9) in (3.10) and observing that
a

Hell? = nE1 <¢n,6>2 + [l6]|? (see (A.5)) , we see that the expression
in (3.10) is

T o SN R ¢ A B Sk @R

-1/2 o - -1
(3.11) = W(x) p(1) exp [1 I s {0(ty) + I Mp(1 = ) e (t,)<0, ,051]
m m ® -1
xexp [-1/2 ) () sya (Ky(ty ) + B A (1 = a0 )70 (8, (2, )]

x exp [1/2 M[8[ 1%+ 5 (1 - )P ,0%0]

which, in view of (2.6) - (2.8), is

-1/2 m m n
= w(1) D(A) expli I, 8,8,(%)) - 1/2 .3, L, 8,8, Ky (ty, t,))

xexp (1/2 M [0]12 & 2 (1 - a ) e ,05%)]

; -1 m m m
; = W) W) expll (I 8,0,(%,) = 1/2 ) (Lysgsy, Ki(ty, )Y,

by the definition of W(A) (see (2.9)). Thus,




£
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m m n m
Ex[exp (i ng sJEtJ}] = exp{i ng sde)\(td) -1/2 ng kglsjskxx(tj ,tk)},

as desired.

Proof of Corollary 1. Since K is an M-kernel and 6 e Ly(v) ,
there exists, by Theorem 2, a T x F-measurable Gaussian process £ on
& probability space (9,F, P) with mean & and covariance K . Let
gy, = lf‘(t)i-llzit, t € T ; then, clearly, [ is T x F-measurable and
Gaussian with mean o and covariance r ; further, the proof of (2.12)

follows immediately from (2.10).

Proof of Corollary 2. Define P, as in (3.5) replacing £
by lr(t)l:/z g, - Then by (2.12), P, 1is a probability measure, and,
by the definition of P, , P, VP with the R-N derivative dPA/dP
equal to the right side of (2.13) a.s. [P] . Since the process &
of Theorem 3 is related to § by &, = |2(2)]2/2 ty ond since it
is shown to be Geussian on (Q,F, PA) with mean 6, and covariance
K, , it follows that ¢ 1is Gaussian on (@, F, P)‘) with mean
If(t)l-llz 8,(¢t),t €T, nnd c:ovar:[a.nc:elf(s)i-:"lelf(t)r]'/2 Kx(s,t)

s, teT.

Proof of Theorem 4(i): Choose an orthonormal set {yp: k =1,2,...,8}
of H sothat {y }J{y} is a Hilbert basis of H ,where 1 is
finite or += . It follows that {wn} U{w;‘} is a family of independent
r.v.'s on (H, B(H),u) , that Vp's are degenerate at <¥g, m> and
that wn's are Gaussian with mean “n’ m> and variance Gn . Using

these facts, Parseval's relation and the monotone convergence theorem,

ve have

e o e meT— i




R
o e At N MDA SN £V SO, i, % 4 AT T
e M s ke -

. 2 o
1/25| |x}|
[qe

w(ax) = [ =m(1/26(,L vy, 02 +

n
2
= 1:m{fH exp(1/2 8,1 <%y, x>hu

21
2

E1<v5s 0% hu(ax)

(ax)}

L
x U'H exp{1/2 § J£l<w3, x>2}u(ax)}

n
= lim (I [y exp (172 s<vys x>2)u(dx)}

£
(I [y ex (1/2 6 <v, ©2)u(dx)}

1 -1/2
= 1lim [ I (1 - 86,) exp{1/2
a 9=l J

£
x exp(1/2 6 J£1 <w'd, m>2)

n
2 -1
8 Ey vye w31 - 667

= [0 - 860172 exp [1/2 6] Im] 2 + 1, v

= U(G)":L < =

Proof of Theorem 4(ii). Define, for every

(3.12) P,(B) = U(8) [5 exp {1/2 8] [x]|Z}ulax) ,

2
FVym 1 - 8y

B ¢ B(H) ,

then it is clear, from (2.14), that P, is & probability measure on

(8, B(H)), and, from (3.12), that u ~ P, with the R-N derivative

dP./du equal to right side of (2.15) a.s. (u].

let x be a fixed

element of H , then, using arguments similar to the ones used in the

e e e o S S e

)=

e e g e PR Sy T =

== R U DR ekl L
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j f

?‘ b

y proof of Theorem 3, it can be shown that |

i

' g expli<x,y>IP (dy) = exp{i<x,0,> - 1/2 <x, Spx>} . E |
This shows that PG is Gaussian on H with mean @ 5 and covariance o
operator S s * Therefore, since in a separable Hilbert space the mean i
and the covariance operator determine the Gaussian measure uniquely
(see, for example, [5, p. 399]), it follows that Ps = ug The proof ?
18 now complete. i
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FOOTNOTES

This terminology is motivated by the classical theorem of Mercer,
which asserts, in the present terminology, that every continuous
(hence trace-class, relative to Lebesgue measure) kernel K on
[0, 1] x [0, 1] admits expansion of the type given in (2.3).

Note that, since S6 is a bounded, linear, nonnegative, self-

adjoint and trace-class operator on H and =m

s € H , the measure

s exists (see, for example, [5, p. 398]).
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