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1. Introduction

We consider a problem of resource allocation in a network of computers.
Imagine an n node undirected graph in which the nodes represent processors
and the edges communication paths. We have t  resources which can be placed
on various nodes of the graph. Requests tor the resources originate with
equal probability at any of a designated set of request nodes. Each request
Is serviced by matching it with some resource.  The cost of that service is
the shortest distance between the request and the resource with which ic is
matched., The cost of servicing a simultancous set of requests is the minimum
total cost that can be obtained over all possible matchings of those requests
Lo resources.

For example, the resources might be available processors and the requests
be users wishing service. The minimum cost matching gives the best way of
assigning processors to users so as to minimize average distance in the net-
work between the user and hls processor.

Averaging over all possible patterns of a fixed number of requests at
the designated request points, we get an expected cost of servicing the
requests. We are Interested in how to place the resources so as to minimize
the expected cost of servicing a random set of requests of a fixed size,
and we wish to get good buunds on that expected cost.

Our results to date are for the special but interesting case with the
following restricecions:

(1) The praph is a complete binary tree with n  leaves;

(i1) Resources can be placed anywhere fn the tree, but requests ori-
ginate only at leaves;
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(11:) Requests are independent random events uniformly distributed
over the leaves;

(iv) The number uf requests equals the number of resources.

2. Properties of Optimal Placements ‘

An assignment of t resources to nodes is optimal if it minimizes the
expected cost of servicing a random set of t requests at the leaves. In-

tuitively, if t is small relative to n, the number of leaves in the .iee,

RIS Y

it should be better to place the resources up toward the root, whereas 1if

t is large relative to n, then one should do better by dividing up the re~

sources cqually among the leaves. 1In fact, this is not strictly true unless
t is a power of 2. The structure of optimal placement for non-power-of-two g
numbers of resources is rich and complicated; nevertheless, an optimal
placement can be found quickly by a straightforward algorithm, We develop
those results in the remafunder of this section.

We begin by looking at the optimal matching of a fixed set of t requests
to the t resources. A matching is a set of directed paths from distinct re-
quests to distinct resources. The directed flow along an edge e in the tree
is the number of paths in the matching which contain that edge in the desig-
nated direction (towards or away from the root). Because we are looking only
at trees, a necessary and sufficlent condition for a matching to be optimal
is that no edge have flow in both directions. 1t follows that the flow along
any edge e in an optimal matching {s determined solely by the number of requests

in the subtree 'I'e which e connects to the rest of the tree, as shown below:
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1f the number of requests in '1‘u exceeds the number of resources in Tc,

then the ditfference tlows through e out of Te' It the number of resources
exceeds the number of requests, then the difference flows through e into

Te. The flow is zero if the number of requests equals the number of resources
in Tc. Letting s Dbe the number of resources and 1 the number of requests

in Te’ the absolute flow is defined to be Js-il. Summing the absolute flow

over all edges in the tree gives the cost of the uptimal matching.
We now consider all the different pussible patterns of requests and
lovk at the expected absolute flow along an edge ¢, 1f Te has s resources,

this is given by

I ™Mo

Problexactly 1 requests occur in Tcl°|s—1|.
0

i
Since the requests are independent and unitormly distributed, the probability
of exactly 1 requests in a subtree is binomially distributed and is given

t i t-i
by iJPe "4, > where t 1s the total number of requests, P, = (# leaves
in Te)/n is the probability that a given request will fall in Te’ and

q, = l—pe. Thus, the expected absolute flow in e 1is given by

£ (s) = ; (L) Lot s-1
e 1;0 1)Pe e ’
Let Ee be the set of edges In the subtree Tc’ including e {tselt.

For each edge d in Ec, let 54 be the number of resources in the subtree

T . The total expected absolute flow In ‘fL is detined to be
e .

Foo(s) = 0t (s, ),
he d .« E d

where 5 ds the vector (bd) .
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Note that FE fncludes the tlow along the edge leading out of the root
(S
of the subtree as well as the tlows on all the cedges Internal to the

subtrev.

The definitions tor and FE make perfectly good mathematical
sense for arbitrary real values ot 5. This cortesponds to the situation
tn which resources are coutinuously divisable, but the requests neverthe-

tess are intepral. We consider the continuous case tor technical conveni-

Lnee.,
Let the optimal tlow in the continuous case be given by '
LOptL o . . , ,
bE (s) = min IPF () | s = 2§, and ecach 54 in 3 Is a non-negative
I Co [

real number |

For the {nteger case, we have

sz%ﬁ) = min {FE () | &5 = Ly, and cach 84 in 3 s in N}.
¢ ¢
szl is detined only tor s¢N,
e
g . - . ' . opt
Iheorem . Each ol the functions 'u’ PE , dand bE is convex,
e e

piccewise lincar, with vertfces ovccurlng at integer values of s.

Theorem 2. F:pk(s) = F:pl(s) tor all s« N.
¢ ‘o

This tells us that the trevdom to subdivide resources cannot result in a
lower cust placement than can be achieved by placing whole resources.,

The talr share placement ottt resources, which plays a special role
In vur development, puts  t/n resource units on each leaf and no resources
on any interaa! node.  This placement has the property that the traction of

resources on atty subtree 1s the same as the traction ot leaves which that




subtree contaluns. One might conjecture that the fair share placement 1Is
optimal, and indeed it is when t/n is an integer, but there are cases
where It is demonstrably non-optimal. Nevertheless, it is always close

to vptimal, a fact that {s crucial to the correctness of our algorithm,

Theorem 3. There exists an optimal placement (of whole resources)

such that (i) for ecvery pair of brother subtrees T  and Te" the
e

numbers of resources on T and Te‘ differ by at most 1;
¢
(ii) the number of resources on each subtree Te differs from
the fair share number for thuat subtree by less than one.
The proof of this theorem rests heavily on Theorems 1 and 2 and uses

the licttle-known fact that the mean and the median of the binomial distri-

)

bution differ by an amount less than one [1,2]. "

Corollary. 1f the number of resources is a multiple of the number of

leaves, then the lair share placement is optimal.

From Theorem 3, we get a time O(Clog n) dynamic~programming algorithm
for finding an optimal placement of t resources on a complete binary tree
of n leaves. The algorithm proceeds by finding, for each L = 0,1,...,
log n the cost of the optimal placement of both b  and Th) resources
on a subtree of ZL leaves, where h = L'ZL/n is the fair share number for
that subtree. This takes only a4 constant amount of time given the same .
information for L-l; hence the total time is 0(log n). A "description”
ot the actual placement can also be found in time 0(log n), but of course
to produce the fully-written-out placement takes time O(n). This algorithm

establishes:
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Theorem 4. The cost of an optimal placement of t  resources on d ,
complete binary tree of n  leaves, and a "description” of that placement,
can be computed 1n time O0(log n) on a RAM.

We conclude this section with an example showing that the fair share ;
placement is not always optimal and illustrating some of the structure of i
optimal placements. An optimal placement of 11 resources on a lé-leaf

L

complete binary tree is shown below: 0
()"////, \\\\\\\0
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The expected cost of this placement {s 24.902... . The fair share place-

wment, which places 0.6875 resources on evach leatf, has expected cost 25.404... .

3. Bounds on the Costs of Optimal Layouts

In this section, we show that the optimal placement of t  resources

results in an expected cost of at most

cet + 2 log %
where ¢ 1is a "small” constant. Hence, the average cost per request Is
constant when the number of resources 1s at least proportional to the
number of leaves in the tree.
We begin by detining a simple placement to be the one which puts L/2L

resources on each node at level L (trom the root), where L = minflog n,

rlug t}. Note that when t-n/2, the simple and tair share placements are

the same.

resources

Alsu, no node in a simple placement has a non-zero number of

1
2.
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Theorem 5. Cost of the simple placement * cost of the fair share

. n
placement = c*t + 2 log T for some constant c.

Theorem 6. Fopt(t) < cost of simple placement £ 2L - 1 + FoPt(t)

where L = min{log n, [log tl}.

Theorem 7. It t 1is a power of 2, the simple placement 1is optimal.

4. Discussion

A related problem, which formed the original motivation for this study, .
was to find and analyze algorithms for a distributed "ticket" system such
as might be used to sell tickets to a sporting event. The tickets are as-
sumed to reside at various nodes in the network, and the distance from a
request to the ticket which is eventually used to grant the request is some
measure of the wsiting time to service that request. The difference between
that problem and the one in this paper is that the requests come in sequenti-
ally and 1t is not possible to achieve an optimal matching of requests to !
tickets without knowing the locations of future requests. We are currently
trying to extend our results to this case of serial requests for resources.

It seems clear that any static placement of tickets on nodes will lead
to deteriorating performance as more and more tickets are sold., Thus, even
though the averape waiting time might be acceptably small, the time might
nevertheless grow unacceptably large when only few tickets are left. To help
alleviate this problem, one might consider algorithms which dynamically move
tickets around to try to improve the future expected waiting time, analogous
to the various balancing schemes for binary search trees. We have an algorithm

which does such rebalancing, but it is still unclear to what extent, it any,

the rebalancing actually helps.
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Finally, it would be nice to remove some of the technical restrictions
we placed on the problem and generalize the results to cases of arbitrary
graphs, arbitrary subsets of nodes for Jocation of requests and placement
of resources, numbers of requests ditferent from number of resources, and

non-uniform distributions on the probability of a request.
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