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1. Introduction

We consider a problem of resource allocation in a network of computers.

Imagine an n node undirected graph iin which the nodes represent processors

aUnl the edges coutituication paths. We have t resources which can be placed

on various nodes of the graph. Requests lor the resources originate with

equal probability at any of a designated set of request nodes. Each request

is serviced by Matching it with some resource. The cost of that service is

the shortest distance between the request and tie resource with which it is

matched. The cost of servicing a simlultaneous set of requests is the minimum

total cost that can be obtained over all possible matchings of those requests

to resources.

For example, the resources might be available processors and the requests

be users wishing service. The minimum cost matching gives the best way of

assigning processors to users so as to minimize average distance in the net-

work between the user and his processor.

Averaging over all possible patterns of a fixed number of requests at

the designated request points, we get an expected cost of servicing the

requests. We are interested in how to place the resources so as to minimize

the expected cost of servicing a random set of requests of a fixed size,

and we wish to get good bounds on that expected cost.

Our results to date are for the special but interesting case with the

following restrictions:

(i) rthe graph is a complete binary tree with n leaves;

(IL) Resources can be placed anywhere I) tie tree, but requests ori-
ginate only at leaves;
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(it1') Requests are independent random events uniforlidy distributed
over the leaves;

(iv) The number of requests equals the number of resources.

2. Properties of Optimal Placements

An assignment of L resources to nodes is optimal if it minimizes the

expected cost of servicing a random set of t requests at the leaves. In-

tuitively, if t Is small relative to ii, the niumber of leaves in the Lee,

It should be better to place the resources up toward the root, whereas if

t is large relative to 11, then one should do better by dividing up the re-

sources equally among the leaves. In fact, this is not strictly true unless

t is a power of 2. The structure of optimal placement for non-power-of-two

numbers of resources is rich and complicated; nevertheless, an optimal

placement can be found quickly by a straightforward algorithm. We develop

those results in the remainder of this section.

We begin by looking at the optimal matching of a fixed set of t requests

to the t resources. A matching is a set of directed paths from distinct re-

quests to distinct resources. The directed flow along an edge e in the tree

is the number of paths in the matching which contain that edge in the desig-

nated direction (towards or away from the root). Because we are looking only

at trees, a necessary and sufficient condition for a matching to be optimal

is that no edge have flow in both directions. lt follows that the flow along

any edge e in an optimal matching is determined solely by the number of requests

in the subtree T e which e connects to the rest of the tree, as shown below:
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If the numiber of requests in T exceeds the number of resources in T

then tile difference tlows through e out of rT . It tile number of resourcesC

exceeds the number of requests, then the difference flous through e into

T . Tile flow is zero if the numtber of requests equals tile number of resources

in T Letting s be thie numiber of resources and I the number of requests

in T, the absolute Ilow is defined to be Is-J I. Summing the absolute flow

over all edges in the tree gives the cost of the optimal matching.

We now consider all the different possible pattelIs of requests and

look at the expected iabsolute flow along an edge c. It T has s resources,

this is given by

t
i Prob[exatly I requests occur in T 's-il.

i=O 

Since the requests are independent and unitormly distributed, the probability

of exactly I requests in a subtree Is binomially distributed and is glvCL

by (t)i q t-, where t is the total number of requests, p (# leaves~I e -e e

In 'e )/n is the probability that a given request will fall In T, and

qe= I-pe. Thus, the expected absolute flow in e Is given by

t It\if (s) = F(otpi'qt~ls-i 1

Let E be the set of edges In the subtree T , Including e itsell.
e e

For each edge d in Ee, let s be the number of resources in tile subtreie
Cd

T . The total expected abso lute flow il T is del ind to be

F h ( !) = t  'sd

e d E
C

where k is the vector (, dd, E
C

,I
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Note that F includes tile Ilow along tie edge leading out of the root
C

ot tile subtree as well as the flows oil all tile edges Internal to tile

subtlec.

he definitins jor I and F make pe i ecty good nathemiatical
e

sense for arbit raly rcaI values Of S. Trhis COres)oncis to tile situation

ill which reSotlnC:.i dle coltliuously diviable, but tile requests neverthe-

less are integral. We conider tile co1itilmIOuis case tot tecInlical conveni-

CllCe.

Let tle optimlal I Jow ill tile COLIt iiwoIOUS casL be given by

FOp(S) mill 1 () I s , nud each sd ill s Is a noln-nlegative
Ed

real I l1illJ) t 1

For tile inLeg r case, We have

1 E'Op t win t. (s) s 1 =1" f;6 = aud each s in s is in IN).
E E d

F o°pt is delinled only for s, !i.

e

'hIioreum 1. Each of the fuict ions ft. I.i; , and FE PL is convex,
& E EC e

plecewise linealt, Wi th vertices occurIng at integer values of s.

Lopt., .p

Theorem ) s) F o ) or all s, IN.

Thils tel ls us thiat tile Iretdom Lt.) subdivide resources cannot result in a

lower cost p1acleirtn tlhan can be achieved by placing whole resources.

The lair sh.|ei placeiment tf t resollices, which plays a special role

Ill OUl develo illt'lit , puts t/n resource utn its oni each leaf and no resources

oil any lnter .1l ndt'. Iils placem'etI 1 IIas lile- property that tile ractLion of

resluics tIi illy s iib t ree i tilu salie s. te I I at Ion oI leaves which that



subtree contains. One might conjecture that Lhe fair share placement is

optimal, and indeed it Is when t/n is an Integer, but there are cases

where it Is demonstrably non-optimal. Nevertiless, it is always close

to optimial, a tact that is crucial to the correctness of our algoritmu.

'rheorni J. There exists an optimal placement, (of whole resources)

such that (1) for evcery pair of brother subtrees 'T and Te,, theC

numbers of resources on TC and '1e , differ by at most 1;e2 e

(ii) the ntuiiber of resources on ca,'h subtree T differs frome

the fair share number for that subtree by less than one.

The proof of this theorem rests heavily on Theorems I and 2 and uses

the little-known fact that the mean and the median of the binomial distri-

bution differ by an amount less than one 1,21.

Corollary. If the number of resources is a multiple of the number of

leaves, then the [air share placement is optimal.

From Theorem 3, we get a time 0(log n) dynawlic-programming algorithm

for finding an optimal placement of t resources on a complete binary tree

of n leaves. The algorithm proceeds by finding, for each L 0,1,...,

log n the cost of the optimal placement of both lid and Thl resources

on a subtree of 2 L leaves, where i = t2 L/n is the fair share number for

that subtree. This takes only a constant amount of time given the same

information for L-I; hence the total time is O(log ti). A "description"

ot the actual placemeti call also be found in time O(log n), but of course

to produce te fhilly-written-out placement takes tie 0(n). This algoritlmi

establishes:

I '
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Theorem 4. The cost of an optimal placement of t resources on a

complete binary tree of n leaves, and a "description" of that placement,

can be computed ill time O(log n) on a RAM.

We conclude this section with an example showing that the fair share

placement is not always opLtImal and illustrating some of tile structure of

optimal placements. An optimal placement of 11 resources on a 16-leaf

complete binary tree is shown below: 0

0 1 1 1

/\ /\ /\ /\
( 0 0 0 o) 0 0

A\ A A A1kA/
() 1 0 1 0 1 () 101 01 0 1

The expected cost of this placement is 24.902 .... The fair shaiire place-

ment, which places 0.b875 resources on each leaf, has expected cost 25.404....

3. Bounds oil tile Costs of Optimal Labyouts

in this section, we show that tile optimal placemlent of t resources

results in an expected cost of at most

c't + 2 log -
t

where c is a "small" constant. [fence, tile average cost per request Is

constant when the nuuber of resources is at least proportional to tile

nwber of leaves in tile tree.

We begin by defining a simpl )lacement to be tile one which puts t/ 2L

resources oil each node It level L (Irom the root), where L = minflog n,

[log t'l . Note that when t-n/2, tile simple and fair share placements are

tile same. Also, no node in a simple placement has a non-zero number of

resources
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Theorem 5. Cost of the simple placement , cost of the fair share

placement :- c't + 2 log - for some constant c.

t

Theorem 6. FoPt(t) "- cost of slinple placement 2L - I + FoPt(t)

where L = minflog ii, Flog t0).

Theorem 7. It t is a power of 2, the simple placement is optimal.

4. Discussion

A related problem, which formed the original motivation for this study,

was to find and analyze algorithms fur a distributed "ticket" system such

as might be used to sell tickets to a sporting event. The tickets are as-

sunmed to reside at various nodes in the network, and the distance from a

request to the ticket which is eventually used to grant the request is some

measure of the waiting time to service that request. The difference between

that problem and the one in this paper is that the requests come in sequenti-

ally and it is not possible to achieve an optimal matching of requests to

tickets without knowing the locations of future requests. We are currently

trying to extend our results to this case of serial requests for resources.

It seems clear that any static placement of tickets on nodes will lead

to deteriorating performance as more and more tickets are sold. Thus, even

though the average waiting time might be acceptably small, the time might

nevertheless grow unacceptably large when only few tickets are left. To help

alleviate this problem, one might consider algorithms which dynamically move

tickets around to try to Improve the future expected waiting time, analogous

to the various balancing schemes for binary search trees. We have an algorithm

which does such rebalancing, but it is still unclear to what extent, It any,

the rebalancing actually helps.
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Finally, it would be nice to remove some ol tLie technical restrictions

we placed on the problem and generalize the resUlts to caseS of arbitrary

graphs, arbitrary subsets of nodes for location of requests and placement

ot resources, nuitbe is of requests dilferent from nunber of resources, and

non-uniform distributions on the probability of a request.
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