
AD-AO90 764 AIR FORCE INST OF TECH WR16HT-PATTERSON AFB OH F/G 6/2
CARTAM. THE CARTESIAN ACCESS METHOD FOR DATA STRUCTURES WITH N--- ETC(U)
1979 S V PETERSEN

UNCLASS1FIED AFIT-79-2250 NL

IhEllllEllIEl

mosmm onssmh i-EhhE~~moEE-"IEEE."'.

1111. 2

I .I I Itl2u o'.

r , - r

LEVEL
,' CIRTAN

The Cartesian Access Method

-~ for

Data Structures with n-dimensional Keys,

I ~g~ ihesis ,y.e "uh DTIC
Stephen Taghn Peterse,tu i i ~ - -zrn ~-c ELECTEII

.......
I.

fiFF
In Partial Fulfillment of the Reguirements

for the degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

el 1979

(Submitted September 20, 1978)

-J

L. This document hal been approved I
for public release and Mele; lw
d lstrih,,,to., is ulindt d.

IV VJ h A. i .

REPORT DOCUMENTATION PAGE , i ,,m.Ii. ,
REPONI NUMBER GOVT ALCESSION NO. A PIE I T" A N AL) M IIft#I

up H9-R22 ItkI)I

CRTi T I T e Carteeira.. Ac e s NcSdp,,1 T1i fl S I SPUI 0 I TI kI f.

aI st rict iur;i Wili Ti-d iIi~mal Keys I HNO IN Q 4 L1 14 w M tt m

AItOI0e ''CONSh TOR L (.R4AN T NUMb4,

Maj S't cphen Vaul.,Im I)'lI .:,.

9 PEIONINC ONUNIZTIO NAE AN ADRES10C PROGRAM EL EMINT PH)it T T A,,,~

AREA 8 WUK UNI1 NUMbEHN

AFIT .'-;''IJIL*;NTI AT:

ICO N I 0L L IN U 0IL N AMEL A NDE A D ORLSS 12 REPORT DATE

A FIT/NR -- 13. NUBE OF -AGE

WPAI'B O11 4!433 19

14 MONITORING AGENCY NAM 8 AD1RES.(lE lllet..,t Er,,,, ('ustr..llt,, tIoo IS SECURIT7Y1 CLASS -1 ,,1 - -t

UNCLASS

ISa. "-DELA.SIFICATION U.)N,,AL'N.,
SCHEDULE

16. DISTRIBUTION STATEMENT (.1 th/i. RC)urj

APPROVED FOR PUBI.IC I:I...ASE; DIS'I'BIILUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the obstrctl entered In Block 20. It diferent flow, Report)

It. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: lAW AFR 190-17 FmRE iCC. LYNCH, e.,U I2 5 SEP *c80 o,6 n0S1t"u1 jjff /(ATC)

25 SEP 1980 Wfight-Patterson AFB. 01 45433
It. KIEY WORDS (Continue on reverse side Il necessary and ide, tily by block number)

20. ABSTRACT (Continue an reverse aid. It necessary and Identify by block number)

ATTACiED

DD 1473 EDITION O 1 NOV SS sOSOLETE UNCIASS

SECuRITY CLASSIFICATION OF THIS PAE E .i . .,

oR 'A- ---- - J

-ii-

ACKNOVLEDG ElTS

I wish to thank Dr. Frederick B. Thompson for his guid-
ance and support as my teacher and friend during my stay at
Caltech. By graduate studies were supported by the Air
Force Institute of Technology, for which I am very grateful.
In addition, I am indebted to the Deputy Chief of Staff/Data
Systems, Headquarters, Strategic Air Command, for an assign-
neat conducive to the pursuit of my project. In particular,
I extend my appreciation to Staff Sergeants Dennis D. Hewitt
and Thomas C. Howard for their assistance in testing and
production applications of the CARTAN programs. So many of
my co-workers have provided support by listening to ideas,
proofreading, etc., that I am unable to list them all by
name, but I offer my thanks to all.

By heartfelt thanks go to Captain Gene C. Bloom for his
support, encouragement and friendship; he managed to kick
me out of ruts and bottom dead center innumerable times.
Finally, I simply cannot do justice with any words here
except to say, *Thanks!m to my lovely wife Sue, who has had
to endure much while I completed this project. Vithout her
love and support, this never would have been finished.

Opinions expressed in this paper are my own and are not
to be considered an official expression by the Department of
the Air Force. If any omissions or errors remain due to any
lack of thoroughness or general laziness on my part, they
are my own and I claim full responsibility for them.

Accession For

NTIS GRA&I
PTIC TAB
ULiancunced
J t ifti catIon- --

DIstritutlen/

Availnbllity Codes

Avail anI/or
Pit pecial

fI

-iii-

ABSTRACT h

The Cartesian Access Method (CARTIN) is a data

structure and its attendant access program designed to

provide rapid retrievals from a data file based upon multi-

dimensional keys; for example, using earth surface points

defined by latitude and longitude, retrieve all points

within x nautical miles. This thesis describes that data

structure and program in detail and provides the actual

routines as implemented on the International Business

Machine (IBM) Systen/370 series of computers. The search

technique is analogous to the binary search for a linear

sorted file and seems to run in O(log(V)) time. An

indication of the performance is the extraction, in less

than 25 milliseconds CPU time on an IBM 370, Model 3033, of

all points within a 10,000-foot circle from a geographic

data base containing approximately 100,000 basic records. -

-iv-

TABLE OF CONTENTS

Acknovledgments i

Abstract ii

Table of Contents iv

Illustrations v

Chapter

I Introduction 1

II Background and Problem Definition 5

III An Unusual Data Structure for the Real Line 9

IV Generalization to n-dimensional space 25

v An Application Programmer's Viev of CARTAB 41

VI Inside CARTAN for the Maintenance Programmer 63

vII CARTAN in Use 87

ViII Assessments and Recommendations 102

List of References 105

-~ -.

-V-

Appendix

A CARTAN Source 106

B Subroutine VECTOR 136

C VICTOR Source 144

D Copy Books for COBOL Programs Using CARTAB 163

9 Index Load Program Source 165

F TSAR File Definition Example 172

G Circle Search Program Source 173

H Inclusion/Exclusion Area Search Program Source 181

I PORTRAY Subroutine to Expand Longitude 191

ILLUSTRATIONS

Figure 3-1. Ring Structure Example 14

Figure 4-1a. Cartesian Square Subdivision 29

Figure 4-lb. Corresponding List Structure 29

Figure 4-2. Conditions for Intersection 32

Figure 4-3. Plov Chart of !UERSECTIOI_-FUCTION 36

Figure 5-1. Calling Sequence Requirements 43

Figure 5-2. Communication Block 48

Figure 6-1. DSICT of Communication Block 72

Figure 6-2o DSECT of MBIAE 73

Figure 7-1. Circle Search Conditions 90

Figure 7-2. Performance Statistics 93

Figure 7-3a. inclusion Area Search Example 95

Figure 7-3b. Exclusion Area Search Example 95

- - -

CHAPTER I

INTRODUCTION

The age of information is upon us. whether the coan-

puter has been developed to allow us to manipulate that[

information or to generate it is a moot question at this

time; we do have large masses of data and must use the

computer to manage them efficiently. The corporate data base

has become an all-important entity in many, many cases, and

the management and retrieval of information has become a far

from trivial operation; witness the proliferation of data

base management systems on the market today. I am not

trying to address that massive subject; rather a small

corner concerned vith the efficient searching and retrieval

of pertinent information to answer some rather specific

questions.

it is extremely rare that a question is asked which

requires access; to an entire data base to develop the answer.

In the vast majority of cases, we only need to examine

certain rather small subsets of the available data. Many of

these instances involve the determination of a key value or

a range of key values which are then used to access the

appropriate record(s) to answer the original query. So far

-2-

these keys have been single-diueusional values used to probe

a linear sequential file of some particular organization.

There have been many methods developed to solve these types

problems; Knuth devotes an entire volume to them [8].

However, if the information is keyed by multi-dimensional

values, such as points in Cartesian space or locations on

the surface of the earth, existing methods do not readily

lend themselves to answer questions of proximity or nearness.

This paper presents a solution to the problem of

efficient probes into multi-dimensional data using a method

of quadrature to develop a data structure which has become

very useful for questions such as: nWhich resorts are within

a day's drive of my home?%; *How many doctors and dentists

are located in the state of Arizona?"; Ohat types of

navigation aids are available for an airline route from San

Francisco to Moscow?*, etc. I shall develop this structure

and the implementation of some computer programs which

provide the answers to these and other similar questions.

The first of three main divisions of this thesis is a

step-by-step development of the data structure and its algo-

rithm. In order to establish an initial environment,

Chapter I briefly describes some geographic data files in

use at Headquarters, Strategic Air Command (SAC) and the

methods that were used to query those files. After exami-

nation of the problem, the basic algorithm for our solution

LI

2-

these keys have been single-dimensional values used to probe

a linear sequential file of some particular organization.

There have been many methods developed to solve these types

problems; Knuth devotes an entire volume to then [8]. K

However, if the information is keyed by multi-dimensional f

values, such as points in Cartesian space or locations on

the surface of the earth, existing methods do not readily

.lend themselves to answer questions of proximity or nearness.

This paper presents a solution to the problem of

efficient probes into multi-dimensional data using a method

of quadrature to develop a data structure which has become

very useful for questions such as: nihich resorts are within

a day's drive of my home?*; *How many doctors and dentists

are located in the state of Arizona?"; *Vhat types of

navigation aids are available for an airline route from San

Francisco to Hoscow?*, etc. I shall develop this structure

and the implementation of some computer programs which

provide the answers to these and other similar questions.

The first of three main divisions of this thesis is a

step-by-step development of the data structure and its algo-

rithm. In order to establish an initial environment,

Chapter I briefly describes some geographic data files in

use at Headquarters, Strategic Air Command (SAC) and the

methods that were used to query those files. After exami-

nation of the problem, the basic algorithm for our solution

-3-

is developed in Chapter III. This development is in one

dimension,,specifically the real line, as illustration to
/

allow comparison with existing file search strategies, in

particular the binary search scheme. Is such, the algorithm

and structure will appear very cumbersome; the utility of

the method becomes apparent in Chapter I as the structure

and algorithm are generalized to n dimensions.

The second section of this paper covers the technical

aspects of the actual implementation. Chapter V is intended

as a user's guide for the programmer/analyst who plans to

use this n-dimensional programming techique to solve a

specific problem. The implementation is as a subroutine,

and this chapter describes the calling sequences and the

results that are to be expected. Chapter VI goes into the

internal workings of CARTAR and is maintenance information

intended for the assembly level programmer who wishes to

both install the system on his own hardware and/or maintain

it while in use.

Once the reader is aware of the available operations,

a series of examples is presented in the third section to

demonstrate the use of the system. Chapter VII describes

a few of the current application programs in day to day use

at Headquarters SIC. These programs may prove to be useful

to the reader in their own right, but the main purpose is to

illustrate some methods and show how the data structure nay

be used. I hope that they will serve as jumping-off places

for solutions to existing problems that had been deemed

either unsolvable or too costly to solve using previously

known methods. Chapter VIII concludes with some thoughts

and recommendations on possible future applications and

improvements.

The appendices, with one exception, are listings of the

programs that have been in use at SIC for the last year.

Appendix B contains a detailed description of a distance-

calculation function or metric used to compute geodetic

distances on the surface of the earth. This metric is used

throughout the examples in Chapter VII.

CHAPTER 11

BACKGROUND AND PROBLEM ENVIRONMENT

The data structure and access techniques as described

in this thesis were developed primarily at Headquarters,

Strategic Air command, Omaha, Nebraska, and specifically

applied to geographic data files used by the Joint Strategic

Target Planning Staff. These particular files are used as

concrete examples and are not intended to imply that these

are the only possible applications; the method may be

applied to any multi-dimensional data file.

The first file that was examined consists of approx-

imately 50,000 records describing points on the surface of

the earth. Most of the information in each of these records

is of no consequence to this discussion except for a unique

21 character key which can be used for retrieval of a

desired complete record, and the latitude and longitude

which specify the location of the item on the earth.

Queries against this file by location have been limiteif

to small areas which allowed use of a limiting procedure

based upon a range of latitude values. This procedure

started with an external sort based on the concatenation of

-6-

latitude and longitude into a singl, key used for sort

sequence. The resultant file was then read a record at a

time, checking for inclusion inside a gross Oboxw defined by

constant latitude and longitude, storing candidate prime

keys in an internal table. Since the file is sorted with a

major key of latitude, the read procedure is terminated when

the input latitude is greater than the upper limit of the

box. Note, however, that many records are read which will

fail the gross longitude check.

After the table of candidate keys is built in main

memory, a finer discrimination is made with an appropriate

metric to arrive at the final set of accepted records. Some

applications are summarizations that permit the packaging of

several distinct queries into a single program. Since each

candidate may then be examined for each criterion, a large

number of the disk input operations are eliminated.

However, this method is absolutely memory-bound and cannot

afford a criterion resulting in a large candidate subset of

the original file.

An attempt at clustering has been applied to this geo-

graphic data resulting in an nislands system. These islands

have been defined such that each island is disjoint from all

others with a minimum separation between any two adjacent

islands. The island assignment procedure is simply a scan

through the entire file as described above, looking for the

~ - - .M

-7-

island that is less than the minimum distance avay from the

nov point. Another way to consider the clustering is that

an island is the collection of all those points that are

within the maximum separation of another point. This does

manage to cluster points in manageable groups in most cases,

but occasionally islands grow to an unwieldy size. Those

islands are then manually broken up by using a smaller

separation distance.

Once the islands have been assigned, a non-trivial

process, subsequent processing is usually done on an island

basis. An application program is given an island to

process, at which time all members of that island are read

into main memory and the necessary fine discrimination is

applied to that subset. This methodology is not too

unmanageable as long as the number of members does not get

too large; anything over approximately 500 records begins

to degrade performance. The island approach also limits the

fine discrimination to a distance criterion no greater than

the minimum separation between islands. If the desired

distance is greater than the minimum separation, the method

breaks down completely since the search area may need more

than one island.

A second major file concerns points used to describe

country and coastal boundaries for mapping applications.

This data set contains approximately 100,000 data points

--

and is stored in a sequence suitable for display on an x-y

plotting device. The mapping software is capable of

discarding those points outside of the area being mapped,

but the entire file must be read each time, which drives the

computing times to rather large values. When maps are being

prepared in a batch environment for hard-copy output to be

produced on a flat-bed plotter, the high CPU time may be

acceptable, but not in an interactive environment with maps

to be displayed on a CRT device. The only known method of

operation was to pre-build desired maps overnight, which

restricted a user to those, and only those, maps. If, for

any reason, the user changed his mind, new maps were not

available until at least the next day.

As can be seen, in many instances we have been strictly

memory-bound for area type queries after reading the entire

source file. The attempt at clustering the data has

improved this to some extent, but only if the distance cri-

terion is not too great. Even so, programs have been

required to define internal table space to allow for the

maximum size of a cluster and discrimination within the

cluster required a distance calculation from the point of

interest to every member of that cluster. The data

structure and techniques described in the remaining chapters

have removed these restrictions entirely.

CHAPTER III

AN UNUSUAL DATA STRUCTURE
FOR THE REAL LINE

The problem of retrieval of information from a large

file is usually solved by determining a unique key for each

record, imposing an ordering operator (>) on the key field

and subsequently storing the data in a linear fashion on

secondary storage. Retrievals may then be accomplished by

several efficient search strategies, e~g.. binary search,

hashing, etc. If the individual records are substantial in

size. indexes are useful in reducing secondary storage

access time, but the problem of searching the index has not

changed.

An order is imposed upon the key values to increase the

amount of available information. A linear sweep of such a

file may be terminated when the key value becomes greater

then the desired argument, where a random ordering would

require examination of every key value In the file. This

linear probing of a sorted file results in an average access

of 5/2 records, where I is the total number of keys in the

file of interest. A much faster technique is the so-called

binary search, which probes the median record in a sorted

-10-

file and determines which half might contain the desired

key, thus discarding the other half. Considering the

remaining sub-file as a file itself, the median record of

the sub-file in them probed. This algorithm terminates

successfully when the desired key is found, or terminates

unsuccessfully when adjacent keys in the file bracket the

desired value. The binary search algorithm accesses an

average of approximately log2(U) records and is said to run

in log() time. These algorithms have an underlying

assumption that the key values may be mapped one-to-one with

a subset of the integers in a meaningful way which allows

for the application of an ordering operator and subsequent

sorting of the file.

However, if the file consists of geographic data, for

example, with latitude and longitude for coordinates, the

concept of ordering becomes nebulous at best. It is true

that on a general purpose computer, the latitude and

longitude say be defined in such a fashion as to each reside

in a computer word of, say, 32 bits. These two computer

words could be concatenated into a 64-bit key value, and

the file could then be sorted accordingly. A problem arises

when trying to decide which coordinate is to be considered

as the major portion of the key. If latitude is chosen as

the major key, then data points with identical latitude will

be Oclosee together In the file, but data points with idea-

tical longitude may be "fate apart in the file structure.

-11-

Since points on the surface of the earth as denoted by

latitude and longitude Nave their own problems in relation

to a metric, let uz suspend consideration of geographic

points for now and concentrate on a Cartesian space, i.e.,

the cross product of the real line, in n dimensions. The

simplest Cartesian space is the real line itself where

a a 1. Thus, the following discussion viii be limited to

the one-dimensiomal case and may appear unnecessarily

complicated at times, but remember that the eventual goal is

the extension to n dimensions.

Let us examine a binary search strategy as applied to a

linear, sorted file. In particular, consider a Ouniform

binary searchm as described by Knuth [8,pg 413] using Shar's

modification.

Given a table of records 21, 22, ... , wm, vhose key

values are in increasing order KI < K2 < ... < K, we can

search for a specified argument K, using algorithm C:

C1(Initialize]

Set i :- 200k where k - Llog2()J.

(33: Llog2(Jj is the floor of log2(m) or the

greatest integer S log2(n); i.e., k - Llog2()JJ

is an integer such that k S lo92(m) < k 1 1.)

Ask'.

-12-

If K - Ki, algorithm terminates successfully.

If K < Ki, set d :- 200k, go to C2.

If R > Ki and a - 2**k, algorithm terminates '
unsuccessfully,

but if a > 20sk. reset i :- m + I - 2**j

where j -Llog2 (m-2**k)-J + 1,

(note that 2*sk - 1 5 a * 1 - 2**l 5 2*sk)

set d :- 2**J, and go to C3.

C2(Decrease i]

If 4 5 1, algorithm terminates unsuccessfully;

*lse set d :=d/2,

met i :-i - d'

go to C4.

C3(Increase i 3

If dt S 1, algorithm terminates unsuccessfully;

else set d :- /2,

set i :-i + d,

go to C4.

C4(Compare 3

If K < Ki, go to C2.

If K)> Ki, go to C3;

otherwise K a 1i and

algorithm terminates successfully.

-------

-13-

The choice of the underlying storage organization for

our table of records is a crucial consideration. If the

table is small enough to be contained entirely within the

primary store of the computer, transformation of the index

value i into a displacement into the table is a simple

calculation. However, complete residence in primary store

may be prohibitively restrictive, as a table of any

appreciable size must be on secondary storage. in addition,

the transformation of the index into a displacement into a

multi-dimensioned table becomes complex. For these reasons,

and others as will become apparent later, I have chosen to

store structural information in an explicit binary tree,

with modifications. instead of the left and right links of

the usual binary tree, I use the child and twin pointers of

a ring structure or circular list. This ring structure as

illustrated in figure 3-1* also includes the parentage

information usually provided by an up-link without needing

the additional pointer space in the record entry. A single

bit in each record serves to indicate when a twin pointer is

in fact an up-link. It is also convenient to include an

'The usual depiction of chains in linked lists in diagrams
is from left to right. The usual representation of a
negative number in a general purpose computer is with a
bit set to 010. Uhen a linked list chain is arranged in
ascending order based on a bit string of arithmetic signs,
we then have an inversion between a picture of a line
segment and the corresponding list. I hope this will cause
no problems to the reader.

-14-

h

V

cJ

U
-C.CC

x

I-

'~ ~-

L

* CO

U.

CC CL
C

explicit indication as to whether a particular record is the

positive or negative child of its parent record. This

indicator is a single bit in the one-dimensional case.

Since the file is being stored as an explicit binary

tree, note that additional records are being generated, and

the concept of an Ni-thm record for the algorithm becomes

imprecise. Assume for the moment that the key values (Ki)

are integers uniformly distributed over the interval -1 to

+X where X - 20*x and x is the smallest integer greater than

or equal to log2(max(IKig)), i.e.,

x - 1 < log2 (max (jKi1)) S x.

Then a root record with a key value of 0 and a delta of X

defines the interval = 0*1 as a cover for all key values of

interest, i.e.. a line segment that contains all key values

within it. Dividing the interval in half, the root segment

now has a positive child and a negative child at the next

level of detail. in the ring structure under consideration,

the positive child is reached from the child pointer of the

root record, while the negative child is reached by following

the twin pointer of the positive child. The negative child

record will have the parent indicator set showing that the

twin pointer in that record points back to the parent,

closing the ring. Carried to the logical conclusion, each

record in the file defines a finite length line segment by

specifying the center coordinate value and a delta or line

length to either side of the center.

-16-

There are some important points to keep in mind about

the line segments as defined by the file records. The

children of a given record subdivide the line segment as

defined by the parent record. In particular, if we consider

a record as defining a set, which is exactly a line segment

in the one-dimensional case, the set intersection of records

connected by twin pointers is empty, vhile the union of

those same records is identical to the parent record. These

conditions of intersection and union also imply that the

the intervals defined by the records are only half-closed,

specifically, closed at the left end and open at the right

end. Is an example, assume that ye have a set of key values

such that -15 < Ri S 415. Then, x 4, and the first few

generated binary tree records are:

Record nun Key(Ri) Delta Twin ptr Child ptr Direc
1 0 16 --- 2
2 8 8 3 4
3 -8 8 1* 6 -
4 12 48 5 8
5 4 4 2* 10 -

6 -4 4 7
7 -12 4 3*
8 14 2 9
9 10 2 4-
10 6 2 11 4

11 2 2 5*

The asterisks in the twin pointer column indicate the end of

the ring, i.e., the parent pointer. Note that the delta

value for each record defines the distance from the center

* - A

17*

-17-

to either end of the line segment, i.e., delta is one-half

the length of the interval. Graphically this can be

represented by:

Record num -16 -8 0 +8 +16

2)
3)

6
7
8

10
11

If the key values are dense in the integers, i.e., the

difference between consecutive keys is exactly one, then the

length is halved each time we follow a child link or

descend one level in the tree. Also, if we follow the twin

link, unless marked as an up-link, we remain at the same

level in the tree, but go to the complementary line segment.

However, since key values are very rarely dense in the

integers, stict adherence to the notion of equal deltas at

the same level in the tree would result in extra nodes which

have only one child instead of two. Therefore, we eliminate

an extraneous node by replacing it in the ring with its only

child. Notice that now delta values are not necessarily

halved when following a child link, nor are they equal along

a twin chain. Thus, it becomes useful to explicitly carry

i the delta value in the record entry.

The binary tree as stored on a secondary storage medium

contains two basic types of records: terminal records

corresponding to the original data points, and internal

nodes or branch points of the tree which have been generated

due to the structure definition. Each record, accessed

through a pointer of value P, consists of:

1) a key or coordinate value of the center of the

interval K (P) 0

2) a delta value of one-half of the length of the

interval D(P)

3) a child pointer Child (P)

4i) a twin pointer Twin (P)

5) if the record is a terminal, additional data

germane to the original data record

6) various flags, such as:

a. node or terminal indicator

b. end of twin chain in ring, and

c. the sign of the difference between the record's

coordinate and the coordinate of the parent of

this record as a direction indicator Q(P)

It in obvious that construction of this explicit binary

tree generates overhead with the node records. Since extra-

neous nodes have been eliminated, any record with a non-null

child pointer has two children. To determine lust how such

overhead is generated, let t be the number of terminals

-19-

present, and let x be the number of generated nodes. If t'

and to are subsets of t such that tO = 2**kO and to = 2**kO

for some integers k' and kn, then the number of nodes

generated for the appropriate subtrees are xg and x".

Applying the summation of a geometric progression with a

ratio of 2, and noting that any two subtrees may be

connected with one additional node, we obtain:

Z" + Xa = (to - 1) (to - 1 • - t' + t - 1.

By induction, then,

x = t- 1.

When storing the tree on a secondary storage medium, it is

useful to have a master node, the root, at a location in the

file that is always known. The only location that is always

known is the first one; therefore, we add an additional

node to the structure as the master root record, which makes

the total number of generated nodes equal to the number of

terminal records.

S.

-20-

With the structure as just defined, the earlier search

algorithm C is modified to give algorithm T to search for a

given argument K:

TI[Initialize]

Set P :- root.

T2[Compare]

Set D :- K - K(P).

If D = 0 and D(P) = 0, terminate successfully.

[Record is a node if D(P) > 0.]

If D Z 0, go to T3;

else go to T4.

T3[D positive]

If D Z D(P), terminate unsuccessfully;

else set P : Child (P) ,

go to T2.

T4[D negative]

If D < -D(P), terminate unsuccessfully;

else set P :- Twin(Child(P)),

go to T2.

when searching for a specific argument K, algorithm T

may seem unnecessarily complicated. However, if the search

is for all records vith key values in the range K t d,

algorithm T say be extended in the following fashion with a

stack, as algorithm RO:

I-

-21-

.1[Initialize]

Set P :- root.

R12[Compare]

Set D :- K - K(P).

If D Z 0, go to R23;

else go to R84l.

RI3rD positive]

If D a (d * D(P)), go to R'6;

else go to R05.

R t4[D negative]

If D < -(d * D(P)), go to R96;

else go to I'S.

R8S[Check overlap]

If IDI :S (d- D(P))

present entire subtree as successful,

go to Re6;

else set P :- Child(P),

push Tvin (P) to stack,

go to 202.

R'6[Pop stack]

If stack is empty, terminate;

else pop P :- top of stack&

go to 2'2.

!

'4

-22-

Algorithm 3' allows extraction of information from the

binary tree structure. However, before any extractions can

be performed, the tree must be built. After initialization

and definition of the file by writing a master node record,

repeated insertions using algorithm 10 will build the file.

I10[Initialize insert]

Set K := key value of record to be inserted.

Set P := root (pointer to master node).

1'2 Set D : K - K(P).

Set Q := sign(D).

If IDI < D(P), go to 103.

If IDI > D(P), go to 195.

otherwise (IDO = D(P)), so

if Q - 0*, go to I5 (open end of interval);

else go to I3 (closed end of interval).

I'3[Inside]

Set P9 := P.

Set P : Child(P).

I'4[Valk ring]

If Q = Q(P), go to 1'2.

If Q> Q(P), set P :- Twin(P), iU,. <

go to 1'4;

else go to 19S.

1*~jjj 6

1

-23-

I*5[Outside; record(I) to be inserted was inside the

line segment defined by node(PO) and was on the 0

side of the center of that segment. The existing

child on that sane side, record(P} . defines a line

segment which does not include the new record (I).

Replace record(P) in the ring vith a new node(P),

and make the new record(I) and record(P) children

of node (P').]

Set D(Pn) := D(PO)

Set K(P") : K(P).

Set Q(I) :- Q.

Repeat [Adjust Record (P)]

Set D(P) := D(P")/2;

If Q(I) = +,

then set K(PO) : K(P") D(p),

else set K (P o) := K (P) -D (pO

Set Q(I} : sign(K () - K(P")I;

Set Q(P) : sign(K(P) - K(P)) ;

until Q(I) Q Q(P).

_______I

-24-

I'6[kdjust pointers]

If Q(I) (Q(P) <* ("-3

then

set Child(P") : I.

set Twin(I) : Pr

set Twin(P) : P" and mark as parent;

else

set Child(Pn) : P,

set Tvin(P) : I,

set Tvin(I) := P and mark as parent.

The structure and techniques just described are much

too complicated for efficient application to data keyed from

the real line. However, the real line is simply the

degenerate case of the eventual goal, n-dimensional space,

and is described in detail for ease of illustration. As

will be seen in the next chapter, the n-dimensional case is

obtained from this development with quite simple extensions.

-25-

CHAPTER IT

GIUZRLLIZATION TO n-DIHEISIONAL SPICE

The last chapter discussed at some length a rather

unusual data structure for information keyed by a single

coordinate. In this chapter, I will present the extensions

to the data structure and algorithms which provide for the

n-dimensional case and give the rationale for the design.

One of the more obvious questions concerns the use of a

ring structure rather than the usual binary tree linkage of

elements. After all, each record carries two link pointers

while the ring has only two elements. The two pointers

could just as well have been left and right links, elimi-

nating the requirement to walk over the positive record in

order to access the negative record. However, in extending

to a higher disensionality, the number of pointers required

to define the structure increases exponentially.

In particular, in n-dimensional space, a given ring may

contain up to 2**n entries. The ring structure allows this

expansion of the number of entries with no additional

pointer requirements, while a separate pointer in the record

for each possible child rapidly consumes an inordinate

-26-

amount of space. The ring structure also accommodates the

absence of records very nicely, while individual pointers

would have sell values in many cases. Then there are

additional physical limitations imposed by the computer

hardware. As an example, consider the IDN 360/370 series of

computers which use an address of 241 bits. If individual

pointers were carried in a record, an application with 25

dimensions, for example, would require a record format with

20*25 pointers. This technique obviously would require a

record much greater in size than the entire available

computer memory.

The overhead generated by the tree structure is a

direct result of the node records that define the structure.

This overhead has been minimized to an extent by elimination

of extraneous nodes, i.e., those nodes which would have only

a single child. I have shown that in the one-dimensional

case the number of node records is equal to the number of

term inal records. For the n-dimensional case, this number

becomes an upper bound for the worst case situation where

any given node has only two children. Rost nodes in the i

n-dimensional case will have more than two children; in

other words, a twin chain will normally be longer than two

entr~ies, but in no case will the length of the twin chain be

greater than 200n.

I

-27-

The upper bound 5 for the number of nodes in a file

with t terminal records is exactly equal to t. The lower

bound L is attained when every node has r - 2**n children

or the twin chain length is r. Is was done for the one-

dimensional case, t could be broken down as a summation of

integer powers of r, but since r subtrees would have to be

joined under a junction node to maintain optinality, and we

are only interested in a lower bound, it is convenient to

assume that t is already an integer power of r. using

the sun of a geometric progression once again, now with a

ratio of r between successive terms, the lower bound is:

L = 1 + (t - 1)/(r - 1).

For an example, assume n = 2 and t 65,536 = 4**8. Then

the upper bound U * t = 65,536 node records, while the lover

bound L = 21,846 or roughly 0.3t node records. The approx-

imate range of 0.3t to 1.Gt therefore indicates the actual

number of nodes. Actual experience with a geographic data

file has resulted in a file structure with approximately

O.7t node records.

These considerations, then, dictate the use of a ring

structure while the record content as given in the last

chapter is extended for n dimensions as:

1) n key or coordinate values for the center of a

(hyper-) square Ki(P)

2) a delta value of one-half the length of a side

D (P)

-28-

3) a child pointer Child (P)

4} a twin pointer Tvin (P)

5) application dependent data for terminal records

6) various flags:

a. node or terminal indicator

b. end of twin chain indicator

c. a quadrant indicator of n sign bits of the

difference between each coordinate of the

record and the correspondinq coordinate of the

parent record Qi (P)

As an example of the list structure compared to an

actual square from a Cartesian space, see figure 4-1.

Figure 4-1a shovs the example square, while figure 4-lb

depicts the list as defined by the node and terminal

records. The root node a defines the outer square which is

then subdivided by the four children, B, C, D and Z. The

square defined by node Z is then subdivided further by its

children, F, G and z while the children of B, C and D are

not shown, lode G is then subdivided even further by H, x

and y. Again, the children of P and H are not shown. The

terminal record z specifies the only data point in the 0-"

quadrant of 3, while the 0-0 quadrant is empty as indicated

by the absence of a corresponding record in the list.

Terminal records z and y likevise specify the only data

points in appropriate quadrants of G. Overall. the process

I.

-29-

4 A

Corsodn LitSrutr

Fi-ur - A

-30-

of subdivision is continued until a quadrant of a given

square contains a lone terminal record; a node record is

never defined unless it would have at least two children.

The n+l-tuple (K(P) ,K2(P), ... ,Kn(P) ,D(P}) , where

each coordinate Ki(P), in connection with D(P), defines a

half-open interval as in the one-dimensional case, defines a

square if n - 2. a cube if n = 3, and a hyper-cube if n > 3.

Since a cube may be considered a hyper-square, and examples

are presented in two dimensions much more facilely than in

higher dimensions, I shall use the tern square in the

remainder of this paper to refer to the object defined by

the n+1-tuple. In a similar vein, I shall use the term

rectangle when referring to the object defined by an ordered

pair of n-tuples; the first n-tuple is a vector of

coordinates defining the lover limits of the intervals or

the lover left corner, while the second n-tuple is a vector

of the upper limits of the intervals or upper right corner.

Note that in the case of the rectangle, the intervals

defining the sides are closed at each end.

The rectangle is used primarily in conjunction with an

area search request, algorithm R', but is also useful in

the insertion scheme, algorithm 1', by allowing the

rectangle to degenerate to a point. In both instances, the

algorithms essentially ask the question. mDoes a square as

-31-

stored in the file intersect with the search rectangle?

If it does, is the square totally inside the rectangle or

vice versa?w Letfs examine the area search first.

As will be seen when algorithm B' is extended to n

dimensions, the question of intersection is as stated above.

See figure 41-2 for some pictorial examples of possible

situations with a search rectangle as defined by 1. Squares

A, B, C and D have non-empty intersections with 1, but there

is insufficient information to make a positive decision;

the structure must be examined further at a finer level ofI detail. square E has an empty intersection with rectangle
X; therefore, we may discard the entire subtree by

proceeding immediately along the twin chain. Square F is

totally enclosed by X; thus, the entire subtree may be

accepted as meeting the search criteria.

Returning to square D for a moment, there is additional

information available, namely only one particular child of

the square could possibly be of use to the search request.

as will be seen, determination of the intersection involves

arithmetic on the coordinates; construction of a Q type bit

string is very simple. If such a bit string is constructed

for each of the limit vectors, high and low, and the bit

strings are then identical, the only child of interest will

be exactly that child with the same bit string Qi(P) .

-32-

Codtos o nereto

Figure______ 4-2__________________

-33-

The search application uses an ordered pair of U-tuples

or vectors to define the rectangle, while the insertion

algorithm uses a single vector as input for the record to be

inserted. If we let that single vector be used twice, i.e.,

as a definition of a degenerate rectangle, the same set

intersection function say then be used in the insertion

algorithm. It will turn out to be useful to allow insertion

of terminal records with identical coordinates, although

differing ancillary data, which can be done by inserting a

node record with a zero-valued delta and then chaining term-

inal records as children of that node. If the set inter-

section function is able to indicate whether the degenerate

rectangle is totally inside the square and vice versa, and

if both conditions are true, then the identity intersection

would be indicated. Note that as a result of the half-open

character of the square definition intervals and the closed

nature of the rectangle defining intervals, the identity

intersection technically could never occur. However, since

computer arithmetic is finite in nature, the identity

intersection can occur, but only when the intersection is

between a degenerate rectangle and a node with a zero delta

or a terminal, i.e., a data point, which is exactly the

condition that the insertion algorithm will need.

-34-1

Since the set intersection function is very important

to both the search and insertion algorithms, and will be an

extremely high-use section of computer code, it is developed

here in detail.

Let the search rectangle X be defined by the ordered

pair of n-tuples ((xl,x2,...,xn),(yl,y2,...,yn)) where

xi < yi. The square A from the file is defined by the

n41-tuple (ala2....,an,d), where the delta value d 1 0.

[In the following, the symbol & is for logical "and*;

the symbol I is used for logical "or".]

1. At least part of the rectangle is outside of the

square if the intersection of X and -A is not empty. The

intersection is not empty if there exists an i:

(ai - d > xi) I (yi > ai + d) I (ai + d yi 6 d # 0).

Rearranging terms,

(ai - xi > d) I (yi - ai > d) I (yi - ai = d * 0).

Since d Z 0 by definition, the two terms containing yi may

be combined, giving

(ai -xi > d) I (yi -ai 2 d > 0).

-35-

2. For the converse of condition 1, at least a portion

of the square is outside of the rectangle if the intersection

of A and - is not empty, which is the case if there exists

an i:

(xi > ai - d) I (ai * d > yi).

Rearranging terns,

(ai - xi < d) I (yi - ai < d).

3. The intersection of the rectangle I with the

square A is empty if there exists an i:

(ai - d > yi) I (ai + d < xi) I (ai * = xi G d 0 0).

Rearranging terms,

(ai - yi > d) I (xi - ai > d) I (xi - ai = d * 0).

As in condition 1, d a 0 allows the combination of the terms

containing xi giving

(ai - yi > d) I (xi - ai a d > 0).

Figure 4-3 shows a flow chart of INTERSECTION-FUNCTION

after combining the three tests; the two Q bit strings are

also set as appropriate.

-36-

check high limit

Plowyi Chart oft IURSETONUCT

Pi =0 5-

M-i: y*-1)(a i:
-:d~'I

-37-

1lgoriths 19 may nov be extended to n dimensions to

give us algorithm 1:

I 1(initialize insert]

Set Ki :=coordinate values of record

to be inserted.

set P :root (pointer to master node).

12 Execute INTBESECTIOIPUNCION (record (P) .Ki,Ki) -

if inXi is inside record (P). go to 13.

if "Ki is outside record(P)", go to 15;

otherwise an identity intersection, go to 15a.

I3rinside)

Set Pe P.

Set P :=Child(P).

III(alk ring]

If Qi = Qi(P), go to 12.

if Qi > Qi(P), set P := Tvin(P), SU.r-u

go to 1II;

else go to I5.

ISa(Add a duplicate coordinate record]

Set Qi :-a ll.**

If record(P) is a node, go to 17;

else set Ps :- P,

go to 15.

Wi

-38-

15(Outside; record(I) to be inserted was inside the

square defined by node(P9) and was in the Qi quad-

rent of that square. The existing child in that

same quadrant, record(P), defines a square which

does not include the new record(I). Replace

record (P) in the ring with a new node(PO), and make

the new record (I) and record (P) children of Ii
node (P) .]

Set D(P 1) D(PO). K
Set Ki(P*) := Ki(P'.

Set Qi(I) : Qi.

Repeat [Adjust Record (PO)

Set D(P) = D(P*)/2;

For i - 1 to n, do begin;

If Qi(I)

then set Ki(PO) := Ki(PO) D (P") ,

else set Ki(P") := Ki(PO) -D(P";

Set Qi(I) :s sign(Ki(I) - Ki(P")J;

Set Qi (P) :s sign (Ki (P) - Ki (P")) ;

end;

until Qi(I) # Qi(P).

-..

-39-

16[a djust pointers]

If Q1(I) < Q(P) to* C U]

then .

set Child(PO) : I.
I

sot Twin(I) :- P,

set Tvin(P) :- PO and mark as parent;

else

set Child (P) :a p.

set TuinlP) := I,

set Tin(I) : p* and mark as parent.

-40-

Finally, we generalize algorithm B' to the

n-dimensional case of algorithm 3:

R I[Initialize]

Set P :- root.

(Li is the low limit vector.

Hi is the high limit vector for rectangle 1)

R2[Copare]

Execute INTERSECTIOIFUNCTION (Ki (P) ,Li, Hi).

If "intersection of Ki(P) and I is emptyn,

go to B3.

If nKi(P) is inside Xf, Present entire subtree

as successful,

go to R3;

else (overlap)

set P := Child(P),

push Twin(P) to stack,

go to 22.

R3[Pop stack]

If stack is empty, terminate;

else set P :- top of stack, [pop]

go to 12.

! ° .

-41-

CHAPTER V

l APPLICATION PROGRANHERDS VIEW
OF CARTAR

The structure that has been defined in the last two

chapters is concerned only with a multi-dimensional key

value. Depending on the specific application, the full

gamut of additional information ranging from nothing, to a

primary key into another file, to the entire data record

could be carried in the structure. Since the proposed

structure is applicable to many situations, it has proven

useful to design a program that is concerned only with the

structure, letting the particular application provide the

necessary drivers specific to their own data and use thereof.

The data structure has been named a Cartesian Index as

a result of one of the earliest applications, a latitude/

longitude index of a geographic installation file. This

file consisted of records varying in length from 320 bytes

to 4,600 bytes that were keyed by a 21-byte key for many

purposes. The Cartesian file structure was built to provide

rapid answers to area search questions, but once the instal-

lations were determined, additional information was usually

required. Therefore, the ancillary datum carried in the

- -.- ,-

--42-

Cartesian file in the terminal records was the 21-byte

primary key value to be used for access into the master

file. The Cartesian file thus became a secondary index in

two-dimensional space; hence the name Cartesian Index.

The name of the program used to probe the Cartesian

Index derives from IBM terminology. IBM provides many

different *access methodsO to process their various file

structures and the program I am describing herein is

intended to provide a method of access to the Cartesian

Index file; the name CARTesian Access Method (CARTAN)

seemed appropriate. In order to make CARTAR readily

available to an end user, it is written as a subroutine,

allowing the useres specific driver programs to be written

in any language supporting a CALL function, usually a high

order language.

Communication between the calling program and CARTAR is

through a set of calling arguments or parameters. Depending

on the function being requested, CARTAI expects from one to

six parameters as indicated by figure 5-1. (Function codes

are described in detail later.) A 28-byte communication

block is required for all requests and is used to pass

control and status information between the driver program(s)

and CIRTA. It is the only parameter required when

logically connecting or logically disconnecting a file or

when deleting a record. uhen inserting data, CARTAI needs a

....... -- 2 .;2 ' £ ' " ' " £ -' : ' 'If

-a'3-

CALL CARTA { ,

(generic) pars COH USER COOED LOw HIGH
function cat BLOK DATA TECTR DELTA LINS LIHS

LOAD

OPE N1] *

CLSE [1] *

ISRT [3] *

[6] * * * i
Gxxx (1] * *

MLET [11]

Calling Sequence lequireuents

Figure 5-1

vector of coordinate values and the ancillary data defined

by the user to be stored in the terminal record. For all

retrieval requests, CARTAK returns a user-data field, a

vector of coordinate values and a single delta value. The

GR request is treated in a special manner in that it is used

to initiate a rectangle or area search which requires the

two additional limit vectors defining the search rectangle.

A change request applies to the user data only, but CIRTAM

was designed to also ensure that the coordinates of the

terminal record were not inadvertently changed by the driver

program which is why the coordinate vector is a required

-44~I-

argument. On the other hand, deletion of a record, be it

terminal or node, is an extreme change of coordinates and

user data; there is no requirement to pass additional data

to CARTAN beyond the communication block. In all cases,

CARTAN looks for the required number of parameters and

ignores any additional arguments that may be supplied.

CIRTlE will also allow, as an optional zero-th parameter, a

parameter count argument indicating the number of parameters

to be used. If present, this parameter count will be used,

and the actual number of arguments will not be checked

further. Note also that if the parameter count is present,

the total number of parameters is from two to seven, as

opposed to one to six.

Before any search queries can be answered, the

Cartesian file must be defined and initially loaded. it is

assumed that the data set has been allocated disk space;

see appendix P. Definition of the file consists of telling

CAtTlE how many coordinates are to be stored in a record,

i.e., the dimensionality of the file, and the type of

arithmetic to be used, such as integer or floating point.

It was intended that a Cartesian file should be loaded as a

separate process, since certain efficiencies are gained

thereby; thus, the use of the LOAD command to logically

connect and define the file, followed by repeated use of the

insert (ISIT) command to store data records. As this

information is added to the Cartesian file, a new node

-115-

record is constructed if necessary to account for the

structure and the nov terminal record is added; the relative

byte address of the new terminal is returned to the driver

program for any use that is desired. The load process is

terminated and the file is disconnected with the CLSE

command.

once the file has been defined and loaded, subsequent

processing is initiated with OPEN to logically connect it

and any desired processing may then be performed. This

would normally be retrievals, but the maintenance functions

of insert, delete and change are also permitted. The CLSE

command logically disconnects the file as before.

This gives a very rough idea as to the various ways

that CARTAK is called. Since the communication block is

considerably sore complicated than the remaining arguments,

let me defer its description for a moment and describe the

formats of the other parameters first.

The parameter count is always an optional argument in

those languages that use the standard 133 method of indi-

cating the end of a variable length parameter list, namely

the high order bit of the last address set to one. The IBM

supported languages COBOL and FORTRAN always flag the last

address, while PL1 normally does not. An assembly language

programmer has the option of setting the bit or not as he

chooses. If not, the parameter count argument must be

-46-

supplied. The parameter count field, parameter 0, specifies

the number of additional parameters in the list. As such,

it must be a 32-bit fullord binary integer of the

appropriate value.

The user-data area, parameter 2, is an input argument

to CARTIM for insertions and changes, and an output argument

for all retrievals. The user data is variable in length

with two 16-bit halfword binary integer fields in the

communication block controlling the actual length of the

user data.

Since CARTAN allows most of the modes of arithmetic

normally used on the IBM 360/370 computers, the last four

parameters must take into account the length of individual

coordinate values. For instance, if the arithmetic being

used is halfword integer, the unit of size is two bytes,

while double-precision floating-point arithmetic uses eight-

byte values. Therefore, the delta value is a single unit

long as determined by the mode of arithmetic while the

coordinate vector and the low and high limit vectors are

each n units long. The coordinate vector is an input field

for insertions and changes, and an output field for all

retrievals, as is the user-data area. The limit vectors are

explicit input fields for a rectangle search initiation (GR)

and must be distinct from the coordinate vector. They are

not moved to an internal area by CARTAN; the location

J

-47-

pointers are retained and the vectors repeatedly reaccessed

during subsequent retrievals within the rectangle. Thus, the

limit-vector values should not be modified during those

retrievals except for unusual circumstances as they may be

implicit input fields for other retrieval requests.

The remaining parameter, the communication block, is

diagrammed in figure 5-2 and is now descibed in detail

below. Following the descriptions of the fields are the

lists of valid function codes and status codes as returned

by CARTAR.

DDUAHE

The eight-byte logical name of the file to be processed

is stored in DDNARR. Since CARTAR must retain much sore

than 28 bytes of bookkeeping information, e.g., file control

blocks, buffers, stack, etc., the DDNAME also serves as a

label for that additional main memory area.

Function Code

The four-byte function code carries the request code

telling CARTAR which function is to be performed. For

retrieval requests it is probably better to consider this

code as a concatenation of up to four subfunction codes.

valid function codes are described below.

-48-

0

DDNAHE

(8 Bytes)

4

Function Code
8 (4 Bytes)

Status Code Bode NORT
12 (2 Bytes) P

Pad

Relative Byte Address (RBA)
(4 Bytes)

16
Number of I Number of

Coordinates I Buffers

Maximum User True User
20 Area Length Data Length

(NUAL) (TUDL)

Number of Number of
24 Disk Reads Disk rites

Communication Block (28 Bytes)

Figure 5-2

Ct
I!

-49-

Status Code

The two-byte status code provides the indication as to

the success or failure of the CARTAN request. A value of

EBCDIC blanks is returned if CARTAN is able to perform the

function as requested. Won-blank values signal unsuccessful

completion for a variety of reasons which may or may not be

actual error conditions. A complete list of status codes

follows the function codes.

Node or Terminal Indicator (WORT)

CARTIN returns a character to the driver program in

MORT on successful retrieval requests to allow differenti-

ation between node and terminal records. The three possible

values returned by CARTAN are:

1) N - a node was retrieved

2) T - a terminal record was retrieved

3) X - a terminal record was retrieved, but the area

intended to receive the user data was too short to

accommodate all ancillary data as stored on the file.

..

-so-
Record RDA

A relative byte address (RBA) is used internally by

CARTAN to build the structure pointers. Whenever CARTAM

successfully inserts or retrieves a record, the record RBA

is also returned to the driver program for use if desired.

A Get Direct retrieval function is provided to allow direct

entry into the Cartesian Index file. Examples of the use of

this value would be storage of the RBA in the master record

of the primary file as a cross-reference, or temporary

retention of the RSA for later retrieval of selected user

data not initially needed. As a cross-reference example,

consider obtaining a record from the primary file by some

means other than coordinate search and then desiring to

find all other records within a certain distance as defined

by a metric on the coordinates. Use of the RBA to position

directly to the corresponding terminal record in the

Cartesian Index and then climbing the structure to the

appropriate level say be much faster than working down the

tree from the root.

The record RDA field is also used by CARTI!! to return

additional error information whenever a disk operation vas

unsuccessful. Refer to [3,41 for an explanation of those

codes. Finally, when the file is closed, CARTAA returns the

high used RDA as an indication as to the amount of space on

the file that was actually used.

-51-

Maximum User Area Length (HUAL)

The halfword integer in the HURL field specifies the

length of the area that is being provided by the user for a

retrieval request. This number is the maximum number of

bytes that CARTAN will return, see NORT above, and is also

the length to which the user-data area will always be padded

with the pad character, see Pad below.

True User Data Length (TUDL)

The actual length in bytes of the character string in

the user-data area is placed in the TUDL field. This value

must be filled by the driver program on an insert request.

For retrieval requests, CARTAN stores the actual number of

of data bytes, not counting pad characters, that have been

placed in the user-data area of the driver program. This

value will never be set by CARTA! to a value greater than

that currently stored in the HURL field.

Number Reads, Vrites

Two halfword binary integer fields are incremented by

CRTIN each time a physical disk read or write is performed.

These fields are zeroed out during open processing. The

fields are maintained and presented for information only.

-52-

The remaining field definitions have meaning only when

CARTED is requested to open the file: function code is LOAD

for initial file load or OPEN. Other than the mode, these

fields are-alternate usages of the lORT and RBIA fields.

mode Indicator

CARTAD allows the user to specify the type of arith-

metic to be used for the coordinates by supplying a value in

the mode indicator if the function is LOAD; otherwise,

CARTED returns an appropriate value based on the particular

file. No further reference is made to this field in subse-

quent calls. The four valid EBCDIC character values are:

1) H - for 16-bit halfword integer binary,

2) P - for 32-bit fullword integer binary,

3) 2 - for 32-bit single-precision floating point,

4) D - for 64-bit double-precision floating point.

Pad Character

In many cases, the user-supplied data being carried in

the terminal records are variable-length character strings.

On a retrieval request, the driver program specifies the

length of the area that is being provided to receive this

user data. When that area is too short, CARTAR so indicates

with an 010 returned in WORT. However, when the area is

longer than necessary, it will be padded out to the end with

the character supplied in the pad field of the communication

block.

....

-53-

Number of Coordinates

The dimensionality of the space being represented is

determined by the number stored in this halfvord field, and

is the number of coordinates carried in a record of the file.

The field is filled by the driver program if the function is

LOAD and filled by CAITAe if the function is OPEN.

A somewhat arbitrary limit of 512 dimensions has been

imposed. mainly because a limit must be established some-

where. Storage most be allocated for the bit strings

generated by IITIRSECTIONyUICTIOI, and 64 bytes was chosen.

A further limit is that the total length of a coordinate

vector must be less than one-half the length of a physical

record to allow storage of at least two logical records per

physical record.

Number of Buffers

CARTAl obtains main memory from the operating system to

use as buffers or page slots for disk input and output

operations. The driver program ay specify the maximum

number of page slots that are to be acquired (S 32). CARTAe

always tries to acquire at least four page slots.

-51s-

Valid Function Codes

LOAD

LOAD indicates to CARTAN that the file is being defined

and opened for the first time and that a series of

insertions is forthcoming. The driver program must specify

the node of arithmetic and the number of coordinates to be

stored. The data set referenced by the logical file name

DDANIE may be an empty data set or one that had previously

been used. However, any information present in the file

will be destroyed.

If a file is opened for LOAD, the only valid commands

are ISRT and CLSE. All others will be flagged as invalid

and ignored.

OPEN

After a file has been defined, loaded, and closed again,

subsequent processing is initiated with OPEN which logically

connects the file to the program. All function codes are

treated as valid, including ISET which will extend the file.

If the data set is empty, the open processing will fail.

On return from a successful open, CARTAN will have

filled the mode and number of coordinates fields of the

the communication block. A file must be opened before any

other function codes will be recognized.

-55-

CLSE

CLSZ requests a wrap-up, including final write of any

modified records to disk. Upon successful return, the

record NBA field will contain the high used RBI as an

indication as to actual space utilization of the file.

ISRT

A new record is inserted as a terminal record with the

ISRT request. If necessary, a new node record is also

built. The NBA of the new terminal record is returned for

the driver prograu's use as desired.

GH

This is a request to Get Raster node record; it would

be used to start over at the root of the tree if performing

a specialized search procedure.

GP

Climbing the structure to a higher level is accon-

plished by a Get Parent request. CARTAH retrieves the

parent record of the last record retrieved.

GT

The next record at the same level in the tree is

retrieved with a Get Twin request.

GC

The first record at the next level down in the tree is

accessed through a Get Child request.

!'

-56-

GD

If the driver program has the record RBk available,

the corresponding record from the Cartesian file may be

retrieved directly with Get Direct.

Gy

The Get Next record in hierarchical sequence function

is defined as: If the previous record accessed has a child,

get that child; if it has no child, get the next twin; if

there is no twin, i.e., the end of the twin chain was

reached, get the twin of the parent of the previous record.

Repeated requests using GN will walk through the entire

file structure in this sequence.

GNT

The sequence described for GD is modified by not

retrieving the child of the previous record. GUT would be

used when it had been determined that a subtree is to be

discarded.

The last seven function codes. GH through GNT, are

provided as primitives for the unusual application that

needs to follow a peculiar search strategy. They will each

clear parentage if it had been set earlier. The first five

of these codes may also set parentage by adding a OPO as the

third character of the code, i.e., GNP, GPP, GTP, GCP, and

! ..

-57-

GDP. Parentage is set to limit a search to a particular

subtree of the file structure and is primarily used with the

next three function codes.

GNP

Unlike previous codes where a P in position three set

parentage, Get Next in Parent uses a previously set paren-

tage to retrieve records in a hierarchical sequence within

a specified subtree. The GN function will walk though to

the end of the file regardless of the staring point, while

repeated use of GNP will traverse only the subtree as

defined when parentage was set.

If parentage has been set by the GE function described

below, CARTkd also performs a check using the

INTERSECTIOI FUNCTION to determine if the record intersects

the search area. If the intersection is empty, the subtree

consisting of the record and its children is automatically

discarded and the twin record is immediately retrieved. If

the record is a node and the intersection is limited to a

single child of that node, that particular child is immed-

iately retrieved, and it is noted that there will be no twin

of that record to be retrieved later. In both cases, the

check by XITERSECTIONIFUNCTION is reapplied before returning

the record to the driver program. If the intersection is

neither empty nor a single child, the record is returned

with the appropriate information fields filled.

U.1
V.,

-58-

GU PT

Get Next in Parent, Twin, modifies the GNP sequence by

skipping the child retrieval and discarding the subtree.

This is done when the driver program applies a finer

discrimination on a record than CARTAN can apply such as a

true circle search as opposed to a rectangle search. The

decision was made to only perform the simple rectangle

search within C&ITIf since specific applications could

conceivably use any type of metric function for their

discrimination purposes.

GNPL

When the driver program makes the determination that it

really knows that a node record is acceptable, or, in other

words, it wants all of the subtree's terminal records with-

out bothering to apply its discriminator, a Get Next in

Parent, Leaves, series of requests will flush the subtree,

presenting terminal records only. The term Leaves is used

since the character T was used for Twin.

iI

-59-

GR or GA

An area search is initiated with either of the

equivalent Get Rectangle or Get Area requests. The

INTERSECTION_FUCTION will be used by CARTA% to check

records during this GR and subsequent GUPx requests. The

stack maintained by CARTAN is flushed and the search begins

at the master or root record, setting parentage for GNPx.

GR L

If the rectangle search is the exact search required by

the application, placing an OL" in position four will direct

CAETAN to only return the terminals that are found inside

the search rectangle on subsequent GNP or GNPL requests.

After a GR L request, GNP and GNPL are equivalent.

r

-60-

CHIG

If a Cartesian file was loaded with a substantial

amount of ancillary data in the terminal records, it is

useful to be able to modify that information without having

to reload the entire file. The CHaNGe request tells CARTAM

to replace the user data in the terminal record that had

been retrieved on the previous call. CARTAM checks to see

that the coordinates have not been inadvertently altered and

that the new data string is not longer than the original

string. If the new string is shorter, the terminal record's

data area will be padded out to the original length with

the pad character.

DLET

Any record in the Cartesian file may be DeLETed with

the exception of the master root record. The structure

pointers are adjusted to logically remove the record and a

check is made to see if the ring now contains only one child.

If so, the parent of the lone remaining child is replaced in

its ring by that sole child. For integrity, CANTAN requires

that the record be retrieved on the previous call. Note

that either terminals or nodes may be deleted; deleting a

node effectively deletes the entire subtree. Note also that

CARTAM has no space reclamation capability -- deleting a

record removes it from the structure, but the space is then

unavailable for any future use until the file is reloaded!

-61-

Status codes as returned by CARTAM

S(Two EBCDIC blanks) CARTAN successfully completed the

requested function. New information has been updated as

appropriate.

AD CARTAM did not recognize the function code; invalid code.

Al An error occurred while trying to open the file.

A numeric error code [3, pgs 58-60) from the operating

system has also been placed in the RBA field of the

communication block.

AJ A logical error was detected during a disk operation.

A numeric error code (3, pgs 67-69] from the operating

system has also been placed in the RBA field of the

communication block as for AI.

AN A mode error was detected: not H, F, E or D.

AO A physical error was detected during a disk operation.

A message was written to the program log and a numeric

error code [3, pg 70] has been placed in the RBA field

of the communication block as for AJ.

AX Too many coordinates were specified. The maximum is

512 or a total coordinate vector length less than

one-half of the length of a physical record.

-62-

CX An error was detected on a change request. The change

must be on a terminal that was retrieved on the previous

call, the length of the user data must be the same or

less, and the coordinates must not have been altered.

DX An error was detected in a delete request. The record

to be deleted must have been retrieved on the previous

call. The master root record cannot be deleted.

GE The requested record was not found. GE is typically

returned during GNPx processing.

GM There are no more records in the subtree being flushed

by retrieving only terminals while using GNPL.

II A duplicate record, coordinates and user data, was

presented for insertion; the record was not inserted.

IU The user-supplied data to be stored with the terminal

record is too long. The total length of user data,

corrdinates, and six bytes of structure data must be

less than one-half the length of the physical record as

stored on disk.

SL A short parameter list was presented to CARTAM, e.g.,

calling CARTAM with only the communication block and

user data area, but not with the coordinate vector for

an ISRT or CHUG.

-63-

CHAPTER VI

INSIDE CARTAM
FOR THE MAINTENANCE PROGRAMMER

The previous chapters have developed the basic algo-

rithm and described the program I call CABTAS from a point

of view intended for a prospective user of the system. This

chapter deals with the fine detail required by a programmer

assigned the task of reimplementing the system on different

hardware or operating system or fixing CARTAM should it

break.

The Cartesian Index file is a data structure maintained

on a secondary storage medium, specifically a direct access

disk or equivalent, which predicates usage of some sort of a

disk address as the pointer value in the node and terminal

records. The particular form of this disk address pointer

depends upon the specific choice of the access methods as

provided by IBM. Since we are concerned with random access

to disk, there are actually only a few access methods avail-

able. The most primitive method of disk I/O provided by IBM

is the execute channel program (2ICP) access method. How-

ever, this is rather too primitive as I have no desire to

reinvent such things as physical error handling routines,

_ _ _ __ _ _ _ .-

A

-64-

etc. The next alternative is the Basic Direct Access Method

(BDAR) which would actually work quite vell except that it

does not handle variable length records with any great faci-

lity. If the records are defined as relatively large, then

the internal blocking and deblocking could become somewhat

messy, depending on the choice of notation for the record

identification. As will be seen later, though, BDAN would

have been quite acceptable.

The implementation of CARTAN as described here uses

IBR's Virtual Storage Access Method (VSAI) [3,4] for phys-

ical access to the disk file structure. VSAM was primarily

intended as a high performance replacement for the Indexed

Sequential Access Method (IS&R), but does provide support

for three basic types of direct access file organizations

which can be used for almost any application. Since VSAM

is used for basic system support in later versions of

large operating systems as supplied by IBM, e.g., OS/TS2

ultiple Virtual Storage (MVS), and it isolates a program

from device dependencies better than other methods, it

seemed to be a good choice.

The direct counterpart to ISAR as provided by TSAR is a

key sequential data set (KSDS) which is used to store data

indexed by a unique primary one-dimensional key. However,

the whole intent of this paper concerns multi-dimensional

keys, so we have no appropriate key to suggest use of a KSDS.

-65-

TSAR also provides a counterpart to the BDAM file organi-

zation known as a relative record data set (RRDS).

Unfortunately, an RIDS requires fixed length records which

are referenced by *relative record numbers", and the

concerns of a BDAN data set are applicable here as well.

The third structure supported by TSAR is an entry

sequenced data set (ZSDS) as a counterpart to the usual

sequential file organization. However, TSAR does allow

random access to any position in the file by means of a

four-byte relative byte address (RDA), which turned out to

be ideal for my purposes. An ESDS may be viewed as a unique

virtual address space defined by a four-byte address ranging

from 0 to 4,294,967,295. Early in the development process,

it was intended to store node and terminal records as

distinct records maintained by TSAR. However, as the

development proceeded and sore of the performance options

as p-rovided by TSAR were incorporated, it became desirable

to perform blocking and deblocking within CASTAE rather than

TSAR. This became a very simple masking operation as VSAM

stores information on secondary storage in units of control

intervals (CI) which may be almost any size from 512 bytes

to 32,768 bytes, but are physically stored as multiples of

a physical record which nay be 512, 1024, 2048 or 4096

bytes in length. One of the performance options used by

CARTN results in the seemingly reasonable restriction

of limiting the CI size to that of a physical record or a

-66-

maximum of 4,096 bytes. Each CI requires a minimum of seven

bytes of control information, which leaves the remainder

available for CARTAN's use. Thus, the largest record that

may be stored by CARTAe is 4,089 bytes, but a further limit

is rather arbitrarily imposed to limit a logical record to

no more than half of a physical record in order to store at

least two information records in one block. Keeping all of

this in mind, CARTAN uses a VSAM ESDS as a logical memory of

four billion bytes, storing the Cartesian Index file as a

linked list with four-byte RBA pointer values.

An inability to extend a data set's space on disk is

due to one of the performance options as used by CARTAe

which prevents immediate usage of an empty or newly defined

TSAR data set. Preformatting the data set with zero-filled

records the first time an empty data set is opened solves

the initial problem, and once preformatted, all records in

the file may be retrieved on a random basis by relative byte

address. However, when the original space allocation is

exhausted, the data set wil not automatically overflow

into secondary extents when records are being inserted. If

space is exhausted, there is no choice but to reallocate the

file with more space and rebuild. As an indication of

the actual utilization of the file space, the high used RBA

is returned to the driver program when the file is closed.

-67-

Reflection at this point makes it obvious that the

relative record organization of TSAR or even the Basic

Direct Access Bethod may indeed be used. Careful selection

of the physical record size to a proper power of tvo will

allow CARTAN to operate with those file organizations with a

minimum of change to the code.

The Cartesian file is built with two basic types of

records, nodes and terminals. As mentioned earlier, these

records consist of:

1) coordinate value(s),

2) a delta value,

3) a child pointer,

4I) a twin pointer,

5) user data if a terminal, and

6) various flags.

If we examine some of these items, we find that first

of all, a terminal record always has a null child pointer

since terminal records are, by definition, those records

with no children. The terminal record also corresponds to

an original data point which has a delta value equal to zero,

at least in terms of the file structure. The utility of a

node or terminal flag now becomes apparent. A single bit

serves to indicate the presence of a child pointer and a

delta value or the mutually exclusive user data with, of

course, its length.

-68-

The delta value as carried in the record also deserves

some attention. Wihile studying the algorithms, it becomes

apparent that delta should probably be an integer power of

two. In particular, consider a specific application on the

computer using integer arithmetic. If one starts with the

smallest non-zero delta value and proceeds through the tree

structure towards the root, the delta is obviously such an

integral power of two. Equally obviously, traversing the

tree in the direction away from the root requires integer

powers of two in order to prevent ngaps" due to a truncated

division. if we now examine the usual internal represen-

tation of our delta value, we find that, for integer arith-

metic, delta is stored as a fullword or halfword with

only a single bit set to one somewhere in the (half) word.

I natural method of storing this number in less space is

to use a logarithmic representation, specifically log to

the base of two. The normal internal representation of a

floating point value is normalized hexadecimal with an

exponent and mantissa. For an integer power of two, this

mantissa is given by a single hexadecimal digit that is

always in the leftmost position in the mantissa; only the

12 high order bits of a floating point delta are ever other

than zero. Thus, we can store our delta value in the node

record in only 12 bits, leaving the other 4 bits of a half-

word available for some flags. Since a delta value is

defined to be a non-negative number, I use the sign bit of

-69-

the representation to indicate whether delta is stored as a

truncated floating point number or as a logarithm. There is

an apparent ambiguity for a representation of zero, since

it obviously cannot be stored as a logarithm. However, a

Otrue zero" as used by 198 for both integer and floating

point arithmetic is stored as all binary zeroes, so it works

out very nicely.

The Cartesian Index file records are now constructed as

follows. The length of the user data stored in a terminal

record is variable, but since a terminal has a defined

delta of zero, we may carry the length of the user data in

the space otherwise occupied by delta. The list pointers,

of course, are each four bytes long, while coordinate values

may be two, four or eight bytes long, depending on the mode

of arithmetic being used. Finally, after packing everything

together into a record, we have:

I...LF TVIW I COORDS...IOI CHILD I! OserData ... I

DL? is the delta/length and flags field, two bytes long.

Expanding it out to the bit level:

0 1 11
10 1 451

If bit 15 '1', then "end of set* or record is the

last record on the twin chain, i.e.,

TWIl actually points at the parent

record, closing the ring.

-70-

If bit 14 - 91', then this record is a node, and bits

0-11 are the representation for delta.

if bit 0 = '1', then bits 2-7 are the log2(delta)

and the antilog is obtained by

shifting a value of I to the left

this many positions,

otherwise, bits 0-11 are to be moved to a

work area and extended with

zeroes to arrive at a represen-

tation suitable for arithmetic.

If bit 14 = g0 0, then this record is a terminal and

bits 0-11 represent a scaled binary

integer value depicting the length of

the user data string stored behind Q.

Bits 12 and 13 are unused.

The TWIN pointer is a four-byte field and is present in

all records. Actual interpretation is modified by bit 15 in

the DLF field.

The COORDS field contains the coordinate vector for the

record and is an bytes long where a = 2, 4 or 8 depending

on the mode of arithmetic.

Q is the quadrant indicator to label children of a

parent node and is a bit string that carries the sign of

the difference between coordinates of the record and the

corresponding coordinates of the parent record. The length

-71-

of this field is q bytes where q = (n + 7)/8 using truncated

integer division. The twin chain is also maintained in

sorted order using the Q field as an ascending sort-key.

The four-byte CHILD pointer appears only in node

records and points to the first of two or more records at

the next lover level in the structure. The coordinates and

delta of the node record define a square that completely

covers all of its children. The records at the next lower

level define a disjoint set of squares whose union is less

than or equal to the parent square.

Finally, the user-data field is a variable length field

carried in terminal records only. The actual length of this

area is determined by the 12 high-order bits of DLF.

The primary argument in the CIRTAS calling sequence is

the communication block, which is where CARTAR receives all

request instructions and returns status and other infor-

mation. Figure 6-1 shows the assembly dummy control section

(DSECT) definition. As the DSECT is the assembly program's

view of the communication block described in the last

chapter, most of the entries should be self-explanatory.

-72-

COMBBLOK DSECT
USING *,R11

CBDDNAME DS CL8 DDNAME OF FILE
CBPUNC DS OCL FUNCTION CODE
CBFUNCI DS C
CBFUNC2 DS C
CBFUNC3 DS C
CBFUNC4 DS C
CBSTATUS DS CL2 RETURN STATUS
CBODE DS C BODE OF ARITHMETIC
CBNORT DS I NODE/TERMINAL INDICATOR
CBRBA DS F RBA OF RECORD RETRIEVED/INSERTED
CBMAIUDL DS H MAXIMUM LENGTH OF USER AREA
CBTRUUDL DS H TRUE LENGTH OF USER DATA
CB#GZTS DS H COUNTER FOR VSAR NGETSN
CB#PUTS DS H COUNTER FOR TSAR "PUTS"

SPACE
* REDEFINITION IN EFFECT WHEN FUNC = "LOAD"/*OPEN"

ORG CBNORT
CBPAD DS C USER DATA AREA PAD CHARACTER
CB#XS DS H # COORDINATES
CB8BUFRS DS H # PAGING BUFFERS TO BE USED

DSECT of Communication Block

Figure 6-1

In order for CARTAN to operate, it needs a fair amount

of additional main memory for control blocks. buffers and

bookkeeping information. CARTAR must also be prepared to

operate on more than one file at a time for the driver

applications. Therefore, CARTAN obtains additional main

memory for each file that is opened. The character string

passed in as a DDNABE is used as a label to identify that

block of memory as it pertains to any particular file.

These blocks are linked on a bi-directional list and the

proper file control area as defined in figure 6-2 is

I 1 .

-73-

FCBA EZA DSECT
USING *,R12

FCBLABEL DS CL8 LABEL IS FILE DDNAME
PREVFCB DS A BACKWARD AND
NEXTPCB DS A FORWARD LINKS

IFGACB DSECT=NO GENERATED ACE
IFGRPL DSECT-NO GENERATED RPL
DS OD

LNACBAR EQU IFGRPL-IFGACB
LNRPLAR EQO *-IFGRPL

CISIZE DS F CONTROL INTERVAL SIZE
AYSPAC DS F AVAILABLE SPACE
ENDRBA DS F ENDING RBA
LRECL DS F LOGICAL RECORD SIZE = CISIZE-7

MVNODCS DS A (NODEAREA) FOR MVCL INST
DS F (FLLNOD)

RCDADD DS A
DS F (CHLDUDa)

CURRRBA DS F RBA OF BCD N/ CORE ADDR IN RCDADD
BUFRO DS A LOCATION AND
#SUBPOOL DS OX
LNGBOF DS F LENGTH OF PAGING AREA
PRIORT DS A TOP OF LRU RING

DELUK DS D EXPANDED DELTA FROM RETRIEVED BCD
PRNTDEL DS D EXPANDED DELTA FOR NODEAREA

SPLTHSKS DS OL6 MASKS TO SEPARATE RBABS INTO
CIMSK DS F CONTROL INTERVAL RBA
DSPMSK DS H AND DISPLACEMENT

DS H UNUSED

LODEARGS DS OL6 SEPARATED RBA TO BE LOADED
LODECI DS F
LODEDSP DS H

DS H UNUSED

DSECT of FCBAREA

Figure 6-2 (Part 1 of 3)

-74-

DIRECa DS (MAX#BFRS)XL(L'DIRECTRY) PAGING DIRECTORY

MISCFLGS DS XL3 MISCL FLAGS
ISRTONLY EQO B'10000000' FILE OPENED FOR LOAD
PILEXTHD EQU B'010000009 PILE HAS BEEN EXTENDED
FRSTISRT EQU BOOOOOOO1 FIRST INSERTION HAS NOT BEEN DONE
SENDPAD DS C PAD FOR USER DATA AREA

XTRAFRM DS I

SETFREGS DS XL49809 R3 EX MASK FOR BIT STRING
DS F60 R4 COORDINATE VECTOR INDEX
DS A(QSTRL) R5 BIT STRING ADDRESS
DS F R6 INDEX INCREMENT
DS F R7 INDEX LIMIT VALUE

SETFADDR DS A R8 A(SETSM.0)
GRXL& DS A R9 LOW SEARCH COORDINATES
GRXHa DS A RIO HIGH SEARCH COORDINATES
GRFLAG EQU BI10000000' IF SET, DOING "GR- SEARCH
TRMONLY EQU Bt01000000 t IF SET, WANTS TERMINALS ONLY
TMPPRNT DS H POINT IN STACK OF TEMP PARENT
STIPRNT DS H POINT IN STACK OF PARENT
STKTOP DS H TOP OF STACK

DS Xpmo ZEROES TO CLEAR BIT STRINGS
SETFLGS DS I SET INTERSECTION FUNCTION FLAGS
SNGLCHLD EQU B1000000O INTERSECTION IS ONE CHILD ONLY
EMPTTSET EQU B9O00001006 INTERSECTION IS EMPTY
ENOTINX EQU B@000000100 SOME OF -SQUARE- OUTSIDE
INOTINE EQU B900000001' SOME OF SEARCH OUTSIDE
QSTRL DS XL64 BIT STRINGS
QSTRH DS XL64 OF DIFFERENCE SIGNS
QSTRO DS XL64

DS D UNUSED
DS D PERMANENT PIECE OF STACK

STACK DS 128D
MAXSTKL EQU *-STACK

DSECT of FCBAREA

Figure 6-2 (Part 2 of 3)

I

.!

-75-

FILECNTL DS IL32 FILE CONTROL INFORMATION
ORG FILECNTL

HIUSDRBA DS F CURRENT HIGH USED RBA (ISRT USES)
FLMODE DS C H I F I E I D

DS C UNUSED
FL#COOR DS H I COORDINATES
PLLCV DS H (FL#COOR) (FLLCOOR)

DELTA& EQU 0,2 12 BITS
RCDFLGS EQU 1,1 14 BITS
PARENT EQU B100019 END OF TWIN CHAIN
NODRCD EQU B'0010' RECORD IS A NODE
TWINS EQU DELTA&,LDDELTA,4 TWIN POINTER
COORDS3 EQU TVIN&.L'TWIN3 START OF COORDINATE VECTOR
*QSTR3 EQU COORDS4+ (FLLCV)
QSTRLM1 DS H Q STRING LENGTH MINUS 1
CHLDUDS DS H CHILD PTRIUSER DATA DISPLACEMENT
FLLNOD DS H TOTAL LENGTH OF A NODE RECORD
SLODELTAI*L'TWINI4(FLLCV)+(QSTRLEII}) L'CHILDPTR <= 2000

* SO FAR 16 BYTES ARE LEFT
ORG

NODEAREA DS IL2000 NODE CONSTRUCTION WORKSPACE
FCBLNG EQU *-FCBLABEL HOPEFULLY < 4096

ORG *-132
RPLMSG DS CL132'RPL MESSAGE AREA*

DSECT of FCBAREA

Figure 6-2 (Part 3 of 3)

located each time CARTAN is entered. If a file control area

cannot be located and the function code is other than OPEN,

LOAD or CLSE, a status code of 'AD' is returned indicating

an invalid function code. If an area is located and the

function code is OPEN or LOAD, a status code of 'AD' is

again returned.

-76-

FCBAREA defines an area of main memory that is acquired on

a page boundary, i.e., an even multiple of 4096. This is

the main work area for CAiTAN for the particular file being

processed.

FCBLABEL is the file name from the communication block and

is used as the identifying label for the work area.

PREVFCB and NEXTFCB are forward and backward links for the

work area(s) and are anchored inside CARTAM directly. Since

the register save area is also inside CARTAM, CARTAM is not

re-entrant, but is serially re-usable.

IFGACB and IFGRPL are IBM supplied definitions of the access

control block and request parameter list for the TSAM access

method. CISIZE through LRECL receive information about the

file for later use. ENDRBA indicates whether the data set

already has information or if it must be preforuatted; if

so, AVSPAC is used to find out how long the data set is.

The four words beginning at HTNODCS are set up to load the

control registers for an RVCL or CLCL instruction, each of

which requires two addresses and two lengths. The fourth

i-4ister also carries a pad character as the high order byte.

CUNRRBA is used to retain the RBA of the most recently

accessed terminal or node record. It is primarily used for

checking on a delete or change request.

-77-

BUFRO, #SUBPOOL and LNGBUF refer to the additional main

memory obtained for input/output buffers or the paging area.

PRIORT points at the top of the priority ring that is main-

tained for the paging directory (DIREC3) in a least recently

used (LRU) manner.

DELUK is the work area for an expanded delta so that it may

be used in arithmetic statements. It is filled in the LODE

routine every time a new record is accessed. PRNTDEL is the

corresponding expanded delta value for the record being con-

structed in NODEAREA.

SPLTHSKS is composed of CIRSK and DSP.SK which are used to

split an RBA pointer into an NBA address of the control

interval and a displacement. DSPHSK = CISIZE - I because

CISIZE is an integer power of two as defined by VSAH. Then,

CIRSK is simply the one's complement of DSPMSK.

The masks are used as logical "andn masks against LODECI and

LODEDSP which compose LODEARGS. The paging directory is

then searched for LODECI; if not there, the oldest slot is

picked to read in the proper control interval. The trans-

lation is completed by adding LODEDSP to the page frame

address to arrive at the main memory address of the data

record being referenced.

HISCFLGS are miscellaneous flags; use is obvious.

-78-

XTRAFBM is an extension of the paging directory. IBM

provides a PGRLSE macro to specify release of a virtual

memory area. This macro is used in the input/output routine

as an attempt to gain efficiency by releasing a virtual page

just prior to a read operation so that the operating system

will not bring that page in from paging store simply to

write over it with a new record from disk. The parameters

for PGRLSE are the low address and the high address plus one

of the area to be released; these addresses are exactly the

page frame addresses as stored in the paging directory for

the page slot being released along with the address of the

next slot. ITRAFRM provides that next slot* frame address

for the last paging directory entry.

SETYREGS through GRIBS are preset values for the general

purpose registers R3 through RIO used in the set intersec-

tion function. R3 contains a one bit mask to set a position

in the Q bit string as addressed by R5. R4 is the index

into the various coordinate vectors and is incremented by

the value stored in R6 in a BILE instruction. R7 contains

the limit for R4, i.e., (R7) = n*(R6) - 1. R8 has the

address of the entry point into the appropriate arithmetic

dependent code while R9 and RIO point at the lower and upper

limit vectors. The set function also assumes that R1 points

at the current node or terminal record being examined.

SETFLGS carries the results of the set intersection function

while QSTRH and QSTRL have been set according to the arith-

-79-

metic differences during the course of the calculations.

QSTRO is used only during insertions to adjust the coordi-

nates of the new node record being built as a parent.

TEPPRVT holds the location in the stack that is to be

considered a temporary parent for the purpose of presenting,

without further checking, all terminal records in a subtree

that has been accepted.

STKPRNT holds the location in the stack that is to be

considered the parent level for Get Next within Parent pro-

cessing while STKTOP always points at the top of the stack.

STACK is a 128 entry stack used to remember the parent

backtrack chain along with the next twin entry. The parent

backtrack trail is retained primarily for insertions to

climb the parent chain in hopes that consecutive insertions

were relatively nclosef to each other, thus reducing chain

chasing as much as possible. The twin pointers are retained

for GNP processing to negate the requirement for input of a

parent record solely to retrieve the twin pointer when

accessing the parent's twin. Each entry in the stack is two

words: the left word carries the parent backtrack trail,

the right word carries the next twin. Upon exit from CARTAR,

the top entry of the stack has zero in the left position;

the right word has the child pointer of the record being

returned to the driver program, which is zero if the record

is a terminal. The second entry down in the stack has the

I.

-80-

RBA of the record being returned as the left side value

which will be the parent as the stack grows. The right side

of this stack entry is the twin pointer from the returned

record unless the record is marked as the end of a twin

chain, in which case, zero is stored. This entry is always

the next twin for GNP. As the stack is popped, either

because the child value at the top was zero or the subtree

is being bypassed, the twin value is picked up from the

right side and stored in the left side. The twin and child

pointers of that new record are then stored as before.

Obviously, if the twin pointer was zero, the stack is simply

popped one more level.

FILECNTL is a 32 byte area of control information to be

stored on the file at RBA = 0. This information is derived

from data provided when the function code was LOAD and then

stored in the file. When the function code is OPEN, these

32 bytes are retrieved from the file and stored here. Only

16 bytes are used at this time.

NIUSDRB, contains the number of bytes used by CARTAN for

insertions. It is the actual RBA of the next available byte

in the TSAS file and is obtained and updated whenever a new

record is inserted. If it has changed since the file was

opened, the control information is rewritten to the file.

FLNODE holds the EBCDIC character defining the mode of

arithmetic: H, F, 2 or D.

'1

-81-

FLICOOR is a halfvord integer value specifying the number

of coordinates (n) in a coordinate vector.

FLLCV contains the actual length of a coordinate vector

in bytes. (PLLCV) = (FL#COOB) * 2, 4 or 8 as appropriate.

DELTAa through COORDSI are symbolic equates defining the

internal record structure. QSTRS would be an equate to the

beginning of the Q bit string in the record, but, due to the

variable length of a coordinate vector, is stored as a value

equal to COORDSO plus the length of a coordinate vector.

QSTRL91 holds the length of the Q bit string less one. The

IBK execute instruction requires this value for proper oper-

ation. (QSTRLB1) = ((FL#COOR) - 11/8 using integer division.

CNLDUD& has the displacement to the child pointer for a node

which is also the displacement to the user data for a term-

inal record. (CHLDUD3) = (QSTR&) + (QSTRLH1) + 1

FLLNOD holds the total length of a node for this file. The

value stored in FLLNOD is 4 more than that in CHLDUDS. In

order to be able to store at least two logical records per

physical record or control interval, the total length must

be less than an arbitrary 2000 bytes or one-half the

physical record length, whichever is smaller.

-82-

MODEAURA is work space to remember the contents of a

possible parent record for insertions. That information is

then modified while constructing the actual record that is

to be entered into the file. RPLMSG is an overlay of the

last 132 bytes and is used only by VSAK to return an error

message. If such an error had occurred, any temporary

record would be useless anyway.

Appendix k contains the entire assembly listing of the

CARTiff routine. Within the routine are several logical

units that are described here.

The LODE section of code is a closed subroutine to con-

vert an RDA to a main memory address. The RBA is split into

a control interval RBI plus a displacement into that C1. If

the CI is already in memory, it is logically moved to the

top of the LBO ring, the displacement is added to the proper

frame address in R1, the delta is expanded, the twin pointer

from the record is inserted in B2, and control is returned

to the point of call. If the Cr was not in main memory

already, the oldest slot is determined from the end of the

end of the LBO ring and the CI in that slot is written to

disk if it had been modified. The new CI is then read into

the frame and treated as above. The logic of this section

of code was modeled after the paging scheme as described in

in EEL Paging Services [9).

-83-

The overall logic of CARTAM is actually quite simple.

on entry, a search is made for the proper FCBIREA, building

a new one if necessary, the function code is examined, and

control is transferred to the appropriate section. Most

retrievals eventually go through the RTNYALS section which

moves the coordinate vector to the driver program's area

along with the user data if the record vas a terminal. The

area receiving the user data is padded out with the pad

character in any case. The expanded delta value is also

placed in the proper location and the MORT indicator is set.

A Get Master record is a request for the master node

and would be issued if the driver program wished to restart

an unusual search strategy. The stack pointers are reset to

put the master RBA in the master (-1) position of the stack

which is then adjusted with twin and child pointers as usual.

The RBA for a Get Direct request probably will not be

found in the stack, but the stack is checked just to make

sure. Note that a GD request will probably flush the stack

which must be considered in Get Parent and Get Next

requests.

The Get Twin and Get Child requests are simple pops of

the stack. If a zero value is picked up after the pop, an

indication of no record found is returned: STATUS -GE.

The Get Parent is slightly more complicated due to the

possibility of GD requests flushing the stack. If the stack

-84-

is exhausted during the pop operation, the twin chain must

be followed to find the next parent record. All of the

requests so far described may set parentage, in vhich case

the location in the stack of the record being returned is

stored in STKPBUT as a parent marker.

The Get Next and Get Next in Parent operate in a

similar fashion except that GNPx wiii terminate at the

parentage as stored in STKPRNT while GI will continue

through the twin chains even after the stack is exhausted.

GNPx processing is also slightly more complicated because

the INTERSECTION-FUNCTION is used if the search had beena

initiated by a GR request. If the INTERSECTION-FUNCTION

determines that only one child of a node is useful, that

child is retrieved immediately and the next tvin entry in

the stack for that record is cleared, indicating no further

records along that chain. If the record is a node and the

fourth position of the function code is an L", a branch is

taken to the top of this section of code to immediately

retrieve the next record.

The insertion algorithm attempts to take advantage of

resident records and any actual proximity of consecutive

inputs by popping the stack, using the parent backtrack

trail. The stack is repeatedly popped until a node record

is found which defines a square that actually contains the

point I which is to be inserted. INTERSECTION-FUNCTION is

-85-

invoked in each instance with the I coordinate vector used

as both the low and high limit vectors. When a good parent

has been found, CARTAK turns around and descends the tree

structure. Since a node P was found that contains X, it is

known in which direction X lies in relation to the center of

P because INTERSECTION FUNCTION sets QSTRH and QSTRL in the

FCBAREA. Thus, CARTAR walks the child/twin chain looking

for the child with a matching Q string. If no record is

found with a matching Q string, I is inserted as a terminal

record in the proper position in the chain.

If a record C was found with a matching Q string,

INTERSECTION-FUNCTION is invoked again to determine if X is

inside C. If truly inside, CARTAM treats record C as the P

node and loops back to continue with the descent. If the

intersection was empty, a new node must be constructed to

replace C in the chain we have been following. This new

node becomes the parent of C and the new terminal I and the

coordinate values of the new node are adjusted to ensure

that C and I have differing Q strings in relation to their

new parent.

If the intersection of C and I was an identity inter-

section, the coordinates of X matched the coordinates of C

and C is either a terminal or a node with a zero-valued

delta. If C is itself a terminal, it is replaced in its

chain with a new node with a delta defined as zero and both

.1

-86-

C and X are chained as children of that new node. If C vas

a node with zero delta, I is simply added as another child.

In this case, all children, including C and I, have

identical Q strings, indicating an all positive direction.

Change and delete requests require that the record be

retrieved on the immediately preceding call to CABTAM. A

change allows only the user data to be modified and it must

not be extended. To ensure that a change request is not

incorrectly used to change coordinates, CARTAM requires the

coordinate vector which must still agree with the record in

the file. If the coordinates still match, and the record is

is indeed a terminal, the user data is moved from the driver

program's area into the file record, replacing the user

defined data in entirety.

Only terminal records may be changed, but both terminal

and node records may be deleted. A record is logically

deleted by adjusting the pointers to skip over it. Space is

not reclaimed! After the pointers have been adjusted, the

length of the chain is examined to ensure that the chain is

at least two members long. if the chain has only one member,

the parent of the chain is replaced in its ring by the sole

remaining child.

-87-

CHAPTER VII

CARTAM IN USE

The preceding discussion gave some general search

algorithms with no particular rationale behind them. Let us

look at some specific applications that have been imple-

mented at Headquarters, Strategic Air Command. Our computer

environment is an IBM System 370, Model 3033, using OS/VS2,

Multiple Virtual Storage (MVS) as the operating system.

Secondary storage consists of IBM 3330 Model 1 and Model 11

disks and IBM 3350 disks. In all of my examples, the data

are points on the surface of the earth defined by latitude

(lat) and longitude (lng).

The first file is stored on 18 cylinders of a 3330 disk

volume and contains roughly 100,000 terminal records as data

points, each carying an average of 15 bytes of user-defined

information. The latitude and longitude in this file are

stored as arc seconds in signed binary integers with the

convention of north and east positive. The driver program

to load this file executes in approximately 55 seconds of

central processor (CPU) time and 15 minutes elapsed time in

our normal batch production multi-programming environment.

1...I

-88-

The metric function used to calculate distance on the

earth is an implementation of a great elliptic evaluation

which provides geodetic distance in meters; see appendix B

for a discussion of VECTOR. Since this metric function

tends to be expensive in computation, an estimator value has

been devised vhich provides an estimated radius in meters of

a circle guaranteed to completely enclose the square defined

by a node or terminal record's coordinates. The value of

this estimator E is:

E = 45.0 > 43.645 = sqrt(2)*(1852 neters/60 arc secs)

(1852 meters per nautical mile;

I nautical mile per arc minute;

1 arc minute per 60 arc seconds)

It might seen that a better estimate of the radius for

a circumscribing circle could be obtained by using VECTOR

to measure the distance from the center of the square to the

lover left corner for example. unfortunately, some of the

nodes near the root of the tree carry latitude values in the

range of 1450. With VECTOR calculating geodetic distance,

a much smaller number than expected is the result. Since

search strategies rili not be attempting any accurate deter-

mination of the inclusion of an area inside a node-defined

square, rather the reverse, the upper bound approach with

E was chosen.

-89-

Probably the simplest application of CARTAK is to

search for those data points within an arbitrary circle.

As a first approximation to the desired circle with center

coordinates (latO,lngO), define a search rectangle to

enclose the final desired circle. The delta latitude value

is the appropriate number of arc seconds equivalent to the

circle radius (DO), while the delta longitude is that sane

number of arc seconds divided by the cosine of the latitude

to allow for convergence at the poles. Therefore, the limit

vectors are:

ivec = (latl,lngl) and hvec = (lath,lngh) where

latl = latO - DO, ingl = IngO - (DO/cos(latO)),

lath = latO * DO, Ingh = IngO + (DO/cos(latO)).

See figure 7-1 for the conditions that will be tested by

algorithm CS below. Within the diagram:

line AX = DELTA(A) * E

line BY = DELTA(B) * E

line CZ = search radius = DO

line CA = VECTOR distance from C to A

line CB = VECTOR distance from C to B

square A is inside search circle because

CA < CZ - AX

AX < CZ - CA

AX < -(CA - CZ)

CARTAM. THE CARTESIAN ACCESS METHOD FOR DATA STRUCTURES WITH N --- ETC(UI
1979 S V PETERSEN

UNCLAS51FIED AFIT-79-2250 NL

j 2.0

Iia
2± 6I

-90-

CH

Circle Search Conditions

Figure 7-1

-91-

square a is outside search circle because

CZ < CB - BY

B < CD -Cz

Moving OGRO to the function code initially, we have:

Repeat

CALL CARTAR (COMAIBLOK. USZR DaTa.

COORDS, DELTA.

lvec. hvec);

if STATUSCODE = SPACES, then begin;

Set AX :Z B DELTA;

Set CA := VECTOR(latOlngOlatl.lngl);

if AX S CZ - CA, then begin;

/* square A for example */

Set FONC := 'GNPLO;

repeat

if TZRMNAL, then

Present terminal records

as successful;

CALL CARTAl (COHMDLOK, USER_DATA,

COORDS, DELTA);

until STITSCODZ 0 SPACES;

Set FUIC :- IGNP S;

if ST&TUSCODE a "GR', then

Set STITUS_CODR := SPACES;

end;

S- -, 4

-92-

else

if 11 < CA - CZ, then

Set FUC :- 9GIPT'; k

i. discard subtree (square B) is ii

else

Set FOIC :- IP ;

/* to examine next level down */

end;

until STATUSCODE # SPACES;

This algorithm asks CABTAB for successive nodes and

terminals inside an initial search rectangle. As a record

is returned by CARTAR, it is checked to see:

1) if it is entirely within the final circle, then all

terminals of the subtree are presented as found;

2) if it is entirely outside the final circle, the

subtree is discarded;

3) if neither condition is met, the tree structure is

descended one more level to examine the children.

The process is continued until no sore nodes or terminals

remain in the search rectangle to be examined. See

appendix 6 for a COBOL program written for this task.

This particular driver program with the highly original

name of O3T218 (variant of ONETINZ) has been used exten-

sively as a test vehicle during the development of CAiTIf.

It was written to display the results of a primitive circle

-93-

Performance Statistics

Number of
search points 1 50 100 200 300 400

8 page slots

CPU seconds
for run .19 1.38 2.60 5.01 7.117 9.89

CPU seconds/
search point .19 .0243 .0243 .0242 .0243 .0243

Number of reads/search point
minimum 22 16 16 16 16 16
mode 22 24 24 22 24 24
mean 22 24.04 241.09 24.01 24.02 24.30
maximum 22 32 34 34 '41 51

16 page slots

CPU seconds
for run .19 1.29 2.41 4.55 6.98 9.78

CPU seconds/
search point .19 .02211 .0224 .0219 .0227 .0240

Number of reads/search point
minimum 21 15 15 15 15 15
Mode 21 23/24 20/23 20 22 23
mean 21 22.28 22.23 22.14 22.19 22.43
Maximus 21 30 30 30 35 36

32 page slots

CPU seconds
for run .20 0.95 1.69 3.17 4.83 6.55

CPU seconds/
search point .20 .0155 .0151 .0149 .0155 .0159

lumber of reads/search point
minimum 21 1 1 0 0 0
mode 21 10 12 12 11/12 12
mean 21 11.741 11.15 10.69 10.77 10.68
Maximus 21 21 21 21 25 25

Figure 7-2

, t

-9'.-

search as applied against the installation index fi.

Input is the Cartesian index file which in to be searched,

and a file of control cards, each of which contains the

latitude and longitude of the center of a search circle.

Test runs have usually been made with a 10,000 foot radius

for the search. The overall logic consists in reading a

control card, searching the Cartesian file for all data

points within 10,000 feet and printing the accepted records.

This procedure is then repeated for each card in the input

file. Figure 7-2 presents a table of selected statistics as

an indication of performance. The table is cumulative in

nature; the different lengths of runs are from termination

at specified numbers of control cards. For example, the

statistics for 300 points were obtained by extending the 200

point run by 100 more points. The entries for number of

reads are the numbers of physical disk accesses that were

made for each control card read during the run.

an obvious extension to the circle search is a search

for those installations inside the area defined by the

mathematical union of k circles as shown in figure 7-3a.

We modify algorithm CS by defining the search rectangle to

include all circles and checking distances to the center of

each circle instead of just the one;, initially setting a

flag to indicate *outside-all-circles. a loop Is executed

om the metric. once again moving 00 to the function code

Initially, we now have:

-95-

++

+

++

Exclusion Area Search ExampleI Figure 7-3b

-96-

Set ACCZP!,SQUARE :- inside-a-circlew;

Set 29J3CT_,SQOAIZ :-outsid-all-circls";

Repeat

CLL CIRTIR (COBEUBLOK, USZElDAT&.

COORDS, DELTA, ~

if STATOSCOWDZ a SPACIS, then begin;

Set &I :- Z 0 DELTA:

Set flag :- Oontide-all-circles*;

for I - 1 to a, do begin;

Set C1 := VECTOI(Iati~lngi~lat1,lngt);

if Al S CZ - CA, then

Set flag :a *inside-a-circlen

else

If Al > CA - CZ, then

Set flag :- *overlap-a-eircleO;

end;

if flag a ACCZPT_.QUAIE. then begin;

Set 1CUC :a OGUPI.;

repeat

If TERUIAL, then

Present terminal records

as successful;

CALL CAlTAN (CONDLOK. USRRDpATAv

COORDS, DELTA);

until ShATUSCODN 0 SPACES;

-97-

Set ?UNC :W 'GNP ';

if STITUSCODE = GRO, then

Set STAT OSCODZ :- SPACES;

end;

else

if flag - REJECTSQUARE, then

Set FUNC :- IGNpTO;

/* discard subtree */

else

Set FUBC :- OGNp 9;

/* to examine next level down */

end;

until STATUSCODE 0 SPACES;

The converse exclusion search strategy as shown in

figure 7-3b is identical except that *inside-a-circlen is

nov the discard criterion, while *outside-all-circleso

becomes the present successful terminals. Note that the

distance check loop may be terminated immediately if the

flag ever becomes "inside-a-circlew. If the loop terminates

with the flag still set at the initial value, the subtree is

to be discarded. A rather neat programing dodge is to use

CABRTIEs function-code as the flag for the various

conditions. Appendix B contains the COBOL program which

performs this sort of search.

Algorithm CS may also be readily extended to provide a

band search, at least in Cartesian space with a Euclidian

metric (d a SQRT(xz * y)]. A band search is defined as the

retrieval of all records within a given distance of a

straight line passing through an appropriately defined OGRO

search rectangle. As an example in two dimensions and

assuming the appropriate units, the equation of the line is

given by: Ax * By * C 0. Normalizing this equation by

dividing by the SQRT (AR * B2) results in a metric function

where the distance is determined by: d - ax + by * c. The

estimator E for a square defined by a file record is then

given by: 3 - lat + Ibl, which, when multiplied by the

delta of the file record, gives the distance from the center

of the square to a line parallel to the search line and that

also passes through an appropriate corner of the square.

Therefore, by replacing the two lines of algorithm CS as

read:

Set Al :E 0 DELTA;

Set CA : VECTOR(latOlngOlatllngl);

with:

Set AX :- (lal + Ibi)* DELTA;

Set CA :2 ia*It 4 b*T1 4 cl;

we now have a band search for Cartesian space with a

Euclidian metric.

-99-

Since CAiRTAf leaves the limit vectors available to the

driver program at all times, a somevhat more extensive

modification of algorithm CS suggests itself for a nearest

neighbor search, by continually reducing the size of the

search circle. As the search circle can be legitimately

reduced only when a terminal record is examined, initialize

the function code to OGR LO to retrieve terminals only.

Then the following algorithm will find the closest terminal

record within an initial distance CZ:

latl : latO - CZ; Ingl :I lngO - CZ/cos(latO);

lath := latO * CZ; lugh := IngO * CZ/cos(latO);

CALL CARTAkB(CORNBLOK, USER DATA,

COORDS, DELTA, Ivec, hvec);

Set function code : 'GPLO;

while STATUS CODE = blanks do begin;

Set CA := VECTOR(latO,lngO,lat,lngl);

if CA < CZ then begin;

Set CZ :- CA;

latl : latO - CZ; lngl := lngO - CZ/cos(latO);

lath : latO 4 CZ; lngh := lngO * CZ/cos(latO);

Save terminal information;

end;

CALL CARTAR(COH_BLOK, USER-DATA,

COORDS, DELTA);

end;

-100-

When this algorithm terminates, the last terminal

record saved will be the terminal closest to the initial

search coordinates. Conceptually, terminals in the upper

right quadrant (0*40 direction) are successively examined,

reducing the size of the search circle (probably) each time,

until the closest terminal in that quadrant is found. Then

examination of the remaining quadrants proceeds very quickly.

one final example has to do with a plotting application,

in particular the presentation of maps with various levels

of detail upon a graphical display device. if a particular

area of the world were to be presented every time maps were

requested, it would be a simple matter to construct a sub-

image for display and call it up from secondary storage as

required. However, if the areas to be mapped are defined by

limits specified at run-time along with user-determined

levels of detail, the number of pre-built maps becomesI

prohibitive due to the geometric explosion of combinations.

The obvious soultion is to build the maps upon request.

our second example file is built in the Cartesian Index

format for this purpose, containing as data the set of

plottable points defining coastal and country boundaries.

There are approximately 100,000 points in this file also,

but this time our latitudes and longitudes are single

precision floating point numbers expressed as arc radians. i

The terminal user-defined information contains a sequence

-101-

number for its relative Position along the plotted line

as well as a coastal/country boundary indicator. Once the

application program determines the map limits from the user

for the Session, CINTAM is requested to retrieve those

points within the rectangle defined by those limits. using

the user-defined data stored with the terminal records,

these points may then be sorted internally, plotted and

displayed on the screen.

Using CARTAM to retrieve map points for construction of

background maps has resulted in a drastic reduction in map

preparation time. This is aptly illustrated by a comment in

an internal document, STAMPS Graphics Utilities User's

Manual, 1 February 1977. *Since creation of an image of a

map background requires a considerable amount of time (up to

five minutes CPU) it would be impractical and inefficient to

build these backgrounds on-line. ... the time required to

build the maps would prohibit using them on the system."

Mhile the "five minutes" refers to CPU time for an IBM

System 360, model 85, and current experience has been on a

System 370, Model 3033, the same map backgrounds are now

being built in roughly five seconds elapsed time. The per-

formance has improved to the extent that pre-built maps are

no longer used; in fact, as the application user desires to

examine a smaller area, the nap limits are recomputed and

the map backgrounds are completely redone each time.

-102-

CHAPTER ViII

ASSESSMENTS I30 RECOMMENDATIONS

The past few chapters have described the use of the

C ARTAM routine and the associated Cartesian Index Pile with

some examples of actual applications. These examples have

been limited to two dimensions, specifically latitude andI longitude on the surface of the earth, but there has been no
intention to imply that CARI'AN is limited to tvo dimensions.

Nor is it necessary that the coordinate values carry the

same units, such as arc measure in the case of latitude and

longitude. A better separation would be obtained if each of

the coordinates are scaled such that the ranges of values

are approximately the same, but, again, there is no hard and

fast requirement imposed by CARTAM. As an example, the

installation file that was described earlier can very easily

be defined with three coordinates instead of two by adding

a coordinate carrying a numeric representation of a category,

for instance. Effectively, this would separate the instal-

lations into categorical layers which may prove extremely

useful in some cases. Since CARTAR does not apply any

specific metric function to the records, the number and type

-103-

of coordinates is totally at the discretion of the user who

may then apply whatever metric function, is deemed appro-

priate for discrimination.

A final thought has to do with possible optimizations

of the Cartesian file for large read-only applications. The

file as built by repeated insertions tends to have pointer

chains spread randomly over the file, which increases the

number of physical retrievals from secondary storage. One

possibility would be to recopy the Cartesian file once it

had been completely loaded. The initially-loaded file would

be read in the Get Next hierarchical sequence and copied in

that order onto the final file. This would allow any

searches using the *GNP9 philosophy to proceed in a mono-

tonic manner through the final Cartesian file. The other

alternative might be to recopy the initial file in such a

way as to group as many nodes of the same level on the same

physical record (control interval) as possible, building a

many-way tree a la Knuth [8, pg 4171]. The usefulness of this

may be open to conjecture if the majority of the searches

are small circle searches, since this type of search

proceeds down a single path of the tree for several levels.

-1o.-
The CIRTAR routine has proven itself as a very useful,

generalized method to construct a multi-dimensionally-keyed

file and provide extremely rapid access to desired records

therein. The programs have been implemented in demonstrated

efficient code and have proved themselves in a variety of

complex applications. gith the help of this document,

additional applications of these techniques should be very

straightforward with implementation in a minimum of time.

-.

-105-

LIST OF REFZRENCES

1. Everitt, Brian, Cluster Analysis. John Wiley 8 Sons,
Nev York. (Printed in Great Britain) 1974

2. International Business Machines Corp., IBM System/370,
Principles of Operation. 5th ed. GA22-7000-5, 1976

3. _., OS/VS Virtual Storage Access Method (VSAM)
Programmer's Guide. 3rd ed. GC26-3838-2, 1976

4. _ , OS/VS Virtual Storage Access Method (VSAM)
Options for Advanced Applications. 4th ed.
GC26-3819-3, 1976

5. ., OS/VS2 Access Method Services. 2nd ed.

GC26-3841-1, 1976

6. ., OS/VS2 Supervisor Services and Macro
Instructions. 1st ed. GC28-0756-0, 1976

7. _. OS/VS2 System Programming Library: Data
Management. 4th ed. GC26-3830-3, 1977

8. Knuth, Donald E., The Art of Computer Programming,
Volume 3. Addison-Wesley, Reading, Massachusetts, 1973

9. Thompson, F. B.0 The .EL Paging Services. DEL Project
Report No. 18. Pasadena, California. California
Institute of Technology, 1974

-106-

APPENDIX A

CARTAR SOURCE

CARTAK TITLE ' PROGRAM TO HANDLE 3-DIMENS!OIAL INDEX
MACRO DEFINITIONS@

MACRO
REQUATE &N
LCLA g1.63.6K
LCLC 5C

&C SETC '30

63 SETA 6
SK SETA 2

Alp (TOSS EQ '0') .A
&c SETC *&NO
.A air (Deco EQ mV).GO
&K SETAI1
s3 SETA 15

&C.&1 EQO &I
SI SETI &1+&K

AV? (51 LE 63) .GO

MACRO
SLUL Za 9R
SLEL SR SRSR

MACRO
SLIM1 1.2161 SP6
SLRL DS on

Al? (T'SPG EQ '0') .SKLD
Alp ('5263 (1, 1) BE3 '(') LD1
A!? ('SF' EQ 1 (R 1) 9) SKLD
LB 21.&P6(1)
AG0 .SKLD

.SKLD ALi R1II,LDPAGE
SEN D

*L

ILR

'
P

..

-107-

6131 ShALE MP
61.31 DS on

Al? (TOSPO EQ O0) .SKLD
&IF (tSpG' (1,1) RE3 (9) .LD1
Alp ('16' 10 6(31) U).SKLD

ago .SKLD
.LDI L. 31.630
.SKLD, S&L 214,UKPAGR

MU2D

MACRO
SETUC to
LCLC 6AC.6L
USING 3TSM.0fl.3S
Ai? (@&No NE '?') .51

sc SZTC '1.'
SET6M.OU NYC 0(4,35),DZLWX SUBJECT OF EXECUTE IN ITIVALS

ago .851
&a SEIC '63'

Air (9SM' RE 68') .32 i
SET5M.OM RTC 0(2,R5),DELIK*2 SUBJECT OP EXECUTE IN UTIVALS

.Z2 AGO m

SL SEIC esse
aC SZTC @see

Air ('SM' RE 099) .83
SIT&N.OM RTC O('..15),DELWK SUBJECT OP EXECUTE IN RTIVALS

AGO .RD
.33 &l? ('gs' 1E 'D') .84
327 68.08 NYC 0(8IP35),DELWK SUBJECT OF EXECUTE IN ITWYALS

AGO .3RD
.84 BNOTE Br'BAD TYPE CODE'

AGO .2D
.35 ANO?
SET6B.O0 L 20.?RNTDEL

SRA 30.1 HALVE DELTA
Air ('SM' RE OF") .MALL
alp SET6E.8
AGO NMALL?

.BED, ADO?
SIT&R.OO LK O,?3ITDZL

363.3 0,0 HALVE DELTA
LT6S.3 0.0

.JALL BE SNUDNYR

.MALL? ADO?
SETSH.01 ST&L 0,?RNTDZL
SESK.02 1.1 0,?RNTDZL ADD O3

IX R3DZLSIGN Td OSTIO0-OSTR L (35) ,.0
330 *#6

-108-

LN&L.R 0,0 SUBTRACT DELTA BASED ON BIT STRING
&&A 0,COORDSB (R4,R1)
ST&A O.COORDSI (R4,R1)

SETSH.0 LSA 0,COORDSS(as.R1) COORDINATE IN FILE zi
S&A 0,0(R4Rl1) COORDINATE FR0M SEARCHIISRT II
or SIT&R.2
Do SET&N.1
C&C 0,DELVK (2I - ID) - 0
9L SETS! .3
B SET&I.4

SET&H.1 LP&L.R 0,0 (El - IH) < 0
C&C 0,DELVK
BL SET&B.3
01 SETFLGSXNOTINE PART OF SEARCH OUTSIDE
B SETS .# OSQUAREO

SET&B.2 EX 13,11GHZ 01 QSTRH-OSTRL(R5),O
C&C 0,DELWK (21 - ID) > 0
B NB SETSH.3
OX SETFLGS ,EEPTYSET INTER SECTION IS EMPTY

SET&K.3 01 siTFLGsEIOTINX PART OF OSQUAREN OUTSIDE

SET&E.I L&A 0.0 (R'.Rg) LON SIDE SEARCH COORDINATE XL
S&A 0,CO0RDS&(R4.R1) FILE COORDINATE El
B? SETSE..6
32 SZT6SR.5
El R3,NZGLO 01 QSTRL-QSTRL(RS),0
LSL.R 0,0 (XL - El) < 0

SET&B.5 C&C 0,DELVK
RL SETS! .7
all 214
01 SZTFLGSXNOTINE PART OF SEARCH OUTSIDE
DR R

SETS! .6 C&C 0,DELVK
BL SETS!.?
01 SNTFLGSE!PTTSET INTERSECTION IS EPTY

SETS!.? 01 SETFLGSENOTINX PART OF *SQUARE" OUTSIDE
BR R
Air (96BE R E OF') .ND

SET&B.8 BZ SIUDNYR
L R0.PRNTDEL PULL NOID INTEGER INFINITE DELTA
SUL 10.1 APPEARS TO BE NEGATIVE
a SETS! .01

SETITRI! EQS SETS! .OE-SET&B.OE OFFSET FOR El IN ETNYALS
SETITRTI 20U SETS! .00-SIT&N.ON OUTER LOOP OFFSET IN FleA
SZTNTRI2 EQS SETS! .02-SETS! .08 INNER LOOP OFFSET IN FleA
SITNTRT3 E00 SET&B.0-SET&E.0! LOOP OFFSET IN INTISECT
.ND DROP Re

BEND

-109-

*PUNCH A LINK EDITOR CONTROL CARD TO FORCE PAGE ALIGNM ENT

PUNCH *PAGE CARTARB

TITLE PROGRAM TO HANDLE N-DIAENSIONAL INDEX9
CARTAN CSECT

USING *.R15
B PASTID
DC ALl (LOID)

ID DC CGCARTAR.SSTSDATE...SSYSTIMEO
PRINT NOGEN

PASTID STS R14,R2212(l13)

STD FO.SAVEFPRO
STD 12, SAIEFPR2
CROP 0,45
SAL 113 UPASTCONS I
DROP R15
USING *,213
DC 1SF'o' SAVE AREA

PARHADDR DC a (0)
PARECIT RQU PARMADDR,1

SAPFRO DC Do0'
SAVEFPR2 DC D'Os
SETFSAYE DS 107

ORG SETFSAVE
ITNDSAVN DS F
LODESAVE DS 7?

ORG
HASTERPG Dc A (LOFILECNTL) BSA OF MASTER PAGE

REOBATZ
REQUATE F

BAI* SIRS 300 32 NaxisUR NUMBER or SUFFERS
BIN#SFRS EQv 15 RINIRUR NUMSER oF BUFFERS

SNUDYR AREND 97vDURPvSTZP
STRGIFLO &SEND 215.DUKP,STEP

TITLE * PROGRAM TO HANDLE 3-DINENSIONAL INDEX
YORK AREA DRFINITIONS1

CORIBLOK DSECT
uSInG *,Rll

CVDDNAR DS CLS DDNARE OF FILE
C1UP NC DS OCL4 FUNCTION CODE
C3PUNCI DS C
CDFUNC2 DS C
CUPUNC3 DS C
CPU1C4 DS C
CRSTATUS DS CL2 RETURN STATUS
CBKODE US C RODE OP ARITHMETIC
CSIOIT DS I NODE ITIRNINAL INDICATOR
CSR5A DS F RDA OF RECORD RETRIEVEDIINSERTED
CBMAXODL DS a RAX LENGTH OF USER DATA AREA
C9TROODL DS H TRUE LENGTH OF USER DATA
CB8GETS DS H COUNTER FOR TSAR mGETS"
CB#PUTS DS a COUNTER FOR TSAR "PUTS"

R REDEFINITION I EFFECT WHEN FUNC - OLOAD0I0OPEN"
ORG CINORT

CDPD DS C USER DATA AREA PAD CHARACTER
CI#XS DS N S COORDINATES
CaIBUFRS DS H 0 PAGING BUFFERS TO BE USED

ORG

DIRECTRY EQS 0,16
BSA EQS 0,4 RDA OF PAGE IN FRARE
pE EQS 4,4 FRZ CORE ADDRESS
FLGS EQS 6o1
CRTLADDR EQg 84 CORE ADDRESS Or TSAR CONTROL INFO
FED EQO 12,4 FPD LINK OR LBO RING

----- -

FCBAREA DSECT
USING *,R12

FCBLABEL Ds CLS LABEL IS FILE DDNAME
PREIFCB DS A BACKWARD AND
NEITPCB Ds A FORUARD LINKS

IFGACB DSECT-NO GENERATED iCD
IFGRPL DSZCTIO0 GENERATED RPL
DS OD

LUACBAR EQU IFGNPL-IFGACB
LNRPLAR EQU *-IPGRPJ.

CISI7.E DS F CONTROL INTERVAL SIZE
AVSpA~C DS F AVAILABLE SPACE
ENDRBA DS F ENDING RBA
LREC L DS F LOGICAL RECORD SIZE =CISIZE-7

RVNODCS DS A (NODEAREA) FOR HVCL INST
DS P (FLLNOD)

RCDADD DS A
DS F (CBLDODO)

URRRBA DS F NBA OF BCD W/ CORE ADD! IN RCDADD
80131 DS A LOCATION AND
#SUIPOOL DS 01
LIGBUF US F LENGTH OF PAGING AREA
PRIORT US A TOP OF LRD RING

DELVK DS D EXPANDED DELTA FROM RETRIEVED BCD
PRNTDEL DS U EXPANDED DELTA FOR NODEARIA

SPLTNSKS US 011.6 MASKS TO SEPARATE IDAS INTO
CINSK DS F CONTROL INTERVAL RDA
DSPISK DS a AND DISPLACEMENT

DS H UNUSED
LODEARGS DS 01L6 SEPARATED ERA TO BE LOADED
LODECI US F
LODEDSP US a

US N UNUSED
DVEulV DS (NAX#BFRS)XL(LODIRECTRY) PAGING DIRECTORY

UISCFLGS DS 1L3 NISCL FLAGS
ISRTOILY EQU B11OOOOOOO9 FILE OPENED FOR LOAD
FILEITID EQO 30010000009 FILE HAS BEEN EXTENDED
FRSTISIT ZOU I100000001t FIRST INSERTION HAS NOT BEEN DONE
SENDPAD US C PAD FOR USER DATA AREA

XTRAFEN DS I

SETFREGS DS 1140809 R3 El BASK FOR BIT STRING
DS plot 24 COORDINATE VECTOR INUEX
us A(QSTNL) 35 BIT STRING ADDRESS

- ~ A -

-112-

DS F 26 INDEX INCREMENT
DS F R7 INDEX LIMIT VALUE

SETFADDR DS A R8 A(SET&M.0)
GRILS DS A R9 LOW SEARCH COORDINATES
GRIMB DS A B10 HIGH SEARCH COORDINATES
GRFLAG ROU B9100000009 IF SET, DOING -GR" SEARCH
TRMONLY EQO B9010000009 IF SET, WANTS TERMINALS ONLY
TUPPRNT DS R POINT IN STACK OF TEMP PARENT
STKPRNT DS H POINT IN STACK OF PARENT
STKTOP DS H TOP OF STICK

DS X909 ZEROES TO CLEAR BIT STRINGS
SETFLGS DS I SET INTERSECTION FUNCTION FLAGS
SNGLCHLD EQO B8100000006 INTERSECTION IS ONE CHILD ONLY
EMPTYSET RQO B000001008 INTERSECTIOP IS EMPTY
ENOTINX EQO B9O00000109 SORE OF wSQUAREw OUTSIDE
KUOTINE ROU B8000000019 SOME OF SEARCH OUTSIDE
QSTRL DS XL64 BIT STRINGS
QSTRH DS IL64 OF DIFFERENCE SIGNS
QSTRO DS XL64

DS D UNUSED
DS D PERMANENT PIECE OF STACK

STACK DS 128D
HAXSTKL ROO *-STACK

FILECNTL DS IL32 FILE CONTROL INFORMATION
ORG FILECNTL

HIUSDRBA DS F CURRENT HIGH USED RBA (ISRT USES)
FLNODE DS C R I F I E I D

DS C UNUSED
nFcoot vS H 8 COORDINATES
FLLCV DS H (fl*COOR) * (FLLCOOR)

DELTAa EQU 0,2 12 BITS
RCDFLGS QU 1,1 14 BITS
PARENT ZOU B900019 END OF TWIN CHAIN
NODRCD NQO B900106 RECORD IS A NODE
TWIN& EQU DELTAS4LDDELTIA,4 TWIN POINTER
COORDSa ROD TWINUILOTWIN& START OF COORDINATE VECTOR
'STRA 100 COORDSIS (FLLCV)
QSTRLB1 DS H Q STRING LENGTH MINUS 1
CHLDODa DS H CHILD PTRIUSER DATA DISPLACEMENT
FLLUOD DS a TOTAL LENGTH OF A NODE RECORD
• a LODELTI4*L'TWINS.(PLLCV)*(QSTRLl14).L'CHILDPTR <- 2000

* SO FiR 16 BITES &RE LEFT
ORG

NODEAREA DS IL2000 NODE CONSTRUCTION WORKSPACE
FCBLNG ZO *-FCBLABEL HOPEFULLY < 4096

ORG 0-132
RPLMSG DS CL1320RPL MESSAGE AREA@

-113-

TITLE ' PROGRAn TO HANDLE N-DINENSIONAL INDEX *

INITIAL ENTRY*CARTAB CSECT

PASTCONS ST 213,8(214) LINK SAVE AREAS
ST 214,11(R13)
ST R1,PARMADDR SAVE PARAMETER LIST ADDRESS
L 311,0(R1)
CLI 0(Rll),0 OPTIONAL PARS COUNT PRESENT?
ByE PASTPC
L R15,0(RI1) PARAMETER COUNT
LA R1,4(R1)
ST Rl,PARMADDR STEP PAST COUNT
L Rll,0(RI) ADDRESS OP CORMBLOK
B STPCT

PASTPC LA R15,1 COUNT PARAMETERS
LA R0,5 NEED AT MOST 6

CNTPC TH 0 (R1) ,B 10000000'
BO STPCT
LA RI,4(R1)
LA R15,1 (R15)
BCT RO,CNTPC

STPCT STC R15,PARMCNT
NYC CBSTATUS,=Cf ' INITIAL GOOD RETURN STATUS
L R9,-A (NOPCB)
USING NOFCB,R9
LA R12,NULLA.BEL

FINDFCB LR R8,R12
L R12,NEITFCB LOOK FOR PROPER PCB
CLC CBDDNAME,FCBLABEL
BH FINDFCB
BLR R9 NOT ON CHAIN; GO MAKE A NEW ONE
CLC CBFUNC,-C'CLSE9 IS ON CHAIN; B12 IS NOW BASE
BE CLSE
B CHKFUNC
DROP R9

LTORG

NULLABEL DC 2F70* HEAD ANDDC A (o)
DC A(ENDLABIL)

ENDLABEL DC 2PF-19 TAIL FOR FCB CHAIN
DC A(NULLABEL)
DC A (0)

-s !

TITLE * PROGRAM TO HANDLE U-DIMENSIONAL INDEX

CONVENT AN RDA TO A CORE ADDRESS'

UKPAGB avi LOD5*I,XvF09 MARK A, CI AS MODIFIED
B LODE

LDPAGB my! LOD541,IOO'9 LOAD ONLY; VILL NOT BE CHANGED

LODE STR 3151,35,LODESATE
ST 21,CURRRBA
ST RiPLODECI RBA OF CI
STH R1DLODEDSP DISPLACEMENT
VC LODEARGS.SPLTMSKS
BZ LENADITO ZERO RBA IS AN ERROR
LA R4,PRIORT-FWD START AT TOP OF PRIORITY LIST

LODI L RO,FVD(R4)
LTR 30,30 '
DZ LOD2 CI WAS NOT IN CORE
LR R3.RL
iN R51,RO
CLC LODECI (3) .RBA (14)
BEE LODI

LODS 01 FLGS(R51),*-* MARK IF NECESSARY
RTC FVD(LOFWDR3),FWD(R4) RESET LRU LIST
atC FID(L9FWD,I) ,PRIORT
ST, RLI,PNZORT
L R1,FNM(R4) GET CORE ADDRESS
AH Rl,LODEDSP
ST R1,NCDADD
ZN R2
TR RCDFLGS (11I) ,NODNCD
O10 LODS TERMINAL RS NO DELTA STORED
TH DELTA3 (R1),.3' 0000000'
DO LOD7? STONED AS LOG2
L R2,DELTA3 (RI)
N R2,IUgFFFOOOOOS CLEAR GARBAGE
B LODS

LOD7 IC R15,DELTAS(R1) TAKE ANTILOG2
LA 22,1
SLL 32,0 (315)

LODS ST 32,DELVK STORE EXPANDED DELTA
LiU R151,N0,LODESIVE
LN R3,R'I.LODESAVE*20
L R2,TWINS(RI) EXIT WITH TWIN PTN IN R2
TH BCDFLGS (31) ,PARENT
3303 R14
ZR R2 ZERO 32 FOR END OF TWIN CHAIN
OR 314

LOD2 LA R2,IFGRPL
RODCD RPL-(12),ANEA=(*,FNM I(34)) ,ABG(S.RBA (14))
TH LGs (Nil) ,IFO' IS IT MARKED?
BZ LOD4
1I FLGS(RI&),X90F9 CLEAR MARK FLAG
LA R114.1
AH iiaa CB#PoTS
STE 3114,CB#PUTS
PUT NPL (32) VRITE OUT MODIFIED CI

LOD1 RTC RBA(LORBA.314),LODZCI RBA OF CI TO READ
LA 314,1
AH R14,CB#GETS
STE R14.CB#GETS
L NO,FRM(24) TRY TO TELL RTS NOT TO BOTHER
L R1,FNM*L9DIECTY(14) PAGING IN AREA
PGRLSE LA-(0) .HA=(1)
GET RPL-(R2)
B LOD5

XTLST ZXLST LERAD=(LBRADIT,A) ,SYAD(SYNADTA)

LZRADXTO LA 30,16 LOGICAL ERROR EXIT
ST R0,CBNBA
a LENADXTI

LENADXT SEOVCB RPL (I) ,ARRA=(S,CBRBA) ,LENGTH=4,FIELDSPFDBK
LZRADXIi NYC CBSTATUS,=C*AJ9

B RTN

STIADXT NYC RPLaSG+10(2).,VTOISG42 PHYSICAL ERROR EXIT
Lff N15RPLRSG*4
STE N15.NPLRSG+8
LA RI5.NPLNSG+1(B15)
ETC 0(11.315) .WTOMSG48
VTO Rr=(E,RPLRSG48) DISPLAY ERROR MESSAGE ON3 ES
NYC CBSTATUS,.CvAO* LOG
B RTY

VTORSG ITO '12311,ROUTCDE=(11) .DESC -(6) ,MF=L

LTORG

TITLE ' PROGRAM TO HANDLE 1-DIMNSIONAL INDEX
PERFORM REQUESTED RETRIEVE FUNCTION6

CRIFUIC LB R7,FLLCV LENGTH 0F COOED VECTOR
LB RODQSTRLMI LENGTH OF Q BIT STRING - I
CLC CBFUNC,9 CIISRT'
BE ISET
TN HISCPLGSISRTONLY
BO NOTG
L R1.RCDADD
ZR 115 SHOULD BE A -G REQUEST

CLI CBPUUC1,ClG'

BB OTG *
BL CHKDLCH
CLI CBFUNC2,C'A'
BL NOTG
CLI PARMCNT,&

BL, SHETLIST
IC R15,CBPUIC2
IC R15,CBDTBL (115)
B NOTG (115)

C3DTBLX DC 6IXOOO'
CHDTBL EQIJ CMDTBLX-C BAR+

ORG CHDTBL+C*A@ C'ABCDl
DC ALl (GR-NOTGQ0 GC-NOTG ,GD-IOTG)
ORG CNDTBL+C'N C'MNOPQR'
DC ALl (GM-UOTGGN-NOTGO,GP-NOTG,.0GR-NOTG)
ORG CRDTBL+CRT@
DC ALl (GT-NOTG)
ORG

SHRTLIST SVC CBSTATUS,.C'SLv TOO PEV ARGUMENTS
B RTS

*ORCD ETC CBSTATUS,-CIGE
B RTY

POPIT ZR 10 POP STICK FOR MOST "G- REQUESTS
LB R14,STKTOP
As 314, .AL2 (-L $STACK)
DM1 215
STI R14,STKTOP
L ROSTACK41(115)
BR R15

CBKDLCH CLC CBFUNC,-COCHNGI
BE CHIG
CLC CBUUC,.C'DLETO
BE DLET

NOTO EVC CDSTATUS-COADS INVALID CODE
B RTN

GP OIL 115,PPIT P-1 CHI-

DAL 115 *POPIT POP CHILD
BE NONCD

DAL R15,POPIT POP TO PARENT
all GINS
L 1O.STACK(214)

GINS L R0TII(RIN OUT OF STACK ENTRIES

LTR 30.10
HZ NORCD FOLLOW TWIN CHAIN BACK UP

TH RCDFLGS (31) PARNT
HO GETIT HERE IT IS

LuIGE (30)
a GPNS

6? DAL 115,POPIT POP CHILD OFF STACK

BE NORCD THEN POP TWIN

GC BAL R15,POPIT POP TOP OF STACK

BE NORCD
LTN 30.10
HZ NORCD
B GETIT

GE B GECODR AREA SEARCH INITIALIZATION

GN CLI CaFUNC3,CIP9 GET NEXT

BE GNPCODE (WITHIN PARENT)

DAL 215,POPIT
BEE GNOO1
TO RCDFLGS (R1) ,NODRCD STACK WAS EMPTY**

SNO GUT FOLLOW CHILD CHAIN
LH 315 UCHLD0D&
L 30.0(315.11)

GROG 1 LTR 30,30
BI GUT
CLI cBruNC3,C9Tv IS SUBTREE TO BE SKIPPED?

BNE GET!?
GNT DAL R15,POPIT YES; SKIP SUBTZE

BE GITUS
LTD R0,10
HZ GET
B GETIT

GITVS L RO,STACK STACK WAS EMPTY;

GITNSI LTD NO,10 FOLLOW TWIE CHAIN

HZ EORCD
LPAGE (NO)
L RO, TVIN 3 (21)
TH RCDFLGS (231) ,PARENT
s0 GNTNSI
9 GETIT

GB1 L RO,EASTERPG GET MASTER PAGE
RTC STKTOP, AL2 (-L STICK)
3 GETIT

GD LH R15.-AL2(-LISTACK) GET DIRECT
LH R14,STKTOP CHECK STICK TO SEE
L RO,CBRBA IF IT IS THERE
IC STKTOP,STKTOP

GDLOOP BILE R111.RISGETIT
CL R0,STACK(R14)
BIN GDLOOP
STE R14,STKTOP START STACK VITH THIS RECORD

GETIT IC GRXLS (L'GRXLI.L'GRXHI.L'TBPPRNT.L*STKPRIT) ,GRI
LPAGE (10)
SAL R15,PUSHTV PUSH TWIN 0? LATEST RECORD
CLI CBUC3C9P PARENTAGE TO BE SET
BNE GETITNC
STE R14,STKPRNT BREMBER PARENTAGE POSITION IN
CLI CBPUNCI,C9Ls STK
SNE GETITNC
STH R144,TRPPRNT
01 GRIHS,TRSONL!

GETITUC DAL RIS,PUSHCH PUSH CHILD OF LATEST RECORD
ETUTALS L R3,PARNADDR

LBS 915,3,8 (13) A(COORDVEC,DELTA)
L B15,SETPADDR
Ex O,SETNTRYB (315) AN NYC INST TO NOTE DELTA
LA 26,COORDSI (91)

BTCL 24,16 MOVE COORDINATE VECTOR
L 3441(13) A(USERDATA)
LB 15. CBNAXUDL
LB R1II.CRLDUDI NOV TO MOVE USER DATA
an 914,11
ZR 315
ETI CBNORT,C9Ns INDICATE A NODE FOR STARTERS
TN RCDFLGS (R31) ,NODRCD
so EVUDAT NONE TO MOTE
EVI CBNORT,C'T2
Lff 315,DELTAO(RI) LENGTH OF USER DATA (016)
SRL 315,4 DIVIDE BT 16

ETUDAT STH 115,CDTROUDL
ICS RI5,991000@,SZNDPAD LOAD PAD CHARACTER
EVCL 914,214 HOVE USER DATA AND PAD AREA
IL *48
ElI CIUOT,CI' WAS A SHORT (TRUNCATED) NOTE

RTURBA ETC CBlIA ,CURRRBA RETURN RDA TO CALLER
ITY LD FO,SAVEPO

LD 12,SATEPPR2
L 313,4(913)
RETURN (14, 12) ,TBCO0

PUSHcH ZR D0 ZERO TO LEFT SIDE
ZR 32
TO RCDFLGS (31),IOD3CD CHILD (IF ANY) TO RIGHT
ON0 PQSHTU SIDE
LI R2,CHLDUDS
L 32,0(32,31)

PUSHTV LI 214,STKTOP IF PUSHING TUIN, CURRENT RDA
CH R1,-AL2(IXSTKL-LISTACK) 11 LEFT SIDE
DH STKOYFLO BECOMES PARENT
ST RO,STACK (311) FOR ALL ABOVE IT
ST R2,STACK+4 (31 IN STICK
LA 3114 ULDSTACK (21(4)
5TH 314, STKTOP
DR 315

POPITP ZR 32 POP STACK FOR GNP PROCESSING
LH R118,STKTOP
CH R1I5,TRPPRIT MARKED AS TERP PARENT?
831 GUPGM YES

CH R1LIDSTKPRUT MARKED AS PARENT?*1BNI NORCD YES
AR R14,-IL2(-LISTACK)
Dll NORCD STACK IS EMPTY

5TH R111,STKTOP
L 32,STAC*8(RI4)
DR 315

GNPGM IC TMPPRUT,TMPPRNT FINISHED SUBTRZE
TH GRINS ,TRNONLY
BUO NORCM
II GRXH&,! 'F? -TEN ONLY
mYC CDSTATUS,-COGM'
D RTN

GUCODE CLI PARMCNT,6 AREA SEARCH SETUP
BL SNRTLIST
L 215,PARHADDR
NYC GRIL8(L'GRXL4L9GRXH&),16(R15) ADDRS OF LIMIT
RV! GRZHNGRFLAG VECTORS
1C TMIPPRT(LITIPPRNT.LSTKPRNTJ .TMPPRNT
CLI CBFUNC4C'L9
DIE **8
0! GRll .TRHONLY
RVI SETFLGS.0
RTC STKTOP,.AL2 (-L'STACK)
LPAGE RASTERPG START WITH MASTER PAGE
a GUPR

-120-

GUPCODE HVI szTFLGsI0
SAL R15,POPIT?
CLI CSFUNC4,CtL@
531 GIPO
TN GREED .TRSNLY

STE 21'I.TNPPRYT LAST RCD READ IS TO BE MRKED
01 GRXHS,TRNONLY TO RETRIEVE ALL TERNINALS OF
B 6322 SUBTREE

GYPO CLI CSFUNCII,C'T9 IS CHILD SUSTREE TO BE
BN 6322 DISCARDED?

6321 NV! SETFLGSO
GIPOCO HAL R15.POPITP
6322 LTI 10.32

BZ 6321
LPAGZ (NO)
TN SETFLGS,SNGLCBLD LOOKING FOR A SINGLE CHILD?

LA 3141,COOIDSD (R7,R1)
EX 28,CLQRL CLC 0 (0, R 141QSTRL
BL 6322 NOT YET
BN 6321 HISSED IT
ZR 22 FOUND IT; NEED NO MRlE

G3211 SAL R15,PUSHTI
Nil SETFLGS,0
TN GRIND .GRFLAG GR PROCESSING?
530 6325

SAL 215,INTRSZCT
a GYPI +0 ENPTY INTERSECTION; DISCARD
CLC QSTNLQSTRH 441
DYE 048
01 SITFLGSSNGLCRLD

6325 S&L R15,PUSHCH
TN BCDFLGS (31) ,ODRCD
830 RTIVALS RETURN ALL TERMINALS
TH SETFLGS,S36LCHLD IF OILY ONE CHILD OF
SO GUPOCO INTEREST, GET IT IMMEDIATELY
TN GRIHD.TRNONLY
S0 6321 CALLER VANTS TERNINAL ONLY
B ITIVALS

TITLE * PROGRAM TO HANDLE 1-DIMENSIONAL INDEX
INSERT FUNCTION9

CI.QRL CLC 0 (0,R114) QSTRL
NEGLO 01 QSTRL-QSTRL(R5),O
NEGRI 01 QSTRH-QSTRL (R5) O
DELSIGI TN QSTRO-QSTRL(25),0

ISRT CLI PARMCNT.3
BL SHRTLIST
L R15,PARHADDR
L R6.(315) ADDRESS OF USER DATA
L 34,8(315) ADDRESS OF COORDINATE VECTOR
LA 35,0(214)
STE R4 R5,GRXLS
TH CDTRUUDL.B' 10000000'
DO ISIT07 UD TOO LONG
LB R15,CDTRUUDL '
An R15,CRLDUD&
SLL 315,1 TOTAL LENGTH MUST BE LESS THAN
C 115 ,LRECL HALF OF THE LRECL
BYE ISRTOB

ISRT07 NYC CDSTATUS,=C§IU9 USER DATA TOO LONG

ISRT08 TH NISCYLGS,FRSTISRT
BNO ISRT09
NI MISCYLGS. I'?? -FRSTISRT
LPAGE NASTERPG FIRST INSERTION ON A LOAD
HAL RS5,CALCQSTR
SOP 0
B F6NEET2H

ISRT09 HAL R15,POPIT TOP OF STACK IS PROBABLY ZEROS
ISITIO HAL R15,POPIT

BYM ISIT12

STI R14,STKTOP
ZSRT12 L 29,STACK-L'STACK(314) CLIMB PARENT DIRECTION

LPAGE (39) UNTIL NODE COMPLETELY COVERS
SAL RIS,INTRSECT REV COORDS
B ISRT1O #0
TN SETFLGSZNOTINX *44
DUO ISRT1O
B H 2

-122-

32 LU 2R5,MYUODCS
RVCL 32.311 REmMBE CONTENTS OF NODE
RTC PRNTDZLDELVK AS PROBABLE PARENT
L8 RIO.STKTOP
S&L R15.PoSHC3
LTI 39.32
a1 SHUDNYR

C3 LuAG2 (39) LOOK FOR CHILD IN SAME DIRECTION
LA R111,COORDSib(27,R1) AS NEW COORDINATES
ax RS.CLQRL CLC O.3111pQSTHL
R F62VTRB HISSED IT
BE QE
ST R9, STACK (310) NOT YETIST R2,STACK*l (3ID) (PUSH TWIN)
LTR 39.32
331 C3
B F6NEWTRN NOT ON CAIN INSERT TERMINAL

QE LA R111COORDSb+NODEAREA(R7)
El RS.IIQRL

SAL RSCLCSR R NEW0 OINT INSIDE RECORD?

Ta SETFLGS ,EDPTYSET*ENOTINX

ST RSTCK(RO) ES;TOTALLY INSIDE
ST 22STACK4(310)
B B2

CALCQST3 LA R1'4,QCALC CALC A FULL Q BIT STRING
B INTRO

INTISECT LA RI4,INTRTEST EXIT lIMBED. IF NO INTERSECTION
INTRO STU 13vRI0,SZTSAYE

Le R3,Rl.SlTFRRGS
S'VC SW!PLGS (L'SETILGS4LDQSTRL+LOQSTR.LQSTRO) .SETFLGS-1

3 SETNT3Y3 (38)
INTRTEST TM SBTFL6SRMPTISRT

30 INTREIIT EXIT TO *0 IT EMPTY
QCALC SNA R331

SUB INTRLOOP
LA R3,91100000009 NEXT BYTE ON Q STRING
LA 15.1(35)

INTRLOOP BILE 11,36,SETN?3Y3(R8)
LA 315,11(315) EXIT TO *14 IF PULL LOOP WAS RUN

INTRE1I LU R3,210,SRTFSATE
33 115

-123-

P140 STH R1,R1O,SETFsAvt
NYC TWIN8*NODEA1IA,TWINS (11)
LA R111.COORDSS*NODEAREA (37)
El RB,MIQLB
LA I 1,COORDS8 (RI)
ST R1.GRILS
LA R1,NODEAREA NODEARIA HOLDS NEV NODE INFO
LH R6,21O,SETFREGS+12

74A1 SVC QSTROQSTRL
RTC SETFLGS (L'SETPLGS4L'QSTRtL.L'QSTRH) ,SET7L'S-I
LI 23,R5SSTFREGS
SAL R111,SETNTRY1(RS) ADJUST COORDS IN NOD~kREA
SBA R3,1 AND CALCULATE Q*S
liZ FE4B
LA R3,B9100000008
LA 15.1(15)

7153 BILE RII,R6.SETNTR!2(R8)
CLC QSTRL,QSTRH
BE P41 STILL SAME Q, ADJUST AGAIN
ST R1o,GRIL8 RESET GRILS
CLI SITNTRY1LSETFO(8,X08A' 0SRA" OPCODE?
BUE F4D
L 314 ,PRNTDEL
LH R15,sXL2*7P00* CALC LOG2(DELTA)

PLIC LA 115,I'100' (31)
SRA 314,1
DUZ PIIC
STN l15,PNNTDRL

PhD NYC DELTAS(2,Rl),PRNTDEL
LH l1,B10,SETFsAYE QSTIL IS FOR LAST RECORD READ
B F5NEVNOD OSTRH IS FOR NEW TERMINAL

XENATCH TN RCDFLGS(31) ,NODRCD COORDS MATCH V/ DELTA = 0
so XENATCHO
L11 R2,R5,MNODCS RECORD IS A TERMINAL;
NYCL 32,14 NEED A PARENT NODE W1 DELTA
ic DELTAI*NODEAEEA,DELTA8*NODEAREA oF ZERO

-1215-

PSIEUNOD 01 BCDFLGs*NODEAREA, NODACD
LU RI.LLNOD LENGTH OF I NODE
S&L R141.XTNDSLOT
CLC QSTRL.QSTIB
ON P6NEUTRd BEV TERRINAL GOES FIRST
BE P63CHTIN IF EQUAL, MUST BE DUP COORD
L R15,STAkCK*5(R1O) BEV TERMINAL GOES SECOND
ST R 15, STACK (RIO)

KENATCHO ST 19.STACK(B10) RECORD Is A NODE v/ Dop COON!)
ST 12,STACK'4(R10j CHILDREN
LU RI0.STKTOP
DAL 315,PUSUCH

F6SCBTRa L ROSTACK.15(l10) ON DUP COORDS, CECK USER DATA
F6RCRLP LPAGE (10)

LU 115.CBTRUUDL

LI R5,115
LH 24,CHLDUDS

CLCL R4,1115
BE IISTAT DUPLICATE RECORDS; NO INSERTION
ST RO,STACK (310)
LTD R0,R2
8hZ F68CHLP

F63uVTRN LU R1UCBTRUDDL
An R1,CHLD0D8 TOTAL LENGTH OF A TERMINAL
VIl RCDFLGS+NODEA lEA .

3,0 DELTI*NODXAREACBTRUUDL USED DATA ARE& LNGTU
LA 24,COORDS&+NODEAREA
LD 15,17
L R2,GRXD3

RVCL R15,22 NOTE COORDINATE VECTOR IN
El 18UVTQvS RTC 0(0,R4),QSTRH
DAL 3115,ITNDSLOT
LU RS,CBTRUUDL R4 IS ALREADY SET
Li R7,25
RWCL 315,16 MOVE USER DATA IN
3 RTVRBA

IISTAT NYC CBSTATUS.-C9II'

RYQIL RTC 0 (0,R214) ,QSTRL
NVQLl RTC QSTRL (0) A(R15)
RYQffH RTC O(O0l14),QSTRH

-125-

MTDSLOT ST B14,XTNDSAYN
01 *ISCPLGS.PILZTND
L 311.HIUSDRBA, NEXT AVAILABLE RBA
LU 35,DsPMSK
NR 15,934
AR 15,31
C R5,LRECL BOON IN a ?
DER ITNDO TES
LB 15,31 No,
N 14.CIxSK STEP TO NEXT CZ
AL RIS.CISIZE

ZTNDO AR 21,94
ST 31,HIUSDRBA NEW AVAILABLE RBA
La 21O.STKTOP IF DOING ISRT, STACK
Ca R10,-AL2(LOSTACK) SHOULD NEVER SAVE < 1 ENTRY
BL SHUDNVI
L 31.SlACK-LOSTACK (310)
ST R,STACK-LOSTACK(R1O) NEW RECORD GOES TO LEFT
LTR 31,11 SIDE
3Z XTND1
NPAGE (31) INSERT NEW RECORD ON TWIN CHAIN
NYC TVINO*NODRERATVINa (Ri)
ST 24, TVISO (RI)
TH BCDFLGS (RI) UPARENT
INO XTVD2
NI RCDFLGS(R),I'FF*-PARENT BCD JUST LINKED TO
01 RCDFLGS4xoDEARzA.PARENT WAS END OF TWIN CHAIN
a ITND2

-126-

ITUDi EPAGE STACK-2*L@STACK(21O) INSERT VEV RECORD AS
LH R14,CHLDOD& FIRST CHILD OF PARENT
L R2,O(RIll.R1)
ST R4,0(R14l,Rl)
LA liii NODEAREA

ST R2,TUINS (R14I)

XTWD2 TN RCDPLGS*NODEAREA,NODRCD
BUO ITND3
LH Illl.CHLDUDA
ST R2,XODEAREA (Bll)
RPAGZ (R2)
RTC TWINS .IODIA EA ,TIIN (Rt)
ST 24,TVIUI(Rl)
?a RCDFLGS (11),PARENT
DUO **18
or RCDLGS*NODEA lEA.PARENT
01 RCDFLGS (RI) ,PARENT
LA 1114 ,COORDSO (R7,Rl)
El 18,RVQRL RTC 0O(0,2 14) QSTRL

XTUD3 ST 2STACK-LISTACK#ll(RIO)
LA Rl1NODEAREA
SAL R15,POSHCH
NPAGE (114) LOAD AND BRK NEV CI
L 115 .LBECL
L 274,PRXONT
L R114,FRN(21&)
AS 2114,215 POINT AT AND THEN
"Y! 0(2114),0 ADJUST TSAR CONTROL INFORMATION
STI R5,1(1114)
ST3 25,3(R114)
SR 215,15
5TH 115,5 (Ri1e)
LH R2,15,NYUODCS
TN RCDFLGS4UODEAREA.UODRCD
DNO *.6
L2 25,R3 FULL LENGTH IF NODE
NVCL 114,12
L R10WITVDSAYE
BE 1114

-127-

TITLE ' PROGRAM TO RANDLE N-DIMNSIOIAL INDEX*
CHANGE IDELETE FUNCTIONSI

CHUG CLI ?ARHCNT,3
BL SHRTLIST
CLC CBRBA,CURRDA BUST HAVE JUST BEEN RETRIEVED
DUE CNUG!
TH BCDPLGS (31) DODRCD
DO CliNG! CAU*T CHANGE DATA ON A NODE
L R9,PARRADDR
L 26,8(29)
Li 33,R7
LA 22, COOI DS& (831)
CLCL 32,36 ENSURE COORDINATES WEREN'T CHANGED
DUE CHNGX
LH R5,DELTAI (R1)
SRL R5,41
L R6.11(39)
LE R7,CDTRUUDL
CLa R7,15 CHECK LENGTH
BI CHUG!
NPAGE CBRBA
LB R11.CILDUDA

Ica R7,B'1000',SENDPAD
NVCL 311,16 REPLACE USER DATA FIELD
3 RTN

CHUG! NYC CBSTATUS,-C'C!'
B 3TU

DLITI RTC CDSTATUS.-CfDX9
a RTN

DLET L R6,CBRBA
CL R6,RASTE3PG CAN'T DELETE MASTER RECORD
DN DLETI
CL 26,CURRRBA MUST HAVE BEEN JUST RETRIEVED
SUE PLETI
IC CBRDA,CBRBA
LB R9,CBLDUD&
RYC BCDFLGS*NODEAREANCDFLGS(R1) SAVE FLAG
L R3,TWXNb (31) AND TWIN POINTER
LI 21O.STKTOP
SI RIO,-AL2 (3*L'STACK)
DNS DLET03

ZN 310 PARENT NOT IN STACK
DLZTO1 L 2O,TVIU(RI) VALK TWIN CHAIN TO FIND IT

TN RCDFLGS (31) PARENT
DO DLET02 FOUND IT
LPAGE (30)
a DLETO1

-128-

DLET02 ST 30,STACK (310)

DLET03 LPAGE STACK (110) STARTING AT PARENT OF mXf
ST R2,STALCK11(RIO) (ENSURE PENTOS TWIN IN STACK)
LA 3hII,COORDS&(R7,31) LOOK FOR PREDECESSOR
Ex 38,MVQLR RTC QSTRL (0),0 (R14)
NYC QSTRH(TWII&eL9TWIN&),0(R1) SAVE 0, TWIN PT!,
CL. 36,0(39,31) FLG
BUE DLETTWIN

DLETCHLD MPAGE STACK (310) PARENT WAS PREDECESSOR; MARK
ST R3,0(99.31) SUCCESSOR IS NOW FIRST CHILD
LPAGE (33)
LTD 32.32
oz LONETWIN WHOOPS; LONE REMAINING CHILD

ST R3,STACK4L9STACK1l0) DELETED RECORD WAS
ZR D0 FIRST OF ONLY TVO CHILDREN- LEAVE
ST R0,STACK4L9STACK(R10) STACK W/ SUCCESSOR AS
LA B15,2*LSTACK(BIO) FIRST (UNRETRIVED) CHILD
STI R15,STKTOP OF PARENT OF "X"
B RTN

DLETTWIN L 30.0(39.31) PARENT NOT IMMEDIATE PREDECESSOR
LR 311,30 REMEMBER FIRST CHILD

DLETT1 LPAGE (30) WALK TWIN CHAIN
CL! 32,36
BE DLETT2
LTD 30,32
BIZ DLETTI

DLETNVR ABEND 95,DUNP,STEP

DLBTT2 ST 30,STACK.LOSTACR(R1O) SAVE IN LEFT SIDE OF
SPAGE (30) STACK
ST B3,TVINI (31)
TN RCDFLGS4NODEA3EAPARENT WAS -X ON END OF
330 DLETT3 CHAIN?
OX 3CDFLGS (31),PARENT
ZR R3
CL! 311,30 IS PREDECESSOR FIRST CHILD?
BE LONRCHLD YES

DLETT3 ST R3,STACK*LfSTACK4(310) LEAVE STACK V/
Z! DO PREDECESSOR IN PLACE OF *X, BUT SHOW
ST 20,STICK42*LOSTACK(RI0) NO CHILD AS CHILD OF
ST 3O,STACK*2*L6STACK*4l(0) PRED(Z) HAS BEEN
LA R15,3*LOSTACK(310) PRESENTED EARLIER.
STH R15,STKTOP
B iTS

-129-

* RECORD DELETED WAS ONE OF ONLY TWO
LONTWIN NPAGE (R3) ON CHAIN

ZR R4I PREDECESSOR IS PARENT

LONECHLD NI RCDFLGS (Rl) ,XOFF-PARENT REPLACE
NYC TWIll (L9TWINI,R1) ,TWIN&+QSTEH TWIN POINTER,
NX RCDFLGS+QSTRH ,PARENT
OC RCDFLGS (L'RCDPLGSRl) ,RCDPLGS.QSTRH ITS FLAG,
LA R14,COORDS&(R7,Rl) AND Q STRING
EX R8,RVQRL RTC O(0,R1I),QSTRL
L R5,STICK (R10) RBA OF PARENT TO BE REPLACED
Ike R1O,AIL2 (-L "STACK)
ByNl LONE03

ZR RI0
LOVE01 L RO,TVINI (Rl)

TH RCDPLGS (R 1) ,PARENT
PO LONE02
LPAGE (RO)
B LONEOl

LONE02 ST RO, STACK (RIO)

LONE03 L RO,STICK (110)
LPAGE (R0)
ST R2,STACK*'I(R1O) ENSURE PARENT'S TWIN IN STACK
CL R5.0(R9,91)
BE LONEIG REPLACED PARENT FIRST ON CHAIN
L 90,0(39,91)
LA R9,TVINI

LONE05 LPAGE (10) REPLACED PARENT IS ALONG TWIN CHAIN
CLE 95,R2
BE LONElO
LTR 90,R2
BNZ LOUE05
a DLETNYR

LOUE1O ST Rl,STACK+L$STACK(RI0) STORE PREDECESSOR IN
LTD 951,94 S TACK
BUZ LONill
ST 13,STACK*L*STACK*4(RI0) PRED(Z) IS A PARENT
LA R15,2*LGSTACK(RlO) SUCCESSOR IS NON-NULL

LB 1,13
B LOVE12

LONEIl ST R3,STACK*2*LOSTACK(RI0) PRED(X) IS NON-NULL
ST R3,STACK*2*LOSTACK*1(RI0) SUCC IS NULL
LA R15,3*L9STACK (310)

LOVE12 STH R15,STKTOP
MPAGE (RO)
ST 34,0(99,31) STORE AS CHILD OR TWIN
a 9?!

-130-

TITLE ' PROGRAM TO HINDLE N-DIMENSIONAL INDEX*
BODE DEPENDENT *SET* FUNCTIONS&

LTORG

PUSH PRINT
PRINT GEN

SETFUNC F

SETFUNC Hf

SETFUIC E

SETFUIC D

POP PRINT

TITLE PROGRAM TO HANDLE N-DIMENSIONAL INDEX
INITIALIZATION SECTION'

USING IOFCB,B9
NOFCD CLC CBFUIC,=C9CLSE9 DID NOT FIND

BE UTN
CLC CBFUNC,=CIOPEN9
BE NEWFCB
CLC CBFUNC,=CvLOAD$
BYE NOTG INVALID FUNCTION CODE
LH R2,CB*IS
CH 92,=AL2 (8*LOQSTBL)
BIH CHKKODE
NYC CBSTATUS,-COAI'
B ITN

-131-

CENNSODE CLI CBNODZC*D§
BL BODEERR ERROR
CLI CBHODZ,C9H*
Ba MODEERR ERROR
CLI CBNODEUCOGO
BYE NEWFC8

MODEERR NYC CBSTATUS,=C9AMv
9 ETY

NEIPCB LU B7,SPFCBLNG*2
GETNAIN RULV-(!7) BNDRY-PAGE,SP=SUBPOOL8
LB R6,Rl
LA R14,CBDDYANE
LA R1!5,LICBDDNAME
MYCL 26,14
ST R1,IEITFCB-FCBAREA (R8)
ST R1,PREVFCB
ST R12,NEXTFCB-FCBAREA (11)
LR 112,Rl
ST R8,PREVFICB
GENCB BLKAICB,DDNANE=(*,CBDDNAME) ,EXLST=XTLST,

LENGTH=LNACBAR,VAREA=(S,IFGACB), GEN AN ACB
NIAREA=(S,RPLNSG) ,MLEN=L'RPLINSG, FOR FILE
NIACRF=(CUV,DIR,ICI,IU.OUT.UBF)

CLC CBFUNC,-C9OPEN*
BE OPENINIT
NIlV HISCFLGS,ISRTONLY4FRSTISRT
NYvC FLRODE,CBBODE
STS R2,FL#COOR
ZR B3
IC R3,CBNODE
SLL R3,3 MODE CHARACTER * 8
LH R4,NODETBL-8*C'DB*6 (13) INFINITE DELTA/FLAGS
STH R1,DELTA3*NODEAREA FOR MASTER RECORD
LU R1,ODTBL-8*C'DI*4(R3) LENGTH OF COORDINATE
MR R4,FL#COOR
STH R4,FLLCV LENGTH OF COORDINATE VECTOR
BCTR 32,0 FLOOR((#1*7)/S) - I
SRL R2,3 - FLOOR((#X-1)/8)
STH R2,QSTRLN1 LENGTH OF Q BIT STRING MNUS 1
LA R5,LlDELTA3.L$TIIINa.1 (34,12)
STH RS,CHLDUD& DISPLACEMENT TO CHILD VUSER DATA
LA R5,11(15)
CH 15,=AL2 (LONODEAREA)
BUS STLNOD

AZEIR NYC CBSTATtS,COAXI
B CLSE3

-132-

STLNOD STE R5.FLLNOD FINAL NODE LENGTH
LA R5,L 8FILECNTL (R5)
ST R5,HIUSDRBA
1C XTUDSAVE.XTNDSAVE
LA R8,CARTINIT
BAL l1O,OPNINIT
CLC HIUSDRDA,LBCL
DR AlEN LRECL TOO SMALL

LN 2,R6,CISIZE
LUR R6,26
BNZ CLSINIT
ECTN 15,0 EMPTY DATA SET; PREPORMAT CIOS.
L R2,PRIORT
HODCD RPL=P1PL,ANEALEN=(*,CISIZE),

1ECLIN=(%'LNICL) eAREA=(*,PR(12))

INITLOOP PUT 2PL-PRPL
DXLI R6,R4,INITLOOP

CLSINIT CLOSE CARTINIT NOV DOWN TO WORK WITH REAL ACB
LA R8,IFGACB
HAL R6,MODOPN
L R3,HASTERPG
SPAGE (R3) INITIALIZE MASTER PAGE
LB R4,Bl
SR R4,23
L 15,LRECL
LA R14,PILECNTL
L 215,ffIUsDRBA
MVCL 24,214
B PININIT

MODITBL DC A(SETDON),H'OS',XL2l7P839 D
DC A(SETEOM) ,Hf04,XL2v7F83' .E
DC A(SETFOMf),H004l,XL2G9P03& F
DC 2F'O0
DC A (SETHOM) H9021,XL2*8P030 H

-133-

* OPEN IN EXISTING FILE
OPENINIT LA 38.IFGACB

S&L 21OOPNINIT
L. R3,RASTERPG
LPAGE (33)
Li 34,31
SR 311,R3
Nyc FILECNTLO(11) BRING IN FILE CONTROL INFO
NYC CDNODEFLNODE RETURN BODE
SVC CB#XSFL#COOR # COORDS

FININIT NYC SENDPADCBPAD SAVE USER AREA PAD CHARACTER
ST 33,STACK-LBSTACK MASTER PAGE RBA IN PERM STK
RTC STACK-L'STACK.4(L'TN&) ,TVINa (RI)
BAL R15,PUSHCH
Za 115
IC 315 .FLNODE
SLL 215,3
LA R33B910000000* PRESET REGS FOR -SET* FUNCTION
ZR R41 INDEX
LA R5,QSTRL A(Q STRING)
LH B6,NODETBL-8.COD.11(R15) INDEX STEP
LB R7.FLLCV
ECTN R7,0 INDEX LIMIT
L RS,HODETDL-8*C9Dm (315) A(NODE SPECIFIC CODE)
STE R3.8,STFREGS
LA 2NODZAREA AI(NODEARA)
LB 23,FLLNOD L9NODE
L 311,RCDADD A(CURRENT RECORD)
LB R5,CHLDUDA LINODE V/O CHLD PTR OR USER DATA
STE 32,35 ,NVNODCS PRESET VALUES FOR NVCL INSTUS
B UTI

NODOPI NODCB ACB=(38),DDNAHE-(*,CBDDNAME)
OPEN ((38))
LTR R15,315
BZR R6

SHOVCS ACB (38),.AREA= (S,CBBBA) ,LENGTH1, FIELDS-ERRORI NYC CBSTATUSinC9AI9
B, CLSE3

-134-

OPIINIT SAL 26,MODOPN
SHOUCS ACB (38) ,AREA (S,CISIZE) ,LENGTH 12,

PIELDS=(CINT,AVSPAC,EUDRBA)
L R6,CISIZ1
DCTR R6,0
STH 16,DSPMSK RBA DISPLACEMENT MASK
L 314 ,EIDLABEL
ZR 214,36
ST R14,CIMSK 19S COMPLEMENT OF DSPMSK
SH 26,=HI6
ST R6,LRECL
LB R0,CB#BUPRS LOAD * BUFFER PAGES BEING REQ.
1C CB#GETS (LICB#GETS.L'CBS PUTS) ICB#GETS
CHi RO,*41O
SIR 0#8
LA R0,NAX#BFRS
MB R0,CISIZE.2
ST R0,PBNTDEL*I MAXIMUM AMOUNT OF CORE REQ.
LA R0,HINIBPRS
no RO,CISIZX+2
ST 2O,PRNTDEL MINIMUM AMOUNT OF CORE REQ.
LA RS,PRNTDEL
LA R3,BUFRa
GETMAIN VULA(35) ,A=(R3) ,BDRY-PAGE,SP=SUBPOOL8

L R1,B0731
L R14,CISIZE
L Rl5,LNGBUF
VI #SUBPOOLSUBPOOL#

SR 315,314
AR 315,31
LA 33,DXREC&
ST R3,P3IPRT
L RO,ENDLABEL LOAD A MINUS 1

SETFIM LBl 24,33 INITIALIZE PAGING DIRECTORY
LA 12,0(36,R1) (Ell) * (LRECL)
LA R33L§DIRECTRT (34)
STS R0,R3,RBA (R4)
BILE R1,R14,SETFRR
IC PID(5I.34),FWD(R4) CLEAR LAST LINK
ST 31.735 (33) STORE IN XTRAFEM FOR PG3LSE
GENCI DLK-HPL.ACB=(S,IFGACB), GENERATE Al RPL

LENGTH-LNRPLARVA3EA-(SIFGRPL),
RSGAREA-(SRPLMSG) ,MSGLEI-LSRPLNSG,
A3EALENa(*,CISIZE),
OPTCD-(CNVDIR.SYN,NUP)

B3 310

CLSE NYC CBlBA,HIUSDRDA
TN HISCFLGSFILEZTND
810 CLSEO
NPAGB NASTERPG

S R1.NASTERPG
NYC HIUSDRBA-PILZCNTL(L'HIUSDRDA,R1) DHIUSDRBA

CLSEo LA ltI,IFGBPL
L 129 PRIONT

CLSE1 TH FLGS(12),XgrOt
BZ CLS22
HODCB RPL-(R4I).REA-('9 FRN (12)),ARG=(S,RBA (12))
9I FLGS (R2) , X OF
PUT NPL-(RI) WRITE OUT ANY HARKED CIIS

CLSE2 L R2,PWD (R2)
LTR R2,R2
fEZ CLSN1

LA 2R,IFGACB
CLOSE ((lii))

CLS33 L RO,LNGBJF
LTR 0,90
BZ CLSEI4
L RI.BUFR&
FREEMAIN RA-(1) LV=(0)

CLZ4 LM Rh1,15,PREYPCM
ST 111 PREVPCB-PCBAREA (1 15)
ST R 15, NEXTFCB -PCBDAREA (1 14)
L R0,SPPCELNG
FREENAIN R,&-(R12),.LV-(0)

CARTINIT ACE INACUP=(AiD,SEQNCI,OUTNUB) 9EILST=XTLST
PRPL RPIr. ACD2CARTINITOPTCD= (ADRSEQUPDVE),

ARG=XTNDSAVE

SUBPOOLI EQO 17 SUB POOL NUMBER
SPFCBLNG DC ALl (SUBPOOLS) .AL3 (PCBLNG)

LTORG
END

-136-

APPENDIX B

Subroutine VECTOR

VECTOR is a subroutine written as an implementation of
the Schrieter-Thomas method to compute the great elliptic
distance and normal section azimuth between two sets of
geodetic coordinates on a selected spheroid. The method was
obtained from ACIC Technical Report Number 80, OGeodetic
Distance and Azimuth Computations for Lines over 500 Miles.0
The following comments were extracted from that report
concerning *Types of Positigng".

If the results of a distance and azimuth compu-
tation are to have any meaning, the terminal points
used as basic data must be geodetically related, i.e..
the end points must be derived from field measurements
originating from a fixed point and computed along a
common surface (ellipsoid). The starting point is
usually defined in terms of latitude and longitude,
either astronomical or geodetic, and the ellipsoid by
the parameters a and b. If the initial point is fixed
astronomically, the surfaces have what is known as an
astro-orientation. Geometrically, this means that the
geoid and ellipsoid surface coincide at that point and
the fixed starting position is common to both surfaces.
To the geodisist it means that the normal to the ellip-
soid coincides with the local vertical at that point
and the components of the deflection of the vertical
are zero. The astro-geodetic orientation differs from
the preceding in that it compensates for the surface
departure by correcting the angles between the geomet-
rical normals and the true local verticals.

Positions on the earth's surface defined with
respect to such initial quantities form a geodetic
system or datum. Those derived from different datums
are unrelated and consequently are unusable for inverse
computations. The results would be in error and the
magnitude of the error would correspond to the effect
of the differences in the intial quantities of their
datum. Certainly, accurate distance and azimuth cannot

-137-

be expected if the terminal points of the line are
referred to different origins and possibly computed
along different surfaces of unequal size.

Generally, the positions available for an inverse
computation are of three types:

a. Geodetic positions such as described above.
b. Astronomic positions, latitude and longitude of

which have been derived instrumentally by direct
observations of celestial bodies.

c. Mlap positions obtained from cartographic
sources.

Type a. are the most accurate although one very
seldom finds two points as widely separated as 6000 7
miles referred to the save datum. The second type, b.,
astronomic points, refer to positions on the geoid and
should not be used since the geoid is not a geometrical
surface. To use these for computational purposes is to
assume that the two surfaces are coincident and the
definition of each point identical on both surfaces.
This assumption could easily result in distance errors
as large as two kilometers which are as likely to occur
on 500 mile lines as for the 6000 mile lines.

Mlap positions are adequate as basic data for such
computations if they have been taken from large scale
maps (1:50,000 or greater) of geodetic accuracy. It is
difficult to say precisely what effect such points
would have on the accuracy of the final results for the
length and azimuth of the line. However, assuming the
terminal points to be charged with a 25 meter error,
the corresponding errors are approximately one second
in azimuth and a maximum of fifty meters in distance.

The following derivation has been extracted from the
kCIC report, rearranged and expanded to better relate to the
actual subroutine. Symbols in capital letters are actual
labels of variables as they appear in VECTOR for the most
part.

Pa1l = initial latitude

PH12 = terminal latitude

LAMDIl = X, initial longitude

LAKDLZ = %2 terminal longitude

DELAND -AX X,, - Ni

-138-

(Note: The report shovs X, - X2 , but the sign convention
there is positive west; VECTdOB uses positive east.)

SINDL = sin (AX)

SIN2DL - sin2 ()

COSDL = cos(AX)

TANBI = tan(a 1) = (b/a)otan(I,)

TAN82 = tan(6 2) = (b/a)etan(z)

where a is the semi-malor ellipsoid axis
b is the semi-minor ellipsoid axis

and f = (a-b)/a is defined as the flattening
(Note that many ellipsoids are defined in terms of

a and 1/f.)

Then b/a = (a-a~b)/a = a/a - (a-b)/a 1 - f.

Q = tan(1)/tan(2)

QINV =I/Q= n()]an)

P (b2/af)ltan(1)otan(2)

- (b/a) *tan (4,))"((b/a)*tan(¢2))

- tan(a 1).tan (e 2)

D, = Q - cos(AX)

D2 Q1UV - cos(AX)

S Qo(D 2
z + sinz(AX)) = (1/)-(D 1 ' + sin2(AX))

= (1/0)-[IQ - cos(AM)2 + sin2 (A X)]

= (1/Q) e(Q - 2eQcos(AX) # cos2(AX) * sinz(A\))

- (1/Q)o(Q2 - 2esQcos(AXj * 1)

- Q - cos(AX) 1/Q - cos(AX)

= D . D2

PS W p*s

-139-

(Hold in floating point register F6 the value

J9 (2&DjoD 2)/(P~cos(AX))]

cot(Aoy) = P~cos(AX))/jfPS+sinz(tX)

COT25G - cotz(ACy) =(P~cos(AX)jz/(PS~sin 2 (LX)]

(then HO .eQlQ 2 /lct(aJ

given 1/n = (2 + 1/no)* (PS.5inz(AX))/PS -2

no (a-b)/(a~b)

1/ho =(a~b)/(a-b)

= (a~b + a-b)/(a-b) - I

=2-a/(a-b) - 1

=2/f - 1 = ELLIP

1/n = (2+ELLI)otPS~sin2(AX))/PS - 2

= [(24*ELLIP)o(PS+sin2(AX)) VPS - 2*PS/PS

= ((24ELLIP)ojPS+sin 2 (AX)) - 2oPS]/PS

n = PS4 2. (Ps*sin2(Ax)) + ELLIP. (PS~sin-?(AX)) -2&PS I

=PS/(ELLIPo[PS~sn2(AX)J + 2*sin- (AX)]

I = 1 - n + (5/L)onv

= (5/4I)on 1) ion + I

COThW = cot(Aw~) =cot(Aa) (T - 29J - (3/2)*H)

=cot(Lc)e[I - (u/S)o(2oDj0D2)/(P*cos(LX))

- (n/S) 2o(1.5o (Q-1/0) 2)/.cot (Aa)J

=cot(Acy)*1l - (n/S)-.]' - (n/S)2*H9)

= /ctaAa.(-(nS).fJ' * (nS)OHJ]

Aw cot-' (COTDW)

DSTUCE(in meters) Ioa*Aw

-140-

In all of the calculations, AN is to be the polar
angle < iT (1800). But since cos(2 t - a) - *cos(a) and
distance calculations used only sinz(AI,, where
sin(2r - a) = -sin(a), the direction of AX has made no
difference so far. however, azimuth calculations need the
proper sign on sin(AX). Note first that if AN is zero, the
heading is to be determined by comparing the magnitude of
initial and terminal latitudes. If t Z t, azm - 00, else
azo= 180.00. If AX is not zero, but sin(A) is zero, i.e.,
AN = T, aza = 0.00.

It turns out that no adjustment need be made to the
sign of sin(AX). First consider the line on the surface of
the earth that is being measured. Since AX = NZ - \, and a
positive east convention has been assumed, AX > 7 only when
the line being measured crosses the international date line.
Here AN > 7 would indicate using the identity
sin (2n - a) = -sin(a), since the polar angle of interest is
27 - AX. However, due to crossing the date line, the sign
of this angle is wrong according to a positive east
convention. Thus the desired angle is actually -(2- - AX)
or AX - 27, but the -27 may be dropped. Therefore, we end
up with sin(AX) again and no further adjustments need be
made to calculate the azimuth as:

cos (1)o * tan (a 2) -tan (a 1) ecos (A)) e _0-e co s •
Rv!

cot(E 1 2) =
sin (AX)

where E 1 2 is the elliptic arc forward azimuth (heading)

and ez is the major eccentricity squared

ESQD = e z = (a2 - b2)/a2

Cos(W 0 = Cos Z(i

cos2 (al) = 1/secz(B1) = 1/(1+tan2 (81)J

1 - e 2 cosz(,) 1 - eJ/[14tan2(B1))

=(1 tant (1 1) -e')/(1,tan (1))

cos($ 1) V1-e2co s z (8 1)' = Jsec2 (a,) -ev) /sect(%)

/(tan (i2)-tan (B1). cos (AN)] IosecP (e 1)-eZ

sin (A x)sect (s 1)

The arccot function returns an angle between -T and .
if E 1 2 < 0, add 2n to give a heading between 00 and 3600.

4-

-141-

When the coordinates are expressed in degrees, minutes
and seconds, linkage in a calling program is made by:

CALL VECTOR (alatdalatm,alats,alond,alonmalons,alonev,
blatd,blats,blatsblond,blonm,blons,blonev,
dstnce,[head,]i)

where:

alatd, alats, alats - latitude of the initial point in
degrees, minutes, seconds (4-byte
arguments)

alond, alonm, alons - longitude of the initial point in
degrees, minutes, seconds (4-byte
arguments)

alonew - hemisphere of the initial longitude point;
'V is west. (1-character argument)

blatd, etc. - latitude, longitude and hemisphere of the
terminal point

dstnce - the computed distance between point 9a8 and
point 'b' (single or double precision real/
comp-1 or comp-2 (see i below))

head - the forward azimuth measured clockwise from
north. If head is omitted or is initialized
to a value of 999.0, the azimuth computation
is suppressed. (single or double precision
real/comp-I or comp-2 (see i below))

i - the unit of measure that dstnce and head are to be
computed in; i is defined as a four byte argument,
but is actually interpreted as two halfwords, i'
and i" with compatibility to a fullword integer.
If the lower (bytes 3 and 4) halfword, i" < 0,
then dstnce is returned as a double precision real
(comp-2) value, otherwise as a single precision
(cop-1) value. The units are based on the abso-
lute value where:

|iul = 1 returns nautical miles,
2 feet,
3 statute miles,
4 kilometers,
else meters.

'p,

-142-

If the upper (bytes 1 and 2) halfword, i < 0.
then head is returned as double precision real
(coup-2), otherwise as a single precision value.
The units returned are specified by the absolute
value where:

ji't = 0 or 1 returns degrees,
2 minutes,
3 seconds,
else radians.

If coordinates are expressed as degrees, minutes and
seconds and are grouped in a 16 word array of 4-byte argu-
ments arranged as:

array (01) alatd
(02) alats
(03) alats
(04) alatns
(05) alond
(06) alon.
(07) alons
(08) alonew
(09) blatd
(10) blat.
(11) blats
(12) blatns
(13) blond
(14) blonm
(15) blons
(16) blonew

then use the calling sequence:

CALL VECTOR (array,dstnce,[head,]i)

Words 4, 8, 12 and 16 of the array are A4 (Hollerith) or
PIC X(4) character data with blank fill.

-143-

when the coordinates are expressed in radians or
composite arc seconds, the linkage is:

CALL VECTOR (alat,alon,alonev,blat,blon,blonew,
dstnce,[head.]i)

where alonew, blonew, dstnce, head and i are as described
above and alat, alon, blat and blon are the latitude and
longitude of the initial and terminal points in units of:

1) radians if in floating point
2) arc seconds if in binary integer.

A variant of this call is:

CALL VECTOR (alatalon, blat,blon,
dstnce,(head,]i)

where longitude hemisphere indicators are omitted and the
latitude and longitude are signed values with north and east
as positive.

Known Limitations
Accuracy has been tested only to 6000 statute miles.

Due to the ratios of tangents that are calculated, points
that are exactly on the equator (00) and mathematically
"close" to the poles (±900) will cause an abort due to a
divide by zero check. However a latitude close to the
equator may be specified as approximately in the range of
10- 2o arc seconds to prevent the divide by zero condition.

Remarks
The arguments listed as "4-byte arguments" may be

either single precision real/comp-1 or signed binary full-
word integer/camp. There is one exception: if the latitude
and longitude are being supplied as arc radians, and the
distance is being requested in double precision, then the
latitude and longitude are also assumed to be double
precision values. The results are always returned as
floating point values, either single precision/comp-1 or
double precision/comp-2 as requested by the signs of iP
and i".

The alias RADVEC may be used in place of VECTOR in any
of the calls described.

I I II[i iii

-144-

APPENDIX C

VECTOR SOURCE

VECTOR TITLE **•• SUBROUTINE(S) VECTOR/RADVEC ,**'
* AUTHOR: RAJ. S. V. PETERSEN, HQ SAC/ADINSD; EXT. 3952
* DATE WRITTEN: 1 NOV 76

* REFERENCE: ACIC TECHNICAL REPORT NUMBER 80,
* "GEODETIC DISTANCES AND AZIMUTH COMPUTATIONS
*FOR LINES OVER 500 MILES"

* DISTANCES ARE CALCULATED AS A GREAT ELLIPTIC, USING THE
* SCHREITER-THOMAS METHOD AS DESCRIBED IN APPENDIX I OF THE
* REPORT. SORE OF THE COMPUTATIONS HAVE BEEN MANIPULATED
* INTO A DIFFERENT FORM TO FACILITATE PROCESSING.
* SOME ERRORS ALSO APPEAR IN THE WRITE-UP, WHICH HOPEFULLY
* HAVE BEEN CORRECTED.

* IF THIS ROUTINE IS ASSEMBLED WITH AN ASSEMBLER THAT ALLOWS
* THE OSYSPARM" OPTION, THE SPHEROID USED FOR A BASE OF
* CALCULATION MAY BE CHANGED AT ASSEMBLY TIME. ENTER THE
* NAME OF THE DESIRED SPHEROID AS THE SYSPARM VALUE AS:
* SYSPARH (AIR!)
, SYSPARE (A.M.S.)
* SYSPARM (BESSEL)
* SYSPARM(CLARK 1866)
* SYSPARM (CLARK 1880)
* SYSPARM (INTERNATIONAL)
* SYSPARH(HATFORD) SAME AS INTERNATIONAL
,e SYSPARM (KRASSOVSKY)
* THE DEFAULT SPHEROID IS THE CLARK 1866 DATUM.

Ht l I

GELD SIBN360 SET TO 1 FOR USE 0N 360
SIB8360 SETB 0

GELBS AIRYCAHS,&BESSEL,&CLK1866,&CLK1880,&HAYFORD
GBLD SKRSYSKY
Air (SIBM360) .IREC3k NO SSISPARM 0N 360

.IRECO Al? ('SSPARH' NE 'AIRYf).IREC1
&AIRY SETS 1

AGO .IREC99
.IRIC1 Air ('&SYSPARMS BE 'A.M.S.0).IREC2
SAMS SETB I

AGO .1BEC99
.IREC2 Ar ('&SYSPARN' ME 'BESSEL').IREC3
SEESSEL SETB 1

AGO .IREC99
.IREC3 Alp ('S!SPARNO NE 'CLARK 1866') .IREC4
.IREC3A ANOP CLARKI1866 IS THE DEFAULT DATUM
SCLK1866 SITE 1

AGO ..11EC99
.IREC4 Alp ('&SYSPARM' NE 'CLARK 1880') .IREC5
&CLK 1880 SETB 1

AGO .IREC99
.IRECS Alp ('SSISPARR' EQ 'INTERNATIONAL') .IREC5A

Ai? (§&SYSPARI' NE 'BAIFORD') .IREC6
.IREC5A ANOP
&HAYFORD SETB 1

AGO .1BEC99
.IREC6 Air ('&SYSPARH' NE 'KRASSOVSKY') .IREC3A
&KRSVSKY SITE 1
.IREC99 ANOP

PUNCH 'ALIAS RADVEC'

-1146-

VECTOR CSECT
USING *,115
B PASTCONS
DC ALl (LIVCTID)

VCTID DC CIVECTOR/EADVEC@
Alp (51DM 360) .SKDT
DC C' .SSYSDATZ-..&SYSTINEG

SKDT hNOP
RADVEC ZQO VECTOR

ENTRY RADVEC

SAVEAREA. DC 9D0f

UNIT DC D91852.9 METERS/NAUTICAL MILE
DC DI0.3048 METERS/FOOT
DC D91609.3449 METERS/STATUTE MILE
DC D61000.9 METERS/KILOMETER

NUNITS IOU (*-UNIT)/8

pi DC D§3.11415926535897932384626439
TWOPI DC D16.2831853071795864769252869
RADDEG DC D*57.2957?9513082320876798169 DEGREES/RADIAN

DC D*31437.7 5 67707849392526078900 MINUTES/RADIAN
DC D9206264..8062437096355156147349 SECONDS/RADIAN

NAUS EQU (*-BADDEG)/8

UNZ11 DC IL8'4E00000000000000
DL140VPI DC XL8141145P306DC9C8836 '4/PI

70 EQO 0
72 EQO 2
P14 OD 14
P6 EQo 6

RO EQO 0

B2 RQU 2
33 EQU 3
B14 EQO 14

39 RQO 9

R12 EQO 12
213 100 13
1114 100 14
R15 IOU 15

I17

CONS? DC D9h.848136811095359936E-69
DC D160.01
DC D*60.O'

ACTC1 DC XL89BF1131FF1784B9656
kCTC2 DC XL8sCOACDB34COD1B35Dl
ACTC3 DC XL8'1412B7CE45A?5C1656
ACTCII DC XL8fC1118?923Bl78C789
ACTC5 DC XL8941213#PD5D433P769
ACTC6 DC XLB'C02298BB68C7D8690
ACTC7 DC XL8114115'1CRESB70CA999
ONE DC D10
kCTC9 DC XL8'1111BB67kE85811CABO SQRT (3)
ACTDI DC D9O.0O

DC XL8sC0860k9lC16B9B2Cs -.523598841
PIOV2 DC XL8941192118B54442DI89 P1/2

DC XL8"4 110C152382D73659
ICTCE DC XL4 90E000000 1
ACTCP2 DC XL4820000000
ACTC31 DC XL4'3&i!0OOOO
ICTC40 DC XL49'404498519

SCA DC XL813778FCEOE5AD1685' SIN
DC XL89B66C99228'4B6A1379 Cos

SCB DC XL8'B978CO1C6BEF8CB39 sIy
DC XL89387E7310'450175949 Cos

SCC DC XL803B410B684B527' SIN
DC XL89B69B1731311AEF69 Cos

SCD DC XLSOBD265AS99C5CB6329 SIN
DC XL8'3C3C3E10D06ABC299 Cos

SCE DC XL893EA335233BAC373DO SIN
DC XL8fBB155D3C7E3C90F8f Cos

SC? DC XL89CO14ABBCE625BE412 SIN
DC XL8f3F4O?07C206D6ABl@ Cos

SCG DC XL8'140C90FDA&22168C2§ PI/l SIN
DC XL8DC4E'4?326F91777' Cos

PIOV4l 1Q1 SCG
ZERO 1Q13 ACTDI

TCTA DC XL86C'41926DB3817'469D'
TCTB DC IL8'14532644B81E45AI339
TCTC DC lL89C5B0F82C87l13B680
TCTD DC 1L89C58APDD01Q1992D49
TCTE DC 1L8@44hA??63931592260
TCTF DC XLSBC325FD'4187357CAP7
TCTG DC XL81422376F171F722826

-1148-

• REFERENCE ELLIPSOID CONSTANTS

* 1 = SERI-HkJOR kXIS (METERS)
* P = FLATTENING - (A-B)/A

SPINT " 1/P
* ESQD HAJOR-ECCENTRICITY SQUARED
*at (A**2 - B**2)/A**2
• BOVRA SERI-RINOR/SEBI-A3OR 1 -F

* NO (A-B)/(A+D)
,8 ELLIP = 1/0 - 2*?INV - 1

* A 1/P B P
* E**2
.REC1 AlF (NOT SCLK1866).REC2
.RECDP ANOP
* CLARK 1866
* 6378206.4000 294.978698 6356583.8000 .00339007530393
0 .00676865799729

A. DC D16378206.406
ESQD DC D6.006768657997290
BOYRA DC D9O0996609924696079
ELLIP DC D1588.9573969

AGO .REC99
.REC2 Alp (NOT &HAYFORD).REC3
* INTERNATIONAL (HAYFORD)
* 6378388.0000 297.000000 6356911.9461 .00336700336700
• .00672267002233

A DC D96378388.000
ESQD DC D'0.00672267002233'
BOIRA DC DO.9966329966329966320
ELLIP DC D9593.09

IGO .REC99
.REC3 AZ (NOT &KRSVSKY).REC4
• KRASSOVSKI
• 6378245.0000 298.300000 6356863.0188 .00335232986926
• .00669342162297

A DC D963782405.09
ZSQD DC D90.00669342162297 ,

BOYRA DC D00.996647670130740
ELLIP DC D9595.69

AGO .REC99

-149-

.RBC4 kIp (NOT SCLK1880).REC5
* CLARK 1880
* 6378249.1450 293.465000 6356514.8695 .00340756137870
* .00680351128285

A DC D*6378249.14501
ESQD DC DO.00680351128285'
BOTVA DC D'O.99659243862138
ELLIP DC D9585.9309

AGO .REC99
.REC5 AiF (NOT &AIRY) .RC6

*AIRY
* 6376542.0000 299.300000 6355237.1487 .00334112930170
• .00667109545840

A DC D@6376542.00'
ESQD DC D9.006671095458409
BOVR1 DC DBO.9966588706983'
ELLIP DC D9597.601

AGO .BEC99
.REC6 Air (NOT SArS).REC7
* I.R.S.
* 6378270.0000 297.000000 6356794.3434 .00336700336700
• .00672267002233

A DC D'6378270.009
ESQD DC DO0.006722670022339
BOYRA DC D90.9966329966329966329
ELLIP DC D9593.09

AGO .BEC99
.REC7 Air (NOT fBESSEL).RECDP
* BESSEL
* 6377397.1550 299.152813 6356078.9628 .00334277318503
• .00667437223749

A DC D"6377397.15509
ESQD DC DI.00667437223749'
BOVYR DC D'0.996657226814979
ELLIP DC D8597.3056250

.BEC99 ANOP

I

-ISO-

UKAUZA DC D906

COO1DS DS OD
LAMDA2 DC D909 LONGITUDE TERMINAL POINT
P512 DC D9G9 LATITUDE TERMINAL POINT
LANDAI DC D901 LONGITUDE INITIAL POINT
Pell DC D906 LATITUDE INITIAL POINT

SIUDL DC D902 SIN (DELAND)
SIN2DL DC DI0' SIN**2 (DELAND)
COSDL DC D00 COS(DELAND)
TANDI DC D9O TAN(BETA1) -(B/A)*TAN(PHIt)
TANB2 DC D609 TAN (BETA2)
S Dc D906 DI + D2
PS DC D906 P*S
DELAND EQO LANDAI LANDA2 - LANDAl
COT2SG EQU LAMDA2 COT*2(DELTASIGMA)
TB2 EQO COT2SG TEMP STORE
COTDV EQU COT2SG COT (DELTA-OMEGA)
TIRPHi EQU LAMDA2 TAN (PHIl)
DI EQU LAMDA2 Q - COSDL
SWITCH EQU S
I RQU PS I - N + 1.25*N**2
l1f1 EQU S I - 2*3 1.5*R

TEMP2 DC D909
PCOSDL DC F'0'w P.COS(DELAMD) (NEED THE SIGN)
SCQ EQO PCOSDL+3

MUMS DC XLI4135400000OS
C24118 DC F2,8

PASTCONS STH R14, R12, 12 (R13)

LA R13,SAVEAREA
DROP 315
USING SAVEAREAR13
ST 32,51(313)
ST R13,8(22)
"VI SVITCHIPO
LA 34,RS,C24138
LA R6,STORAD
LB 32,31 COUNT THE NUMBER 07 PARMS
LA 3141,4 PASSED
LA 315, (17-1) *41-8 (Rl)

CNTPRHS TH 8(32),X9809 ABSOLUTE MINIMUM IS THREE
so EOFLST
BILE R2,21'4,CUTP3RS
B IRNGNBB

EoFLST LI RIO, R12,0 (32) A(DSTNCE,HEAD(?) .IUlIIT)
SR 32,R1
SEL 32,2
IC R151,BTDL(32)
B VRNGNBR(B141)

ARGS -3, 4, 5, 6, 7, 8, 9,
BTBL DC ALl (NOHEAD&,ARG43,O,NOHEAD3,kRG73,NOHEADh,ARG9I)

DC ALl (0,0,0,0,0,0,NOHEADI,A3G17&,O)
*10 ---- 15, 16, 17

VENGNDE DC 1OD2EO%,HG320 THIS INVALID OPCODE TERMINATES
DC CL320WRONG NUMBER OF ARGUMENTS PASSED'
B RTN

NOHEAD LB 310,111 OPTIONAL AZIMUTH PARAMETER MISSING
NOHEAD& EQU NOHEAD-VRNGUBR

LA 211,zB0999.09 SUPPRESS THE CALCULATION
IC 214,BTBL.1(32)
B VRNGNBR (314)

* VECTOR (ALATDALATNALATS, ALNGDALNGMALNGS,AEW,
* BLATDBLATNBLITS, OLNGDDLNGMBLNGSBEV,
* DSTNCRU <HEAD,> IUNIT)

ARG17 LA R14,DMSRlD
ARG173 EQO ARG17-VRNGNBR
DNSRAD LD PODZERO

LA 23,16 INDEX
CNVRT17 L R 15, 0(R 1)

LA R1,4(R1)
RTC VKAREA (4) 0O(R 15) MOVE IN VALUE
TH WKRAXFFv
DR CV17R REAL*4
BZ CV17POSI POSITIVE INTEGER*4
L RO, UKAREA NEGATIVE INTEGER*4
LPR 30.30
ST 3O,VKAREA
NVI VKAREA.'980v MAKE NEGATIVE

CY17POSI 01 VKAREA.I146' INTEGER. MAKE AN UNWORN REAL
CY17R AD F0,WKAREA

RD PO.CONST(R3)
Bin R3,R5,CNVRT17
DR R6 TO CHECK EAST/WEST AND STORE.

-153-

* VECTOR (LAThI, LIGht, <AEW,> LATR2, LNGR2. <BEV,>

* DSTYCE, <HEAD,> lIUNT)

LUG7 LA 36,STYL

ARG7& EQO A3G7-VRNGNBR

A3G9 LA R145,3LDSEC
ARG94 EQO AUG9-VRNGNBR
RXDSXC L 315,0 (11)

LA R1,58(B1)

TBR 0(o,I'P LOAD A SINGLE PRECISION RADIAN

L P0?,0(R15) INPUT VALUE UNLESS THE DISTANCE
TM 2(U12),XI80' IS REQUESTED IN DOUBLE PRECISION
3103 36
LD F0,0(315) REAL*8 RADIANS
BR R6

ARGSBC L 30,0(315)
LPH 30,30
ST 30, IKAREL INTEGER SECONDS
"Vi WKAREA,X'5469
TM 0(h15),X9809
310 *4I8
11 VKAREA,X'809 MAKE NEGATIVE
LD F0,IKAREA
RD FO,CONST CONVERT TO RADIANS
BR R6

STORAD XI SVITCH,1
BNZ STYL BRANCH ON LATITUDE
L 315,0 (31)
LA 31,58(31)
CLI 0(315),C'U'
ByB STYL
LCDR 70,70 COMPLEMENT ON VEST

STVL STD F0,COOUDS (38)
BIB 358,35,0(3158)
B DONECYUT (P0) COORDS (0) =LAMDA2

* VECTOR (LTLNARR, DSTNCE, <HEAD,> IUNIT)

ABG4 L 115,0 (l) ARRAY OF 16 WORDS; SANE
AEG4& EQO ARG4-WBNGNBR ORDER AS

LA 11,4(R1) ARG17 PARMS, BUT ADD A
* WORD FOR LA? NORTH/SOUTH

ARBDS LD FOZEEO
LA R3,16

CNVET4 Nyc VKAREA (4) .0 (R 15)
LA R15,4 (m1)
TM WKAREA'Xv'F
BM CV41 REAL*4
BZ CV4POSI POSITIVE INTEGER*4
L RO.WKAREA NEGATIVE INTEGER*4
LPH 10,10
ST RO,UKAREA
HVI VKAREA,X*809 MAKE NEGATIVE

CV4POSI 01 WKAREA,X@46@ INTEGER. MAKE AN UNNORM REAL
CV4R AD FO,WKARZA

MD FO,CONST(R3)
BXH R3,R5,CNVRT4
CLI 0(115),C'S'
BE MORS
CLI 0(R15),C'W9
BEE *+6 IGNORE E, N

MORS LCDR FOPO COMPLEMENT WEST, SOUTH
STD FO,COORDS (R4)
LA 115,4(115)
BIll R4,95,ARRDNS

*B DONCYRT (FO) COORDS(O) =LAMDA2

DONECIRT DS oH
*LD ?O,LANDA2

SD FODLAMDAl
STD FO,DELAND POLAR ANGLE
BNZ KALLSIN
STD, 7O,SINDL SIN(O) = 0
STD 70,SIN2DL
LD 76,PHI1 IS THIS A ZERIO DISTANCE CALL?
CD P6,PHI2
BE STDST YES
LD 70,01K COS(O) = 1.
B STCOSDL

KALLSIN LA R15,4 SINE 0F NEGATIVE VALUE
BM **
SR R15,215 SINE Or POSITIVE VALUE
HAL 27,SC1
STD 7O,SINDL
HDR 70,70
STD FO,SIN2DL
LD ?O.DELAND
LA R15,2 COSINE OF VALUE
BAL 97,SC1

STCOSDL STD 7O,COSDL
LD Fo,PHI1
HAL R7, TANG
TH PH11,16801
B10 *46
LCD! F0,70
STD ?O,TANPH1
RD F0IBOVRA
STD FOITANBI PARAMETRIC LATITUDE
LD FO,PHI2
HAL R7,TANG
TH PHI2,X$801
310 *46
LCDR F0,70
LDR 76,70
LD 74,TANPHI
DDE 76,74 QINV = 1/Q
DDE 74,70 Q =TAN (PHII)/TAN (PH12)
RD 70,BOVEA
STD FO,TANB2
ND PO,TAND1 (70) - P

SDR 72,76 (72) = - 1/Q

SD 74,COSDL (F14) -D?
STD ?tl,D1
SD 76,COSDL (F6) - D2
AD! 714,76
DZ SZERO

-156-

STD 71&,S S = DI D2
MDR 714,7F0
STD 7L4, PS P*S
LTDR 714,74
BlIp SZERO
AD 74,SIN2DL PS + SIN**2(DELARD)
AD 70.COSDL P + COS(DELAMD)
STE F0,PCOSDL
DDR P6.70 D2/(P+Cos(DELAMD))
RD 76,D1 DiS
AD! F6,76 2*
MDR 70,Po, (P.COS (DELAMD)) **2
DDE F0,P'4 /(PS*SIM**2(DELAMD))
STD F0,COT2SG COT**2(DELSIGNA)
AD 70,01!
MDR 72,72 (-/)*
DDR 7F2,70 /(COT2SG.1)
MD 72,=D61.51 1.5*WH
RD 74,ELLIP
AD 74,SIN2DL
AD F4,SIN2DL
LD 70,ps
DDE 70,714 (70) N
LD F4,inD$1..259 (1.25
MDR 74,70 *
SD 74,0NE -1)
MDR 714,70 *
AD 74.01!
STD 714,1 =
DD FO'S (70) =NIS

MDR 72.70
AD! 72,76
NDR 72,70
SDR 74,72
LD F2,COT2SG
DAL !7,SQT
MDR 70,714
LD 72,03!
DAL B7,ACTI
TH PCOSDL,19800
330 CALCL
SD 70,PI
LPE! 70,70

CPALCL ND 70.1
CALCLE RD poll (70) DISTANCE IN METERS

LH R15,20!12) CHECK DISTANCE UNITS
LP! 315,R15
DZ STDST
C R15,mA(NUNITS)
BB STDST
SLA R15,3
DD F0, UNIT--8 (3 15)

-157-

STDST TH 2(112),19BO'
am0 STDSTE

F.STD 70,0(110) RETURN AS RDSTNCEf VALUE REAL*8
B CHKAZK

STDSTE DS OH
Air (81DM 360) .Vl
LEER 70,70 ON A 370, VE CAN ROUND NICELY

.11 STE FOO(RIO) RETURN AS KDSTNCE" VALUE REAL*4

CHKAZR CLC O(4,RI),=E999.O' AZIMUTH DESIRED?
BE ETN

LD 74,SINDL
LPDR P0,74
BNZ CALCHEAD
LD 76,PHIl SIN(DELAMD) = 0
TH COSDL,X980'
310 CHO
LCEE 76,76 (POLAR ANGLE IS PI)

CHO CD F6,PHI2 IF COS(DELAMD)*PH11 < PH12
3118 STUD HEAD = 0.0;

LDPI LD P0,PI ELSE HEAD = 180
B STHDPI

CALCHEAD LD 72,TANBI
MDR P2,72
AD F2,ONE
LIDR 74,72 SINDL*SEC2B1
STD 74,SINDL
SD P2,ESQD
STD 72,TB2
SAL R7,SQT
LD 74,TANB2
LD F6,TANB1
RD P6,COSDL
SDR 74,76
MDR 70,74
STD F0,TB2
LD 72,SINDL
LPER 72,72
LPER 70,70
BZ CHI
STE 72,TEMP2
L R14,TEMP2
STE F0,TEMP2
S R14,TEMP2
C lh'4,ACTCE
DB CH2

CHI LD FO,PIOV2
a CHSGN

-158-

CH2 TN TB2,X980'
310 CHACT
C R1'.ACTCF2
BL LDPI

CHACT BAL R7,ACT
CHSGN TH TB2,X9801

310 *+10
LCD! 70,70
AD P0.PI
TH SINDL,X9801
310 4+10
LCD! FO,FO
AD FO,TVOPI

STHDPI LH 115,0 (112) CHECK AZIMUTH UNITS
LPR 115,115
Bz STCNV GIVE DEGREES ON 0 OR 1

* COULD BE A 1 IF A NEGATIVE PULL WORD WAS GIVEN AS FLAG
BCTR R15,0
C R15,=A(EAUNS)
DIL STHD RADIANS ON ALL ELSE
SLL R15,3

STCNV RD F0, RADDEG (R 15)
STUD TH 0(112),X880'

310 STUD!
STD FO,0 (R11)
B BTN

STHDE DS OH
117 (SIBNS360) .V2
LRER P0,70 ROUND ON A 370

.V2 STE 70,0(111)

ETY L 113,4(113)
RETURN (14,12) ,T,itC=0

SZE R0 LD FO,ZERO
TM COSDL,X809
BZ STDST
LD F0,=D'3.13621 ELLIPTIC CIRCUMFERENCE
B CALCLE

SQT LPDB FO,F2 SQUARE HOOT FUNCTION
BZR B7 RETURN ON ZERO
SR R1#,311
IC B14,TB2
LA R14,X6319(R'4)
SRDL R141.
STC R1LI,TB2
LE F6,TB2
RTC TB2*1 (3),=XI423A2A9
l F6,TB2
HE F6,=X*48385FO079
LTR R15,R15

NR SQT1
LEN F6,F6
LEN F6,F6

SQTI DEN F2,F6
AUR P6,P2
HER 76.76 REFINE USING HERON@S METHOD
LEE 72,70 (NEUTON-EAPESON)
DEE 72,76
LOB 76,72
HER 76,F6
LDR 72,70
DDE 72,76
AWE 76,72
HDR 76,76
DDE FO,76

HER 70.70
SO FO,TB2
AU 70,TB2
IDB 70,76

LTORG

-160-

Sdl BAL 114,OCTANT SINE/COSINE
LA R15,8 CALC COSINE?
TH SCQ,X'039
an SC5 YES
SR R15,115 NO, CALC SIN

SC5 CE FINK
DR SC6
LD F0,ZERO
B SC7+2 (R15)

SC6 MDR 70,70
LDR F2,70
RD F0,SCA (115)
AD FO,SCB(l15)
MDR 70,72
AD P0,SCC(R15)
MDR 70,72
AD 70,SCD (R15)
MDR 70,72
AD FOSCE(E15)
MDR 70,72
AD 70,SCF(l15)
MDR 70,72
AD 70,SCG (115)
B SC? (115)

SC? IDR 70,74 FOR SIN
B SC8
UOPR 0 SPACE TO 8 BYTES
MDR 70,72
AD 70,ONE

SC8 TH SCQ,I0I' IS SCQ 4 TO 7?
BZR 17
LCDE 70,70

OCTANT LPDE 70,70
RD 70, DL40VPI
CE F0,OWE
BL OCTI
LDE 74,70
AV 74,UNZR1
STD 7I,TERP2
AD 74,UNZE1
SDR 70,74
AL 115,TEIP2+4

OCTI STC 115,SCQ
TH SCQ,I'O1'
BZ OCT2
SD 70,011

OCT2 LPDE F4,70
BR 114

-161-

TANG SR R 15,R IS TANGENT FUNCTION
DAL R14,OCTAUT
LD F2,TCTG
LD F6,ONE
CE P11,MINM
BL TCT2
MDR PO,FO
LDR F6,FO
AD P6,TCTF
MDR F6,FO
AD P6,TCTE
MDR F2,FO
AD F2,TCTA
MDR P2,F0
AD F2,TCTB

TCT2 MDR 72,F0
AD P2,TCTC
MD! 70,76
AD FO,TCTD
MDR 70,711
TH SCQ,X6030
B5 TCT3
DDR 70,72
B TCT11

TCT3 DDR 72,70
LDR 70,72

TCT1 TH SCQ,19029
BZE R7
LCD! 70,70
BR R7

SV

-162-

ACT CDR 707F2 AECCOTANGENT FUNCTION
BH ACT02
BL ACT0l
LD FO.PIOV4 (1) =1, LOAD P1/4 AND RETURN

ACT0l DDE P0,72
LA R1,16
B ACT03

ACT02 DDE 72,70
LDR 70.72
SR 11,Rl

ACT03 LA R14,ACTDI
LD P4,ONE
CE PO,ACTC3A
BNH ACT05
CE FO,ACTC4O
BNH ACT04I
LDE 72.70
ED 70,ACTC9
SDR 70,74
AD P2,ACTC9
DDE 70,F2
LA 114,8 (lii)

ACT04 LDE F6,70

LD P4,ACTC7
ADE 74.70
LD F2,ACTC6
DDE 72,F4
AD P2,ACTC5
ADE 72,70

7D 4, ACTC4
ACT0S DDE 74,72

AD 74,ACTC3
ADE 74,70

PD 2,ACTC2
DDE P2,74
AD 72,ACTC1

DE 70,76

ADD 70.76
SD 70, 0 (1,R14)
LPEE 70,F0
BR 17

END

-163-

APPENDIX D

COPY BOOKS FOR COBOL PROGRAMS USING CARTAM

CARTCB07 - COMNUNICATION BLOCK.

05 DDNAME PIC X(8) VALUE §GEOINDEXI.
05 FUNCTION-CODE VALUE 'OPEN'.

10 FUNCTION-CODE-i PIC I.
10 FUNCTION-CODE-2 PIC I.
10 FUNCTION-CODE-3 PIC X.
10 FUNCTION-CODE-4 PIC X.

88 CONTINUE-VALK VALUE '
88 DISCARD-SUBTREE VALUE 'TI.
88 KEEP-ALL-CHILDREN VALUE @Lt.

05 STATUS-CODE PIC X1.
88 GOOD-CARTAR-OPEN VALUE 2
88 SUCCRSSFUL-CARTAR VALUE ' .
.88 MORE-PATH VALUE 0 9.
88 END-OF-PARENT VALUE 'GE'.

05 BODE-INDICATOR PIC X.
05 USER-DATA-PAD-CHARACTER PIC X VALUE "
05 SORT-INDICATOR REDEFINES USER-DATA-PAD-CHARACTER

PIC I.
88 NODE VALUE 'N'.
88 TERMINAL-ELEMENT VALUE 9T§.
88 TERMINAL-V-SHORT-KEY VALUE '1'.

05 OPEN-INFO-AREA.
10 NUMBER-OF-COORDINATES

PIC 9(4) COUP SYNC VALUE 2.
10 MAX-NUMBER-BUFFERS

PIC 9(4) CORP SYNC VALUE 32.
05 RECORD-RBA REDEFINES OPEN-INFO-AREA

PIC S9(9) CORP SYNC.
05 MAX-USER-AREA-LENGTH PIC 9(4) CORP SYNC VALUE 0.
05 TRUE-USER-DATA-LENGTH PIC 9(4) CORP SYNC VALUE 0.
05 NUBBER-VSAN-READS PIC 9(4) CORP SYNC VALUE 0.
05 NUUBER-VSAM-WRITES PIC 9(4) COUP SYNC VALUE 0.

-164-
CARTFNCS - CARTAS FUNCTION CODES.

01 CARTAn-FpNCTION-CODES.
03 CARTAN-OPEN PIC XIII VALUE *OPEN$.03 CARTAM-LOAD PIC UXI VALUE OLOAD*.03 CARTA-ISRT PIC XXiX VALUE OISRTG.03 CARTAB-CHNG PIC XIXX VALUE CHG8.03 CARTAB-DLET PIC XII VALUE ODLETO.03 CAITAN-CLOSE PIC XIII VALUE 'CLSE'.03 GR PIC XIIXI VALUE 'G S0.
03 GEL PIC XII VALUE SGR L'.03 Gi PlC XIii VALUE 'GM 1.03 GBP PIC xlI VALUE GP .03 GNP PIC XIIXI VALUE 'GNP 9.03 GNPT PIC XXX VALUE 'GIPTI.03 GNPL PIC XXX VALUE '@GPL'.
03 SOB-PUNCTIONS.

05 8 8 -CONTINUE-VALK PIC I VALUE *05 88-DISCARD-SUBTREE PIC X VALUE 'TO.05 S8 -KEEP-ALL-CHILDREN PIC I VALUE OLD.05 FILLER PIC I VALUE ' .03 GP PIC XXXX VALUE 'GP 1.03 GPP PIC XIXX VALUE #GPP '.03 GT PIC XII VALUE VGT 1.03 GTP PIC XXXX VALUE 'GTP '.03 GC PIC XIII VALUE vGC 1.03 GCP PIC XII VALUE 'GCP 0.03 GO PIC XXII VALUE 'GN '.

I I 1[I ' " "

-165-

APPENDIX E

INDEX LOAD PROGRAM SOURCE

IDENTIFICATION DIVISION.
PROGRAI-ID. NTBNDLIX.
DATE-WRITTEN. NOV77.
DATE-COMPILED.

ENVIRONBENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT NTB-FILE ASSIGN TO NTBVSAM

ORGANIZATION IS INDEXED
ACCESS IS SEQUENTIAL
RECORD KEY IS V-NTB-KEY
FILE STATUS IS FILE-STATUS.

SELECT NDL-FILE ASSIGN TO NDLVSA8

ORGANIZATION IS INDEXED
ACCESS IS SEQUENTIAL
RECORD KEY IS V-ZBKEY
FILE STATUS IS FILE-STATUS.

ii i-.I IIIII

-166-

DATA DIVISION.

FILE SECTION.

FD NTB-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS
RECORD CONTAINS 276 TO 4596 CHARACTERS
DATA RECORD IS VSAM-NTB-RECORD.

COPY VSANTB..

66 V-IBLATLNG RENAMES V-IBLAT THRU V-IBLNG-DIR.

FD NDL-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS
RECORD CONTAINS 340 TO 1840 CHARACTERS
DATA RECORD IS VSAM-ZB-ZO-RECORD

COPY JLPVZBZO.

66 V-ZBLATLNG RENAMES V-ZBLAT THRU V-ZBLNGSGN.

I!

-167-

VOKING-STORAGE SECTION.

77 ROF-SWITCH PIC 9 VALUE 0.
88 EOF VALUE 1.

77 RETURN-STATUS PIC X(04) VALUE SPACES.
88 SUCCESSFUL VALUE '0000'.

77 DISPOSITION PIC 1(03) VALUE 'SHR'.

77 FILE-STATUS PIC X(02) VALUE SPACES.

0 1 COMMUNICATION-BLOCK.
COP! CARTCB07.

01 USER-DATA-AREk.
05 KEY-FEEDBACK-AREA.

10 IDL-KET.
15 ISL PIC 9 (5).
15 DGZ PIC X(3) .
15 REV PIC X.

10 FILLER PIC X(15) .
05 FILLER REDEFINES KEY-FEEDBACK-AREA.

10 NTB-KEY.
15 ISL PIC 9 (5).
15 CAT PIC 9(5).
15 VAK PIC 9(4).
15 BEN PIC X(6).
15 ELT PIC X.

10 FILLER PIC X(3).
66 NDL-IGZ RENAMES ISL OF NDL-KEY

TURD DGZ OF NDL-KEY.

-168-

01 COORDINATE-VECTOR.
05 NDI-LAT PIC S9(9) CORP SYNC.
05 NDX-LON PIC S9(9) CORP SYNC.
05 NDX-DELTA PIC S9(9) CORP SYNC.

01 WK-LAT-LNG.
03 UK-LAT.

05 NK-LATD PIC 9(02) VALUE 0.
05 WK-LATN PIC 9(02) VALUE 0.
05 VK-LATS PIC 9(02) VALUE 0.
05 K-LAT-DIR PIC X(01) VALUE SPACE.

03 UK-LONG.
05 VK-LONGD PIC 9(03) VALUE 0.
05 VK-LONGM PIC 9(02) VALUE 0.
05 WK-LONGS PIC 9(02) VALUE 0.
05 UK-LONG-DIR PIC I(01) VALUE SPACE.

01 ALLOCATED-DSN.
03 FILLER PIC X(04) VALUE 'JLP.l.
03 FILLER PIC 1(08) VALUE "VSANDL..
03 FILLER PIC X(05) VALUE IZBZO..
03 REV-FOR-DSN PIC X (01) VALUE 9Bl.
03 FILLER PIC 1(01) VALUE SPACE.

01 DD-NAME PIC X(08) VALUE INDLVSAM 9.

01 DUMRY-DD-NAME.
03 FILLER PIC X(07) VALUE 'DUMNYDD'.
03 DUMNY-DD-NAME-REV PIC X(01) VALUE 'B9.

01 VALUE-OF-REV-TABLE PIC X(03) VALUE 'BCDl.

01 TABLE-OF-REV-VALUES
REDEFINES VALUE-OF-REV-TABLE.

03 REV-LETTER PIC X OCCURS 3 TIRES
INDEXED BY REV-NDI.

01 ACCURULATORS.

03 ONE-CON PIC S9(06) CORP SYNC VALUE +1.
03 TOTAL-ISRTS PIC S9(06) CORP SYNC VALUE .0.
03 TOTAL-GETS PIC S9(06) CORP SYNC VALUE 40.
03 TOTAL-PUTS PIC S9(06) CORP SYNC VALUE .0.

-169-

PROCEDURE DIVISION.

000-OPEN-INITIALIZE.
ROVE 24 TO MAX-USER-AREA-LENGTH.
ROVE ILOADI TO FUNCTION-CODE.
MOVE 'FS TO MODE-INDICATOR.

OPEN INDEX FILE FOR INTEGER COORDINATES.
CALL 'CARTAM' USING COMMUNICATION-BLOCK.
ROVE ,21 TO TRUE-USER-DATA-LENGTH.
ROVE 9ISRT9 TO FUNCTION-CODE.

0 10-OPEN-FILES.
OPEN INPUT NTB-FILE.
PERFORM 100-CONVERT-CALL-NTB THRU 100-EXIT

UNTIL EOF.
ROVE +9 TO TRUE-USER-DATA-LENGTH.
PERFORM 200-OPEN-CLOSE-NDL-FILES THRU 200-EXIT

VARYING REV-NDX FROM 1 BY 1
UNTIL REV-NDX > 3.

900-LAST-CALL-TO-CARTOR.
DISPLAY 'TOTAL # READS = ' TOTAL-GETS,

O, TOTAL # VRITES * TOTAL-PUTS,
S, TOTAL # INSERTS = ' TOTAL-ISRTS, '.*.

ROVE 'CLSEI TO FUNCTION-CODE.
CALL 'CARTAM' USING COMMUNICATION-BLOCK.

GOBACK.

100-CONVERT-CALL-NTB.
READ NTB-FILE

AT END
ROVE 1 TO ROF-SWITCH
CLOSE NTB-FILE
GO TO 100-EXIT.

ROVE V-IBLATLNG TO UK-LAT-LNG.
ROVE V-NTB-KEY TO NTB-KET.
PERFORM 500-CONVERT-CALL THRU 500-EXIT.

100-EXIT.
EXIT.

,V.

-170-

2 00-OPEN-CLOS E-NDL-FILES.
MOVE REV-LETTER (REV-NDX) TO REV-FOR-DSN,

DUMMY-DD-NAME-REV.
CALL IALLOCDI USING RETURN-STATUS,

DD-NAME,
ALLOCATED-DSN,
DISPOSITION.

IF SUCCESSFUL
MOVE 0 TO EOF-SVITCH
OPEN INPUT NDL-FILE
PERFORM 300-CONVERT-CALL-NDL THRU 300-EXIT

UNTIL EOF
CALL 9DEALLC9 USING RETURN-STATUS,

DD-NAME
IF SUCCESSFUL

NEXT SENTENCE
ELSE

DISPLAY 'STATUS = <, RETURN-STATUS,
9>, DDN = , DD-NAME

MOVE '0000' TO RETURN-STATUS
ELSE

DISPLAY 'STATUS = <1, RETURN-STATUS,

$>, DDN = ', DD-NAME,
', DSN = ', ALLOCATED-DSN

MOVE '0000' TO RETURN-STATUS.
CALL SDEALLC# USING RETURN-STATUS,

DUMMY-DD-NAME.
IF NOT SUCCESSFUL

DISPLAY 'STATUS = <1, RETURN-STATUS,
9>, DDN = , DUMNY-DD-NAME

MOVE 0000' TO RETURN-STATUS.
200-EXIT.

EXIT.

-17 1-

300-CONVEET-CALL-NDL.
READ NDL-FILE

AT END
MOVE I TO EOF-SWITCH
CLOSE Nt)L-FILE
GO TO 300-EXIT.

BOVE V-ZBLITLIG TO WK-LAT-LNG.
MOVE V-ZEKEY TO NDL-IGZ.
MOVE V-ZBREY TO REV OF NDL-KEY.
PERFORM 500-CONVERT-CALL THRU 500-EXIT.

300-EXIT.
EXIT.

500-CONVENT-CALL.
COMPUTE NDX-LAT = (60 *WK-LATD + WK-LATI)

* 60 + UK-LATS.

If WK-LAT-DIR = ISO
COMPUTE NDr-LAT V DX-LAT.

COMPUTE NDX-LON = (60 *WK-WONGD + WK-LONGM)
* 60 + WK-LONGS.

IF UK-LONG-DIR =IW
COMPUTE NDX-LON = - NDX-LON.

CALL 'CARTAM' USING COMMUNICATION-BLOCK,
USER-DATA-AREA,
COORDINATE-VECTOR.

ADD NUMBER-VSAM-WRITES TO TOTAL-PUTS.
ADD NUMBER-VSAM-READS TO TOTAL-GETS.
MOVE ZEROES TO NUMBEN-VSAM-WRITES,

NUMBER-VSAM-READS.
IF SUCCESSFUL-CARTAM

ADD ONE-CON TO TOTAL-ISRTS
ELSE

DISPLAY 'STATUS CODE = <' STATUS-CODE,
O>, KEY =<I
KEY-FEEDBACK -AREA 9>.I.

500-EXIT.
EXIT.

-172-

APPENDIX F

VSAM FILE DEFINITION EXAMPLE

//DFDLGEO EXEC PGH=IDCANS ,REGION=256K
//STEPCIT DD DIPSRDNAATA
//SYSPRINT DD S!SOUT=A
//VSNTB DD U11T=3330,VOL=SER=VSMO2,SPACE=(TK,1)
//SYSIN DD *

DEFINE CLUSTER (-
NAME (VSAM .NTB .GEONDX) -
FILE (VSNTB) -
VOLUME (VS AM 02) -
CYLINDERS (15) -
SHAREOPTIONS (1)-
CISZ (4096) -
NONINDEXED-
RECORDSIZE (4089 4089) -
SPEED-
UNIQUE-
OWNER (ADUNSD))-
DATA(C-

NAME (VSAM N TB.GEOND. DATA))-
CATALOG (AMASTCAT)

-173-

APPENDIX G

CIRCLE SEARCH PROGRAM SOURCE

ID DIVISION.
PROGRAM-ID. ONETENE.
DATE-WRITTEN. MAY 77.
DATE-COMPILED.
REMARKS.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT COORD-FILE ASSIGN TO UT-S-DATAIN.
SELECT PRINT-FILE ASSIGN TO UT-S-PRINTER.

DATA DIVISION.
FILE SECTION.

FD COORD-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS.

01 FILLER PIC 1(80).

FD PRINT-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS.

01 PRINT-REC PIC X(132).

-174-

WORKING-STORAGE SECTION.

01 COMMUNICATION-BLOCK.
COPY CARTCB07.

01 CONTROL-CARD.
03 CNTRL-RADIUS COMP-i SYNC VALUE +3.0E43.
03 CNTRLCRD-RADIUS-SECS COMP-1 SYNC.
03 CNTRLCRD-RADIUS-IN-METERS COMP-1 SYNC.
03 CNTRL-UNITS PIC IX VALUE 'MT'.

88 NAUT-MILES VALUE 'NM'.
88 KILO-METERS VALUE 9KM'.
88 FEET VALUE 'FT'.
88 METERS VALUE 9MT'.

COPY CARTFNCS.

0 1 COORD-WORK-AREA.
03 FILLER PIC X(8) VALUE SPACES.
03 ADN-NUMBER PIC X(4) VALUE SPACES.
03 FILLER PIC X(21) VALUE SPACES.
03 LAT-IN.

05 LAT-DEG PIC 99 VALUE ZEROS.
05 LAT-MIN PIC 99 VALUE ZEROS.
05 LAT-SEC PIC 99 VALUE ZEROS.

* 05 LAT-NS PIC x VALUE SPACES.
* 88 SOUTH VALUE SI.

03 LON-IN.
05 LON-DEG PIC 999 VALUE ZEROS.
05 LON-MIN PIC 99 VALUE ZEROS.
05 LON-SEC PIC 99 VALUE ZEROS.
05 LON-EW PIC I VALUE SPACES.

88 WEST VALUE IW• .
03 FILLER PIC X(33) VALUE SPACES.

0 1 KEY-FEEDBACK-AREA.
05 NDL-KEY.

10 ISL PIC 9(5).
10 DGZ PIC 1(3)
10 REV PIC I.

05 FILLER PIC X(15).

-175-

01 RESULT-AREA.
03 INPUT-TO-OUTPUT.

05 FILLER PIC 1(8) VALUE SPACES.
05 ADN-OUT PIC X(4) VALUE SPACES.
05 FILLER PIC X(68) VALUE SPACES.

03 FILLER PIC 1(2) VALUE SPACES.
03 IGZ-OUT.

05 REV PIC I.
05 FILLER PIC X.
05 ISL PIC ZZZZ9.
05 DGZ PIC XXx.

03 FILLER PIC 1(3) VALUE SPACES.
03 DIST-OUT PIC ZZZZZ9.9 VALUE 0.0'.
03 FILLER PIC I VALUE SPACES.
03 DIST-UNITS PIC X• VALUE SPACES.
03 FILLER PIC X(26) VALUE SPACES.

01 LIMIT-VECTORS.
03 LOW-LIMITS.

05 LOW-LAT PIC 59(8) CORP SYNC.
05 LOW-LON PIC S9(8) COMP SYNC.

03 HIGH-LIMITS.
05 HIGH-LAT PIC S9(8) CORP SYNC.
05 HIGH-LON PIC S9(8) CORP SYNC.

01 WORK-AREA.
03 LATR COMP-2 SYNC VALUE ZERO.
03 LATO PIC S9(8) CORP SYNC VALUE ZERO.
03 LONO PIC S9(8) COMP SYNC VALUE ZERO.
03 CARTAM-COORDINATE-VECTOR.

05 LATI PIC S9(8) CORP SYNC VALUE ZERO.
05 LONI PIC S9(8) COMP SYNC VALUE ZERO.

03 DSTNCEI COMP-1 SYNC VALUE ZERO.
03 AZIMUTHI COBP-i SYNC VALUE 9.99E+02.
03 DSTNCE2 COMP-1 SYNC VALUE ZERO.
03 ESTIMATOR COMP-i SYNC VALUE 4.5E*01.
03 NDI-DELTA PIC S9 (9) CORP SYNC.
03 ANSWER-FACTOR CORP-i SYNC VALUE ZERO.
03 IFLAG PIC 59(8) CORP SYNC VALUE +5.
03 ONE-CON PIC S9(8) CORP SYNC VALUE 41.
03 HAX-H-G-CELLS PIC S9(8) CORP SYNC VALUE .100.
03 SECRAD COMP-1 SYNC VALUE .48481368E-05.
03 DON-ADNS PIC S9(4) CORP VALUE +1000.
03 YOUR-FLAG PIC I VALUE LOW-VALUES.

88 NONE-IN VALUE HIGH-VALUES.

-176-

01 BISTO-GRAR SYNC.
03 H-G-INI PIC S9(8) CORP.
03 H-G-AX PIC S9(8) CORP.
03 H-G-CELL-ZERO PIC $9 (8) CORP.
03 H-G-CELLS PIC S9(8) COMP OCCURS 100 TIMES.
03 H-G-CELL-MAX PIC $9(8) CORP.

LINKAGE SECTION.
01 PlRR-FIELD.

03 PARK-LENGTH PIC 9(4) COMP.
88 VALID-PARR-PASSED VALUE 7.

03 PARR-RADIUS PIC 9 (5) -
03 PARR-UNITS PIC XI.
03 PARR-BUFFERS PIC 99.
03 PARR-NUR-ADNS PIC 999.

[A

II

--- -- .-

',r -

-177-

PROCEDURE DIVISION USING PARR-FIELD.

0000-DRIVER.
ROVE 24 TO RAI-USER-AREA-LENGTH.
ROVE CARTAR-OPEN TO FUNCTION-CODE.
IF PARR-LENGTH NOT < 9

ROVE PARR-BUFFERS TO RAX-NRUBER-BUFFERS.
CALL ICARTAR9 USING CORRUNICATION-BLOCK.
IF NOT GOOD-CARTAR-OPEN

DISPLAY OBAD OPEN RETURN CODE I

GOBACK.
OPEN INPUT COORD-FILE

OUTPUT PRINT-FILE.
ROVE ALL LOU-VALUES TO HISTO-GRAR.
ROVE +1000000 TO H-G-RIN.
IF PARR-LENGTH NOT < 7

ROVE PARR-RADIUS TO CNTRL-RADIUS
ROVE PARR-UNITS TO CNTRL-ONITS.

IF PARR-LENGTH NOT < 12
MOVE PARR-NUM-ADNS TO NUR-ADNS.

IF NAUT-RILES
CORPUTE CNTRLCRD-RADIUS-SECS = 60.0

(CNTRL-RADIUS)
ROVE +1852.0 TO ANSWER-FACTOR

ELSE
IF KILO-RETERS

CORPUTE CNTRLCRD-RADIUS-SECS = 60.0 *

(CNTRL-RADIUS / 1.852)
ROVE *1000.0 TO ANSWER-FACTOR

ELSE
IF FEET

CORPUTE CNTRLCRD-RADIUS-SECS = 60.0
(CNTRL-RADIUS / 6080.0)

ROVE +0.3048 TO ANSWER-FACTOR
ELSE

COMPUTE CNTRLCRD-RADIUS-SECS = 60.0 *
(CNTRL-RADIUS / 1852.0)

ROVE +1.0 TO ANSWER-FACTOR.
CORPUTE CNTRLCRD-RADIUS-IN-RETERS =

CNTRL-RADIUS * ANSVER-FACTOR.

-178-

0 100-PROCESS-LOOP.
READ COORD-FILE INTO COORD-WORK-AREA

AT END GO TO 0100-FINISH-UP.
MOVE CNTRLCRD-RADIUS-SECS TO HIGH-LON.
MULTIPLY HIGH-LON BY +1.1 GIVING HIGH-LAT.
COMPUTE LATO = (LAT-DEG * 60 4 LAT-MIN) * 60

* LAT-SEC.
IF SOUTH COMPUTE LATO = - LATO.
COMPUTE LONO = (LON-DEG 4 60 + LOW-MIV) * 60

+ LON-SEC.
IF VEST COMPUTE LONO = - LONO.
COMPUTE LATR = LATO * SECRAD.
CALL vHAFSIDf USING LATR, HIGH-LON.
COMPUTE LOW-LAT = LATO - HIGH-LAT.
COMPUTE LOU-LON = LONO - HIGH-LON.
COMPUTE HIGH-LAT = LATO + HIGH-LAT.
COMPUTE HIGH-LON = LONO + HIGH-LON.
WRITE PRINT-BEC FROM COORD-WORK-AREA

AFTER ADVANCING 3 LIVES.
MOVE SPACES TO RESULT-AREA.
MOVE CNTRL-UNITS TO DIST-UNITS.
ROVE ADN-NUMBER TO ADN-OUT.
MOVE HIGH-VALUES TO NONE-FLAG.
MOVE ZERO TO NUMBER-VSAM-READS.
MOVE GR TO FUNCTION-CODE.
CALL OCARTAIM USING COMHUNICATION-BLOCK,

KEY-FEEDBACK-AREA,
CARTAM-COORDINATE-VECTOE,
ND-DELTA,
LOU-LIMITS,
HIGH-LIMITS.

PERFORM 0200-WALK-PATH THRU 0200-WALK-PATH-EXIT
UNTIL NOT MORE-PATH.

IF NONE-IN
MOVE CITRL-RADIUS TO DIST-OUT
MOVE *NONE IN I TO IGZ-OUT
WRITE PRINT-REC FROM RESULT-AREA.

IF NUMBER-VSAR-READS > H-G-MAX
MOVE NUMBER-VSAM-READS TO H-G-MAX.

IF NUMBER-VSAH-READS < H-G-MIN
MOVE NUMBER-VSAM-READS TO H-G-MIN.

IF NUMBER-VSAM-READS < ONE-CON
ADD ONE-CON TO H-G-CELL-ZERO

ELSE
IF NUMBER-VSAM-READS > MAX-H-G-CELLS

ADD +1 TO H-G-CELL-MAX
ELSE

ADD .1 TO H-G-CELLS (NUMBER-VSAR-READS).
SUBTRACT I FROM NUM-ADNS.
IF NUM-ADNS > 0

GO TO 0100-PROCESS-LOOP.

-179-

0100-FINISH-UP.
DISPLAY 98IN # READS = 1, H-G-l1U

0; MAX # READS = 9, H-G-MAI.
9; CELL(0) - % H-G-CELL-ZERO,
9; CELL(1O1) = *H-G-CELL-MAX.

IF JJ-G-MAX > 100
MOVE +100 TO H-G-MAI.

PERFORM H-G-DISPLAY VARYING NUMBER-VSAM-READS
FROM 1 BY 1 UNTIL NUMBER-VSAM-READS > H-G-MAI.

ROVE CARTAM-CLOSE TO FUNCTION-CODE.
CALL 2CARTAN' USING COMMUNICATION-BLOCK.
CLOSE COORD-FILE

PRINT-FILE.
GOBACK.

H -G-DISPLAY.
DISPLAY I CELL(', NUMBER-VSAM-READS, ') 1,

H-G-CELLS (lIUMBER-VSAM-READS).

-180-

0200-VALK-PATH.
MOVE GNP TO FUNCTION-CODE.
MULTIPLY NDI-DELTA BY ESTIMATOR GIVING DSTNCE2.
CALL @VECTORS USING LAT1 LON1

LATO LONO
DSTNCE1 IFLAG.

SUBTRACT CNTRLCRD-RADIUS-IN-METERS FROM DSTNCE1.
IF DSTNCE2 < DSTNCEI

MOVE 88-DISCARD-SUBTREE TO FUNCTION-CODE-4
ELSE

IF DSTNCE2 NOT > - DSTNCE1
MOVE 88-KEEP-ALL-CHILDREN TO FUNCTION-CODE-4
PERFORM 0300-KEEP-ALL THRU 0300-KEEP-ALL-EXIT

UNTIL NOT MORE-PATH
MOVE 88-CONTINUE-WALK TO FUNCTION-CODE-4.

CALL 'CARTAM' USING COMMUNICATION-BLOCK,
KEY-FEEDBACK-AREA,
CARTAM-COORDINATE-VECTOR,
NDX-DELTA.

0200-VALK-PATH-EXIT.
EXIT.

0300-KEEP-ALL.
IF TRUE-USER-DATA-LENGTH = 9

CALL 'VECTOR' USING LATO LONO
LATi LORI
DSTNCE1 IFLAG

MOVE CORR NDL-KEY TO IGZ-OUT
DIVIDE DSTNCE1 BY ANSWER-FACTOR

GIVING DIST-OUT
MOVE LOW-VALUES TO NONE-FLAG
WRITE PRINT-REC FROM RESULT-AREA

AFTER ADVANCING 1 LINE.
CALL 'CARTAM' USING COMMUNICATION-BLOCK,

KEY-FEEDBACK-AREA,
CARTAM-COORDINATE-VECTOR,
IDX-DELTA.

0300-KEEP-ALL-EXIT.
EXIT.

-181-

APPENDIX H

INCLUSION/EXCLUSION AREA SEARCH PROGRAM SOURCE

ID DIVISION.
PROGRAM-ID. XCLUDOR2.
DATE-WRITTEN. HAT 77.
DATE-COMPILED.
REMARKS.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL-
SELECT CNTRLCRD ASSIGN TO UT-S-CONTROL.
SELECT LAUNCH-POINT-FILE ASSIGN TO UT-S-LAUNCH.
SELECT SORTED-FILE ASSIGN TO UT-S-SRTNULL.
SELECT SORTED-OUTPUT-FILE ASSIGN TO UT-S-NTBS.

-182-

DATA DIVISION.

FILE SECTION.

SD SORTED-FILE.
01 SELECTED-B ECORD -

03 PRIMARY-KEY PIC X(21).
03 FILLER PIC 1(15).

FD CNTRLCRD
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS.

01 FILLER PIC X(80).

FD LAUNCH-POINT-FILE
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 21 CHARACTERS
BLOCK CONTAINS 0 RECORDS.

01 LP-DATA PIC X(21).
$ READ INTO LP-DATA-AREA.

FD SORTED-OUTPUT-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS.

01 OUT-REC-S PIC X(36).

WORKING-STORAGE SECTION.

01 SIXTY PIC S9(8) COMP SYNC VALUE +60.
01 COMRMU NICATION-BLOCK. COPY CARTCB07.

01 NDI-VECTORS.
05 NDI-LAT PIC S9(8) CORP SYNC.
05 NDI-LON PIC S9(8) CORP SYNC.
05 NDI-DELTA PIC S9(8) CORP SYNC.

01 LIMIT-VECTORS.
05 LOU-LIMITS.

10 LOV-LAT PIC S9(8) CORP SYNC.
10 LOV-LON PIC S9(8) CORP SYNC.

05 HIGH-LIMITS.
10 IGH-LAT PIC 59(8) CORP SYNC.
10 HIGN-LON PIC S9(8) COMP SYNC.

-'

-183-

01 CTRLCRD-IN.
* COLS 1 2 3 4 5
* 12345678901234567890123456789012345678901234567890
*> 2500KM 55N,/-25 090Ee/-090 ISLESISLE#

LAT LONG LOW HIGH
03 FILLER PIC I.

88 EXCLUSION-AREA-SEARCH VALUE '>1.

88 INCLUSION-AREA-SEARCH VALUE 1<9.
03 FILLER PIC X(4) .
03 CNTRL-RADIUS PIC 9(5).
03 CNTRL-UNITS PIC XX.

88 NAUT-NILES VALUE 'NM' .

88 KILO-METERS VALUE OKR'.
88 FEET VALUE $PTO.
88 METERS VALUE 'NTO.

03 FILLER PIC X(5).
03 CNTRL-CENTER-LAT-DEG PIC 99.
03 FILLER PIC X.

88 CNTRL-SOUTH VALUE IS.
03 FILLER PIC XXX VALUE ' /-0.
03 CNTRL-DELTA-LAT PIC 99.
03 FILLER PIC 1.
03 CNTRL-CENTER-LON-DEG PIC 999.
03 FILLER PIC 1.

88 CNTRL-WEST VALUE 'W'.
03 FILLER PIC XXX VALUE '*/-'
03 CNTRL-DELTA-LON PIC 999.
03 FILLER PIC (4).
03 MIN-ISLE PIC 9(5) .
03 MAX-ISLE PIC 9(5) .
03 FILLER PIC 1(3) .
03 LP-DATA-AREA.

05 LATD PIC 99.
05 LATH PIC 99.
05 LATS PIC 99.
05 NS-DIR PIC i.

88 LP-SOUTH VALUE 'SI .

05 FILLER PIC 1.
05 LOND PIC 999.
05 LONN PIC 99.
05 LONS PIC 99.
05 EW-DIR PIC 1.

88 LP-VEST VALUE @W9.
05 LP-RADIUS PIC 9 (5) .

03 FILLER PIC X(6).
01 CNTRLCRD-TRANSFORN REDEFINES CNTRLCRD-IN PIC X(80).

COPY CARTFNCS.

b

-184-

01 RESULT-AREA.
03 KEY-OUT.

05 ISL PIC 9(5) .
05 FILLER PIC X(16) -

03 LAT-OUT.
05 LAT-DEG PIC 99 VALUE ZEROS.
05 LAT-MIN PIC 99 VALUE ZEROS.
05 LAT-SEC PIC 99 VALUE ZEROS.
05 LAT-NS PIC I VALUE SPACES.

03 LON-OUT.
05 LON-DEG PIC 999 VALUE ZEROS.
05 LON-MIN PIC 99 VALUE ZEROS.
05 LON-SEC PIC 99 VALUE ZEROS.
05 LON-EW PIC I VALUE SPACES.

01 WORK-AREA.
03 LATR COUP-2 SYNC VALUE ZERO.
03 MAIIMUM-RADIUS-IN-NETERS COMP-1 SYNC.
03 CNTRLCRD-RADIUS-IN-METERS COMP-1 SYNC.
03 ABS-LAT PIC 9(8) CORP SYNC VALUE ZERO.
03 DSTNCEI COMP-1 SYNC VALUE ZERO.
03 SECRAD COMP-1 SYNC VALUE .48481368E-05.
03 DSTNCE2 COMP-1 SYNC VALUE ZERO.
03 ESTIMATOR COaP-i SYNC VALUE 4.5E+01.
03 LAT-LNG-WORK-AREA PIC S9(8) CORP SYNC VALUE ZERO.
03 IFLAG PIC S9(8) CORP SYNC VALUE ,5.
03 TOTAL-NUMBER-READS PIC S9(6) CORP SYNC VALUE ZERO.
03 MIN-ISLE-NUMBER PIC 9(5) COMP-3 VALUE ZERO.
03 MAX-ISLE-NUMBER PIC 9(5) COMP-3 VALUE ZERO.
03 NUMBER-RECORDS PIC 9(5) COMP-3 VALUE ZERO.
03 NONE-FLAG PIC I VALUE LOW-VALUES.

88 NONE-IN VALUE HIGH-VALUES.
03 OUTSIDE-ALL-CIRCLES PIC I VALUE SPACE.
03 INSIDE-A-CIRCLE PIC I VALUE SPACE.
03 LP-END-FLAG PIC XXI VALUE SPACES.

88 END-OF-LPS VALUE OENDG.
03 NUBER-OF-LAUNCH-POINTS USAGE INDEX.

01 LAUNCH-POINT-DATA SYNC.
03 LP-TABLE OCCURS 100 TIMES INDEXED BY LAUNCH-POINT.

05 LP-LAT PIC S9(8) SYNC CORP.
05 LP-LON PIC S9(8) SYNC COMP .
05 LP-DELTA-LAT PIC S9(8) SYNC CORP.
05 LP-DELTA-LON PIC S9(8) SYNC CORP.
05 LP-RADIUS-IN-NETERS SYNC COMP-i.

......... rmnmm Hmam n • m m mmurm mmlI

-185-

PROCEDURE DIVISION.

0000-DRIVER.
CALL 9TIHEAX' USING INTERVAL.
MOVE 21 TO MAX-USER-AREA-LENGTH.
MOVE CARTAM-OPEN TO FONCTION-CODE.
CALL 9CARTAM& USING COMMUNICATION-BLOCK.
IF NOT GOOD-CARTAM-OPEN

DISPLAY $BAD OPEN RETURN CODE'
GOBACK.

OPEN INPUT CNTRLCRD.

0000-CNTL-LOOP.
READ CNTRLCRD INTO CNTRLCRD-IN

AT END MOVE CARTAM-CLOSE TO FJNCTION-CODE
CALL ICARTAN' USING COMMUNICATION-BLOCK
CLOSE CNTRLCRD
GOBACK.

TRANSFORM CNTRLCRD-TRANSFORM FROM SPACES TO ZEROES.
HOVE MIN-ISLE TO MIN-ISLE-NUMBEB.
MOVE MAX-ISLE TO MAX-ISLE-NUMBER.
MULTIPLY CNTRL-CENTER-LAT-DEG BY 3600 GIVING NDX-LAT.
IF CNTRL-SOUTH COMPUTE NDX-LAT = - NDX-LAT.
MULTIPLY CNTPL-DELTA-LAT BY 3600 GIVING NDX-DELTA.
Cq)MPUTE LOW-LAT = NDX-LAT - NDX-DELTA.
COMPUTE HIGH-LAT = NDX-LAT * NDX-DELTA.
MULTIPLY CNTRL-CENTER-LON-DEG BY 3600 GIVING NDY-LON.
IF CITRL-WEST COMPUTE NDX-LON = - NDX-LON.
MULTIPLY CNTRL-DELTA-LON BY 3600 GIVING NDX-DELTA.
COMPUTE LOW-LON = NDX-LON - NDI-DELTA.
COMPUTE HIGH-LON NDI-LON + NDI-DELTA.
MOVE CNTRL-RADIUS TO LP-RADIUS.
MOVE ZEROS TO CNTRLCRD-RADIUS-IN-METERS,

MAXIMUM-RADIUS-IN-METERS,
NUMBER-RECORDS.

IF INCLUSION-AREA-SEARCH
MOVE 88-DISCARD-SUBTREN TO OUTSIDE-ALL-CIRCLES
MOVE 88-KEEP-ALL-CHILDREN TO INSIDE-A-CIR7,E

ELSE
MOVE 88-KEEP-ALL-CHILDREN TO OUTSIDE-ALL-CIRCLES
HOVE 88-DISCARD-SOBTREE TO INSIDE-A-CIRCLE.

* SET LAUNCH-POINT TO 1.
PERFORM 0010--CNVRT-COORDS THRU 3010-EXIT.
MOVE AXIIMU-RADIUS-IN-METERS

TO CITRLCRD-RADIUS-IN-METERS.
MOVE ZERO TO MAXIMUM-BADIUS-IN-METERS

IF LP-LAT (1) = ZERO
OPEN INPUT LAUNCH-POINT-FILE

AD-AO9 764 AIR FORCE INST OF TECHX WRIGHT-PATTERSON AFB OH
F/A 9/2

CRA.TECREINACESS METHOD FOR DATA
STRUCTURES WITH N---ETC(U)

1979 s v PETERSEN
N

UNCLASSI FIED AFIT-79-2
2 5

0

i J M- - 0

1.O
11111_125 _L4 I111118

-186-

PERFOR 0O010-RlED-LAUIIC-POINTS THRUG 0010-EXIT
VARYING LAUICH-POINT FROM I BY 1
UNTIL (LAUNCH-POINT > 100) OR END-OF-LPS

CLOSE LAUNCH-POZIT-FILE.
3OE HIGH-VALUES TO NONE-FLAG.
10E GR TO FUNCTION-CODE.
SORT SORTED-FILE ON ASCENDING KEY PRIMARY-KEY

INPUT PROCEDURE CARTAMt-RETRIZEVAL
GIVING SORTED-OUTPUT-PILE.

DISPLAY $FINAL STATUS a . STATUS-CODE,
'; NUN READS x '. NUHBER-VSAH-READS,
8; # INSTS w ', NUMBER-RECORDS.

GO TO O000-CNTL-LOOP.

0010-RAD-LAVICH-POINTS.
READ LAUNCH-POINT-FILE

AT END
NOVE 'END TO LP-END-PLAG
GO TO 0010-EXITr.TRANSFORN LP-DATA ?RON SPACES TO ZEROS.

HOVE LP-DATA TO LP-DATA-AREA.

- ~ .. ~ -.- --- -,- --' --- t

-187-

0010-Cl VIT-COORDS.
SET NURBE-OF-LAUECE-pOIITS TO LAUNCH-POINT. t
ip Li-RADIUS a ZERO

NOTE CNTRLCID-RADIUS-IN-UEPTERS TO
LP-RADIUS-IN-BETEIS (LAUNCH-POll T)

ELSE
IF hAUT-MILES

COMPUTE Li-RADIUS-IN-METERS (LAUNCH-POINT)
Li-RADIUS * 1852.0

ELSE
IF KILO-METERS

COMPUTE LP-RADIUS-IN-NZERS (LAUNCH-POINT)
Li-RADIUS * 1000.0

ELSE
ip PEET L-AIS*03

COMPUTE Li-RADIUS-N-METERS (LAUNCH-POINT)

ELSE
NOTE Li-RADIUS

TO Li-RADIUS-IlNMTERS (LAUNCH-POINT).
IF LP-RADIUS-IN-BETZRS (LAUNCH-POINT)

MOVE~~~ LiXB-RADIUS-IN-METERS (ANHPIT
NOTE ~ ~ MAXMU-RADIUS-IN-RETER(AUCHPONT

TO MAXIMUM -RADIUS-IN -METERS.
COMPUTE LP-LAT (LAUNC-POINT)

((LATD * 60 + LATH) * 60 + LATS).
IF Li-SOUTH

COMPUTE LP-LAT (LAUNCH-POINT)
a-LP-LAT (LAUNCH-POINT).

COMPUTE LP-LON (LAUNCH-POINT)
((LOYD * 60 * LOIN) * 60 + LOtS). ,

IF Li--NEST
COMPUTE LP-LON (LAUNCH-POINT)

=-LP-LON (LAUNC-POINT).
COMPUTE LP-DELTA-LAT (LAUNCH-POINT) ROUNDED

34 * Li-RADIUS-N-METERS (LAUNCH-POINT).
MOTE Li-LAT (LAUUCI-POINT) TO ADS-LAT.
IF ABS-LIT # LP-DELTA-LAT (LAUNCH-POINT) < 3241000

COMPUTE LATR ROUNDED
aLi-LAT (LAUNCH-POINT) 0 SECRAD

CALL OHAFSID m USING LATR,
LP-DELTA-LON (LAUNCH-POINT)

ELSE
MOTE 1500000 TO Li-DELTA-LOt (LAUNCH-POINT).

0010-EXIT.
EXIT.

CARTAH-RETRIEVAL SECTION.

VALK-RZTIENUL-PATB.
CALL 9CARTAND USING CONUNICATION-BLOCK,

KEY-OUT,
IDI-VICTORS,
NDI*EZLTA,
LOW-LIE ITSv
NIGE-LINITS.

IF NOT HORN-PATE
GO TO CARTA-RITRIEVAL-EIIT

ELSEI
NOVE GNP TO FUNCTION-CODE
HOVE NDI-LAT TO ADS-LA?
IF (ADS-LA? 4 NI-DELTA) NOT > 324000

* INITIALIZE TO OUTSIDE-ALL
NOVE OUTSIDE-ALL-CIRCLIS TO PUNCTION-COD-S
MULTIPLY NDI-DELTA BY ESTIMATOR GIVING DSN32
PERFORM 0200-CBK-LPS TURD 0200-CBK-LPS-EXIT

VARYING LAONCI-POINT FROM 1 BY I UNTIL
(LABICN-POIIT > EWE BER-OF-LAU ICH-POINTS)

IF KZZP-ALL-CRILDRZN
PERFORM 0300-KEEP-ALL THRU

0300-KEEP-ALL-ZXIT UNTIL N0T BORE-PATH
IF STATUS-CODE - IGE'

HOVI 88-CONTINUE-WALK TO
TO PUNCTIOtI-CODE-4

NOVE SPACES TO STATUS-CODE.

GO TO VALK -RETIVAL-PATS .

0200-CNK-LPS*
COIFUTE ADS-LIT W DI-LAT -LI-LIT (LA5ICH-POIET).
IF ABS-LIT NOT >

VDD-DELTA *LI-DELTA-LIT (LABICN-POINT)
CONIUTE ABS-LIT - DX-LOU - LI-LOU (LAUNCH-POINT)
IF ADS-LAT NOT >

NDD-DELTA # LI-DELTA-LOU (LAUCH-POINT)
CALL *VICTOR* USING DDE-LIT

ND-LOU
LI-LIT (LIGUCH-IOINT)
LI-LOU (LIUDCH-POINT)
DSTNCE1 IFLAG

SUBTRACT LI-RADIUS-lU -BETERS (LIAUCH-POINT)
FROM DSTUCR1

I? DSTWCE2 NOT > - DSTXCEI
* TOTALLY INSIDE A RIDGE CIRCLE

HOVE INSIDE-A-CIRCLE TO FUICTIOU-CODE-4
SET LAUNCH-POINT

TO NUEER-OF-LADDCH-POINTS
ELSE

IF DSTNCE2 > DSTICZl
* OVERLAPS A RANGE CIRCLE

ROVE 88-CONTINVE-VALK
TO PONCTION-CODE-4

IF DSTNCE2 > AIIBU-RADIUS-IU-BETERS
SET LAUCH-POINT TO

UURDER-OF-LAUNCE-POINTS.
020 0-CIK-LPS -EXIT.

El IT.

-190-

030 0-KEEP-ALL.
IF (NOT lODE) AND (ISL NOT < MhN-ISLE-NDEBER

AID NOT > HUX-ISLE-OUNDIR)
NOTE LOW-VALUES TO 3015-FLAG
PERFORM 03S0-EXPAND-COORDS

THRU 0 350-EIPAD-COORDS-EXIT
RELEASE SELZCTED-3ECORD FROS RESULT-AREA
ADD *1 TO IUDER-RECORDS.

CALL 9CIRTAM* USING COHHUIICATIOI-DLOCK,
KEY-OUT,
IDE-VECTORS,
SI-DELTA.

030 0-KEEP-ALL-EXIT.
EXIT.

035 0-El PAND-COORDS.
IF IDX-LAT < 0

COMPUTE LAT-LNG-WORK-AREA N DE-LIT
HOVE '5' TO LAT-IS OF LAT-OUT

ELSE
NOVE NDI-LAT TO LAT-LNG-WORK-IREI
NOVE 9I' TO LAT-NS OF LIT-OUT.

DIVIDE LAT-LNG-VORK-&REI BY SIXTY
GIVING LAT-LIG-WORK-IREI
REHAIDER LIT-SEC OF LIT-OUT.

DIVIDE LAT-LIG-WORK-IEA BY SIXTY
GIVING LAT-DEG OF LIT-OUT
REHAIDER LIT-HIN OF LAT-OUT.

IF NI-WIN < 0
COMPUTE LAT-LNG-UORK-AREI - DX-LON

HLE OVE 91W1 TO LON-EW 0? LON-OUT

MOVE NDE-LOI TO LIT-LNG-WORK-IREI
HOVE 95' TO LOI-EI OF LON-OUT.

DIVIDE LIT-LYO-WORK-AREA DY SIXTY
GIVING LIT-LNG-WORK-IREA
REUAIIDER LOW-SEC OF LON-WUT.

DIVIDE LAT-LNG-WORK-IREI DY SIXTY
GIVING LON-DEG OF LON-OUT
REMAXNDER LON-Ell OF LOW-OUT.

03S0-EXPAND-COORDS-EEIT.
EXIT.

CAR TAH-2ETRXIE V L-EXIT.
EXIT.

APNDII I

FORTRAN SBOUTIVE TO ZIPAID LONGITUDE

SII3DSoXIZ HAPSID (MLATp I3Th)
13Th a 3S(1.l15D/COS(LAT))

RID

