AD-A090 7ok AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F/6 8/2
. CARTAM. THE CARTESIAN ACCESS METHOD FOR DATA STRUCTURES WITH Ne==ETC(U}

NL

1979 S V PETERSEN
UNCLASSIFIED AFIT=79-2250

tor 3
P
Yo aa

T
= s

n

= &

28 e e

ADAO90764

AILE_copy

",

P

-

LEVEL -

(/ caemam |

—

The Cartesian Access HNethod

/

e

for

Data Structures with n-dimensional Keys,

/
!

ey

g

”7 ; 1}‘ r§(’i fhesis %y
/ -/ Bajor, Omi ateés Kir Pofce CTE

0CT 2 4 1980 F

CAFIT=79- 7 - F

In Partial Pulfillment of the Requirements
for'the degree of

Doctor of Philosophy

/’g\

|\ /l

California Institute of Technology
Pasadena, California

TN ATE

/// f*;;;;m§ giilj / i
\\J J/ - ~

(Submitted September 20, 1978)

This document has been approved
for public release and sale; its
distribtio. is unlimited.

53

e p—
EIEY ST SO |

[—
2

DY 7% T

PR

TN 3 Bt IR M AR

P

A S

REPORT DOCUMENTATION PAGE oK COMITL i ot

i3

" T REPOHT NUMBER 7 GOVY ACCESSION NOJ 3 HECIPIE 1T, (ATALDG HOMDY K
; TU-225D -
¢ T A(_-nd Subtitle) T e/ S Tyt OF HELPORID 8 FEHIOD (vt O
CAITAM - The Cartesian Aceess Method For [HES 1 S DISSERTATION
Data Structures with n=dimensional Keys 6 PEHFOHMING ORG, HEFORT tuUMEE K
T AGUTHOR(s) T T e e e ”—'"’4‘{?—0& FRACT OR GRANT NUMBE H, 3
Ma,) stephen Vauphn Petersen

P e — e h e —————— . .. e e i ——— s — . —_— - — .
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJEC T TaLx
AREA 8 WORK UNIT NUMBE HS

AF1T STUDENT AT:

-
" cBIvth[TJCB?I‘.{'E‘JTu} rr;b ADDRESS 12. REPORTY DATE -
AFIT/ 19749)
. Nk . 13. NUMBER OF PAGES
WPAFB OH 45433 191

el e e e —— e~ - —
14, MONITORING AGENCY NAME 8 ADORESH(I differont teom Controlling Otte o) 15 SECURITY CLASS (ol thas req ot

UNCLASS

150 DECL ASSIFICATION DOWNGHALING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abatract entered l:_l-)_wrl 20, if diftarent trom Report)

T ~{g1£vk,(fj L

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17 FREDRIC C. LYNCH Mjjer, USAF
25 SEP 1980 Digsctor of Public Aoy (arc)
Wright-Patterson AFB, OH 45433 o

19. KEY WORDS (Continue on reverse sitde {l necessary and identily by block number)

20. ABSTRACT (Continue on reverse alde Il necessary and identity by block number)

ATTACHED

DD ,52:“-,, 1473 7 €oimion oF 1 NOV 8815 OBSOLETE UNCIL.ASS

SECURITY CLASSIFICATION OF THIS PAGE (When lare ! (.. e,

QN 1n_ 1A _1m°

ACKNOWLEDGNENTS X

I vish to thank Dr. Prederick B. Thoapson for his guid-
ance and support as ay teacher and friend during my stay at
Caltech. By graduate studies were supported by the Air
Porce Institute of Technology, for vhich I am very grateful.
In addition, I as indebted to the Deputy Chief of Staff/Data
Systeas, Headquarters, Strategic Air Comsmand, for an assign-
ment conducive to the pursuit of my project. In particular,
I extend ay appreciation to Staff Sergeants Dennis D. Hewitt
and Thomas C. Howard for their assistance in testing and
production applications of the CARTAM programs. So many of
ay co-vorkers have provided support by listening to ideas,
proofreading, etc., that I am unable to list thes all by
name, but I offer ay thanks to all.

By heartfelt thanks go to Captain Gene C. Blooa for his
support, encouragement and friendship; he managed to kick
me out of ruts and bottom dead center innumerable times.
Pinally, I siaply cannot 3o justice with any vords here
except to say, "Thanks!®™ to my lovely vife Sue, who has had
to endure much while I completed this project. Without her :
love and support, this never would have been finished. 1

|
l
Opinions expressed in this paper are ay own and are not
to be considered an official expression by the Department of i
the Air Porce. If any osissions or errors remain due to any i
lack of thoroughness or gemeral laziness on ay part, they
are ay ovn and I claim full responsibility for thens. |

Accession For h
|

NTIS GRAXI X]
PTIC TAB / |
Unannounced ~ ?1
Jwstification_ ___ .

e e f
Distribtuticny) |
Availability Codes m
Avail and/or ‘

Pist Specinl

e L e i AR iy S -

ABSTRACT
\\w

‘1The Cartesian Access Method (CARTAN) is a data
structure and its attendant access program designed to
provide rapid retrievals from a data file based upon sulti-
dimsensional keys; for examsple, using earth surface points
defined by latitude and longitude, retrieve all points
vithin x nagtical miles. This thesis describes that data
structure and progras in detail and provides the actual
routines as iaplemented on the International Business
Machine (IBM) System/370 series of computers. The search
technique is analogous to the binary search for a linear
sorted file and seeas to run in O(log(N)}) time. An
indication of the performance is the extraction, in less
than 25 milliseconds CPU time on an IBM 370, Model 3033, of
all points within a 10,000-foot circle fros a geographic
data base containing approximately 100,000 basic records. &

e et o ettt e s - e e e e e < e

~fvy-

TABLE OPF CONTENTS

Acknovledgasents
Abstract

Table of Contents

Illustrations

Chapter
I Introduction
1x Background and Problem Definition
I1I An Unusual Data Structure for the Real Line
v Generalization to n-dimensional Space
v An Application Prograsmer?®s View of CARTAN
VI Inside CARTAEM for the Maintenance Programaer
VII CARTAM in Use
VIl Assessaents and Recoamendations

List of References

25
a1
63
87
102

105

R TN
il

i A i i A PR

R O TR

=gy

AT e

v LT YL SN e g WA

SRR

Bt

P AR PPy N

.'~

Appendix
A CARTAN Source
B Subroutine VECTOR
|~ VECTOR Source
D Copy Books for COBOL Prograas Using CARTAR
) Index Load Progras Source
4 VSAH Pile Definition Example
G Circle Search Program Source
.| Inclusion/Bxclusion Area Search Prograa Source
I PORTRAN Subroutine to Expand Longitude
ILLOSTRATIONS
Pigure 3-1. Ring Structure Exaaple
rigure 4-la. Cartesian Square Subdivision
Pigure 4-~1d. Corresponding List Structure
Pigure 4-2. Conditions for Intersection
Pigure 4-3, Plov Chart of INTERSECTION_PFUNCTION
Pigure 5-1. Calling Sequence Requireaents
Pigure 5-2. Cosmunication Block
Pigure 6-1. DSECT of Cosamunication Block
Pigure 6-2. DSECT of PCBAREA
Pigure 7-1. Circle Search Coaditions
Pigure 7-2. Perforsance Statistics
Pigure 7-3a. Inclusion Area Search Exasple

Pigure

7-3b. Bxclusion Area Search Riample

106
136
148
163
165
172
173
181
191

i1
29
29
32
36
a3
a8
72
73
90
93
95
95

LAV SOV Y

— e

i o o9 } T b -

CHAPTER I

INTRODUCTIONR

The age of information is upon us. Whether the com-
puter has been developed to allov us to manipulate that
information or to generate it is a moot question at this
time; ve do have large masses of data and must use the
cosputer to manage thea efficiently. The corporate data base
has becomse an all-important entity in many, many cases, and
the management and retrieval of information has become a far
froa trivial operation; vitness the proliferation of data
base managesent systeas on the market today. I am not
trying to address that aassive subject; rather a ssall
corner concerned wvith the efficient searching and retrieval
of pertinent inforsation to ansver some rather specific

guestions.

It is extresely rare that a question is asked which
requires access to an entire data base to develop the ansver.
In the vast majority of cases, ve only need to examine
certain rather small subsets of the availadble data. Hany of
these instances involve the determination of a Xey value or
a range of key values vhich are then used to access the

appropriate record (s) to answer the original guery. So far

AR b ey g A Sy PP

-

these keys have been single-dimensional values used to probe
a linear sequential file of some particular organization.
There have been many methods developed to solve these types
probleas; Knuth devotes an entire volume to thesm [8].
Bowever, if the information is keyed by multi-dimensional
values, such as points in Cartesian space or locations on
the surface of the earth, existing sethods do not readily

lend themselves to ansver questions of proximity or nearness.

This paper presents a solution to the probles of
efficient probes into multi-dimensional data using a method
of quadrature to develop a data structure vhich has become
very useful for questions such as: "Which resorts are within
a day's drive of ay home?®; ®How many doctors and dentists
are located in the state of Arizona?"; ®what types of
navigation aids are available for an airline route from San
Prancisco to Moscow?”, etc. I shall develop this structure
and the imsplementation of some cosputer programs vhich

provide the ansvers to these and other similar questions.

The first of three main divisions of this thesis is a
step-by-step development of the data structure and its algo-
ritha. In order to establish an initial environaent,
Chapter 1I briefly describes some geographic data files in
use at Headquarters, Strategic Air Coamand (SAC) and the
sethods that vere used to query those files. After exami-

nation of the probles, the basic algoritha for our solution

e) - i, . ‘v:r e

al

-20

these keys have been single-dimensional values used to probe
a linear sequential file of some particular organization.
There have been many methods developed to solve these types
probleas; Knuth devotes an entire volume to them [8].
Hovever, if the information is keyed by multi-dimensional
values, such as points in Cartesian space or locations on

the surface of the earth, existing methods do not readily

lend themselves to ansver questions of proximity or nearness.

This paper presents a solution to the problem of
efficient probes into multi-dimensional data using a method
of quadrature to develop a data structure vhich has become
very useful for questions such as: "Which resorts are within
a day's drive of ay home?®; ®™Hov many doctors and dentists
are located in the state of Arizona?*; "what types of
navigation aids are available for an airline route fros San
Prancisco to Moscow?®, etc. I shall develop this structure
and the isplementation of some computer programs which

provide the ansvers to these and other similar questions.

The first of three main divisions of this thesis is a
step~-by-step development of the data structure and its algo-
ritha. In order to establish an initial environasent,
Chapter II briefly describes some geographic data files in
use at Readquarters, Strategic iAir Coammand (SAC) and the

nethods that wvere used to query those files. After exami-

nation of the probles, the basic algoritha for our solution

4
; -3-

is developedﬁin Chapter 1IIX. This development is in one
dimension, specifically the real line, as illustration to
allow cgn;atison vith existing file search strategies, in
partiéﬁlar the binary search scheme. As such, the algoritha i
and structure vill appear very cuabersome; the utility of

the method becomes apparent in Chapter IV as the structure

and algorithm are generalized to n dimensions.

The second section of this paper covers the technical

aspects of the actual implementation. Chapter V is intended

as a user*s guide for the programmer/analyst vho plams to
use this n-dimensional programming techique to solve a y
specific problea. The implementation is as a subroutine, l}

and this chapter describes the calling seguences and the

results that are to be expected. Chapter VI goes into the
internal wvorkings of CARTAM and is maintenance information
intended for the assembly level programmer vho vishes to

both install the system on his own hardware and/or maintain

it vhile in use.

Once the reader is avare of the available operations,
a series of examples is presented in the third section to

demonstrate the use of the system. Chapter VII describes

a fev of the current application programs in day to day use

at Headguarters SAC. These prograas may prove to be useful %#
to the reader in their own right, but the main purpose is to |
illustrate sose msethods and shovw how the data structure say ,

i . - D o e &f{}..ah?:ffafslf.“ﬁ\i@év- -

-4~

be used. I hope that they will serve as juaping-off places
for solutions to existing probleas that had been deenmed
either unsolvable or too costly to solve using previously
knovn methods. Chapter VIII concludes vith some thoughts

and recommendations on possible future applications and

improvesments.

The appendices, with one exception, are listings of the
prograas that have been in use at SAC for the last year.
Appendix B contains a detailed description of a distance-
calculation function or metric used to compute geodetic
distances on the surface of the earth. This metric is used

throughout the examples in Chapter VII.

o em.

R 4 R e

e e e 2

P

CHAPTER IX

BACKGROUND AND PROBLEM ENVIRONMENT

The data structure and access technigues as described
in this thesis vere developed primarily at Headguarters,
Strategic Air Command, Omaha, Nebraska, and specifically
applied to geographic data files used by the Joint Strategic
Target Planning Staff. These particular files are used as
concrete exaaples and are not intended to imply that these
are the only possible applications; the method may be

applied to apy multi-dimensional data file.

The first file that wvas exasined consists of approx-
imately 50,000 records describing points on the surface of
the earth. Most of the information in each of these records
is of no consequence to this discussion except for a unigue
21 character key vhich can be used for retrieval of a
desired complete record, and the latitude and longitude

vhich specify the location of the item on the earth.

Queries against this file by location have been limited
to small areas which alloved use of a limiting procedure
based upon a range of latitude values. This procedure

started wvith an external sort based on the concatenation of

L)

- B S s TN Rt R S TUR|

-

latitude and longitude into a single key used for sort

| ———c——~

sequence. The resultant file vas then read a record at a
time, checking for inclusion inside a gross "box"™ defined by
constant latitude and longitude, storing candidate prime
keys in an internal table. Since the file is sorted with a
L major key of latitude, the read procedure is tersinated wvhen
the input latitude is greater than the upper limit of the
box. HNote, however, that many records are read which will

fail the gross longitude check.

After the table of candidate keys is built in aain
memory, a finer discrimination is made with an appropriate
setric to arrive at the final set of accepted records. Some
applications are summarizations that permit the packaging of
several distinct queries into a single program. Since each
candidate may then be examined for each criterion, a large
number of the disk input operations are eliminated.

Hovever, this method is absolutely memory-bound and cannot
atford a criterion resulting in a large candidate subset of

the original file.

An attempt at clustering has been applied to this geo-

graphic data resulting in an "island®™ systea. These islands
have been defined such that each island is disjoint from all

others vith a ainimum separation betveen any two adjacent

islands. The island assignment procedure is simply a scan I3

through the entire file as described above, looking for the I

=P

island that is less than the minimum distance avay fros the
nev point. Another wvay to consider the clustering is that
an island is the collection of all those points that are

vithin the maximums separation of another point. This does
manage to cluster points in manageable groups in most cases, L
but occasionally islands grow to an unwieldy size. Those
islands are then manually broken up by using a smaller F

separation distance.

Once the islands have been assigned, a non-trivial
process, subsequent processing is usually done on an islaed
basis. An application program is given an island to g
process, at which time all mesmbers of that island are read
into sain memory and the necessary fine discriamination is
applied to that subset. This methodology is not too
unmanageable as long as the number of members does not get {
too large; anything over approximately 500 records begins i
to degrade performance. The island approach also limits the
fine discrimination to a distance criterion no greater than
the sinimum separation between islands. If the desired

distance is greater than the minimum separation, the method

breaks down completely since the search area may need more

than one island.

A second major file concerns points used to describe
country and coastal boundaries for mapping applications.

This data set contains approximately 100,000 data points

e W - NS

e b SEALE e N

-8
and is stored in a sequence suitable for display on an x-y
plotting device. The mapping softwvare is capable of
discarding those points outside of the area being mapped,
but the entire file sust be read each time, which drives the
cosputing times to rather large values. When maps are being
prepared in a batch environsent for hard-copy output to be
produced on a flat-bed plotter, the high CPU time may be
acceptable, but not in an interactive environment with maps
to be displayed on a CRT device. The only knovn method of
operation vas to pre-build desired maps overnight, which
restricted a user to those, and only those, maps. If, for
any reason, the user changed his mind, nev maps were not

available until at least the next day.

As can be seen, in many instances ve have been strictly
memory-bound for area type gueries after reading the entire
source file. The atteapt at clustering the data has
improved this to some extent, but only if the distance cri-
terion is not too great. ZREven SO, prograss have been
required to define internal table space to allov for the
mazimum size of a cluster and discrimination within the
cluster required a distance calculation froa the point of
interest to every memder of that cluster. The data
structure and techniques described in the remaining chapters

have resoved these restrictions entirely.

——. = ———

™ Cear

irenanis

CHAPTER IIX

AR UNUSUAL DATA STRUCTURE
POR THE REAL LINE

The problea of retrieval of inforsation froam a large
file is usually solved by determining a unique key for each
record, imposing an ordering operator (>) on the key field
and subsequently storing the data in a linear fashion on
secondary storage. BRetrievals may then be accomplished by
several efficient search strategies, e.g., binary search,
hashing, etc. If the individual records are substantial in
size, indexes are useful in reducing secondary storage
access time, but the problem of searching the index has not

changed.

An order is imposed upon the key values to increase the
asount of available information. 1 linear sveep of such a
file may be terminated wvhen the key value becomes greater
then the desired argument, vhere a randoa ordering would
require examination of every key value in the file. This
linear probing of a sorted file results in an average access
of N/2 records, vhere B is the total nuaber of keys in the
file of interest. 1 much faster technique is the so-called

binary search, vhich probes the median record in a sorted

e ———— e
A
o , e e et e S ﬂ

file and detersines which balf might contain the desired

key, thus discarding the other half. Considering thie

resaining sub-file as a file itself, the median record of o
the sub-file is thea probed. This algoriths terainates '

successfully vhea the desired key is found, or terainates }*

unsuccessfully vhen adjacent keys in the file bracket the
desired value. The binary search algoritha accesses an

average of approxisately log2(N) records and is said to run

in log (N) time. These algorithass have an underlying
assuaption that the key values aay be mapped one-to-one with
a subset of the integers in a seaningful vay vhich allowvs

for the application of an ordering operator and subsequent

sorting of the file.

Hovever, if the file consists of geographic data, for
example, with latitude and longitude for coordinates, the i
concept of ordering becomes nebulous at best. It is true
that on a general purpose computer, the latitude and
longitude nay be defined in such a fashion as to each reside
in a cosputer vord of, say, 32 bits. These tvo cosputer
vords could be concatenated into a 64-bit key value, and

the file could then be sorted accordingly. A problea arises i

vhen trying to decide vhich coordinate is to be considered §
as the major portion of the key. If latitude is chosen as)
the major key, then data points with identical latitude will

be ®close® together in the file, bat data points with iden- i

tical longitude may be "far” apart in the file structuore. !

Since points on the surface of the earth as denoted by
latitude and longitude have their own problems in relation
to a setric, let vz suspend consideration of geographic
points for now and concentrate on a Cartesian space, i.e.,
the cross product of the real line, in n disensions. The
sisplest Cartesian space is the real line itself vhere
a=1. Thus, the following discussion vill be limited to
the one-disensional case and may appear unnecessarily
coaplicated at times, but remember that the eventual goal is

the extension to n dimensions.

Let us exasine a binary search strategy as applied to a
linear, sorted file. 1In particular, consider a ®"unifors
binary search® as described by Knuth [8,pg 413) using Shar's
modification.

Given a tadle of records R1, R2, ... , Rm, vhose key
values are in increasing order K7V < X2 < ... < Ka, ve can

search for a specified argusent K, using algorithm C:

Ci{ Initialize)
Set 1 := 2¢%k vhere k = tlog2(m)?.
(BB: tlog2(m)? is the floor of log2(s) or the
greatest integer < log2(a); i.e., X = tlog2(m)?
is an integer such that X < log2(a) < k *+ 1,)

-12- 3

I K = Ki, algoritha tersinates successfully.

If K < Ki, set 4 = 2¢%k, go to C2.
I£ K > Ki and s = 2%sk, algoritha terminates
unsuccessfully,
but if m > 2¢%k, reset i :=a ¢+ 1 - 293§
vhere j = Llog2(m-2%%k)s + 1,
(note that 288k - 1 < m ¢ 1 - 288§ < 289k)

set 4 := 2¢%J, and go to C3.

C2[Decrease i]

If£ 4 £ 1, algoritha terainates unsuccessfully:

else set 4 := 472,

set §{ =i - 4,

go to C&a,

C3{ Increase i)
I£ 4 £ 1, algoritha terminates unsuccessfully: ?

else set & := 4/2, -

set i :=1 + 4,

go to Ca.

C4{ Coapare)
If K < XKi, go to C2.
If K > Ki, go to C3;
othervise X = Ki and

algoritha tersinates successfully.

-13-

The choice of the underlying storage organization for
our table of records is a crucial consideration. If the
table is saall enough to be contained entirely within the
primary store of the cosputer, transforsation of the index '
value i into a displaceaent into the table is a simple
calculation. Eovever, coaplete residence in primary store

pay be prohibitively restrictive, as a table of any

appreciable size aust be on secondary storage. In addition,

the transforsation of the index into a displacement into a

- ———

RN .
PRSI VPRI ISR SERN .

multi~dimsensioned table becomes complex. Por these reasons,
and others as vill become apparent later, I have chosen to

store structural inforsation in an explicit binary tree,

with modifications. 1Instead of the left and right links of

the usual binary tree, I use the child and tvin pointers of

a ring structure or circular list. This ring structure as

illustrated in figure 3-1* also includes the parentage

inforaation usually provided by an up-~link without needing

the additional pointer space in the record entry. A single |
bit in each record serves to indicate vhen a tvin pointer is ‘

in fact an up-link. It is also convenient to include an

oThe usual depiction of chains in linked lists in diagrams
is from left to right. The usval representation of a
negative nusber in a general purpose computer is with a
bit set to ®*1®, When a linked list chain is arranged in
ascending order based on a bit string of arithesetic signs, 1
ve then have an inversion betveen a picture of a line :
segeent and the corresponding list. I hope this will cause

no probleas to the reader.

\
PO Y. R o TS ot kbt j

[-¢ @2an8gy

d[dwexy oanjonulyy duypy

/ / / /

17 - 1 7] m 171 = 171

-l4-

17 |7

Tt _e

—
=t

o

evjep i

-1§=
explicit indication as to vhether a particular record is the
positive or negative child of its parent record. This

indicator is a single bit in the one-dimensional case.

Since the file is being stored as an explicit binary
tree, note that additional records are being generated, and
the concept of an "i-th"® record for the algoritha becoaes
imprecise. Assume for the moment that the key values (XKi)
are integers uniformly distributed over the interval -X to
+X vhere X = 2¢%x and x is the smallest integer greater than
or equal to log2(max(|Kif)), i.e.,

x - 1< log2(max(jKi))) < x.
Then a root record with a key value of 0 and a delta of X
defines the interval = 01X as a cover for all key values of
interest, i.e., a line segment that contains all key values
vithin it. Dividing the interval in half, the root segment
nov has a positive child and a negative child at the next
level of detail. 1In the ring structure under consideration,
the positive child is reached from the child pointer of the
root record, vhile the negative child is reached by following
the tvin pointer of the positive child. The negative child
record vill have the parent indicator set showing that the
tvin pointer in that record points back to the parent,
closing the ring. Carried to the logical conclusion, each
record in the file defines a finite length line segment by
specifying the center coordinate value and a delta or line

length to either side of the center.

e L inhe)

-16-

There are some important points to keep in mind adout
the line segments as defined by the file records. The
children of a given record subdivide the line segment as
defined by the parent record. In particular, if ve comsider
a record as defining a set, which is exactly a line segment
in the one-dimensional case, the set intersection of records
connected by twvin pointers is empty, vhile the union of
those same records is identical to the parent record. These
conditions of intersection and union also imply that the
the intervals defined by the records are only half-closed,

specifically, closed at the left end and open at the right

end. As an example, assume that ve have a set of key values

such that -15 < Ki € +15. Then, x = U4, and the first few

generated binary tree records are:

Record nus Key (Ki) Delta Twin ptr Child ptr Direc i
0 !

1 16 — 2 -— i
2 8 8 3 4 + |
3 -8 8 1 6 - i
4 12 4 5 8 + ‘
5 [4 2e 10 -
6 - 4 ? *
7 -12 [3s -
8 1% 2 9 . |
9 10 2 (3] -
10 6 2 1 . ¥
1 2 2 5 -

The asterisks in the twin pointer column indicate the end of
the ring, i.e., the parent pointer. ©Note that the delta

value for each record defines the distance from the center &

-17=
to either end of the line segment, i.e., delta is one-half
the length of the interval. Graphically this can be

represented by:

Record nua =16 -8 0 +8 +16
1)
2 3)
3 3)

4)
5 —
6)
7)
8)
9)

10 I

1 —

If the key values are dense in the integers, i.e., the
difference betveen consecutive Xeys is exactly one, then the
length is halved each time ve follow a child link or
descend one level in the tree. Also, if ve follow the twin
link, unless marked as an up-link, ve remain at the sase
level in the tree, but go to the complementary line segment.
Hovever, since key values are very rarely dense in the
integers, stict adherence to the notion of equal deltas at
the same level in the tree would result in extra nodes which
have only one child instead of tvo. Therefore, ve eliminate
an extraneous node by replacing it in the ring with its only
child. BNotice that nov delta values are not necessarily
halved vhen folloving a child link, nor are they egqual along
a tvin chain. Thus, it becomes useful to explicitly carry

the delta value in the record entry.

C e e 1 A7 ~ ot A \ben £ g

G i "~.u .
el atE AL LA N e

~18~
The binary tree as stored on a secondary storage medium
contains tvo basic types of records: terminal records
corresponding to the original data points, and internal
nodes or branch points of the tree vhich have been generated
due to the structure definition. Bach recourd, accessed

through a pointer of value P, consists of:

1) a key or coordinate value of the center of the
interval K(P)

2) a delta value of one-half of the length of the

interval D (P)
3) a child pointer Child (P)
4) a twin pointer Twin (P)

5) if the record is a terminal, additional data
germane to the original data record
6) various flags, such as:
a. node or terainal indicator
b. end of tvin chain in ring, and
C. the sign of the difference between the record'’s
coordinate and the coordinate of the parent of

this record as a direction indicator Q(P)

It is obvious that construction of this explicit binary
tree generates overhead with the node records. Since extra-
neous nodes have been eliminated, any record with a non-null
child pointer has twvo children. To deteraine just hov much

overhead is generated, let t dbe the number of terminals

-9~

present, and let x be the number of generated modes. If t°*
and t® are subsets of t such that t* = 2%%k® and t®» = 2%sx*
for some integers k® and k™, then the number of nodes
generated for the appropriate subtrees are x* and x*.
Applying the summation of a geometric progression with a
ratio of 2, and noting that any tvo subtrees may be
connected with one additional node, we obtain:

X 4+ X% = (E* = 1) + (t® - 1) + T =¢t? 4 t” -1,
By induction, then,

x =t ~1.

When storing the tree on a secondary storage mediuam, it is
useful to have a master node, the root, at a location in the
file that is alvays known. The only location that is alwvays
knovn is the first one; therefore, ve add an additional
node to the structure as the master root record, which makes
the total number of generated nodes equal to the number of

terminal records.

\
R -
BRI 2T SU . A ERE NN %

20~
With the structure as just defined, the earlier search
algoritha C is modified to give algorithm T to search for a

given argument K:

T Initialize]

Set P := root.

T2[Compare]
Set D := K - K(P).
If D =0 and D(P) = 0, terminate successfully.
{ Record is a node if D(P} > 0.)
If D 2 0, go to T3;

else go to T4,

T3(D positive]
I£f D 2 D(P), terminate unsuccessfully;
else set P z= Child (P},

go to T2.

T4[D negative]
I£ D < -D(P), terminate unsuccessfully;
else set P := Twin (Child (P)} .,

go to T2.

When searching for a specific argument K, algoritham T
may seea unnecessarily complicated. However, if the search
is for all records vwith key values in the range X ¢ 4,
algoritha T may be extended in the following fashion with a

stack, as algoritha R*:

R*1{Initialize]

Set P := root.

R*2{Compare]
Set D := K - K(P).
If D20, go to R*3;

else go to R,

R*3[D positive]
I£f D2 (d +# D(P)), go to R*6;

else go to R*S.

R*4[D negative]
I£f D ~-(da + D(P}), go to R"6;

else go to RS,

R*S[Check overlap]
If D) s (@ - D(P)),
present entire subtree as successful,
go to R'6;
else set P := Child (P},
push Twin (P) to stack,

go to R'2.

R*6[Pop stack]
If stack is espty, terminate;
else pop P := top of stack,

go to R*'2.

-22~-

Algoritha R®* allows extraction of information froa the
binary tree structure. BHovever, before any extractions can
be performed, the tree must be built. After initialization
and definition of the file by writing a master node record,

repeated insertions using algoriths I°® vill build the file.

I*1[Initialize insert]
Set K := key value of record to be inserted.

Set P := root (pointer to master node).

I*2 Set D := K - K(P).
Set Q := sign(D).
If D} < D(P), go to I'3.
If |DI > D(P), go to I'S.
otherwvise ()D) = D(P)), so
if Q = ®4®, go to 1*'S (open end of interval):

else go to I*'3 (closed end of interval).

I*3[Inside])
Set P* := P.
Set P := Child(pP).
I'4fwalk ring])
I£ Q = Q(P), go to I'2.
I£f @ > Q(P), set P := Twin(P), [Ren C B-m]
go to I%4;

else go to I°S.

P .

T e i

3
=

-23-

I*S{outside; record (I) to be inserted vas inside the

line segment defined by node(P*) and vas on the 0
gside of the center of that segment. The existing
child on that same side, record(P), defines a line
segaent vhich does not include the nev record(l).
Replace record (P) in the ring vith a nev node (P®),
and make the nev record (I} and record (P) children
of node (P*).]
Set D(P®) := D(P*).
Set K(P®) == K(P').
Set Q(I) := Q.
Repeat [Adjust Record (P%)]
Set D(P™ := D(P™)/2;
If Q(I) = %=,
then set K (P™) 2= K(P") ¢+ D(P"),
else set X(P®) := K(P®) - D(P"):
Set Q(I) := sign(K(I) - K(P™));
Set Q(P) := sign(K(P} - K(P")};
ontil Q(I) 2 Q(P).

S ———

-24-
I*6[Ad3just pointers)
If Q(I) < Q(P) [%e® < »-"]
then
set Chila (p™)} := I,
set Twin(I) := P,
set Twin(P) := P® and mark as parent;
else
set Chila (p™) := P,
set Twin(P) :=1I,

set Twin(I) := P" and mark as parent.

The structure and techniques just described are much
too complicated for efficient application to data keyed fros
the real line. However, the real line is simply the
degenerate case of the eventual goal, n-dimensional space,
and is described in detail for ease of illustration. As
vill be seen in the next chapter, the n-dimensional case is

obtained fros this development with quite simple extemnsions.

e =
R

— - T TR

CHAPTER IV

GENERALIZATION TO n-DIMENSIONAL SPACE r

The last chapter discussed at some length a rather
unusual data structure for information keyed by a single
coordinate. In this chapter, I will present the extensions
to the data structure and algorithas vhich provide for the

n-dimensional case and give the rationale for the design.

One of the more obvious questions concerns the use of a
ring structure rather than the usual binary tree linkage of
elements. After all, each record carries tvo link pointers
vhile the ring has only tvo elements. The tvo pointers
could just as wvell have been left and right links, elimi-]

nating the requirement to walk over the positive record in

order to access the negative record. Hovever, in extending
to a higher dimensionality, the numdber of pointers required

to define the structure increases exponentially.

In particular, in n-dimensional space, a given ring may

contain up to 2¢%n entries. The ring structure allovs this ?
expansion of the number of entries with no additional
pointer requirements, vhile a separate pointer in the record a

for each possible child rapidly consumes an inordinate '

-26~
amount of space. The ring structure also accomsodates the
absence of records very nicely, while individual pointers
vould have null values in many cases. Then there are
additional physical lisitations imposed by the computer
hardvare. A8 an exasmple, consider the IBER 360/370 series of
computers vhich use an address of 24 bits. If individual
pointers wvere carried in a record, an application with 25
dimensions, for exasple, vwould require a record format with
2%¢25 pointers. This technique obviously would require a
record much greater in size than the entire available

computer memory.

The overhead generated by the tree structure is a
direct result of the node records that define the structure.
This overhead has been minimized to an extent by elimination
of extraneous nodes, i.e., those nodes which vould have only
a single child. I have shown that in the one-dimsensional
case the nuaber of node records is equal to the number of
terainal records. Por the n-dimensional case, this number
becomes an upper bound for the vorst case situvation where
any given node bas only tvo children. Most nodes in the
n-dimensional case will have more than tvo children; in
other words, a tvin chain wvill normally be longer than two
entries, but in no case vill the length of the twin chain be

greater than 2%,

-27~-

The upper bound U for the number of nodes in a file

vith t teraminal records is exactly equal to t. The lowver
bound L is attained wvhen every node has r = 2¢+n children
or the tvin chain length is r. As vas done for the one-

dimensional case, t could be broken dowvn as a suamation of

integer povers of r, but since r subtrees would have to bde
Joined under a junction node to saintain optimality, and ve
are only interested in a lower bound, it is coanvenient to

assume that t is already an integer power of r. Using

the sum of a geometric progression once again, nov with a

ratio of r between successive terms, the lowver bound is:
L=1+¢+(t-N/(ct-1.

Por an example, assuse n = 2 and t = 65,536 = 4%%8_, Then

the upper bound U = ¢t = 65,536 node records, vhile the lower

bound L = 21,846 or roughly 0.3t node records. The approx-

imate range of 0.3t to 1.0t therefore indicates the actual

nuaber of nodes. Actual experience with a geographic data
file has resulted in a file structure with approximately

0.7t node records.

!
l
i These considerations, then, dictate the use of a ring ‘
structure vhile the record content as given in the last t

chapter is extended for n dimensions as:
1) n key or coordinate values for the center of a |
(hyper~) square Ki (P) %
2) a delta value of one-half the length of a side i

D (P)

. ’ N .
it i i O }_.::1“ _ - A“;-:,‘A"AE'AM' X 'ﬁe,'wi’;&‘un*: boooF

-28~-
3) a child pointer Child (p)
4) a tvin pointer Twin (P)
5) application dependent data for terminal records
6) various flags:
a. node or tersinal indicator
b. end of twvin chain indicator
¢. a quadrant indicator of n sign bits of the
difference betveen each coordinate of the
record and the corresponding coordinate of the

parent record Qi (P)

As an example of the list structure compared to an

actual square froama a Cartesian space, see figure 4-1.
Pigure 4~1a shovs the example square, vhile figure 4-1b
depicts the list as defined by the node and teraminal

records. The root node A defines the outer square which is 1

then subdivided by the four childremn, B, C, D and E., The
square defined by node E is then subdivided further by its

children, P, G and 2 wvhile the children of B, C and D are

not shovn. Bode G is then subdivided even further by H, x }
and y. Again, the children of P and H are not shown. The

terminal record z specifies the only data point in the ™e-»®

quadrant of E, vhile the ®—® guadrant is eapty as indicated

by the absence of a corresponding record in the list.

Terzinal records x and y likevise specify the only data

points in appropriate guadrants of G. Overall, the process

T T g e -

.

-29-
A A
-t B ot b C —

Y Y

Cartesian Square Subdivision

Figure 4-1la

Corresponding List Structure

Fieure 4-~1b

o

ey

-30~
of subdivision is continued until a quadrant of a given
square contains a lone terminal record; a node record is

never defined unless it would have at least tvo children.

The n+i-tuple (K1(P) ,K2(P),ee-,KnN(P),D(P})), vhere
each coordinate Ki (P), in connection with D(P}), defines a
half-open interval as in the one-dimensional case, defines a
square if n = 2, a cube if n = 3, and a hyper-cube if n > 3.
Since a cube may be considered a hyper-sguare, and exanmples
are presented in two dimensions much more facilely than in
higher dimensions, I shall use the teram square in the
remainder of this paper to refer to the object defined by
the n+1-tuple. In a similar vein, I shall use the tern
rectangle vhen referring to the object defined by an ordered
pair of n-tuples; the first n-tuple is a vector of
coordinates defining the lower limits of the intervals or
the lowver left corner, while the second n-tuple is a vector
of the upper limits of the intervals or upper right corner.
Note that in the case of the rectangle, the intervals

defining the sides are closed at each end.

The rectangle is used primarily in conjunction with an
area search request, algoritha R*, but is also useful in
the insertion scheme, algoriths I°®, by alloving the
rectangle to degenerate to a point. In both instances, the

algorithas essentially ask the gquestion, "Does a square as

'

-39~

stored in the file intersect wvith the search rectangle?

i If it does, is the square totally inside the rectangle or

vice versa?® Let®s examine the area search first.

As vill be seen vhen algoriths R® is extended to n

F dimensions, the question of intersection is as stated above.

See figure 4-2 for some pictorial examples of possible ?i
situnations vith a search rectangle as defined by X. Squares
J A, B, C and D have non-empty intersections with X, but there
: is insufficient inforsation to make a positive decision;

the structure must be examined further at a finer level of

detail. Square E has an empty intersection with rectangle

X; therefore, we may discard the entire subtree by
proceeding immediately along'the tvin chain. Square P is
! totally enclosed by X; thus, the entire subtree may be

accepted as meeting the search criteria.

ﬁ{ Returning to square D for a moment, there is additional
| information available, namely only one particular child of
the square could possibly be of use to the search request.
As will be seen, determination of the intersection involves
arithmetic on the coordinates; construction of a Q type bit
string is very simple. If such a bit string is constructed
for each of the limit vectors, high and lowv, and the bit
strings are then identical, the only child of interest will

be exactly that child wvith the same bit string Qi(P).

Conditions for Intersection

Figure 4-2

~-33-

The search application uses an ordered pair of n-tuples
or vectors to define the rectangle, vhile the insertion
algorithe uses a single vector as input for the record to be
inserted. 1If ve let that single vector be used twice, i.e.,
as a definition of a degenerate rectangle, the same set
intersection function may then be used in the insertion
algoritha. It will turn out to be useful to allow insertion
of terminal records with identical coordinates, although
differing ancillary data, which can be done by inserting a
node record with a zero~valued delta and them chaining term-
inal records as children of that node. If the set inter-
section function is able to indicate whether the degenerate
rectangle is totally inside the square and vice versa, and
if both conditions are true, then the identity intersection
would be indicated. Note that as a result of the half-open
character of the square definition intervals and the closed
nature of the rectangle defining intervals, the identity
intersection technically could never occur. Hovever, Since
computer arithmetic is finite in nature, the identity
intersection can occur, but only vhen the intersection is
betveen a degenerate rectangle and a node with a zero delta
or a tersinal, i.e., a data point, vhich is exactly the

condition that the insertion algorithm will need.

-34- %
Since the set intersection function is very isportant]
to both the search and insertion algorithas, and will be an
extreaely high-use section of computer code, it is developed

here in detail.

let the search rectangle X be defined by the ordered

—l

pair of n-tuples ((x1,x2,.--,x0)},(Y%,Y2,..-,¥YD)) vhere

xi € yi. The square A from the file is defined by the

. TR

n+l-tuple (al1,22,...,an,d), vhere the delta value d 2 0.

[In the following, the sysbol & is for logical ®™and®;

Ll

i,

the symbol | is used for logical "or®.)] '

1. At least part of the rectangle is outside of the

square if the intersection of X and ~A is not eapty. The
intersection is not empty if there exists an i:
(@ai - d > xi)) (yi >ai ¢+ d) | (ai ¢+ d =yi €6 3 ¢# 0).

Rearranging teras,

ot et i i i s

(@i - xi >4d)) (yi —ai > A) ¢+ (yi —ai =4 # 0).
Since @ 2 0 by definition, the two terms containing yi may
be coabined, giving

(ai - xi >4) | (yi -ai 24> 0). 4

e Nl L e

-35~
2. Por the converse of condition 1, at least a portion

of the square is outside of the rectangle if the intersection

of A and ~X is not eampty, vhich is the case if there exists
an i:

(xi > ai - @)) (ai ¢+ 2 > yi).
Rearranging teras,

(ai -~ xi < ad) | (yi —ai < d).

3. The intersection of the rectangle X with the
square A is empty if there exists an i:
(ai - d>yi)) (@i ¢+ d < xi}) §} (ai +d =xi1 64 # 0). .
Rearranging teras, !
(ai - yi > d) | (xi —ai >4d) | (xi —ai =da =+ 0}).
As in condition 1, @ 2 0 allows the combination of the teras
containing xi giving

(ai - yi > 4d) ¢+ (xi —ai 24d > 0).

Pigure 4-3 shows a flow chart of INTERSECTION_FUNCTION
after combining the three tests; the two Q bit strings are

also set as appropriate.

-(ai-yi)

v

()X ~in A

-36~-

- e - - -

check high limit

Set yQi
>
{(3) Empty

check lov limit

<0 >0
-{xi-ai) xi-ai
Set xQi
=0
Y
{(2)A ~in X

(3) Empty

Plovw Chart of INTERSECTION_PFORCTION

Pigure 4-3

DR WY F R

-37~

Algoriths I° may nov be extended to n dimensions to

give us algoritha IX:

I Initialize insert]

Set Ki := coordinate values of record

to de inserted.

Set P := root (pointer to master node).

I2 Bxecute INTERSECTION_PUNCTION (record (P),Ki,Ki).

If "Ki is inside record(P)®, go to I3.

If *Ki is outside record(P}®, go to 1I5;

othervise an identity intersection, go to ISa.

I3[Inside]
Set P* := P.
Set P := Child(p).
I4f valk ring])
If Qi = Qi(P), go to I2.
I£ Q1 > Qi(P), set P := Tvin(P),
go to I&;

else go to IS.

I5a(Add a duplicate coordinate record]
Set Qi := all mew,
If record (P) is a pode, go to 17;
else set P* := P,

go to I5.

[4® < »-»)

PRp—Y

-38-

I5{ outside; record(I) to be inserted wvas imnside the

square defined by node (P*} and vas in the Qi guad-
rent of that square. The existing child in that
same guadrant, record (P) , defines a square which
does not include the nev record(I). Replace
record (P) in the ring vith a nev node(P®), and make

the new record (I) and record (P) children of
node (P*) .)
Set D(P™) := D(P?).
Set Ki(P™) := Ki(P').
Set Qi(I) :=Qi.
Repeat [Adjust Record (P*))

Set D(P™) := D(P*®)/2;

Por i = 7 to n, do begin;

If Qi(I) = "+»,

then set Ki (P™

Ki(P™) + D(P™),
else set Ki(P®") := Ki(P®) - D(P");
Set Qi (I) := sign (Ki(I) - Ki(P™)):
Set Qi(P) := sign(Ki(P) - Ki(P"™)):
end;

until Qi(I) # Qi (P) .

. L —
.- O W

et
-39
I6{ Adjust pointers) :
31 If Qi(I) < Qi(P) [#+® < #-w) ¥
R then =
i

set Child (P®) := I, f

set Twin(I) := p,

set Tvin(P) := P® and mark as parent;

else
set Child (P®) := p,
set Twin(P) := I,

set Twin(I) := P® and mark as parent.

40~
Pinally, ve generalize algoritha R®* to the

n-dimensional case of algorithm R:

B Initialize]
Set P := root.
(Li is the low limit vector,

Bi is the high limit vector for rectangle X)

1 ATV y

R2{ Coapare]
Execute INTERSECTION_PFUNCTION (Ki(P) ,Li, Hi).
If ®intersection of Ki(P) and X is empty”,

go to R3.

If *Ki(P) is inside x%, Present entire subtree
as successful,
go to R3:
else (overlap)
set P := Child (pP),
push Twin (P) to stack,

go to R2.

R3[Pop stack]

If stack is empty, terainate;

else set P := top of stack, (pop]

go to R2.

-} §=

CHAPTER V

AN APPLICATION PROGRAMMER®S VIEW
OF CARTARM

The structure that has been defined in the last two
chapters is concerned only wvith a aulti-dimensional key
value. Depending on the specific application, the full
gamut of additional information ranging from nothing, to a
primary key into another file, to the entire data record
could be carried in the structure. Since the proposed
structure is applicable to sany situations, it has proven
useful to design a program that is concerned only vith the
structure, letting the particular application provide the

necessary drivers specific to their own data and use thereof.

The data structure has been named a C;rtesian Index as
a result of one of the earliest applications, a latitude/
longitude index of a geographic installation file. This
file consisted of records varying in length from 320 bytes
to 4,600 bytes that wvere keyed by a 21-byte key for many
purposes. The Cartesian file structure wvas built to provide
rapid ansvers to area search questions, but once the instal-
lations vere determined, additional information vas usually

required. Therefore, the ancillary datum carried in the

.
-t ,"y.-.»ur{, JiRIE et 0

b

-2~
Cartesian file in the teraminal records was the 21-byte
prisary key value to be used for access into the master
file. The Cartesian file thus became a secondary index in

tvo-dimensional space; hence the name Cartesian Index.

The nase of the progras used to probe the Cartesian
Index derives from IBM terminology. 1IBHM provides many
different ®access methods®™ to process their various file
structures and the prograam I am describing herein is
intended to provide a method of access to the Cartesian
Index file; the name CARTesian Access Method (CARTAN)
seemed appropriate. In order to make CARTAM readily
availadble to an end user, it is vwritten as a suobroutine,
alloving the user®s specific driver prograss to be written
in any language supporting a CALL function, usually a high

order language.

Communication betveen the calling program and CARTAN is
through a set of calling atgulenés or parameters. Depending
on the function being requested, CARTAN expects froas one to
six paramseters as indicated by figure 5-1. (Punction codes
are described in detail later.) A 28-byte communication
block is required for all requests and is used to pass
control and status information betveen the driver progras (s)
and CARTAHN. It is the only paraseter required vhen
logically connecting or logically discomnecting a file or

vhen deleting a record. When inserting data, CARTAM needs a

LR A

-
- e

£ iy A e

VoG M

- oy

3

~43-
CALL CARTAN (’ N . P ’ v)
{(generic) para COMA USER COORD Low BIGH
function cat BLOK DATA VECTR DELTA LINS LIES
LOAD
OPEN (11 -
CLSE [1] b d
ISRT [3) . s s
GR (6] * * * . & &
GXxX [s8)] L] » * *
CHNG (3) * . .
DLET (1] *

Calling Sequence Hequiresents

Pigure 5-1

vector of coordinate values and the ancillary data defined
by the user to be stored in the terminal record. Por all
retrieval requests, CARTAM returns a user-data field, a
vector of coordinate vaiues and a single delta value. The
GR reguest is treated in a special manner in that it is used
to initiate a rectangle or area search which requires the
tvo additional liamit vectors defining the search rectangle.
A change request applies to the user data only, but CARTAAN
vas designed to also ensure that the coordinates of the
tersinal record vere not inadvertently changed by the driver

program which is vhy the coordinate vector is a required

L4

. e .
- s . b SN

i~
arqumsent. On the other hand, deletion of a record, be it
terainal or node, is an extreme change of coordinates and
user data; there is no requirement to pass additional data
to CABTAR beyond the communication block. In all cases,
CARTAN looks for the required number of paraseters and
ignores any additional arguments that may be supplied.
CARTAR wvwill also allov, as an optional zero-th paraseter, a
parameter count argument indicating the number of parameters
to be used. If present, this parameter count wvill be used,
and the actual number of arguments vill not be checked
further. Note also that if the parameter count is present,
the total nuaber of parameters is from two to seven, as

opposed to one to six.

Before any search queries can be ansvered, the
Cartesian file must be defined and initially loaded. It is
assumed that the data set has been allocated disk space;
see appendix P. Definition of the file consists of telling
CARTAM hov many coordinates are to be stored in a record,
i.e., the dimensionality of the file, and the type of
arithametic to be used, such as integer or floating point.
It vas intended that a Cartesian file should be loaded as a
separate process, since certain efficiencies are gained
theredby;: thus, the use of the LOAD cosmand to logically
connect and define the file, folloved by repeated use of the
insert (ISRT) command to store data records. As this

inforsation is added to the Cartesian file, 2 nev node

S

~35-
record is constructed if necessary to account for the
structure and the newv teraminal record is added; the relative
byte address of the new terminal is returned to the driver
program for any use that is desired. The load process is
terninated and the file is disconnected with the CLSE

cosmand.

Once the file has been defined and loaded, subseguent
processing is initiated with OPEN to logically connect it
and any desired processing may then be performed. This
would normally be retrievals, but the maintenance functions
of insert, delete and change are also permitted. The CLSE

cosmand logically disconnects the file as bdefore.

This gives a very rough idea as to the various ways
that CARTAM is called. Since the communication block is
considerably more complicated than the remaining arguments,
let me defer its description for a moment and describe the

forsats of the other parameters first.

The paraseter count is alvays an optional argument in
those languages that use the standard IBN sethod of indi-
cating the end of a variable length paraseter list, nasely
the high order bdit of the last address set to one. The IBH
supported languages COBOL and PORTBRAN alvays flag the last
address, vhile PL/I norsally does not. An asseably language
prograsaer has the option of setting the bit or not as he

chooses. 1f not, the paramseter count arguament aust be

-} § ~
g supplied. The parameter count field, parameter 0, specifies

the nuaber of additional paraseters in the list. As such,

it must be a 32-bit fullword binary integer of the

appropriate value.

The user-data area, parameter 2, is an input argument

to CARTAN for insertions and changes, and an output argument

for all retrievals. The user data is variable in length

vith tvo 16-bit halfword binary integer fields in the
coasunication block controlling the actual length of the

user data.

Since CARTAZ allovs most of the modes of arithmetic

noramally used on the IBM 360Q/370 cosputers, the last four
parameters must take into account the length of individual
coordinate values. Por instance, if the arithmetic being

used is halfvord integer, the unit of size is two bytes,

ki,

vhile double~-precision floating-point arithmetic uses eight-
byte values. Therefore, the delta value is a single unit
long as deterajined by the mode of arithmetic wvhile the
coordinate vector and the lowv and high limit vectors are

each n units long. The coordinate vector is amn input field

for insertions and changes, and an output field for all
retrievals, as is the user-data area. The limit vectors are
explicit input fields for a rectangle search initiation (GR)
and sust dbe distinct from the coordinate vector. They are

not moved to an internal area by CARTANM; the location

-~

¢
'ﬁ,.i-f.u.

[N

R VU

-47-
pointers are retained and the vectors repeatedly reaccessed
during subsequent retrievals vithin the rectangle. Thus, the
lisit-vector values should not be modified during those
retrievals except for unusual circumstances as they may be

implicit input fields for other retrieval requests.

The remaining parameter, the communication block, is
diagrammed in figqure 5-2 and is nowv descibed in detail
belov. Pollowing the descriptions of the fields are the
lists of valid function codes and status codes as returned

by CARTARN.

DDNANE

The eight-byte logical name of the file to be processed
is stored in DDNAME. Since CARTAM must retain much more
than 28 bytes of bookkeeping information, e.g., file control
blocks, buffers, stack, etc., the DDNAME also serves as a

label for that additional main memory area.

Punction Code

The four-byte function code carries the regquest code
telling CARTAR vhich function is to be performed. Por
retrieval requests it is probably better to comsider this
code as a concatenation of up to four subfunction codes.

valid function codes are described below.

12

16

20

24

DDNAME

(8 Bytes)

Punction Code

(4 Bytes)

Status Code Hode NORT

{2 Bytes)

— - -

Pad

.

Relative Byte Address (RBA)

(4 Bytes)

Number of ! Number of
Coordinates ! Buffers
Haxiaum User True User
Area Length Data Length

(BUAL) (TUDL)

Number of Nusber of

Disk Reads Disk Writes

Cosmunication Block (28 Bytes)

Pigure 5-2

W NPT ;

{4 9=

Status Code

The tvo-byte status code provides the indication as to
the success or failure of the CARTAN request. A value of
EBCDIC blanks is returned if CARTAM is able to perfora the
function as requested. Non-blank values signal unsuccessful
completion for a variety of reasons vhich may or may not be
actual error conditions. A complete list of status codes

follows the function codes.

Node or Terminal Indicator (NORT)

CARTAM returns a character to the driver prograam in
NORT on successful retrieval requests to allow differenti-
ation betwveen node and terminal records. The three possible
values returned by CARTAM are:

7)) ¥ - a node vas retrieved

2) T - a terminal record vas retrieved

3) X - a terminal record vas retrieved, but the area

intended to receive the user data was too short to

accosnodate all ancillary data as stored on the file.

L

-50-
Record RBA

A relative byte address (RBR) is used internally by
CARTAN to build the structure pointers. Whenever CARTAN
successfully inserts or retrieves a record, the record RBA
is also returned to the driver program for use if desired.

A Get Direct retrieval function is provided to allowv direct
entry into the Cartesian Index file. Exasples of the use of
this value would be storage of the RBA in the master record
of the primary file as a cross-reference, or temporary
retention of the RBA for later retrieval of selected user
data not initially needed. As a cross-reference example,
consider obtaining a record from the primary file by some
means other than coordinate search and then desiring to
£find all other records within a certain distance as defined
by a metric on the coordinates. Use of the RBA to position
directly to the corresponding terminal record in the
Cartesian Index and then climbing the structure to the
appropriate level may be much faster than working down the
tree from the root.

The record RBA field is also used by CARTAE to return
additional error information vhenever a disk operation vas
unsuccessful. Refer to [3,4] for an explanation of those
codes. Pinally, vhen the file is closed, CARTAM returns the
high used RBA as an indication as to the amount of space on

the file that vas actually used.

-5 1=
Baxisuam User Area Length (MUAL)

The halfvord integer in the BUAL field specifies the
length of the area that is being provided by the user for a
retrieval request. This number is the saxisum nuaber of
bytes that CARTAR vwill return, see NORT above, and is also
the length to vhich the user-data area will always be padded

vith the pad character, see Pad below.

True User Data Length (TUDL)

The actual length in bytes of the character string in
the user-data area is placed in the TUDL field. This value
must be filled by the driver program on an insert request.
Por retrieval requests, CARTAM stores the actual nusber of
of data bytes, not counting pad characters, that have been
placed in the user-data area of the driver program. This
value will never be set by CARTA# to a value greater than

that currently stored in the HUAL field.

Nusber Reads, Writes

Tvo halfvord binary integer fields are incresented by
CABRTAN each time a physical disk read or write is performed.
These fields are zeroed out during open processing. The

fields are maintained and presented for information only.

6.

52~
The remaining field de€initions have meaning only wvhen
CARTAM is requested to open the file: function code is LOAD
for initial file load or OPEN. Other than the mode, these

fields are alternate usages of the NORT and RBA fields.

Bode Indicator

CARTAN allovs the user to specify the type of arith-
metic to be used for the coordinates by supplying a value in
the mode indicator if the function is LOAD; othervise,
CARTAN returns an appropriate value based on the particular
file. No further reference is made to this field in subse-
guent calls. The four valid EBCDIC character values are:

1) 8 - for 16-bit halfword integer binary,

2) P - for 32-bit fullvord integer bdinary,
3) B - for 32-bit single-precision floating point,

D

4) - for 64-~bit double-precision floating point.

Pad Character

In many cases, the user-supplied data being carried in
the terainal records are variable-length character strings.
Oon a retrieval request, the driver programs specifies the
length of the area that is being provided to receive this
user data. When that area is too short, CARTAN so indicates
with an *X* returned in NORT. Hovever, wvhen the area is
longer than necessary, it vill be padded out to the end with
the character supplied in the pad field of the communication
block.

h
i
’ ;
-53-
i
Susber of Coordinates ,
The dimensionality of the space being represented is
determined by the number stored in this halfword field, and
is the nuaber of coordinates carried in a record of the file. ‘
The field is filled by the driver progras if the function is

LOAD and filled by CARTAB if the function is OPEN. :i

A somevhat arbitrary limit of 512 disensions has been
inposed, mainly Ddecause a lisit must be established some-
vhere. Storage must be allocated for the bit strings
generated by INTERSECTION_PUNCTION, and 64 bytes was chosen.
A further limit is that the total length of a coordinate

vector must be less than one-half the length of a physical

record to allow storage of at least tvo logical records per

physical record.

Husber of Buffers
CARTAN obtains sain memory from the operating systems to

use as buffers or page slots for disk input and output i

operations. The driver prograa may specify the saximum
nusber of page slots that are to be acquired (< 32). CARTAR 3

alvays tries to acquire at least four page slots. ‘7

~54-

Vvalid Punction Codes

LOAD

LOAD indicates to CARTAM that the file is being defined
and opened for the first time and that a series of
insertions is forthcoaing. The driver prograam must specify
the mode of arithmetic and the nuaber of coordinates to be
stored. The data set referenced by the logical file nasme
DDNAME may be an eapty data set or one that had previously
been used. However, any information present in the file
vill be destroyed.

If a file is opened for LOAD, the only valid cosamands
are ISRT and CLSE. All others vwill be flagged as invalid

and ignored.

OPEN

After a file has been defined, loaded, and closed again,
subsequent processing is initiated vith OPEN which logically
connects the file to the program. All function codes are
treated as valid, including ISRT which vwill extend the file.
If the data set is empty, the open processing will fail.

On return from a successful open, CARTAM vill have
filled the mode and number of coordinates fields of the
the cosmunication block. A file must be opened before any

other function codes will be recognized.

R e et

CLSE

CLSE requests a vrap-up, including final vrite of any
sodified records to disk. Upon successful return, the
record RBA field will contain the high used RBA as an

indication as to actual space utilization of the file.

ISRT

A pnew record is inserted as a terminal record with the
ISRT request. If necessary, a nev node record is also
built. The RBA of the newv terainal record is returned for

the driver program®s use as desired.

GH
This is a request to Get Master node record; it would
be used to start over at the root of the tree if performing

a specialized search procedure.

GP
Climbing the structure to a higher level is accoa-
plished by a Get Parent request. CARTAE retrieves the

parent record of the last record retrieved.

6T
The next record at the same level in the tree is

retrieved with a Get Twin request.

GC
The first record at the next level dovwn in the tree is

accessed through a Get Child request.

J QA s T

56~
GD
If the driver program has the record RBA available,
the corresponding record from the Cartesian file may be

retrieved directly with Get Direct.

G3

The Get Next record in hierarchical sequence function
is defined as: If the previous record accessed has a child,
get that child; if it has no child, get the next twin; if
there is no twvin, i.e., the end of the twvin chain wvas
reached, get the twin of the parent of the previous record.
Bepeated requests using GN will valk through the entire

file structure in this sequence.

GNT

The sequence described for GN is modified by not
retrieving the child of the previous record. GNT would be
used vhen it had been determined that a subtree is to be

discarded.

The last seven function codes, GM through GNT, are
provided as primitives for the unusual application that
needs to follov a peculiar search strategy. They will each
clear parentage if it had been set earlier. The first five
of these codes may also set parentage by adding a ®P"™ as the

third character of the code, i.e., GHP, GPP, GTP, GCP, and

RV 4

SRl

[EOUN PN

—— e e -
0

e

o g e

,.,_, —
Ao o P at S o e

.

-57-
GDP. Parentage is set to limit a search to a particular
subtree of the file structure and is primarily used with the

next three function codes.

GNP

Unlike previous codes vhere a P in position three set
parentage, Get Next in Parent uses a previously set paren-
tage to retrieve records in a hierarchical sequence within
a specified subtree. The GN function will walk though to
the end of the file regardless of the staring point, while
repeated use of GNP will traverse only the subtree as
defined when parentage vas set.

I1f parentage has been set by the GR function described
below, CARTAM also perforas a check using the
INTERSECTION_PONCTION to determine if the record intersects
the search area. If the intersection is empty, the subtree
consisting of the record and its children is automatically
discarded and the twin record is immediately retrieved. If
the record is a node and the intersection is limited to a
single child of that node, that particular child is isamed-
iately retrieved, and it is noted that there will be no twin
of that record to be retrieved later. In both cases, the
check by INTERSECTIOR_PUNCTIOR is reapplied before returning
the record to the driver program. If the intersection is
neither empty nor a single child, the record is returned

vith the appropriate information fields filled.

-58-

GNPT

Get Next in Parent, Tvin, modifies the GNP sequence by
skipping the child retrieval and discarding the subtree.
This is done vhen the driver program applies a finer
discriaination on a record than CARTAN can apply such as a
true circle search as opposed to a rectangle search. The
decision was made to only perform the simple rectangle
search within CARTAM since specific applications could
conceivably use any type of metric function for their

discrimination purposes.

GNPL

When the driver program makes the determination that it
really knows that a node record is acceptable, or, in other
words, it wants all of the subtree's teraminal records with-
out bothering to apply its discriminator, a Get Next in
Parent, leaves, series of requests will flush the subtree,
presenting terminal records only. The term leaves is used

since the character T was used for Twin.

59~
GBR or GaA

An area search is initiated vith either of the
egquivalent Get Rectangle or Get Area requests. The
INTERSECTION_PORCTION will be used by CARTAN to check
records during this GR and subsequent GNPx requests. The
stack maintained by CARTAN is flushed and the search begins

at the master or root record, setting parentage for GNPx.

GR L

If the rectangle search is the exact search required by
the application, placing an ®"L"™ in position four will direct
CARTAB to only return the tersinals that are found inside

the search rectangle on subsequent GNP or GNPL requests.

After a GR L request, GNP and GNPL are eguivalent.

60~
CHNG
If a Cartesian file wvas loaded with a substantial
amount of ancillary data in the terminal records, it is
useful to be able to modify that information without having
to reload the entire file. The CHaNGe request tells CARTAM

to replace the user data in the terainal record that had

P

been retrieved on the previous call. CARTAM checks to see
that the coordinates have not been inadvertently altered and

that the new data string is not longer than the original

.I"‘;J.lpﬁ

string. If the nev string is shorter, the terminal record’'s
data area will be padded out to the original length with

the pad character.

DLET

Any record in the Cartesian file may be DeLETed with
the exception of the master root record. The structure
pointers are adjusted to logically remove the record and a
check is made to see if the ring nowv contains only one child.
If so, the parent of the lone remaining child is replaced in
its ring by that sole child. Por integrity, CARTAM requires
that the record be retrieved on the previous call. Note

that either terainals or nodes may be deleted; deleting a

node effectively deletes the entire subtree. Note also that j
CARTANM has no space reclamation capability -- deleting a
record removes it from the structure, but the space is then

unavailable for any future use until the file is reloaded!

i
1
i

-6 1-

Status codes as returned by CARTAM

¥¥ (Tvo EBCDIC blanks) CARTAM successfully completed the
requested function. ¥New information has been updated as

appropriate.
AD CARTAM did not recognize the function code; invalid code.

AI An error occurred while trying to open the file.
A numeric error code [3, pgs 58-60) from the operating
system has also been placed in the RBA field of the

comaunication block.

ARJ 1 logical error was detected during a disk operation.
A numeric error code [3, pgs 67-69] from the operating
systea has also been placed in the RBA field of the

communication block as for Al.
AN A mode error was detected: not H, P, E or D.

A0 A physical error was detected during a disk operation.
A message vas written to the program log and a numeric
error code [3, pg 70] has been placed in the RBA field

of the coamunication block as for AJ.

AX Too many coordinates were specified. The maximuz is
512 or a total coordinate vector length less than

one-khalf of the length of a physical record.

Ccx

DX

GE

GH

II

10

SL

-62-

An error vas detected on a change request. The change

aust be on a terminal that vas retrieved on the previous
call, the length of the user data sust be the same or

less, and the coordinates must not have been altered.

An error vas detected in a delete reguest. The record
to be deleted must have been retrieved on the previous

call. The master root record cannot be deleted.

The requested record was not found. GE is typically

returned during GNPx processing.

There are no more records in the subtree being flushed

by retrieving only fetninals vhile using GNPL.

A duplicate record, coordinates and user data, vas

presented for insertion; the record vas not inserted.

The user-supplied data to be stored with the terminal
record is too long. The total length of user data,
corrdinates, and six bytes of structure data must be
less than one-half the length of the physical record as

stored on disk.

A short parameter list vas presented to CARTAN, e.d.,

calling CARTAM with only the communication block and
user data area, but not vith the coordinate vector for

an ISRT or CHNG.

CHAPTER VI

INSIDE CARTANM
POR THE BAINTENANCE PROGRAMMER

The previous chapters have developed the basic algo-
rithes and described the program I call CARTAM from a point
of viev intended for a prospective user of the system. This
chapter deals with the fine detail required by a programmer
assigned the task of reimplementing the system on different
hardvare or operating system or fixing CARTAM should it

break.

The Cartesian Index file is a data structure maintained
on a secondary storage medium, specifically a direct access
disk or equivalent, which predicates usage of some sort of a
disk address as the poi;tet value in the node and terminal
records. The particular form of this disk address pointer
depends upon the specific choice of the access methods as
provided by IBM. Since ve are concerned with random access
to disk, there are actually only a fev access methods avail-
able. The most priamitive method of disk 1/0 provided by IBHN
is the execute channel program (EXCP) access method. Hov-
ever, this is rather too primitive as I have no desire to

reinvent such things as physical error handling routines,

S S

[RPVETPRIS TV TRIICRY - - XN

-64-

o e e

etc. The next alternative is the Basic Direct Access Method
(BDAH) which would actually vork quite well except that it
does not handle variable length records vith any great faci-
lity. If the records are defined as relatively large, then
the internal blocking and deblocking could become somevhat
messY, depending on the choice of notation for the record
identification. As wvwill be seen later, though, BDAN would

have been guite acceptable. .

The implementation of CARTAN as described here uses
IBA®s Virtual Storage Access Bethod (VSAM) [3,4] for phys-
ical access to the disk file structure. VSAM was primarily
intended as a high performance replacement for the Indexed
Sequential Access Nethod (ISAM)}, but does provide support
for three basic types of direct access file organizatiomns
vhich can be used for almost any application. Since VSAN
is used for basic systeam support in later versions of
large operating systems as supplied by IBM, e.g., 05/VS2
Bultiple Vvirtual Storage (BMVS), and it isolates a prograa
from device dependencies better than other aethods, it

seemed to be a good choice.

The direct counterpart to ISAM as provided by VSAM is a
key sequential data set (KSDS) vhich is used to store data
indexed by a unique primary one-dimensional key. However,
the vhole intent of this paper concerns multi-dimensional

keys, so ve have no appropriate key to suggest use of a KSDS.

-65~
VSAM also provides a counterpart to the BDAM file organi-
zation knowvn as a relative record data set (RRDS).
OUnfortunately, an RBDS requires fixed length records which
are referenced by ®"relative record nuabers™, and the

concerns of a BDAM data set are applicable here as well.

The third structure supported by VSAM is an entry {
sequenced data set (BESDS) as a counterpart to the usual '
sequential file organization. Howvever, VSAM does allow i
random access to any position in the file by means of a
four-byte relative byte address (RBA), vhich turned out to
be ideal for ay purposes. An ESDS may be vieved as a unique
virtual address space defined by a four-byte address ranging
from 0 to 4,294,967,295. Early in the development process,
it vas intended to store node and teraminal records as
distinct records maintained by VYSiM. However, as the
development proceeded and more of the performance options
as provided by VSAM vere incorporated, it became desirable
to perfora blocking and deblocking within CARTAM rather than
VSAB. This became a very simple masking operation as VSAM
stores inforsation on secondary storage in units of control
intervals (CI) which may be almost any size from 512 bytes
to 32,768 bytes, but are physically stored as multiples of
a physical record vhich may be 512, 1028, 2048 or 4096
bytes in length. One of the performance options used by
CARTAM results in the seemingly reasonable restriction

of limiting the CI size to that of a physical record or a

-66-
saxiaus of 4,096 bytes. Each CI requires a minimum of seven '
bytes of control information, vhich leaves the remainder
available for CABRTAN's use. Thus, the largest record that
may be stored by CARTAM is 4,089 bytes, but a further limit
is rather arbitrarily imposed to limit a logical record to
no more tham half of a physical record in order to store at ;
least twvo information records in one block. Keeping all of
this in mind, CARTAN uses a VSAM BSDS as a logical memory of *
four billion bytes, storing the Cartesian Index file as a b

linked list wvith four-byte RBA pointer values.

An inability to extend a data set's space on disk is
due to one of the performance options as used by CARTANM
vhich prevents immediate usage of an empty or newly defined
VSAR data set. Preformatting the data set with zero-filled
records the first time an empty data set is opened solves
the initial problem, and once preformatted, all records in
the file may be retrieved on a randoms basis by relative byte
address. However, vhen the original space allocation is
exhausted, the data set will not auntosatically overflow
into secondary extents vhen records are being inserted. If
space is exhausted, there is no choice but to reallocate the
file vith more space and rebuild. As an indication of
the actual utilization of the file space, the high used RBA

is returned to the driver program when the file is closed.

-67~-

Reflection at this point makes it obvious that the
relative record organization of VSAM or even the Basic
Direct Access Method may indeed be used. Careful selection
of the physical record size to a proper powver of two will
allovw CARTAM to operate vith those file organizations with a

minimus of change to the code.

The Cartesian file is built with two basic types of
records, nodes and terminals. As mentioned earlier, these
records consist of:

1) coordinate value(s),

2) a delta value,

3) a child pointer,

4) a tvin pointer,

5) user data if a terminal, and

6) various flags.

If ve examine some of these iteas, we find that first
of all, a terminal record always has a null child pointer
since terainal records are, by definition, those records
with no children. The tersminal record also corresponds to
an original data point which has a delta value equal to zero,
at least in teras of the file structure. The utility of a
node or terainal flag nowv becomes apparent. A single bit
serves to indicate the presence of a child pointer and a
delta value or the mutuvally exclusive user data with, of

course, its length.

et SR a7

-68-

The delta value as carried in the record also deserves
some attention. While studying the algorithams, it becomes
apparent that delta should probably be an integer powver of
tvo. 1In particular, consider a specific application on the
computer using integer arithmetic. If one starts vith the
smallest non-zero delta value and proceeds through the tree
structure tovards the root, the delta is obviously such an
integral power of tvo. Egqually obviously, traversing the
tree in the direction awvay from the root requires integer
povers of tvo in order to prevent "gaps®™ due to a truncated
division. If ve nowv examine the usual internal represen-
tation of our delta value, ve find that, for integer arith-
metic, delta is stored as a fullvord or halfword with
only a single bit set to one somevhere in the (half)vord.

A natural method of storing this nuamber in less space is

to use a logarithmic representation, specifically log to
the base of two. The norsal internal representation of a
floating point value is normalized hexadecimal with an
exponent and mantissa. Por an integer power of tvo, this
mantissa is given by a single hexadecimsal digit that is
alvays in the leftmost position in the santissa; only the
12 high order bits of a floating point delta are ever other
than zero. Thus, ve can store our delta value in the node
record in only 12 bits, leaving the other 4 bits of a half-
vord available for some flags. Since a delta value is

defined to be a non-negative number, I use the sign bit of

F&—'—.—_’_,m___ -

-69~

the representation to indicate whether delta is stored as a

truncated floating point nusber or as a logarithe. There is i
an apparent aabiguity for a representation of zero, since

it obviously cannot be stored as a logarithm. Howvever, a
"true zero® as used by IBA for both integer and floating
point arithmetic is stored as all binary zeroes, so it works

out very njicely.

The Cartesian Index file records are novw constructed as

follows. The length of the user data stored in a terminal

record is variable, but since a terainal has a defined

delta of zero, vwe aay carry the length of the user data in
the space othervise occupied by delta. The list pointers,
of course, are each four bytes long, vhile coordinate values
may be two, four or eight bytes long, depending on the asode
of arithmetic being used. Pinally, after packing everything
together into a record, ve have:

I DLPI__IWIN) _COORDS...IQ|__CHILD |
{Userbata...| "

DLP is the delta/length and flags field, two bytes long.
Expanding it out to the bit level:

0 LR R
10 1_.45]

If bit 15 = *1°, then "end of set®™ or record is the
last record on the twin chain, i.e.,
THIR actually points at the parent

record, closing the ring.

-70-

If bit 14 = *1*, then this record is a node, and bits
0-11 are the representation for delta.
if bit 0 = *1*, then bits 2-7 are the log2(delta)
and the antilog is obtained by
shifting a value of 1 to the left
this many positions,
othervise, bits 0-11 are to be moved to a
vork area and extended with
zeroes to arrive at a represen-
| tation suitable for arithmetic.
l If bit 14 = *0*, then this record is a tersinal and
bits 0-11 represent a scaled binary
integer value depicting the length of
the user data string stored behind Q.

L Bits 12 and 13 are unused.

The TWIN pointer is a four-byte field and is present in
all records. Actual interpretation is modified by bit 15 in

the DLF field.

The COORDS field contains the coordinate vector for the

record and is a*n bytes long vhere a2 = 2, 8§ or 8 depending

on the mode of arithmetic.

Q is the quadrant indicator to label children of a
parent node and is a bit string that carries the sign of
the difference betveen coordinates of the record and the

corresponding coordinates of the parent record. The length

-71-

of this field is q bytes where q = (n ¢ 7)/8 using truncated
integer division. The tvin chain is also maintained in

sorted order using the Q field as an ascending sort-key.

The four-byte CRHILD pointer appears only in node
records and points to the first of two or more records at
the next lower level in the structure. The coordinates and
delta of the node record define a square that completely
covers all of its children. The records at the next lower
level define a disjoint set of squares vhose union is less

than or equal to the parent square.

Pinally, the user-data field is a variable length field
carried in terminal records only. The actual length of this

area is determined by the 12 high-order bits of DLP.

The primary argument in the CARTAM calling sequence is
the communication block, which is wvhere CARTAM receives all
request instructions and returns status and other infor-
mation. Pigure 6-1 shows the assembly dummy control section
(DSECT) definition. As the DSECT is the assembly prograa‘’s

viev of the comaunication block described in the last

chapter, most of the entries should be self-explanatory.

-72-

COMMBLOK DSECT
UOSING *,R11

CBDDNAMR DS CL8 DDNANE OF PFILE

CBPUNC DS ocLa PUNCTION CODE

CBFUNC1 DS Cc

CBPFUNC2 DS C

CBFUNC3 DS C

CBFUNC4 DS C

CBSTATUS DS CL2 RETURN STATUS

CBBODE DS C BODE OF ARITHBMETIC

CBNOR?T DS X NODE/TERMINAL INDICATOR

CBRBA DS r RBA OPF RECORD RETRIEVED/INSERTED

CBMAXUDL DS .| HAXINUN LENGTH OF USER AREA

CBTRUUDL DS H TRUE LENGTH OF USER DATA

CB#GETS DS 8 COUNTER POR VSAM “GETS®™

CBipUTS DS H COUNTER POR VYSAM "PUTS™
SPACE

* REDEPINITION IN EPFECT WHEN PUNC = “LOAD™/"QPEN"
ORG CBNORT

CBPAD DS C USER DATA AREA PAD CHARACTER

CB#XS DS 8 # COORDINATES

CB#BUFRS DS)| # PAGING BUPFERS TO BE USED

DSECT of Coamunication Block

Pigure 6-1

In order for CARTAM to operate, it needs a fair asount
of additional main memory for control blocks, buffers and
bookkeeping information. CARTAM must also be prepared to
operate on more than one file at a time for the driver
applications. Therefore, CARTAM obtains additional main
semory for each file that is opened. The character string
passed in as a DDNAME is used as a label to identify that
block of memory as it pertains to any particular file.
These blocks are linked on a bi-directional list and the

proper file control area as defined in figure 6-2 is

FCBAREA

PCBLABEL
PREVFCB
NRITPCB

LNEACBAR
LNRPLAR

CIslze
AVSPAC
ENDRBA
LRECL

MVBODCS

RCDADD

CURRRBA
BUOPRD
#$SUBPOOL
LEGBUP
PRIORT

DELWK
PRNTDEL

SPLTASKS
CINSK
DSPHSK

LODEARGS
LODECI
LODEDSP

DSECT

USING *,R12

DS CL8 LABEL IS PILE DDNANME

DS A BACKWARD AND

DS A FORWARD LINKS

IPGACB DSECT=NO GENERATED ACB
IPGRPL DSECT=NO GENERATED RPL
DS oD

EQU IPGRPL-IPGACB

EQU $-IPGRPL

LENGTH OF PAGING AREA
TOP OF LRU RING

EXPANDED DELTA PROM RETRIEVED RCD
EXPANDED DELTA FOR NODEARERA

DS r CONTROL INTERVAL SIZE
DS 4 AVAILABLE SPACE
DS) 4 ENDING RBA
DS r LOGICAL RECORD SIZE = CISIZE-7
DS A (NODBEAREA) FOR MVCL INST
DS 4 (PLLNOD)
DS A
DS r (CHLDUDA)
DS P RBA OP RCD W/ CORE ADDR IN RCDADD
DS A LOCATION AND
DS ox
P
A
D
D

DS 0xL6 MASKS TO SEPARATE RBA"S INTO
DS) 4 CONTROL INTERVAL RBA

DS g AND DISPLACEMENT

DS B ONOUSED

1 0xL6 SEPARATED RBA TO BE LOADED
DS r

DS)|

DS B UNUSED

DSECT of FCBAREA

Pigure 6-2 (Part 1 of 3)

L2 oY A T e

DIRECa

NISCPLGS
ISRTONLY
PILEXTND
PRSTISRT
SENDPAD

XTRAFPRN

SETPREGS

SETFADDR
GRXL2
GRXIHa
GRFLAG
TRHONLY
TMPPRNT
STKPRNT
STKTOP

SETFLGS
SNGLCHLD
EMPTYSET
ENOTINX
INOTINE
QSTRL
QSTRH
QSTRO

STACK
BAXSTKL

DS

DS
EQU
EQU
BEQU
DS

Ds

DS
Ds
DS
Ds
Ds
DS
DS
DS
EQU
EQU
DS
DS
DS

DS
DS
EQU
EQU
EQU
EQU
DS
DS
DS

DS
DS
DS
EQU

-74-

(MAX#BPRS) XL {L*DIRECTRY) PAGING DIRECTORY

IL3 MISCL PLAGS

B*10000000* PILE OPENED FOR LOAD

B'01000000°* PILE HAS BEEN EXTENDED
B*00000001* FPIRST INSERTION HAS NOT BEEN DONE
C PAD POR USER DATA AREA

A

IL4*80°* BR3 EX MASK POR BIT STRING

F*0" R4 COORDINATE VECTOR INDEX

A (QSTRL) RS BIT STRING ADDRESS

B6 TINDEX INCREMENT

R7 INDEX LINIT VALUE

B8 A (SET&M.0)

R9 LOR SEARCH COORDINATES

R0 HIGH SEARCH COORDINATES
B*10000000°* IP SET, DOING "GR*™ SEARCH
B*01000000* IP SET, WANTS TERMINALS ONLY

e Du pue by vy

H POINT IN STACK OF TEMP PARENT

H POINT IN STACK OP PARENT

H TOP OPF STACK

xeQe® ZEROES TO CLEAR BIT STRINGS

X SET INTERSECTION PUNCTION PLAGS

B*10000000" INTERSECTION IS ONE CHILD ONLY
B*000001700°* INTERSECTION IS ENPTY
B*00000010°* SOME OP ®SQUARE"™ OUTSIDE
B*00000001* SOME OP SEARCH OUTSIDE

IL6U BIT STRINGS

XL64 OPF DIPFERENCE SIGNS

XL64

D UNUSED

D PERNANENT PIECE OF STACK
128D

$-5TACK

DSECT of PCBAREA

Pigure 6-2 (Part 2 of 3)

-75-

FILECNTL DS IL32 FPILE CONTROL INFORMATION
ORG PILECNTL

HIOSDRBA DS | 4 CURBENT BIGH USED RBA (ISRT USES)
FLNODE DS Cc B FIE|}|D
DS c UNUSED
PL#COOR DS H # COORDINATES
PLLCY DS B (PL#COOR) * (FLLCOOR)
DELTA? EQU 0,2 12 BITS
RCDPLGS EQU 1.1 4 BITS

PARENT EQU B*0001" END OF TWIN CHAIN

NODRCD EQU B*0010°* RECORD IS A NODE

TRIND BQU DELTAP+L"DELTAd,4 TWIN POINTER

COORDS3 EQU TWIN@+L*TWIN3 START OF COORDINATE VECTOR
*QSTR3 EQU COORDSad+ (FLLCYV)

QSTRLMY DS B Q STRING LENGTH MINOUS 1
CHLDUD@ DS B CHILD PTRIUSER DATA DISPLACEMENT
PLLNOD DS H TOTAL LENGTH OF A NODE RECORD
% = L*DELTAD+L*TWING+ (FLLCV) + (OSTRLM 1+ 1) +L*CHILDPTR <= 2000
* SO PAR 16 BYTES ARE LEPT

ORG

NODEAREA DS XL2000 NODE CONSTRUCTION WORKSPACE
PCBLNG EQU *-PCBLABEL HOPEFULLY < 4096
ORG =132
RPLMSG DS CL132*RPL MESSAGE AREA®
DSECT of PCBAREA

Pigure 6~2 (Part 3 of 3)

located each time CARTAM is entered. If a file control area
cannot be located and the function code is other than OPEN,
LOAD or CLSE, a status code of *AD® is returned indicating
an invalid function code. If an area is located and the
function code is OPEN or LOAD, a status code of °AD' is

again returned.

-
J N

e —

_76-
FCBAREA defines an area of main memory that is acquired on
a page boundary, i.e., an even multiple of 4096. This is
" the main work area for CARTAM for the particular file being

processed.

PCBLABEL is the file name froa the comsmunication block and

is used as the identifying label for the work area.

PREVPCB and NEXTPCB are forvard and backward links for the
vork area(s) and are anchored inside CARTAN directly. Since
the register save area is also inside CARTAM, CARTAM is not

Te-entrant, but is serially re-usable.

IFGACB and IPGRPL are IBM supplied definitions of the access
control block and request parameter list for the VSAM access
mnethod. CISIZE through LRECL receive information about the
fie for later use. ERDRBA indicates whether the data set
already has information or if it must be preformatted; if

so, AVSPAC is used to f£ind out hov long the data set is.

The four words beginning at MYNODCS are set up to load the
control registers for an MVCL or CLCL instruction, each of
vhich requires tvo addresses and two lengths. The fourth

1:gyister also carries a pad character as the high order byte.

CURRRBA is used to retain the RBA of the most recently

accessed terminal or node record. It is primarily used for

checking on a delete or change request.

-77-
BOPRa, #SUBPOOL and LNGBUP refer to the additional main
menory obtained for input/output buffers or the paging area.
PRIORT points at the top of the priority ring that is main-
tained for the paging directory (DIREC3) in a least recently

used (LRU) manner.

DELRK is the vork area for an expanded delta so that it may
be used in arithmetic statements. It is filled in the LODE

routine every time a new record is accessed. PRNTDEL is the
corresponding expanded delta value for the record being con-

structed in NODEAREA.

SPLTHMSKS is composed of CIMSK and DSPNSK which are used to
split an RBA pointer into an RBA address of the control
interval and a displacement. DSPNSK = CISIZE - 1 because
CISIZEB is an integer pover of two as defined by VSAM. Then,

CINSK is simply the one'’s complement of DSPMSK.

The masks are used as logical "“and*" masks against LODECI and
LODEDSP which compose LODEARGS. The paging directory is
then searched for LODECI; if not there, the oldest slot is
picked to read in the proper control interval. The trans-
lation is completed by adding LODEDSP to the page frame
address to arrive at the main sesory address of the data

record being referenced.

BISCPLGS are miscellaneous flags; use is obvious.

f;%

s iadan -

-78 -

XTRAPREN is an extension of the paging directory. IBM
provides a PGRLSE macro to specify release of a virtual
memory area. This macro is used in the input/output routine
as an attempt to gain efficiency by releasing a virtual page
just prior to a read operation so that the operating systen
wvill not bring that page in froam paging store simply to
vrite over it vith a newv record from disk. The parameters
for PGRLSE are the low address and the high address plus one
of the area to be released; these addresses are exactly the
page frame addresses as stored in the paging directory for
the page slot being released along with the address of the
next slot. XTRAPRM provides that ™next slot”™ frame address

for the last paging directory entry.

SETPREGS through GRXH@ are preset values for the general
purpose registers R3 through R10 used in the set intersec-
tion function. R3 contains a one bit mask to set a position
in the Q bit string as addressed by R5. RS is the index
into the various coordinate vectors and is incremented by
the value stored in R6 in a BXLE instruction. R7 contains
the liait for R4, i.e., (R7}) = n*(R6) —~ 1. RB has the
address of the entry point into the appropriate arithaetic
dependent code vhile R9 and R10 point at the lower and upper
limit vectors. The set function also assumes that R1 points
at the current node or terminal record being examined.
SETPLGS carries the results of the set intersection function

vhile QSTRE and QSTRL have been set according to the arith-

-79-~
metic differences during the course of the calculations.
QSTRO is used only during insertions to adjust the coordi-

nates of the nev node record being built as a parent.

THPPRET holds the location in the stack that is to be
considered a temporary parent for the purpose of presenting,
without further checking, all terminal records in a subtree
that has been accepted.

STKPRNT holds the location in the stack that is to be
considered the parent level for Get Next within Parent pro-

cessing while STKTOP alvays points at the top of the stack.

STACK is a 128 entry stack used to remeaber the parent

back track chain along vith the next twin entry. The parent
backtrack trail is retained primarily for insertions to
climab the parent chain in hopes that consecutive insertioas
vere relatively ®"close™ to each other, thus reducing chain
chasing as auch as possible. The twin pointers are retained
for GNP processing to negate the requirement for input of a
parent record solely to retrieve the twin pointer when
accessing the parent®s twvin. Each entry in the stack is tvo
vords: the left word carries the pareant backtrack trail,
the right vord carries the next tvin. Upon exit froa CARTAN,
the top entry of the stack has zero in the left position;
the right wvord has the child pointer of the record being
returned to the driver progras, which is zero if the record

is a terminal. The second entry dovn in the stack has the

[P

. NP7 L R T

SRS SN ST D UUTIRNPOUSE. "

-80~-
RBA of the record being returned as the left side value
vhich vill be the parent as the stack grovs. The right side
of this stack entry is the twin pointer from the returned
record unless the record is marked as the end of a twin
chain, in which case, zero is stored. This entry is alvays
the next twin for GEP. As the stack is popped, either
because the child value at the top was zero or the subtree
is being bypassed, the twin value is picked up froam the
right side and stored in the left side. The twimn and child
pointers of that new record are then stored as before.
Obviously, if the twin pointer vas zero, the stack is siaply

popped one more level.

PILECNTL is a 32 byte area of control inforsation to be

stored on the file at RBA = 0. This information is derived
from data provided vhen the function code was LOAD and then
stored in the file. When the function code is OPEN, these
32 bytes are retrieved from the file and stored here. Only

16 bytes are used at this time.

HIOSDRBA corntains the nuamber of bytes used by CARTAN for
insertions. It is the actual RBA of the next available byte
in the ¥saM file and is obtained and updated vhenever a new
record is inserted. If it has changed since the file was

opened, the control information is rewritten to the file.

PLHODE holds the EBCDIC character defining the mode of

arithaetic: H, P, B or D.

-81-

PL#COOR is a halfvord integer value specifying the number

of coordinates (n) in a coordinate vector.

FLLCV contains the actual length of a coordinate vector

in bytes. (PLLCY) = (PL#COOR) * 2, 4 or 8 as appropriate.

DELTA@ through COORDS® are symbolic equates defining the

internal record structure. QSTR? wvould be an equate to the
beginning of the Q bit string in the record, but, due to the
variable length of a coordinate vector, is stored as a value

equal to COORDS? plus the length of a coordinate vector.

QSTRLM1 holds the length of the Q bit string less one. The
IBM execute instruction requires this value for proper oper-

ation. (QSTRLM1) = ((FL#COOR) - 1) /8 using integer division.

CHLDUD® has the displacement to the child pointer for a node
vhich is also the displacement to the user data for a term-

inal record. (CHLDUDA) = (QSTRa) + (QSTRLMT) + 1

PLLNOD holds the total length of a node for this file. The
value stored in PLLNOD is 4 more than that in CHLDOUDa. 1In
order to be able to store at least tvo logical records per
physical record or control interval, the total length must
be less than an arbitrary 2000 bytes or one-half the

physical record length, whichever is smaller.

S AN ek e o

-

‘..
e e e o b il iaad

- 4
\‘]

-82-
NODEAREA is wvork space to remember the contents of a
possible parent record for insertions. That inforsation is
then modified vhile constructing the actual record that is
to be entered into the file. RPLMSG is an overlay of the
last 132 bytes and is used only by VSAM to return an error
message. If such an error had occurred, any teaporary

record wvould be useless anyvay.

Appendix A contains the entire assembly listing of the
CARTAHN routine. Within the rountire are several logical

gnits that are described here.

The LODEB section of code is a closed subroutine to con-
vert an REBA to a main memory address. The RBA is split into
a control interval RBA plus a displacesment into that Cl. If
the CI is already in memory, it is logically moved to the
top of the LRU ring, the displacement is added to the proper
frame address in R1, the delta is expanded, the twin pointer
from the record is inserted in R2, and control is returned
to the point of call. If the CI vas not in main memory
already, the oldest slot is determined from the end of the
end of the LRU ring and the CI in that slot is written to
disk if it had been modified. The nevw CI is then read into
the frame and treated as above. The logic of this section
of code vas modeled after the paging scheme as described in

in REL Paging Services [9].

-83-

The overall logic of CARTAM is actually quite simple.
On entry, a search is made for the proper PCBAREA, building
a new one if necessary, the function code is examined, and
control is transferred to the appropriate section. Most
retrievals eventually go through the RTNVALS section which
moves the coordinate vector to the driver prograam®s area
along wvith the user data if the record was a terminal. The
area receiving the user data is padded out with the pad
character in any case. The expanded delta value is also

placed in the proper location and the NORT indicator is set.

A Get Master record is a request for the master node
and would be issued if the driver prograa vished to restart
an unusual search strategy. The stack pointers are reset to
put the master RBA in the master (-1) position of the stack

vhich is then adjusted with twin and child pointers as usual.

The RBA for a Get Direct request probably will not be
found in the stack, but the stack is checked just to make
sure. Note that a 6D request will probably flush the stack
vhich must be considered in Get Parent and Get Next

requests.

The Get Tvin and Get Child requests are siaple pops of
the stack. If a zero value is picked up after the pop, an
indication of no record found is returned: STATUS = GE.

The Get Parent is slightly more complicated due to the

possibility of GD requests flushing the stack. If the stack

-84~
is exhausted during the pop operation, the twin chain sust
be followed to find the next parent record. All of the
requests so far described may set parentage, in which case

the location in the stack of the record being returned is

R & A

stored in STKPRNT as a parent marker.

The Get Next and Get Next in Parent operate in a
similar fashion except that GNPx will terminate at the
parentage as stored in STKPRNT while GN will continue
through the twin chains even after the stack is exhausted.
GEPx processing is also slightly more complicated because
the INTERSECTION_PUNCTION is used if the search had been
initiated by a GR request. If the INTERSECTION_PUNCTION
determines that only one child of a node is useful, that
child is retrieved immediately and the next twin entry in

the stack for that record is cleared, indicating no further

records along that chain. If the record is a node and the
fourth position of the function code is an "L"™, a branch is
taken to the top of this section of code to immediately

retrieve the next record.

The insertion algoriths attempts to take advantage of
resident records and any actual proximity of consecutive
inputs by popping the stack, using the parent backtrack
trail. The stack is repeatedly popped until a node record
is found vhich defines a square that actually contains the

point I vhich is to be inserted. INTERSECTION_POUNCTIONW is

_85-
invoked in each instance wvith the X coordinate vector used
as both the low and high limit vectors. When a good parent
has been found, CARTAM turns around and descends the tree
structure. Since a node P was found that contains X, it is
knovn in which direction X lies in relation to the center of
P because INTERSECTION_PUNCTION sets QSTRH and QSTRL in the
FCBAREA. Thus, CARTAM walks the child/twin chain looking
for the child with a matching Q string. If no record is
found with a matching Q string, X is inserted as a terminal

record in the proper position in the chain.

If a record C was found with a matching Q string,
INTERSECTION_PUNCTION is invoked again to determine if X is
inside C. If truly inside, CARTAM treats record C as the P
node and loops back to continue with the descent. If the
intersection vas espty, a nev node must be constructed to
replace C in the chain ve have been following. This new
node becomes the parent of C and the new terminal X and the
coordinate values of the new node are adjusted to ensure
that C and X have differing Q strings in relation to their

nev parent.

If the intersection of C and X vas an identity inter-
section, the coordinates of X matched the coordinates of C
and C is either a terminal or a node vith a zero-valued
delta. If C is itself a teraminal, it is replaced in its

chain vith a nev node vith a delta defined as zero and both

aalad,

b el o .

e - i i

4
£

Tk o

-86~

C and X are chained as children of that new node. If C vas
a node with zero delta, X is simply added as another child.
In this case, all children, including C and X, have

identical Q strings, indicating an all positive direction.

Change and delete reguests require that the record be
retrieved on the immediately preceding call to CARTAN. A
change allows only the user data to be modified and it must
not be extended. To ensure that a change request is not
incorrectly used to change coordinates, CARTAM requires the
coordinate vector vhich must still agree with the record in
the file. If the coordinates still match, and the record is
is indeed a teraminal, the user data is moved froa the driver
program®s area into the file record, replacing the user

defined data in entirety.

Only terminal records may be changed, but both terminal
and node records smay be deleted. A record is logically
deleted by adjusting the pointers to skip over it. Space is
not reclaimed! After the pointers have been adjusted, the
length of the chain is examined to ensure that the chain is
at least two members long. If the chain has only one meaber,
the parent of the chain is replaced in its ring by the sole

remaining child.

RO LW NI TR

) ‘87‘ ‘

CHAPTER VII

CARTAN IN USE

The preceding discussion gave some general search
algorithms with no particular rationale behind them. Let us
look at some specific applications that have been imple-
mented at Headquarters, Strategic Air Command. Our computer
environment is an IBM System 370, Model 3033, using 0S/VS2,
Multiple virtual Storage (MVS) as the operating systes.
Secondary storage consists of IBM 3330 Model 1 and Model 11
disks and IBE 3350 disks. In all of my examples, the data
are points on the surface of the earth defined by latitude

(lat) and longitude (lng).

The first file is stored on 18 cylinders of a 3330 disk
volume and contains roughly 100,000 terminal records as data
points, each carying an average of 15 bytes of user-defined
information. The latitude and longitude in this file are
stored as arc seconds in signed binary integers with the
convention of north and east positive. The driver prograam
to load this file executes in approximately 55 seconds of

central processor (CPU) time and 15 minutes elapsed time in i

our normal batch production multi-programming environment.

-88 -

The metric function used to calculate distance on the
earth is an implementation of a great elliptic evaluvation
vhich provides geodetic distance in meters; see appendix B
for a discussion of VECTOR. Since this ametric function
tends to be expensive in comsputation, an estimator value has
been devised which provides an estimated radius in meters of
a circle guaranteed to cospletely enclose the square defined
by a node or terminal record?s coordinates. The value of
this estimator E is:

E = 45.0 > 43.645 = sqrt(2)* (1852 meters/60 arc secs)

(1852 meters per nautical mile;
1 nautical mile per arc minute;

1 arc minute per 60 arc seconds)

It might seem that a better estimate of the radius for
a circuascribing circle could be obtained by using VECTOR
to measure the distance from the center of the square to the
lover left corner for example. OUnfortunately, some of the
nodes near the root of the tree carry latitude values in the
range of 1456, g§ith VECTOR calculating geodetic distance,
a much ssaller number than expected is the result. Since
search strategies will not be atteapting any accurate deter-
mination of the inclusion of an area inside a node-defined
square, rather the reverse, the upper bound approach with

E was chosen.

)

..89-

Probably the simplest application of CARTAM is to
search for those data points within an arbitrary circle.
As a first approximation to the desired circle with center
coordinates (lat0,lng0), define a search rectangle to
enclose the final desired circle. The delta latitude value
is the appropriate number of arc seconds equivalent to the
circle radius (D0), while the delta longitude is that same
number of arc seconds divided by the cosine of the latitude
to allow for convergence at the poles. Therefore, the limit

vectors are:

lvec = (latl,lngl) and hvec = (lath,lngh) where
latl = lat0 - p0, 1lngl = 1lng0 - (DO/cos(lat0)},
lath = lat0 + D0, 1ngh = 1lng0 + (DO/cos(lat0)).

See figure 7-1 for the conditions that will be tested by

aigorithm CS below. Within the diagram:

line AX = DELTA(A) * E

line BY = DELTA(B) * E

line CZ = search radius = DO

line CA = VECTOR distance from C to 2
line CB = VECTOR distance from C to B

square A is inside search circle because
CA € CZ - aAX
AY € CZ - CA

AX < -(CA -~ C2)

AD-AQ090 764 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH F/6 8/2
CARTAMe THE CARTESIAN ACCESS METHOD FOR DATA STRUCTURES WITH N===ETC{U)
1979 S V PETERSEN

UNCLASSIFIED AF1T=79-2250

2.3

o

| A
= . IZ

e

e

I s e

-90-

v ek SRS PR S A O

Circle Search Conditions

Figure 7-1

——

R

-91-

square B is outside search circle because

CzZ < CB - BY

BY < CB - CZ

Moving ®GR®™ to the function code initially, we have:

Repeat

CALL CARTAN (COMM_BLOK, USER_DATA,
COORDS, DELTA,
lvec, hvec);
if STATUS_CODE = SPACES, then begin;
Set AX := E #* DELTA;
Set CA := VECTOR(lat0O,lng0,latt,ing?);
if AX £ CZ - CA, then begin;
/* square A for example */
Set PUNC := °*GNPL®;
repeat
if TERMINAL, then
Present terainal records
as successful;
CALL CARTAN (CoMM_BLOK, USER_DATA,
COORDS, DELTA):
until STATUS_CODE # SPACES;
Set PUNC := GNP *;
if STATUS_CODE = *GH‘*, then
Set STATUS_CODE := SPACES;

end;

R .

REITTTR LT

PN T -Tpts., Dughtg

P SN A

e -1

4
¢

W e e

else
if Aax < ca - CZ, then
Set PURC := SGNPT®;
/% discard subtree (square B) */
else
Set PUNC := GNP °;
/% to exasine next level down %/
end;

until STATUS_CODE # SPACES:;

This algoritha asks CARTAM for successive nodes and
terninals inside an initial search rectangle. As a record
is returned by CARTAN, it is checked to see:

7) if it is entirely vithin the final circle, then all

terninals of the subtree 2re presented as found:

2) 4if it is entirely outside the final circle, the

subtree is discarded;

3) if neither condition is met, the tree structure is

descended one more level to examine the children.
The process is continued until no more nodes or terminals
resain in the search rectangle to be exanined. See

appendix ¢ for a COBOL program written for this task.

This particular driver programs vith the highly original
name of ONETENE (variant of OWETINE) has been used exten-
sively as a test vehicle during the developaent of CARTAM.

It vas vritten to display the results of a prisitive circle

. s T mﬁ,,'.i&k;,?p . ..vvi,-. :hf:.'ﬂ;“:'“'::

=1

g =y

Rm . i

i i & S - L ke

:

-93-

Perforsance Statistics

Nuasber of 4

search points 1 S0 100 200 300 4800
8 page slots

CPU seconds

for run -19 1.38 2.60 5.01 7.47 9.89

CPU seconds/ ;
search point -19 «0243 -0243 -0242 -0283 .0243 3
Number of reads/search point ?
sinimunm 22 16 16 16 16 16 X,
mode 22 28 24 22 24 24 £
mean 22 24.08 23.09 24.01 24.02 24.30 i
naxinsum 22 32 34 34 41 51 E

16 page slots

CPU seconds
for run -19 1.29 2.41 8.55 6.98 9.78

CPU seconds/

search point -19 0228 -0224 -0219 «0227 -0240
Rusber of reads/search point

ainimus 21 15 15 15 15 15

node 21 23724 20723 20 22 23

mean 21 22.28 22.23 22.14 22.19 22.43
maximus 21 30 30 30 35 36

32 page slots

CPU seconds

for run «20 0.95 1.69 3.17 4.83 6.55

CPU seconds/

search point 20 «0155 .0151 .0149 .0155 .0159

Sumber of reads/search point

sininmus 21 1 1 0 0 0

node 21 10 12 12 1712 12
: mean 21 1M.78 11.15 10.69 10.77 10.68
! saxisun 21 21 21 21 25 25

rigure 7-2

-94-

search as applied against the installation index file.
Input is the Cartesian Index file which is to be searched,
and a file of control cards, each of vhich contains the
latitude and longitude of the center of a search circle.
Test runs have usually been made with a 10,000 foot radius
for the search. The overall logic consists in reading a
control card, searching the Cartesian file for all data
points within 10,000 feet and printing the accepted records.
This procedure is then repeated for each card in the input
file. Pigure 7-2 presents a table of selected statistics as
an indication of performance. The table is cumulative in
nature; the different lengths of runs are from termination
at specified nusbers of control cards. Por example, the
statistics for 300 points were obtained by extending the 200
point run by 100 more points. The entries for number of
reads are the numbers of physical disk accesses that vere

sade for each control card read during the run.

An obvious extemsion to the circle search is a search
for those installations inside the area defined by the
mathesatical union of k circles as showvn in figure 7-3a.

We sodify algoriths CS by defining the search rectangle to
include all circles and checking distances to the center of
each circle instead of just the one: initially setting a

flag to indicate "outside-all-circles®, a loop is executed
on the metric. Once again moving "GR® to the function code

initially, ve nowv have:

Inclusion Area Search Example

Figure 7-3a

» +

Exclusion Area Search Example
Figure 7-3b

96~
Set ACCEPT_SQUARE := “inside-a-~circle®;
Set RBJECT_SQUARE := “outside-all-circles®™;
Repeat

oo CALL CARTAR (CORH_BLOK, GSER_DATA,

COORDS, DELTA,
lvec, hvec);
if STATUS_CODE = SPACES, then begin;
Set AX := B ¢ DELTA:
Set flag := ®"gutside-all-circles®;
for i = 1 to n, do begin;
Set CA := VECTOR(lati,lngi,lati,lngl);
if AX € CZ - Ci, then
Set flag := “inside-a-circle”™
else
if AX > CA - CZ, then
Set flag := “overlap-a-circle®;
end;
if flag = ACCEPT_SQUARE, then begin;
Set PCEC := °GNPL®;

repeat
if TERBIFAL, then
Present terainal records
as successful;
CALL CARTAN (COBB_BLOK, USER_DATA,
COoORDS, DELTA):

until STATUS_CODE ¢ SPACES;

TG

QY-
Set PUNC := °'GNP °*;
if STATUS_CODE = °GH®*, then
Set STATUS_CODE := SPACES:
end;
else
if flag = REJECT_SQUARE, then
Set PUNC := °'GNPT*;
/® discard subtree %/
else
Set PUNC :=:= ‘GNP °*;
/®* to examine next level down =/
end;

antil STATUS_CODE ¢ SPACES;

The converse exclusion search strateqgy as shown in
figure 7-3d is identical except that *inside-a-circle” is
nov the discard criterion, wvhile "outside-all-circles"
becomes the present successful terainals. Note that the
distance check loop may be terminated immediately if the
flag ever becomes "inside-a-circle®. If the loop terainates
vith the flag still set at the initial value, the subtree is
to be discarded. 1A rather neat programming dodge is to use
CARTAN®*s function-code as the flag for the various
conditions. Appendix B contains the COBOL program which

perforas this sort of search.

-98-

Algoritha CS may also be readily extended to provide a

band search, at least in Cartesian space with a Buclidian
metric [d = SQBRT(x2 + y2)]. A band search is defined as the

retrieval of all records within a given distance of a

straight line passing through an appropriately defined "“GR"
search rectangle. As an exasple in tvo dimensions and
assuming the appropriate units, the eguation of the line is
given by: Ax ¢ By ¢ C = 0, Morsmalizing this equation by
dividing by the SQRT (A2 + B2) results in a metric function
vhere the distance is determined by: 4 = ax ¢+ by ¢+ c. The
estimator B for a square defined by a file record is then

given by: E = ja} + b}, which, vhen multiplied by the

delta of the file record, gives the distance from the center

of the square to a line parallel to the search line and that

also passes through an appropriate corner of the square.
Therefore, by replacing the two lines of algorithm CS as
read:

Set AX := E * DELTA;

Set CA := VECTOR(1latO0,1lng0,lat?,lng?});
with:

Set AX := (la] + |bl)*® DELTA;

Set CA := (a®X1 + b*YI1 ¢+ C);
ve nov have a band search for Cartesian space with a

Puclidian metric.

-.99-

Since CARTAN leaves the limit vectors available to the
driver prograas at all times, a somevhat more extensive
sodification of algorithm CS suggests itself for a nearest
neighbor search, by continually reducing the size of the
search circle. 1s the search circle can be legitimately
reduced only wvhen a terminal record is examined, initialize
the function code to 'GR L°® to retrieve terainals only.
Then the following algorithm will find the closest terminal
record within an initial distance CZ:

latl := lat0 - CzZ; 1ngl := 1lng0 - CZ/cos (lat0};

lath := lat0 + C2; Ingh := 1lng0 + CZ/cos (lat0);

CALL CARTAR (COBMM_BLOK, USER_DATA,

COOBRDS, DELTA, lvec, hvec);
Set function code := °*GNPL®;
vhile STATUS_CODE = blanks do begin;
Set CA := VECTOR(lat0,lng0,latl,lng?);
if CA < C2 then begin;
Set CZ := CA;
latl := lat0 - CZ; 1lngl := 1lng0 - CZ/cos(lat0);
lath := lat0 4 CZ; lngh := 1lng0 + CZ/cos(latl);
Save terainal information;
end;
CALL CARTAN (COMM_BLOK, USER_DATA,
COORDS, DELTA) ;

end;

¥
¢
?

-100-

When this algorithm terminates, the last terminal
record saved vill be the teraminal closest to the initial
search coordinates. Conceptually, terminals in the upper
right guadrant ("++® direction) are successively exasmined,
reducing the size of the search circle (probably) each tisme,
until the closest terainal in that quadrant is found. Then

examination of the remaining quadrants proceeds very quickly.

One final example has to do wvith a plotting application,
in particular the presentation of maps with various levels
of detail upon a graphical display device. If a particular
area of the wvorld vere to be presented every time maps vere
requested, it would be a sieple matter to construct a sub-
image for display and call it up fros secondary storage as
required. However, if the areas to be mapped are defined by
limits specified at run-tise along vith user-deteramined
levels of detail, the nuaber of pre-built maps becomes
prohibitive due to the geometric explosion of cosbinationms.

The obviouns soultion is to build the maps upon request.

Our second example file is built in the Cartesian Index
format for this purpose, containing as data the set of
plottable points defining coastal and country boundaries.
There are approximately 100,000 points in this file also,
but this tise our latitudes and longitudes are single
precision floating point numbers expressed as arc radians.

The terminal user-defined information contains a segquence

R O

-101-

number for its relative position along the plotted line
as well as a coastal/country boundary indicator. Once the
application program determines the map limits from the user
for the session, CARTAM is requested to retrieve those
points vwithin the rectangle defined by those limits. Using
the user-defined data stored with the terminal records,
these points may then be sorted internally, plotted and

displayed on the screen.

Osing CARTAM to retrieve map points for construction of
background maps has resulted in a drastic reduction in map
preparation time. This is aptly illustrated by a comment in
an internal document, STAMPS Graphics Utilities User’s
Banual, 1 Pebruvary 1977. ®™Since creation of an image of a
map background requires a considerable amount of time (up to
five minutes CPU) it would be impractical and inefficient to
build these backgrounds on-line. ... the time required to
build the maps would prohibit using them on the system.”
While the ®five minutes®™ refers to CPUO time for an IBAM
Systea 360, Rodel 85, and current experience has been on a
Systea 370, Model 3033, the same map backgrounds are now
being built in roughly five seconds elapsed time. The per-
formance has improved to the extent that pre-built maps are
no longer used; in fact, as the application user desires to
examine a ssmaller area, the map limits are recomputed and

the map backgrounds are completely redone each time.

s
b CARED G ; $O :"‘#' - t”-’rj

CHAPTER VIII

ASSESSMENTS ARD RECOMMENDATIONS

The past fev chapters have described the use of the
CARTAN routine and the associated Cartesian Index Pile wvith
some examples of actual applications. These examples have
been limited to two dimensions, specifically latitude and
longjitude on the surface of the earth, but there has been no
intention to imply that CARTANM is limited to two dimenmsions.
Nor is it necessary that the coordinate values carry the
same units, such as arc measure in the case of latitude and
longitude. A better separation would be obtained if each of
the coordinates are scaled such that the ranges of values
are approximately the same, but, again, there is no hard and
fast requirement imposed by CARTAM. As an example, the
installation file that wvas described earlier can very easily
be defined with three coordinates instead of two by adding
a coordinate carrying a numeric representation of a category,
for instance. Bffectively, this would separate the instal-
lations into categorical layers wvhich may prove extremely
useful in some cases. Since CARTAR does not apply any

specific metric function to the records, the nuaber and type

-103~
of coordinates is totally at the discretion of the user vho
may then apply vhatever metric function is deemed appro-

priate for discrimination.

A final thought has to do wvith possible optimizations
of the Cartesian file for large read-only applications. The
file as built by repeated insertions tends to have pointer
chains spread randoaly over the file, vhich increases the
nusber of physical retrievals from secondary storage. One
possibility would be to recopy the Cartesian file once it
had been completely loaded. The initially-loaded file would
be read in the Get MNext hierarchical sequence and copied in
that order onto the final file. This would allow any
searches using the °*GNP® philosophy to proceed in a mono-
tonic manner through the final Cartesian file. The other
alternative might be to recopy the initial file in such a
vay as to group as many nodes of the same level on the same
physical record (control interval) as possible, building a
sany-vay tree a la Knuth [8, pg 471]. The usefulness of this
may be open to conjecture if the majority of the searches
are small circle searches, since this type of search

proceeds down a single path of the tree for several levels.

)

.. [\

L B L s s iR !
S ,

e v -
L omaeeat BN

TS TV

<

-104~

The CARTAN routine has proven itself as a very useful,
generalized method to construct a sulti-disensionally-keyed
file and provide extremely rapid access to desired records
therein. The programs have been implemented in demonstrated
efficient code and have proved themselves in a variety of
complex applications. #With the help of this document,
additional applications of these techniques should be very

straightforvard vith implesmentation in a sinimum of tise.

R

TIETETT

e re—

v «(w— e e S

1.

2.

3.

4.

5.

6.

7.

9.

-105~

LIST OPF REPERENCES

Everitt, Brian, Cluster Apalyvysis. John Wiley & Sons,
Bew York. (Printed in Great Britain) 1974

International Business Bachines Corp., IBR Systea/370,
Principles of Operation. 5th ed. 6A22-7000-5, 1976

-s 0OS/VS Virtual Storage Access Nethod (VSAM)
Prograsmer®s Guide. 3rd ed. GC26-3838-2, 1976

-y OS/V¥S Virtual Storage Access Method (VSAN)
options for Advanced Applications. 4th ed.
6GC26-3819-3, 1976

es O0S/¥S2 Access Method Services. 2nd ed.
GC26-38481-1, 1976

es 0S/¥S2 Supervisor Services and Macro
Instructions. 1st ed. 6C28-0756-0, 1976

es OS/¥S2 System Programming Library: Data
Nanagement. Uth ed. GC26-3830-3, 1977

Knuth, Donald B., The Art of Computer Programming,
Volume 3. Addison-Wesley, Reading, Massachusetts, 1973

Thompson, P. B., The REL Paging Services. REL Project
Report No. 18. Pasadena, California. California
Institute of Technology, 1974

. e .~

CARTAR

&C
8K

.l
6K
&J
§C.8I
&8I

SLBL
SLBL

SLBL
6LBL

-LD1
«SKLD

=106~

APPENDIX 1A

CARTAN SOURCE

TITLE * PROGRAN TO HANDLE N-DIMENSIONAL INDEX

BACRO DEPINITIONS®

HACRO

REQUATE &M

LCLA §&I,8J,5K

LCLC &C

SETC °R*

SETA 6

SETA 2

AIP (T°6N EQ °0°) .A
SETC °*8N°

AIP (°6C* EQ °P®) .GO
SETA 1

SETA 15

AEOP

EQU &I

SETA SI+EK

AIP (SI LE 6J) .GO
BEND

MACRO

2R SR

SR SR,6R

MEND

SACRO

LPAGE &PG

DS om

AIP (T°SPG EQ *0°).SKLD
AIP (°GPG"(1,1) NE *(*).LD%
AIP (°8PG* EQ °*(R1)°) .SKLD
LR R1,EPG (1)

260 .SKLD

1 R1,6PG

BAL R14,LDPAGE

AEND

. v ———— —

- -

8LBL
SLBL

-LD1
«SKLD

&C
SETEN.0A

81
&

SETSN.0N
M2

5L

s8C
SETEN.0A

A3
SETEN.O0N

. 1)

-85
SET6N.00

-BED
SETSNn .00

<HALL
«BALLP
SETSR.01
SETENn.02

-107~
RACRO
APAGE 8PC
DS os
AIP (T*6°G EQ °0°) .SKLD
AIP (*GPG'(1,1) NE °*(°).LD1
AIP (°SPG® EQ °(RT)°) .SKLD
LR R1,8P6 (1)
260 .SKLD
L 21,8PG
BAL R18,BKPAGE
BEND
BACRO
SETPUNC &N
LCLC §1,8C,5L
USING SETEN.OM,RS
AIP (°SH® NE °P°) .NM1
SETC °L®
BYC O(4,RS) ,DELUK SUBJECT OP EXECUTE IN RTNVALS
160 .BS
ANOP
SETC °*6m*
AIP (°SN°® NE °*B®) .N2
avC 0(2,R5) ,DELWK¢2 SUBJECT OP EXECUTE IN RTNVALS
G0 .ES
ANOP
SETC ‘6A°*
SETC '&n°
AIP (°CH® NE °E*) .A3
MYC O(b4,RS) ,DELEX SOUBJECT OP EXECUTE IN RTNVALS
AGO .NED
AIP (°SH® KE °D') .B4
mvC O0(8,R5) ,DELWK SUBJECT OP EXECUTE IN RTNVALS
AGO .ENED
BNOTE 8,°BAD TYPE CODER®
AGO .¥D
ANOP
L 20,PRETDEL
SRA RO,1 HALVE DELTA
AIP ("GH°® NE °P") .MALL
BEP SETER.8
AGO .NALL?P
AROP
Le® O,PRNTDEL
BS8.R 0,0 BALVE DELTA
LTSA.R 0,0
BZ SHUDEVR
ANOP
ST6L O,PRENTDEL
LSL O,PRETDEL ADD OR
BX R3,DELSIGH ™ QSTRO-QSTRL (RS) , 0
BNO %46

. > .%o . Py O : . _ 4
- et o, . L. L, . [Jee i,
L o R e PRI : ‘f-fﬁaam%u

A a

e ——
Tl o e

o e
i’ Bty

—— - , T g

x

p—

W B

SETEN .1

SETSN.2

SET6H.3
SETCH.4

SET6R.S

SETEA.6

SETISH.7

SETNTRIN
SETATRY
SETETRY2
SETNTRY3
<D

AsA
ST8A

TP ¥

-108-

LESL.R 0,0 SUBTRACT DELTA BASED OFN BIT STRING
0,COORDSd (R4,R1)
0,COORDS® (B4,R1Y)
0,COORDSd (R4,R1) COORDINATE IN FILE El

L&A
S&A

0,0 (R&8,R10) COORDINATE PROM SEARCH|ISRT X8

BP SETSH.2

BA SET6K.1

csC 0,DELEK (BI - xH) = 0

BL SETSN.3

B SETEA .4

LPEL.R 0,0 (BI - XH) < O

C&C 0,DELNK

BL SETEN.3

o1 SETPLGS ,XNOTINE PART OPF SEARCH OUTSIDE
B SETEN .4 ®SQUARE®

BX R3,NEGHI o1 QSTRH-QSTRL (R5) ,0

cec 0,DELWK (21 - xH) > 0

BNH SETEN.3

o1 SETPLGS ,EMPTYSET INTERSECTION IS EMPTY
o1 SETPLGS,ENOTINX PART OF ®SQUARE® OUTSIDE
L&A 0,0(R4,B9) LOW SIDE SEARCH COORDINATE IL
S6A 0,COORDSa? (R4,R1) PILE COORDINATE BI
BP SETEN .6

B2 SETEN.S

BX 23,8EGLO or QSTBL-QSTRL (RS) ,0
LPSL.R 0,0 (XL - EI) < O

csC 0,DELWK

BL SETEN .7

BER RT3

o1 SETPLGS ,XNOTINE PART OP SEARCH OUTSIDE
BR R14

csC 0,DELEK

BL SETER.7

or SETPLGS,ENPTYSET INTERSECTION IS EMPTY

o1 SETPLGS ,ENOTINX PART OF "SQUARE®™ OUTSIDE
BR R14

AIP (°6H® NE °Pv) .ND

BZ SHUDN VR

L RO, PRNTDEL PULL WORD INTEGER INPINITE DELTA
SRL RO,? APPEARS TO BE NEGATIVE

B SETEN .01

2QU SETEN .OM-SETEN.OM OPPSET FOR EX IN RTNVALS
EQU SETCN.00-SETEN.ON OUTER LOOP OPPSET IN PuA
BQU SETGH.02-SETSH.0N INNER LOOP OPPSET IN P4A
EQU SETGN.0-SETEM.OR LOOP OPPSET IN INTRSECT
DROP RS

-109-

¢ PUNCH A LINK EDITOR CONTROL CARD TO PORCE PAGE ALIGNNENT ¥

PUNCH * PAGE CARTAR®

. TITLE ° PROGRAM TO BANDLE N-DINENSIONAL INDEX®
: CARTAN CSECT
? USING *,B15

B PASTID
DC AL1(L°ID)

ID DC C*CARTAN.6SYSDATE..ESYSTINE®
PRINT NOGEN

PASTID ST R1&,R12,12(R1))
LR R14,R13
STD PO,SAVEPPRO
STD P2,SAVEPPR2
CROP 0,8
BAL R13,PASTCONS
DROP R15
USIRG *,R13
bC 18P0 SAVE AREA

PARBADDR DC i (0)
PARECET EQU PARBADDER, 1

SAVEFPRO DC D*O*
SAVEFPR2 DC D*0°*
SETPSAVE DS ior

ORG SETPSAVE
ITEDSAVE DS) 4
LODESAVE DS ™

ORG
BASTERPG DC A(L°PILECNTL) RBA OF HMASTER PAGE
REQUATE
REQUATE P
BAX# BFRS EQO 32 HAXIBUN NUMRBER OF BUFFERS
BINSBPRS EQO 8 RINIBRUN NUNBER OF BUPPERS

SRODNVR ABEND 97,DUNP,STEP
STKOVPLO ABEND 24,DUNP,STEP

-110~-

TITLE * PROGRAR TO RAENDLE N-DIMENSIONAL INDEX |]

WORK AREA DERPINITIONS® '

COBNBLOK DSECT '
USING *,R11 '
CBDDUNARE DS CL8 DDNAME OF PILE I
}

CBPUNC DS ocLs PUNCTION CODE
CBPUNC1 DS c ,
CBFUNC2 DS c %
cBrPUEC3 DS (- b
CBPUNCS DS c T
CBSTATUS DS CL2 RETURN STATUS ;
CBNODE DS c RODE OF ARITHNETIC 3
CBEORT DS ¢ BODE|TERAINAL INDICATOR ;
: CBRBA DS 2 RBA OF RECORD RETRIEVED|INSERTED 3
; CBNAXUDL DS | NAX LENGTH OF USER DATA AREA 2
! CBTRUUDL DS | TRUE LENGTH OPF USER DATA g
i CBAGETS DS | CODNTER POR VSAM “GETS" 3
> CBSPUTS DS 8 COUNTER POR VSAM “PUTS" £
. REDEFINITION IN EPPECT WHEN PUNC = “LOAD™|“OPEN®
g ORG CBNORT
| CBPAD DS c USER DATA AREA PAD CHARACTER
: CBIXS DS B 8 COORDINATES
{ CB#BUPRS DS B ¢ PAGING BUPPERS TO BE USED 1
ORG i
DIRECTRY BQU 0,16
RBA EQU 0,4 RBA OP PAGE IN PRAAE
o 1] 2Q0 4,4 PRARE CORE ADDRESS
riGs EQ0 8,1
CNTLADDR EQU 8,4 CORE ADDRESS OF VSAM CONTROL INFO
PWD 2Q0 12,8 P¥D LINK OB LRU RING

¢
i
|
o
v
|
i

-111-

PCBAREA DSECT
0S1I¥G 3,R12

PCBLABEL DS CL8 LABEL IS PFILE DDNANE
PREVPCB DS A BACKWARD AND
WEXTPCB DS PORWARD LINKS

IPGACB DSECT=NO GENBRATED ACB
IPGRPL DSECT=NO GENERATED RPL
DS oD

LNACBAR EQU IPGRPL-IFGACB

LUNRPLAR EQU s~-IPGRPL

CISIZE DS 4 CONTROL INTERVAL SIZE
AVSPAC DS ' 4 AVAILABLE SPACE
ENDRBA DS ' 4 ENDING RBA
LRECL DS r LOGICAL RECORD SIZE = CISIZE-7
MVYNODCS DS A (SODEAREA) POR MVCL INST

DS r (PLLNOD)
RCDADD DS a

DS 2 (CHLDODa)
CURRRBA DS r RBA OP RCD W/ CORE ADDR IN RCDADD
BUPR3 DS i LOCATION AND
$SUBPOOL DS ox
LEGBUP DS r LENGTH OF PAGING AREA
PRIORT DS a TOP OF LRU RING
DELWK DS D EXPANDED DELTA PROM RETRIEVED RCD
PRETDEL DS D EXPANDED DELTA POR NODEAREA
SPLTHSKS DS 0XL6 BASKS TO SEPARATE RBA*S INTO
CINSK DS r CONTROL INTERVAL RBA
DSPHSK DS | AND DISPLACEMENT

DS B UNUSED
LODEARGS DS 0XL6 SEPARATED BBA TO BE LOADED
LODECI DS 4
LODEDSP DS B

DS | UNUSED

DIREC? DS (BAX$#BPRS) XL (L°DIRECTRY) PAGING DIRECTORY

BISCPLGS DS IL3 BISCL PLAGS

ISRTONLY EQU B*10000000°* PILE OPENED POR LOAD

PILEXITED EBQU B8°01000000* FILE BAS BEEN RITENDED

PRSTISRT EQU B*000000019®* PIRST INSERTION HAS NOT BEEN DONE
SENDPAD DS c PAD POR USER DATA AREA

ITRAFRR DS |
SETPREGS DS ILA*80° R3 EX BASK POR BIT STRING

DS PO R4 COORDINATE VECTOR INDEX
DS A(QSTRL) RS BIT STRING ADDRESS

R WU L XA -

—cr W N

SETPADDR
GRXL2J
GRXHJ
GRPLAG
TRHONLY
THPPRNT
STKPRET
STKTOP

SETFLGS
SNGLCHLD
ENPTYISET
ENOTINX
XHOTIRE
QSTRL
QSTRR
QSTRO

STACK
HAXSTKL

PILECNTL

HIUSDRBA
PLNODE

PL#COOR
FLLCY

DELTAd
RCDPLGS
PARENT
NODRCD
TWIND
COORDSa
$QSTR?
QSTRLM1
CHLDUDa
PLLROD

DS
DS
DS
DS
DS
EQU
EQU
DS
DS
DS

DS
DS
EQU
EQU
EQU
EQU
DS
DS
DS

Ds
DS
DS
EQU

DS
ORG
DS
DS
DS
DS
DS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS

DS

DS

-112~

B6 INDEX INCREMENT

B7 INDEX LIMIT VALUE

R8 A (SETEM.O)

R9 LOW SEARCH COORDINATES

R10 BIGH SEARCH COORDINATES
B*10000000* IF SET, DOING “GR*™ SEARCH
B*01000000°* IP SET, WANTS TERMINALS ONLY

b ho by by

B POINT IN STACK OF TEMP PARENT

H POINT IN STACK OF PARENT

| TOP OF STACK

X°0* ZEROES TO CLBAR BIT STRINGS

X SBT INTERSECTION PFUNCTION PLAGS

B*10000000°* INTBRSECTION IS ONE CHILD ONLY
B*00000100°* INTERSECTIOM IS ENPTY
B*00000010* SOME OF ®*SQUARE™ OUTSIDE
B*00000001* SOME OF SEARCH OUTSIDE

XL64 BIT STRINGS

XL64 OP DIPFERENCE SIGNS

XL6&

D GNUSED

D PERMANENT PIECE OPF STACK
128D

*-STACK

xL32 PILE CONTROL INPORMATION
PILECNTL

4 CURRENT HIGH USED RBA (ISRT USES)
c BEIPLEQD

c UNUSED

" # COORDINATES

8 (L 4COOR) * (PLLCOOR)

0,2 12 BITS

1,1 4 BITS

B*0001* EXD OF TWIN CHAIN

B*o0oOt0°* RECORD IS A NODE
DELTAS+L*DELTAd,4 TWIN POINTER
THINS+L*THING START OF COORDINATE VECTOR

COORDSa+ (FLLCYV)

8 Q STRING LENGTH MNINDS 1

B CHILD PTR|USER DATA DISPLACEMENT
B TOTAL LENGTH OPF A NODE BRECORD

® = LODELTAI+L°THIND+ (PLLCV) ¢ (OSTRLB1+1) +L°CHILDPTR <= 2000

NODEAREA
FCBLRG

RPLNSG

ORG
DS
EQU
ORG
DS

SO PAR 16 BYTES ARE LEPT

XL2000 NODE CONSTRUCTION WORKSPACE
#-PCBLABEL HOPEPULLY < 84096

*-132

CL132°RPL NESSAGE AREA®

i -113-

TITLE °* PROGRAM TO HANDLE N-DIMENSIONAL INDEX =
INITIAL ENTRY®
CARTAN CSECT
PASTCONS ST R13,8 (R14) LINK SAVE AREAS
ST R14,4 (R13)
ST R1,PARNADDR SAVE PARANETER LIST ADDRESS

3 L R11,0(RY)
. CLI O0(R11),0 OPTIONAL PARB COUNT PRESERT?
! BNE PASTPC
$ L R15,0(R17) PARAMETER COONT
E; LA R1,4(RT)
& ST R1,PARMADDR STEP PAST COUNT
B L R11,0(R1) ADDRESS OP COMMBLOK
f B STPCT
i PASTPC LA R15,1 _COUNT PARANETERS
; LA RO,S NEED AT MOST 6

! CNTPC ™ O(R1) ,B*10000000°*
! BO STPCT
; LA R1,5(R1)
f LA R15,1(R15)
§ BCT RO,CNTPC :
b STPCT STC R15,PARMCNT b
BVYC CBSTATUS,=C* * INITIAL GOOD RETURN STATUS
L R9,=A (NOPCB)
USING NOPCB,R9
LA BR12,NULLABEL
PINDPCB LR R8,R12
L R12,NEXTPCB LOOX POR PROPER PCB
CLC CBDDNAME,PFCBLABEL
BH PINDPCB

o T oy T WIS

BLE R9 NOT ON CHAIN; GO MAKE A NEW ONE |
CLC CBPUNC,=C°CLSE' IS ON CHAIN; R12 IS NOW BASE
BE CLSE
B CBKPUNC
DROP R9
LTORG
NULLABEL DC 2r°0° HEAD AND
DC 1 (0)
DC A (EEDLABEL) ;
ENDLABEL DC 2pe-1 TAIL POR PCB CHAIN j
DC A (RULLABEL) :
DC 1 (0)

BKPAGE

LDPAGE

LODE

LoD1

LODS

Lon?

LOoD8

=114~

TITLE ° PROGRAN TO
CONVERT AN BBA TO A CORE ADDRESS®

BvVI
B

nv1

st
ST
ST
STH
§C
BZ

BROR
ZR
BR

HANDLE N-DIMENSIONAL INDEX =»

LODS+1,X°P0° BARK A CI AS HNODIPIED

LODE

LOD5+41,X°00° LOAD ONLY; WILL NOT BE CHANGED

BR14 ,R4,LODESAVE
R1,CUORRRBA

B1,LODECI RBA OF CI +

R1,LODEDSP

DISPLACERENT

LODBARGS,SPLTNSKS
LERADXTO ZERO RBA IS AN ERROR
R4,PRIORT-FWD START AT TOP OF PRIORITY LIST

RO, PWD (RG)
RO,RO

LoD2 CI WAS NOT IN CORE

R3,R4
R&,RO
LODECI (3) ,RBA (B
LOD1

PLGS (RG) ,*-*
PYD (L*PWD,R3),P
PWD (L*PWD,R4) ,P
84, PRIORT
R1,PRH (R4)
R1,LODEDSP
R1,RCDADD

B2
RCDPLGS (R1) ,NOD
LoD8
DELTAA (R1) ,B*10
LOD7

B2,DELTAd (R1)
R2,=X"PFPP00000°*
LoD8
R15,DELTA (R1)
B2,1

R2,0 (R15)
R2,DELWK
R14,R0,LODESAVE
R3,R4,LODESAVE+
B2, THIND (R1)
RCDPLGS (R1) ,PAR
R14

R2

R4

%)

MARK IP NECESSARY

WD (R4) RESET LRU LIST
RIORT

GET CORE ADDRESS

RCD
TERMINAL HAS NO DELTA STORED
000000°*
STORED AS LOG2
CLEAR GARBAGE

TAKE ANTILOG2

STORE EXPANDED DELTA

20

EXIT WITH TWIN PTR IN R2
ENT

ZERO B2 POR END OF TWIN CHAIN

S .. o

Akae

LOD2

LODA

XTLST

LERADXTO

LERADXT
LRRADXT1

SYNADIXT

WTONSG

=115~

LA R2,IFGRPL
MODCB RPL=(R2) ,AREA=(*,PRM (RG)) ,ARG=(S,RBA (R4)})
™ PLGS (B3) ,X*PO* IS IT MARKED?

B2 LOD4
.) 4 PLGS (R4) ,X°0P* CLEAR MARK PLAG
LA R4,

AH R14,CBE#PUTS
STH R14,CB4PUTS
PUT RPL= (R2) WRITE 0OUT HMODIPIED CI

MVC BBA (L°RBA,RU) ,LODECI RBA OF CI TO READ
LA R14,1

AH R14,CB#GETS

STH R18,CB#GETS

L RO, PRN (R4} TRY TO TELL MVS NOT TO BOTHER
L R1,PRM+L*DIRECTRY (R4) PAGING IN AREA

PGRLSE LA=(0) ,BA=(1)

GET RPL=(R2)

B LODS

EXLST LERAD=(LERADXT,A),SINAD=(SYNADXT,A)

LA RO, 16 LOGICAL ERROR EXIT
ST RO,CBRBA
B LERADXT?

SHONCB RPL= (1) ,AREA=(S,CBRBA) ,LENGTH=4,PIELDS=FDBK
BvC CBSTATUS,=C*AJ"*
B RTR

BVC RPLNSG+10 (2) ,WTONSG+2 PEYSICAL ERROR EXIT
LA R15, RPLNSG+4

STH R15,RPLASG+8

LA R15,RPLESG+4 (R15)

BVC 0 (8,R15),WTONSG+8

WTO MP=(E,RPLNSG+8) DISPLAY ERROR MESSAGE ON JES
MVC CBSTATUS,=C*AO* LOG
B RTH

WTO *1234°',ROUTCDE=(11) ,DESC= (6) ,NP=L

LTORG

|

TRTAL ¥ e

~116~-
TITLE * PROGBAN TO HANDLE R-DIMENSIONAL INDEX *
PERPORM REQUESTED RETRIEVE PURCTION®
CHKPUNC LH R7,PLLCY LENGTH OF COORD VECTOR e
LB R8,QSTRLE 1 LENGTH OF Q BIT STRING - 1 |
CLC CBPUNC,=C*ISRT* !
BE ISET
™ MISCPLGS,ISRTONLY
BO BOTG
L B1,RCDADD
ZR B15 SHOULD BE A ™G™ REQUEST
CLI CBPUNC1,C?G?®
BH NOTG

BL CHKDLCH
CLI CBPUNC2,C°A"
BL NOTG

CLI PARNCHNT,S

BL SHRTLIST

IC B15,CBPUNC2
IC R15,CHDTBL (R15) i
B NOTG (R15) ¥

CADTBLX DC 64X°00°
CMDTBL EQU CHDTBLX-C*A"+1%
ORG CHDTBL+C*A" C*ABCD®
bC AL1 (GR-NOTG,0,GC~ROTG ,GD-KOTG)
ORG CHDTBL+C®H® C*HROPQR"®
DC AL1 (GM-¥OTG,GN-NOTG,0,GP-NOTG,0,GR-NOTG)
ORG CHDTBL+C*T*
DC AL1 {GT-NOTG)

ORG
SHRTLIST MVC CBSTATUS,=C®SL® TOO PEW ARGUMENRTS
B RTH
NORCD BVC CBSTATUS,=C'GE®
B RTN
POPIT ZR RO POP STACK POR NOST "G® REQUESTS -

1H R14,STKTOP
AB R14,=AL2 (-L *STACK)

BHR R15
sTH R18,STKTOP
L RO, STACK+4 (R14)
BR R15
CBKDLCH CLC CBFrUNC,=C*CHEG®
BE CHEG
CLC CBPURC,=C*DLET?®
BE DLET
¥0T6 BvC CBSTATUS,=C*AD' IKYALID CODE
B RTH

GP

GPNS

GT

GC

GR

GN

GN001

GNY

GNTNS
GERTES1

-117-

R15,POPIT POP CHILD

NORCD

R15,POPIT POP THIN

BORCD

R15,POPIT POP TO PARENT

GPES

BO,STACK (R14)

GETIT

RO, TWINA (RT) RAR OUT OF STACK ENTRIES
RO,B0

NORCD FOLLOW TWIN CHAIN BACK UP
BRCDPLGS (R1) ,PARENT

GETIT HERE IT IS

(RO)

GPES

R15,POPIT POP CBILD OPF STACK
¥ORCD THEN POP TWIRN
R15,POPIT POP TOP OF STACK
NORCD

RO,RO

¥ORCD

GETIT

GRCODE AREA SEARCH INITIALIZATION

CBPUNC3,C*P"* GET NEXT

GNPCODE (VYITHIN PARENT)
R15,POPIT

GNO0O1

RCDPLGS (R1) ,SODRCD STACK WAS EMPTY]
GuT POLLOW CHILD CHAIN
R15,CHLDUDA

RO,0 (R15,R1)

RO, RO

GHY

CBPUNC3,C°T?* IS SUBTREE TO BE SKIPPED?
GETIT

R15,POPIT YES; SKIP SUBTREE

GNTNS

RO,RO

GHT

GETIT

RO,STACK STACK WAS EMPTY:
RO,RO POLLOVW TWIN CHAIN
NORCD

(RO)

RO, TWIND (R1)

RCDPLGS (R 1) , PARENT

GETNS)

GETIT

GH

GD

GDLOOP

GETI?T

GETITNC
RTNYALS

BVYUDAT

RTNRBA
RTH

-t118-

L RO, NASTERPG GET MASTER PAGE

MVC STKTOP,=AL2 (~L*STACK)

B GETIT /

LH R15,=AL2(~L*STACK) GET DIRECT

LB R18,STKTOP CHECK STACK TO SEE

L RO,CBRBA IP IT IS THERE

xC STKTOP, STKTOP

BILE R14,R15,GETIT

CL RO,STACK (R14)

BEE GDLOOP

STH R14,STKTOP START STACK WITH THIS RECORD
XC GRXLA (L*GRXL3+L'GRXH@+L*THPPRNT+L*STKPRNT) ,GRXLA
LPAGE (RO)

BAL R15,PUSHTW PUSH TWIN OF LATEST RECORD
CLI CBPUNC3,C°P®* PARENTAGE TO BE SET

BNE GETITHNC

STE R14,STKPRNT REMEMBER PARENTAGE POSITION IN
CLI CBPUKCS,C'L® STK
BNE GETITNC

STH RW,THPPRNT

o1 GRXH3,TRMONLY

BAL R15,PUSHCH PUSH CHILD OP LATEST RECORD
L R3,PARNADDR

L B4,RS,8 (R3) A (COORDVEC,DELTA)

L R15,SETPADDR

BX 0,SETNTRYHN (R15) AN HVC INST TO MOVE DELTA
LA R6,COORDSa (R1)

LR RS,R7

MVCL RG,R6 MOVE COORDINATE VECTOR

L B4, 4 (R3) A (USERDATA)

LH RS,CBNAXUDL

LH R14,CHLDUD? NOW TO MOVE USER DATA

AR R14,R1

ZR R15

BVI CBNORT,C°N® INDICATE A NODE FOR STARTERS
™ RCDPLGS (R 1) ,NODRCD

BO RVODAT NONE TO MOVE

BYI CBEORT,C°T®

L8 R15,DELTA® (R1) LENGTH OF USER DATA (*16)
SRL R15,8 DIVIDE BY 16

STH R15,CBTRUUDL

ICH R15,B*1000°,SENDPAD LOAD PAD CHARACTER

BYCL BR4,R14 MOVE USER DATA AND PAD AREA
BNL %48

BRYI CBNORT,C'X® WAS A SHORT (TRUNCATED) NOVE
MYC CBRBA,CURRRBA RETURN RBA TO CALLER

LD PO, SAVEPPRO

LD P2,SAVEPPR2

L R13,8 (R13)

RETORN (14,12),T,RC=0

PUSHCH

PUSHTV

POPITP

s ateyer,

GNPGH

GRCODE

AP, 24, freris B NV IR SRR T . o

=119~

RO ZERO TO LEFT SIDE

| ¥

RCDPLGS (R1) ,SODRCD CHILD (IF ANY) TO RIGHT
PUSHTW SIDE
R2,CHLDUD?

R2,0(R2,R1) :

R14,STKTOP IF PUSBING TWIN, CURRENT RBA
B13,=AL2 (HAXSTKL-L®*STACK) IN LEPFT SIDE
STKOVYPLO BECOMES PARENT

RO, STACK (R14) FPOR ALL ABOVE 1T
B2,STACK+4 (R14) IR STACK
R14,L°*STACK (R 14)

R14 ,STKTOP

R15

R2 POP STACK POR GNP PROCESSING
R13,STKTOP

R14, THPPRNT MARKED AS TENP PARENT?
GuPGH 1ES

R4, STKPRNT MARKED AS PARENT?
NORCD YES
R14,*AL2 (-L *STACK)

NORCD STACK IS EMPTY
R14,STKTOP

B2,STACK+4 (R14)

R15

THPPRNT,THPPRNT FINISHED SUBTREE
GRXB? ,TRHONLY

NORCD

GRXH®,X°FP*-TRMONLY
CBSTATUS,=C*GH*

RTN

PARMCHT,6 AREA SEARCH SETOP

SHRTLIST

R15,PARNADDR

GRXL® (L°GRXLA+L*GRXHJ), 16 (R15) ADDRS OP LINIT
GRXH® ,GRPLAG VECTORS
THPPRNT (L *THPPRNT+L *STKPRNT) , THPPRNT

CBPUNCHL ,C*L

e8

GRXH3 ,TRNONLY

SETPLGS ,0

STKTOP,=AL2 (-L*STACK)

HASTERPG START WITH NASTER PAGE

()) 4}

GNPCODE

GNPO

GuP1
GNPOCO
GNP2

GEPO

GNPS

BAL
BRO
BO

T8
BO

SETPLGS,0

R15,POPITP

CBPUNCY ,C"L"*

GHPO

GRXHA3 ,TRBONLY

GEPp2

R14 ,THPPRNT LAST BRCD READ IS TO BE MARKED
GRXB@ ,TRHONLY TO RETRIEVE ALL TERNINALS OF
6¥P2 SUBTREE

CBPUNCH4,C*T*® IS CBILD SUBTREE TO BE

GNP2 DISCARDED?
SBTPLGS,0

R15,POPITP

BRO,R2

GHEP1

(RO)

SETPLGS,SXGLCHLD LOOKING FOR A SINGLE CRILD?
GEP4

R14 ,COORDSa (R7,R1)

B8 ,CLQRL CLC 0(0,R14) ,QSTRL
GWP2 ¥OT YET

GEP1 HISSED IT

R2 POUND IT; REED NO NMORE
R15,PUSHTW

SETPLGS,0

GRXHa ,GRFLAG GR PROCESSING?

GWPS

BR15,INTRSECT

GNP +0 EMPTY INTERSECTION; DISCARD
QSTRL,QSTRH +4&

48

SETPLGS,SNGLCHLD

R15,PUSHCH

RCDPLGS (R1) ,NODRCD

RTRVALS RETURN ALL TERMINALS
SBETPFLGS,SNGLCHLD IF OBLY OBE CRILD OF
GNPOCO INTEREST, GET IT INBEDIATELY
GRXHA3 ,TRAONLY

GNP CALLER WANTS TERNINAL ONLY
RTEVALS

CLQRL
WEGLO
WEGHI
DELSIGN

ISRT

ISRTO?7

ISRTO8

ISRTO9
ISRT 10

ISRT 12

TITLE

CLC
oI
o1
T8

CLI

LPAGE

BRO

-121-

. PROGRAN TO BANDLE N-DIMENSIONAL INDEX
INSERT PUNCTIOR®

0(0,R14) ,QSTRL

QSTRL-QSTRL (R5) ,0

QSTRH-QSTRL (RS) ,0

QSTRO-QSTRL (RS) ,0

PARNCET,]

SHRTLIST

R1S,PARBADDR

B6,4{R15) ADDRESS OF USER DATA

B4 ,8 (R15) ADDRESS OF COORDINATE VECTOR
R5,0(R&)

R4, BS ,GRXLD

CBTRUUDL,B*®* 10000000°*

ISRTO? UD TOO LOKNG

BR15,CBTRUOUDL

R15,CHLDUDd

R1S,1 TOTAL LENGTR MUST BE LESS THAN
B15,LRECL HALF OF THE LRECL

ISRTO8

CBSTATUS,=C*IU* USER DATA TOO LONG

BTN

HISCPLGS,PRSTISRT

ISRTO09

BISCPLGS,X*PP*~PRSTISRT

HASTERPG FIRST INSERTION OK A LOAD
B15,CALCQSTR

0

PONEWTRA

R15,POPIT TOP OF STACK IS PROBABLY ZEROS
R15,POPIT

ISRT12

RIG

R14,STKTOP

R9,STACK-L*STACK (R14) CLINMB PARENT DIRECTION
(R9) UNTIL NODE COMPLETELY COVERS
R15,INTRSECT NEW COORDS

ISRT10 +0

SETPLGS,ENOTINX +4

ISBRT10

B2

; . s
e, oy CRRRE R T

LA N ’

- - g e

e - X
AadBalile b e e e T A

=122~

B2 L R2,85,VNODCS
NVYCL R2,R4 RENENBER CONTENTS OF NODE
NVC PRNTDEL,DELWK AS PROBABLE PARENT
LB R10,STKTOP
BAL R1S,PUSHCH
LTR R9,R2
BZ SEUDNVER
c3 LPAGE (R9) LOOK POR CHILD IN SANE DIRECTION
1a R1A,COORDS® (R7,R1) AS NEW COORDIMATES
BX 28,CLQRL cLC 0 (0,R18) ,QSTRL
BH PE6REUTRA NISSED IT
BE QE
ST R9,STACK(R10) NOT YET
ST R2,STACK+4 (R10) (PUSH TWIN)
LTR R9,R2
BE¥Z C3
B PGNERTRN NOT ON CHAIN INSERT TERMINAL
QE 1A R14,COORDS3+BODEAREA (R7)
EX BS,HVQRL
BAL R15,CALCQSTR ARE NEW COORDS INSIDE RECORD?
mop O
A SETPLGS,ERPTYSET+ENOTINX
BZ IENATCR BATCHING POINT COORDS
BO P40 NO; EMPTY INTERSECTION
ST B9,STACK (R10) YES; TOTALLY INSIDE
ST 22,STACK+4 (210)
B B2
CALCQSTR LA R14,QCALC CALC A PULL Q BIT STRING
B INTRO
INTRSECT LA R14,INTRTEST EXIT INANED. IP NO INTERSECTIOM
INTRO STH R3,R10,SETPSAYE
L £3,R10,SETPREGS
BVC SETPLGS (L'SETPLGS+L*QSTRL+L*QSTRHL'QSTRO) ,SETPLGS-1
B SETNTRY3 (R8)
INTRTEST TH SETPLES,EMPTYSRET
BO INTREIIT EXIT TO +0 IPF ERMPTY
QCALC SRA R3,1
BEZ INTRLOOP
LA R3,B8° 10000000* NEXT BYTE ON Q STRING
1A 2S, 1(RS)
INTRLOOP BILE 1R4,R6,SETNTRY3 (R8)
A R15,8 (R15) EXIT TO +& IP PULL LOOP WAS RUN
INTREXIT LA R3,R10,SETPSAVE
BR R15

1
1
'

T T

B Il e L R,
. - L eTil) -

-123-

Pao STH R1,R10,SETPSAVE
avC TWIN@+NODEAREA,TWIND (R1)
LA R14 ,COORDS?+NODEAREA (R7)
BX R8,NVQLR
b LA R1,CO0RDSd (R1)
s? R1,GRXL3 '
LA R1,NODEARER NODEAREA HOLDS NEW NODE INPO '
LA 86,R10,SETPREGS+ 12

it Sabeen i

PaA BvC QSTRO,QSTRL
ave SETFLGS (L*SETFLGS+L®QSTRL+L"QSTRH) ,SETPLGS~1
pA.} B3,R5,SETPREGS
BAL R14 ,SETNTRY1(R8) ADJUST COORDS IN NODEAREA

SRA R3,1 AND CALCULATE Q°S
BNZ P4B
LA R3,B°10000000°
LA BS,1(RS)
PUB BYLE RU,R6,SETNTRY2 (R8)
CLC QSTRL,QSTRH
BE PuA STILL SAME Q, ADJUST AGAIN
ST R10,GRXLd RESET GRXL2
CLI SETNTRY1+L°SETPOO (RS) ,X*8A° “SRA™ OPCODE?
BEE P4D
L R13,PRNTDEL
LH R15,=XL2°7P00* CALC LOG2(DELTA)
P4C LA R15,X%100° (R15)
SRA R14,1
BNZ PAC
STH R15,PRNTDEL
P4D NYC DELTA®(2,R?),PRETDEL
L8 B1,R10,SETPSAVE QSTRL IS POR LAST RECORD READ

B PSNEWNOD QSTRH IS FOR NEW TERMINAL

XEBATCE TA BRCDPLGS (R1) ,NODRCD COORDS MATCH W/ DELTA = 0
BO XENATCHO
La R2,R5,H¥NODCS RECORD IS A TERMINAL;
HYCL B2,R4 NEED A PARENT NODE W/ DELTA
xC DELTA3+NODERAREA ,DELTAG+NODEAREA OF ZERO

JUR S SO L T

r" - ° - ——— aaiiadenas
’ =124~
% PSERHROD O RCDPLGS*NODEAREA ,NODRCD
LH 81,PLLNOD LENGTR OF A KODE
BAL R13,XTHDSLOT
CLC QSTRL,QSTRA
BH PONENTRE BEW TERMINAL GOES PIRST
BE P6NCBTRA IP EQUAL, NUST BE DUP COORD
L BR15,STACK+4 (R10) NEW TERMINAL GOES SECOND
ST R15,STACK (R10)
B PONEWTRN
IENATCRO ST R9,STACK(R10) RECORD IS A NODE 8,/ DOP COORD
ST R2,STACK+4 (R10) CHILDREN
Le R10,STKTOP
BAL R15,PUSHCH
P6NCHBTRE L RO,STACK+4 (R10) OW DUP COORDS, CHCK USER DATA
P6NCBLP LPAGE (RO)
LH B15,CBTRUUDL
LR R18,R6
LR R5,R15
L R4 ,CHLDUD?
AR B4,R1
CLCL R4,R14
BE IISTAT DOPLICATE RECORDS; NO INSERTION
ST 80,STACK (R10)
LTR RO,R2
BNZ POHCHLP
PONRWTRN LH R1,CBTRUUDL
AR R1,CHLDOD TOTAL LENGTH OP A TERNINAL
avI RCDPLGS+NODEAREA,O
BYO DELTA3+NODEAREA ,CBTROUDL USER DATA AREA LNGTH
L R4 ,COORDSa+NODEAREA
1R R5,R7
L R2,GRXRD
LR B3,R5
BVCL R&,R2 HOVE COORDINATE VECTOR IN
BX R8,NVQNEH nve 0(0,R&) ,QSTRH
BAL R34 ,XTNDSLOT
L 85,CBTRUUDL R4 IS ALRBREADY SET
LR B7,R5
#vCL R4&,R6 HMOVE OUOSER DATA IN
B RTHRBA
IISTAT nve CBSTATUS,=C°II"*
B RTERBA

AVQRL uve
KVQLR AYC
L4 fe]] BvcC

0(0,218) ,QSTRL
QSTRL (0) ,0 (R14)
0(¢(0,R4),QSTRA

XTE¥DSLOT ST
oI
L
LB
§R
AR

ITNDO AR

=125~
R14,XTNDSAVE
BISCPLGS,PILEBXITND
R4 ,HIUSDRBA BEXT AVAILABLE RBA
R5,DSPUSK
RS,R3
BRS5,R1
BS,LRECL ROON IN C1?
XTHDO YES
BRS,R1 Ho,
R4,CINSK STEP TO NEXT CI
B8 ,CISIZE
R1,R8
R1,BI0USDRBA KEW AVAILABLE RBA
R10,STXTOP IP DOING ISRT, STACK

R10,=AL2 (L°STACK) SHOULD NEVER HAVE < 1 ENTRY
SHUDNVR

R, STACK-L®STACK (R10)

R4, STACK-L*STACK (R10) NEW RECORD GOES TO LEPT
R1,R1 SIDE
ITED1

(RY) INSERT NEW RECORD ON TWIN CHAIN
TUINJ+NODEAREA,TWIND (R1)

R4, TVIND (R1)

RCDPLGS (R1) ,PARENT

ITAD2

RCDPLGS (R1) ,X*PP'—PARENT RCD JUST LINKED TO
RCDPLGS+NODEAREA ,PARENT WAS END OF TWIN CHAIN
XTED2

-126-

ITRD1 BPAGE STACK-2SL°STACK (R10) INSERT NEW RECORD AS 1
LB R18,CHLDUDA PIRST CHILD OF PARENT
L R2,0 (R14,RY1)
ST R&,0(R14,R1)
LA B4 ,NODEAREA
ST R2,TWIND (R14)

ITHD2 ™ RCDPLGS+NODEAREA ,NODRCD
BEO XTND3
LE R18,CHLDUDA
ST R2,NODEAREA (R14)

MPAGE (R2) y
HVC TWINA+NODEAREA,TWIN3 (R1) s
ST R4, TVIND(RT) ;
™ BRCDPLGS (R1) ,PARENT 3
BNO %8 .

or RCDPLGS+NODEAREA, PARENT

o1 RCDPLGS (R1) ,PARENT

LA R14,COORDS? (R7,R1)

EX R8,AVQRL nve 0(0,R14) ,0STRL

XTND3 ST R2,STACK-L*STACK+4 (R10)
LA R1,NODEAREA
BAL R15,POSHCH

it it [0

MPAGE (RS) LOAD AXND HARK NEW CI

L R15,LRECL

L R18,PRIORT

L R1&,PRHE (R14)

AR BI18,R15 POINT AT AND THEN

BVl O(RIN),0 ADJUST VSANM CONTROL INPORBMATION

STRH RS, 1(R18)

sTH R5,3(R1Q)

SR R1S,RS

STH R15,5 (R14)

Ln R2,R5,AVHODCS

™ RCDPLGS+NODEAREA ,NODRCD

BNO %46

LR B5,R3 PUOLL LENGTH IPF NODE

HVCL BR&,R2

L R4 ,XTEDSAVE

BR | 8L -

| -127-

[TITLE °* PROGRAM TO HANDLE N-DIMENSIONAL INDEX *
* CHANGE|DELETE PUNCTIONS®
CHEG CLI PARMCNT,3

BL SHRTLIST

CLC CBRBA,CURREBA NUST HAVE JUST BEEN RETRIEVED

BNE CHEGX

™ BCDPLGS (R1) ,NODRCD

BO CHNGX CAN'T CHANGE DATA ON A NODE
L R9, PARBADDR

L B6,8 (R9)

LB R3,R7

LA R2,COORDS2 (R1)

CLCL RZ2,R6 ENSURE COORDINATES WEREN®T CHANGED
BNE CHNGX

LB BR5,DELTAD (RT)

SEL R5,4

L R6,4 (R9)

L R7,CBTRUUDL

CLR R7,RS CHECK LENGTH

BH CHNGX

BPAGE CBRBA1
LB RQ,CHLDUD?

AR RG,R1
ICca R7,B*1000°,SENDPAD
BYCL BRA4,R6 REPLACE USER DATA PIELD
B RTN
CHNGX BvC CBSTATUS,=C*CX"*
B RTH
DLETX nvc CBSTATUS,=C*DX*
B RTY
DLET L R6,CBRBA
CL R6,HASTERPG CAN®T DELETE MASTER RECORD
BNH DLETX
CL R6,CURRRBA BUST HAVE BEEN JUST RETRIEVED
BNE DLETX

) {of CBRB2,CBRBA

LE R9,CHLDUDd

nvce BCDPLGS+NODEAREA ,RCDPLGS (R1) SAVE FLAG
L R3,TWIND (R1) AED TWIN POINTER

LB R10,STKTOP

SH R10,=AL2 (3*L*STACK)

BEA DLETO3

iR R10 PARENT NOT IN STACK
DLBTO1 L RO, TWIN (R1) WALK TWIN CHAIN¥ TO PIND IT
by | RCDPLGS (R1) ,PARENT
BO DLETO02 PFOUND IT
LPAGE (RO)

)] DLETO1

DLETO02

DLETO3

DLETCHLD

DLETTWIN

DLETT1

DLETNVR

DLETT2

DLETT3

ST

LPAGE
ST

1A

BX
BvC
CL
BNE

HPAGE
ST
LPAGE
LTR
BZ

L

LR
LPAGE
CLR
BE
LTR
BNZ
ABEND

ST
HPAGE
ST
™
BNO
oI
ZR
CLR
BE
ST
ZR
ST
ST
La
sTH
B

~128~
BRO,STACK (R10)
STACK (R10) STARTING AT PARENT OPF "x%,

R2,STACK+4 (R10) (ENSURE PRNT®S TWIN IN STACK)
R14,COORDS® (R7,R1) LOOK POR PREDECESSOR

R8,MVQLR MYC QSTRL (0) ,0 (R 14)
QSTRH (TWIN3+L°TWINA) ,0(R1) SAVE Q, TWIN PTR,
R6,0 (R9,R1) rLG
DLETTHIN

STACK (R 10) PARENT WAS PREDECESSOR; MARK
R3,0(R9,R1) SUCCESSOR IS NO¥ PIRST CHILD
(R3)

R2,R2

LORETRIN WHOOPS; LONE RENAINING CRILD

R3,STACK+L*STACK+4 (R10) DELETED RECORD WAS
RO PIRST OF ONLY TWO CHILDREN. LEAVE
RO,STACK4L*STACK (R10) STACK W/ SUCCESSOR AS
R15,2%L°STACK (R10) PIRST (ONRETRIVED} CHILD
BR15,STKTOP OF PARENT OF *x"

RTN

RO,0(R9,R1) PARENT NOT INMEDIATE PREDECESSOR
R4, RO REMENBER PIRST CHILD

(RO) WALK TWIN CHAIN

R2,R6

DLETT2

RO,R2

DLETT1

95,DpUBP,STEP

RO, STACK+L*STACK (R10) SAVE IN LEFT SIDE OF

(RO) STACK
R3,TWIND (R1)

RCDPLGS*NODEAREA , PARENT WAS "X™ ON END OF
DLETT3 CHAIN?
RCDPLGS (R1) ,PARENT

B3

R&, RO IS PREDECESSOR PIRST CRILD?
LONECELD YES

R3,STACK4L*STACK+4 (R10) LEAVE STACK W/

RO PREDECESSOR IN PLACE OPF "X®, BUT SHOW

RO,STACK+2#L*STACK (R10) NO CHILD AS CHILD OF
RO,STACK+2¢L*STACK+4 (R10) PRED(X) HAS BEEN
B15,3*L*STACK (R10) PRESENTED EARLIER.
R15,STKTOP

RTH

o

-129-
* RECORD DELETED WAS ONE OF ONLY TWO
LONETWIN MPAGE (R3) ON CHAIN
ZR RS PREDECESSOR IS PARENT
LONECHLD NI RCDPLGS (R1) ,X*PP*~PARENT REPLACE
MVC TWING (L*TWIN®,R1) ,TWIN@+QSTRH TWIN POINTER,
NI RCDPLGS #QSTRH,PARENT
oc BRCDPLGS (L*RCDPLGS,R1) ,RCDPLGS+QSTRH ITS PLAG,
LA R14,COORDSa (R7,R1) AND Q STRING
EX RS,MVQRL m¥C 0(0,R14) ,0STRL
L RS,STACK (R10) RBA OFP PARENT TO BE REPLACED
AR R10,=AL2 (-L *STACK)
BNE LONEO3
ZR R10
LONEO? L RO, TWINS (R1)
™ RCDPLGS (R1) ,PARENT
PO LOKEO2
LPAGE (RO)
B LONEO1
LONEO2 ST RO, STACK (R10)
LONEO3 L RO, STACK (R10)
LPAGE (RO)
ST R2,STACK+4 (R10) ENSURE PARENT'S TWIN IN STACK
cL BS5,0 (R9,R1)
BE LONE10 REPLACED PARENT PIRST ON CHAIN
L RO, 0 (R9,R1)
LA B9, THING
LONEGS5 LPAGE (RO) REPLACED PARENT IS ALONG TWIN CHAIN
CLR RS5,R2
BR LONE10
LTR RO,R2
BRZ LONEOS
B DLETNVR
LONE10 ST R4,STACK+L*STACK (R10) STORE PREDECESSOR IN
LTR R4,R4 STACK
BNZ LONE11
ST B3,STACK+L*STACK+4 (R10) PRED(X) IS A PARENT
LA R15,2%L*STACK (R10) SUCCESSOR IS NON-NULL
LR B4,R3
B LONE12
LONE11 ST R3,STACK+24L*STACK (R10) PRED (X) IS NON-NULL
ST R3,STACK+2#L*STACK+4 (R10) SUCC IS NULL
LA R15,3%L*STACK (R10)
LONE12 STH R15,STKTOP
MPAGE (RO)
ST R&,0 (R9,R1) STORE AS CHILD OR TWIN
B RTN

NOPCB

N

-130-

TITLE ° PROGRAN TO HANDLE N-DIMENSIONAL INDEX =
HODE DEPERDENT "SET®™ FUNCTIONS®
LTORG

PUSH PRINT
PRINT GEN

SETPUNC P
SETPUNC H b
SETPUNC B f

SETPUNC D ‘]

POP PRINT

TITLE * PROGRAM TO HANDLE N-DIMENSIONAL INDEX *
INITIALIZATION SECTION®

USING NOPCB,R9

CLC CBPUNC,=C*CLSE® DID KOT FIND

BE RTE

CLC CBPUNC,=C'OPEN’

BE NEWPCB

CLC CBPUNC,=C'LOAD"® _

BNE NOTG INVALID PUNCTION CODE

LH R2,CB4XS

ca R2,=AL2 (8%L*QSTRL)

BEE CHKNODE :

8YC CBSTATUS,=C°AX® 4

B RTN

CHKNODE CLI

MODEERR

NEWFCB

AXERR

~-131-

CBMODE,C*D*®

BL NODEERR ERROR

CLI CBHODE,C*H®

BH MODEERR ERROR

CLI CBNODE,C*G®

BNE NEWPCB

MVC CBSTATUS,=C"AM?®

B RTN

LH R7,SPPCBLNG+2

GETMAIN RO,LV=(R7),BNDRY=PAGE,SP=SUBPOOL#

LR R6,R1

LA R14,CBDDNANE

LA R15,L "CBDDNANE

MYCL R6,R18

ST R1,NEXTFCB-FCBAREA (R8)

ST R1,PREVPCB

ST R12,NEXTPCB-FCBAREA (R1)

LR R12,R1

ST RS, PREVFCB

GENCB BLK=ACB,DDNAME= (*,CBDDNAME) ,EXLST=XTLST, *
LENGTH=LNACBAR,WAREA=(S,IPGACB) , GER AN ACB *
MAREA=(S,RPLNSG) ,ALEN=L *‘RPLESG, POR PILE .
MACRF=(CNV,DIR,ICI,IN,OUT,UBF)

CLC CBPUNC,=C*OPEN?®

BE OPENINIT

BVI MISCPLGS,ISRTONLY+PRSTISRT

NVC PLNODE,CBMODE

STH R2,PL#COOR

ZR R3

IC R3,CBNODE

SLL R3,3 MODE CHARACTER * 8

LH R4,MODETBL-8*C*D*+6 (R3) INPINITE DELTA/PLAGS

STH R4,DELTA@4+NODEAREA FOR MASTER RECORD

LH R4,NODETBL-84C*D%+4 (R3) LENGTH OF COORDINATE

NB R4, PL#COOR

STH R4,PLLCV LENGTE OP COORDINATE VECTOR

BCTR R2,0 PLOOR(($X+7)/8) - 1

SRL R2,3 = PLOOR ((§X~1) /8)

STH R2,QSTRLH1 LENGTH OF Q BIT STRING MINOUS 1

LA BRS,L'DELTAQR+L*TVINA+1 (RU,R2)

STH BS,CHLDUD? DISPLACEMENT TO CHILD|USER DATA

LA RS, 8 (RS)

cH RS,=AL2 (L *NODEAREA)

BNH STLNOD

MYC CBSTATUS,=C°AX"’

B CLSE3

v
-~

O o —_—
-132-
STLNOD STH RS,PLLNOD PINAL NODE LENGTH
LA RS,L*PILECNTL (R5)
ST RS,HIUSDRBA
xc XTNDSAVE,XTNDSAVE
LA R8,CARTINIT
BAL R10,0PNINIT
CLC HIUSDRBA,LRECL
BH AXERR LRECL TOO SHMALL
L BRY4,R6,CISIZE
LTR R6,R6
BNZ CLSINIT
BCTR RS,0 EMPTY DATA SET; PREPORMAT CI'S.
L B2, PRIORT
MODCB RPL=PRPL,AREALEN=(*,CISIZE), *
RECLEN= (*,LRECL) , AREA= (*, PRN (R2))
INITLOOP PUT RPL=PRPL
BXLE R6,R4,INITLOOP
CLSINIT CLOSE CARTINIT NOW DOWN TO WORK WITH REAL ACB
LA B8,IPGACB
BAL R6,MODOPN
L R3,MASTERPG
MPAGE (R3) INITIALIZE MASTER PAGE
LR RG,R?
SR R4,R3
L RS,LRECL
LA R14 ,PILECNTL
L R15,8IUSDRBA
MVCL R4,R18
B PININIT
HODETBL DC A (SETDOM) ,H*08°,XL2°7P83° D
DC A (SETEON) ,H*04*,XL2°7P83" E
DC A (SETPON) ,H°04°,XL2°9P03* P
DC 2P*0° G
DC A (SETHON) ,H®02',XL2%8P03* H

]

OPENINIT LA

PININIT

BODOPN

BAL

30DCB
OPEN
LTR
BZR
SHONCB
¥VC

-133-

OPEN AN EXISTING PILE
R8,IPGACE
R10,0PNINIT
R3,8ASTERPG
(R3)
B4, R
R4 ,R3
FILECNTL,0 (R4) BRING IN PILE CONTROL INFO
CBEODE,FLNODE RETORN RODE
CB#1S,PL#COOR & & COORDS
SENDPAD,CBPAD SAVE USER AREA PAD CHARACTER
R3,STACK-L*STACK MASTER PAGE RBA IN PERM STK
STACK-L*STACK+4 (L*TWIND) ,TWIND (R1)

R15,PUSHCH

R15

B15,PLMODE

R15,3

R3,B*10000000°* PRESET REGS POR ®SET"® PUNCTION
RY INDEX

R5,QSTRL A (Q STRING) .
R6,MODETBL-8+C*D"+4 (R15) INDEX STEP

R7,PLLCY

R7,0 INDEX LINIT
R8,NODETBL-8*C°*D* (R15) A (MODE SPECIFIC CODE)
R3,R8,SETPREGS '

R2,XODEAREA A (NODEAREA)

R3,PLLROD L*NODE

R4 ,RCDADD A (CURRENT RECOBD)

BR5,CHLDUD® L*NODE W0 CHBLD PTR OR USER DATA
R2,R5,MVNODCS PRESET VALUES FOR MVCL INSTRS
RTN

ACB=(R8) ,DDNAME= (*,CBDDNANE)
((R8))

R15,R1S5

R6

ACB= (R8) ,AREA= (S,CBEBA) ,LENGTH=4, PIELDS =ERROR
CBSTATUS,=C*AI"

CLSE3

OPNIRIT BAL

SETPRA

-134-

R6, HODOPN
SBONCB ACB= (R8) ,AREA=(S,CISIZE) ,LENGTH=12, s

PIBLDS=(CINV,AVSPAC,ERDRBA)
L BR6,CISIZE
BCTR R6,0
STH B6,DSPHSK RBA DISPLACEMENT MASK
L R14 ,ENDLABEL
IR R14,R6
ST R143,CINSK 1*S COMPLEMENT OF DSPNSK
s BR6,=H*6"*
ST R6,LRECL
LE RO,CBSBUPRS LOAD # BUPFPPER PAGES BEING REQ.
XxC CB#GETS (L*CB4GETS+L*CB4PUTS) ,CB4GETS
CH RO,*+10
BNH *+8
LA RO, MAX#BPRS
)| RO,CISIZE+2
ST RO,PRNTDEL+4 NAXINUN AMOUNT OF CORE REQ.
LA RO,NIN&BPRS
L} BO,CISIZE+2
ST RO,PRNTDEL MININON ANOUNT OF CORE REQ.
LA RS, PRNTDEL
LA R3,BOFRI

GETMAIN VU,LA=(RS},A=(R3) ,BNDRY=PAGE,SP=SUBPOOL#

R1,BUPRI

R14,CISIZE

R15,LNGBUP

#$SUBPOOL, SUBPOOL#

R15,R10

R15,R1

R3,DIRECA

R3,PRIORT

RO,ENDLABEL LOAD A BINUS 1

RS,R3 INITIALIZE PAGING DIRECTORY
R2,0 (R6,R1) (R1) + (LRECL)
R3,L°DIRECTRY (R4)

RO,R3,RBA (R&)

R1,R14,SETPARN
P¥D (4,R4) ,PWD (R4) CLEAR LAST LINK
RY,PRA(R3) STORE IN XTRAPRM POR PGRLSE

BLK=RPL,ACB= (S,IFGACB} , GENERATE AN RPL
LENGTH=LNRPLAR,WAREA= (S ,IFGRPL) ,
NSGAREA= (S, RPLNSG) ,ASGLEN=L "RPLNSG,
AREALEN=(*,CISIZE),

OPTCD= (C¥V,DIR,SIN,NUP)

R10

LK 2R X 4

RS S

P

CLSE

CLSEO
CLSE

CLSE2

CLSE3

CLSES

CARTINIT
PRPL

SUBPOOL$
SPFCBLNG

=135~

nve CBRBA ,HIUSDRBA

™™ BISCPLGS,PILEXTND

BNO CLSEO

HPAGE MASTERPG

S R1,MASTERPG

HvC BIUSDRBA-PILECNTL (L*HIUSDEBA,R1) ,AIUSDRBA
8 § R4, IFGRPL

L R2,PRIORT
™ PLGS (R2) ,X*PO"*
BZ CLSE2

BODCB RPL=(RU4) ,AREA=(® , PRH (R2)) ,ARG=(S,RBA (R2))
.)4 PLGS (R2) ,X*OP*

PUT RPL=(RY) WRITE OUT ANY MARKED CI'S
L B2, PWD (R2)

LTR R2,R2

BNZ CLSE1

LA R4, IPGACB
CLOSE ((R4))

L RO,LNGBUP
LTR BRO,RO

BZ CLSES

L R1,BUPRI

FPREEMAIN R,A=(1) ,LV=(0)

1 R18,R15,PREVFPCB

ST R14 ,PREVPCB-FCBAREA (R15)
ST R15,NEXTFCB-FPCBAREA (R14)

L RO, SPPCBLYG
PREEMAIN R,A=(R12) ,LV= (0)
B RTN

ACB MACRP=(ADR,SEQ,NCI,OUT,NUB) ,EXLST=XTLST

8PL, ACB=CARTINIT,OPTCD=(ADR,SEQ,NOP,NVE),
ARG=XTNDSAVE

EQD 17 SUB POOL NUMBER

pC ALY (SUBPOOL#) ,AL3 (FCBLKG)

LTORG
END

e

-136~-

i
.‘
4
!
1
{
!
!

APPENDIX B

Subroutine VECTOR

VECTOR is a subroutine written as an iaplementation of
the Schrieter~Thomas method to compute the great elliptic
distance and normal section azismuth between two sets of
geodetic coordinates on a selected spheroid. The aethod wvas
obtained from ACIC Technical Report Number 80, "Geodetic
Distance and Azimuth Computations for Lines over 500 Miles."
The following comzents vere extracted from that report

concerning ®Iypes of Positions™.

If the results of a distance and azisuth comspu-
tation are to have any meaning, the terminal points
used as basic data must be geodetically related, i.e.,
the end points must be derived from field measurements
originating from a fixed point and computed along a
compon surface (ellipsoid). The starting point is
usually defined in termss of latitude and longitude,
either astronomical or geodetic, and the ellipsoid by
the parameters a and b. If the initial point is fixed
astronomically, the surfaces have what is known as an
astro-orientation. Geometrically, this means that the
geoid amd ellipsoid surface coincide at that point and

., the fixed starting position is cosmon to both surfaces.
To the gecdisist it means that the normal to the ellip-
soid coincides with the local vertical at that point
and the cosponents of the deflection of the vertical
are zero. The astro-geodetic orientation differs from
the preceding in that it compensates for the surface
departure by correcting the angles between the geomet-
rical normals and the true local verticals.

Positions on the earth's surface defined with
respect to such initial quantities fors a geodetic
system or datum. Those derived from different datuas
are unrelated and consequently are unusable for inverse
coaputations. The results would be in error and the
magnitude of the error wvould correspond to the effect
of the differences in the intial quantities of their
datus. Certainly, accurate distance and azisuth cannot

-137-

be expected if the terminal points of the line are
referred to different origins and possibly computed
along different surfaces of unequal size.

Generally, the positions available for amn inverse
computation are of three types:

a. Geodetic positions such as described above.

b. Astronomic positions, latitude and longitude of
which bhave been derived instrumentally by direct
observations of celestial bodies.

Cc. Map positions obtained from cartographic
sourcese.

Type a. are the most accurate although one very
seldom finds twvo points as widely separated as 6000
miles referred to the same datum. The second type, b.,
astronosic points, refer to positioms on the geoid and
should not be used since the geoid is not a geometrical
surface. To use these for cosputational purposes is to
assuze that the two surfaces are coincident and the
definition of each point identical on both surfaces.
This assumption could easily resualt in distance errors
as large as tvo kilometers vhich are as likely to occur
on 500 mile lines as for the 6000 mile lines.

Map positions are adequate as basic data for such
computations if they have been taken from large scale
maps (1:50,000 or greater) of geodetic accuracy. It is
difficult to say precisely what effect such points
wvould have on the accuracy of the final results for the
length and azimuth of the line. However, assuming the
terminal points to be charged vith a 25 meter error,
the corresponding errors are approximately one second
in azisuth and a maximum of fifty meters in distance.

The following derivation has been extracted from the
ACIC report, rearranged and expanded to better relate to the
actual subroutine. Symbols in capital letters are actual
labels of variables as they appear in VECTOR for the most
part.

PRI1 = ¢, initial latitude

PHIZ2 = ¢, terminal latitude
LAMDAT =), inpitial longitude
LARDA2 = X, terminal longitude

DELAMD = AX = X, =1,

p%

= e e

-138-~

{(Note: The report shows)\, -),, but the sign convention
there is positive west; VECTOR uses positive east.)

SINDL = sin(A))
SIN2DL = sin? (A)\)
COSDL = cos(A))
TANB1 = tan(g;) = (b/a)etan(s;)
TANE2 = tan(8.) = (b/a)etan(¢:)
vhere a is the semi-major ellipsoid axis
b 1is the sesi-minor ellipsoid axis
and f = (a-b)s/a is defined as the flattening
(Note that many ellipsoids are defined in terms of
a and 1/£f.)
Then bsa = (a-a+b)/a = a/a - (a-Db)sa = 1 - £,
Q = tan(s¢:1)/tan($2)
QINV = 1/Q = tan (.} /tan{s,)
P = (b2/aZ)etan (¢1)etan(¢,)
= {(bsa) etan(¢,)) e {(bra)etan(s:)}
= tan(B,)etan(8,)
D, = Q - cos(A))
D, = QINY - cos(A))
S = Qe(D,2 ¢ sin?2(A))) = (1/0)¢({D;2 ¢ sin2(A)))
= (1/Q)e{ {Q - cos(AN)}2 + sinZ2(AX)]
= (1/Q)e (02 - 2eQecos(A)A) ¢ cOS2(A)) ¢+ sin2(A)))
= (1/Q) e (Q2 - 2eQecos(A)) + 1)
= Q - cos(A)) ¢+ 1/0 = cos(A))
=D, + D,
PS = PeS

!l"lllllllﬂ:::::ff""""""""” o

-139-

{Bold in floating point register P6 the value

Jd% = (2eD,eD,)/(Pecos(A))}]

L cot (Ad)

COT2SG

e A it L o e o

Ry

1/n,

1/n

COTDN

{P+cos (A)))} /{YPS+sinZ (A)))

cot? (Ag) = (Pecos(a))]2/({PS+sinZ (1))}

" [then H® = 1.5e(0-1,/0)2/{1+cot? (Ac)]]

given 1,n

"

= (2 + 1/n,)e [(PSesin2 (A)X))}/PS - 2

(a-b)/ (a+b)

(a+b) / (a-b)

(a+b ¢+ a-b)/(a-b) - 1

2ea/(a-t) - 1

2/f - 1 = ELLIP

(24ELLIP) o {PS+sin2 (AA\)) /PS - 2

[(2¢ELLIP) » {PS+sinZ? (A1)} Y/PS - 2ePS/PS

{ (2+ELLIP) ® {(PS+sin2(A\)] - 2ePS/PS

PS/[2¢ {(PS+sin2 (A\)) + ELLIPe {PS+sinZ (A)\)} - 2ePS]

PS/{ELLIPe {PS#sinZ (A))}} ¢ 2esin2?(A))]

1 -n + (5/4)en2

{(5/8)en - 1}en + 1

cot{Aw) = cot(Ac)e (I = 20F = (3/2)eH)

cot(Ac)e[I - (n/S)e (2¢D,eD,)/{Pecos(A)))
= (n/S)2e{1.5+ (Q-1/0) 2} /{1+cotZ (A0)]]

cot (Ac)e {1 - (n/S)ed*® - (n/S)Z2eH’)

YeotZ(aoye[I - (n/S)e{3® + (n/S)eR*))

Aw = cot=? (COTDN)

DSTNCE (in meters) = Ieaep,

-180-~

In all of the calculations, A) is to be the polar
angle < m (1809),., But since cos(27 - 1) = +cos(a) and
distance calculations used only sin2(r\), where
sin(2T - a) = -sin(co), the direction of 4) has made no
difference so far. Hhowever, azisuth calculations need the
proper sign on sin(A)). Note first that if A\ is zero, the
heading is to be deterained by comparing the magnitude of
initial and terminal latitudes. If ¢, 2 %,, aza = 09, else
azm = 180.0°, If A) is not zero, but sin())) is zero, i.e.,
AX = 1, aza = 0.0°,

It tuorns out that no adjostment need be smade to the
sign of sin(A)\). Pirst consider the line on the surface of
the earth that is being measured. Since A) = 3\ -\, and a
positive east convention has been assumed, A\ > 7 only when
the line being measured crosses the international date line.
Bere A)X > m would imdicate using the identity
sin(2r - a) = -sin(a), since the polar angle of interest is
21 - Al. Howvever, due to crossing the date line, the sign
of this angle is wrong according to a positive east
convention. Thus the desired angle is actually -(2- - A1)
or A\X - 2m, but the -2m may be dropped. Therefore, we end
up with sin(A)) again and no further adjustments need be
made to calculate the azimuth as:

cos(B;)e {tan(8,) -tan (B) ecos (4))) e) 1-e2cos2 (5,)

Cot (E;:) = Y
sin

vhere E,;, is the elliptic arc forvard azimuth (heading)

and e2 1is the major eccentricity squared

ESQD = e2 = (aZ - b2) /a2
cos(81) =) cosZ(B1) 4
cosZ (8,) = Y/secZ(B,) = /{1+tan2(8,))
1 -e2cosz2(B,) = 1 - e2/{1+tan2(s,)) {

= (1+tan? (3,) -e?} /{1+tan2(3,))

cos (3,) sy 1-e2cos? (3,) =){sec?(,) -e?) /sec? (g)

(tan(szl-tan(B,)-cos(AA)I°VseC'(ex)-e?>

sin(pr)esec?(g,)

E

12 = cot-l<

The arccot function returns an angle betveen -1 and -.
if B,, < 0, add 27 to give a heading between 0° and 360°.

Use

~141-

When the coordinates are expressed in degrees, minutes

and seconds, linkage in a calling progras is made by:

CALL VECTOR (alatd,alatm,alats,alond,alonm,alons,alonev,
blatd,blats,blats,blond,blons,blons,blonevw,
dstnce,[head,)i)

vhere:

alatd, alata, alats - latitude of the initial point in
degrees, minutes, seconds (4-byte
arguments)

alond, alona, alons -~ longitude of the initial point in
degrees, minutes, seconds (4-byte
arguments)

alonev - hemisphere of the initial longitude point;
'§* is west. (1-character argument)

blatd, etc. - latitude, longitude and hemisphere of the
terainal point

dstnce - the computed distance between point *a® and
point *b* (single or double precision real/
cosp~1 or cosp-2 (see i below))

head - the forvard azimuth measured clockvise from
north. If head is omitted or is initialized
to a value of 999.0, the azimuth computation
is suppressed. (single or double precision
real/comp—1 or comp-2 (see i below))

i - the unit of aeasure that dstnce and head are to be
coaputed in; i is defined as a four byte arguament,
but is actually interpreted as two halfwords, i°
and i"™ with compatibility to a fullword integer.

If the lover (bytes 3 and 4) halfword, i™ < 0,
then dstnce is returned as a double precision real
(comp-2) value, othervise as a single precision
(cosp-1) value. The units are based on the abso-
lute value vhere:

4i®*) = 1 returns nautical siles,
2 feet,
3 statute miles,
4 kilometers,

else neters.

-182- ;

If the upper (bytes 1 and 2) halfword, i®" < Q,
then head is returned as double precision real
{comp~2), otherwvise as a single precision value.
The units returned are specified by the absolute 4
value wvhere:

1i®*1 = 0 or 1 returns degrees,

2 minutes,
3 seconds,
else radians. o

If coordinates are expressed as degrees, minutes and ‘
seconds and are grouped in a 16 word array of 4-byte argu- L
ments arranged as:

array (01 alatd
(02) alate
(03) alats
(04) alatns
(05) alond
(06) alonn
(07) alons
(08) alonev
(09) blatd
(10) blata
(mn blats
(12) blatns
(13) blond
(18) blons
(15) blons
(16) blonevw !

then use the calling sequence:

CALL VECTOR (array,dstnce,[head,]i) i

Words 4, 8, 12 and 16 of the array are A4 (Hollerith) or .
PIC X (4) character data vith blank fill. §

-143-

Rhen the coordinates are expressed in radiams or
composite arc seconds, the linkage is:

CALL VECTOR (alat,alon,alonew,blat,blon,blonew,
dstnce,[head, }i)

vhere alonew, blonevw, dstnce, head and i are as described
above and alat, alon, blat and blon are the latitude and
longitude of the initial and terainal points in units of:

1) radians if in floating point
2) arc seconds if in binary integer.

A variant of this call is:

CALL VECTOR (alat,alon, blat,blon,
dstnce,{ head, Ji)

vhere longitude hemisphere indicators are omitted and the
latitude and longitude are signed values with north and east
as positive.

Known Lipitations
Accuracy has been tested only to 6000 statute miles.

Due to the ratios of tangents that are calculated, points
that are exactly on the equator (0°) and mathematically
wclose™ to the poles (+90°) will cause an abort due to a
divide by 2zero check. Hovever a latitude close to the
equator may be specified as approximately in the range of
10-%0 arc seconds to prevent the divide by zero condition.

Remarks

The argusents listed as "4-byte arguments™ may be
either single precision real/comp-1 or signed binary full-
wvord integer/comp. There is one exception: if the latitude
and longitude are being supplied as arc radians, and the
distance is being requested in double precision, then the
latitude and longitude are also assumed to be double
precision values. The results are alvays returned as
floating point values, either single precision/comp-1 or
double precision/comp-2 as requested by the signs of i°*
and i-=.

The alias RADVEC may be used in place of VECTOR in any
of the calls described.

g AR e s

~144-

APPENDIX C

VECTOR SOURCE

VECTOR TITLE °**%% SUBROUTINE(S) VECTOR/RADVEC ##**!?

s
L4

* *

LAL 2K 2L 3 JN 4

LR 2K 3K BE BE BN BN BN BN BX BN BN J

AUTHOR: HAJ. S. V. PETERSEN, HQ SAC/ADINSD; EXT. 3952
DATE WRITTEN: 1 NOV 76

REFERENCE: ACIC TECHRICAL REPORT NUMBER 80,
®*GEODETIC DISTANCES AND AZINUTH COMPUTATIONS
POR LINES OVER 500 MILES"™

DISTANCES ARE CALCULATED AS A GREAT ELLIPTIC, USING THE
SCHREITER-THOMAS METHOD AS DESCRIBED IN APPENDIX I OF THE
REPORT. SONE OF THE COMPUTATIONS HAVE BEEN MANIPULATED
INTO A DIFPPERENT PORNM TO PACILITATE PROCESSING.

SONME ERRORS ALSO APPEAR IN THE WRITE-UP, WHICH HOPEFULLY
HAVE BEEN CORRECTED.

IP THIS ROUTINE IS ASSENBLED WITH AN ASSEMBLER THAT ALLOWS
THE ®SYSPARM™ OPTION, THE SPHEROID USED FOR A BASE OF
CALCULATION MAY BE CBANGED AT ASSEMBLY TIME. ENTER THE
NANE OP THE DESIRED SPHEROID AS THE SYSPARM VALUE AS:

SYSPARM (AIRY)

SYSPARN (A.M.S.)

SYSPARM (BESSEL)

SYSPARM (CLARK 1866)

SYSPARSN (CLARK 1880)

SYSPARM (INTERNATIONAL)

SYSPARN (RAYPORD) SAME AS INTERNATIONAL

SYSPARM (KRASSOVSKY)
THE DEPAULT SPHEROID IS THE CLARK 1866 DATOUN.

o gmans el N AL Y

o

[

i
i
%
3

EIB8 360

-IRECO
EAIRY

-IREC1
GANS

~IREC2
EBESSEL

-IREC3
-IREC3A
ECLK 1866

~IRECHY
6CLK 1880

-IRECS

«IRECSA
GHAYFPORD

-IREC6
EKRSVSKY
.IREC99

GBLB
SETB
GBLB
GBLB
AIP
AIP
SETB
AGO
AIP
SETB
AGO
AlIP
SETB
1GO
AIP
ANOP
SETB
AGO
AIP
SETB
AGO
AIP
AIF
ANOP
SETB
AGO
AIP
SETB
ANOP

-145-

£IBN360 SET TO 1 POR USE ON 360
0
EAIRY,EAMS,EBESSEL,6CLK 1866 ,6CLK1880,6BAYPORD
EKRSYSKY

(6IBM360) .IREC3A BO &SISPARM ON 360
(*6SYSPARM®* NE °*AIRY') .IREC1H

1

«IREC99

(*CSYSPARM® NE "A.M.S.").IREC2

1

-IREC99

(*6SYSPARBE® NE *BESSEL®) .IREC3

1

~IREC99

(*CSYSPARM® RE °*CLARK 1866°") .IRECY
CLARK1866 IS THE DEFAULT DATUM

1

-IREC99

(*6SYSPARM®* NE °*CLARK 1880°) .IRECS

1

-IREC99

(*SSYSPARN® BEQ *INTERNATIONAL®) .IRECSA
(*¢SYSPARN® NE *HAYPORD®) .IREC6

1

<IREC99

(*ESYSPARN® NE °*KRASSOVSKY®) .IREC3A
1

PUNCH °* ALIAS RADVEC®

«SKDT
RADVEC

SAVEAREA

ONIT

NUNITS

PI
TWOPI
RADDEG

NAONS

UNZR1
DL4OVPI

PO
P2
) 4]
43
RO

CSECT
USING
B

DC
DC
AP
DC

ANOP
EQU
ENTRY

DC

EQU
EQU
EQU
EQO
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

-146-

*,R15

PASTCONS

ALY (L*¥CTID)
C*VECTOR/RADVEC®
(6IBN360) .SKDT

C* .6SYSDATE..6SYSTINE®

YECTOR

RADVEC

9D*0O"*

D*1852.°" METERS/NAUTICAL MILE
D*0.3048°" HETERS/FOOT
D*1609.344° METERS/STATUTE NILE
D*1000." METERS/KILOMETER
(*~ONIT) /8

D*3.141592653589793238462643*
D*6.283185307179586476925286°
D*57.29577951308232087679816* DEGREES/RADIAN
D*3437.746770784939252607890* MINUTES/RADIAN
D*206264.8062470963551564734* SECONDS/RADIAN
{*-RADDEG) /8

XL8*4E00000000000000°
XL8*411435F306DC9C883" a/r1

VOYJOANBSWNOORENO

1 At

—— ——— T
-7~

CONST DC D*4 .848136811095359936E-6"

DC D*60.0°

DC p*60.0°
ACTC1 DC XL8 *BP1E31PP1784B965°
ACTC2 DC IL8°*COACDB34CODIB35D"
ACTC3 DC ILB8*4 12B7CRUSAPSC 165"
ACTCY DC IL8*C11R8F923B178C78"*
ACTCS DpC XL8*4 12AB4PDSDU33FPP6"*
ACTC6 DC YL8*C02298BB68CFDB69®
ACTC? DC XL8*4 1154CEES8B70CA99"*
ONE DC D*1.0°
ACTCY DC XL8*411BB67AEB58U4CAB® SQRT (3)
ACTD 1 DC D®*0.0*

DC IL8°C0860A91C16B9B2C* -.52359884
PIOV2 DC XL8°411921PB54442D 18" PI/2

DC XL8*43110C152382D7365°
ACTCE DC XL4*0E000000"
ACTCP2 DC XL4*P2000000°
ACTC3A DC XL4°*34100000°
ACTC40 DC LG *40449851°
SCa DC XL8°*3778PCEOESAD 1685°* SIN

DC IL8 *B66CII2EBUB6AA3T"® cos
SCB DC XL8*B978CO1C6BEFSCBI" SIN

DC XLB8*3B7E731045017594° COos
SCC DC X1L8°*3BS4T1EOBP68UB527" SIN

DC XL8*BA69B47BIEL4 T1AEF6® COos
SCD DC X1L8 *BD265A599C5CB632° SIN

DC ILB*3C3C3EAODO6ABC29" Cos
sce DC XL8%3EA335E33BAC3FBD® SIN

DC XL8*BE155D3C7B3C90F8* CO0s
v 4 DC IL8*COT4ABBCE625BEU 1" SIN

DC XL8*3PUOP0T7C2060D6AB1T* Cos
SCG DC XL8 *40C90FDAL22168C2" PI/4 SIN

DC XL8'COUEPUP226F91777° Cos
PIOV S EQU SCG
ZERO EQU ACTD1
TCTA pC XL8°C41926DBBB1PU69B®
TCTB DC XL8°3532644B1E45A133°
TCcTC DC XIL8*C5BOr82c871A3B68*
TCTD DC IL8°*CS58APDDOAG1992D4"
TCTE DC IL8*44APPAG6393159226°
TcTR DC ILB8"C325PDUABT3I5TCAF®
TCTG pC XL8'422376P171F72282°

erEpT—— g il

Bt g

-8~

. REPERENCE ELLIPSOID CONSTANTS
L
' . A = SEMI-BAJOR AXIS (METERS)
: * P = FLATTENING = (A-B)/A
. PINV = 1/P
. BSQD MAJOR-ECCENTRICITY SQUARED
» = (A$%2 -~ Be32) /A%s2
. BOVRA SENI-MINOR/SESI-BAJOR = 1 - P
* 80 = (A-B)/(A+B)
* ELLIP = 1/N0 = 2%PINV - 1
*
* A r B r
* Ess2

-REC1 AIP (NOT &6CLK1866) .REC2

-RECDP ANOP

®* CLARK 1866

* 6378206.8000 294.978698 6356583.8000 .00339007530393

* -00676865799729
A pC D*6378206.40°
ESQD DC D*.00676865799729°*

BOVEA DC D*0.99660992469607°*
ELLIP DC D*588.957396"
AGO -REC99
-REC2 AIP (NOT EHAYPORD) .REC3
* INTERNATIONAL (HAYPORD)
* 6379368.0000 297.000000 6356911.9461 .00336700336700

. .00672267002233
A DC D*6378388.00°
ESQD DC D*0.00672267002233"

BOVRA DC D®0.996632996632996632°*
ELLIP DC D*593.0°
AGO -REC99
-REC3 AIFP (¥OT &KRSVSKY) .RECH
* XRBASSOVSKY
* 6378245.0000 298.300000 6356863.0188 .00335232986926

* -00669342162297
A DC D*6378245.0°
ESQD DC D*0.00669342162297°

BOVRA DC D*0.99664767013074°
ELLIP DC D*595.6°
AGO -BEC99

-149-

<RECH AIP (NOT &CLK1880) .RECS
¢ CLARK 1880
* 6378249.1450 293.465000 6356514.8695 .00340756137870

. -00680351128285
A DC D*6378249.T450"*
ESQD DC D*.00680351128285"

BOVRA DC D*0.9965924386213°
ELLIP DC D*585.930°"

AGO -REC99
-RECS AIP {NOT EAIRY) .REC6

* AIRY

* 6376542.0000 299.300000 6355237.1487 .00334112930170
. -00667109545840
A DC D*6376542.00°

ESQD DC D*.00667109545840°

BOVRA DC D*0.9966588706983*
ELLIP pC D*597.60°

AGO +REC99
-REC6 AlP (NOT EANS) .REC?

$ A.M.S.

* 6378270.0000 297.000000 6356794 .3434 .00336700336700
* -00672267002233
A DC D*6378270.00°

ESQD DC D*0.00672267002233°*

BOVRA DC D*0.996632996632996632"
ELLIP DC D*593.0°

AGO -BEC99
-REC7 AIP (§SOT EBESSEL) .RECDP

* BESSEL

* 6377397.1550 299.152813 6356078.9628 .00334277318503
he -00667437223749
A DC D*6377397.1550°*

ESQD DC D*.00667437223749°*

BOVRA DC D*0.99665722681497°
ELLIP DC D®597.305625°

-REC99 ANOP

-150-
WKAREA DC D*0*
COORDS DS oD
LAMDA2 DC D*0°* LONGITUDE TERNINAL POINT
PHI2 DC D*O* LATITODE TERMINAL POINT 1
LABDAY DC D*O* LONGITUDE INITIAL POINT .
PHI? DC D*0°* LATITODE INITIAL POINT .
|
SINDL pC D*0°* SIN (DELAMD) C]
SIN2DL DC D*O°* SIN®*2 (DELAMD)
COSDL DC D*0° COS (DELAND)
TANB 1 DC D*0* TAN (BETA1) = (B/A) *TAN (PHIT)
TANB2 pC D*0°® TAN (BETA2)
s DC D*0°* D1 + D2
PS nC D*O? P*s
DELAMD BQU LANDA1 LAMDA2 - LAMDA?
COT2SG EQU LAMDA2 COT##2 (DELTA_SIGNA)
TB2 BQU COT2SG TEMP STORE
COTDW BQU COT2S6 COT (DELTA_OMEGA)
TANPE1 EQU LAMDA2 TAR (PHIT)
D1 EQU LAMDA2 Q0 - cospL
SWITCH EQU S
I BQU PS 1 - N ¢ 1.258N%s2
1J8 EQU S I - 2¢3 - 1.5
TENP2 DC D*0°
PCOSDL DC PO P+COS (DELAMD) (NEED THE SIGN)
scQ EQU PCOSDL+3
nINN DC XL4°354500000°¢

cauns DC re24,-8°

-151-

PASTCONS STA RI14,R12,12(R13)

CNTPRAS

EOPLST

L g
BTBL

E g
WRNGNBR

NOHEAD
NOHEAD3

LB R2,R13

LA R13,SAVEAREA
DROP R15

USING SAVEAREA,R13
ST R2,48 (R13)

ST £13,8 (R2)
nvl SWITCH,0

L R4 ,R5,C24 18
La R6,STORAD

LR R2,R1 COUNT THE NOUNBER OF PARNS
LA RY4,4 ; PASSED

La RS, (17-1) *4-8 (R1)

™ 8(r2) ,x°*80° ABSOLUTE MINIMUM IS THREE

BO EOPLST
BILE R2,R14,CHTPRENS

B WREGEBR
L R10,R12,0 (R2) A (DSTNCE,HEAD (?) ,JUNIT)
SR R2,R1
SRL R2,2
IC R14 ,BTBL (R2)
B WRNGNBR (R14)
$ARGS = 3, 4, S5, 6, 7, 8, 9,

DC AL1(NOHEAD?,ARG43,0,NOHEAD®, ARG73,NOHEADA, ARG93)
DC AL1(0,0,0,0,0,0,NOHEAD@,ARG173,0)

10 -==— 15, 16, 17
bC X*B2E0®,H%32% THIS INVALID OPCODE TERMINATES
nC CL32*WRONG NUMBER OP ARGUMENTS PASSED®
B RTN

LR R10,R11Y OPTIONAL AZ2INUTH PABRAMETER MISSING
EQU NOBEAD-WRNGNBR

LA B11,=2%999.0" SUPPRESS THE CALCULATION
IC R14 ,BTBL+ 1(R2)

B WRNGNBR (R 14)

L2 AR

ARG17
ARG1793
DHSRAD

CNVRT17

CY17POSI
Cv17r

-152-

VECTOR (ALATD,ALATM,ALATS, ALNGD,ALNGM,ALNGS,AEW,
BLATD,BLATH,BLATS, BLNGD,BLNGY,BLNGS,BEW,

LA
EQU
LD

LA
nvC
™
BN
BZ

LPR
ST
MvVI
oI
AD

BXH
BR

DSTNCE, <HEAD,

R14,DASRAD
ARG17-WRNGNBR
PO,ZERO

B3, 16
R15,0 (R 1)
R1,4 (RT)
WKAREA (4) ,0 (R15)
WKAREA,X°PP°®
CV17R
CV17POSI

RO, WKAREA
RO,RO

RO, WKAREA
WKAREA,X°*80°*
WKAREA,X*46°
PO, WKAREA
PO,CONST (R3)
R3,R5,CRVRT 17
R6

> IUNIT)

INDEX
BOVE IN VALUE
REAL*4

POSITIVE INTEGER*4
NEGATIVE INTEGER®*4

MAKE NEGATIVE

INTEGER. MAKE AN UNNORM REAL

TO CHECK EAST/WEST AND STORE.

-
e IR e e

ARG?
ARG7d

ARGY
ARG93
RADSEC

ARGSEC

STORAD

STVL

=153~

VECTOR (LATR?, LNGR1, <AEW,> LATR2, LNGR2, <BEW,>
DSTNCE, <HEAD,> IUNIT)

LA
EQU

X1
BN2

LA
CL1
BNE
LCDR
STD
BXH

R6,STVL
ARG7-WRNGNBR

R14 ,RADSEC
ARG9-WRNGNBR
R15,0 (R1)
R1,4 (R1)
0(R15) ,X*PP*
ARGSEC

PO, PO

P0,0 (R15)

R6
F0,0 (R15)
BR6

RO, 0 (R15)
RO,RO
RO,¥KAREA
WKAREA,X®46°*
0 (R15) ,x*80°
*48
WKAREA,X®80°
PO, ¥KAREA
PO,CONST

R6

SWITCH,1
STVL

R15,0 (RY)
R1,4(R1)
0(R15) ,C*W°*
STVL

PO, PO
F0,COORDS (R4)
BR4,R5,0 (R14)
DONECVRT

LOAD A SINGLE PRECISION

RADIAN

INPUT VALUE UNLESS THE DISTANCE
2(R12) ,X*80° IS REQUESTED IN DOUBLE PRECISION

REAL#8 RADIANS

INTEGER SECONDS

MAKE NEGATIVE

CONVERT TO RADIANS

BRANCH ON LATITUDE

CONPLEMENT ON WEST

(PO) = COORDS (0)

LAMDA2

*

ABGY
ARG4 D

.
ARRDNS

CNVRTY

CV4POSI
CV4R

WORS

VECTOR (LTLNARR, DSTNCE, <BEAD,> IUNIT)

L
EQU
LA

LD
LA
nvce
LA
by, |
BN
B2
L
LPR
ST
HvI
oI
AD
MD
BXH
CLI
BE
CLI
BNE
LCDR
STD
LA
BXH
B

-154~

R15,0(R1)
ARG4-WRNGNBR
R1,4(RT)

FPO,2ERO
R3,16

WKAREA (8) ,0 (R 15)

R15,4 (R15)
WKAREA,X*PP*
CV4R

Cv4POSI
RO,WKAREA
RO, RO

RO, NKAREA
WKAREA,X*80Q°
WKAREA,X%46"*
PO,WKAREA
PO,CONST (R3)
R3,R5,CNVRTY
0(R15),C*sS*
WORS

0(R15) ,C*W®
246

PO, PO
PO,COORDS (R4)
R15,4 (R15)
R4,RS ,ARRDAS
DORCVRT

ARRAY OF 16 WORDS; SAME
ORDER AS

ARG17 PARMS, BUT ADD A
WORD FOR LAT NORTH/SOUTH

REAL®Y
POSITIVE INTEGER*4
NEGATIVE INTEGER®*Y4

MAKE NEGATIVE
INTEGER. MAKE AN UNNORM REAL

IGNORE E, N
COMPLENENT WEST, SOUTH

(FO} = COORDS (0) = LAMDA2

p———————

*

KALLSIN

STCOSDL

DONECVRT DS

LD
SD
STD
BNZ
STD
ST
LD
Cch
BE
LD
B

STD

LDR
SDR
SD
STD
SD
ADR
B2

on
PO,LANDA2
PO,LANDAY
P0,DELAND
KALLSIN
PO, SINDL
PO, SIN2DL
P6,PHI
P6,PHI2
STDST
FO,ONE
STCOSDL

R1S,4

*46
R15,R15
R7,SC1
FO,SINDL
ro,FO
FO,SIN2DL
PO,DELAND
R15,2
R7,SC1
PO,COSDL
FO,PHI
R7,TANG
PHI1,X*80°
*46

PO, PO
PO,TANPH?
FO,BOVRA
PO,TANBY
PO,PHI2
R7,TANG
PEI2,X°*80°
46

PO,FPO
P6,FO0

P4, TANPRHT
P6,P4
P4,P0
PO,BOVRA
PO,TANB2
PO, TANB1
rP2,P4
r2,P6
P4,COSDL
P4,D1
P6,COSDL
P4,P6
SZERO

-155-

POLAR ANGLE
SIN(0) = 0
IS THIS A ZERO DISTANCE CALL?

YES
CosS (0)y = 1.

SINE OF NEGATIVE VALUE

SINE OF POSITIVE VALUE

COSINE OF VALUE

PARAMETRIC LATITUDE

QINV = 1/Q
Q = TAN(PHI1) /TAN (PHI2)

(FO)

]
o

(P2) = 0 - 1/Q
(P4) = D1

(P6) = D2

Al 0

L

R

CALCL
CALCLE

ADR
DR
SDR
LD

BAL
MDR

BAL
™™
BNO
Sb
LPER
HD
MD

LPR
B2

BB
SLA
DD

~156-

F4,S
F4,PO
P4,PS

P4, P4
SZERO
P4,SIN2DL
P0,COSDL
PO, PCOSDL
P6,P0
P6,D1
F6,P6
FO,r0

P0, P4
?0,COT2SG
PO,ONE
P2,P2
P2,P0
P2,=D*1.5°
P4,BLLIP
P4,SIN2DL
P4,SIN2DL
PO,PS

PO, P4
’a'SD.1-25'
P4,P0
F4,ONE
P4,¥0
P4,0NE
P4,I

PO, S

F2,F0
P2,F6
r2,F0
P4,P2
F2,CO0T25G
R7,SQT

PO, P4
P2,0NE
R7,ACT
PCOSDL,X*80°
CALCL
P0,PI

PO, PO

ro,1

ro,a

R15,2 (R12)
R15,R15
STDST
R15,=A (NUNITS)
STDST
R15,3
P0,UNIT-8 (R15)

S = D1 + D2

PS + SIN*%2 (DELAMD)
P + COS(DELAMD)

D2/ (P+COS (DELAND))
D1s
2
(P+COS (DELAMD)) #%2
/ (PS+SIN*%2 (DELAND))
= COT**2 (DELSIGNA)

(Q-1/Q) *»2
/ (COT2SG+1)
(FOG) = N
*N
-1)
sy
+1
= 1
(PO) = N/sS

(PO} = DISTANCE IN METERS
CRECKX DISTANCE ONITS

STDST

STDSTE

CHKAZN

CHO

LDPI

CALCHEAD

™
BNO
STD

DS
AIP
LRER
STE

CLC
BE

LD
LPDR
BNZ
LD
™
BRO
LCER
CD
BNH
LD

LD
HDR

HDR
STp
SD
STD
BAL
LD
LD
HD
SDR
MDR
STD

LPER
LPER
BZ
STE

STE

BNH
LD

-157-~

2(R12) ,X°80°*
STDSTE
PO,0(R10)
CHKAZHM

RETURN AS ™DSTNCE™ VALUE REAL*8

0H
(€IBM360) V1
FO,PO

F0,0 (R10)

ON A 370, WE CAN ROUND NICELY
RETURN AS "DSTNCE™ VALUE REAL*4

0O(4,R717),=E*999.0* AZINUTH DESIRED?

RTN

P4,SINDL
PO,P4
CALCHEAD
F6,PHIN
CosSDL,X*80°
CHO
P6,F6
P6,PHI2
STHD

PO, PI
STHDPI

SIN (DELAND) = O

(POLAR ANGLE IS PI)

IF COS (DELAMD) *PHI1 < PHI2
HEAD = 0.0;
ELSE HEAD = 180

F2,TANBY
P2,P2
P2,0NE
P4,F2
P4,SINDL
P2,ESQD
F2,TB2
R7,SQT
FP4,TANB2
F6,TANBY
P6,COSDL
P4,F6

PO, P4
?0,TB2
P2,SINDL
P2,F2

PO, PO

ca1
P2,TENP2
R14,TENP2
PO, TENP2
R14,TENP2
R14,ACTCE
ca2
PO,PIOV2
CHSGN

SINDL*SEC2B1

CcH2

CHACT
CHSGN

STHDPI

*

STCNV
STHD

STHDE

V2

RTN

SZERO

Y. |
BNO

BL
BAL
™
BRO
LCDR
AD
Y. |
BNO
LCDR
AD
LB
LPR
BZ

COULD BE

BCTR

BNL
SLL
MD
™
BNO
STD

DS
AIP
LRER
STE

L

TB2,X*80°
CHACT
R14,ACTCP2
LDPI
R7,ACT
TB2,X'80°
*410

PO, PO
PO,PI
SINDL,X*80°
*+10

FO, PO
PO,TWOPI
R15,0(R12)
R15,R15
STCNV

CHECK AZINMOUOTH UNITS

GIVE DEGREES ON 0 OR 1

A 1 IP A NEGATIVE PULL WORD WAS GIVEN AS PLAG

R15,0

R15,=A (NAUNS)
STHD

R15,3
PO,RADDEG (R 15)
0(R12),X°80°
STHDE

FO,0 (R11)

RTN

0H

(61BN 360) .V2
FO,P0

FO,0 (R1T)

R13,4 (R13)

RETURN (14,12),T,RC=0

LD
™A
BZ
LD
B

PO, ZERO
COSDL,X°80°
STDST
P0,=D"3.7362"
CALCLE

RADIANS ON ALL ELSE

ROUND ON A 370

ELLIPTIC CIRCUMFERENCE

. N TSP

-

SQT

SQT1

LPDR
BZR
SR
IC
LA
SRDL
STC
LE
nvc
AE
ME
LTR
BNA
AER
AER
DER
AUR
RER
LER
DER
AUR
HER
LDR
DDR
AWR
HDR
DDR
SDR
BER
sg
AO
ADR
BR

LTORG

=159~

FO,F2 SQUARE ROOT FPUNCTION
R? RETURN ON ZERO
R14,R14

R14,TB2

R14,X%31% (R14)

R14,1

R14,TB2

P6,TB2

TB2+1(3) ,=X*423A2A"

F6,TB2
P6,=X*48385P07°*
RI15,R15
SQT1
P6,P6
P6,P6
FP2,F6
P6,P2
P6,P6
P2,F0
P2,P6
P6,P2
F6,P6
P2,F0
P2,P6
F6,P2
P6,P6
FO,P6
FO,F6
PO, PO
P0,TB2
F0,TB2
ro,P6
R?7

REPINE USING HERON®S METHOD
(NEWTON-RAPHSON)

s

\‘.,

-160~-

BAL R14,0CTANT SINE/COSIRE
LA R15,8 CALC COSINE?
™ SCQ,X*03¢*

BN scS YES

SR R15,R15 NO, CALC SIN
CE Py, NINN

BH SC6

LD FO,ZERO

B SC7+2 (R 15)

MDR FO,FO

LDR P2,P0

ND P0,SCA (R15)
AD PO,SCB(R1S)
MDR PO,P2
AD PO,SCC (R15)
MDR FO,P2
AD PO, SCD (R15)

MDR PO,F2

AD PO, SCE(R15)

DR PO,P2

AD PO, SCP (R15)

MDR PO,F2

AD P0,SCG (R15)

B SC7 (8 15)

MDR PO,P4 FOR SIN

B sc8

HOPR O SPACE TO 8 BYTES
MDR PO,P2

AD PO,ONE

™ SCQ,X"04? IS SCQ 4 TO 72
BZR R7

LCDR PO,PO

BR R?

LPDR FO,PO

MD PO, DLBOYPI
CE PO,ONE

BL OCT1

LDR P4,FO

AW P4,0NZR1
STD P4, TENP2
AD P4,UNZRY
SDR PO, P4

AL R15,TERP2+4
STC R15,5CQ

T8 SCQ,X%01°

B2 0oCcT2
SD FO,0NE
LPDR P4,PO
BR R14

TANG

TCT2

TCT3

TCTY

DDR
LDR

™
B2R
LCDR
BR

-161-

R15,R15
R14 ,0CTANT
F2,TCTG
P6,0ME
P4,NINRN
TCT2
r0, PO
F6,P0
F6,TCTP
F6,F0
F6,TCTE
F2,70
F2,TCTA
rP2,F0
F2,TCTB
P2,F0
P2,TCTC
PO,F6
PO,TCTD
PO, P4
SCQ,x*03°
TCT3
PO, P2
TCT4
P2,F0
PO, P2

SCQ,X%02°
R7

PO, PO

R7

TANGENT PUNCTION

ACTO1

ACTO02

ACTO3

ACTO4

ACTOS

DDR

DDR

PO,FP2
ACTO2
ACTO1
FO,PIOVY
BR?

PO, P2
R1,16
ACTO3
P2,70

PO, P2
R1,R1
R14,ACTD1
P4,ONE
P0,ACTC3A
ACTOS

PO, ACTC40
ACTOR
P2,70
PO,ACTCY
P0,P4
P2,ACTC9
PO,P2
R14,8 (R14)
P6,P0

PO, PO
P4,ACTC?
P4,P0
F2,ACIC6
F2,P4
P2,ACTCS
r2,P0

P4 ,ACTCH
P4,P2
P4,ACTC3
P4, PO
P2,ACTC2
P2,P0
F2,ACTCH
PO,F2
PO,P6

PO, P6
P0,0 (R1,R14)
PO, PO

R?7

~162-~

ARCCOTANGENT PUNCTION

(X) = 1, LOAD PI/4 AND RETURN

CARTCBO?

05
05

05

05
05

05

-163-

APPENDIX D

COPY BOOKS FOR COBOL PROGRAMS USING CARTAN

-~ COMMUNICATION BLOCK.

DDRAMNE PIC X (8) VALUE °*GEOINDEX".
PONCTION-CODE VALUE °*OPEN‘.

10 PUNCTION-CODE-1 PIC X.

10 PUNCTION-CODE-2 PIC X.

10 PONCTION-CODE-3 PIC X.

10 PUNCTION-CODE~4 PIC X.

88 CONTINUE-WALK VALUE * °.
88 DISCARD~SUBTREE VALUE °*T°'.
88 KEEP-ALL-CHILDREN VALDE °L°*.
STATUS-CODE PIC XX.
88 GOOD-CARTAN-OPEN VALDE ¢ °,
88 SUCCESSPUL-CARTAN VALOE * °.
- 88 RORE~PATH VALUE * °*.
88 END-OP-PARENT VALUE °*GE*.
BODE-INDICATOR PIC X.
USER-DATA-PAD-CHARACTER PIC X VALUE * °*.
NORT-INDICATOR REDEPINES USER-DATA~PAD-CHARACTER
PIC X.
88 NODE VALUE °*N°.
88 TERMINAL-ELEMENT VALOE °*T*.
88 TERMINAL-W-SHORT-KEY VALUE °*X°*.

OPEN-INPO-AREA.
10 RUMBER-OP-COORDINATES

PIC 9(4) COMP SYNC VALUE 2.
10 MAX-NUMBER-BUPPERS

PIC 9(4) COMP SYNC VALUE 32.
RECORD-RBA BEDEFINES OPEN-INPO-AREA

PIC S9(9) COMP SYNC.
MAX-USER-AREA-LENGTH PIC 9 (4) COMP SYNC VALDE O.
TRUE-USER-DATA-LENGTH PIC 9 (4) COMP SYNRC VALUE O.
NOMBER-VSAN-READS PIC 9 (4) COMP SYNC VALUE O.
NOMBER-VSAM-WRITES PIC 9(4) COMP SYNC VALUE 0.

s

CARTPNCS

-164~

= CARTAN PUNCTION CODES.

CARTAM-PUNCTION~CODES .
03

CARTAN-OPEN
CARTAN~LOAD
CARTAN-ISRT
CARTAM~CHNG
CARTAS-DLET
CARTAM-CLOSE
GR

GRL

en

GHap

GNP

GNPT

GNPL
SUB~PUNCTIONS.
05

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

88-CONTINUE-WALK
05 88-DISCARD-SUBTREE

05 88-XEEP-ALL-CHILD

05 PILLER
GP

GPP

6T

GTP

GC

GCp

GN

PIC

PIC
PIC

PIC

PIC

PIC

PIC

Xxxx
Xxxx
Xxxx
IXxx
XXxx
Xxx
Ixxx
Xxxx
XXX
IXXx
IXxx
XXxx
Xxxx

VALUE
VALUE
VALDE
VALOE
VALUE
VALUERE
VALUE
VALUR
VALUR
VALDE
VALUE
VALOE
YALUE

'OPEN®,
*LOAD?,
YISRT*.
*CHRG?.
*DLET’.
'CLSE".
'GR *,
Gy v,
‘GMP *,
‘GNP v,
*GNPL"’.

PCIIN

PIC X VALUE * o,

PIC X VALDE
REN PIC X VALUE

PIC X VALOE ¢ »o_

XXX
XxXxx
IX1X
XXX
Xxxx
XXxx
IXXX

VALUE
VALUE
VALUR
VALUE
VALUE
VALUE
VALUE

‘'GP v,
'GPP .
'GTP .,
'GC v,
'GCp .,
'GN »,

are -

[

-165~

APPENDIX E

INDEXY LOAD PROGRAM SOURCZ

IDENTIPICATION DIVISION.
PROGRAR-ID. NTBNDLIX.
DATE-WRITTEN. NOV77.
DATE-COMPILED.

ENVIRONMENT DIVISION.
INPUT~OUTPUT SECTION.

PILE~CONTROL.
SELECT NTB-FILE ASSIGN TO NTBVSAHN
ORGANIZATION IS INDEXED
ACCESS IS SEQUERTIAL
RECORD KEY IS V-NTB-KEY
PILE STATUS IS PILE-STATUS.

SELECT NDL-FILE ASSIGN TO NDLVSAM
ORGANIZATION IS INDEXED
ACCESS IS SEQUENTIAL
RECORD KEY IS V-~ZBKEY
PILE STATUS IS PILE-STATUS.

-166-
DATA DIVISION.
PILE SECTION.
FD NTB-PILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS O BRECORDS
RECORD CONTAINS 276 TO 4596 CHARACTERS
DATA RECORD IS VSAM-NTB-RECORD.

COPY VSANMNTB.

66 V-IBLATLNG BENABES V-IBLAT THRU V-IBLNG-DIR.

FD NDL-PILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS O RECORDS
RECORD CONTAINS 340 TO 1840 CHARACTERS
DATA RECORD 1S VSAM-2ZB-ZO-RECORD.

COPY JLPV2BZ0.

66 V-ZBLATLNG RENAMES V-ZBLAT THRU V-ZBLNGSGN.

-167~-

WORKING-STORAGE SECTION.

77

77

77

77

01

01

66

EOP-SHITCH PIC 9
88 EOF

RETURN-STATUS PIC X (04)
88 SUCCESSFUOL

DISPOSITION PIC X (03)

FILE-STATUS PIC X(02)

COMMUNICATION-BLOCK.
COPY CARTCBO7.

OSER-DATA-AREA.
05 KEY-FEEDBACK-AREA.
10 NDL-KEY.

15 1ISL PIC
15 DGZ PIC
15 REV PIC
10 PILLER PIC

VALUE 0.
VALDOE 1.

VALUE SPACES.
VALUE °0000°*.

VALUER °*SHR'.

VALUE SPACES.

9(5).
X(3).
X.

X (15) -

05 PILLER REDEPINES KEY-FEEDBACK-AREA.

10 NTB-KEY.

15 1IsL PIC
15 CAT PIC
15 WAK PIC
15 BEN PIC
15 ELT PIC
10 PILLER PIC

NDL-IGZ RENAMES ISL OF NDL-KEY
THRU DGZ OPF NDL-KEY.

9(5) -
9(5) .
9(4) .
X (6) .
x.

X(3).

-168~

1 01 COORDINATE-VECTOR.

05 NDX-LAT PIC S9(9) COMP SYNC.
05 NDX~-LON PIC S9(9) COMP SYNC.
05 NDX-DELTA PIC S9(9) COMP SYNC.
01 WK-LAT-LNG.
03 WK-LAT.
05 WK-LATD PIC 9(02) VALUE O.
05 WK-LATH PIC 9(02) VALUE 0.
05 WK-LATS PIC 9(02) VALUE 0.
05 WK-LAT-DIR PIC X(01) VALUE SPACE.
03 WK-LONG.
05 WK-LONGD PIC 9(03) VALUE O.
05 WK-LONGH PIC 9(02) VALUE 0.
05 WK-LONGS PIC 9(02) VALUE 0.
05 WK-LONG-DIR PIC X(01) VALUE SPACE.

01 ALLOCATED-DSN.

5 03 PILLER PIC X (04) VALUE *JLP.'.
| 03 PILLER PIC X (08) VALUE ®"VSAMNDL.'.
03 FILLER PIC X (05) VALUE °*ZBZ0.'.
: 03 REV-FOR-DSN PIC X(0O1) VALUE °*Bt.
03 PILLER PIC X(01) VALUE SPACE.
01 DD-NANME PIC X (08) VALUE *NDLVSAN °.

01 DUMBY-DD-NAME.
. 03 PILLER PIC X (07) VALUE °DUMMYDD®.
3 03 DUMMY-DD-NAME-REV PIC X (01) VALUE °*B°*.

01 VALUE-OP-REV-TABLE PIC X (03) VALUE °*BCD*.
01 TABLE-OP-REV-VALUES
REDEFPINES VALUE-OP-REV-TABLE.
03 REV-LETTER PIC X OCCURS 3 TIMES
INDEXED BY REV-NDX.

01 ACCUMULATORS.
03 OXE-CON PIC S9(06) COMP SYNC VALUE +1.
03 TOTAL-ISRTS PIC S9(06) COMP SYNC VALUE +0.
03 TOTAL-GETS PIC S9(06) COMP SYRC VALUE +0.
03 TOTAL-PUTS PIC S9(06) COMP SYNC VALOE +0.

PROCEDORE DIVISION.

000-OPEN-INITIALIZE.
HOVE 24 TO MAX-USER-AREA-LENGTH.
BOVE °*LOAD®* TO PUNCTION-CODE.
HOVE °*P* TO MODE~INDICATOR.
* OPEN INDEX PILE FOR INTEGER COORDINATES.
CALL °*CARTANM®* USING COMMUNICATION-BLOCK.
HOVE +21 TO TRUE-USER-DATA~LENGTH.
BOVE °*ISRT* TO FUNCTION-CODE.

0 10-OPEN-PILES.
OPEN INPUT NTB-FILE.
PERFORM 100-CONVERT-CALL-NTB THRO 100-EXIT
UNTIL EOP.

HOVE +9 TO TRUE-USER-DATA-LENGTH.

PERPORA 200-OPEN-CLOSE-NDL-PILES THRO 200-EXIT
VARYING REV~-NDX PROM 1 BY 1
ONTIL REV-NDX > 3.

900-LAST~CALL-TO-CARTOR.
DISPLAY °*TOTAL # READS = * TOTAL-GETS,
', TOTAL # WRITES = * TOTAL-PUTS,
*, TOTAL # INSERTS = * TOTAL-ISRTS, °‘.°'.
HOVE °CLSE® TO FUNCTION-CODE.
CALL °CARTAM® USING COMMUNICATION-BLOCK.

GOBACK.

100~CONVERT-CALL~NTB.
READ NTB~PILE
AT END
MOVE 1 TO EOP-SWITCH
CLOSE NTB-PILE
GO0 TO 100-EXIT.
BOVE V-IBLATLNG TO WK-LAT-LNG.
HOVE V-NTB-KEY TO NTB-KEY.
PERPORE 500-CONVERT-CALL THRU 500-EXIT.
100-EXIT.
EXIT.

-170~

200~OPEN-CLOSE~-NDL-PILES.
MOVE REV-LETTER (REV-NDX) TO REV~-POR-DSN,
s DOMMY-DD-NAME-REV.
¢ CALL °*ALLOCD" USING RETURN-STATUS,
- DD~NAME,
ALLOCATED-DSN,
DISPOSITION.
IP SUCCESSFUL
HOVE 0 TO EOP-SWITCH
OPEN INPUT NDL-FPILE
PERFPORNM 300-CONVERT-CALL-NDL THRO 300~EXIT
UONTIL EOP
CALL °*DEALLC® USING RETURN-STATUS,
DD-~NANE
IPF SUCCESSPUL
NEXT SENTENCE
ELSE
DISPLAY 'STATUS <*, RETORN-STATUS,
*>, DDN *, DD-NANME
MOVE *0000°* TO RETURN-STATUS

L

ELSE
DISPLAY °*STATUS <*, RETURN-STATUS,
*>, DDN ', DD-NANE,
', DSN = %, ALLOCATED-DSN
BOVE *'0000°* TO RETURN-STATUS.
CALL *DEALLC*®* USING RETURN-STATUS,
DUMMY-DD~NAME.

IF HNOT SUCCESSFUL
DISPLAY °*STATUS

<', RETURN-STATUS,

*>, DDN = *, DUMMY-DD-NAME
HOVE *0000°* TO RETURN-STATUS.
200-EXIT.
EXIT.

| i PV A WA

|
1
|
:

-171-

300-CONVERT-CALL-NDL.
READ NDL-PILE
AT END
MOVE 1 TO EOP-SWITCH
CLOSE NDL-FILE
GO TO 300-EX1T.
MOVE V-ZBLATLEG TO WK-LAT-LNG.
HMOVE V-ZBKEY TO NDL-IGZ.
MOVE V-ZBREV TO REV OF NDL-KEY.
PERPORM 500-CONVERT-CALL THRU 500-EXIT.
300-EXIT.
EXIT.

500~CONVERT-CALL.
COMPUTE NDX-LAT = (60 * WK-LATD + WK-LATH)
* 60 + WK-LATS.
IP WK-LAT-DIR = °*S°*
COMPUTE NDX-LAT = - NDX-LAT.
COMPUTE NDX-LON = (60 * WK-LONGD + WK-LONGM)
* 60 + WK-LONGS.
IP WK-LONG-DIR = °W*
COMPUTE NDX-LON = - NDX-LOK.
CALL *CARTAM® DSING COMMUNICATION-BLOCK,
USER-DATA-AREA,
COORDINATE-VECTOR.
ADD NUMBER-VSAM-WRITES TO TOTAL-PUTS.
ADD NUMBER-VSAM-READS TO TOTAL-GETS.
MOVE ZEROES TO NUMBER-VSAM-RRITES,
NUNBER-VSAM-READS.
IP SUCCESSPUL~CARTAM
ADD ONE-CON TO TOTAL-ISRTS
ELSE
DISPLAY °*STATUS CODE = <* STATUS-CODE,
*>, KEY = <,
KEY-FEEDBACK-AREA *>.'.
S00-EXIT.
EXIT.

~172~

APPENDIX P

VSAM PILE DEFPINITION EXAMPLE

//DPDLGEO EXEC PGM=IDCAMS,REGION=256K
//STEPCAT DD DISP=SBR,DSN=AMASTCAT
//SYSPRINT DD SYSOUT=A
//VSHTB DD UNIT=3330,VOL=SER=VSAMO2,SPACE=(TRK, 1)
//SISIN DD *
DEFPINE CLUSTER (-

NAME (VSAM .NTB .GEONDX) -

PILE (VSNTB) -

VOLUME (VSAMO2) -

CYLINDERS (15) -

SHAREOPTIONS (1) -

CISZ (8096) -

NONINDEXED~-

RECORDSIZE (4089 4089) -

SPEED-

UNIQUE-

OWNER (ADWNSD)) -

DATA (-

NAME (VSAM .NTB .GEONDX.DATA}} -
CATALOG (AMASTCAT)

O e

-173-

APPENDIX G

CIRCLE SEARCH

ID DIVISION.
PROGRAM-ID. ONETENME.
DATE-WRITTEN. MAY 77.
DATE-CONPILED.
REMARKS.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT COORD-FILE
SELECT PRINT-FILE

DATA DIVISION.
FILE SECTION.

FD COORD-PILE
LABEL RECORDS ARE

PROGRANM SOORCE

ASSIGN TO UT-S-DATAIN.
ASSIGN TO UT-S-PRINTER.

STANDARD

BLOCK CONTAINS 0O RECORDS.

01 PILLER

FPD PRINT-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS O RECORDS.

PIC X(132).

01 PRINT-REC

PIC X (80).

PN RPN MU WA

PP S JEPCUT I

e,

174~

WORKING-STORAGE SECTION.

01 COMMUNICATION-BLOCK.
COPY CARTCBO7.

01 CONTROL-CARD.
03 CRTRL-RADIUS COMP~-1 SYNC VALUE +3.0B+3. {
03 CNTRLCRD-RADIUS-SECS COMP-1 SYNC. C
03 CNTRLCRD-RADIUS-IN-METERS COMP-1 SINC. ;;

03 CNTRL-UNITS PIC XX VALUE °*MT*. .
88 NAUT-MILES VALUE °*NM°. E
88 KILO-METERS VALOE °*KAn’. .
88 PEET VALUE °*FT". !
88 METERS VALUE *MT®. %
K
COPY CARTFPNCS.
{
01 COORD-WORK-AREA.
03 PILLER PIC X(8) VALUE SPACES.
03 ADN-NUMBER PIC X(4) VALUE SPACES.
03 PILLER PIC X(21) VALUE SPACES.
03 LaT-IN.)
05 LAT-DEG PIC 99 VALUE ZEROS.
05 LAT-MIN PIC 99 VALUE ZEROS.
05 LAT-SEC PIC 99 VALDE ZEROS.
* 05 LAT-NS PIC X VALUE SPACES.
F * 88 SOUTH VALDE °*S°.
K 03 LON-IN.
! 05 LON-DEG PIC 999 VALUE ZEROS.
! 05 LON-MIN PIC 99 VALUE ZEROS.
f 05 LON-SEC PIC 99 VALUE ZEROS.
; 05 LON-EW PIC X VALUE SPACES.
88 WEST VALUE °*W°.

03 PILLER PIC X(33) VALOUE SPACES.]

01 KEY-PEEDBACK-AREA.
05 VNDL-KEY.

10 1IsL PIC 9(5).
10 DGZ PIC X(3) .
10 REV PIC I.

05 PILLER PIC X(15).]

-175-

01 RESULT~AREA.

01

01

03

03
03

INPUT-TO-OUTPUT.

05 PILLER PIC X(8) VALUE SPACES.
05 ADN-OUT PIC X(4) VALUE SPACES.
05 PILLER PIC X(68) VALUE SPACES.
PILLER PIC X(2) VALUE SPACES.
1GZ~-0UT.

05 REVY PIC X.

05 PILLER PIC X.

05 1IsL PIC 22229.

05 D62 PIC XXX.

PILLER PIC X(3) VALUE SPACES.
DIST-0OUT PIC 222,229.9 VALUE * 0.0°.
PILLER PIC X VALUE SPACES.
DIST~URITS PIC XX VALUE SPACES.
FILLER PIC X(26) VALDE SPACES.

LIMIT-VECTORS.

03 LOW-LIMITS.
05 LOW-LAT PIC S9(8) COMP SYNC.
05 LOW-LON PIC S9(8) COMP SYNC.
03 HIGH-LIMITS.
05 HIGH-LAT PIC S9(8) CONP SYNC.
05 HIGH-LON PIC S9(8) COMP SYNC.
WORK-AREA.
03 LATR CONMP-2 SYNC VALUE ZERO.
03 LATO PIC S9(8) COMP SYNC VALUE ZERO.
03 LONO PIC S9(8) COMP SYNC VALDE ZERO.
03 CARTAN-COORDINATE-VECTOR.
05 LAT1 PIC S9(8) COMP SYNC VALUE ZERO.
05 LON1 PIC S9(8) COMP SYNC VALUE ZERO.
03 DSTECE? COMP-1 SYNC VALUE ZERO.
03 AZIMUTH1 COMP-1 SYNC VALUE 9.99E+02.
03 DSTNCE2 COMP-1 SYNC VALUE ZERO.
03 ESTIMATOR COMP-1 SYNC VALUE 4.SE+01.
03 NDX-DELTA PIC S9(9) COMP SYNC.
03 ANSWER-PACTOR COMP-1 SYNC VALUE ZERO.
03 IPLAG PIC S9(8) COMP SYNC VALUE +5.
03 ONE-CON PIC S9(8) COMP SYNC VALUE +1.
03 HMAX-B-G-CELLS PIC S9(8) COMP SYNC VALUE +100.
03 SECRAD COMP-1 SYNC VALUE .48481368E-05.
03 BUN-ADNS PIC S9(8) COMP VALUE +1000.
03 HNONE-PLAG PIC X VALUE LOW-VALUES.

88 NONE-IN VALUE BIGH-VALUES.

-176-

01 HISTO-GRAN SYNC.
H-G~MIN PIC S9(8) COMP.
H-G~-HAX PIC S9(8) comp.
B-G-CELL-ZERO PIC S9(8) COMP.
H-G-CELLS PIC S9(8) COMP OCCURS 100
H-G-CELL-MAX PIC S9(8) CoMP.

LINKAGE SECTION.
01 PARM-PIELD.

03

PARN-LENGTRH PIC 9(4) conmp.
88 VALID-PARM-PASSED VALUE 7.
PARN-RADIUS PIC 9(5) .
PARA-UNITS PIC XX.
PARM-BUFPERS PIC 99.
PARN-NUM-ADNS PIC 999.

TIMES.

o BEYAG

® e S thiad

- —
ot e i, i e S e

i
i
|
,
|

-177-

PROCEDURE DIVISION USING PARM-FIELD.

0000-DRIVER.
MOVE 24 TO MAX-USER-AREA-LENGTH.
MOVE CARTAN-OPEN TO PUNCTION-CODE.
IP PARN-LENGTH NOT < 9
MOVE PARM-BUFPERS TO MAX-NOMBER-BUFPERS.
CALL °*CARTAM® USING COMMONICATION-BLOCK.
IF NOT GOOD-CARTAM-OPEN
DISPLAY *BAD OPEN RETURN CODE®
GOBACK.
OPEN INPUT COORD-FILE
OUTPUT PRINT-PILE.
HMOVE ALL LOW-VALUES TO HISTO-GRAM.
MOVE +1000000 TO H~-G-MIN.
IF PARN-LENGTH NOT < 7
MOVE PARM-RADIUS TO CNTRL-RADIUS
MOVE PARM-UNITS TO CNTRL-UNITS.
IF PARM-LENGTH NOT < 12
MOVE PARM-NUM-ADNS TO NUM-ADNS.
IP NAUT-MILES
COMPUTE CNTRLCRD-RADIUS-SECS = 60.0 *
(CHTRL-RADIUS)
MOVE +1852.0 TO ANSWER-PACTOR
ELSE
IP KILO-METERS

CONPUTE CNTRLCRD-RADIUS-SECS = 60.0 =

(CNTRL-RADIUS / 1.852)
MOVE +1000.0 TO ANSWER-PACTOR
ELSE
IF PEET
COMPUTE CNTRLCRD-RADIUS-SECS =
(CNTRL-RADIUS / 6080.0)
MOVE +0.3048 TO ANSWER-PACTOR
ELSE
COMPOTE CNTRLCRD-RADIUS-SECS =
(CRTRL-RADIUS / 1852.0)
MOVE +1.0 TO ANSWER-PACTOR.
CONPUTE CNTRLCRD-RADIUS-IN-METERS =
CHNTRL-RADIUS * ANSWER-PACTOR.

60.0

60.0

*

O T

FRppEppE T

oo, M- e e

.‘

Nl

-178-

0 100-PROCESS-LOOP.

READ COORD-FILE INTO COORD-WORK-AREA

AT END GO TO 0700-PINISH-UP.
MOVE CNTRLCRD-RADIUS-SECS TO HIGH-LON.
MULTIPLY HIGH-LON BY +1.7 GIVING BIGH-LAT.
CONMPUTE LATO = (LAT-DEG * 60 + LAT-RIN} * 60

+ LAT-SEC.

IF SOUTHE COMPUTE LATO = - LATO.

COMPUTE LOKO = (LON-DEG * 60 + LON-MIN) * 60
+ LON-SEC.

IP WEST COMPUTE LORO = - LONO.

COMPUTE LATR = LATO ® SECRAD.

CALL °*HAPSID®* USING LATR, RIGH-LORN.

COMPUTE LOW-LAT = LATO - HIGH-LAT.

COBPUTE LOW-LON = LONO - HIGH-LON.

CONMPUTE HIGH-LAT = LATO + HIGH-LAT.

COMPUTE HIGH-LON = LONO + HIGH-LON.

WRITE PRINT-REC PROM COORD-WORK-AREA

APTER ADVANCING 3 LINES.

MOVE SPACES TO RESULT-AREA.

BOVE CNTRL-UNITS TO DIST-UNITS.

MOVE ADN-RUMBER TO ADN-OQUT.

MOVE HIGH-VALUES TO NONE-PLAG.

BMOVE ZERO TO NUMBER-VSAM-READS.

MOVE GR TO FUNCTION-CODE.

CALL °*CARTAN® USING COMMUNICATION-~BLOCK,
KEY-PEEDBACK-AREAR,
CARTAN-COORDINATE-VECTOR,
NDX-DELTA,
LOW-LINITS,
HIGH-LIMITS.

PERPORE 0200-WALK-PATH THRU 0200-WALK-PATH-EXIT

UNTIL NOT MORE-PATH.
IP NONE-IN
MOVE CNTRL-RADIUS TO DIST-OUT
BOVE °NONE IN * TO 1IGZ-OUT
WRITE PRINT-REC FROM RESULT-AREA.
IF NUNBEB-VSAM-READS > H-G-MBAX
MOVE NUMBER-VSAM-READS TO H-G-MAX.
IP NOMBER-VSAN-READS < H-G-MIN
BOVE NUMNBER-VSAM-READS TO H-G-HNIN.
IF NUNMBER-VSAN-READS < ONE-CON
ADD OMNE-CON TO H-G-CELL~ZERO
ELSE
IF NUMBER-VSAM-READS > MAX-H-G-CELLS
ADD +1 70 H-G-CELL-MAX
ELSE
ADD +1 TO H-G-CELLS (NUMBER-VSAM-READS).
SUBTRACT 1 FROM NUM-~-ADNS.
IF RUN-ADNS > O
GO TO 0700-PROCESS-LOOP.

adaliic,, Man .

. 44, ”.
PRSPPI TN ~ NPT

-179-

0100-PINISH-UP.

DISPLAY °*HMIN & READS = ', H-G-MIN,
s MNAX # READS = *, H-G-MAX,
*: CELL(0) = *, H-G-CELL-2ERO,

*: CELL(101) = *, H-G-CELL-BAX.
IP H-G-MAX > 100

MOVE +100 TO H-G-NMAX.

PERFORM H-G-DISPLAY VARYING NUMBER-VSAM-READS

PROM 1 BY 1 UNTIL NUMBER-VSAM-READS > H-G-MAX.
BOVE CARTANM-CLOSE TO PUNCTION-CODE.

CALL °CARTAN® USING COMMUNICATION-BLOCK.
CLOSE COORD-FILE

PRINT-PILE.
GOBACK.

H-G-DISPLAY.

DISPLAY * CELL(*, NUMBER-VSAM-READS, *) = °*,
H-G-CELLS (NUMBER-VSAM-READS).

- A mw ey

.
PRNRPLAE TS =T VR

-180~-

0200-WALK-PATH.
MOVE GNP TO PUNCTION-CODE.
BULTIPLY NDXI-DELTA BY ESTIMATOR GIVING DSTNCE2.
CALL *VECTOR® USING LAT1 LON1
LATO LONO
DSTNCE1 IPLAG.
SUBTRACT CNTRLCRD~RADIUS-IN-METERS PROM DSTNCEY.
IP DSTNCE2 < DSTHNCE1
MOVE 88-DISCARD-SUBTREE TO PUNCTION-CODE-4
ELSE
IP DSTNCE2 NOT > - DSTNCE1
MOVE 88~KEEP-ALL-CHILDREN TO PUNCTION-CODE-4
PERPFORM 0300-KEEP-ALL THRU 0300-KEEP-ALL-EXIT
ONTIL NOT MORE-PATH
MOVE 88-CONTINUE-WALK TO PUNCTION-CODE-4.
CALL °*CARTAN® USING COMNUNICATION-BLOCK,
KEY-PEEDBACK-AREA,
CARTAM-COORDINATE-VECTOR,
NDX-DELTA.
0200-WALK-PATH-EXIT.
EXIT.

0300-KEEP-ALL.
IF TRUE-USER-DATA-LENGTH = 9
CALL °*VECTOR® USING LATO LONO
LATT LON?
DSTNCE1 IFLAG
MOVE CORR NDL-KEY TO IGZ-0OOT
DIVIDE DSTNCET1 BY ANSWER-FACTOR
GIVING DIST-OUT
MOVE LOW-VALUES TO NONE-FLAG
WRITE PRINT-REC FROM RESULT-ARERA
APTER ADVANCING 1 LINE.
CALL °*CARTAM® USING COMMUNICATION-BLOCK,
KEY-PEEDBACK-AREA,
CARTAN-COORDIRATE-VECTOR,
NDX-DELTA.
0300-KEEP-ALL-EXIT.
EXIT.

gt ahididaiad

APPENDIX H

INCLUSION/EXCLUSION AREA SEARCH PROGRAM SOURCE

ID DIVISION.
PROGRANM-ID. XCLUDOR2.
DATE-WRITTEN. MAY ?77.
DATE~COMPILED.
REMARKS .

ENVIRONMENT DIVISIORN.
IRPUT-OUTPUT SECTION.

PILE-CONTROL.
SELECT CNTRLCRD ASSIGN TO UT-S-CONTROL.
SELECT LAUNCH-POINT-FPILE ASSIGN TO UT-S-LAUNCH.
SELECT SORTED-PILE ASSIGN TO UT~S-SRTNULL.
SELECT SORTED-OUTPUT-PILE ASSIGN TO UT-S-NTBS.

‘W

-182-
DATA DIVISION.
PILE SECTION. j
SD SORTED-PILE.
01 SELECTED-RECORD. 7
03 PRIMARY-KEY PIC X (21). 4
03 PILLER PIC X (15). |

FD CNTBLCRD
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS. .}
01 PFILLER PIC X (80). y

FD LAUNCH-POINT-FILE
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 21 CRARACTERS
BLOCK CONTAINS O RECORDS.
0t LP-DATA PIC X(21).
* READ INTO LP-DATA-AREA.

FPD SORTED-OUTPUT-PILE
LABEL RECORDS ARE STARDARD
BLOCK CONTAIRS 0 RECORDS.

01 OUT-REC-S PIC X (36).

WORKING-STORAGE SECTION.

01 SIXTY PIC S9(8) CoMP SYNC VALUE +64Q.
01 COMBURICATIOR-BLOCK. COPY CARTCBO7.

01 NDX-VECTORS.

05 NDX-LAT PIC S9 (8) COMP SYNC.
05 NDX-LON PIC 59 (8) coMP SYNC.
05 NDX-DELTA PIC S9(8) coNP SYINC.

01 LINIT-VECTORS.
05 LOW-LINITS.

10 LOW-LAT PIC S9 (8) CONMP SYNC.

10 LOW~LON PIC S9(8) COMP SINC.
05 BIGH-LIMITS.

10 BIGH-LAT PIC 59 (8) COMP SINC.

10 HIGH-LON PIC S9(8) conpP SIYINC.

*
E 3
L

01

01

-183~
CNTRLCRD-IN.

CoLS 1 2 3 4 5
12345678901234567890 123456789012345678901234567890
> 2500XM 55N8+/-25 090E+/-090 ISLE#ISLE#

LAT LONG LOW HIGH
03 PILLER PIC X.
88 EXCLUSION-ABEA-SEARCH VALUE *>°.
88 INCLUSION-AREA-SEARCH VALUE *<'.
03 PILLER PIC X (4) .
03 CNTRL-RADIUS PIC 9(5) .
03 CNTBRL-OUNITS PIC XX.
88 NAUT-MILES VALUE °*NN*.
88 KILO-METERS VALUE °*KA°.
88 PEET VALUE °*PT®.
88 METERS VALUE °'MT®.
03 PFILLER PIC X(5) .
03 CNTRL-CENTER-LAT-DEG PIC 99.
03 PILLER PIC X.
88 CNTBL-SOUTH VALUE °'S°*.
03 PILLER PIC XXX VALUE %+/-°.
03 CNTRL-DELTA-LAT PIC 99.
03 PILLER PIC X.
03 CNTRL-CENTER-LON-DEG PIC 999.
03 PILLER PIC X.
88 CNTBL-WEST VALUE °'N°.
03 PILLER PIC XXX VALUE *+/-'.
03 CNTRL-DELTA-LON PIC 999.
03 PILLER PIC X (4).
03 MIN-ISLE PIC 9(5) -
03 MAX-ISLE PIC 9(5) .
03 PILLER PIC X(3).
03 LP-DATA-AREA.
05 LATD PIC 99.
05 LATH PIC 99.
0S LATS PIC 99.
05 NS-DIR PIC X.
88 LP-SOUTH VALOE °S°.
05 PILLER PIC X.
05 LOND PIC 999.
05 LOHM PIC 99.
05 LONS PIC 99.
05 E#-DIR PIC X.
88 LP-WEST VALUE "w°.
05 LP-RADIUS PIC 9(5) .
03 PILLER PIC X (6) .

CNTRLCRD-TRANSFORM REDEFINES CNTRLCRD-IN PIC

COPY CARTPNCS.

X (80) .

01

01

01

RESULT-AREA.
03 KEY-OUT.

05 ISL PIC 9(5) .
05 FILLER PIC X (16) -
03 LAT-0UT.
05 LAT-DEG PIC 99 VALUE ZEROS.
05 LAT-MIN PIC 99 VALUE ZEROS.
05 LAT-SEC PIC 99 VALUE ZEROS.
05 LAT-NS PIC X VALUE SPACES.
03 LON-OUT.
05 LON-DEG PIC 999 VALUE ZEROS.
05 LON-MIN PIC 99 VALUE ZEROS.
05 LON-SEC PIC 99 VALUE ZEROS.
05 LON-EW PIC X VALUE SPACES.
WORK-AREA.
03 LATR COMP-2 SYNC VALUE ZERO.

03 MAXIMUM-RADIUS-IN~-METERS COMP-1 SINC.
03 CNTRLCRD-RADIUS-IN-METERS COMP-1 SYXC.

03 ABS-LAT PIC 9(8) COMP SYNC VALUE ZERO.
03 DSTHCE1Y COMP-1 SYNC VALUE ZERO.

03 SECRAD CoNP-1 SYNC VALOE .48481368E-05.
03 DSTNCE2 COMP-~1 SYNC VALUE ZERO.

03 ESTINATOR COMP-1 SYNC VALUE 4.5E+01.

03 LAT-LNG-WORK-AREA PIC S9(8) COMP SYNC VALUE ZERO.
03 IPLAG PIC S9(8) COMP SYNC VALUE +5.

03 TOTAL-NUMBER-READS PIC S9(6) COMP SINC VALUE ZERO.
03 MIN-ISLE-RUMBER PIC 9(5) COMP-3 VALUE ZERO.
03 HBAX-ISLE-NUMBER PIC 9(5) comp-3 VALUE ZERO.

03 NUMBER-RECORDS PIC 9 (5) Comp-3 VALUE ZERO.
03 NOBE-FLAG PIC X VALUE LOW-VALDES.
88 NONE-IN VALUE HIGH-VALUES.
03 OUTSIDE-ALL-CIRCLES PIC X VALUE SPACE.
03 INSIDE-A-CIRCLE PIC X VALUE SPACE.
03 LP-END-PLAG PIC XXX VALUE SPACES.
88 END-OP-LPS VALUE *END'.

03 NUBBER-OF-LAURCH-POINTS USAGE INDEX.

LAUNCHE~-POINT-DATA SYNC.
03 LP-TABLE OCCURS 100 TIMES INDEXED BY LAUNCH-POINT.
05 LP-LAT PIC S9(8) SINC COMP.
05 LP-LON PIC S9(8) SYNC CONMP.
05 LP~DELTA-LAT PIC S9(8) SYNC COMP.
05 LP-DELTA-LON PIC S9(8) SINC COMP.
05 LP-RADIUS-IN-METERS SINC ComP-1.

-185~

PROCEDURE DIVISION.

0000~-DRIVER.

CALL °TIMEAX* USING INTERVAL.

MOVE 21 TO MAX-USER-AREA-~LENGTH.

MOVE CARTAM-OPEN TO PUNCTION-CODE.

CALL P'CARTAM® USING COMMUNICATION-BLOCX.

IF NOT GOOD-CARTAM-OPEN
DISPLAY *BAD OPEN RETURN CODE"*
GOBACK.

OPEN INPUT CNTRLCRD.

0000-CNTL-LOOP .
READ CNTRLCRD INTO CNTRLCRD-IN
AT END MOVE CARTAM~-CLOSE TO FUNCTION-CODE
CALL °*CARTAM® USING COMMUNICATION-BLOCK
CLOSE CNTRLCRD
GOBACK.
TRANSFORM CNTRLCRD-TRANSPORM FROM SPACES TO ZEROES.
BOVE MIN-ISLE TO MIN-ISLE-NUMBER.
MOVE MAX-ISLE TO MAX-ISLE-NUMBER.
MULTIPLY CNTRL-CENTER-LAT-DEG BY 3600 GIVING NDX~LAT.
IP CNTRL-SOUTH COMPUTE KDX-LAT = - NDX-LAT.
MUOLTIPLY CNTRL-DELTA~LAT BY 3600 GIVING NDX-DELTA.
COMPUTE LOW~-LAT = NDX-LAT - NDX-DELTA.
COMPUTE HIGH-LAT = NDX-LAT + NDX-DELTA.
MULTIPLY CNTRL-CENTER-LON~-DEG BY 3600 GIVING NDY-LON.
IP CNTRL-WEST COMPUTE NDX-LON = - NDX-LON.
BULTIPLY CNTRL-DELTA-LON BY 3600 GIVING NDX-DELTA.
COMPUTE LOW-~LON = NDX-LON - NDX~DELTA.
COMPUTE HIGH-LON = NDX~LON + NDX-DELTA.
MOVE CNTRL~-RADIOS TO LP-RADIUS.
MOVE ZEROS TO CNTRLCRD~RADIUS-IN-METERS,
MAXINMUN-RADIUS~IN-METERS,
NUMBER-RECORDS.
IF INCLUSION-AREA-SEARCH
NOVE 88-DISCARD~-SUBTREE TO OUTSIDE~ALL-CIRCLES
BOVE 88-KEEP-ALL-CHILDREN TO INSIDE-A-CIRCLE
ELSE
MOVE 88~KEEP-ALL-CHILDREN TO OUTSIDE-ALL-CIRCLES
" MOVE 88-DISCARD-SUBTREE TO INSIDE-A-CIRCLE.
E SET LAUNCH-POIRT TO 1.
{ PERPORM 0010--CRVRT-COORDS THRU J0010-EXIT.
{ BOVE MAXIMUA-RADIUS-IN-BRETERS
TO CNTRLCRD-BRADIUS-IN-METERS.
MOVE ZERO TO MAXINUM-BADIUS~-IN-METERS

e o

IP LP~LAT (1) = ZERO
OPEN INPUT LAUNCH-POINT-FILE

T T e 3 Y M AP W tS a0 % - e

e v epee g+ <o s S 3

AD=A090 To4 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB Ol F/76 8.
CARTAH- THE CARTESIAN ACCESS METHOD FOR DATA STRUCTURES WITH N'--ETC(U)
79 S V PETERSEN
NL

UNCLASSIFIED AFH-79-2250
,)» END
A rinty
it 80
one

.

""I 1.0l g
= | |z

TR
= I3

2 flis wee

|

MICROCOIY RESOUUTION TERT CHARE

=186~

PERFORM 0010-READ-LAUNCH-POINTS THRU 0010-BEXIT
VARYING LAUNCH-POINT PROM T BY 1

ONTIL (LAUNCH-POINT > 100) OR END-OP-LPS
CLOSE LAUNCH-POINT-PILE.

MOYE HIGH-VALUES TO NONE-FLAG.
HOVE GR TO PUNCTION-CODE.
SORT SORTED-FILE ON ASCENDING KEY PRINARY-KBY
INPUT PROCEDURE CARTAM-RETRIEVAL
. GIVING SORTED-OUTPUT-PILE.

DISPLAY °PINAL STATUS = °, STATUS-CODE,
®: NUM READS = °, NUMBER-VSAN-READS,

‘s # INSTS = °, NUNBER~-RECORDS.
GO T0 0000-CNTL-LOOP.

0010-READ-LAUNCB-POINTS.
READ LAUNCH-POINT-PILE
AT E¥D
BOVE °END®* TO LP-END-PLAG
60 TO 0010-EXIT.
TRANSPORM LP-DATA PRON SPACES TO 2EROS.
HOVE LP-DATA TO LP-DATA-AREA.

- M..a,»,w

mmm«ﬂ.f:%-ﬂ”ﬁ e

-

TR YN

RIS ey AR 8

Kt mexga sk Sl TN

2 o s O

-187-~

0010-CNVRT-COOBRDS .
SET NUMBER-OP-LAUBCE-POINTS TO LAUNCH-POINT.
IPF LP-RADIUS = ZERO
BOVE CETRLCRD-RADIUS-IN-NETERS TO
LP-RADIUS-IN-HETERS (LAUNCH-POINT)
ELSE
IP BAUT-BILES
CONPUTE LP-BRADIUS-IN-AETERS (LAUNCH-POINT) =
LP-RADIUS * 1852.0
ELSE
IP KILO-HMETERS
COBPUTE LP-RADIUS~IN~METERS (LAUNCH~-POINT) =
LP-RADIUS * 1000.0
ELSE
IF PEET
CONPUTE LP-BADIUS-IN-NETERS (LAUNCH-POINT) =
LP-RADIUS * 0.3048
ELSE
BOVE LP-RADIUS
TO LP~-RADIUS-IN-BETERS (LAUNCH-POINT).
IF LP-RADIUS-IN-AETERS (LAUNCH-POINT)
> BAXIMUB-RADIUS-IN-METERS
BOVE LP-RADIUS-IN-BETERS (LAUNCH-POINT)
TO MAXINUM-RADIUS-IN-NETERS.
CONPUTE LP-LAT (LAUNCH-POINT)
= ((LATD * 60 + LATH) * 60 + LATS).
I? LP-SOUTH
CONPUTE LP-LAT (LAURCH-POINT)
= - LP-LAT (LAURCH-POINT).
COMPUTE LP-LON (LAUNCH-POINT)
= ((LOND * 60 ¢ LOWNM) * 60 + LONS).
IP LP-NEST
COMPUTE LP-LON (LAUNCH-POIRT)
= - LP-LON (LAURCH-POINT).
COSPUTE LP-DELTA~LAT (LAUNCH-POINT) ROUNDED =
34 * LP-RADIUS~-IN-BETERS (LAUNCH-POINT).
BOVE LP-LAT (LAUNCH-POINT) TO ABS-LAT.
IP ABS-LAT ¢ LP-DELTA-LAT (LAUNCE-POINT) < 328000
COMPUTE LATR ROUNDED
= LP-LAT (LAUNCH-POINT) * SECRAD
CALL °RAPSID® USING LATR,
LP-DELTA-LOR (LAUNCH-POINT)
ELSE
BOVE 1500000 TO LP-DELTA-LON (LAUNCB-POINT).

0010-EXIT.
EXIT.

e e =

L T e T T T

U

STEITT

-

=188~
CARTAB~RETRIEVAL SECTION.

D QS A ot S 1 o Y

PR

——y—
_a

WALK-RETRIEVAL-PATH.

CALL °*CARTAN® USING COBHUNICATION-BLOCK,
KEY-00T,
¥DX-~VYECTORS,
NDX-DELTA,
LOW-LINITS,
BIGH-LINITS.

it

IF NOT BORE-PATH
GO TO CARTABR-RETRIEBVAL-EXIT
BLSE
HOVE GWNP TO PURCTION-CODE
HOVE EDX-LAT TO ABS-LAT
IPF (ABS-LAT + NDX-DELTA) NOT > 324000
* INITIALIZE TO OUTSIDE-ALL
HOVE OUTSIDE-ALL-CIRCLES TO PUNCTION-CODE-4
HULTIPLY NDX-DELTA BY ESTIMATOR GIVING DSTNCE2
PERPORN 0200-CHK-LPS THRU 0200-CHK-LPS-EXIT
VARYING LAUNCH-POINT PRON 1 BY 1 UNTIL
(LAUNCH-POINT > RUMBER-OP-LAUNCH-POINTS) F
IPF KEEP-ALL-CHILDRER '
PERPFORR 0300-KEEP-ALL THRO
0300-KEEP-ALL-EXIT UNTIL ROT NORE-~PATH
IP STATUS-CODE = °GH®
HOVE 88~CONTINUE-RALK TO
TO FUNCTION-CODE-&
BOVE SPACES TO STATUS-CODE. *

FIVRRpPT———————

GO TO WALK-RETRIEVAL-PATH.

- - L e T R T ot el e ———

R s SEUIERTE SR P

R T

N 5.

=189~

0200-CHK~-LPS.

CONPUTE ABS-LAT = NDX-LAT - LP-LAT (LAUNCE-POINT).
IF ABS-LAT NOT >
RDX-DELTA ¢ LP-~DELTA-LAT (LAUNCH-POINT)
CONPUTE ABS-LAT = NDXI-LOR - LP~LON (LAUNCH~-POINT)
IF ABS-LAT BOT >
EDX-DELTA ¢ LP-DELTA-LOR (LAUNCH-POINT)
CALL °®VECTOR® USING NDX-LAT
WDX-LON
LP=-LAT (LAUNCH-POINT)
LP-LON (LAUNCH-POINT)
DSTNCE1 IFLAG
SUBTRACT LP-RADIUS-IN-HETERS (LAUNCH-POINT)
PRON DSTNCE1

gl

IP DSTNCE2 ¥OT > -~ DSTNCE1
* TOTALLY INSIDE A RANGE CIRCLE

MOVE INSIDE-A-CIRCLE TO PUNCTION-CODE-4
SET LAONCH-POINT

TO NUBBER-OF~-LAUNCH-POINTS

T, AL 2 AN WD

ELSE
IP DSTHCE2 > DSTHNCE1
s OVERLAPS A RANGE CIRCLE
HOVE 88-CONTINUE-WALK
TO FONCTION-CODE-&
IP DSTHECE2 > BAXINUB-RADIUS-IN-NETERS
SET LAURCH-POINT TO
HUNBER-OF-LAUNCH~-POINTS.

i T MR

0200-CBK-LPS-BEXIT.
EXIT.

pyop sy

TN L

=190~

0300-KEEP-ALL.
IF (WOT NODE) AND (ISL NOT < MIN-ISLE-NUMBER
AND NOT > MAX-ISLE-NUMBER)
BOVE LOW-VALUES TO NONE-PLAG
PERFORE 0350-EXPAMD-COORDS
THRU 0350-BXPAND-COORDS~EXIT
RELEASE SELECTED-RECORD FROM RESULT-AREA
ADD +1 TO NUMBER-RECORDS.
CALL °*CARTAN® USING COMNURICATION-BLOCK,

T MR

) KEBY-0UT,
NDX-VECTORS,
¥DX-DELTA.

0300-KEEP-ALL-EXIT.
EXIT.
0350~-EXPAND~COORDS .

IF NDX-LAT < O
COAPUTE LAT-LNG-WORK-AREA = - NDX-LAT
» HOVE °S* TO LAT-ES OP LAT-OUT
ELSE
‘ HBOVE EDX-LAT TO LAT-LNG-WORK-AREA
BOVE °N®* TO LAT-NS OPF LAT-0UT.
DIVIDE LAT-LEG-WORK-AREA BY SIXTY
GIVING LAT-LNG-WORK-AREA
REHAINDER LAT-SEC OF LAT-OUT.
DIVIDE LAT-LNG-WORK-AREA BY SIXTY i
GIVING LAT-DEG OF LAT-OUT K |
REEAINDER LAT-MIN OF LAT-OUT.
IPF ¥DX-LON < O
CONPUTE LAT-LEG-WORK-AREA = -~ NDX-LON
HOVE °N°®* TO LON-EW OPF LON-OUT
ELSE
BOVE EDX-~LON TO LAT-LNG-WORK-AREA
i HOVE °*E®* T0 LON-EW OF LON-OUT.
DIVIDE LAT-LNG-WORK-AREA BY SIXTY
GIVIRG LAT-LNG-WORK-AREA
REBAINDER LOFN~-SEC OF LON-OUT.
DIVIDE LAT~-LBG-VORK-AREA BY SIXITY
GIVING LON-DEG OF LON-OUT ‘i
RENAIBDER LON-#IIN OF LON-OUT.
0350-EXPARD-COORDS-EXIT. ;
BXIT.

CARTAN-RETRIEVAL-EXIT,
EXIT.

| e TR g et 2 e b e W e e LAD R ARER T) e A= A

~-191-

APPENDIX I

PORTRAN SUBROUTIEE TO EXPAND LONGITUDE

SUBROUTINE BAPSID (ALAT, ISID)
ISID = ABS (1.1#ISID/COS (ALAT))
RETURN

END

