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IN METEOROLOGICAL MODELLING I
BY: JOHN D. WARBURTON

MAJOR PROFESSORS: Y.K. SASAKI, Ph.D. & J.N. REDDY, Ph.D.

The finite element method may relieve some of the
problems associated with numerical modelling of the atmos-
phere. The method reduces the problem of nonlinear computa-
tional instability, allows arbitrary placement of grid points,
and offers greater flexibility in the handling of boundary
conditions. In addition, the finite element method has been
shown to be more accurate for some types of problems.

This research concentrates on the ability of the fin-
ite element method to serve as the means of solving the equa-
tions which describe flow in the atmosphere and provides
answers as to the type of finite element approximation best
suited for meteorological research. Five different finite
elements using both linear and quadratic interpolation are
tested in the space domain. Several time differencing
schemes are also tested with the elements in order to deter-
mine the most accurate and efficient configuration. In add-
ition, the concepts of lumped and consistent mass are examined
and tested as well as alternative methods of handling the
computer implementation of the method.

It is found that the finite element method using the
four-node bilinear rectangular element provides the most ac-
cruate handling of the spatial derivatives. Combined with
the Crank-Nicholson time difference scheme using consistent
mass, the four-node element is not only the most accurate in

It the handling of advective flow but also controls the growth
of gravity waves the longest. This study also shows that
when explicit time difference schemes such as the Leap-irog
scheme are used with consistent mass the degradation in re-
sults when compared to the Crank-Nicholson method is minimal.

From the standpoint of computational efficiency, the
finite element method is shown to be competitive with certain
finite difference methods under certain special conditions.
For constant grid spacing the finite element version of a
simple vorticity-stream function model using the four-node
bilinear element can be converted into an expression identical
to the Arakawa Jacobian in space. However, unlike Arakawa's
method, the finite element method includes consistent mass,



a more accurate distribution of the mass than found in con-
ventional finite difference methods which use the lumped
mass concept. This special finite difference form of the
finite element method requires slightly more computation but
is more accurate than its finite difference counterpart.

It is evident that further study of the finite ele-
ment method as an alternative to finite difference methods
is warranted. Its use in the future may solve many existing
problems in current atmospheric models as well as providing
more accuracy in the solutions of the equations.
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ABSTRACT

The finite element method may relieve some of the

problems associated with numerical modelling of the atmos-

phere. The method reduces the problem of nonlinear computa-

tional instability, allows arbitrary placement of grid points,

and offers greater flexibility in the handling of boundary

conditions. In addition, the finite element method has been

shown to be more accurate for some types of problems.

This research concentrates on the ability of the

finite element method to serve as the means of solving the

equations which describe flow in the atmosphere and provides

answers as to the type of finite element approximation best

suited for meteorological research. Five different finite

elements using both linear and quadratic interpolation are

tested in the space domain. Several time differencing schemes

are also tested with the elements in order to determine the

most accurate and efficient configuration. In addition, the

concepts of lumped and consistent mass are examined and tested

as well as alternative methods of handling the computer im-

plementation of the method.

It is found that the finite element method using the

four-node bilinear rectangular element provides the most
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accurate handling of the spatial derivatives. Combined with

the Crank-Nicholson time difference scheme using consistent

mass, the four-node element is not only the most accurate in

the handling of advective flow but also controls the growth

of gravity waves the longest. This study also shows that

when explicit time difference schemes such as the Leap-frog

scheme are used with consistent mass the degradation in

results when compared to the Crank-Nicholson method is min-

imal.

From the standpoint of computational efficiency, the

finite element method is shown to be competitive with certain

finite difference methods under certain special conditions.

For constant grid spacing the finite element version of a

simple vorticity-stream function model using the four-node

bilinear element can be converted into an expression identical

to the Arakawa Jacobian in space. However, unlike Arakawa's

method, the finite element method includes consistent mass,

a more accurate distribution of the mass than found in conven-

tional finite difference methods which use the lumped mass

concept. This special finite difference form of the finite

element method requires slightly more computation but is

more accurate than its finite difference counterpart.

It is evident that further study of the finite ele-

ment method as an alternative to finite difference methods

is warranted. Its use in the future may solve many existing

problems in current atmospheric models as well as providing

more accuracy in the solutions of the equations.
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THE USE OF THE FINITE ELEMENT METHOD

IN METEOROLOGICAL MODELLING

CHAPTER I

INTRODUCTION

A large percentage of current meteorological research

involves the development of numerical models. The majority

of those models are designed using the finite difference

method (FDM) to represent the derivatives in the differential

equations. The use of the FDM in meteorological models leads

to difficulties in several areas. For example, many differ-

encing schemes result in damping of important waves, inaccur-

acies in phase speeds, or computational instability (Messinger

& Arakawa, 1976). In addition, finite difference methods are

not equipped to handle irregular boundaries. Finally, one of

the most difficult situations for the FDM is grid nesting, an

important feature in numerical forecasting which allows for

grid refinement in areas of interest so that smaller scale

features can be identified and predicted with greater accuracy.

One method which may relieve some of the problems of

finite differencing is the finite element method (FEM). The

FEM employs local interpolating functions over finite sub-



domains which are connected together to approximate the glo-

bal system. The governing partial differential equations

are expressed in integral form. Normally this is accomplish-

ed using the Galerkin method which allows for easy derivation

of the integral form of complex systems of partial differen-

tial equations. Details on the Galerkin method are given in

Appendix A.

Because integral equations are solved, the FEM satis-

fies important global conservation laws associated with the

model equations, regardless of the shape of the domain. Thus,

computational instability is much less of a problem. The

nodal (grid) points may be placed arbitrarily so that fine

resolution can be used in an arei of interest, with coarse

resolution in areas of weak gradients. Higher order approx-

imations are easily used without special boundary conditions.

There is greater flexibility in the handling of boundary con-

ditions. Finally, the FEM has been shown to be more accurate

than the finite difference method for some types of problems.

In summary, the finite element method and finite

difference method are fundamentally different. Finite dif-

ference equations are derived from truncated Taylor Series

expansions. The assumption is that these approximations

offer sufficient accuracy for the representation of differ-

ential equations which govern physical processes. In some

finite difference methods, the concentration is on the partial

differential equation and the approximation of derivatives at
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a point. The finite element method is global in nature; it

is a variational method which uses integral equations.

This research concentrates on the ability of the FEM

to serve as the means for solving the equations which des-

cribe flow in the atmosphere and provides answers as to the

type of finite element approximation best suited for meteor-

ological research. The FEM is examined in several different

ways in order to determine the more accurate and cost-effec-

tive ways in which it can be employed. Five different ele-

ments using both linear and quadratic interpolation are test-

ed in the space domain. These elements and interpolation

functions are discussed in Appendix A. Several time differ-

encing schemes are tested with the elements in order to det-

ermine the most accurate and efficient configuration. In

addition, the effect of using consistent versus lumped mass

is tested. This difference is concerned with the handling

of the time derivative. When lumped mass is used, the mass

of an element is said to be equally distributed to the nodes

(or mesh points). In contrast, consistent mass means that

there is a weighted distribution of the mass. Lumped mass

is analogous to the finite difference method and is a com-

promise which can be made in the FEM. Consistent mass natur-

ally arises in the finite element formulation. This concept

is discussed in detail in Chapter III.

The tests described above are performed using three

different formulations for flow in a periodic channel. First

3
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a vorticity-stream function formulation with known analytic

solution is used for all the tests described above. Then the

same type of flow is studied using the penalty method for

comparison. In the penalty method the pressure terms are

eliminated in the functional; however, the model allows for

approximate pressure calculations. Only the tests involving

element accuracy are repeated for the penalty model. Finally,

the shallow water equations are used to study element accur-

acy, time differencing methods, and the conservative proper-

ties of the FEM.

Most of the published research on the FEM by meteor-

ologists has involved a specific problem with the FEM applied

in a specific manner. There has been no careful investiga-

tion as to what type of finite element approximation is best

suited to meteorological problems. This research provides a

strong foundation for further application of the FE4 in ad-

vanced meteorological models. The results presented here

show that it is feasible to apply the FEM to non-linear flow

problems where advection is significant. A four-node quadri-

lateral element with linear interpolation provides the best

results and the FEM is shown to be more accurate than the FDM.

Chapter II provides insight into the historical devel-

opments of the FEM, as well as the relationship of this work

to published research. Chapter III gives the methodology

including a discussion of the governing equations and numer-

ical procedures. The results are presented in Chapter IV and

4



conclusions and remarks in Chapter V. There are appendices

describing the finite element approximation in detail and

the numerical stability for the four-node rectangle.

5



CHAPTER II

BACKGROUND

Historical Development

The variational approach to the solution of difter-

ential equations is the basis of such discoveries as Hamil-

ton's Principle on the mechanics of moving particles, the

Schrodinger wave equation, and contributed to Einstein's dev-

elopmentof the theory of relativity (Simmons, 1972). The

variational method of solving differential equations is quite

elegant for certain special cases; however, its general appli-

cability has been delayed until modern times due to technical

problems. Approximate methods were introduced by Rayleigh

and Ritz during the late 1800's in which the variables were

expressed as a linear combination of some approximating func-

tions and the integral over the domain of the error was mini-

mized. The method received considerable attention but it is

difficult to apply for problems with irregular boundaries or

complex boundary conditions and cannot be used for nonlinear

problems.

A break occurred in the 1940's when Courant solved

the St. Vincent torsion problem by approximating the warping

6
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function through a combination of linear triangles assembled

over the domain and formulating the problem using the prin-

ciple of minimum potential energy (Oden, 1972). It is found

that if the elements are relatively small, the variation of

functions within them can be adequately represented by a

low-order polynomial. If certain continuity requirements

were met along the element boundaries, complex systems could

be reasonably solved.

The method came to the forefront in the 1960's when

its use became widespread, particularly in areas such as

airframe design. Since the advent of large scale computer

systems, the use of the FEM has grown rapidly in several

areas of engineering; however, it has only been in the 1970's

that interest in the method has begun to develop among meteor-

olgists.

7



Current Literature

Other than the University of Oklahoma, School of

Meteorology, there are four main groups investigating the

application of the FEM to meteorological problems.

Naval Postgraduate School, Monterey, California

Meteorological Office, Bracknell, England

Atmospheric Environment Service, Quebec

Lawrence Livermore Laboratory, Livermore, California

Additionally, there has been some related research by civil

engineers and oceanographers such as Kawahara (1977 a, b, c),

Platzman (1978), and Fix (1975) who have employed the shallow

water equations. This survey of current literature will

provide a capsule description of the state of meteorological

FEM research and emphasize the need for this study.

Work at the Naval Postgraduate School culminated with

the publication of Kelly and Williams (1976) which was a study

of barotropic flow in a periodic channel. The model used was

the shallow water equations. The two space dimensions were

approximated using the linear FEM over triangular elements.

The time integration was performed using centered (Leap-frog)

finite differencing with consistent mass. Several grid

arrangements were attempted using well-behaved initial con-

ditions (wave number 1). The results displayed after 48 hours

of time integration were disappointing. There was mild im-

provement only with the addition of a diffusion term or when

a fine mesh was employed. They tested two different arrange-

.8



ments of the diagonal slant of the triangular elements but

did not identify whether the noise problems were associated

with space or time differencing.

The FEM research at the Meteorological Office, Brack-

nell, England has been published by Cullen. His first work

(Cullen, 1973) showed that the rectangular finite element

with bilinear interpolation and consistent mass leap-frog

time differencing results in a more restrictive (by a factor

of /3) maximum time step than the one required when centered

finite differencinq is used. Additionally; he found that a

16 x 16 finite element grid gave results comparable to a 32

x 32 finite difference grid with second order differencing.

His next publication (Cullen, 1974a) described his investiga-

tion of the shallow water equations using the same model

problem as used by Grammeltvedt (1969). Cullen found that

linear FEM approximation and triangular elements gave super-

ior results to the finite difference models tested by Gramm-

eltvedt. Specifically, the FEM handled wave number 1 to 5

(16 grid points along the channel) with 90 percent accuracy

or better while the finite difference models with double the

resolution only achieved 90 percent accuracy for wave numbers

1 to 3. Additionally, he found that his FEM model generated

extraneous waves of two grid interval length.

Cullen (1974b) extended his work with the shallow

water equations. The equations were expressed in spherical

coordinates and were solved over a linear triangular mesh

9



where the globe was divided into large icosahedrons which

were further subdivided into many small triangles. The re-

sulting global grid had 1002 nodes (8-10 degrees apart).

Initial conditions were the same as used by Phillips (1959)

but because the icosahedral grid is unsymmetric, Cullen was

forced to solve the system over the entire globe rather than

over one octant as Phillips (1959) did. To discretize the

time domain, Cullen used the Leap-frog method. Rather than

using a pure FEM, Cullen added a 17-point spatial filter dev-

eloped by Shapiro (1971). With this model, Cullen showed

that the 1002-node finite element model performed better than

a finite difference model using 4032 points. However, he did

encounter noise problems in the model, especially at the in-

tersections of the icosahedrons. He attributed the noise to

the spatial discretization.

Because of the noise problems, Cullen (1976) contin-

ued his research by looking at the shallow water model in

combination with artificial smoothing methods. Four smooth-

ing schemes were tried, including fourth order nonlinear

diffusion terms in all three equations, the Shapiro filter

used in the previous paper (Cullen, 1976b), the addition of

nonlinear diffusion terms in the u and v equations only and

the Sadourney (1973) method. The latter method provided the

best results. It is designed to damp the gravity waves.

In summary, it is clear that Cullen made important

advances in the use of the FF but it should be noted that

10



ga

virtually all of his work was done using the linear triangu-

lar element with Leap-frog time differencing.

Some of the more advanced uses of the FEM are being

made by the Atmospheric Environment Service of Canada. The

principal researchers have been Staniforth, Mitchell, and

Daley. Apparently, their original intent was to develop an

operational regional baroclinic model using the FEM. Stani-

forth and Mitchell (1977) studied the use of semi-implicit

time integration using the scheme of Kwizak and Robert (1971).

That scheme was used in conjunction with a barotropic model

where both bilinear and biquadratic interpolation functions

were employed. Compared to the finite difference results of

Kwizak and Robert, the FEM provided superior results espec-

ially in terms of noise reduction and reduced damping. The

better FEM result was given by the quadratic interpolation

functions; however, their further use was ruled out by the

researchers because of the increased computational costs.

Staniforth and Daley (1977) expanded to a three-dim-

ensional, primitive equation model where only the vertical

coordinate was discretized using the FEM. The horizontal

domain was approximated through an existing spectral model.

Staniforth and Mitchell (1978) returned to the shallow water

equations to investigate the effect of variable-resolution

grids. They demonstrated that the forecast error is signif-

icantly reduced when a smoothly-varying mesh size is used to

refine the grid rather than when the grid size changes

11



through a discrete jump. Within an area of interest the mesh

size was held at a constant fine resolution and became more

and more coarse away from that area. Again, for this problem

they used the semi-implicit time integration scheme and bi-

linear interpolation over rectangles. An interesting side-

light to this research is their use of Simpson's rule for the

element integrations rather than the more widely used Gauss

quadrature method. Simpson's rule slightly compromises

accuracy for faster speed.

The most recent paper by the Canadian group (Stani-

forth and Daley, 1979) describes a limited area, three-dimen-

sional, baroclinic finite element model. The bilinear inter-

polation previously used was generalized to handle the three

dimensional model. The model resolution was relatively

coarse with seven levels in the vertical and 285 km between

nodes in the fine mesh area. The results were encouraging,

showing this model to be competitive with an operational 29

wave spectral model for forecast periods up to 48 hours.

In summary, this Canadian group has made advanced

application of the FEM using the Kwizak and Robert semi-im-

plicit time integration scheme with the bilinear finite ele-

ment interpolation functions.

In contrast to the Canadian work on large scale

models, the goal of researchers at the Lawrence Livermore

Laboratory is to construct a three dimensional boundary layer

model based on the FEM. Gresho, Lee, and Sani (1977) studied

12



the tradeoffs between lumped and consistent mass for linear

advection and diffusion problems. They found that when lump-

ed mass is employed, the phase speed and amplitude exhibit

much greater errors. They concluded that lumped mass "ser-

iously compromises the accuracy of the FEM" and recommended

that the effect of lumped mass be investigated for the non-

linear equations.

Huyakorn, et al. (1978) compared four elements (six-

node quadratic triangle as well as the four-, eight-, and

nine-node rectangles) using the mixed-order interpolation

method to investigate steady flow through a sudden expansion

and steady free thermal convection in a square cavity. Their

results showed that for those types of flow, the nine-node

Lagrangian element gave the best accuracy. They found that

the accuracy when using the six-node quadratic triangle was

highly dependent on the arrangement of the triangles. The

least accuracy was given by the eight-node serendipity ele-

ment. (see Appendix A for a discussion of the elements).

This result was used by Gresho, et al. (1978) to test a pre-

dictor-corrector method for time integration. The method

consisted of the Adams-Bashforth scheme as the predictor and

the trapezoidal rule as the corrector. The unique feature of

their algorithm is the provision for calculation of the time

truncation error and the subsequent adjustment of the time

step to reduce the error. This experiment was conducted using

mixed-order interpolation for flow starting from rest in a

13



channel with a sudden expansion. Lumped mass was again tried

with much better results; however, this improvement was

thought to be due to the much lower Reynold's number of the

latter experiment.

Gresho, et al. (1978) summarize much of their earlier

work on the Navier-Stokes equations for flow in a channel

with a cylindrical obstruction. The major thrust of this

work was to demonstrate the usefulness of their semi-implicit

time differencing scheme described earlier.

Other related research accomplished by oceanographers

includes a work by Fix (1975) dealing with mesoscale ocean

flows. He described a simple vorticity-stream function model

using quadratic and cubic triangular elements in space. No

computational results are presented. Similar work is present-

ed by Platzman (1978) who used a linearized set of primitive

equations for a coarse resolution ocean circulation problem.

His grid was identical to that of Cullen (1974b). Several

papers dealing with tidal flow using the shallow water equa-

tions have been presented by Kawahara (1977 a, b, c). Inter-

ested in civil engineering aspects, he has modelled actual

harbors, tributaries, and lakes using the FEM. The ease with

which the FEM handles irregular boundaries such as Tokyo

Harbor is amply demonstrated.

The research described above helps to define some of

the large problem areas requiring investigation. Other than

the research at Lawrence Livermore Laboratory, most of the

14
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published works have described the use of a particular f in-

ite element (generally the linear triangle) with one time

integration scheme.

At the University of Oklahoma, School of Meteorology,

research was begun by looking closely at the FEM itself be-

fore applying the method to a sophisticated model. Using a

finite difference equivalent to one of the FEM models tested

here as well as some FDM models, Sasaki and Reddy (1977)

studied several well-known time differencing schemes as well

as the variational adjustment technique of Sasaki (1976).

They did not specifically consider the concept of lumped and

consistent mass but performed their testing using the FDM as

it is normally formulated. They found that the FDM form of

the bilinear FEM combined with the Crank-Nicholson time dif-

ferencing scheme provided the best results. This scheme is,

in fact, a consistent mass scheme; the others tested were not.

Sasaki and Chang (1979) carried this work further by using a

consistent mass operator with some of the finite difference

schemes previously tested. They found improvement in the

solution for each of the schemes when consistent mass was

employed.

This research is a continuation of the work described

above but is broader in scope. Here, the emphasis is on the

FEM as it applies to the equations governing large scale flow

in the atmosphere. Using advection-dominated flow with the

nonlinear equations, the discussion which follows will provide
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insight into the relative accuracies of several commonly used

finite elements, the tradeoffs associated with several well-

known time differencing schemes, the relative merits of lump-

ed and consistent mass, and computational efficiency.
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CHAPTER III

METHODOLOGY

Governing Equations and Finite Element Models

The objective of this study is to examine the FEM

approximation in space coupled with various time discretiza-

tion methods in order to determine the most accurate and

efficient application of the FEM for use in modelling the

large-scale flow of the atmospee. Accordingly, three dif-

ferent models which describe flow n a channel will be used.

The first two models are derived from the following equation

set which describes inviscid, incompressible flow in a chan-

nel with no Coriolis force:

au + au vu 0,

(1)
av v a v _

+ u z + V + 0,

au + aV = 0. (2)

Here u and v are the velocity components in the x and y dir-

ections respectively, p. is the constant density, p is the

pressure, t is the time, and (x,y) denotes a point in Q, an

open bounded region in two-dimensional Euclidean space with

17
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boundary denoted by 3.

Vorticity - Stream Function FEM Model

The first model investigated is the vorticity-stream

function model. The stream function (4) is defined by

u V (3)

The vorticity (C) is given by

C -a u (4)

The use of the stream function automatically satisfies (2) so

that (1), (2), (3), and (4) may be combined giving

i + J(0,) = 0

(5)

where J(,) - is the Jacobian operator.
SJw, y x

If the domain 0 is subdivided into small elements, 02

the vorticity and stream function may be approximated over an

element (e) by

e . e N and ie = EO e N. . (6)
1 1

Here, the subscript i denotes the node or grid point i and

Ni represents the element interpolation or shape functions.

The interpolation functions have the property that all but

one are zero at a given node; the one corresponding to that

18



node is unity. Using (6), the application of the Galerkin

method to (5) results in

cJ e + J( e~e)} Ni dx dy = 0,

eat A, 1 (7)
e DNi _ e 3Ni

+ ay -y + CNi } dx dy =0.

Therefore, over an element e

(Me] a2-1  + (je] { e f 0, (8)

[Kel {,e} + [Me] {C;e}= 0, (9)

where M?. = J NiN. dx dy

e

DN,.,,e 3N.
e j= ff N 7 a y 3}p ~ dx dy,

= ax ay ax

e
K NJ .-- N dx dy

K.. = ax ax ay yKij ff +-- -3 y

e

It should be noted that the matrices [M e ] called consistent

mass matrix and [Ke] are constant and need to be computed and

stored only once for each element; however, the nonlinear

matrix [Je] must be recomputed on each iteration and/or time

step, depending on the time integration scheme used. Compu-

tational details are given in later sections of this chapter.

Penalty FEM

An alternative to the vorticity - stream function

formulation of (1) and (2) is the penalty method, which is

19



also known as the weak-constraint method (Courant, 1943 and

Reddy, 1979a, b). In the penalty method, (1) are taken to

be the governing equations and (2) is the constraint. Ex-

pressing (1) in the variational form gives

SI(u, v; 6u, 6v) - + u12 + v1] 6u + - P 6uJJ, [2t a ayP. TX
(10)av uaV av 1

+ [-t + u +v 7 ] 6v + o ay 6v} dx dy,

where 6I represents the first variation of the functional I

with respect to u and v and 6u and 6v are the variations of

u and v respectively. Application of Green's theorem, a

generalization of the integration by parts gives

6i(u,v:5u,6v) au + UL + v2]6u + 2V + U- + v2 ] 6v

P au+a

au a [tx 6u + ty 6v] dS.

Here P nx  t = P ny, and (nx,n ) are the components
x P0  y 00 x y

of the unit normal to the boundary a. The integration by

parts resulted in the boundary term which requires that eith-

er the tractions (t and t ) or the variations of u and v be

specified on an. For this problem, u and v are held constant

on an making 6u = 0 and 6v = 0 on the boundary an. With this

specification and after substituting (2), the expression (11)

reduces to

61(u,v;6u,6v)I [- + U- + v-] 6u

(12)
2v + v + 26v dx d,20



The substitution of the constraint (2) above does not insure

that non-divergence will be satisfied; therefore, it is added

to the variational form (12) as a weak constraint. This is

analogous to the weak constraint method described by Sasaki

(1)70a,b). Adding the weak constraint to (12) gives

(aua uau av v v]6
6I(u,v;6u;6v) = [ + u6 + vL] 6u + [V +u- +v

at ax Dy at ax ay
(13)

+ + (0 6u + Ty 6v)} dx dy,

where X is the penalty parameter (or weight).

In order that the functional I attains its minimum it

is necessary that 61 = 0. It should be noted that in (13),

the pressure has been eliminated as a variable so that the

number of unknowns has been reduced to two. By finding the

Euler-Lagrange equations for (10) and (13) and then equating

the like terms, one can find the following relationship for

the pressure (Reddy, 1979b).

limit u + P (14)

This is based on the fact that as the penalty parameter (X)

approaches infinity, the solution (uA, vX) to (13) provides

an approximation to the pressure based on the chosen value

for X. This is the 'penalty' resulting from the elimination

of pressure as a variable.

For the penalty finite element method, the velocity

components are approximated as in (6):
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e = e N.e eu .N i and v 7.ve N.. (15)

substitution of (15) into (13) gives the semidiscrete Galer-

kin form

(S e ^e e e e eJ{[ u +ueu e +veu e N. + v eav +vev N
[ - 7u - vy i +[- u - Ty]- N

e .3ue ave . 3Ni  3Ni  (16)

+ X( + ) 9x-I + -N--) } dx dy = 0.

The computational form for (16) is

[Ce ] {Ae} +[[K]+[p] {A} {0}, (17)

where

e e Ae
[C e, [K e,

[0e (Me]j 0] [A eLsx J J
ISXX I SXY]

[pe] = ij NiN. dx dy,

[sXY] [syy]I e

IN. 3N, j
Aiu N S i ax + Ve N i ay ] dx dy,

3 dx d, i j  
i  dx dy,

e e

1] ff ;7N, 3N,

e

For computation, matrices [Ce I and [pe] need be computed and
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estored for each element only one time, matrix [K is non-

linear and must be recomputed on every time step and/or iter-

ation.

Finite Element Model of Shallow Water Equations

The models described above provide a good test of the

ability of the FEM to handle the nonlinear effects, which are

important terms in the governing equations of the atmosphere;

however, one great difficulty in operational numerical weath-

er prediction is the occurence of fast-moving waves such as

gravity waves. Models must be able to handle these waves

without their energy increasing and consequently destroying

the forecast. A good model to test these effects is the well

known shallow water model. The shallow water equations in u

and v are the same as (1) except that the Coriolis term

appears. The third equation which governs the height of the

free fluid surface results from integration of the contin-

uity equation in the vertical (Haltiner, 1971). The shallow

water equations are given by

DU + u - + v y ga _ fv = 0,

a- + u2x + vv + gFh + fu = 0, (18)
at ax ay a

+ 3h+ a- +h(--u + Lv= 0.

Here f is the Coriolis term, h is the height of the free

surface of the fluid, and g is gravitational acceleration.

23



i I I

The semidiscrete Galerkin form of (18) is

ff r ueeDue ,eaue1 . he
at-[ + u - ax - Ni+9 3h N.-fve N.1 dx dy 0

e

$ e + e +e eave" N ahe .}dxfue0

e (19)

f$° e. ~ e .~ e ,  he e  velf [ave I N. + h e+Iau+ N }dx dy=O.

e

If u, v, and h are approximated over a typical element by ue

= u N. ve= v e  N., and he= he N. then (19) becomes

(Me ] { e} + Ae ]  {ue }  ={

(Me ]  { }+ [A e ]  {v e }  ={F v  (20)

[Me] {.e }  + [Le] {he} {0}

where

M. . dx dy, A. e  a ax dx dy,lj=1 ijj Ni ax V a X x dy

e e

Fu -f M e v e  gfN ! dx dy] hj}j{Mj . -
g  i ax

e

S e - Ni  dx dy]

e

The only matrix in (20) which does not change is [M e. All

others must be recomputed for each element on each iteration

24

FT



and/or time step.

The matrix equations (8), (17), and (20) are a result

of the general application of the FEM. At this point a gen-

eral computer program could be written for each model. Once

the general program is developed, consideration must be given

to actual space and time discretization which includes the

development of the element interpolation functions. The fin-

al steps are the selection of the actual mesh for the domain

of the model and the imposition of the specific initial and

boundary conditions required for the solution. The discus-

sion which follows details the approach taken in each of these

areas for the three models considered.
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Numerical Procedure

Space Discretization

The finite element method involves the approximation

of functions over subdomains (0 e) of the global domain (Q).e

The possible shapes of these subdomains or elements are lim-

itless; however, unusual or completely irregular shapes are

difficult to manage and their correspondi-,g interpolation

functions are not easily obtainable. The most widely used

element shapes in two dimensional finite element analysis are

the triangle and rectangle. The order of the interpolation

functions used determines the number and placement of nodal

points within the element shape.

In this study five different elements are tested: the

three-node linear triangle, the four-node bilinear rectangle,

the six-node quadratic triangle, the eight-node quadratic

rectangle, and the nine-node quadratic rectangle. The eight-

and nine-node elements both use quadratic interpolation but

the interpolation functions are developed in different ways.

The determination of the interpolating functions is discussed

in Appendix A. These interpolating functions correspond to

the term Ni shown in (6, 7, 8, 9, 15, 16, 19, and 20) so that

the semi-discrete form of the equations is developed indepen-

dent of the element choice and is then general for any ele-

ment application.

For the problem discussed here, the element size is
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held constant throughout the domain of the problem. This has

many simplifying effects on the calculations and greatly re-

duces computer storage requirements since element matrices

such as (Me] in (20) need be calculated for only one element

and stored rather than for each element. In a model with com-

plex boundaries or where grid refinement is desired this sav-

ings is not possible.

When the element size is constant it is possible to

reduce the FEM to a finite difference form; however, the re-

sulting finite difference form will be valid only for an in-

terior grid point and special considerations must be made near

the boundaries. Jesperson (1974) developed a finite differ-

ence form for the vorticity - stream function equation (8)

using the bilinear rectangle finite element approximations.

The resulting finite difference equation is given by

1 [16.ij+4(

- i+,j+i-l,j+ i,j+l+zi,j-1
) +

i l+l i j+l

=12d2 [(i,j+l- i+l,j) i+l,j+l+(i-l'j- i'j+l) i-l,j+l

+( il~j i~jl) ~l~jl+(i~j-- il~j)i-lj-i (21)

+( i,j+l- ij-l+ i+lj+l- i+lj-l)i+lj

+(Ni+lj- i-l~j+ i+lj-l- i-lj-l)ij-i
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where d is the spacing between grid points and the subscripts
indicate the grid point. As noted by Jesperson, the right

side of (21) is identical to the well-known Arakawa Jacobian;

however, this expression for the Jacobian was developed in a

completely different way by Arakawa (1966).

In this study, the results using (21) as well as a

simple centered space finite difference scheme are compared

to the results using the five different finite elements. The

left side of (21) will be discussed in a later section deal-

ing with consistent and lumped mass.

Time Discretization

Several time differencing schemes have been used for

comparison of their effects on the solution. The Crank-

Nicholson scheme was chosen as the basis of comparison for the

different finite element discretizations because it has neu-

tral stability, no computational mode, and therefore should

have no effect on the phase speed or the amplitude of the

solution (Mesinger and Arakawa, 1976). The major drawback to

this scheme is that it is fully implicit and requires itera-

tion at each time step. The Crank-Nicholson method is includ-

ed in a family of schemes known as the 9-family of approxima-

tions (Zienkiewicz, 1977) which may be expressed by

fc}n+l {q}n + At {i}n+l + (1-8) At{qin  (22)
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where the superscript indicates the time (t=nt), {q} is the

unknown function, At is the time step, and 6 determines the

specific scheme. For example, some of the possible schemes

are,

e = 0, Forward (Euler),

e = 1/2, Crank-Nicholson,

e = 2/3, Galerkin, and

e = 1, Backward.

Of these four schemes, all were used except the Forward dif-

ferencing scheme which was eliminated because linear stabil-

ity analysis indicates that it is always unstable. All of the

remaining schemes are fully implicit. The Galerkin and Back-

ward methods both damp the amplitude of the solution with the

greater damping occurring in the Backward scheme. In addition,

two explicit schemes will be used: the well-known Leap-frog

or centered scheme which is given by

qn+l {qn- + 2At , (23)

and the Matsuno scheme which is a two-step method

given by

{q}n+l* = {qln + At {,n

(24)
{q}n+l = (qIn + At fq}n+l*,

the Matsuno scheme results in damping of the solution. The

Leap-frog scheme suffers from the presence of the computation-

al mode which restricts the choice of time step.

29



This restriction may be determined by applying the

von Neumann stability analysis to a linearized form of the

advective equation (Mesinger and Arakawa, 1976). For a cen-

tered finite difference scheme applied to the linear version

of (5) the von Neumann technique gives the well known CFL

criteria for stability:

cat < i, (25)

where c is the phase speed of the wave and the factor v2 is

present for the two-dimensional problem. When the FEM is

applied to the linear version of (5) and the four-node bi-

linear element is used with Leap-frog time differencing the

time step restriction is

1 < (26)

d - /3

Thus, the FEM imposes a penalty of /3 on the time step (Cullen,

1974). The time step penalty results because of the coupling

of the time derivative through the mass matrix. Some detailed

stability analyses are given in Appendix B.

This coupling of the time derivative shown by the left

side of (21) is known as consistent mass. Physically, (21)

states that the advection which is calculated by the right side

of the equation for the node (i,j) affects the time derivative

not only at that node but also at the surrounding nodes. In

contrast, when lumped mass is used the left side of (21) de-

generates to a single term ( i .). The resulting equation
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is the traditional approach taken in finite difference methods

and as shown here and by Sasaki and Chang (1979), the results

using (21) are much more accurate than the traditional finite

difference approach. As discussed by Zienkiewicz (1977)

there are several approaches to lumping the mass in the FEM;

however, the simplest method is to make the matrix [Me] in

(8), (17), and (20) diagonal. The latter method is used in

this study. The choice of lumped or consistent mass greatly

affects the computational details of the problem being con-

sidered. Computational details will be discussed in the

following section.

Computational Details

The vorticity equation (8) combined with Crank-Nich-

olson time differencing may be written as either

[[M] + t [J]n+l] ,,n+l = [ -M] t [Jn] ,,n, (27)

or [M] {(A}= {F} , (28)

where {F} = - ,- [j]n+l {,}n+l + [[MI - [J]n] ,}

{,}n+l = {,}n + {A }.

From an algebraic point of view (27) and (28) are equivalent

equations; however, computationally they are quite different.

When solving (27), the right side of the equation is known.

The matrix [J]n+l is not known since it depends on the stream
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function at the new time. The procedure for solving (27) is

to calculate the right side, then calculate [j]n+l based on

a guess, then solve for { n+l. The stream function equation

(9) is then solved for {P}n. These new values of p serve

as the guess in the following iteration. The iterative pro-

cess is repeated until the solution converges. The coeffi-

cient matrix on the left is recomputed for each element on

each iteration and assembled into the global matrix which is

banded and unsymmetric. The result is a set of linear alge-

braic equations which must be solved for (C}n+l. The latter

task is extremely time consuming for the computer, especially

when the number of nodes is large.

The alternative is to use (28). The matrix [Y]n+l

must still be computed but it is multiplied by a guess (values

from the previous iteration) for {j}n+l and placed into the

force vector. The coefficient matrix [M] is banded and sym-

metric. It must be calculated only once and can be decom-

posed once using Cholesky decomposition (Carnahan, et al.,

1969). Then on each iteration, only forward and backward sub-

stitution are required to calculate the solutions. Even

though the number of iterations required for convergence may

be greater for (28) than for (27), the overall time savings

can be substantial.

When using an explicit time differencing method the

resulting form is similar to (28) and the set of algebraic

equations can be solved as in (28) with no iteration. The

32



latter point makes the Leap-frog differencing scheme very

attractive computationally. If lumped mass is used the

matrix [M] becomes diagonal and the solution of (28) is

relatively simple and fast. The combination of lumped mass

and (27) results in little, if any, savings. Specific re-

sults from each method will be discussed in Chapter IV.

The Model Problem

For the vorticity-stream function model the domain

chosen is a channel, 3800 km in length and width.

The initial conditions for the stream function are

given by

0*(x,y) = -Uoy - o expf-a(x2 +y2 )], (29)

where U0 , P0, and a are constants and the origin is at the

center of the domain. This model problem is identical to the

one used by Sasaki and Reddy (1979) and Sasaki and Chang (1979)

and is used here to facilitate comparison of results. The

initial conditions for vorticity were derived by appropriate

differentiation of (29). These initial conditions are shown

in Fig. 1. The boundary conditions are

(0,y) fl y
I east-west boundaries(0,y) = r(L,y),J

1(x,O) CI ,  north-south boundaries

(x,W) = C2 , J
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where the channel length is L, W is the width, and C1 and C2

are constants. For these initial and boundary conditions,

the model equations (5) have a unique analytical solution.

P(x,y,t) = *(x-Uot,y). (30)

The solution indicates that the circular vortex propagates

eastward until it reappears on the west edge and returns to

its initial position after a period of L/Uo . For the con-

stants chosen here, that period is exactly 120 hours.

For the penalty method, the initial conditions are

obtained by using the definition (3) and the initial condi-

tions for stream function (29). The resulting initial con-

ditions for u and v describe the same circular vortex. These

initial conditions are shown in Fig. 2. As long as the proper

value for the penalty parameter (X) is chosen, the behavior

of the vortex should be similar to the behavior experienced

in the vorticity - stream function model. The boundary con-

ditions used are

u(0,y) = u(L,y), east-west boundaries

v(0,y) = v(L,y), e

u(x,o) =u(x,W) = U0,
o north-south boundaries

v(x,o) = v(x,W) = 0. J

Here the u and v components must both be specified because of

the boundary term which appears in (ii).

In the shallow water equation model, the domain and
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initial conditions chosen are the same as used by Grammelt-

vedt (1969) and later by Cullen (1974a). The domain is a

channel 6000 km in length and 4400 km wide. The initial

conditions are

h(x,y) = H+H 1  tanh 9(Y 0 ) +H2  sech29(y-Y)

(30)

(0.8 sin (-I--) + 0.5 sin (-L--)],

where

H. = 2000 m, L = 6000 km,

H1 = -220 m, W = 4400 kin,

H2 = 133 m, Y,= W/2,

g = 10 ms-2 .

The initial conditions for u and v are determined using the

FEM with the geostrophic relation,

u = -g 'h and v = h

The 'Beta-plane' approximation is made where-in the Coriolis

parameter (f) is calculated from

f = f, + aY,

where f4 . O- -1 - n -11S-1 -1

S and a = 1.510 Si . These initial

conditions are shown in Fig. 3. Physically, these initial

conditions describe a west to east jet-stream which has north-

south disturbances along its axis (Grammeltvedt, 1969). The

initial conditions are shown in Fig. 3. The boundary condi-
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tions specified for this model are

u(0,y) = u(L,y),

v(0,y) = v(L,y), east-west boundary

h(0,y) = h(L,y), j
v(x,0) = v(x,W) = 0. north-south boundary

It is interesting to note that there is a subtle difference

between the north-south boundary conditions specified here

and those required in finite difference models. Grammeltvedt

(1969) was forced to specify boundary conditions for all var-

iables in his models; this is an overspecification in a con-

tinuous model and sometimes called numerical boundary condi-

tions. This additional specification at the boundaries can
f

adversely effect the solution (Sundstrom, 1973).

The Grid (Finite Element Mesh)

Both the vorticity-stream function and penalty models

are solved on an evenly-spaced grid consisting of 11 x 11

nodal points with 380 km spacing. For the shallow water equa-

tions, a grid of 15 x 21 nodal points is employed with 300 km

spacing in the east-west direction and approximately 315 km

spacing in the north-south direction. In order to impose per-

iodic boundary conditions in the FEM, the nodal values on the

eastern boundary are considered to be identical to those on

the western boundary but their locations are preserved.

As stated earlier, linear and quadratic rectangular
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as well as triangular elements are tested for their relative

accuracy. Regardless of the element type (i.e., rectangular

with four-or nine-nodes, or triangular with three-or six-

nodes), the number of elements chosen is such that the total

number of nodes remains the same. That is, one nine-node

quadratic element replaces four bilinear four-node elements;

or, two three-node linear triangular elements replace one

four-node linear element, etc. However, when an eight-node

quadratic (serendipity) element is used (the center node is

missing when compared to the nine-node element), the total

number of nodes is reduced. In the case of the vorticity-

stream function model, the total number of nodes is reduced

from 121 to 96. Fig. 4 shows the relative size and arrange-

ment of the elements used. Both the three-and six-node tri-

angles shown in Fig. 5 have been tested with the vorticity-

stream function model. These results are presented in Chap-

ter IV.

Accuracy Indicators

The results from the vorticity-stream function and

penalty models using the different time and space discretiza-

tions discussed are compared for lumped versus consistent

mass, position of the nonlinear terms, convergence rate, pro-

gram size, computer time, and accuracy of the solution. Other

than accuracy, all the comparisons are straight forward. The

root-mean-sqaure error (RMSE), given by
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N i-Si
RMSE = N

where N is the number of grid points, F. are the forecast1

values, and S. are the solution values, is used as the basis

of comparison for accuracy. This measure can be misleading

if used alone. Here the RMSE is combined with visual examin-

ation of the analytical solution and 120 hour forecast fields

of the vorticity and stream function.

Comparisons of the results from the shallow water

equation model are more complicated since the equations are

non-linear and there is no analytical solution. However,

there are some facts about the model which can be checked

and compared.

The absolute vorticity, and the total energy are con-

served in the FEM model. Another parameter conserved in the

FEM model is the mean wave number (Cullen, 1974b). Because

of this, the allocation of energy among wave numbers should

not change significantly during the forecast. Therefore, a

two dimensional Fourier analysis has been performed on the

initial height fields as well as the 48-hour forecast height

fields. These analyses are based on a discussion by Goodman

1(1968) and calculated using an algorithm developed by Duchon.

Fig. 6 shows the two-dimensional Fourier analysis of the in-

itial height field. This three dimensional plot shows the

1Associate Professor C.E. Duchon, School of Meteor-
ology, University of Oklahoma provided a copy of the algorithm
for this work.
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relative amplitudes for the combination of wave numbers in

the x (Along the channel) direction and y (across the chan-

nel) direction. Basically, the height field slopes from

south to north requiring all wave numbers across the channel

to be represented. Only wave numbers 1 and 3 are represented

along the channel. The amplitudes are plotted on a logrith-

mic scale so that the smaller amplitudes will be visible.
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CHAPTER IV

RESULTS

As described earlier, the three models used were

1. Vorticity - Stream Function,

2. Penalty Method, and

3. Shallow Water Equations.

The tests performed using these models answer the questions

relating to element choice, selection of time differencing

scheme, and use of lumped or consistent mass. Here the test

results are presented for each of the models. Following in

Chapter V will be a discussion of the conclusions which may

be drawn from these test results taken as a whole.

Vorticity - Stream Function Model

Table 1 shows the results for the comparison of the

five elements tested using Crank-Nicholson time differencing

and consistent mass. The elements are compared as to position

of the nonlinear terms, convergence rate, program size, com-

puter time, and accuracy. The use of (27) with the nonlinear

terms on the left side cr (28) where they are on the right

makes no difference in the accuracy. For each element, this
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result is the same. However, the computer time required when

the non-linear terms are on the left is nearly three times

as great. In addition, there is a savings of computer stor-

age when the nonlinear terms are on the right side. The only

drawback to moving the nonlinear terms to the right side is

the slight increase in the average number of iterations re-

quired for convergence on each time step in the quadratic

elements.

Fig. 7 shows the fields after 120 hours of forecast

for the four-and three-node element using consistent mass.

The analytic solution is presented for comparison. Fig. 8

gives the same information for the six-and nine-node elements.

All of the elelnents give reasonable solutions; however, the

four-node result is clearly the best. The phase speed for

the three-and four-node elements is very accurate but the

amplitude is reduced slightly more in the three-node than the

four-node solution. The nine-node solution has a phase speed

which is too small while the six-node solution has phase

speed which is slightly high. Both methods result in some

distortion of the field with the presence of noise evident in

the six-node vorticity field. The results from the eight-node

element (not pictured) are very poor. The visual comparisons

are supported by the RMSE given in Table 1. Not only is the

RMSE the lowest for the four-node element but the program size

and computer time are also smaller.
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As discussed in Chapter III there are several possible

configurations of both the three-and six-node elements when

the nodal spacing is held constant. The triangular arrange-

ment chosen does effect the solution. Table 2 gives the RMSE

for each of the five configurations (shown in Fig. 5) tested

for both the three-and six-node triangular elements. For

both elements, the case in which the triangular slant alter-

nates in the direction of flow qives the lowest RMSE. A vis-

ual examination of the 120-hour forecast for the three-node

element (Fig. 9a-d) reveals little difference in the fields.

The vorticity pattern in Fig. 9a,b is slightly distorted in

the direction opposite to the constant diagonal slant but

this distortion is not evident in the six-node element (Fig.

lOa-d). In the six-node element the case which has constant

diagonal slant from lower left to upper right (Fig. 10a) has

the most accurate phase speed and its RMSE is not significant-

ly different from Fig. 10d which has alternating slant in the

direction of flow. It is evident that the linear triangle

handles the advection much more accurately than the quadratic

regardless of the triangle orientation. The diagonal slant

is examined further for the three-node element using the

shallow water equations.

Table 1 is based on the use of the consistent mass

matrix with Crank-Nicholson time differencing. In contrast,

Table 3 contains the same comparison of elements for the lump-

ed or diagonalized mass matrix. The RMSE is considerably
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higher when the mass is lumped, regardless of the element

used. Fig. 11 graphically depicts this increase in P4SE for

the three-and four-node elements. The phase speed is reason-

ably accurate but the vorticity center moves southward with

considerable loss of amplitude. As shown in Fig. 12, the six-

and nine-node elements which use quadratic interpolation pro-

vide the better results when the mass is lumped. It is evi-

dent in the nine-node element that most of the R4SE is due to

inaccuracy in the phase speed.

In summary, the four-node bilinear element has result-

ed in the most accurate 120-hour forecast. The phase speed

and amplitude are close to the analytical solution and the

RMSE is the lowest. This element is used to compare five

time differencing schemes using both consistent and lumped

mass. These results appear in Table 4 (includes comparative

information on four-node element repeated from Table 1 and 3).

After 120 hours the RMSE for Leap-frog differencing is the

same as for Crank-Nicholson. Further, it is difficult to

detect any difference between Fig. 13 which shows the Leap-

frog result and Fig. 7 which shows the Crank-Nicholson result.

The other difference schemes all give reasonably low ROSE.

As shown in Figs. 13 and 14, the Matsuno, Galerkin, and Back-

ward methods are all accurate in phase speed but damping of

the amplitude accounts for the increased RMSE. Figs. 15 and

16 show 120-hour forecasts for the same time differencing

schemes using lumped mass. These lumped mass results do not
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differ greatly from the previous discussion nor from the re-

sults of Sasaki, and Chang, (1979).

Table 5 gives the results from some finite difference

schemes for comparison. The Arakawa difference scheme with

consistent mass is given in (21). As stated previously, this

scheme is equivalent to the four-node finite element and in-

deed, the results are the same. The only difference in the

two schemes is that no north and south boundary conditions

need be specified for vorticity in the FEM but they are nec-

essary to carry out the finite differencing. In this pro-

blem, there was no noticeable difference in the result; how-

ever, this may not always be the case (Sundstrom, 1973). It

should be noted that for a particular problem, when the el-

ements are a regular shape and of equal size everywhere, the

FEM can be simplified to a quasi-FD model with corresponding

savings in computer time and storage. Here the time require-

ment decreased three-fold and the storage requirement was

half (Table 5). Figs. 17 and 18 show the result for both

consistent and lumped mass for Arakawa and centered finite

difference methods. The traditional finite difference prac-

titioner would achieve results similar to those with lumped

mass. With consistent mass, both the Arakawa and centered

difference methods give good results. As shown in Table 5,

the use of consistent mass results in approximately a 40

percent increase in computer time over the traditional ap-

proach.
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Finally, Table 6 shows the results when the three

best schemes are intergrated for a longer time using differ-

ent time steps. As discussed earlier, 1 hour is the upper

limit for the Leap-frog integration. Other than the Crank-

Nicholson method with 2-hour time step, the result is not

significantly different to 240 hours. By 360 hours the

Leap-frog scheme is affected by its computational mode but

the Crank-Nicholson method allows extremely long integrations.

After 1080 hours, the Crank-Nicholson method finally gives a

fairly high RMSE; however, this is due mainly to phase speed

error. The shape of the fields is quite good.

Penalty-Method

The testing conducted using the penalty method is

much less extensive than for the vorticity-stream function

model. Table 7 gives the results from comparison of elements

using Crank-Nicholson time differencing. The lowest RMSE

occurs for the four-node bilinear element. It is followed by

the nine-, six-, and eight-node elements. The order is ex-

actly the same as in the previous discussion. Fig. 19 shows

the initial and 120-hour forecast for the u and v wind com-

ponents as well as the stream function and vorticity calcula-

ted from the forecast winds. The slight loss of symmetry in

the forecast u and v fields indicates that the divergence free

condition is not exactly satisfied. In addition, the model

has given a reduction in the gradients of u and v which re-
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sults in a decrease in the strength of the vorticity center.

The phase speed is as accurate as it was in the vorticity-

stream function model but there is a slight northward shift

in the vorticity pattern which was not present in the vortic-

ity-stream function model when the four-node element was

used (Fig. 7). From Table 6, it is evident that overall, the

penalty method is not as accurate for this advection-domin-

ated flow situation as the vorticity-stream function model.

As discussed in Chapter III, approximate values for

the pressure may be calculated using (14). The calculated

pressure depends not only on the accurate calculation of

divergence but also on the proper selection of the penalty

parameter X. This parameter can be found through trial and

error. As discussed by Reddy (1979b), too large a value of

X results in the degeneration of the governing equations into

only the continuity equation; too small a value means that

the continuity equation will not be satisfied. Even when the

best value for X is found, the continuity equation is not

exactly satisfied. The resulting pressure values are, at best,

an approximation.

The benefit from the use of the penalty method is the

reduction of the number of unknowns, thereby reducing the

number of equations to two. The form of the equations given

by (17) is the traditional approach taken in the application

of the FEM. The computational times given in Table 6 using

that approach are very long when one considers that the grid
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only contains 11 x 11 points. Several attempts have been

made to improve the computation time, such as moving the

nonlinear terms and the penalty term to the force vector, and

separating the u and v equations in order to reduce the order

of the system of linear equations which must be solved.

Every such test resulted in reduced accuracy.

It is because of the inaccuracies in the pressure and

the expense of computation that the penalty method is not

tested to a greater extent. It is interesting however, that

the different approach taken in the penalty method results in

the same relative accuracy of the elements tested.

Shallow Water Equations

Eqs.(18) used for this model present a challenge for

any type of finite discretization because they allow fast

moving gravity waves. The gravity waves are initially of

much lower amplitude than the long waves but they can grow

and after several time steps they can obscure the features

of interest in the solution. Much effort has been directed

toward the control of gravity waves (e.g. Kwizak and Robert,

1971); however, since the intent of this study is to find the

best finite element discretization, the gravity waves are

allowed to develop without any control so that the discreti-

zation may be found which most efficiently discourages their

growth.

All of the elements previously discussed were tested
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except the eight-node serendipity element which was elimin-

ated because of its poor performance with the vorticity-

stream function and penalty models. The comparison of run

times and program size for the models tested is given in

Table 8. The three equations were solved one at a time in

each time step and/or iteration (depending on the time dif-

ference scheme). As occurred in the vorticity-stream func-

tion problem, the quadratic (6 and 9 nodes) elements require

much more computer time and storage than the three-and four-

node elements. The difference in these statistics between

the three-and four-node elements is insignificant. Other

than these two comparisons there are no other quantitative

comparisons; however, there are qualitative differences in

the results produced by the elements.

Fig. 20 shows the 48-hour forecast (144 time steps of

20 minutes each) of the height fields, from the six-and nine-

node elements using Crank-Nicholson time differencing. Also

shown are the corresponding variance plots from the Fourier

analyses of those fields. Initially (Fig. 3) there are three

equally spaced troughs in the channel. The western trough

is shallow to the north and deeper to the south. The cen-

teral and eastern troughs are sharper and deeper to the north.

After 48 hours, the troughs move approximately one-third the

channel length to the east. As shown, both the six-and nine-

node elements produce roughly the same trough positions.

Movement is slightly faster for the nine-node case. It can
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readily be seen that the six-node element has resulted in the

generation of many short waves at almost every possible wave

number, particularly at the highest wave numbers. In con-

trast, the nine-node element has not led to the production

of any short waves. Both elements have produced wave number

two and wave number five. This may be a natural consequence

of this method since it conserves the average wave number.

Fig. 21 shows the 48 hour height field and its Four-

ier analysis for the four-node rectangular element using

Crank-Nicholson time differencing. The position of the

troughs is very close to the nine-node result but the western

trough is not as deep as the nine-node case. The Fourier

analyses of the nine-and four-node elements are different in

two important respects. For the four-node element, the var-

iance at wave number five along the channel is approximately

60 percent of the nine-node result. The same difference is

true for the wave associated with wave numbers two and four

in the x and y directions respectively. The slightly better

result for the four-node element is consistent with the vor-

tirity-stream function and penalty models and is significant

when one considers the difference in computational time be-

tween the two elements. Some comparable results were also

achieved with the three-node element.

The three-node element is used to show the effect of

diagonal slant of the triangles. Figs. 22 and 23 show the

height fields after 48 hours using Crank-Nicholson time
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differencing for triangle configurations 1-4 (shown in Fig.

5) and the corresponding Fourier analyses. The trough pos-

itions are all the same; however, their character differs

depending on the triangle slant. For slants 1 and 2, the

features tilt slightly in the opposite direction of the con-

stant slant. This is analogous to a distortion found in the

vorticity pattern in Fig. 9. The height fields for slants 1

and 2 definitely have a smoother appearance than for slants

3 and 4. This is evident in the Fourier analyses of the

fields. The alternating diagonal slant appears to encourage

early development of gravity waves. Of these four, the worst

case results when the slant alternates across the direction

of flow. This is consistent with the vorticity-stream func-

tion result for the same triangle orientation. The constant

diagonal slant cases appear to give the better results for

triangles.

Compared to the four-node element (Fig. 21) the result

for slant 2 is almost the same. For slant 2, there is higher

variance in the combination of wave number two along the chan-

nel and wave numbers four and five across the channel than

there is in the four-node case. There is also a development

in wave number four along the channel which is not present in

the four-node case. Therefore, it appears that the four-node

element has slightly better performance in this case.

The four-node element was tested with four other time

differencing schemes besides Crank-Nicholson:
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1) Galerkin,

2) Backward,

3) Matsuno, and

4) Leap-frog.

As shown in Table 8, all of these schemes were run with the

equations formulated so that all terms are in the force vec-

tor except the time derivative. Comparing the two four-node

Crank-Nicholson cases one can see that this formulation re-

sults in a five-fold decrease of computer time. Because no

iteration is required, the explicit schemes are much faster.

The results from the Galerkin, Backward, and Matsuno

schemes are all similar. All of these schemes cause some

damping of the waves. The 48-hour forecast height fields for

Matsuno and Galerkin schemes as well as their Fourier ana-

lyses are shown in Fig. 24. Compared to the Crank-Nicholson

result (Fig. 21) both of these schemes give a smoother fore-

cast field. The only difference in the Fourier analyses is

the lower amplitude for wave number five along the channel for

both the Galerkin and Matsuno methods compared to the Crank-

Nicholson results.

The fastest scheme tested is the Leap-frog or centered

time difference. It requires only one-fourth the computation

time of Crank-Nicholson and as shown in Fig. 25, it provides

reasonable results. At 48 hours, there is more generation of

wave number five along the channel as well as higher cross

channel wave numbers. The location of the troughs is very
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close to the Crank-Nicholson result.

The Leap-frog and Crank-Nicholson schemes are used

to demonstrate the conservative properties of the finite

element method. As stated earlier, for the shallow water

equations, both the total energy and absolute vorticity are

conserved. Figs. 26 and 27 show the total energy and vor-

ticity plots for both schemes. As expected, the Leap-frog

scheme with its computational mode becomes computationally

unstable earlier than Crank-Nicholson. The beginning of in-

stability is evident when one looks at changes in the kinetic

energy, a quantity which is not conserved. For the Leap-frog

scheme, the kinetic energy increases less than three percent
for the first thirty days and then rapidly increases near the

thirty-five day mark (see Fig. 28). As shown in Fig. 28, the

increase in kinetic energy is much slower for the Crank-

Nicholson scheme.
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I.

CHAPTER V

SUMMARY AND CONCLUSIONS

Several tests of the finite element method's ability

to handle nonlinear flow problems have been conducted. The

investigation has concentrated on spatial discretization,

consistent versus lumped mass, time differencing, and com-

putational arrangement of the equations. When combined, the

results from the vorticity-stream function, penalty, and

shallow water equation models provide consistent answers

about the application of the finite element method.

The results from the three models show superior per-

formance when the four-node bilinear element is used. This

conclusion is dependent on the total number of nodal or grid

points remaining the same. For example, if the nine-node

quadratic elements were the same size as the four-node ele-

ments there would be a four-fold increase in the total num-

ber of grid points and a corresponding increase in computer

time; however, the accuracy would be greater than the four-

node element of equal size.

Apparently, the key to element accuracy is related to

the influence on the solution at a given node by the surround-
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ing nodes. Because of the connectivity of the elements, the

solution at a node is affected by all the nodes of the ele-

ments which share that nodal point. Fr example, when the mesh

consists of four-node elements each nodal point belongs to

four elements so that the solution at a given node depends on

the eight surrounding nodes. This is true at all interior

nodes. In contrast, a mesh made up of nine-node rectangular

elements works differently. The corner nodes of the nine-

node element are part of four elements so that their solution

is affected by the twenty-four surrounding nodes. The mid-

side ncdes of a nine-node element are part of two elements so

that fourteen other nodes affect the solution. And finally,

the center node of a nine-node element is only influenced by

the other eight nodes in the same element. Other elements

have similar relationships. In Fig. 5, it is evident that the

triangular element can result in different nodal relationships

depending on the element orientation. The worst case occurs

for slant 5 where the influence alternates between four and

eight surrounding nodes. In a system of equations which al-

lows gravity waves this inconsistent influence of the nodes on

each other could enhance the development of gravity waves.

The use of all elements of one size or shape may not

always be possible, especially if the finite element method is

applied to boundary layer work as planned by Gresho, et al.

(1978a) or to models where it is desirable to have a nested

fine mesh grid. Further research is required in order to
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determine the effects of variable mesh on the solutions. How-

ever, this study indicated that the rectangular element

should be the primary element used in advective flow models

with the triangular element employed only when absolutely

necessary to accomodate an irregular boundary. The use of

higher order elements is neither economically nor computa-

tionally desirable.

This study substantiates the findings of Gresho, Lee,

and Sani (1977) regarding consistent and lumped mass. Study-

ing an advective-diffusive model involving dissipation of

pollutants they found that the solution suffers when mass

lumping is applied. Here and in concert with the related

work of Sasaki and Chang (1979), it is clearly shown that

regardless of the time differencing scheme used, the accuracy

of advective calculations is severely reduced by lumping the

mass. Since the mass is inherently lumped in finite differ-

ence models the loss of accuracy is normally improved by using

a finer grid resolution. As shown by Cullen (1974a), for some

problems the finite element method with consistent mass per-

forms as well as a finite difference model with four times the

grid resoltuion.

Related to the question of consistent versus lumped

mass is the problem of choosing a time difference scheme.

Aside from the problem of controlling gravity waves it is ap-

parent that when consistent mass is employed, there is little

difference in the solution as long as the time integration is
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not carried for a long time. As shown, the Crank-Nicholson

scheme allowed long term time integration with only slight

changes in the total energy while the Leap-frog scheme al-

lowed faster development of the gravity waves. However, with

the four-node element, Leap-frog time differencing is four

times faster than Crank-Nicholson. Based on these results,

an explicit scheme such as Leap-frog appears to be a good

compromise, especially if it is combined with some type of

time filter. Other alternatives include the use of the semi-

implicit scheme of Kwizak and Robert (1971) as planned in the

model under development in Canada (Staniforth and Mitchell,

1978).

The final topic under consideration deals with the

computational arrangement of the equations. From an economic

standpoint, much can be gained by rearrangement of the equa-

tions. Computation time can be drastically reduced in the

finite element method by solving the equations for the time

rate of change of the variables rather than the variables

themselves. By using additional storage, the mass matrix can

be preprocessed and stored, saving additional time. If the

finite element method is applied to a problem with uniform

grid spacing then it is possible to transform it into a quasi-

finite difference model thus increasing the computer effic-

iency. Such a transformation has been made by Jesperson (1974),

for the vorticity-stream function model and as shown here, re-

sults in a four-fold savings of computer time. Therefore, even
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though the finite elemerc method is complicated compared to

conventional finite difference methods it can be made very

competitive and can result in increased accuracies.

In summary, further research into the application of

the finite element method is warranted. In particular, the

following topics should be investigated.

1. Because of the potential uses in meteorology, a de-

tailed examination of the effects of grid refinement

should be made. Several options such as reduction of

the grid through the prudent use of triangular ele-

ments, smooth versus abrupt reductions in rectangular

element size, and moving fine mesh grids inside coarse

mesh grids should be studied.

2. The use of variational constraints as developed by

Sasaki (1976) should be investigated. The finite el-

ement method naturally conserves certain properties

depending on the governing equations; however, as

demonstrated by Sasaki using finite difference methods,

some improvement can be made through the use of vari-

ational constraints.

3. Modelling of the equations on the globe should be

studied. Cullen (1974b) used a specialized triangular

mesh for this work but did not perform an exhaustive
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study. In particular, the finite element method

should be able to handle the changing resolution

caused by the geometry as well as the singularity

points at the north and south poles.

4. The extension of the model to the vertical dimen-

sion should be examined. Staniforth and Daley (1979)

have begun development of a baroclinic model; however,

studies should be made as to the required resolution

in the vertical when the FEM is employed.

5. Investigations should be made into the modelling of

terrain in a finite element model. Preliminary stud-

ies can be made with the shallow water equations in

two dimensions by placing an obstruction in the chan-

nel. More sophisticated studies should then be made

with three dimensional flow and eventually with baro-

clinic models.
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APPENDIX A

THE FINITE ELEMENT METHOD

Introduction

The purpose of this appendix is to provide a capsule

description of some of the pertinent details about the finite

element method. Topics discussed are the Galerkin method,

discretization of the domain, and development of interpola-

tion functions. Additional details may be found in Segerlind

(1976), Strang and Fix (1973), Oden and Reddy (1976), and

Zienkiewicz (1977).

Galerkin Method

The Galerkin method is a variational method which can

be applied to linear as well as nonlinear problems because

there is no requirement that the functional be known.

Suppose the following governing equation is specified

-V2 u _ f in a, u - 0 on M (Al)

The solution, u (x,y) is approximated by

N
u(x,y)- ue(X,y) - E uiNi(x,y) (A2)

i-l
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where Ni are approximating functions which satisfy some con-

tinuity requirements as well as the boundary conditions. If

the approximation (A) is substituted into the governing

equation (Al) the result is

-V2u -f - R(x,y) (A3)

e

where R(x,y) is the error of the approximation. The Galerkin

method minimizes this error as follows

ffR(x,y) Ni(x,y) dxdy - 0, (M)

or f (-V 2 u e-f)Ni (x,y) dxdy - 0. (AS)

So, the error is made orthogonal to the set of approximating

functions. Substituting ue into (AS) gives

ff (-V 2 N.(x,y))N i dxdy u. f Ni(x,y)dxdy. (A6)

The left side of (A6) can be transformed using the product

I rule of differentiation and Green's theorem giving

Zff ( N -N+ aN. aN. ) If
d T Tx i a- xdyu f Ni (xy)dxdy A7)

+f (ue Nin x + ue Niny) ds,

where (nx,n y) are the unit normal vectors to the boundary

an. Since u is specified (Al) on a the boundary term is

zero and may be dropped. Thus (A7) becomes

[K] {u) - {F), (AS)
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where
f w NI. IN. IN.

K. II ~ 1 + -FI) dxdy,ii= 77 7x a Y y

= ff f Ni dxdy.

In this example, the Galerkin method was applied over the

domain 0. In the finite element method, the Galerkin method

is applied by defining the approximation (A2) over small

elements so that there is piecewise continuity within the

domain. The contributions from each subdomain are summed to

approximate the global domain.

Discretization of the Domain and Interpolation Functions

The ways of di~cretizing the domain are only limited

by the imagination. In general, the governing equations or

Galerkin integrals determine the minimum order of the approx-

imation. Higher order approximation than that required may

be used and in some cases may give better results. The geo-

metry of the domain often determines the shape of the ele-

ments and placement of the nodes. Fig. Al shows a domain sub-

divided by the finite difference method. Fig. A2 shows how

the same domain could be discretized for application of the

finite element method. Note that in Fig. Al, there are sev-

eral grid points outside the domain which require special

handling. For the finite element discretization, Fig. A2,

two elements were used. The domain shown could represent
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Fig. Al. Discretization of domain for finite differences.

flow in a channel with an obstruction. Fiq. A2 shows some of

the flexibility of the finite element method in that finer

resolution is used over the obstruction and coarser resolu-

tion on the edges. Obviously, there are many possibilities

for discretization depending on the problem and the domain.

Discretization of the domain leads to development of the in-

terpolation functions.

I I4

Fig. A2. Discretization of domain for finite element method.
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Finite Element Interpolation Functions

There are two basic requirements for interpolation

functions; completeness and compatibility. Suppose that the

element equations contain derivatives of order m. The com-

patibility requirement means that at the interelement bound-

aries, the field variable and its partial derivatives up to

order m-1 must be continuous. The completeness requirement

means that within an element, all the constant states of the

field variable and its derivatives up to order m must be re-

presented in the interpolation function. That is, the poly-

nomial used as the interpolation function must contain all

the terms up to order m.

Suppose we have a system of equations in which first

order derivatives are the highest order appearing in the

Galerkin expressions. The compatibility requirement means

that the minimum order for the interpolation functions is one.

Assume that the global domain can be discretized using tri-

angular shapes. We can choose the linear approximation

u(x,y) - a + + a2y. (A9)

Note that if a node is placed at each vertex of the triangle

there are three unknowns (a0 , a1 , and a2 ) corresponding to

the three nodes. This polynomial satisfies the compatibility

and completeness requirements. The next step is to determine

the coefficients a0 , a1 , and a2 for the arbitrary element
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J/

Fg. A3. Typical triangular element.

shown in Fig. A3.

From (A9) we get

F' xi Yva]
u2  l " 2  (A 2

I 2J
or {u} [A] {} ,

{:} = (A]- {u},

where [A] s 1  3 2  s 3

et~1 t 2 t 3

The determinant (det) of [A] turns out to be two times the

area of the element. At any point (x,y) in the element
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I

u = fJl x y} i} = 1 x y} [A] u} , (All)

or u ' iui.

where= 1 r + s. X + t. y).whr i de (r 1

r. XjYk - XkYj'

Si = yj- Yk' i j k

t = xk - yj.

Other Methods of Determining Interpolation Functions

There are several different means of deriving inter-

polation polynomials. The most common method for rectangular

shaped elements is to multiply the one dimensional polynomial

for each dimension. That is, in one dimension we have

u(x) = b +.b x or u(y) = b + b3 y.
o 12 y

If u were a function of x and v we would take the product

u(x,v) = a 0 + alx + a2 y + a 3 xy.

Another method involves the use of Pascal's triancle [24].

3 N

Fig. A4. Pascal's Triangle
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The terms connected by the solid line represent the terms

needed for a quadratic polynomial to be used on a triangular

element. There are six terms and such an element would have

six nodes. Note that the dashed line encloses nine terms.

these nine terms would be used for a nine-node rectanaular

element. The location of the terms relative to the dashed

box indicated the nodal locations in the rectangle.

Local Coordinates

Previously the element was defined in terms of

the global coordinates (x,y); however, it is often conven-

ient to define the element in some local coordinate system

and later transform that system to the global coordinates.

This is especially true of the triangular element where an

area coordinate (Segerlind 1976) is convenient (see Fig. A5).

3

1 2

Fig. A5. Area coordinates for the triangle
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The point (E, ri) in Fig. AS divides the triangle into

three areas (L1 , L2, L3). We can define the shape functions

in terms of these areas. Let L be the total area of the

element, then

Ni = Li/L i= 1-3

L + L +L = L1 2 3

interpolation Functions for the Elements Studied

Linear Triangle

3

N1 = L1/L

N2 = L2/L

L3  
3 3 /L

I3
L- 2

Quadratic Triangle

N1 = L1 /L(2L 1 /L-1)

3
N2 = L2/L(2L 2/L-1)

N3 = L3/L(2L 3/L-1)

2 N4 = 4L1 L2/L
2

__ N. = 4L,: '/L 2

N = 4LL 3 !L
-inear Rectangle

4N

iin1-4

7' 12

i37

arm '



Quadratic Rectangle (Lagrangian)

2 4

1

N2 = _ l- rq(l+ ) (l-n)

N3 =1(1n
17 1

N n(+n)N4 = - 1--) nln

66

N5  - 1. (lj 2 ) n(l-r,)

N = - (i n) (1+n.)7 2

N 1- 2 )

N9 = (1-: a) (1-n 2 )

Quadratic Rectangle (Serendipity)

7Corner Nodes: 1-4

,, -- [ l ) ( l+ n i ) ( + 'I ni - 1 )

2 Mid-side Nodes:

1
0 - (, i

2 ) (1+nn.) i 5,7

i 2
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APPENDIX B

LINEAR STABILITY ANALYSIS

Introduction

The purpose of this appendix is to show the linear

stability analysis for the time differencing schemes used

in this report. Because of the superior results achieved

through the use of the four- node linear element, the stabil-

ity analyses are only performed for that element. The tech-

nique used is the von Neuman method as discussed by Mesinger

and Arakawa (1976).

Stability Analysis

Consider the linear advection equation,

t= - Uo jx - V0 ;a (I)

where u and v are positive constants. This equation des-
0 0

cribes the advection of the variable 0 at a constant velocity

c given by,

c ( 0u +v 2) (B2)
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The variable t1 is assumed to be of the form,

4 (x, y, t) - 0 (t) exp [ i(kx + ly)'jI (B3)

where k and 1 are wave num~bers in the x and y directions,

respectively.

The finite element method, using the four-node bi-

linear element is applied to (Bl) as discussed in Chapter III

and Appendix A. By expanding the matrices in the resulting

expression a finite difference form of the finite element

equation is obtained. The resulting expression is

3j6 6PWj,m) + 4(0(j+l,m)+P(j-1,m)+$(j,m+l) *4(j,m-1)

+ O(j+l,M+l) +f(ji+1,M-l) +4 ij-l'm+l) +(P(j-l,m-l)1
_u (B4)

= ((P(j..l~m+l) -4jlm1)+ (O(j+l'm+l)- P(j+l'M-l))

+I4((j,m+l)-(j,m-l))] -2 [(4(j+l'M-l)-O(j-l'm-l))

+(O(j+l,m+l)-4(j-l,m+l)) +4 (4i(j+l,m) -4'(j-l,m)1,

where Ax and Ay are the grid spacing in x and y, respectively.

This expression is valid at any interior grid point. The

terms such as (j,m) indicate the grid point where x = jAx and

Y MAY.

Leap-frog

As discussed in Appendix A and Chapter 111, the

matrix form of (B4) is
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[MI W(n) = _ (K] ( 1 (n), (B5)

where [M] is the mass matrix and [K] {,}(n) represents the

linear advection and the superscript indicates the time step.

For the Leap-frog scheme, (B5) becomes

M { }(n+l) _ (MJ ,(n-l)=-2At[K] }n). (B6)

Eq. (B3) is written in discrete form:

() (jm) = 0X n exp[i (kjtx + lmAy)], (B7)

where 0o is the initial amplitude and Xn is the amplification

factor to the nth power. Using the Eqs. (B4,B6, and B7) it

can be shown that

An+l exp[i(kjAx + lmAy)] (2 + cos lay)(2 + cos kAx)

.Xn-1 exp[i(kjAx + lmAy)] (2 + cos lAy)(2 + cos kAx)

u (8)
= - ~ ~I-- exp[i(kjAx + lmAy)] { -0 [sin lAy(2+cos kAx)]

V
+ [sin kAx(2 + cos lAy)]}-Ty

For simplification, assume that u0 =v0 and Ax = Ay = d. Sub-

stituting (B2) into (B8) and simplifying gives

A2+3/ cAt i (sin ld + sin kd 1 = 0. (B9)
d iA os i -+cos. (B9

The term in parenthesis in (B9) has a maximum value of 21/3.

Making that substitution and solving for X gives
A _/,icAt c2At2  (B10)

i it (6 ___ + 1) . lO
d d



It can easily be seen that

Iin 1 if /9 2-t .ll

Therefore, the coupling of the time derivative through the

consistent mass matrix as in (B4) results in a more restric-

tive time step than is found in finite difference applications

or with lumped mass. A similar analysis is performed by

Cullen (1974a).

If the left side of (B4) is replaced by the single

term O(j,m) then the stability criteria is

cAt . (B12)

"Theta-family" of Time Approximations

For the "theta-family" of time approximations dis-

cussed in Chapter III, (B5) becomes

[S]{,}(n+l) - [S] { }(n) = (n+)(n)
(B13)

Using Eqs. (B4, B7, and B13) as well as all the simplifica-
tions used to obtain (BlO) gives

S- (-e) pi (14)1 + Bpi'(B4

where p = / cAt

For the Crank-Nicholson scheme, e - 1/2, and
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Therefore, the Crank-Nicholson scheme is always stable. For

the Backward scheme,6 = 1, and

+i 1

If p 1 0, this scheme is always stable but the solution is

damped. The larger p is, the larger the damping effect. For

the Galerkin scheme, 6= 2/3, and

1 + p/3

This scheme is also stable under the same conditions as the

Backward scheme. Damping is also present in the Galerkin

scheme but the damping is less than in the Backward scheme.

If the "theta-family" of approximations is analyzed for

lumped mass, the only difference in the result is that p =

c~t

I
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