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ABSTRACT

A mixed formulation for calculating static equilibrium and stability
eigenvalues of nonuniform rotor blades in hover is presented. The static
equilibrium equations are nonlinear and are solved by an accurate and effi-
cient collocation method. The linearized perturbation equations are solved
by a one-step, second-order integration scheme. The numerical results
correlate very well with published results from a nearly identical stabil-
ity analysis based on a displacement formulation. Slight differences in
the results are traced to terms in the equations that relate moments to
derivatives of rotations. With the present ordering scheme, in which terms
of the order of squares of rotations are neglected with respect to unity,
it is not possible to achieve completely equivalent models based on mixed
and displacement formulations. A study of the one-step methods reveals that
a second-order Taylor expansion is necessary to achieve good convergence
for nonuniform rotating blades. Numerical results for a hypothetical non-
uniform blade, including the nonlinear static equilibrium solution, were
obtained with no more effort or computer time than that required for a
uniform blade with the present analysis.

1. Introduction

It has been found that nonlinearities in rotor-blade equations affect
blade stability [1-4] - especially stability of coupled flap, lead-lag, and
torsion degrees of freedom [1]. In these references it was found that
essential nonlinear effects could be retained by perturbing the nonlinear
equations of motion about the static equilibrium condition and solving for
the eigenvalues of the linearized perturbation equations. Coefficients of
the linearized perturbation equations then depend on the solution of the
nonlinear static equilibrium equations.

This paper presents a method for stability analysis of nonuniform
rotating blades with aerodynamic loading that utilizes the solution for the
nonlinear static equilibrium equations in the linearized eigenvalue problem.
Methods described in the literature have been limited to solution of
various restricted versions of this problem [4-9]. These include a modal
approach [4], an integrating matrix method [51, a Myklestad method [6],
a Ritz finite-element method [71, a modal approach based on a mixed varia-
tional principle [8], a transmission matrix method [9], and a Galerkin
finite-element method [101.



In section 2 of this paper, as in [1], the governing equations of motion
are written as two sets of equations. One is a set of nonlinear ordinary
differential equations that governs the static equilibrium condition. The
other is a set of linear ordinary differential equations with an unknown
eigenvalue that governs the dynamic behavior of small perturbation motions
about equilibrium. These differential equations are written in a mixed,
spatial-derivative form, unlike the displacement formulation of [1].
Several differences between mixed and displacement formulations are then

discussed in the context of the present analytical task.

Then, in section 3, solution of the equations is discussed. A differ-

ent technique is used to solve for the nonlinear static equilibrium from
that used to solve for the linear stability eigenvalues. The nonlinear
static equilibrium is solved by a collocation method for a mixed-order sys-
tem of boundary value equations [11]. The software for this method is

available in a program called COLSYS [12]. For the linearized perturbation

equations, several methods of solving for the eigenvalues are discussed.
These include COLSYS [12], a generalized eigenvalue approach [13], a Block-

Stodola technique [14), and one-step numerical integration techniques of
various orders. For the present formulation the one-step methods, which
appear to be the most promising, are used.

Finally, in section 4, numerical results are presented for comparison
with published data and for study of convergence properties associated with
the one-step methods. Numerical results are also presented for stability
eigenvalues of a hypothetical nonuniform blade.

2. The Governing Equations

The governing equations used herein were essentially derived in 1151,
in which the Houbolt and Brooks [16] equations are extended into the range
of geometric nonlinear behavior. The integro-partial differential equa-
tions are transformed into ordinary differential equations by first express-
ing the vector of unknowns, z, as

z(x~t) - !(x) + i(x,t)()

Here i is the static equilibrium part and i is a small, perturbed part.
The equations are linearized in i and converted to an eigenvalue problem
with the transformation

i(x,t) - £(x)e~t (2)

where

A + iW (3)

The static equilibrium equations (with the sign conventions and nomenclature
defined in [151 are given in appendix A. From Equations (Al) through (AIO),
and (A17), the state vector, i, for the nonlinear, static equilibrium
behavior is written as

ty Mz v Vz My w 8 Mx JT (4)

and Equations (A13), (A14), and (AlS) define the aerodynamic loading for
the hovering flight condition.
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The linearized equations governing small perturbation motions from the
static equilibrium state defined by the solution for the equations in appen-
dix A are given in appendix B. The state variables, z, for the perturbed
state are defined in Equations (Bi) through (BIO), and (B14) through (B19).
The vector z is

L = y z zxy x X

and the equations may be represented in matrix form as

= (A + XB)i (6)

In the derivation of the equations in appendices A and B, terms of 0(c2 )
have been dropped with respect to unity where e is the order of bending
and torsion rotations, ;, 1, and *. The ordering scheme outlined in [151
has been followed as closely as possible. As in [15], an exception has
been made to include 0(W) terms in the torsion equations that are uncou-
pled from the bending equations but are known to influence the uncoupled
torsion frequency. It is not possible, however, to be completely consistent
in ordering schemes in either a mixed formulation for the differential
equations or in a displacement formulation. Furthermore, as will be shown
in the next section, it is not always possible to reach complete agreement
between the mixed and displacement formulations in the decision of which
terms to retain, even when trying to follow the same guidelines on neglect-
ing higher-order terms.

An exception to the guidelines in [15] on the ordering of terms has
been to retain complete trigonometric expressions involving the variable 4.
In 115], cos(6 + 0) and sin(e + 0) were approximated by the appropriate
expansions in terms of cos 0, sin 0, and $, neglecting terms of second and
higher powers of 0. In this paper it has been convenient to retain the
complete trigonometric expression in all equations except the equations
relating rotation derivatives and moments which are presented below. No
significant differences in the results of [1] and this paper will occur as
a consequence of using this convenient trigonometric form.

When the equations are formulated as a system of first-order differen-
tial equations (i.e., a mixed formulation) several attractive features
become apparent. These include the simplicity of the form of the governing
differential equations, the absence of the derivatives of the elastic char-
acteristics, the simplicity of applying numerical integration techniques,
and of handling boundary and interface conditions. The mixed formulation
was particularly convenient in this application since the integro-
differential terms could easily be rewritten as differential equations
[note Eq. (A17), (B14), and (B19)].

Concerning retention of specific terms, the main difference between a
mixed-order formulation and displacement formulations involves the equations
relating derivatives of rotations to moments which are

~'1a1~a2B -a + a a2 - 2a~x lcse+

i M'I + (e V/11.O) (c ((
O8'J ar ai8 -a3 - 2alO a, - MZ sin(O +

(7)
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These equations lead to Equations (A4) and (A8) in appendix A and Equa-
tions (B4) and (B8) in appendix B. Reference [1], which is a displacement
formulation neglects the M contribution (i.e., the single-underlined terms
in Equation 7) in a consistent manner on the basis that torsional moments are
at least one order of magnitude less than the bending moments. References [1]
and (15] use a quasi-coordinate as the torsion variable as discussed in [17].
For that formulation, the torsion moments when used in the bending equations
are written as integrals of applied and inertial loads and are thus of
0(C2). In the bending equations they are multiplied by quantities of 0(c)
and are thus negligible. References [18] and [19], which are also displace-
ment formulations, use Lagrangian torsion variables and in a consistent
manner retain the single-underlined terms. There, the torsion moments are
written in terms of the first derivatives of 4 and are 0(c) quantities.
When they are multiplied by terms of 0(E) in the bending equations, they are
not formally negligible and thus are retained. The single-underlined terms
are also retained in the mixed formulation presented here, although they could
be neglected on the basis of the arguments in [1]. Results are presented in
a later section which document the effect of the single-underlined terms.

Another more important difference between mixed and displacement for-
mulations is illustrated by the double-underlined terms of Equation (7).
In [1], [15], [18], and [19] the double-underlined terms were retained in
deriving the fourth-order governing equations for the lead-lag and flap-

bending behavior, but they were neglected in deriving the second-order
torsion equation. These terms are consistently retained or neglected in
the above references on the basis of essentially the same ordering scheme,
and the retained terms result in a symmetric elastic stiffness matrix. For
the present mixed formulation, however, there is no reason, a priori, to
neglect these terms. We may expect these terms to have some observable
effect, especially when there is significant static equilibrium deformation,
such as when 0 is large. This effect will be illustrated in the next
section.

Previously, we discussed some advantages of the mixed formulation. There
are also some drawbacks to use of mixed formulations. The matrix operator for
the structural terms in the equations no longer appears in symmetric form, and
the number of variables in the state vector is several times that of displace-
ment formulations. For some applications, however, the convergence is more
rapid for mixed formulations than for displacement formulations [20 and 21],
thereby offsetting somewhat the latter disadvantage. Further, force resultants
are obtained with the same degree of accuracy as the displacements in the
mixed formulation. The disadvantage of the nonsymmetric form of the structural
operater can be somewhat offset by selection of solution techniques that do
not make use of matrix symmetry or positive definiteness. Basically, the
choices considered here were whether to use collocation methods, generalized
eigensystem approaches, or one-step integration methods.

3. Solution of the Systems of Equations

For obtaining the nonlinear, static equilibrium solution, the colloca-
tion method [11] was used since the software [12] was readily available
and since the method ensures a high accuracy. The program is capable of
treating general systems of nonlinear multipoint boundary value problems up
to order four with a variety of options available to the user. COLSYS pro-
duces an approximate solution to a user-specified accuracy using a polynomial
spline which can be evaluated at any point within the domain of the problem.
The inertial, geometric, and elastic properties of the blade can be expressed
as functions of the axial coordinate in this approach, and the high-order,
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spline-fit method leads to almost as high a degree of accuracy at noncollo-
cation points as at the collocation points. Further, trigonometric expres-
sions involving state variables, such as sin(O + *), can be expressed
exactly without the small angle assumptions on * that are often made.

The collocation software package, COLSYS, was written to solve a set
of nonlinear multipoint boundary value problems. As such, it can also be
applied to eigenvalue problems using the approach outlined in [22]. After
investigation of this approach for the eigenvalue problem, it was discarded
for various reasons. In particular, since the complex roots doubled the
number of required governing equations, the existing code could no longer
accommodate these cases without modification. A further limitation is that
a priori estimates of the desired complex eigenvectors and eigenvalues

must be provided.

Next, the generalized eigenvalue approach was investigated. In this
approach, Equation (6) is discretized using a finite-difference approxima-
tion. The one chosen here involved the central difference approximation
given by:

i+i - zi - (h/2)(A + AB) +1/2(z i + z +) (8)
zii1/ i il

where the subscripts denote the locations at which the variables are
evaluated.

This results in a generalized eigenvalue problem of the form

(A + A)z i 0 . (9)

The dimensions of the matrices A and B are 16k x 16k, where 16 is the
dimension of the matrices A and B in Equation (6), and k is the num-
ber of segments in the discretization. In preliminary investigations the
subroutine EIGZF [13] was used to obtain all the eigenvalues for this
generalized eigenvalue problem. It was found that as many as 100 segments
would be required to obtain 3-place accuracy for the second eigenvalue.
Unfortunately, the lack of symmetry prevents the banded structure of the
matrices from being exploited; thus, a storage problem is created.

One alternate approach is to find selected eigenvalues. The Block-
Stodola method [14] uses a block inverse-iteration algorithm to find the
first few eigenvalues. In those cases which were tested for this method,
no more than the first eigenvalue could be computed accurately. Here,
because of the lack of symmetry, there is no underlying variational princi-
ple that can be employed as in [14]. Although it is possible to symmetrize
one of the two matrices and obtain the hypotheses in [14], this results in
a significant degree of fill-in. As a consequence, this approach was not
pursued.

The one-step methods using transfer matrices similar to the Myklestad
method seem to be the most promising. The term one-step method refers to
those methods which depend only upon station i to obtain solutions at
station i + 1. Higher-order terms of a Taylor expansion can be used with
the one-step method to speed convergence. The method can be described as
follows. A Taylor expansion of z(x 1+2 about xi is

z(xi+1 ) + z(xi) + z'(xi)h + z"(x )h2/2 + 2'''(x )h3/6 + . . (10)
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where

h-x -x (1)
i+1 i

Now, in Equation (6), let

C A + XB (12)

A first-order method can be obtained from the first two terms of Equa-
tion (10), yielding

zi+ =z + hCiz (13)

where Equation (6) is used to eliminate z'(xi). Equation (13) has 0(h2)
local truncation error. A second-order method can be similarly obtained
from the first three terms in Equation (10) yielding

zi zi + hC zi + (h
2 /2)(Czi + C2zi) (14)

which has 0(h3) local truncation error. Here Equation (6) is used to
eliminate z'(xi) and z"(xi). Both Equations (13) and (14) may be rewritten
as zi+j - Tizi, where Ti is a suitably chosen matrix evaluated at xi,
so that

zi (I + hCi)zi (15)

[I + hCi + (h2/2)(c + C z (16)

The form of Ti depends on the order of the method. Hence, zn - Tzo where
T - Tn-Tn_2... To. The homogenous boundary conditions at xo and xn are then
used to reduce matrix T to a smaller (6 x 6) matrix T whose determinant
det (T) is a polynomial in A. The desired eigenvalues correspond to those
A's that produce zero determinant for T. In our implementation of the
one-step methods, subroutine ZANLYT [13] is used to find one or more of the
complex roots of the real Eolynomial det(T). Subroutine LEQTIC (13] is
used to decompose matrix T into L and U factors. The product of the
pivots produced from this factorization gives the determinant of T. Finally,
whenever C! is used, it is approximated by the backward difference

C' a (C - Ci_)/h (17)

and CZ is assumed to be zero. In any one-step method, care must be taken
to define the C' terms properly at those points where cusps or discon-
tinuities in the axially varying properties occur.

If there are axial variations in inertial, geometric, and elastic
properties or in the tension, the term Cjz i in Equation (16) can have sig-
nificant impact on the speed of convergence. Rotor blades have all of
these axial variations. Therefore, the method illustrated by Equation (16)
was used in this paper. As shown in the next section the number of seg-
ments required to produce accurate results increases substantially if the
Cizi term is omitted from Equation (16).
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4. Numerical Results and Discussion

Numerical results were obtained using an IBM 360/67 computer and are
presented in this section for several rotor-blade configurations. These
results are intended to serve primarily three purposes: (1) to compare
with published results and thus, at least partially, validate the present
computer program; (2) to study the convergence properties of one-step
methods; and (3) to present some new results for a nonuniform blade which
may serve as a reference problem for future analytical studies. The
numerical values of the various inertial, elastic, and geometric properties
are presented in Table 1 for configurations to be compared with results
from [1] and [9] and for the hypothetical nonuniform blade.

4.1. Comparison with published results

In this section numerical results are presented to compare with some
published data. No attempt will be made to compare with all of the many
available numerical results in the literature. Instead, we will focus on
results from an in vacuo configuration in [9] and the aeroelastic stability
results of [1]. Because of the very good agreement between the present
results and those published, it was felt that a presentation of the results
in tabular form would facilitate comparison with published data and under-
standing of the effects of the underlined terms in Equation (7) on the aero-
elastic stability results of [1]. For serving the latter purpose we
designate two constants kl and k2. For k1 (or k2) = 1, the single-(tur
double-)underlined terms in Equation (7) are included. For ki (or k2) = 0,
the single-(or double-)underlined terms in Equation (7) are deleted.

As pointed out above, consistent application of the ordering scheme in
a displacement formulation, such as in [11, may lead to discarding terms
that may not necessarily be negligible in an analogous ordering scheme for
a mixed formulation as in this paper. In order to match results of [1], it
was necessary to experiment with deleting and retaining the underlined terms
in Equation (7). One example of the dilemmas faced in trying to be con-
sistent is apparent when the torsion moment Mx  is written as an integral
of applied and inertial loads. In this case it is clearly O(c2 ), as noted
in [151 and explained in [17]. However, when Mx  is written in terms of
the derivatives of rotations, it contains one term, which is 0(c). If Mx
is regarded as 0(c), the single-underlined terms must remain (k = 1); if
Mx is regarded as 0(C2 ), these terms should be neglected for the sake of
consistency (kl = 0). A second example involves the double-underlined
terms. When the moment components My and Mz appear in the bending equa-
tions in a displacement formulation, they appear multiplied by 0(l)
quantities. On the other hand, in the torsion equation they are multiplied
by 0(c) quantities. Because terms up through 0(c2 ) are retained in all
equations in [11, it is consistent to take only the dominant terms in
expressions for My and Mz in the torsion equation but retain the more
accurate expression, including double-underlined terms, for My and Mz  in
the bending equations. In the present mixed formulation, however, dropping
of the double-underlined terms (k2 = 0) in Equation (7) would result in
matching the torsion equation of a displacement formulation equation but
result in an oversimplified set of bending equations. Retention of the
double-underlined term (k2 = 1) results in matching the bending equations
of a displacement formulation, but adds additional 0(c 3) terms that are
inconsistent in the torsion equation of the displacement formulation. Thus,
a consistent set of equations in a mixed formulation may, when transformed
to a displacement form, result in neglect or retention of terms that would
be differently treated in a set of equations written consistently in



TABLE 1. VALUES OF INERTIAL, ELASTIC, AND GEOMETRIC PARAMETERS FOR

COMPARISON OF RESULTS WITH [1] AND [9].

(a) Reference [1] Configuration

p,cR/m 5/(6w)

bc/(wR) 0.1

c/R = r/40

a = 2 r

cdo/a = 0.01

Ely/(mQi'R4) = 0.014605 (ww = 1.15Q)

EI /mQ
2 R4 ) = 0.026787 (wv = 0.70, soft in-plane case)

10.16696 (wv = 1.5Q, stiff in-plane case)

GJ/(m2 2R 4) = 0.0056732 (we = 5Q)

km/R= km2/R = 0.025

km = eA = e =0

(kA/km)2 = 1.5

6 = 0, 0.3 rad

(b) Reference [9] Configuration

f =0 8= i/4 rad

P= 0 GJ =9000 lb in.2

R=40in. kn k =1in.2

2 2

m = 0.000125 lb sec2 in. -2  eAk

El = 25000 lb in. 2  e = /2-in.
y

EIz = 7500 lb in.
2

(c) Tapered Case

All properties at blade root identical to those listed above in part (a)
for the soft-in-plane case. All properties are constant except EIy,
EIZ, GJ, and m, which are multiplied by the factor (1 - O.lx).
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displacement form. We expect differences such as these to be small.
Otherwise, we must conclude that whatever has been taken as an ordering
scheme must itself be somehow inconsistent.

A sample of results generated for the simplified configuration from

[9) is presented in Table 2. The rotor speed is zero in this case, and
therefore there is no aerodynamic loading and no static equilibrium defor-
mation. There is nevertheless, an offset between the blade mass center and
shear center and nonzero pitch angle (the properties are given in Table 1).
Thus, all degrees of freedom are coupled. The number of segments used by
the example from [9] is unknown. However, it is clear that the present
results based on a second-order, one-step method (C' = 0 for this case,
since the beam is uniform with no tension) are tending towards those of
[9] as the number of segments is increased. With only 24 segments, the
first mode is within 0.1% of Murthy's result.

TABLE 2. COMPARISON WITH RESULTS FROM
[9] FOR FREE VIBRATION FREQUENCIES OF
BLADE WITH MASS CENTER OFFSET.

w(rad/sec)

Segments Mode 1 Mode 2 Mode 3

16 30.7552 53.6968 179.8088
24 30.7962 53.7691 182.3980
32 30.8107 53.7947 183.3519
40 30.8174 53.8065 183.8023

Ref. [91 30.8295 53.8277 184.6175

When the rotor speed is nonzero, the presence of steady aerodynamic
loads and, in some cases, inertial loads, causes significant static defor-
mation which must be taken into account properly in order to obtain correct
stability eigenvalues [1]. Results from the present analysis (COLSYS) are
presented in Table 3 along with those of [1] for both soft-in-plane (wv = 0.7)
and stiff-in-plane (w = 1.5) cases with e = 0 and 0.3. The quantities
tabulated are tip deflections of T, T, T, and the accuracy is specified to
be four significant figures. The solution is neither difficult to obtain
nor particularly time consuming. The agreement is quite good regardless of
the choice of kl and k2. We conclude from this that the static equilibrium
solution is not strongly affected by the presence of the underlined terms
in Equation (7) for the limited range of values presented here. Such is
not the case for the stability eigenvalues, however.

Table 4 presents the stability eigenvalues based on a second-order,
one-step method with C' terms included and 16 segments (converged to
3 significant figures). Again, the agreement is very good, especially at
O - 0. The presence of the single-underlined terms (kl 1) has no effect
on the results for e - 0 and very little effect for 0 f 0.3. The double-
underlined terms (k2 = 1) raise the torsion frequency at 0 = 0.3 from its
value at 0 - 0 instead of lowering it as indicated in [1]. The effects
of k2 on lead-lag damping are minor. The difference in the torsion fre-
quency due to the k2 terms is about 2%. In a displacement formulation,
these terms of second degree in bending curvatures are neglected in the
torsion stiffness (i.e., third-degree terms, such as Ww1 ' , 4v"w", etc.,
are neglected in the second-degree torsion equation). This is consistent
in displacement formulations such as [1], [15], [18], and [19]. It is not
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I.

TABLE 3. VALUES OF STATIC EQUILIBRIUM
DISPLACEMENTS AT BLADE TIP. (ki = 0,
k2 = 1 for COLYS results)

r/R ir/R

(a) wv = 0.7Q, 0 = 0.0

COLSYS -0.002321 0.0 0.0
Ref. [1] -0.002326 0.0 0.0

(b) wv = 0.7Q, 0 = 0.3

COLSYS -0.03943 0.09315 -0.01332
Ref. [I] -0.03940 0.09314 -0.01336

(c) w v = 1.50, 6 = 0.0

COLYSY -0.000522 0.0 0.0
Ref. [1] -0.000522 0.0 0.0

(d) w v = 1.5Q, 0 = 0.3

COLSYS -0.03139 0.09432 -0.01164
Ref. [l] -0.03129 0.09412 -0.01214

TABLE 4. COMPARISON OF STABILITY EIGENVALUE RESULTS OBTAINED BY
USING VARIOUS VALUES OF kl and k2 (16 segments). Eigenvalues are
given per unit Q.

(a) 0 = 0

kl k2 Lead-lag Flapping Torsion

wv = 0.70

0 0 -0.0010 -0.6929i -0.3235 ±1.0788i -0.3615 -4.9809i
0 1 -0.0010 _0.6929i -0.3235 ±1.0788i -0.3615 ±4.9809i
1 1 -0.0010 ±0.6929i -0.3235 ±1.0788i -0.3615 ±4.98091

Ref. [] -0.0011 ±0.7014i -0.3245 ±1.0751i -0.3622 ±4.9875i

wv - 1.50

0 0 -0.0011 ±1.4938i -0.3235 ±1.0767i -0.3617 ±4.9822i
0 1 -0.0011 ±1.4938i -0.3235 ±1.07671 -0.3617 ±4.9822i
1 1 -0.0011 ±1.4938i -0.3235 ±1.07671 -0.3617 ±4.9822i

Ref. [1] -0.0011 ±1.5002i -0.3246 ±1.0741i -0.3625 ±4.9888i

(b) 0 = 0.3

wv 0.70

0 0 -0.0230 ±0.6823i -0.3145 ±1.07491 -0.3552 ±4.9592i
0 1 -0.0228 ±0.6819i -0.3146 ±1.0746i -0.3564 ±4.9720i
1 1 -0.0228 ±0.6815i -0.3147 ±1.0743i -0.3574 ±4.9836i

Ref. [] -0.0249 ±0.6931i -0.3117 ±1.06761 -0.3628 ±4.9637i

wv - 1.50

0 0 -0.0641 ±1.6143i -0.2821 ±0.9547i -0.3520 ±4.95501
0 1 -0.0665 ±1.5698i -0.2792 ±0.95451 -0.3494 ±5.0471i
1 1 -0.0667 ±1.56631 -0.2789 ±0.95451 -0.3491 ±5.05241

Ref. (I] -0.0632 ±1.5823i -0.2821 ±0.9507i -0.3510 ±4.9150i
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obvious, however, that these third-degree terms are the only ones that have
an observable effect on the trends. The only way to resolve that question
is to examine results from a consistent analysis in which 0(c 3) terms are
neglected with respect to unity, which has not yet been developed.

4.2. Convergence of one-step methods

We now address the subject of convergence for the one-step methods
including the C' terms. In Table 5, results obtained for the soft-in-plane
case at 0 = 0.3 are tabulated as a function of the number of segments.
The convergence is fairly rapid at first and tapers off as the converged
value is approached. The smallest eigenvalues are generally within 1%
for 16 segments.

TABLE 5. CONVERGENCE OF THE ONE-STEP METHOD BASED ON EQUATION (16)
FOR VARIOUS NUMBERS OF SEGMENTS (wv = 0.7Q, 0 = 0.3, k1 = 0, k2 = 1)
Eigenvalues are given per unit Q.

Segments Lead-lag Flapping Torsion

4 -0.0159 ±0.7394i -0.3099 ±1.2025i -0.3365 ±4.8960i
8 -0.0234 ±0.6902i -0.3108 ±1.0929i -0.3523 ±4.9548i

12 -0.0230 ±0.6840i -0.3136 ±1.0791i -0.3553 ±4.9676i
16 -0.0228 ±0.6819i -0.3146 ±1.0746i -0.3564 ±4.9720i
20 -0.0227 ±0.6810i -0.3151 ±1.0725i -0.3569 ±4.9739i
24 -0.0227 ±0.6805i -0.3153 ±1.0715i -0.3572 ±4.9750i

In the one-step method, the C' terms may be neglected in some appli-
cations. This is certain to have an adverse effect on convergence for a
rotating beam, however. Even for a beam with uniform properties, the per-
turbation equations will have variable coefficients due to tension and
static equilibrium terms. Thus, it is important to study the convergence
of the stability eigenvalues as a function of the number of segments for
methods which do not use the C' terms. In Table 6, the lead-lag and flap
eigenvalues are presented for three methods versus the number of segments.
Method (1) is the complete second-order method with the C' terms included
(Eq. (16)). Method (2) is the second order method without the C' terms.
Method (3) is the first-order method (Eq. (15)). There is little differ-
ence in the rate of convergence for Methods (2) and (3). The inclusion of
the C' terms, however, results in about an order of magnitude reduction
in the number of segments required for convergence. Hundreds of segments
may be needed for convergence when C' is neglected [23]. It should be
noted that [6] uses only the tension terms in evaluation of C'. While
that should result in a substantial improvement in convergence over Meth-
ods (2) and (3), it would still be inferior to Method (1) if the beam has
portions of even modest nonuniformities in stiffness or inertial properties.

4.3. Results for a nonuniform blade

We have included results for a hypothetical nonuniform blade in Table 7.

All properties are the same as those used in the configuration for compari-
son with [1], except that Ely, Elz, GJ, and m are equal to their values
for the uniform blade times the factor (1 - O.1x). Convergence for the
nonuniform blade is a little slower, and all frequencies are increased from

the values obtained the uniform blade. The lead-lag damping is only
slightly decreased by the presence of taper for this case. This small
effect is not surprising, since fundamental bending-torsion coupling
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TABLE 6. EFFECT OF Cjzi TERMS ON CONVERGENCE OF STABILITY EIGEN-
VALUES USING ONE-STEP METHODS. (0 0.3, jv = 0.7Q, kI = 0,
k2 = 1). Eigenvalues are given per unit Q.

Segments Method (1) Method (2) Method (3)

Lead-l ag

8 -0.0234 ±0.6902i -0.0201 ±0.7699i -0.0181 ±0.8398i
16 -0.0228 ±0.6819i -0.0216 ±0.7308i -0.0203 ±0.7500i
24 -0.0227 ±0.6805i -0.0220 ±0.7152i -0.0211 ±0.7244i
32 -0.0221 ±0.7068i -0.0214 ±0.71241
48 -0.0223 +0.6980i -0.0218 ±0.7009i
64 -0.0224 ±0.6935i -0.0220 ±0.6953i
80 -0.0224 ±0.6908i -0.0222 ±0.6920i
96 -0.0225 +0.6889i -0.0222 ±0.6899i

Flap

8 -0.3108 ±1.0929i -0.2849 _+.i367i --0.2922 1.1431i
16 -0.3146 ±1.0746i -0.3008 ±1.1060i -0.3034 ±1.10211
24 -0.3153 ±1.0715i -0.3059 +1.0944i -0.3075 ±1.0903i
32 -0.3085 ±1.0884i -0.3095 ±1.0847i
48 -0.3110 ±1.0821i -0.3116 ±1.0793i
64 -0.3122 ±1.0789i -0.3127 ±1.0767i
80 -0.3129 ±1.0770i -0.3133 ±1.0751i
96 -0.3134 ±1.0757i -0.3137 ±1.0747i

TABLE 7. STABILITY EIGENVALUES FOR A NONUNIFORM BLADE (kl = k2 = 1,

0 = 0.3). Eigenvalues are given per unit 2.

Segments Lead-lag Flap Torsion

16 -0.0230 ±0.7001i -0.3138 ±1.0819i -0.3564 ±5.0798i
24 -0.0229 ±0.6987i -0.314 ±1.0790i -0.3567 ±5.08371
32 -0.0228 ±0.6983i -0.3146 ±t.0781i -0.3564 ±5.0851i

parameters [1] are not changed significantly. No significant computational
penalty in the calculation of the nonlinear static equilibrium and the

stability eigenvalues is incurred because of nonuniformity.

5. Concluding Remarks

Nonlinear equations for static equilibrium deformation and linearized
perturbation equations for small motions about equilibrium, from which
stability eigenvalues can be obtained, are written in a first-order, spatial
derivative form. These equations are solved by COLSYS 112] and one-step
integration techniques, respectively. Numerical results for uniform blades
obtained from the equations are compared with published results [1] and [9]
and used to study the convergence of the one-step methods. Results are
also presented for a hypothetical nonuniform blade. In the course of this
study several conclusions have emerged.
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1. The equations of the present mixed formulation are general enough
to treat nonuniform pretwisted rotor blades with chordwise offsets between
elastic center, mass center, and shear center. Certain higher order cross-
section integrals are neglected, and symmetry about the major cross-section
axis is assumed [15]. Neither the equations nor the solution methods, in
their present form, apply to the forward-flight problem.

2. COLSYS is used to solve the nonlinear static equilibrium equations
with the present mixed formulation. The calculation of the static equilib-
rium solution is neither particularly difficult nor time consuming even
though nonlinearities and nonuniformities are involved. Thus, there is no
need to limit the static equilibrium solution to some linear or otherwise
ad-hoc estimate.

3. There are slight differences in the numerical results obtained from
mixed and displacement formulations of rotating blades with geometric non-
linearity. The differences stem from the equations that relate moments to
derivatives of bending rotations. A consistent ordering scheme applied to
a mixed formulation may not produce exactly equivalent equations when
applied to a displacement formulation. The main difference in the results
is in the magnitude of the torsion frequency. The difference is of the
order of rotations squared with respect to unity (about 2%). The present
analysis yields the result that torsion frequency increases with increased
pitch angle in direct contrast to results in [1].

4. One-step, second-order integration methods appear to be a viable
means of calculating the stability eigenvalues. In order to obtain good
convergence it is necessary to include the entire second-order term, for
rotor blades, for which tension force, elastic, and inertial properties all
may vary along the length of the blade.

5. The terms involving the torsion moment Mx  in Equation (7) were
found to be negligibly small for the limited range of parameters investi-
gated. The double-underlined terms do affect a basic trend, as described
in conclusion (3). This may indicate the need for consistently incorporat-
ing terms of the next higher order in elastic rotations. Unfortunately,
the only way to ascertain the correctness of this assertion is to compare
results from such an analysis, which does not yet exist, to those of this
paper or [1].
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APPENDIX A

Steady State Equations

The static equilibrium equations are given in the following first-order form with the sign conventions and nomenclature of f15]. As in 1151,section properties of higher order, Bj* and B 2*, warping rigidity and shearcenter offset terms, and C1 and Cj* are neglected. In presenting theseequations, care has beeh taken to neglect terms that are 0(C2) comparedto unity. To avoid confusion with d/dx, the primes have been removed from
the subscripts of EIy9 EI1, and Vx .

Lead-lag equations:

V - I[P + e co(o + i)] - i, (Al)y L

-- Vs, + Vj+ men 2 x cos(e + j) (A2)

V = (A3)
(aj - a ) + (-a, + aa)K + (a2 - 2aI)M + eAVX cos(O + j)/Zo

(A4)

Flap equations:

V' " -EW (5)

-Vz - Vx - me2x sin(e +) (A6)

ill M (A7)
8' = (asi - aj)R + (-a, - 2aJ)iy + (a, - a J)k 2 + eAVx sin(@ + j)/zO

(A8)

Torsion equations:

R -VzZ + Vy + Mef2 sin(e + j) + mg(k4 - k )cos(O + b)sin(e + i) - H
2 1

(A9)
-/Gg[M1 + Ry(j + a.e' sin e) + Mz(8 - a.e' cos e) a7e'Vx ] (AO)

where, for brevity,

ac GJ +s Vx -as M ysin e + a 6 Rzcose

TO - Ely

Zo - Elz - ,A eA (All)

a, - -[(1/Y o) - (l/Zo)]sin e cos e

a2 - (sin2 e/yo) + (cos2 e/Z 0 )
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a s  (coo2 e/ 0 ) + (sin2 O/Z.)

a. o as - &2

as _ kA2EIz/Z 0  (Allconcluded)

a - kA2EA eA/Zo

a7 M (EIz/:0)(kA - EJ/EA)

The term involving a. in Equation (AIO) has been altered to agree with
the recent results of [24].

In the above equations, the tension in the inextensible blade is given
by the uncoupled expression

Vx U 2  ax dx (A12)

x

The aerodynamic loading is derived in [1]. The steady component
is

Lv - (pwac/2)[v12 _ 2 x2 (cdo/a) - Qxv 1(e + i)] (A13)

= (P.ac/2)[-fhcvi + g 2 x2 ( + + j) - nZoj + (Olxc /2)J (A14)

M4 0 (AIS)

The term 4 in Equation (A15) is defined
K

f 8' dx (A16)

0

and is represented in the analysis as the following additional ordinary
differential equation

- ~' (A17)

with the initial boundary value specified by the values of r and 0' at
x(O). The induced velocity is given by

vi = sgn(O + #o)QR(wo/8)[Il + (12/no)e + 7 -. 1 (A18)

where

S at x/R = 0.75 (A19)

and

a - bclwR (A20)
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APPENDIX B

Linearized Perturbation Equations

The perturbation equations given in [15] have been converted to the
linear ordinary differential equations in first-order spatial derivative
form with the eigenvalue X. Although not necessary for the method of
solution finally adopted, they are presented linear in X as well.

Lead-lag equations:

' - ,{ ;* - eA;* sin e - 02[2. - e sin(O + j)]Vy

+ 2n[Xa - e(AZ cos e + X8 sin 0)]) - L (BI)v
A. - .. .. A

-V + + ZVx - mef 2 x* sin(e + i) + 2meQXv cos 0 (B2)

Z= (B3)

Z' (ajc- a 2 )Mx + (-a, + a,)Ay + (a. - 2a 1 *)Hz + Rx(aZ - a2 )

+ (aji - 2ai z - (eA/Zo)sin(O + + eAOx cos(O + j)/Z 0 (B4)

Flap equations:

z - ,(A * + eXA* cos 0) - (B5)

S- -Vx - meQ 2xf cos(e + *) - 2meQA' sin e (B6)

A, (B7)

B' - (aj - a08)M - (as + 2a: )M + (al - a4M)z + Mx(a3C - aO)

- [2aiRy + a.R. - (eA/ZO)Vx cos(0 + *)]J + eAVx sin(O + )/Z0

(B8)

Torsion equations:

Z3 + y yi~ +i

- g2; ccs(( + ) - cos(e + I) + 2QAX sin e + mkM2 A¢*

+ M02(4 -k )j cos2e -M (B9)

(B9)

,,. (+/ 0) + + a,(0' + j')sin o1 + Z

+ ( - a,(e' + j')cos e1f z + RzA} (BIO)

where the constants aI and a. are defined in appendix A.
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Equations (BI) through (B0) have been linearized in terms of X by

using the relations

v*= ) v (BII)

w* = Xw (B12)

0* M (B13)

Additional differential equations needed to supplement Equations (Bl)
through (BIO) are

- + (B14)

v* = ' (B15)

S= (B16)

S '(B17)

The perturbed tension and displacement in the axial direction are

' -2mdv (B18)
x

u( = -/Z)(M sin 0

-M cos ) (B19)
z

The aerodynamic load contributions [1] are

- (p0ac/2){-xvi3 - [2Qx(cd /a) + (8 + )vi]xv

+ [2vi - sx(0 + ;)],w) (B20)

- (p ac/2){fl 2 x2 ($ + S) - 12 x(; + ;',) + (Q2xc /2)

+ [2 x( O + ) - vi]Xv - xkw + (3/4)c xXj - (c/4)Xw* 1
(B2 1)

M - -(P.ac/2)[(c 2/8)Gx)] (B22)

Thus, Equations (Bl) through (BIO), (B14) through (B19) form the complete
set of 16 coupled ordinary first-order differential equations required to
calculate the stability eigenvalues of a nonuniform, pretwisted blade.
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