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OBJECTIVE

Apply modern estimation theory to ground-based sensor tracking data for
evaluating a missile's flight performance. The emphasis is on reconstruction
of the missile's free-flight trajectory. The approaches investigated include
the linear Kalman filter working in Cartesian coordinates, and the extended
(nonlinear) Kalman filter implemented in Cartesian coordinates. A prime
objective was an analysis of 1) filter initialization, 2) Q matrix weighting,
and 3) variation in the statistics of the observation tracking sensor data.

RESULTS

The nonlinear filter approach (linear dynamics with nonlinear

measurements) provided superior performance evaluation over a strictly linear
filter approach. The use of an extended Kalman filter greatly enhances the
level of confidence in defining (and reconstructing) a missile's free-flight
trajectory.

RECOMMENDATIONS

It is recommended that a system engineering effort be conducted primarily
in the areas of 1) adaptive Kalman filtering, including maneuver gates and
weighted gain matrix; 2) initialization, including timing and initial values
of covariance matrix, state vector, and variations in statistics of the noise
on the sensor measurements; and (3) terminal intercept performance, including
variance of line-of-sight rates measured by guidance sensors.

Secondary areas of investigation recommended are 1) nonlinear dynamics;
2) smoothing of optimal estimates; and 3) multiple sensor observations.
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1. ESTIMATION THEORY AS A TOOL

Modern estimation theory is one of the primary tools used to evaluate
missile performance. Modern day missiles are tested in free-flight
environments at well-instrumented test ranges. Sensors gather information
about the missile as it is being tested in free flight. Estimation theory
plays an important role in evaluating the observation information gathered by
the range instrumentation sensors. The information is processed in a
computerized data processing system. The data processing system performs a
number of operations such as: (1) trajectory reconstruction of missile and
target, (2) reconstruction of the missile attitudes and attitude rates
throughout the flight, (3) determination of line-of-sight rates as seen by the
missile sensor systems, (4) comparison of commanded versus achieved
accelerations, (5) determination of the guidance and control steering commands
which should compare to those generated by the missile flight control section,
(6) comparison of measured line-of-sight rates as seen by the missile sensor
system to the actual line-of-sight rates, (7) determination of the ability of
the sensor to sort signals from noise and clutter, and (8) basic establishment
of missile subsystem performance levels. This data analysis is utilized to
establish the total missile system performance and to compare the free-flight
performance against performance specifications.

ANALYSIS APPROACH

Reconstruction of the missile and target trajectories using modern day
estimation theory, as emphasized in this report, is the key element in
analyzing the missile's flight performance. Uncertainties in the measurements
made by range sensors and system dynamics can be modeled and accounted for by
using the mathematics of probability and statistics (ref 1). Figure 1 is a
flow diagram of the flight data analysis process.

This report describes an analysis dealing primarily with optimal
estimation theories, and mathematical tools for multivariate analysis (ref 2,
3, and 4) applied to reconstruction of missile free-flight trajectory. The
approach is to generate a trajectory of a missile in free-flight using a
six-degree of freedom simulation. Sections 3 and 6, and Appendix A present
the details of this approach. The trajectory of the simulated missile flight

1. Nahi, Nasser E., Estimation Theory and Applications, John Wiley and Sons,
Inc., New York, N.Y., 1961.

2. Green, Paul E., Mathematical Tools for Applied Multivariate Analysis,
Academic Press, Inc., 1978.

3. Chen, Chi-Tsong, Introduction to Linear Systems Theory; Holt, Rinehardt,
and Winston, Inc., 1970.

* d4. Jazwinski, Andrew H., Stochastic Processes and Filtering Theory, Academic

Press, New York, N.Y., 1970.
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was observed using simulated ground-based sensors. The sensor data was
processed through an optimal estimation sequential tracking filter.

Sections 2 and 3 define the reference frames, the models used in the
study, and the formulation of the problem. Section 4 provides an overview of
optimal estimation theory. Section 5 defines alternative sequential filter
approaches for determining optimum estimates of the missile system state
vector throughout the flight trajectory. A recommended approach is presented
which is essentially an extended Kalman filter working in Cartesian
coordinates.

Sections 5 and 6 are detailed descriptions of the filter that was modeled
in a computer program and presents the analysis that was performed using this
model. The analysis covered the following aspects of the problem: (1)
initialization, (2) convergence, (3) mismodeled noise, (4) mismodeled system
dynamics, (5) transformation noise, (6) data rates, and (7) advanced concepts
relative to filter stability and rate of convergence.

Sections 6 and 7 present results, conclusions and recommendations.
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2. SYSTEM REFERENCE FRAMES

This section defines the reference frames of the ground-based tracking
sensors (defined for the analysis ab the inertial frame) and the reference
frames of the missile and of the target. The coordinate transformations that
translate elements of the state vector from one frame to another are defined
in Appendix B. The analysis for this study used one ground-based tracking
sensor in the inertial coordinate system. In reality there would typically be
a number of ground-based tracking sensors. The observation data of each
individual tracking sensor would then be transformed to the inertial
coordinate frame. The estimated values of the missile state vector for the~missile throughout the flight trajectory would be the resultant of combiningthe observation data from all of the ground-based tracking sensors.

The inertial coordinate system is fixed to the surface of the earth with
the positive Z axis directed towards the earth's center. The XI axis is
aligned parallel with the missile's initial launch direction. The
ground-based tracking sensor (one was used for this analysis) is placed at the
origin of the inertial frame. The missile reference system is fixed at the
missile's center of gravity. The X axis coincides with the longitudinal axis
while the Y and ZB axes are directod along the pitch and yaw axes,
respectively. The inertial and missile body reference frames are illustrated
in figure 2.

The observation data obtained by ground-based sensor systems is range,
range rate (if available), azimuth, and elevation angles. These variables are
represented as R, R, e and 0, respectively. It is immediately apparent that
the observation data is a nonlinear function of the state variables as defined
in a Cartesian coordinate system. For the purposes of this study the range
rate, R, was not utilized. The three remaining variables R, e and * are
illustrated in figure 3. The observation data is defined as

z(tk) h(xc(tk)) + V(tk) (1)

where z(t ) is the P x 1 observation vector. Vectors in this report will be
denoted at a lower case alphabetical letter underlined with a bar "x."

In (1), h(x (t )) is the transformation function that relates R, e and ,
which are the-poiton elements of the state vector in spherical coordinates
(x ), to the three position elements x , y and z of the state vector in
Catesian coordinates. These fuhctionl rilationhips are defined in (2)
through (7)

xc R cosecos (2)

Yc= R sinecosQ (3)

zc = -R sine (4)

R = (xc2 + yc2 + Zc 2) (5)

E = arctan (y /Xc) (6)

= -arctan[zc(xc2 + yc2) " ] (7)

t~4
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3. MODELS AND PROBLEM FORMULATION

This section presents a brief description of the methodology, problem
formulation, and the models that were used to generate the data for this
study. Figure 4, an overview of the methodology, presents an expanded view of
the anaysis and studies that would comprise a comprehensive missile trajectory
estimation analysis effect. Only the shaded areas on the figure were covered
in the current phase of the optimal estimation of missile free-flight
performance study. The maneuver gate, Kalman gain weighting, quidance command
comparison and estimation of line-of-sight rate during termir flight
trajectory phase were not addressed in this study. These arL of study will
be addressed in a follow-on study (as identified in figure 4).

The approach taken was to estimate a six-element state vector. The
six-element state vector is composed of position and velocity elements and is
written as follows:

xI

Yl (8)

zI

ZI
zi

The inertial elements are in a Cartesian coordinate system.

Missile accelerations are assumed to be measurable quantities and would
be available as deterministic forcing for the Kalman filter. These
accelerations would be measured by missile on-board accelerometers.
Similarly, the target's trajectory would be estimated by a six-element state
vector where again it would be assumed that on-board target drone
accelerometer information would be available for deterministic forcing.

* !Let's clarify what has been stated. This can be seen in terms of
mathematical equations, and for brevity only the missile will be discussed. A

• , parallel set of equations would describe the optimal estimation of the target
drone trajectory. The dynamics of the system (missile system) in free flight
can be defined in terms of the following nonlinear stochastic differential
equation (ref 4 and 5):

,(t) = f(x,u,t) + w(t),

( 0 (t)- N( (to0), P(to0)) (9)

where x is the n-vector of state variables describing the system, u is an
n-vector of time-dependent forcing functions, w(t) is an n-vector of white

7
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process noise, t is the independent variable, time, and f is a known function

of x, u and t. The statistics on w(t) are

E{w(t)} = 0 (10)

and

E{w(t) wT(l)} = Q(t)6(t-t) (11)

where Q(t)>O is the process noise spectral density matrix.

The discrete nonlinear observations5 obtained by the ground-based sensor
systems, which are taken at time instants tk9 can be expressed as

1(tk) = h(x(tk)) + v(tk) (12)

where z is the p-vector of observations of the state x, h is the p-vector of
nonlinear functions which relate the state and observations, and v is a
p-vector of white measurement noise with statistics

E{v(tk)} = 0 (13)

and

E{(tk)v T(tk)} = R(tk) (14)

The quantity R(tk) is the measurement noise covariance matrix which is
restricted to be positive semidefinite.

Equation (9) describes the generalized system, including the nonlinear
effects in the dynamics which relate to "real world" situations. One of the
assumptions in this study is that the data rates for the accelerations are
high enough that a linearized formulation of the system dynamics can be
realized. In essence, the acceleration is assumed to be constant over an
update interval (interval between data updates of the on-board
accelerometers). It is also assumed that the system dynamics are time
invariant. Based on these assumptions equation (9) is rewritten as

whr(t) = Fx(t) + Gu(t) + w(t) (15)

where the solution of (16) is given as (reference 3 page 131)

5. Applied Optimal Estimation, written by Technical Staff of the Analytic
Sciences Corporation, edited by Arthur Gelb, The MIT Press, 1974.
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t
x(t) = 1(t, t0 )X(t0 ) + f *(t,T) Gu(T)dt

t

t

+ ft 0(t,T) w(T)dT (16)
0

where ¢(t,T) is the state transition matrix of x(t) = Fx(t); or,
correspondingly, the unique solution of

(O(tT) = FO(t,T), (17)t

((,T)= I

The F matrix is defined as

0o 0 0 10 01
0000101100 00 0 11 (18)
100000I
100000I

which is the system matrix and the G matrix is defined as

[ 0H] (19)
which is the distribution matrix for the forcing function, missile
acceleration, defined as

u(t) = [ax ay a zT (20)

For the system model, the forcing function is the missile acceleration as
measured by accelerometer sensors in the missile body axis system. The
sensors measure with an error which is defined as the vector w(t), where

a w(t) = [0 0 0 ax(t) ay(t)6 az(t)]T (21)

The state transition matrix which is the solution of (17) can be solved using
the inverse LaPlacian operator "L "

*(t,t o) = L-[(SI - F)" ] (22)

For the system defined by (15) where F is given in (18), and when the system
is discretely observed, the state transition matrix has the closed form
solution

10
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o (A) 0 100A0 (23)
0 00 0A
0 0 001 0 0

L 000001J

where A is the sampling interval for the discretely observed continuous system
of (15).

We now have enough information to form an expression for the sampled
version of (16):

x(K + 1) = *(A)x(K) + ftk+1 (T)Gu(T)dT (24)
tk

Equation (24) is termed as the update equation and where dealing with a
stochastic system, the update is in terms of the optimum estimate of the state
vector x at the Kth interval. Since the forcing function is assumed to be
constant over the observation interval (assuming a high data rate/sampling
rate on the missile acceleration) equation (24) can be written as

x(K+l) = O(A) x(K) + F(A) u(K) (25)

where A2

2

Ao (26)A2

A 0

0 A 0

e d s A

At this stage the question arises, "why have we expended the efforts to define
• • system dynamics as expressed in the previous development--equations (9)

through (26)?" This question has two answers: First, the filter noted in
figure (4) that will be utilized to formulate optimum estimates of the state
vector will be a sequential Kalman filter. The estimates of x will be termed
as i where the "^" above the vector denotes an estimated value of the vector.
A generalized model (ref 5, page 111) of a system model and a discrete Kalman
filter is illustrated in figure 5.

O M

['S 11

V -.- z '--'-_ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _



I DSCRETESYSTEM r' 1

HK ZKK lK,
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Figure 5. System model and discrete Kalman filter.

The Kalman filter illustrated in figure 5 requires a description of the
system dynamics. Figure 5 does not represent the Kalman filter utilized in
the tracking problem of figure 4, it merely represents a generalized Kalman
filter to illustrate the point that the Kalman filter needs to have a
knowledge of the system dynamics.

The second answer to the question relates to the fact that the analysis
was performed on a digital computer and required a sampled data representation
of the system. Having defined the system dynamics and a concept definition
and approach (as illustrated in figure 4) the next step was to define the
sequential filter that will derive optimum estimates of the state vector.
This is a multi-faceted problem; therefore, we approach this through a
sequence of logical tradeoffs and analysis. These steps are as follows:

1. Review optimal estimation theory. (This is an overview with
reference made to the open literature for the details.)

2. Investigate alternate approaches; and

3. Analysis of recommended approaches.

These steps are detailed in the following three sections.

12



4. OPTIMAL ESTIMATION THEORY

This section presents a few fundamental ideas on optimal estimation
theory. The emphasis is focused on nonlinear minimum variance
estimation/extended Kalman filter theory.

An estimate, i is the computed value of a quantity, x, based on a set of
measurements, z. An unbiased estimate is one where expected value is the same
as that of the quantity being estimated. A minimum variance/unbiased etimate
has the property that its error variance is less than or equal to that of any
other unbiased estimate. A consistent estimate is one which converges to the
true value of x,.as the number of measurements increases. We shall then look
at unbiased, minimum variance, consistent estimators.

The open literature (references 5, 6, 7, 8, 10) present details on
various types of estimators. As an example ref 5 develops the theory for the
least-squares and weighted-least-squares estimators. These are summarized as
follows. The measurement process is modeled as

z = Hx + v (27)

where z is an I x I vector, x is on n x 1 vector and H is an I x n matrix and
v is an I x 1 vector. The least squares estimator minimizes the quantity

J = (z - H-)T (z - Hx) (28)

The estimate is found by setting

-J= 0 (29)

which results in the estimate

R = (HTH)-1HTz (30)

6. Frank J. Seiler Research Laboratory, SRL-TR-72-0004, An Engineer's Guide
to Building Nonlinear Filters, Vol 1 and 2; Richard S. Bucy, Calvin
Hecht, and Capt. Kenneth P. Semme, May 1972.

7. NELC TR 1967, Covariance Analysis of the DD963 Navigation System, by
Jeffrey M. Nash, November 1975 (NELC is now NOSC).

8. MTR-2417, Understanding Kalman Filtering and Its Application in Real Time
Tracking Systems, by J. J. Burke, the Mitre Corporation, Bedford, Mass.,
July 1972.

10. Mendel, Jerry M., Discrete Techniques of Parameter Estimation, Marcel
, Oekker, Inc., New York, N.Y., 1973.
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The weighted-least-squares estimate is formed by minimizing

J = (z - HR)TR'I(z - Hi) (31)

which results in the estimate

i = (HT RIH)-1 HTR-1z (32)

The estimators described by equations (30) and (32) are referred to as Batch
Processors. These estimators require that the observation data be stored.
However, they are not sequential filters.

4.1 KALMAN FILTER EQUATIONS (LINEAR)

A recursive filter is one in which there is no need to store past
measurements for the purpose of computing present estimates. This is
basically the idea behind the Kalman filter. A timing diagram for a discrete
Kalman filter is presented in figure 6. This diagram illustrates the
propagation or extrapolation of both the state estimate R (-) and the error
covariance P (-). The extrapolated values of the state eltimate and error
covariance e updated across each new measurement at discrete increments in
time.

HK-1, RK-, -ZK-1 HK, RK, ZK (SEE NOTE BELOW)

i-K-I( ) K.I( )  
kK( ) K )

OK-iQK-1

PK-l( ) PK-I() PK
(  ) PK(,)

tK- 1 tK TIME

Note: the following convention for the notation will be assumed:

k-1 (- ) is an equivalent form of i(tk-l-)

k-1(t) is an equivalent form of A(tk.1+)

P k~- ) is an equivalent form of P(tk-l-)

etc.

Figure 6. Discrete Kalman filter timing diagram.
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A summnary of the discrete Kalman filter equation is outlined in table 1. The
initial conditions and other assumptions are

TE[x(O)] = (O), E[(!(O) - i(O)(x(O) - 2(0)) P P0

EN k V jT] 0 for all j, k (33)

System Dynamics 8(t) - F N(t) + GU(t) + W(t), W(t) - N(O,Q(t))

State Transition (KK.)FtKt);(K1t)=I
Matrix40 K1)-FtKt-1;0t-lt-1=I

Measurement Model ZK =HKICK + YK. YK - N(O,RK)

State Estimate 8(tK -) = 4 (tK,tK ) i(tK- +)
Extropolation + K'- I (tK,T) G(r) U(T) dt

Error Covariance PO(K t)= (tK~tK- 1) P(tK- I +) OT(tK,tK- 1)
Extrapolation f tK

+ JtK-1 *tK,7) Q(T) sT(tK,7.) d7

State Estimate ~ (K)=~t- ~K Zt-HOtK) N(tK-
Update -t+ K)+Kt)I~K

Error Covariance PO )[ U-KOK)H(tK) POK)
Update
Kalman Gain KOtK) = POtK-) HT(tK) [HOK) PtK -)HT(tK) + R(tK)F'
Matrix

Table 1. Kalman filter equations (linear dynamics and linear
.4 measurements).

4.2 NONLINEAR MINIMUM VARIANCE ESTIMATION (EXTENDED KALMAN FILTER)I The equations as outlined in table 1 are for a system described by linear
dynamics and where the measurements are linear also. In reality, for most of
the practical situations, neither the dynamics nor the measurements are
linear. The Kalman filter is an algorithm where the conditional mean can be
computed from a unique linear operation on the measurement data. For the more
general case described by the nonlinear stochastic differential equation

k(t) = f Mt)t) + w(t) (34)

15



and x(t) is estimated from sampled nonlinear measurements of the form

k = k((tk)) + Vk (35)

the problem of smoothing and filtering becomes considerably more difficult.
For the linear gaussian case, the optimal estimate of x(t) for most reasonable
Bayesian optimization criteria is the conditional mean. By contrast, in the
nonlinear problem x(t) is generally not gaussian; hence many Bayesian
criterion (ref 6) Tead to estimates that are different from the conditional
mean. More often, the nonlinear systems cannot be expressed in closed form,
therefore methods of approximating optimal nonlinear filters must be devised.
The remainder of this section will elaborate on the extended Kalman filter
(one methodology for approximating optimal nonlinear filters). The covariance
matrix is defined as

P(t) 4 E [[R(t) - x(t)][R(t) - xMt)]] T  (36)

where the differential equation of P(t) is given as

P(t) = E [I(t) - kt)][Rm) x(t)] T

+ [R(t) - x(t)[ (t) - XM(t)]7)

x(t) = f(x(t),t) (38)

x(t) = f(x(t),t) + w(t) (39)

Working only with the first terms of equation (37) and where the dependence of
x on t and f and on x and t is suppressed for notational convenience we have

E[(f - f w)( -x)]

-E[ f xT- f T + f XT

_ wRT + w T] (40)

= - T T +

^NT

, 16
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f. + (41)

remembering that

t
x (tk_) + f f(x(T),T)dT (42)

t
k-1

t
+ f w(T)dT

t k-1
tt

T T

E[wxT] = E[w(xT(tk -) + f fTx ),)d

tk-1

+ f)dT)] (43)

tk-1

where E[w] = 0

Thus the first two terms of (43) drop out and the only term left is

E[w(t) ft T (r)dt] (44)
tk- 1

Interchanging the integration and expectation operation and evaluating we get

^T /2Q (45)

where

E[w(t)w T()] = Q(t) 6 (t-T) (46)

Looking now at the second terms of equation (37):

SI and again making the substitutions for A and x into (47) and using simplified

notation as mentioned above we get

E[ T - xxT - xT + xT] (48)

E[RfT _ R(fT + wT + x(fT +T

-[ -f +(f wT) + _
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R= - 2T RQ 2T T T T +E[J

Rxf xf ̂ Tw -x +Ex +Ex

- - + ~N 1/2Q (49)

Combining the results of (41) and (49) we get the composite or

P fx (50)

+ f+ Q

Equation (50),^is the desired result, and inspection of (50) shows thatP
is a function of f which depends on the probability density function p(x,t) or

f(x,t) =f fO (x,t) p(x,t)dx 1. d xn (51)

Thus, to compute f(x,t), the probability density p(x,t) must be known. An
alternative, when full information is not known about the probability function
p(x,t), is to linearize the system dynamics. One methodology is to use a
Taylor series expansion of f(x,t) and truncate the series after several terms.

This will be referred to as Quasi Linearization.

Define

x(t) = f(i,t) + F(x - i) + w(t) (52)

(t) =f(x,t) = f(R,t) (53)

P~)= E I(f(R,t) -f(R,t) - F(x - R) - w(t))

(I(R~t) - f(R,t) - F(x R ) - w(t))T

E[(-F(x - R w(t)) (R(t) _ 2,(t))J]

+ E R(R(t) - Mt) ( FX - R) - w(t))T] (54)

AMt)FP+ 112Q +PF T + 1/2Q (55)

18
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where F = af(x,t)

and

A(t) = f(R,t) (56)

Equations (54) and (55) are approximate expressions for propagating the
conditional mean of the state and its associated covariance matrix. (For more
details see ref 4.) These are the propagation equations of the filter
algorithm. To complete the algorithm update equations are required which
weight the observation data. The Kalman filter algorithm formulates an update
as a linear function of the measurement

R(tk+) = a(tk) + K(tk) z(tk) (57)

The estimation errors are defined as

L(tk+) R (tk+) - x(tk) (58)

E(t k'-) R(tk-) - x(tk) (59)

Combining (57), (58) and (59) yields

L(tk+) = a(tk) + K(tk) hQS(tk)) + K(tk) V(tk) (60)

+ &(tk-) - R(tk-)

Utilizing the fact that the estimate is unbiased, ie., that E[&(tk+)] 0 and

that

E[&(tk-)] =0 (61)

and E[v(tk)] = 0

an expression for a(t ) can be solved for using (60). This expression
for a(tk), is formulhted by taking the expectation of (60) and applying the
conditions of (61). This resultant expression for a(tk),

2(tk) = x(tk-) - K(tk) (x(tk) (62)

is substituted into (57) which yields an expression for the update estimate

R(t +) = ](t + K(t (63)

An expression for the estimation error can also be formulated using (60) and
(62)

19
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L(t k+) C (t k- + K(t k)[h(xS(tk)) _^xtk) + ~ k) vk) (4

The optimal gain is required which will yield an estimate (the
approximate conditional mean of x(t)) which is a minimum variance
estimate--one that minimizes the class of functions

J(t)= E[c(tk+)T S C(t+) (65)

for any positive semidefinite matrix S. By choosing S to be the identity
matrix 1, then

T
J(tk E[e(tk+) F-tk) = trace [P(tk) (66)

where

T
P(t +) = EEc(t +) C(tk+) ](67)

By expanding (67) out and taking the trace and solving the equation

Jtk) 0 (68)

DKTtk)

for K(tk yields

K(tk -E [(tk [h((td)) - h (xS(tk))T

x JE [[h (x(tkd) - h(x(td))h (x(td)

an h~ k ))]T + R( tk) ' (69)

P(t k+) =P(t k- + K(t k)E h(x(t) h i(( (t k))] Ytk_)T (70)

Equations (69) and (70) are impractical to implement because of their
dependence-upon the probability density function for x(t) which is required to
calculate h(t k) A solution would be to expand h(x(t k) in a Taylor series
about R(t d.

hxtd)) = (Yk)) + ;1(xt-))x t) - (tk)) + (71)

where

H(x( tk-)) hx
ax X (t k-) (72)
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Truncating the series of equation (71) after two terms and substituting the
approximation for h(x(t k)) into equations (69) and (70) and the equation

xh (~t) (73)

which is obtained from the approximation of (71) results in the extended
Kalman filter update equation as follows:

R(t +) R (tk~ + K(tk~~k - h (R(tk-))] (74)

K~k ~k)H((k-)) [H(Rtk-))Ptk-) H(R(tk-)) + R( tk)] (75)

P(t k+) = I - K(t k) H (R(tk-))] P(t k-) (76)

Equations (53), (55), (74), (75), and (76) constitute the extended Kalman
filter equations. These equations are summarized in table 2.

System Dynamics A(t) F(Q,)+ W(t); WV(t)'- N(O,Q(t))

Measuremen tZ(tK) V bX0K) + Y-(tK)
Model

Initial Conditions X(O) -N( ., P.)

Assumption E IW(t)Y(tK )TI = 0 for all t and all k

State EstimateXt)=(X),)
Propagation _____________=_____________________________________

Prro opainc Pt) = F(X(tjt) P(t) + P(t) FT(XQt),t) + Q(t)

State Estimate ~ (=~() K~ b(K-)
Update 8K+=8K- 4 KRK-)

J!,Error Covariance PK(+)= I - K K H K(i-K( -))] PK(-)
Update

GiMarxKK = PK(-) HK T( RK(-)) [H K4 K(-)) PK(-)
_________ HK T(iK(~)) + RK]'

F~AiX (t)
Definitions h(tK)

HK:() -2 - I X-(tK) =(-

(IX(tK)

Table 2. Extended Kalman filter equations.
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5. ALTERNATE APPROACHES

This section describes the alternate approaches to formulating the Kalman
filter for estimating the state variables which define the trajectory of a

missile during free flight. Two types of filters were investigated for the
tracking algorithm: (1) strictly linear (linear dynamics and linear
measurements) in Cartesian coordinates, and (2) nonlinear (linear dynamics but
nonlinear measurements) implemented in Cartesian coordinates. A nonlinear
filter implemented in spherical coordinates was also investigated.

5.1 LINEAR FILTER APPROACH

The first approach (strictly linear filter in Cartesian coordinates)
utilized a noise variance transformation methodology to allow the filter
observation to be linear. The state vector is defined as

x

x(t)= x (77)

y

z

L z

and the state transition matrix defined as

(V 0 1 0 0 0 0 (78)
0 01A00
000100 
0 0000 1a

L 000001

Burke (ref 8) outlines a methodology for decoupling the filter. That is, have
three parallel filters with state transition matricies of order 2 x 2 rather
than one filter with a 6 x 6 state transition matrix. There is some loss of
information by going to the decoupled filters--some of the cross terms in the
covariance matrix are lost. Since all three filters of the decoupled
arrangement are essentially identical, only one will be elaborated upon. The
x component will be used as the example to define the algorithm. Analogous y
and z filter are similarly derived. The state vector (for x element) is now a
2 x 1 vector.

x(t) = [](79)
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where the state transition matrix is

P = ] (80)
101

A is the sampling time for the discrete system dynamics.

tk
X(tk) = *(tk, k-i) R(tk-1) + f 4(tk,r)Gu(T)dT (81)

tk- 1

where

G =(82)

and

u(t) a x(t) + 6 a (83)

a (t) is the missile lateral acceleration in the ground inertial frame and 6ax
s the noise component.

The translation accelerations in the missile body system are

C1 = (L Qw + Rv - Gx) (84)

2= ( + Ru - Pw - Gy)
y

C3 =  Pv -Q u - Gz)

The quantities u, v, w, and P, Q and R are the rectilinear and angular
accelerations of the missile (missile body coordinates) as defined in ref (9).
Gx, G , and G are components of gravity in x, y, and z directions,
respe~tively.z

The translational acceleration components in the inertial frame are
Jx a x tjAll + a21 a3

y a 1 AI2 +2 a., + t3 a32 (85)

az =j 1A 1 3 
+ t2 a2 3 

+ t3 a33

the A.. terms are defined in Appendix A. The 6 a term in (83) is the
nondet ministic portion of the forcing function.

9. McRuer, Duane; Ashkemas, Irving; and Graham, Oustan, Aircraft Dynamics

and Automatic Control, Princeton University Press.

23



The equations (3) through (7) are the functional relationships that
define the observation data in spherical with respect to the Cartesian
coordinate frame or in the Cartesian frame with respect to the elements in the
spherical frame. These equations are used as the basis for the noise variance
transformation from spherical to the Cartesian frame.

The differentials of equations (3) through (5) are:

6x = 6R cosecos$ - R60sinfcoso - R6¢cos~sin.c

6yc = 6R sinecos¢ + R)costos0 - R6¢sinOsin¢ (86)

6z = -6R sine - R60cos¢

The noise variance can now be defined as:

E[6x c2] = YR2COS2E C0s2€ + R2cs2sinE2cos 2¢ + a 2R2cos 26sin 2
e

E[6yc2 ] = aR2sin2e cos2¢ + R2a 2cos 28cos 2
¢ + R

20 2sin 2Esin 2e (87)

E[6z c2] = 0R 2sin2€ + R
2a 2cos2o

where

0R2 = E[6R 2]

( = E[60 2] (88)

G02 = E[6,2]

The linear Kalman filter will be completely defined once the initial
conditions are defined. The initial conditions needed to start the filter are
i o Pot and Qo0

The initial estimate of the state vector is determined as follows. The
position element of the state vector will be the second usable measurement of
position from the sensor. Hence, a two point start is assumed. The velocity
component is approximated using Euler's definition of the derivative from the
first and second measurements of position. The initial values of the elements
of the covariance matrix are calculated as follows; with covariance matrix
defined as

iT

P = E[6x 6x ) (89)

where

6x~

6x 6x cc
E (91)

6,c6x 6X6c
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6xc is defined in equation (86) using the definition for the Euler integration

6 c(tk) 6xc(t k) - 6Xc(tkl) (92)

2
E[6x c(t k)2] = 206X (93)

where

a6x
2 = E[6x 6x] (94)

Using similar logic

E[6xc (tk) 6Xc(tk)] = x2  (95)
A

Thus

G 2 2

c 6xcA
Po a 6 2  2 (96)

xc  2Ox c

A A2

This completes derivation of the decoupled linear (Cartesian coordinate)
filter algorithm. The equations for this filter algorithm are those of table
1 where the following initial condition and assumptions were made:

1. Linear dynamics with state transition matrix

2. Forcing function distribution matrix

. G =

[0]
3. Forcing function is missile translational accelerations measured by

onboard accelerometers

4. w(t) is accelerometer sensor noise variance

5. Ground tracking radar sensor noise variances in Cartesian
coordinates are defined in equation (92)
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6. Initial value of x is derived from the first two consecutive
useable measurements of the-8bservation data and initial value of P, P0 is
defined in equation (96)

5.2 EXTENDED KALMAN FILTER APPROACH

The second approach, which is the recommended approach and implemented as
a computerized algorithm, is the nonlinear extended Kalman filter (linear
dynamics but nonlinear measurements) implemented in Cartesian coordinates.
The state vector x(t), of the dynamic system (missile) in flight is defined as

x

x(t) = c (97)

zc
c

xC
c

_ C.

L c

and the state evolves as the following:

(t) = Fx(t) + Bu(t) + w(t) (98)

where

x(t) is the n x 1 vector of system state variables,

u(t) is the P x 1 vector of deterministic forcing functions,

w(t) is the q x 1 vector of the random forcing functions,

F is the n x n system matrix,

G is the n x P distribution matrix for deterministic forcing.

The solution to (98),which is used to propagate the state vector is

R(t k-'0 (t k , t k-l Mt k-1
+ ) + f k 4(t k-lT)Gu(T)dT

t k-1
tk

+ ft 4((tk, T)w(T)dT (99)
tk-1

•' (where
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a.(tT) - (100)

and

4(t ,t 0) -L
1[(SI - F)1] (101)

and the system matrix, F, is

0 0001 001
F10 000 1 0 (102)

0 0 00000 0

The solution to the differential equation defined in (55) which propagates the
covariance matrix is (see ref 5)

P(t k-) = *(kl t k-1) P(tk-l+)4J (tkl tk-1)

tk

The G matrix is defined as

0 001
G 10 001 (104)

0 1 0

which is the distribution matrix for forcing function, missile acceleration,
defined as

Ia
4u(t) a (105)

and

0

0

w(t) 0 (106)
6ax

6a~
6a~ 27



which is the random forcing of the system.

The variance of the random forcing Q(t) is defined as

TQ(t)6(t T ) E {w(t)w (T)) (107)

0 0 0 0 0 0

0 0 0 0 0 0

Q=E 0 0 0 0 0 0 (108)

0 0 0 6a 2  6a x6a~ 6a 6a z

0 0 0 6a 6a 6a 2  6a 6a

0 0 0 6a 6a x 6a z6a~ 6a z2

The measurement equation is given as

zK(t k h (x(tk) + v(t k) (109)

with the partials, H( (t k-) defined as

H(R(t k-) - h(x)

ax R (t k-) (110)

and restating the functional relationships,

h(x(tk) as

R(t k) = (X 2(t k + Y c2(t k + z c2(t k)1 2

hG~k) (t k) = ATAN (YC(t k)/X c(t)

W(k ) = -ATAN z (t k)(XC2(tk) + Yc(tk))1~2 (111)

The partials which comprise the elements of the measurement matrix are:

H(1,1) a aR(x,y,z) = k()( ) + 92-)+ 2k2- 1

aax x kX(-)

3R(xy,z) 2(- 2(- 22
H(1,2 k~( +~~ 9k + Ik~

H(1,4) 3 R(x,y,z) =0 (112)
ax= Xk( 28
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7..

8(1,5) B R(x,y,z) f=0
6 x=xRk(-)

8(1,6) a aR(xyz) =0

H(2,1) 3 E)(X,Y)
ax ~x R +T

H(2,2) = (XY) Rk(-
3y X k R k() + kF

H(2,3) = aE)(X,Y) 0
az

H(2,4) =exy 0 (112)
ax continued

H(2,5) =aE)(x,y) =0

H(2,6) = aE)(x~y) =0

H(3,1) =lxyz R Xk(-Zk(-) ~
a)x Xk = Rk2k- 9k(- + Y zk ) (x k( +

H(3,2) p ax- k(-zk(-)
ay ~ kk (Rkz2 -) + k2- + 2 k R)(k() + 9k( 1/2

ax kk= - () + , k(-))
az Xk k R k?(-) + 9k(- + 2k (-))

ax -

29



(112)
continued

H(3,5) = = 0

H(3,6) =a(x,y,z) =0

The update equations for the extended Kalman filter are:

K(tk P~ - HTRt-)H Rt+)~ HT R(t)] (113)

(tk+) (t k- + K(t k)[z(tk) -h(Y(tk-))1 (114)

P(t k+) I - K(t k) H( (tk-))j P(t k-) (115)

The filter was initialized using the same procedure as defined for the
strictly linear Kalman filter described earlier in this section. The initial
covariance matrix, however, was a 6 x 6 matrix rather than a 2 x 2. The
initial covariance matrix was

6xc6x c  6x c 
6y Xc 6x6z 6xc c  6xc6Y c  6xc6z c

6y 6x~ 6y6y 6y 6z~ 6yx 6y 6 6y 6icX c  8c c  6c c  c c c c c c

Po =E 6zc6x c 6zc6y c  6zc6zc  6zc6Xc  6zc6Yc 6zc6i c  (116)

6xc6x 6xc6y 6xc6z 6xc6x 6c6y 6c6i
c c cc cc c cc c cc

6y 6x 6y 6y 6; 6z 6 6 6 6y 6; 6i
c c c c c c c c c c c c

6ic6xc 6Zc6yc 6ic6Zc 6ic6 c 6ic6Yc 6ic6Zc

In the above equation 6x, 6y, and 6z are defined as per equation (86). 6x,
6y, and 6z are defined as in the Euler approximations to the derivative. The
evaluation of each term is performed by first multiplying the appropriate term
and then taking the expectation of the products. It is easily seen that the
algebra gets very involved, thus an approximation for obtaining P0 was
investigated for the analysis in this study.
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6. ANALYSIS OF RECOMMENDED APPROACH AND RESULTS

The recommended approach for deriving estimates of the state vector which
defines the trajectory of the missile and or target in free-flight is the
extended Kalman filter as described in the previous section. This approach
was studied using the methodology of figure 4, i.e., a six degree of freedom
simulation was used to simulate the missile in free flight. Missile
translational acceleration data as defined by equations (85) comprises the
forcing function. A ground-based simulated radar generated tracking or
observation data as the missile pursues the target. A series of analyses were
conducted using a baseline missile/target intercept geometry. Filter
performance was investigated as a function of: (1) the initial condition x
and P0, (2) weighting the covariance matrix, and sensor noise statistics.

6.1 BASELINE MISSILE AND TARGET INTERCEPT

The initial values for the missile and target baseline flight simulator
are outlined in table 3.

Missile:

xm 0.0 feet

m 0.0 feet

Z m 60,000.0 feet

Speed at Launch Mach 0.9

Target:

XT 84,000.0 feet

YT 30,573.0 feet

zT 60,000.0 feet

Seed (Constant Velocity) Mach 0.8

0 Table 3. Flight simulation baseline values.

A diagram of the XY plane of the missile target intercept geometry is
illustrated in figure 7. Since the missile and target were at a co-altitude
for the launch, the XY plane is the plane of interest. This baseline
trajectory was used for all the filter performance analysis that was
conducted.

4
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Figur- 7. Missile/target intercept geometry. (XY plane of trajectory)

6.2 FILTER PERFORMANCE ANALYSIS

Figures 8 through 16 present performance analysis data for the extended
Kalman filter. Figures 17 through 19 are comparative data of the linear
filter. Two sets of statistical performance parameters (variance on range,
azimuth, and elevation) were used for the analysis. Ref (11) defines the
noise standard deviations for two radars at the White Sands Missile Range.
The standard deviations (sigmas, "a") are as follows:

a OR O A OE

FPS-16's 5 ft .1 mil .1 mil

MPS-36's 5 ft .2 mil .2 mil

The radar statistical error data used in this analysis was defined as a low
error case and a large error case. Even the low error case was of a higher
noise level than that of ref 11. This was because the objective of the

11. Mathematical Service Branch, U.S. Army White Sands Missile Range,
Technical Report No. 58, Optimal Radar Instrumentation Planning, by
William S. Agee, White Sands Missile Range, New Mexico.
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analysis was to thoroughly evaluate the filter's capabilities operating with
poor observation data--the theory being that if the filter can obtain
reasonable estimates with very noisy observations, it will yield better
estimates with less noisy observation data. The statistics defining the two
individual cases are as follows:

a oR  o A  E

Low Noise 10 ft .316 mil .316 mil
(case 1) Rad Rad

R  O A  aE
High Noise 31.62 ft 3.16 mil 3.16 mil
(case 2) Rad Rad

6.2.1 Extended Kalman Filter Analysis

Figures 8 through 11 present data for Case 1 (x component). Figure 8
presents two plots: (1) error of actual raw data, and (2) error in the
estimated value of the x component of the missile flight trajectory. The
curves clearly illustrate that a large reduction in the measurement error is
obtained by filtering. Figure 9 presents four data plots. These are plots of
the RMS errors z - x, z - x, and x - R. The method of computing the standard
deviation of sampled data was that of ref 12, i.e.,

00= 1 (xi (117)
=1 N- 1

In figure 9, two curves for the RMS error of x - R are plotted. One curve
starts the RMS formula of equation (11) at time equal to 1 second; neglecting
the data from time zero up to 1 second. The second curve starts the RMS
formula at time equal to 6 seconds, i.e., i = 1 at t = 6. The first 6 seconds
of data are not weighted in the RMS calculation. It was noted that the

I convergence time of the filter (with the diagonal elements of the Q matrix
being 1 x 104) was roughly 6 seconds. Figure 9 clearly indicates the level of
performance of the extended Kalman filter. The estimated values of the x
component of the trajectory are four to six times better than the raw data
measurements of the x component of the missile trajectory. This is based on
the ratio of RMS errors.

12. Bendat, Julius, and Piersol, Allan G., Random Data Analysis and
Measurement Procedures, Wiley-Interscience, a Division of John Wiley and
Sons, Inc., New York, N.Y., 1971.
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Figures 10 and 11 illustrate RMS error curves for the low noise case
where the diagonal elements of Q have been varied. In figure 10 the diagonal
elements are 1 x 105. In figure 11 the diagonal elements of the Q matrix are
1 x 104. It is quite evident that the Q matrix plays an important role in
estimating the elements of the state vector. It was noted that the conver-
gence rate of the estimator was higher for higher values of the Q matrix.
This did not necessarily mean better estimates. It was found that there was
an optimum value for the diagonal elements of the Q matrix which yielded "best
estimates."

Figures 12 and 13 are the data for Case 1, the low noise case, of the y
component of the position element of the state vector. An interesting aspect
is noted from this data--the geometry has a large impact on the noise level of
the y component of the sensor data. Again, the filter does a good job of
obtaining estimates of the y element of the state vector. The ratio is
approximately 4 to 1.

Figures 14 through 16 present data on Case 2 (the high level noise case)
for the x component of the state vector. For comparison, compare figure 14 to
figure 8 and figure 15 to figure 9. It is quite obvious that the filter does
an excellent job in obtaining estimates of the position elements of the state
vector. It can be seen by studying figure 14 that actual errors can be as
large as 450 feet while the estimates are under 80 feet. The RMS data of
figure 15 is quite interesting. The RMS values were calculated using equation
6.1 for data after t = 6 seconds. That is, the data before time reached 6
seconds was not included in the RMS calculations. The estimates, for the data
of figure 15 were three to four times better than the actual raw measurements.
The values of the elements along the diagonal of the Q matrix were varied from
1 x 104 for the data of figure 15 to 1 x 10s for the data of figure 16. The
estimates were closer to the actual values of the state vector (x component)
by a factor of approximately 1.25. Thus the same phenomenon is noted for the
high noise case as for the low noise c i'--+he estimates can be made closer to
the actual values by weighting the covariLnce matrix.

.A 6.2.2 Linear Kalman Filter Analysis Results

Figures 17, 18 and 19 present data on the performance of the decoupled
linear Kalman filter where the noise variance of the observation data was

transformed via equations (87) from spherical to Cartesian reference frames.
Figure 17 presents the curves for the error in the actual data and the error
in the estimated value of the state. The decoupled linear Kalman filter did

j not perform very well as illustrated in figure 17. The error in the estimated
state was as large or larger than the error in the observation data. The RMS
values of the errors (x - R, and z - x) are presented in the curves of figure

J 18. The figure illustrates that the estimates were poorer than the raw data.
Again, the diagonal elements of the Q matrix were varied. It can be seen from
the data of figure 18 that the filter performance can be improved by varying
the elements of the Q matrix.

Figure 19 presents the RMS error data for the y component of the position
element of the state vector. Again, it is noted, as was the case of the
extended Kalman filter, that the error in the observation data is a function
of the geometry. The error increases as the y component of the state vector
increases.
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7. CONCLUSIONS AND RECOMMENDATIONS

The validation of missile system performance specifications from test
data (captive and free-flight) requires a high level of confidence in the
observation data recorded during the test. This study was directed at raising
the confidence level of that test data.

The methodology of approaching this problem is outlined in figure 4 which
illustrates two areas of effort as delineated by the two differently shaded
areas: (1) completed effort and (2) recommended follow-on. The initial
effort conducted was the development of a sequential tracking algorithm for
two different approaches, the validation of the tracking algorithm using a
6-degree of freedom missile simulation to supply the simulated measurements of
the missile in flight, and the recommendation of the preferred approach based
on comparative analysis.

The two different algorithms that were implemented and validated were (1)
the decoupled linear Kalman filter and (2) the extended Kalman filter
(nonlinear measurements).

7.1 CONCLUSIONS

The performance of the extended Kalman filter was superior to that of the
linear filter approach, hence the recommended approach is the extended Kalman
filter working in a Cartesian reference frame with nonlinear spherical
coordinate frame observation data. The extended Kalman filter worked very
well with high- and low-level noise observation data. The estimates were reduced
three to five times (on an RMS ratio basis) than the raw measurement data.
The recommended filter's performance was a function of a weighting of the
covariance matrix. This weighting affected the convergence rate and the level
of the estimates at filter turn-on and during the period just following filter
turn-on. The R matrix for the extended Kalman filter was constant as opposed
to the R matrix which varied as a function of time for the linear filter
approach.

The use of an extended Kalman filter as defined in this report greatly
enhances the level of confidence in defining the missile's free-flight
trajectory--raw data errors (RMS) on the order of 20 feet are reduced to RMS
errors of 5 feet or less!

7.2 RECOMMENDATIONS

It is recommended that a system engineering effort be conducted as
, outlined by the shaded areas identified as "follow-on" in figure 4. This

effort would be in the following areas:

(1) Adaptive Kalman filtering

(a) Maneuver gates

I
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(b) Weighted gain matrix

(2) Initialization

(a) Timing

(b) Initial values of covariance, state vector, and measurement
sensor noise

(3) Terminal intercept performance

(a) Variance of line-of-sight rates measured by guidance sensors

These three areas would be the primary areas of research and analysis.
Secondary areas of investigation would be:

(4) Nonlinear dynamics

(5) Smoothing of optimal estimates, and

(6) Multiple sensor observations.

Some interesting observations were made during the first study phase at
the Naval Ocean Systems Center, relative to adaptive Kalman filters. It was
noted that by varying the covariance matrix during the initialization phase of
the trajectory that the rate of conveyance of the estimated values of the
state vector could be controlled. This was an open loop form of control. One
of the adverse effects was that the filter could become unstable. A
methodology was investigated, but not implemented, that would incorporate a
form of closed loop control on the initial variation of the covariance matrix.
This in effect would be an adaptive filter. The gain matrix would then be
weighted as a function of the variations in the covariance matrix. An
algorithm would be developed, if appropriate, to effect this closed loop
control of the Kalman filter convergence. Other schemes to be investigated in
formulating the adaptive filter would be to monitor the residuals to determine
if a large maneuver had occurred. The observation data would then be weighted
relative to the estimated maneuver before being processed by the Kalman
filter.

Initialization of the filter is another area of recommended research.
,, Methodology for determining when to start the filter and how to estimate the

initial values of the covariance matrix and initial values of the state vector
should be investigated.

The final area of recommended research is to analyze the terminal
intercept performance. Techniques for determining accurate values of the
line-of-sight rates as observed by the guidance sensor during the final 3000
feet of flight trajectory should be analyzed. The problem associated with
determining accurate line-of-sight rates (LOSR) from observation data of the

04 reconstructed missile and target flight trajectories is that the LOSR is a
function of one over the square of relative range betwee.i the missile and
target. As this range goes to zero the LOSR goes to infinity. When there is
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a large uncertainty in the relative range the variance of the LOSR becomes

large. This is the reason why the estimates of the trajectories need to be
optimized with the least error variances. The reason for determining the LOSR
is to compare it to measured line-of-sight rates as observed by the guidance
sensor for performance evaluation. If the methodology for determining the
actual line-of-sight rates has a higher error variance than the variance of
the guidance sensor, it makes little sense to do a performance evaluation.
The standard must have a higher level of confidence associated with it as
compared to the item being compared against the standard. A possible solution
to this problem would be to utilize the inertial reference system on board the
missile itself. Alignment errors would be estimated during the initial and
midcourse phases of the flight trajectory; therefore, during the terminal
intercept phase a higher degree of confidence in the missile's trajectory
could be realized.

Secondary areas of recommended research that should be investigated deal
with optimal smoothing, nonlinear dynamics and multiple sensors to collect the
observation data. A brief outline of these areas of research follows.

The initial study performed at the Naval Ocean Systems Center utilized
linear dynamics with nonlinear measurements in the extended Kalman filter
model. The assumption was made that the acceleration data was available at a
high data rate and therefore constant over the sampling interval. The
transformations of the acceleration from missile body to inertial reference
frames were done outside the filter. If a reference frame were utilized where
the system dynamics was a nonlinear combination of the states the extended
Kalman filter would have to be modified to incorporate the nonlinear system
dynamics.

Optimal smoothing of data is another means of processing raw data. This
smoothing process can also be applied to data that has been processed by a
sequential estimation filter. This area of research would investigate
alternate smoothing techniques for processinq the observation data.

Multiple sensor observation is an extension of the single sensor
* problem. The data from the ground-based sensors positioned at various

locations throughout the test range would each generate an estimate of the
*missile's and target's trajectory. These trajectories could then be processed

* through a smoother to arrive at a finalized version of the trajectories.

.4
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APPENDIX A

DEFINITIONS OF COMPUTER PROGRAMS

A.1 OVERVIEW OF 6-DOF TRAJECTORY SIMULATION

A.1.1 General Program Flow

The program is broken into seven stages, indicated by variable IENTRY, as
follows:

IENTRY STAGE DESCRIPTION

1 Pre-data initialization
2 Post-data initialization
3 Trajectory computation
4 Not currently used
5 Not currently used
6 Periodic print out
7 Post-flight computations, print and plot

The program routines involved in each stage are shown in the following
diagrams.

TARGET AUTS UPCS SAS FFS EQOM

IENTRY = I & 2
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CNTENTR DER3

TARGET AUTS VPCSj SACS TFFS EQOM

LENTRY 6

TARGET AUTS VPCS SACS TFFS EQOM

IENTRY 6
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A.1.2. Subroutine Descriptions

MAIN -- Allocates storage, defines error tolerances, and sets up initial

indices for the integration routine.

INPUT -- Reads and stores input data

INIAL -- Computes initial parameters from inputs

BLK1 -- BLOCK DATA--Constants and reference values

BLK2 -- BLOCK DATA--Thrust tables

BLK3 -- BLOCK DATA--Aerodynamic coefficients

DERIV -- Calls routines to compute differential equations

CNTRL -- Controls program flow as to breakup times, print intervals and
program stops.

TARGET -- Computes target trajectory

RELT -- Relative missile-to-target kinematics

AUTS -- Model of control system (auto pilot)

SACS -- Aerodynamic forces and moments

GUIDE -- Model of missile guidance scheme

FCC -- Fire control computer logic

VPCS -- Vehicle physical characteristics

TFFS -- Computes thrust components

RKS4 -- Numerical integration routine--Fourth order Runge-Kutta with
Simpsons Rule check--Variable or fixed interval.

EQOM -- Equations of motion

PRINT -- Basic trajectory print out

ATMOS -- Computes atmospheric pressure and velocity of sound from IACO 1962
model atmosphere.

INVR, M3X31, TMULT -- Matrix/vector manipulation

LOOK1, LOOK2, LOOK3 -- Lookup routines for tabular data

GAUSS, RANDU -- Noise generator
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A.2 KALMAN FILTER ROUTINE DESCRIPTIONS

A.2.1 General Description and Use of Kalman Filter in 6-DOF

A tracking type Kalman filter was inserted into the trajectory simulation
to test the filter's accuracy. Uncluttered trajectory information was taken
from the simulation, Gaussian noise was added and the results were fed into
the filter. The filter had no effect on the trajectory.

The software for the Kalman filter consisted of the following routines:

KALDRV -- driver routine to set up observation and forcing function.

KALFT -- Kalman filter computations

ACXFM -- adds noise to the missile body x, y, z accelerations then transforms
them to inertial coordinates.

MMULT -- performs matrix multiplications

DINVER -- performs matrix inversion

MATIO -- performs matrix input/output

The filter is connected to the simulation through the CNTRL routine which
calls KALDRV. Logic was added to the CNTRL routine to call KALDRV in stage 2
and then to call KALDRV in stage 3 at time zero and thereafter every DTKAL
seconds. DTKAL is an input variable which indicates the Kalman filter time
interval. CNTRL also tells KALORV to print filter information at the same
interval as the simulation.

A.2.2 Kalman Filter Routine Documentation (Extended Kalman Filter)

A. KALDRV

1. USAGE: Call KALDRV (TIME, IKALP, DTKAL)

2. PURPOSE: To initiate and drive the Kalman filter.

3. SUBROUTINES REQUIRED:

MATIO -- matrix input/output routine

MMULT -- matrix multiplication routine

GAUSS -- Gaussian distribution random number generator

ACXFM -- routine to set up the forcing function

KALFT -- the Kalman filter calculations

49
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4. ARGUMENTS:

Input: TIME -- trajectory simulation time, in seconds

IKALP -- print flag, IKALP = 0 -+ output filter data,
IKALP = 1 4 call filter but perform no
output

Output: DTKAL -- Kalman filter time interval, in seconds

5. COMMON VARIABLES: all variables in COMMON are inputs.

COMMON AREA ENT

IENTRY -- indicates the stage of the trajectory simulation

COMMON AREA DER

DY -- array of simulation derivatives

Y -- array containing the results of integrating DY

Note that only three variables from each Y and DY are used,
namely Y(4), Y(5), Y(6) and DY(4), DY(5), DY(6). These are
equivalenced to XG, YG, ZG and XGDOT, YGDOT, ZGDOT,
respectively, and are the missile position and velocity vectors
in the inertial (ground) coordinate system.

5
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6. FLOWCHART:

COMPUTE SINES
AND COSINES OF
EULER ANGLES

DEFINE ELEMENTS
OF INERTIAL-TO-
BODY TRANSFORMATION
MATRIX, Aij

COMPUTE ACCELERATIONS
IN THE BODY SYSTEM

TADD NOISE TO ACCELERATIONS 1
IN THE BODY SYSTEM

[ TO INERTIAL SYSTEM j
OUTPUT IF IKALP = 1

.I4

* RETURN
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7. OUTPUTS: all inputs are echoed on output

R, THETA, PHI -- position of missile in spherical coordinates,
without noise

* z -- observation vector, three element vector containing
the missile position, in spherical coordinates.

* I FF -- forcing function vector, three element vector
containing the missile x, y, z accelerations, in the
inertial coordinate system, with noise

x -- estimated state vector, six element vector containing
the estimated state from the Kalman filter, x(1),
x(2), x(3) are the estimated coordinates of position
and x(4), x(5), x(6) are the estimated velocities,
both in rectangular coordinates

OBXYZ -- three element vector containing the observation in
rectangular coordinates

zMx -- six element vector containing the actual value of
each state, from the simulation, minus the estimated
value from the Kalman filter

RMS -- six element vector containing the accumulated RMS
error (actual minus estimated)

OBXMXG -- three element vector containing the actual value of
position, from the simulation, minus the observed
value (actual plus noise), in spherical coordinates

OBXMX -- three element vector containing the observed values
of position minus the estimated values (i.e.,
OBXYZ(i) - X(i), i = 1, 2, 3)

RMS1 -- three element vector containing the accumulated RMS
error of position (actual minus observed)

RMS2 -- three element vector containing the accumulated RMS
error of position (observed minus estimated)

PK -- the current value of the error covariance matrix
associated with the current estimate of the state
vector

G -- the current value of the Kalman gain matrix

.I
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B. ACXFM

1. USAGE: CALL ACXFM (IX, IKALP, VAX, VAY, VAZ, AX, AY, AZ)

2. PURPOSE: To calculate the missile accelerations, with noise,
in the inertial coordinate system.

3. SUBROUTINES REQUIRED:

GAUSS -- Gaussian distribution random number generator

4. ARGUMENTS:

Input: IX -- seed for GAUSS

IKALP -- print flag, IKALP = 1 -1 print,
IKALP = 0 4 no print

VAX, VAY, VAZ -- standard deviations for X, Y and Z
acceleration noises

Output: AX, AY, AZ -- X, Y and Z components of acceleration
in the inertial coordinate system with
noise.

5. COMMON VARIABLES: all variables in COMMON are input

COMMON AREA PPP

THETAP, PSIP, PHIP -- missile Euler angles

GX, GY, GZ -- X, Y and Z components of gravity in the body
system

COMMON AREA DER

DY -- array of simulation derivatives

Y -- array containing the results of integrating DY. The
elements of Y and DY that are needed are equivalenced
to meaningful variables names as follows.

Y(1) U, Y(2) = V, Y(3) = W -- these are the missile X, Y and
Z velocities in the body system.

Y(7) PP, Y(8) = QQ, Y(9) = RR -- these are the roll, pitch
and yaw angular rates in the body system.

DY(1) E UDOT, DY(2) VDOT, DY(3) = WDOT -- these are the
missile X, Y and Z accelerations in the body system.
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5. FLOWCHART:

GIVEN: 4 - THE TRANSITION MATRIX OF THE SYSTEM

Q - COVARIANCE MATRIX OF RANDOM FORCING FUNCTION NOISE

R - COVARIANCE MATRIX OF RANDOM OBSERVATION NOISE

ffK - FORCING FUNCTION VECTOR OF PREVIOUS ITERATION
XK-( ' ) -PREVIOUS ESTIMATE OF STATE VECTOR

PK- 1 )- ERROR COVARIANCE MATRIX OF PREVIOUS ESTIMATE

ZK - CURRENT OBSERVATION

~~KALFT _=

XK( ) 'v . K.W1 
1 "  4 T

f RESIDUALS G(XK( 11

WHERE G IS THE MEASUREMENT FUNCTION

COMPUTE THE TRANSFER MATRIX, H,
AS AFUNCTION OF(K ()

[ PK( ) ' 'PK-1 (,) 4 +T Q I

GK PK( ).HT.(H.PK( ). HT R) 1

PK(') PK( ) GK'H'PK(

kK(+) kXK( )4GK'(ZK RESIDUALS)

L _RETURN
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C. KALFT

1. USAGE: CALL KALFT (IKALP, PHI, FF, Q, R, Z, P, G, X)

2. PURPOSE: To perform one iteration of the tracking type Kalman
filter with a forcing function.

3. SUBROUTINES REQUIRED:

MMULT -- matrix multiplication routine

DINVER -- double precision matrix inversion routine

4. ARGUMENTS:

Input: IKALP -- print flag, IKALP = 1 -) print, IKALP = 0
no print

PHI -- transition matrix of the system (6x6)

FF -- forcing function vector (3)

Q -- covariance matrix of forcing function
statistics (6x6)

R -- variance matrix of observation noise (3x3)

Z -- observation vector (3)

Output: P -- error covariance matrix associated with the
previous estimate of the state vector (6x6)

G -- Kalman gain matrix (6x3)

X -- estimated state vector (6)
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6. FLOWCHART: KALDRV

i •0 "0

READ IN AND

COMPUTE THE -
FILTER CONSTANTS iRMS 0 IRMS IRMS 1
AND CONSTANT~MATRICES

REA INTHECALL GAUSS TO GET CALL GAUSS TO GET
VEARINCTEN NOISE VECTOR'v NOISE VECTOR vVARIANCOES AND
CALCULATE THE
STANDARD
DEVIATIONS

INITILIZECONVERT POSITION
POLAR FROM SIMULATION

ZERO THE COORDINATES TO POLAR COORDINATES

ERROR SUMMING
ARRAY - , v

ADD NOIS[COMPUTE OBSERVATIONF VECTOR!

RMS 111E CONVERT TO CONVERT OBSERVATION
RECTANGULAR TO RECTANGULAR
COORDINATES COORDINATES

ESTIMATE 
^  COMPUTE ONE

x ITERATION OF

KALMAN FILTER

CALL ACXFM TO +

COMPUTE I COMPUTE ERROR
ACCELERATIONS VECTORS AND
IN INERTIAL RMS ERRORS
SYSTEM

CALL MMULT TO IKALP 1
COMFUTE

FORCING FUNCTIONO F

FUNCTION FOR
NEXT ITERATION
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APPENDIX B

COORDINATE TRANSFORMATIONS
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APPENDIX B

COORDINATE TRANSFORMATIONS

All coordinate transformations used in this simulation are composed of
standard angles and rotations. The order of the rotations is always yaw,
pitch and roll.

Inertial Axes to Missile Body Axes: The relationship between the missile
body and inertial axes systems is described by the yaw, pitch and roll angles,
as shown in Figure B.1. The transformation is given by the following matrix
relation (see ref. 9):

iB  cosAcoskP cosAsinY -sinA I I

B = sinFsinAcosY sinFsinAsinY sinrcosA j (.1)-cosFsinY +cosrcoss

kB cosFsinAcoskY cosFsinAsinY cosFcosA kI
+sinrsinY -sinFcosI

fXB

... 1 x
A

A

*Y B

Figure B.I. Inertial axes to missile body axes.
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