
A T9 70 AFeD P SON C LOP MAAETC A RDE MA CE ET FM

SYSTEMAT IC APPROACH To COMPLEX SYSTEM DESIGN: AN APPLICATION -ETC(U)
MAY AS8 P TUNG N 00039 80 K- 0573

UNCLASSIFIED C SR-P AS1 GA0GOO0 -13 NL3ffffffffffff

11111 I111112.5_
111-0 11 12 .

111111.

1111IL2 - 1111.6

MrROCOFY R[SOLUIION It,] (HART
N~I~NAl I All OP IAN~U I) AW U

at.

Center for Information Systems Research

Contract Number N00039-80-K-0573

Internal Report Number P010-80002-13

A SYSTEMATIC APPROACH TO COMPLEX

SYSTEM DESIGN: AN APPLICATION TO

PRINTED CIRCUIT BOARD TEST SYSTEM DESIGN

Technical Report #13

Pei-ti Tung

May 1980

Principal Investigator: 80 '0 20 002

• ~Professor S.E. Madnick

Prepared for:

Naval Electronic Systems Command
Washington, D.C.

. a .I ;
" ,m -

SECURITY CLASSIFICATION 0" THI PACGi 1)0'0 t.. 4 t-.

REPOT DOUMENATIO PAREAD MRTRUCTIONS
REPOT DCUMNTAIONPAGBEFORE COMPLETING FORMV

,,a~~tlit 2 60 GVI ACCESSION NO. 3. RCCIPIENT'S CATALOG NUMBER

" TechnicaldihAi QI\ f'7___________

mrV .. dS.hi-I. S. TYPE Of REPORT 6 PERIOD COVERED

A Systematic Approach To Complex

Center forgn IfrAtn Sysictems Researchteld
M.i.cut Sloand so ofte Management g R0,EOTNME

I. umIo . CONTROLLIN OORC NAGAN DRES(3jANu~r 7 ~

. MONIORING AGEANCYAI NAME A D ADDES ---e g5 SEUIYALS.GO h. eo

11.~~~~a COECLALINGIFFCCENAMENNDOAD RGSSAOayN

14. MOIrTRINT AGNNSTATE ME A. AlDD tis e.SEUIToLAS (fthsr)ot

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the Abstract ontered in Block 20. VI dlft~rent hrm Report)

III. SUPPLEMENTARY NOTES

It. KEY WORDS (Conltinue, .ever.. eld* if necessary aid entify by biock nuimbor)

Software requirements analysis; software architectural
T design; functional requirements specifications; problem

design structuring; printed circuit board test system design

10. ABSTRACT (Continue an reverse side ftneeoeee,7 diilid Entiy by block rnaumbei)

The problem of designing quality software systems has>-,
existed practically as long as computers themselves.
Only recently, however, have efforts been made to
develop techniques to aid software designers in their
jobs - in effect, attempting to add an element of

* science to the software design craft. One such effort

DD , 1473 EDITION OF I NOV 65 IS 0OL I.~E

St01204-60 SECUITY CLASSIFICATION1 THIS PAGe (Uhe. -

.t..I41TY CLASSIFiCATION OF THIS PAGEtwhan Date Entered)

a!.-The Systematic Design Methodology (SDM)x a set
of concepts and techniques currently under development
at MIT Center for Information Systems Research (CISR).
The SDM is oriented toward assisting software designers
(or design teams) in the task of structuring the
architecture - the preliminary design - for a complex
system.

Essential to the methodology development is the testing
of the methodology. The most promising but also the
most challenging testing alternative is to test the

methodology against real world design problem. This
thesis involves testing the methodology in a real
world context where real system designers participate
in applying the methodology to their design problem at
hand. The application system is the test program
preparation software of printed-circuit-board functional
test system currently under development. Included in
this report are the description of the process by which
SDM was applied and an analysis of the results obtained.
Insights and experiences gained in the use of the
methodology are discussed throughout .

O 1

gg.uUtY CLASS'iFCA1@ OF TWS PAOU(W-- 0. Enald) _

VI

PREFACE

The Center for Information System Research (CISR) is a
research center of the M.I.T. Sloan School of Management. It
consists of a group of management information systems
specialists, including faculty members, full-time research
staff, and student research assistants. The Center's general
research thrust is to devise better means for designing,
implementing, and maintaining application software, information
systems, and decision support systems.

Within the context of the research effort sponsored by the
Naval Electroni s Systems Command under contract
N00039-78-G-0160,VISR has proposed to conduct basic research
on a systematic approach to the early phases of complex systems
design. The main goal of this work is the development of a
well-defined methodology to fill the gap between system
requirements specijication and detailed system design.

The research being performed under this contract builds
directly upon results stemming from previous research carried
out under contract N00039-77-C-0255. The main results of that
work include a basic scheme for modeling a set of design
problem requirements, techniques for decomposing the
requirements set to form a design structure, and guidelines for
using the methodology developed from experience gained in
testing it on a specific, realistic design problem.

The present study aims to extend and enhance the previous
work, primarily through efforts in the followng areas:

(1) additional testing of both the basic methodology,
and proposed extensions, through application to other
realistic design problems;

(2) investigation of alternative methods for
f f", effectively coupling this methodology together with the

preceding and following activities in the systems
analysis and design cycle;

(3) extensions of the earlier representational scheme
to allow modeling of additional design-relevant1 information;

(4) development of appropriate graph decomposition
techniques and software support tools for testing out

the proposed extensions.

ft i'

ii

This Document relates primarily to category (1) above. It
reports the results of the application of the Systematic Design
Methodology to the development of a design architecture for a
Printed-Circuit-Board Functional Test System Software. Various
techniques and methods discussed in earlier reports of this
series were used in the application study. This report
discusses both the development of the system's architecture
per se, as well as the ways in which the methodology was used
by the designers, and the lessons learned in the study.

4

/4

*l

EXECUTIVE SUMMARY

The problem of designing quality software systems has

existed practically as long as computers themselves. Only

recently, however, have efforts been made to develop

techniques to aid software designers in their jobs - in

effect, attempting to add an element of science to the

software design craft. One such effort is the Systematic

Design Methodology (SDM), a set of concepts and techniques

currently under development at MIT Center for Information

System Research (CISR). The SDM is oriented toward assisting

software designers (or design teams) in the task of

structuring the architecture - the preliminary design - for a

complex system.

Essential to the methodology development is the testing

of the methodology. The most promising but also the most

challenging testing alternative is to test the methodology

against real world design problem. This thesis involves

Itesting the methodology in a real world context where real

system designers participate in applying the methodology to

their design problem at hand. The application system is the

test program preparation software of a printed-circuit-board

functional test system currently under development. Included

in this report are the description of the process by which

A,,OF _.

2

SDM was applied and an analysis of the results obtained.

Insights and experiences gained in the use of the methodology

are discussed throughout.

-

ii

iL

/1 t

I

I&

3

ACKNOWLEDGEMENTS

I would like to sincerely express my appreciation to the
following individuals, without whose support and
encouragement this thesis would never have been possible.

I am particularly grateful to Sid Huff, who provided me
with the initial motivation and with invaluable assistance in
all aspects of this research.

I feel very proud and lucky to have Professor Stuart
Madnick and Dr. John Howland as my thesis supervisors.
Professor Madnick's effective guidance and counseling, never
insufficent and always conveyed in a delightful mood, has
made my thesis experience rewarding as well as surprisingly
pleasant. Dr. Howland has always contributed insightful
ideas, while allowing me to work out many others on my own.
They both are indeed all an advisor should be and more.

I am in debt to Richie Faubert, Al Levin, and Wade
Williams, for both their technical and spiritual support.
Without their cooperation, this thesis would not have been
carried out.

I would also like to express my thanks to Steve
Hazlerig, who has been consistently and patiently
proof-reading every single word of my thesis, making
corrections and suggestions. I could only hope that when the
time comes for him to work on his thesis, I would be able to
provide him with some help.

Ali.l

Work reported herein was supported, in part, by the Naval
Electronic Systems Command under Contract Number

i i 'N00039-80-K-0573j

* '--.f---- _

4
TABLE OF CONTENTS

Page

Executive Summary 1

Acknowledgements 3

List of Figures 7

List of Tables 7

Chapter

1. Introduction 8

2. Software Architectural Design Activity 15

3. Background on the SDM 19

3.1 The SDM Approach to Software Architectural Design 22

3.1.1 SDM Requirements Preparation 24
3.1.2 Interdependency Assessment and Graph Modeling 27
3.1.3 Graph Decomposition 31
3.1.4 Problem Structure Interpretation 35

3.2 Development Concerning the SDM Execution 36

3.2.1 SDM Requirements Preparation 36
3.2.2 Interdependency Assessment and Graph Modeling 40
3.2.3 Graph Decomposition 43

3.3 Up-to-date Testing of SDM 45

3.3.1 Application to a Data Base Management System Design 46
3.3.2 Application to an Operating System Design 46
3.3.3 Application to the New MIT Budgeting System Design 48
3.3.4 Motivation Behind the Current Application Study 51

5 M

, V

5
TABLE OF CONTENTS

4. Application System Background --
A Test Program Preparation Facility for a PCB Test System 54

4.1 System Objectives and Design Complexity Issues 58

4.2 The Simulation-Based Approach to

Test Program Preparation 62

4.2.1 Circuit Description Processing 63
4.2.2 Simulation of Input Patterns 64
4.2.3 Program Debugging Supported by Simulation 66
4.2.4 Simulation for Test Program Quality Evaluation 67
4.2.5 Simulation for Fault Isolation Preparation 68
4.2.6 Summary 70

5. Requirements Preparation of the Application System 71

5.1 Uni-functionality 75
5.2 Implementation Independence 77
5.3 Common Level of Generality 80
5.4 Assessment of the Template Approach 86
5.5 Summary 89

6. Interdependency Assessment of the Application System 90

6.1 Determining the Existence of an Interdependency 92
6.2 Weight Assessment and the Scaling Problems 99
6.3 Execution Time for Interdependency Assessment Activity 103
6.4 Summary 105

7. A Design Framework for the Current SDM Application System 107

7.1 Analysis of the Design Subproblems 109
, 7.2 Analysis of Subroblems Interrelationships 125

7.3 Summary 137

8. Areas for Further Research and Improvements 138

8.1 The Level of Generality Issue 138
8.2 Study of Hierarchical Structuring Principle 141
8.3 Techniques for Using the Methodology 144
8.4 Analytical Techniques for Decomposition Process 144
8.5 Linkage to the Detail Design Stage 146
8.6 Summary 148

7-

6
TABLE OF CONTENTS

Reference 149

Appendix

A. Final Set of Requirements for the Test Program Preparation
System as Used in SDM Analysis 152

B. Interdependency Assessment Statements for the Test Program
Preparation System 175

C. Requirements Subsets Derived From the Best Decomposition 187

|I

p
I-

7
TABLE OF CONTENTS

List of Figures

Page

1.1 A Model of the System Development Cycle 9

3.1 An Overview of the SDM Procedure 23

3.2 Graph Decomposition Example 34

4.1 Electronic Manufacturing Process 54

4.2 A Basic Scheme of the Simulation-Based
Functional Board Testing 57

5.1 Requirement Statement Templates 74

List of Tables
Page

7.1 Subproblem Summary Description of the Best Located
Decomposition 110

7.2 Interdependencies Between Requirements Subsets in
Best Decomposition 126

7.3 Statistics for Inter-Subproblem Linkages 128

7.4 summary Descriptions of the 13 Inter-Subproblem Linkages 135

,

'4 " - , , "'' '": -'

1. INTRODUCTION

1. INTRODUCTION

Not too many years ago, hardware costs were the

overriding expenditure in a system development effort.

Current trends point precisely in the opposite direction:

the hardware costs have been decreasing as a result of

advances in hardware design and manufacture. On the other

hand, complex software systems are often found to be very

costly, unreliable, hard to modify, and not particularly

adaptable to user requirements. Such trends suggest that

more attention should be paid to the software development

process.

Studies concerning the complex software system problems

have been conducted in the context of the system development

cycle (see Figure 1). It has been found that most errors

detected at the late stages (e.g., implementation falling

short of requirements, functional specifications not met)

have their roots in earlier stages [Thayer 1975] (Fagan 1974]

[Endres 1975]. This thesis work is directly concerned with

one of the early development phases called architectural

design, or preliminary design.

I

9
1. INTRODUCTION

- 1. IUser Requirements 1

--

I. Functional 2. ISystem RequirementsI
Development I Specification

3. + Preliminary Design +
+ (Architectural Design) +

----------------------------------- V---- 7--------
4. IDetailed Design I

-------- -- -- ------- V-------------

II. Procedural 5., ProgrammingI
Development -----------------------

6. IDebuggingI
---------------------- I

7. ITestingI

------ V ------------
8.!1 Operation and I

III. Operational IMonitoring I
Phase ---------------------- I

& 9. I Modif ication I

Figure 1.1

A Model of the System Development Cycle

10

1. INTRODUCTION

During the architectural design, the user requirements

must be analyzed and a system structure identified. This

activity is typically done in an unstructured ad-hoc manner,

without any underlying methodology. It is very difficult for

the designer(s) of a complex system to conceptualize the

structural characteristics of the design problem at hand.

This is because it is very hard for them to keep all

relationships and trade-offs among design variables in mind

simultaneously. Consequently, design decisions are rarely

coordinated in a way consistent with the requirements

established for the system under development. This in turn

causes most of the inconveniences that typically characterize

operational systems (e.g., cumbersome maintenance, cost

overruns, etc.)

A few authors have only recently recognized the

importance of the development of a good system architecture.

For example, White and Booth are concerned about "hidden

interaction" among system components resulting from

overlooking design interdependencies. Often, such

interactions are responsible for cumbersome system

maintenance which requires major re-design efforts (White and

Booth 1976]. Beldford sees the software engineer "isolated"

from the original set of requirements in the sense that

design implications stemming from the initial system

,I j

i

1. INTRODUCTION

requirements are often overlooked by organizing the eventual

system in pre-defined and unjustified ways, i.e. in

ineffective ways that tend to be derived more from previous

experience with similar designs than from a systematic

investigation of what makes best sense in the present case

[Beldford et. al. 1976].

Although the software design issues have been one of the

most important problems addressed by the researchers during

the last three years [Wasserman et. al. 1978], it has been

observed that most of the software design research effort is

targeted toward the task of detailed software design (*)

Some of the leading authors and researchers in the software

design field recognize the importance of the architectural

design task; however, they tend to view it as something that

must "somehow" take place before various software design

methodologies and techniques, which they have developed for

A " the purpose of detailed design, may be applied (**).

i'
*j

A moedetailed discussion on"Software DeinResearch"

is presented in Chapter 2.2 of Huff's Doctoral Thesis [Huff

June(b) 1979].

(**) Both Myers and DeWolf have expressed this view [Myers
1978] [Dewolf 1977]. A quote from Myers' Structure/Composite
Design is presented in the next chapter to illustrate this
point.

:4°

12
1. INTRODUCTION

Although the need for the software architectural design

activity was recognized by these and other authors, no real

guidance as to how this activity ought to be performed was

given. Having noticed this need and lack of research effort

targeted toward the software architectural design, the Center

for Information Systems Research (CISR) of the M.I.T. Sloan

School of Management has undertaken a research project. The

central focus of this research project is the development of

a useful methodology - the Systematic Design Methodology, or

SDM - for performing the software architectural design

activity. The methodology aims at constructing a system

framework consistent with system requirements. As well as

methodology development, the SDP4 research work also includes

investigation of two other related issues: testing and

evaluation of the methodology. This thesis is concerned with

these two issues. The bulk of the thesis work involves

application of SDM to a real world complex system design

problem.

The rest of the thesis is organized as follows.

I-4

*MW hwo

13
1. INTRODUCTION

In Chapter 2, we clarify the problem by examining the

activity that the software architectural design stage is

concerned with.

In Chapter 3, we introduce the SDM1 approach to software

architectural design in a step-by-step fashion. Then the

up-to-date development concerning the execution of different

methodologial steps is briefly reviewed. Finally, the

up-to-date testing of the SDM is discussed.

Chapter 4 provides a background on the current SDM

application system -- a test program preparation facility for

a printed-circuit-board functional test system. Also

addressed here are the system objectives and design

complexity issues.

Chapters 5 and 6 report how the requirements preparation

process and the interdependency assessment activity for the

current SDM application were performed respectively. Also

included in these two chapters are some assessment made with

respect to the two methodological steps, discussions of

difficulties encountered, and lessons learned throughout the

application.

Chapter 7 presents the design framework of the current

application system obtained as a result of the SDM
4

14
1. INTRODUCTION

application. Each subproblem in the design framework and each

inter-subproblems link is examined in detail.

In chapter 8, we take a retrospective view of the

current application and suggest areas related to the SDM for

further research and improvement.

'IJ

15
2. SOFTWARE ARCHITECTURAL DESIGN ACTIVITY

2. SOFTWARE ARCHITECTURAL DESIGN ACTIVITY

In this chapter, we clarify the problem by examining the

activity that is involved in the software architectural

design stage.

It must be made clear that software architectural design

is different from detailed design. The detailed design stage

constitutes the actual design of program modules as opposed

to system design. The software architectural design stage

as defined by Freeman [Freeman 1976], is concerned with the

"discovery of problem structure" in the design, i.e., the

identification of major subproblems of the system and the

establishment of relationships between these subproblems(*).

As mentioned before, software design issues have formed

the central focus of software engineering research during the

4last three years. However, these recently-developed software

design theories, methodologies, and techniques have been

* ;targeted, in general, toward the detailed design stage.

These approaches assume that the software architecture (the

preliminary partitioning of the system) either just happens,

or has been performed. For example, Dr. G. Myers, primary

(*) Here, a "subproblem" is "a subset of system
requirements", not (necessarily) a program subroutine or a
collection of such subroutines.

16

2. SOFTWARE ARCHITECTURAL DESIGN ACTIVITY

developer of the Composite Design Methodology points out:

"If the product being developed is a system, rather

than a single program, there is another design

process that must occur between the external design

process and the use of composite design. This

process, called system design, is the decomposition

of the system into a set of individual subsystems

or individual programs. Although some of the ideas

of composite design are appropriate here, and some

people have claimed to have used composite design

for this process, composite design does not appear

to be directly applicable to system design.

Therefore, when designing a system, as opposed to

an individual program, the designer must first

partition the system into distinct subsystems or

programs. Then the methodology of composite design

can be used to produce the structure of these

individual pieces." [Myers 1978]

The Idea of partitioning a system into smaller, more

manageable subproblems is not new. It has been widely

advocated as a way to simplify the design of a complex

V.

17
2. SOFTWARE ARCHITECTURAL DESIGN ACTIVITY

system. For example, it is very common to approach system

decomposition from a strictly functional viewpoint. This may

even lead to an implementation structure directly, i.e., one

program module per subfunction. However, a functional system

decomposition is not necessarily sufficient from a design

standpoint. It is likely to miss the requirements not

considered explicitly; e.g. the performance requirements are

often neglected in this decomposition strategy. In other

words, a functional system decomposition does not necessarily

form a design problem structure.

Just what is a design problem structure? A design

problem structure is concerned with how different system

parts interact from a design standpoint. That is, what parts

can be designed independently of others as opposed to what

parts must be designed at the same time. A design problem

structure is then used to identify the trade-offs that must

be taken into account between competing solutions(*) to the

design. Thus, while it can make perfect sense to organize

several well defined system functions as separate parts in

C the final system implementation, it may be necessary and

meaningful to organize their design in the same design

(*) "Competing solutions" refer to the set of implementation
techniques used together to satisfy the system requirements.

.

I#, __

18

2. SOFTWARE ARCHITECTURAL DESIGN ACTIVITY

subproblem if these functions are such that they need to

share some system resources.

At this point, we should have a better understanding of

the software architectural design activity. The need and

lack of a more systematic approach to perform this activity

has led to the development of SDM. In the next chapter, we

provide a general background on the methodology.

* I

193. BACKGROUND ON THE SDM.

3. BACKGROUND ON THE SD1

The objectives of the architectural design stage, as

discussed in the proceeding chapter, can be summarized as

follows. This stage should consider the interactions among

requirements explicitly to identify the design structure with

the following properties:

(a) its individual components are relatively

independent,

(b) existing dependencies can be easily

understood, and

(c) all the interactions are not hidden

but explicitly made.

4A more structured approach is required to the software

architectural design activity in order to achieve the above

objectives. The need and lack of such a structured approach

led to the development of the SDM.

* i The SDM research was initiated by Andreu, who in the

* course of his doctoral thesis [Andreu 1978] formulated some

key principles, and developed a first-order implementation,

*of the SDM approach. The Phase-I SDM was tested against two

* 4

3. BACKGROUND ON THE SDM 20

non-trivial system design problems. One is the application

to a Data Base Management System (DBMS) design performed by

Andreu himself [Andreu November 1977]. The other is the

application to an Operating System (OS) design performed by

Holden [Holden 1978]. The two tests of the SDM were

reasonably successful. Lessons learned from these tests

suggested directions for further research and improvements of

SDM.

Continued research work on SDM was performed by Huff,

who in the course of his doctoral thesis [Huff June(b) 1979],

made significant extensions to the methodology. While many

of the earlier approaches have been advanced or replaced, the

basic foundations laid out by Andreu were proved to be

solid, and continue to endure. The Phase-II SDM has been

applied to two real world design problems. One is the

application to the new M.I.T. Budgeting System [Huff June(a)

1979]. The other is the application to the test program

preparation software of a Printed-Circuit-Board (PCB)

Functional Test System, the experience and results of which

is reported in this thesis.

*

4 k

21

3. BACKGROUND ON THE
SDM2

An interesting as well as important point that should be

mentioned here is that the underlying philosophy of the SDM

is mainly based on the research work done by Alexander.

Alexander, a design theorist whose main focus has been city

design, developed both the philosophy and techniques of a

systematic approach for the city design activity [Alexander

1964]. Upon examination of the motivations that led

Alexander to devise such an approach, the initial SDM

researchers found that the motivations were very close to

what had moved them to look for more systematic approaches to

the process of architectural design in software development.

The SDM researchers were thus attempting to adopt

Alexander's strategy to the software architectural design

problem. How Alexander's motivations and approach were

examined by the SDM researchers is reported in both Andreu's

and Huff's theses (see [Section 11.3, Andreu 1978] and

[Section 2.1, Huff 1979]).

The rest of this chapter is organized as follows.

First, we introduce the SDM approach to the software

architectural design, in a step-by-step fashion. Then the

up-to-date development concerning the execution of different
4'

',,

K° i

22

3. BACKGROUND ON THE SDM

methodological steps is briefly reviewed. Finally, the

up-to-date testing of SDM is discussed.

3.1 THE SDM APPROACH TO SOFTWARE ARCHITECTURAL DESIGN

Recall that the software architectural design activity

is concerned with identifying a design problem structure,

that is, the identification of major subproblems of the

system and establishment of the relationship between these

subproblems(*). The SDM aims at providing a more structured

approach to this activity.

In this section, we briefly describe each step involved

in applying the SDM. For a more complete discussion, see

[Andreu 1978]. The overall SDM procedure is illustrated

graphicaly in Figure 3.1.

(*) Again it must be remembered that a "subproblem" should be
thought of as a "subset of system requirements," not
(necessarily) a program subroutine or a collection of
subroutines. To structure the software programming modules
required to implement the system is a task of the detailed
design rather than the architectural design.

6k

23
3. BACKGROUND ON THE SDM

I User Needs I

V
I I Statements of

I 2 I Requirements

V

I Interdependency Assessments I

V

(hweak ~ .we ak

I , avg . I Representation
avg. / \ \ avg./ \ strong As a Graph

/ \ avg. \ / I

I/strong' weak

V

--- -- -- ---------- - - - - --O- - - -
-- X - A - - DecompositionI/ \\ /\ I

I/ k\ / I

V

I *** I Formalization of
5 * Design Sub-Problems

I * @*,**** I and Linkages
;I * * **I

V

* / Architectural \
Design /

Figure 3.1
An Overview of the SDM Procedure

4

1 I_ _ _ _ _

24

3. BACKGROUND ON THE SDM

3.1.1 SDM REQUIREMENTS PREPARATION

The SDM starts with an initial statement of

requirements. For the purpose of SDM application, the

initial statement of requirements must be expressed as a set

of individual English-language statements having certain

characteristics, namely:

(a) Unifunctionality:

each statement clearly and concisely specifies one

specific function.

Examples of requirement statements containing this

characteristic are shown below:

"New data files can be created,"

"Data files can be deleted," and

"Data files can be modified."

An example of a requirement statement that does not have this

characteristic is

"Data files can be created, deleted, and modified,"

where one single statement specifies three functions.

,

k% ~

25
3. BACKGROUND ON THE SDM

(b) Implementation independence:

each statement specifies what is to be done but not

how.

This can be illustrated by examining the following three

statements:

"The Employee Salary Information File can be read

by authorized users only,"

"There will be a read-access password associated

with the Employee Salary Information File and this

password will be given to authorized users only. No

read-access to the file can be obtained without

presenting the password," and

"A list of user identifications for those who have

been authorized to read the Employee Salary

Information File will be maintained. Any

4read-access to the file will be checked against

this list."

*

e

26
3. BACKGROUND ON THE SDM

All of the above three statements concern security guard

against unauthorized read-access to the Employee Salary

Information File; however, only the first statement specifies

nothing more than the desirable function. The other two

statements not only state the function, but also include the

procedural information concerning how to implement the

function (one uses a "read-access password" approach; the

other uses a "maintaining a list of authorized user

identifications" approach) . The first statement is

considered to be implementation independent, for it does not

state any specific implementation approach. The other two

are considered implementation dependent.

(c) Common level of generality:

all statements should be, to the extent possible,

at the same level of generality. Furthermore, they

should be at a level high enough for both designers

and users to understand.

Examples drawn from the functional requirement specifications

of a computer-based budgeting system are presented below to

show how requirements can be stated at different levels of

generality. Consider the following two statements:

• *

K.

27
3. BACKGROUND ON THIE SDM

"Automate as many manual procedures as feasible to

save time and effort," and

"Add a box to the Personnel Action Form to indicate

whether person hired is a replacement or an

addition."

There is a rather substantial difference in the level of

generality between the two.

3.1.2 INTERDEPENDENCY ASSESSMENT AND GRAPH MODELING

Once the initial set of requirement statements are

generated, the system designers must perform a pair-wise

interdependency assessment activity. This is done by

examining each pair of requirements in turn, and making a

decision as to the degree of interdependence between the two.

First of all, it is important to recall that we arei
4 "interested in design subproblems, i.e., the identification of

groups of requirements that can be considered at the same

time for design purposes; thus the interdependencies among

requirements should reflect this design emphasis.

Accordingly, the interdependencies among requirements will be

I .
IJ {q

28
3. BACKGROUND ON THE SDM

defined so as to make explicit how different requirements

interrelate from the standpoint of meeting them in the

eventual design. There are two main ways in which one can

think about requirements being interrelated in this manner:

(a) Supporting: The implementation of one requirement would

support the implementation of the other.

(b) Conflicting: The implementation of one requirement would

conflict with, or impede the implementation of the other.

The degree of interdependent relationship between two

requirements can be determined by envisioning to what extent

they would interact in the course of implementation.

Examples drawn from the SDM application to a Data Base

Management System are used here to clarify the two types of

interdependency concepts. The following pair of requirements

are interdependent in a supporting sense because they call

for somewhat similar functions which must performed in

different circumstances in the eventual system:

wData base update can be performed by on-line user

§ through query lanugage," and

p i

29

3. BACKGROUND ON THE SDM

"Data base maintenance can be performed by batch."

One may consider that since in an on-line environment the

usual priority is quick response time, a possible

implementation to meet the first requirement is to "patch up"

the performed updates while consolidating updates can be done

at the same time as bulk data base maintenance, assuming that

such maintenance is performed often enough. A pair of

requirements that are interdependent in a conflicting sense

are shown below:

"There will be transaction history facility," and

"Data integrity will be maintained with respect to

active request cancellation."

In order to keep an accurate transaction history, cancelled

requests should be accordingly deleted. There are several

ways of implementing this, including the possibility of

1 recording a "delete request" transaction, but the point is
*1

I that the second requirement poses a "delete" capability

requirement in the transaction history which is not implied

by the first alone.

'04

' '

I.4

30
3. BACKGROUND ON THE SDM

Keeping the two interdependency concepts in mind, for

each pair of requirements, the designer identifies

interdependencies by considering several (possibly

incompatible) implementation schemes. It must be made clear

that alternative implementation schemes as opposed to one

concrete implementation technique should be considered. The

purpose here is to avoid implementation biases traditionally

produced by considering only one particular implementation

technique at the outset.

Designer intuition and judgement play the central role

in performing the interdependency assessment. It should be

noted that this activity must be somehow performed by the

designer, whether using the SDM or not. The advantage of the

SDM approach is that requirements may be treated a pair at a

time, thus reducing the complexity of the overall task at the

cost of additional analysis time.

Information about the interdependencies among

requirements can be represented as a graph: the requirement

statements are graph nodes and the interdependencies are

weighted links (the weight of a link represents the degree of

the interdependency assessed). An example of such a graph

was shown in Figure 3.1.

-_i4m u

31

3. BACKGROUND ON THE SDM

3.1.3 GRAPH DECOMPOSITION

The next step of the methodology is to partition the

graph. The partitioning is done based on cluster analysis

and graph decomposition techniques. To provide an objective

function for the partitioning, the SDM incorporates a

quantified measure for grading the decomposed structure.

This measure is based upon the concepts of module strength

and inter-module coupling. Alexander (Alexander 1964],

Stevens (Stevens 1974], Myers (Myers 1978], and other authors

have argued convincingly that a good software design is one

that consists of modules that possess high strength, or

internal binding, and which simultaneously are weakly

interconnected. In the SDM, this "strength/coupling"

criterion is quantified in the following way. Suppose the

graph representation of the target design problem has been

decomposed into a set of non-overlapping subgraphs

{GI , G2 , Gn}

Then if Si = the strength of subgraph Gi, and Cij the

coupling between subgraphs Gi and Gj, we define

Sn n-1 n

M = n Cij

i=1 j=1 i=j+l

and use M as a figure of merit for the decomposition. The Si

and Cij factors are themselves defined in terms of the number

0i

2J

32
3. BACKGROUND ON THE SDM

and weight of links within a given partition, and

interconnecting two partitions, respectively. Various

arguments regarding how Si and Cij ought to be defined in the

case of the graph model (with weighted links) are discussed

by Huff [Huff February 1979], and will not be repeated here.

The following definitions for these quantities were given:

Li - (Ni - 1) Wi
Si =-------------------------------- --)

Ni (Ni - 1) Li
- ------- (Ni - 1)

2

where

Li = the number of links contained within subgraph i,
Ni = the number of nodes contained within subgraph i,

Wi = the sum of the weights on the links in subgraph i.

Lij Wij
Cij -------- * (-----)

NiNj Lij

where

Lij = the number of links connecting nodes in subgrpah i

to nodes in subgraphs j,

Ni,Nj = the number of nodes in subgraphs i, j respectively.

Wij = the sum of the weights on the links connecting nodes

in subgraph i to nodes in subgraph j.

3. BACKGROUND ON THE SDM 3

To see how these functions work in a calculation, consider

Figure 3.2. Computations show that

Li = 6, L2 = 7, L12 =3

NI = 5, N2 = 6,

Wi = 3.2, W2 = 3.8, W12 =1.2

As a result

Si = (6-4)/(5(4)/2-.4)*3.2/6 = 0.18,

S2 = (7-5)/(6(5)/2-5)*3.8/7 = 0.11,

and

C12 = 1.2/(5(6)) 0.04

Finally,

M =Si + S2 -C12 =0.25.

34
3. BACKGROUND ON THE SDM

* .9/ .5

* *
******* *

* * * \ \ .6 *
* .4 * *
* * / * \ .2 *
* .3 \.5
* t \ * * *.. ",.>..* * 1 *, .

* /17 * * .4\ *
* .4/I * * *
*.6 / I * * *

* .6 .6 * *
* ******* **

Subgraph I Subgraph 2

Figure 3.2

35
3. BACKGROUND ON THE SDM

3.1.4 PROBLEM STRUCTURE INTERPRETATION

The resulting subsets of the requirements in the

partition obtained above are to be interpreted by the

designer as design subproblems. In essence, these design

subproblems, together with their interconnections (also

derived directly from the graph partition) constitute the

preliminary design.

As is true with most design activities, iteration on the

overall procedure has been found to be of value. A single

pass through the SDM process usually produces a reasonable

design, but this design may be improved considerably in terms

of clarity and completeness by studying it for weaknesses.

Typically, this is done by looking for subproblems with an

unclear or unnecessarily complex functional interpretation,

or cases of omitted or ambiguous specifications. After

studying the weaknesses, the set of requirements will be

modified to fill gaps and remove ambiguities.

pi

Ii

J- A

36

3. BACKGROUND ON THE SDM

3.2 DEVELOPMENT CONCERNING THE SDM EXECUTION

In this section, we present a brief overview of the

up-to-date SDM development concerning execution of each of

the methodological steps. Guidelines and techniques that

have been investigated, proposed, and/or implemented to help

organize the activities involved in, or to realize the

execution of, these methodological steps will be identified.

Pointers to detailed discussion concerning each of the

specific will be given.

3.2.1 SDM REQUIREMENTS PREPARATION

The SDM is driven by a set of requirements containing

certain kind of characteristics.

In testing the methodology (Phase-I SDM) against the

DBMS design problem, Andreu identified a list of

characteristics which the set of requirements used by the SDM

should possess, including

(1) implementation independence,

(2) system structure independence,,

(3) independence among requirements,

i,

37
3. BACKGROUND ON THE SDM

(4) simplicity,

(5) no "stand alone" requirements,

(6) plausibility.

Andreu explained each of the above characteristics along

with illustrations drawn from the DBMS requirements set, and

justified the need for the inclusion of these characteristics

based on the goal of the SDM [Andreu November 19771. A

lesson learned from the SDM application to the DBMS indicated

that for the purpose of proper set decomposition, the

following characteristic should be added to the above list

(Andreu December 1977]:

(7) common level of generality

This list serves as the basic "check list" for SDM

requirements preparation.

During the Phase-II SDM development, the transition from

the "functional requirements specification" stage to the

"software architectural design" stage was investigated [Huff

June 1978]. Specifically, the need to capture user-level

functional requirements in a form appropriate for follow-on

SDM analysis (interdependency assessment, etc.) was examined.

The SDM researchers' first thought in this area was that one

F,

y1

38
3. BACKGROUND ON THE SDM

of the well-documented "requirement statement languages"

(RSL's), which have emerged over the past few years, might

proved suitable, perhaps with some modifications, to their

needs. Upon examination of some of these languages and

assessment of their nature and functioning with respect to

SDM, the SDM researchers were led to make some general

observations regarding ambiguous terminology that has grown

up around these RSL's, around system requirements

specification in general, and regarding the appropriate role

of RSL's in the system development cycle.

To provide some clarification for the ambiguities and

mis-uses that are frequently encountered in the literature in

the "system requirements specification" area, the SDM

researchers first examined three important aspects of

requirements:

* (1) degree of procedurality,

(2) level of abstraction(*), and

(3) capability-versus-process.

(*) In this thesis, the terms "level of abstraction" and
*1 level of generality" are used interchangably.

.! [

, -- - -:

39
3. BACKGROUND ON THE SDM

Then a simple framework, in which these three characteristics

can be viewed together, was put forth for conceptualizing and

describing requirements in the context of the system

development life cycle. For a detailed discussion concerning

the above, see [Chapters 2 and 3, Huff June 1978). This

author has found the clarification very helpful in preparing

the requirements set for the current SDM application reported

in this thesis.

Having observed that the RSL's were useful tools for

documentation rather than for design(*), the SDM researchers

inferred that these RSL's were not appropriate for expressing

SDM requirements. Instead, a new approach was proposed by

Huff. The new approach is called "the template technique", as

it is based on a set of seven basic "requirement statements

templates" in which each template corresponds to a general

category of statement type. The template approach has been

used in the two Phase-II SDM testing cases and has been found

helpful for SDM requirements construction. The effectiveness

of the template technique in preparing the SDM requirements

for the current application reported in this thesis will be

assessed later.

(*) Experience of the RSL's has seen them used primarily as
documentation techniques rather than design techniques.

"'aj'4
,.-

40
3. BACKGROUND ON THE SDM

3.2.2. INTERDEPENDENCY ASSESSMENT AND GRAPH MODELING

Once the initial set of requirements are generated, a

pair-wise interdependency assessment activity can be

performed. In his initial research on software architecture,

Andreu employed a simple graph model to represent the

functional requirements of a system and their implementation

interdependencies. Each requirement is represented as a

separate node; a link connecting two nodes corresponds to the

existence of an interdependency between them.

As mentioned before, the interaction of a given pair of

requirements can occur in two ways: supporting or

conflicting (see Section 3.1.2)..Conceptual models in which

implementation of one requirement is related to

implementation of the other in either of the above two ways

can be imagined to identify the interdependency. Andreu has

proposed guidelines for the generation of conceptual models

as well as procedural guidelines for performing the

interdependency assessment activity. A summary of the

guidelines can be found in [Holden 1978]. A detailed

explanation for each of the guidelines is given in [Chapter

3, Andreu November 1977] along with examples drawn from

Andreu's SDM application to the DBMS. While this basic model

proved satisfactory for the early exploratory studies [Andreu
4

A.

V ___

41
3. BACKGROUND ON THE SDM

1978] [Holden 1978], it was also clear that improvements and

extensions could be made so as to allow a designer to

represent additional design-relevant information.

Huff, in his follow-up research on SDM, identified and

analyzed various possible types of additional information

that software designers would draw upon (usually intuitively)

in constructing a practical architectural design. The types

of the information believed to be most relevant and

accessable via designer judgement and knowledge include

(1) interdependency strength,

(2) interdependency similarity relationships and

accompanying strength factors,

(3) implication relationships between requirements

and between interdependencies,

(4) hierarchical implication relationships.

Useful schemes needed to effectively represent these

additional kinds of information in the graph model have also

been developed.

In order to illustrate the application of the extended

design model, a subset of 22 DBMS requirements were analyzed

A. by Huff [Chapter 4, Huff July 1978]. A detailed discussion

IAL^

42
3. BACKGROUND ON THE SDM

of all of the proposed extensions and the experience gained

in the assessments of these additional kinds of information

(interdependency weights, interdependency similarities and

associated weights, and implication relationships) can be

found in [Huff and Madnick July 1978].

Analysis study on which extensions should be adopted for

the purpose of extending the SDMI, with respect to

design-relevance and producing effective decomposition, was

carried out. It was argued that the most significant such

extension was the inclusion of a weight factor to correspond

to each assessed interdependency, with a weight on each arc

representing the strength for the interdependency. Thus it

was decided to incorporate this "interdependency strength"

extension into the representational model. Huff proposed a

variety of possible ways in which such a weight could be

defined and justified. The weight factor can be determined

based on "how closely two requirements are related" and/or

"how certain the designers are about the existence of the

interaction between the two requirements." Like determining

the existence of a link itself, determining the weight of a

link will be made judgementally rather than mechanically.

43
3. BACKGROUND ON THE SDM

3.2.3 GRAPH DECOMPOSITION

Once the design-relevant information pertaining to the

target system is modeled as a graph, it is ready to be

decomposed. The set of analysis techniques for use in the

graph decomposition is central to the actual execution of the

SDM. From the SDM viewpoint, the graph decomposition is

basically a mechanical task. The important analytical

techniques for applying the SDM concepts are reasonably well

developed at this point.

The graph decomposition problem is very much dependent

on the context of the graph model. Although there are certain

common principles, implementation details are generally

S I context specific. Andreu, drawing on the common principles,

formulated and implemented three main techniques, i.e.,

similarity clustering, "leader group" clustering, and

iterative partitioning, for solving the decomposition problem

of the basic graph model and basic goodness measure (Chapter

IV, Andreu 1978].

The decomposition problem was investigated further by

Huff during Phase-II SDM development. Recall that several

extensions to the basic graph model were proposed (see

Section 3.2.2). Having extended the SDM representational

F

44
3. BACKGROUND ON THE SDM

44

framework, it becomes necessary to modify the various

analysis techniques so as to incorporate the information

included in the new representation. The results of the

phase-II SDM graph decomposition problem investigation are

reported in [Huff February 1979]. Several different but

related topics are addressed there, namely, factoring the

Interdependency weight assessment values into the

decomposition analysis activities; techniques for including

interdependency similarity information; new hierarchical

clustering algorithms for effecting a graph decomposition;

comparative analysis among the old and the new clustering

methods. Huff also developed and tested a new top-down

hierarchical partitioning algorithm (called "interchange

partitioning algorithm") which is well suited to decomposing

the particulr type of graph being dealt with in the SDM

context. This new algorithm is presented in detail in [Huff

March 1979].

7

3. BACKGROUND ON THE SDV4

3.3 UP-TO-DATE TESTING OF SDM

The SDM research to date has involved both methodology

development and application studies. There have been four

completed applications of the SDM to non-trivial design

problems, including the one reported in this thesis. The

Phase-I SDM was applied to a Data Base Management System

[Andreu November 1977] and a small Operating System [Holden

1978). In both cases, the studies were carried out by SDM

researchers. The Phase-II SDM has been applied to two real

world systems. One is an application to the new M.I.T.

Budgeting System [Huff June(a) 1979], the other is an

application to a major part of a Printed-Circuit-Board

Functional Test System reported in this thesis. While the

role of the system designers were "simulated" by the SDM

researchers in Phase-I SDM applications, real world system

designers' participation have been heavily involved in the

Phase-II SDM applicaitions in the latter two cases.

In this section, we briefly discuss each of the

applications.

K,
K

.1

-j

• T¢

n mmmmm ,-lm m ,m

46
3. BACKGROUND ON THE SDM

3.3.1 APPLICATION TO A DATA BASE MANAGEMENT SYSTEM DESIGN

In the case of the design of a DBMS, the first

application of SDM to a design problem, Andreu started with a

set of requirement statements derived from a specification

issued by a U.S. government agency. As a result of the

application, a design framework for the problem analyzed was

identified and discussed; its study pointed out that the

methodology had produced interesting and unforeseen results,

mainly related to the completeness of the original

requirements set.

In summary, the application provided the SDM researchers

wiLh valuable insights into the potential of the explored

methodology.

3.3.2 APPLICATION TO AN OPERATING SYSTEM DESIGN

In a separate application test, Holden applied the SDM

to the design of a small software operating system. This test

differed from the DBMS example in that the target system

already existed (as a pedagogical case study in the textbook

Operating Systems by Madnick and Donovan).

- _ I I

3. BACKGROUND ON THE SDM 47

Requirement specification statements were developed from

published descriptions of the purpose and approach underlying

the operating system. A number of iterations were required

to build a reasonably clear, consistent, and complete

requirements set. It was somewhat surprising that, although

the target system was already built and documented, the

requirement definition task was found to be the most

challenging and time-consuming aspect of the test.

Interrelationships between requirements were developed

according to the guidelines specified in the earlier research

efforts, i.e., the application of SDM to DBMS design by

Andreu.

The design produced by SDM resembled the original design

in most respects. Given the manner in which the requirements

were generated, although perhaps not surprising, it was

encouraging to see that at least in this case the SDM

appeared to be stable. Holden analyzed the few interesting

differences between the original and SDM designs. While it

was impossible to prove the case conclusively, Holden felt

that, in most cases where design differences arose, SDM had

produced an alternative that appeared to be as good as, or

possibly better than, the original design.

.4

(:i

AI

48
3. BACKGROUND ON THE SDM

The SDM researchers believe it was fair to conclude that

the two tests of the SDM had been reasonably successful.

Much was learned on the basis of these tests to suggest

directions for further research and improvements of SDM.

(see the sections on "Areas for Further Research" in both

(Andreu 1978] and [Holden 19781).

Additional methodology development was carried out by

Huff. Significant extensions were made to the Phase-I SDM.

The Phase-II SDM has been tested against the following two

real world applications.

3.3.3 APPLICATION TO THE NEW MIT BUDGETING SYSTEM DESIGN

The third application of the SDM is an applicaton to a

medium-sized realistic system architectural design problem.
The system under design is a new MIT Institute-wide,

computer-based budgeting and planning system. As the earlier

SDM applications had been concerned with system software - a

DBMS and an OS - this application, which is a fairly

conventional yet reasonably complex data processing

application system, promised to provide new insights as to

SDM applicability to such "application system" design.

.4

49
3. BACKGROUN4D ON THE SDM

More importantly, this application is the first one in

which the key SDM design data was obtained from the system

designers themselves, thus providing the first significant

unbiased evaluation of the usefulness and effectivenss of

the methodology. Over the course of ten meetings, Huff and

the system architects for the new Budgeting System worked out

the functional requirement statements and requirement

interdependencies in detail. The decomposition of the

resulting requirements graph and the interpretation of the

design problem structure were then carried out. The final

architecture for the target system was well received by the

Budgeting System architects, and they have expressed their

intention to use this architecture in guiding their coming

detailed design work.

Throughout the application, it was found possible to

execute the various steps of SDM with little difficulty.

While a substantial amount of time was spent in preparing the

requirements set and the interdependency assessments, the

decomposition analysis and architectural interpretation were

relatively straightforward and not particularly time

consuming. This suggests that the time and effort invested

early in the SDM analysis process pays off in terms of a

*good" initial decomposition and easily interpretable

4 architecture later on. Such an observation is in general

II

F50
3. BACKGROUND ON THE SDM

agreement with what other software design researchers have

found in other contexts [Boehm 19731.

The Budgeting System designers have expressed both

positive and negative reactions toward the SDM analysis

exercise. The major negative reactions concerned with the

time required for the analysis and some doubt about the

overall value of the exercise. The latter occurred mostly at

the outset of the analysis process. Fortunately, both issues

were tempered by the designers' appreciation of the research

nature of the study. The positive reactions concerned new

design ideas as well as clarification and improvement of

current ideas that emerged during the exercise, discovery of

new ways of approaching the design task in general, e.g.

separation of functional concerns from implementation issues,

and their belief that the final architecture would be of

assistance in the later detailed design efforts.

As pointed out by Huff, the eventual value of the

resulting Budgeting System architecture cannot be known at

this time. Rather, it will be necessary for the SDM

researchers to follow up this exercise in the future to learn

what kind of impact this application study might disseminate.

For detailed report on this application study, see (Huff

June(a) 19791.

,-

r -

51
3. BACKGROUND ON THE SDM5

3.3.4 MOTIVATION BEHIND THE CURRENT APPLICATION STUDY

The other real world SDM application -- an application

to the test program preparation part of a

Printed-Circuit-Board (PCB) Functional Test System-- has

been performed by this author. How the methodology was

applied, the results obtained, the lessons learned, and the

assessments made on the methodology are reported in detail in

the following chapters. In this subsection, we review the

motivations behind the current application study. One

motivation originates from the importance and difficulties of

the SDM testing. The other motivation originates from the PCB

Functionl Test System designers' interest in searching for

effective approaches to software development and maintenance.

3.3.4.1 Difficulties of SDM Testing

An important part of methodology development is testing

against application situations. In the case of the SDM,

testing presents particularly difficulties.

The main difficulty lies in the fact that the SDM is

specifically oriented toward large-scale, complex systems

which require many man-years of effort to design, build and

* .install. The magnitude of time and effort required to effect

,

i~

52

3. BACKGROUND ON THE SD4

a realistic test is large. Even if the size were not a

problem, the detailed knowledge required concerning the

specific application area necessary to fully comprehend the

requirements of the system and their possible implementation

alternatives presents a second difficulty.

Huff, in his Doctoral Thesis Proposal, has proposed

three ways to proceed with SDM testing [Huff Oct 1978]. It

is the real-world test case that is the most difficult to

pursue:

.A third alternative is the real-world test. This

approach would require an agreement with some organization

currently facing a medium-large-scale design and development

task This kind of test would appear to be most

promising in terms of identifying the actual strengths and

weaknesses of the SDM, but also has the most associated

* difficulties, including the necessity of locating an

organization willing to participate and risk the expenditure

of some resources on such a test, the difficulty of

adequately monitoring and controlling the test, etc..

.... We believe that the likelihood of locating a

suitable organizational test situation is somewhat low, but

since the potential research payoff is high, we shall
c
continue pursue the alternative U

F.

sq

I
53

3. BACKGROUND ON THE
SDM5

3.3.4.2 ABC's Participation in SDM Testing

An electronic corporation, that we will refer to as ABC,

provided the environment for testing SDM (*). Having been

concerned with the cost of software, ABC's software managers

and designers have been searching for effective approaches to

software development and maintenance. When introduced to the

SDM approach, they became interested in participating in SDM

testing. From the long term viewpoint, they regard the SDM

application a starting experience of a more structured

approach to the functional development of software system

development. It was decided that the SDM be applied to a

major part -- the test program preparation part -- of a PCB

Functional Test System(**) , a system currently under

development. Before presenting the detail of the application

study, in the next chapter we first provide a general

background on the application system.

*1)

(*) The corporation has requested anonymity since this studyYinvolves products still under development.

(**) Since SDM is still at the testing stage and the
organization is unfamiliar with it, applying it to the entire
system architecture design may be a too large task to
control.

[4

4. APPLICATION SYSTEM BACGRUN ---- 54

4. APPLICATION SYSTEM BACKGROUND

) 4. APPLICATION SYSTEM BACKGROUND

The application system under discussion here is the Test

Program Preparation part of a Printed-Circuit-Board (PCB)

functional test system. PCB test is one stage of the entire

electronic manufacturing process. The process, which is

illustrated in Figure 4.1, consists of a series of assembly

and test stages that culminates in the shipment of product.

Back-I I Back-I
plane I------ > I plane I >------ >

I Assem. I I Test I I
Vv

I Incom. I I PCB I + PCB + I System I
Insp. I -- > I Assem. I -- >+ Test + -- >I Assem. I

++++++++++

Iv

I System I
I Test I

Figure 4.1

Electronic Manufacturing Process V

I Ship I

- -I

i~

4. APPLICATION SYSTEM BACKGROUND

At incoming inspection, individual components and bare

boards are tested. Then the components are loaded onto

printed-circuit boards at the board assembly stage. This is

followed by a board test. In parallel, the interconnect

devices -- cables, harnessess, and backplanes -- are

assembled, tested, and then combined with the loaded and

tested printed-circuit boards at system assembly. A system

test is performed and the product is ready for shipment. Our

attention is at the PCB board test stage. In particular, we

are interested in the functional testing of logic-circuit

boards.

Logic circuits consist of discrete semiconductor devices

and integrated circuits (IC's) of small-scale, medium-scale,

large-scale, and very-large-scale (SSI, MSI, LSI, and VLSI).

Background information about IC characteristics and

logic-circuit design is available from several sources listed

in the reference [Morris 1971] [Su 1974) and is not provided

here. The logic circuits may be assembled by soldering these

IC's onto boards with printed-circuit interconnections, or

other similar interconnection techniques. The same boards

may include some analog circuits, usually as interfaces

between the digital circuits and external signals. A

functional board test is a test for the board's proper

4 functioning by attempting to duplicate the final system

t LjT

4. APPLICATION SYSTEM
BACKGROUND

environment in which the board will operate. The board is

typically accessed by an edge connector.

In recent years, simulation has been used as an

indispensible tool for effective PCB testing [Breuer 19761

[Szygenda 1975] (Anderson 1975]. The current SDM application

system is a simulation-based test program preparation

facility that supports all the preparation and processing

work required prior to the testing and diagnosis of the

circuit boards.

A digital simulator is a computer program that models

the operation of a logic circuit. The basic scheme of the

simulator approach is displayed in Figure 4.2. Initially,

the test engineer inputs both a description of the board and

a tentative test program (input patterns to exercise the

board) to the simulator. The simulator relies upon a library

of models for all component types on the board. Briefly

speaking, what the simulator has to do is to provide feedback

to the test engineer for the development and debugging of an

effective test program, and to generate the data base needed

for later diagnosis.

* -

Io~

57
4. APPLICATION SYSTEM BACKGROUND

NETWORK TEST

DESCRIPTION PROGRAM

V
------------------------------ V------------

I 1<-- ILIBRARY OFI
I SIMULATION I IIC MODELSI

I -- - -- - -

-------------------------------- V-----------------

V V V
DICTIONARY VALID GOOD

OF TEST PROGR~AM BOARD
FAULT FAULT BEHAVIOR

SIGNATURE DETECTION

V
TESTING

Figure 4.2

.4 A BASIC SCHEME OF THE SIMULATION-BASED
4 FUNCTIONAL BOARD TESTING

58
4. APPLICATION SYSTEM BACKGROUND

In the rest of this chapter, the motivation behind the

development of the current applicaiton system and the design

complexity issues resulting from the specific objectives of

the system will be discussed first. Then each specific task

involved in the simulation approach to test program

preparation will be examined.

4.1 SYSTEM OBJECTIVES AND DESIGN COMPLEXITY ISSUES

The architects of the current application system have

had years of experience in the field of PCB testing. Many of

them have participated in the development (design as well as

implementation) of ABC's existing test systems. The main

function of the existing system is to test SSI/MSI based

circuit boards. Technological changes in digital PCB

designs(*) have eroded the effectiveness of the program

preparation and diagnostic capabilities of the existing test

system. As a result, programming times are increasing and

production throughput is decreasing. The major motivation

behind the development of a new test system is to solve many

of the current technological problems straining the

capabilities of the existing test system.

(*) Namely, the emerging of the LSI/VLSI based circuit
boards.

I

59

4. APPLICATION SYSTEM BACKGROUND

The following objectives of the new test program

preparation system contribute to the complexity of the

system design:

(1) The new system has to support LSI/VLSI board testing at

least as well as the existing test system does for the simple

boards. The complexity of the LSI functions and the size of

LSI devices are an order of magnitude above those of simpler

boards(*). The new system must be able to properly handle

the size and type of LSI devices. Some LSI devices are

difficult to model. Improved IC modeling capabilities must

be provided to solve this problem. Furthermore, many size

boundaries which exist in the present product must be removed

in order to accomodate the size of the LSI devices. Thus the

new system is expected to be much more complicated than the

existing one. Here we give a rough feeling about the

complexity of the current system:

(a) about 70 man-years of effort were involved in the

development of the current system (both design and

coding);

(*) In terms of equivalent number of gates, the sizes of LSI,
MSI, and SSI are about >=100, >=12, and =1 respectively.

--I.-

60
4. APPLICATION SYSTEM BACKGROUND

(b) the entire system contains about 500,000 lines of

assembly language code; the program preparation

part alone contains about 100,000 lines of code.

The total amount of effort required for the development of

the new system is expected to be at least twice as much.

(2) The new system actually aims at giving better support to

board testing. That is, the new system will provide more

powerful diagnostic tools. The test program preparation

facility in turn must be capable of producing the necessary

information to support the diagnosis. The requirement for

these enhanced capabilities, such as better timing analysis,

better awareness of tester pin electronic properties, etc.,

thus increases the complexity of the program preparation

software facility. Another objective is to reduce the

program preparation processing time as much as possible. In

addition to using a faster processor, other techniques must

be employed to achieve this goal. This objective again

complicates the design. The more complicated issues arise

from the fact that many trade-offs between the

implementations supporting one objective and those supporting

I.

q%~D9

61

4. APPLICATION SYSTEM
BACKGROUND

the other must be carefully considered.

The discussion of the design complexity issues would

have ended here if all we had wanted was a superior new test

system that can support board testing for both SSI/MSI boards

and LSI/VLSI boards. However, this is not the case:

(3) From the current users' viewpoint, the new test system

must be compatible with ABC's existing test systems. The

compatibility issue complicates the design in the following

sense:

(a) The designer is often forced to consider more

in order to ensure that compatibility can be

satisfied.

4 (b) Sometimes the designer may think of a

potentially better design; however, he may have to

forego it if the new design makes some

compatibility requirements either hard or

impossible to satisfy.

V

* I

62

4. APPLICATION SYSTEM BACKGROUND

(4) Another major objective of the new test system software

is to add capabilities to the existing testers which fail to

properly handle the LSI/VLSI board testing. As for the

program preparation facility, it must support program

preparation for boards that are to be tested on the current

testers. Information generated by the new program

preparation software will be sent to the current testers for

testing/diagnostic purposes whenever requested by the

individual tester. This objective demands "internal

processing" compatibility. For example, the new internal

representation of the data base should be, to the extent

possible, compatible with the old internal representation of

the data base. Such a demand complicates the design in that

the architecture of the computer on which the new program

preparation software will be run is very different from the

architecture of the computer on which the current test system

is run.

4.2 THE SIMULATION-BASED APPROACH TO TEST PROGRAM PREPARATION

In this section, we examine each specific task involved

in the simulation-based test program preparation.

A,4

63
4. APPLICATION SYSTEM BACKGROUND

4.2.1 CIRCUIT DESCRIPTION PROCESSING

The simulator must use a logical image of the board

(called a "circuit description" or "network description") in

order to model the operation of the logic circuit board.

This software image is provided by the programmer in the form

of statements or equations which describe the circuit. The

description must include the types of the logic elements on

the board and the interconnections between them. These

elements may be the basic gates of the logic circuit or they

may be complete integrated circuits of the SSI, MSI, LSI, or

VLSI category. Furthermore, a description of the

interconnections between the board under test and the tester

itself must also be provided.

Several simulators model the operation of a logic

circuit at the gate level. The gate level approach offers

the potential of greater timing accuracy; however, this

approach is less efficient and may be impractical for many

MSI and LSI IC's. Other simulators use subroutines to

describe the functions of an IC. The functional approach

results in a faster simulation that requires less memory.

Models of the widely used types of logic elements are usually

provided by the system in an IC library. If the logic

circuit to be simulated contains an IC that is not in the

fi

' 'p
=' 1 II I II I ,

64
4. APPLICATION SYSTEM BACKGROUND

library, it is necessary to add a description of that IC to

the library. Depending upon the simulator, a new subroutine

may be programmed for the IC model. Alternatively, the IC

may be described in the same manner in which the

logic-circuit board is modeled, using other IC's already in

the library.

The circuit description is then processed by a

preprocessor program which checks the circuit description for

correctness and consistency between the information provided

and the information previously stored about the logic

elements. Typical inconsistencies might include unused

elements within integrated circuits, unused inputs on logic

elements, and overloaded pins. The information is converted

to the format required by the simulator. It is also

available to the programmer in several other formats.

4.2.2 SIMULATION OF INPUT PATTERNS

The second type of data that the test programmer must

provide is a set of input patterns. Manual analysis is

required to select these patterns, but a more cursory

analysis is possible because the simulator will determine the

Feffects of the patterns.

L

65
4. APPLICATION SYSTEM BACKGROUND

The simulator applies each input pattern to its model of

logic circuit. Some simulators also model the timing

sequence in which the test system will apply these patterns

to the real board. This feature ensures that the responses

of the modeled circuit will more closely match those of the

board.

The test programmer uses the simulator warnings and

logic state information to determine what input patterns

should be added or changed. He selects patterns that will

eliminate indeterminate conditions as early in the test

program as possible.

The logic states at every node for each test in the

program can be displayed to the user. Such a display is

called a "nodal status listing." It simplifies the selection

of input patterns because the programmer need not remember

all of the logic states created by his input patterns. He

can scan the nodal status listing to locate the test steps

for which the logic states at the appropriate nodes are

similar to what he wants. He then can add or modify a small

number of input stimuli to obtain the desired result.

, The software simulator calculates the effects of the

input patterns throughout the logic circuit and at the board

output pins. The output test patterns thus are obtained

kk

66
4. APPLICATION SYSTEM BACKGROUND

automatically from the simulator.

Most simulation software packages include postprocessors

to convert these output patterns into the test language of

the system that will be used to test the boards. The final

test program will contain both input and output patterns,

just as if they had been manually programmed.

4.2.3 PROGRAM DEBUGGING SUPPORTED BY SIMULATION

Test program debugging consists of determining why the

actual test results differ from the expected results and

modifying the test program to eliminate this difference.

Use of simulation to obtain output responses results in

the easiest debugging procedures. The simulated output

responses will have identified indeterminate conditions so

that they can be ignored or eliminated prior to the debugging

procedure. The physical board used for debugging needs not be

manually tested as extensively because it does not have to be

a "known-good" board. The simulation data aids the programmer

in resolving the cause of any discrepancies between the

expected and actual test results. If a discrepancy is due to

a fault on the board rather than a program bug, the simulator

diagnostics will isolate it rapidly.

j.

J~

67

4. APPLICATION SYSTEM BACKGROUND

4.2.4 SIMULATION FOR TEST PROGRAM QUALITY EVALUATION

The quality of a test program refers to the percentage

of faults detectable by the program. A digital fault

simulation program models the operation of the logic circuit

board with a fault inserted, and compares the output

responses with those of the modeled good circuit. If the

output responses are identical, the fault is undetected and

the simulator records it for later printout in an "undetected

fault list." If the output responses differ, the fault is

detected and the resulting output signature is recorded for

fault isolation purposes (more about this issue will be

discussed in the next section). The user of a fault

simulator usually specifies a restricted fault set for his

initial test program simulation. This saves simulation time.

The fault simulator can model a much wider range of faults

than can be physically inserted, including timing faults and

internal IC faults.

'I

i'

- -n .. . - '

4. APPLICATION SYSTEM BACKGROUND
68

4.2.5 SIMULATION FOR FAULT ISOLATION PREPARATION

The programming tasks described in Section 4.2.1 through

4.2.4 are sufficient to generate a comprehensive test program

for GO/NO-GO testing(*). However, most of the time and cost

in manufacturing and field service testing is spent isolating

faults on defective board, not sorting good ones from bad.

There are two basic categories of fault-isolation techniques

for logic-circuit boards.

The probable cause of the failure can be predicted based

upon the actual responses at the output pins of the board

when the test fails. These probable causes are listed in a

"fault dictionary." The digital fault simulation used to

evaluate test program quality can automatically generate

fault dictionaries by storing the failure signature resulting

from each modeled fault. A failure signature is a set of

logical values that are observed at the board output pins in

the presence of a particular fault at the failing test step.

These dictionaries can be stored within the test system to

provide automatic fault diagnosis or they can be printed in

hard-copy for manual lookup. Fault dictionaries provide a

(*) GO/NO-GO test is a test intended to produce a pass/fail
result of board testing as opposed to provide dignostic
information.

* .

I , ,- .'., - **,*

I " I IIII I m m l i I '- - , - , V -. . ." '

69

4. APPLICATION SYSTEM BACKGROUND

very rapid fault diagnosis, but several faults may be

indicated as the probable cause of the same failure. This

occurs whenever a set of faults have the identical failing

signature at the failing test step. One approach to improving

the diagnostic resolution is the use of additional test

points within the board. Another approach is further

simulation of the several probable faults so as to obtain

different fault signatures.

The other techniques require probing a path backward

from the incorrect output pin to the fault location. The

operator probes the output node of the IC that is connected

to the incorrect board output pin. If the response is

incorrect, he next probes the inputs of that IC. If one of

the inputs has an incorrect response, he next probes the

output of the IC to which it is connected. He continues

probing each node in the path until he reaches an IC that

has the correct inputs and an incorrect output. He thus has

located the fault as either a defective IC or a physical

defect on the board at that IC output node. A guided-probe

software package basically automates the analysis procedure

that a technician follows during probing. It requires a data

base consisting of the circuit interconnections and the

correct logic states at every node. Simulation of a good

logic circuit requires a network description and provides the

• J

'-

70
4. APPLICATION SYSTEM BACKGROUND

nodal-status information, both of which can be used for

guided probing. Alternatively, the nodal-status tables may be

printed in hard-copy form for use by a technician. In either

case, no additional setup effort is required.

4.2.6 SUMMARY

There are both advantages and disadvantages of the

simulation approach to PCB functional testing. While some of

these have been mentioned in the above discussion, it is not

our intention to address this issue further. At this point,

the reader should have an understanding of the SDM

application system currently under discussion. In the

chapters that follow, we are to report how the current SDM

application was performed, discuss the lessons learned, and

assess the methodology based on the experience gained from

the application.

b -

€,

qA

71
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

The SDM was driven by a set of functional requirement

specifications which possess certain characteristics. As

such, the application of the SDM depends on both the

existence and appropriateness of the specifications.

First of all, it is clearly necessary that the

requirements for the target system be formally stated, i.e.,

written down, before SDM may be applied. It is not uncommon

that requirements for a proposed system are never committed

to paper, especially in the case of smaller system or "in

house" system development (as opposed to contracted system

development). Fortunately, in our case such a document had

already been generated. Hereafter we shall refer to this

document as the "original system specification" or simply the

"original specification" so as to distinguish it from the set

of functional requirements prepared for SDM use, which we

shall refer to as the "functional requirements set."

Extensive work has been done on user needs analysis for

the new test system. The project manager has travelled around

the United States and Europe to interview users of the

current test system in this effort. The rapidly advancing

field of integrated circuit technology has also been studied

W-Jr,

!7 2

5. REQUIREMENTS PREPARATION OF
THE APPLICATION SYSTEM

in order to predict unforeseen user needs. Based on the

results of these studies and their technical experience in

the field of PCB testing, designers of the new test system

have put many man-years of effort into deciding what features

the new system should possess.

The original specifications for the entire system were

organized in a "hierarchical form." At the top level, there

are two major sections, one for the software subsystem

requirements, the other for the hardware subsystem

requirements. Requirements for the Test Program Preparation

facility occupy one subsection under the software subsystem

section. Similarly, these requirements are organized in a

"hierarchical" fashion under this subsection.

Based on the original specifications, the author

prepared the first draft of the requirement statements

appropriate for SDM use. At the outset, guidelines developed

during previous SDM applications and experience learned from

them were studied to obtain a better grasp of how the set of

SDM requirements should be prepared. Huff's clarification of

"requirements" and "requirements specifications," and the

conceptual framework he put forth for thinking about them

within the System Development Cycle [Huff June 1978], were

found to be helpful for this process.

I:

i f .A

73
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

The first draft of requirement statements were then

examined by the designer(s) to make additions, corrections,

and modifications. This was by no means the final version of

the statements. Numerous additional modifications to both

statement form and content were made throughout the following

stages of the methodology. Certain new statements were

deleted or merged together, and minor or major wording

alterations were made to some. The final version of the SDM

functional requirements set is given in Appendix A. The

requirements are constructed in "template forms." The

template technique is based on a set of seven basic

"requirement statements templates" in which each template

corresponds to a general category of statement type (see

Figure 5.1). For detailed description of the template

approach, see (Huff June 1978]. The template approach was

found to be effective; an assessment of it will be found

later in the chapter.

1

.4

1)

74
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

REQUIREMENT ST\TEMENT TEMPLATES

A. Existence.

There (can/will) be <modifier> <object>

B. Property.

<Mod> <object> <can/will> be <mod> <property>

C. Treatment.

<Mod> <object> (can/will) be <mod> <treatment>

D. Timing.

<Mod> <object> (can/will) <timing relationship> <mod> <object>

E. Volume.

<Mod> <object> (can/will) be (order statement> <index> (count>

F. Relationship.

a. Subsetting.

<Mod> <object> (can/will) contain <mod> <object>

b. Independence.

<Mod> <object> (can/will) be independent of <mod> <object>

Figure 5.1

I _ _ _____

75
5. REOUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

Recall that the three important characteristics of a set

of SDM requirements are (1) unifunctionality, (2)

implementation independence, and (3) common level of

generality (abstraction) (*). In the following sections, we

elaborate on the meaning of these terms with examples drawn

from the current application. We also report the

difficulties encountered in ensuring the possession of these

characteristics by the functional requirements set. Finally,

the template technique will be assessed.

5.1 Unifunctionality -

Each statement describes a single function (not

multiple functions) to be featured in the target

system.

The original specification contains some statements that are

judged to be multi-functional:

(*) A complete list of the characteristics of "good"
requirement statements in the SDM context can be found in

4Section 3.2.

-1' V

r ...'- . . - . .

76

5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

"It is required that fault simulation can be

resumed after the simulator is terminated, whether

due to fault detection or detection of end of the

test program. This will allow the fault simulation

to be resumed when more steps are added or to

achieve more resolution."

This description specifies two distinct features of the

target system:

(1) Fault simulation can be resumed for more

resolution, and

(2) Fault simulation can be resumed when more test

steps are added to the end of the test program.

The two features refer to two different types of resumption.

The first type is for the purpose of higher fault resolution.

The second type is to eliminate the need of re-simulating the

entire sequence of input patterns in case more steps are

added at the end of the test program.

In general, the "uni-" part of the "uni-functionality"

property is easy to ensure, especially with the template

approach. The template approach tends to force statement

specifying multiple requirements to be broken into several

77
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

brief, one-sentence statements. The "functionality" part of

the property is harder to verify. A true functional

requirement must be implementation independent; therefore

once the "uni-" part of the characteristic is ensured, the

problem is reduced to deciding if the requirement statement

is implementation independent or not. This issue will be

addressed in the next section.

5.2 Implementation independence -

Each statement should be implementation free, i.e.,

ought to specify what is required of the target

system but not how that requirement is to be met.

The original specification was found to contain some

implementation dependent requirements, for example:

"The user must be able to override (default)

characteristics of tester pins by making suitable

entries in %ADAPTOR section in circuit description

source file."

78
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

The part of the above statement "...by making suitable

entries in %ADAPTOR section in circuit description source

file" is a procedural statement which indicates how

characteristics of tester pins can be overriden. Although

to the designer(s), this approach appeared to be the most

appropriate, including such procedural information in the

functional requirement may constrain later design options at

the outset, and result in some potentially superior

alternative never being considered. Thus, only the what

part of the above statement was included in the functional

requirements set:

Characteristics of tester pins can be overriden by

the user.

Although not specified as part of the functional

requirement, the procedural information was still included in

the specifications as a comment to the above functional

requirement. This is simply one of the many cases where the

designer(s) requested to have the procedural information

(implementation issues) be specified, for they believe these

particular implementation approaches are probably the most

appropriate ones and would like to see them be reflected in

the requirement statements. In cases like this, a comment

A vj

79
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

section is added to the requirement statement. Within the

comment section, the designer(s) may formally include any

additional information which is not appropriate or relevant

for the basic requirement statement.

The same phenomenon -- the designers were reluctant to

leave out certain implementation issues -- was observerd in

the SDM application to the new M.I.T. Budgeting System [Huff

June(a) 1979] . Such a phenomenon should not be surprising,

for in the real world people are very much concerned with how

to get things done. Considering implementation issi as during

the functional development phase is necessary for the purpose

of ensuring the feasibility of a functional requirement;

however, the danger involved here is that one often becomes

so immersed in a particular implementation approach that he

confuses functional issues and implementation issues. The

SDM approach to requirements preparation constantly reminds

the designers of the true functional requirements.

In the case of the current SDM application, some

functional requirements are not explicitly stated in the

original specifications. Instead, their associated

implementation issues are stated. In cases like this, the

specific functional requirements have to be elicited by

studying what the implementation aims to support.

p. -

il III I t il iiil mi i

80
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

In some cases, deciding whether a statement is

implementation independent or not is difficult, for the

decision may depend on the level of generality at which the

set of requirements are meant to be specified. This issue

will be addressed in the next section.

5.3 Common Level of Generality -

The set of requirements should be at a common level

of generality (abstraction), to the extent

possible.

In the original specification, some requirements concerning

the Circuit Description Language (CDL) were specified as

follows:

"... Each statement in the %CIRCUIT section shall

consist of a name, type, and connection field where

one or more spaces, tabs, or carriage returns

terminate name and type fields.

The name field is the first field in a statement.

It contains the name assigned to an IC, or a

special device to be coded into the circuit

'9

5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

description. The name field shall follow the

convention of the Circuit Description Language used

in the current test system with the following

exceptions: (a) names for external paths are

optional, (b) (c)

Statements in %NDAPTOR section map test pin numbers

to intermediate node names or externals used in

%CIRCUIT section. The allowed test pin types are D

for digital (driver/sensor) and A for analog. If no

test pin type is specified, D is assumed"

These statements were judged to be at a too detailed level.

They can be re-stated at a higher abstract level (expressed

in the template form):

(1) Unique names for each component on the board

will be specified.

(2) The type of each component will be specified.

(3) Interconnections between components will be

specified.

(4) Symbolic names for external signals can be

specified.

(5) Each tester pin type will be specified.

(6) Interconnections between the board and tester

'S

9-A!

32

5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

pins will be specified.

These requirements can be stated at a even higher level:

(1) Description of the board will be specified.

(2) Description of the tester pins will be

specified.

(3) Description of the interface between the board

and the tester will be specified.

We chose to state the requirements at a level higher than the

one above:

There will be a circuit description language which

allows users to specify board-related information.

At a very high level, this requirement can be stated as

follows:

Information related to the board will be provided.

V

83
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

INote that this statement does not indicate by which means,

e.g. using circuit description language, the board-related

information will be provided.

Originally, Andreu included "common level of generality"

as a property that the SDM requirements set should exhibit

for the purpose of proper set decomposition. Andreu claimed

that requirements not meeting this property could create

problems [Andreu and Madnick, December 1977]:

.... For example, numerous detailed requirements

can be assessed to be interdependent with another

of broader scope, thus bringing them all closer,

for set decomposition purposes, than they would

otherwise be. This can cause the broader

requirement to be assigned to the same subset as

narrower ones, possibly neglecting its

Interdependencies with others of similar (broad)

scope."

As far as SDM requirements preparation is concerned,V
this property is important in that often decisions concerning

whether a requirement is implementation independent or not

depend on at which level of generality we want to specify the

* I:

a qF•M

84

5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

functional requirements. For example, one can argue that one

of the above statements:

There will be a circuit description language which

allows users to specify board-related information.

is merely a particular implementation approach to the other

statement specifed at a higher level:

Information reloted to the board will be provided.

The rationale behind this argument is that there can be ways

other than using a circuit description language to provide

board description to the test system, e.g. having the system

directly read the schematics of the board. Thus we see how a

level of generality must be chosen first before some

decisions on "implementation independence" can be made.

A set of requirements may satisfy the

* " uni-functionality" property, i.e., each statement states

only one function, but are specified at a wide range of

levels. In this case, again a proper level of generality

must be chosen first; then each requirement statement will be

examined, and modified if necessary, so that it is stated at

the chosen level. If a requirement is specified at a too
I

-"-

t*

85
5. REQUIREMENTS PREPARNrTION OF THE APPLICATION SYSTEM

high level, one should try to break it down into a few

specific statements each of which specifies a single

sub-function. If a requirement is specified at a too low

level, one should try to elicit the motivation behind this

requirement and re-state it at a higher level. Sometimes a

group of lower-level requirements statements can be

recognized as sub-functions for some specific function at

the chosen level, in this case these statements should be

replaced by a proper one that states the specific function.

To state all the requirements at a common level of

generality is not easy. The first difficulty is concerned

with the choice of an appropriate level. Secondly, as no

definitions exist for "various levels of generality,"

determining if a requirement is stated at a particular level

could be a difficult task. Lastly, even if a requirement is

found to be stated at an inappropriate level, often it is

neither proper tc exclude it from the requirements set, nor

is it possible to re-state it at a level common to the chosen

one. Due to these difficulties, we can only try to state the

requirements at a common level of generality to the extent

possible.

'4

86
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

5.4 ASSESSMENT OF THE TEMPLATE APPROACH

The template approach is not intended as a way to

automate, or even mechanize, the creation of SDM requirements

(a task which is surely impossible at this stage in the

development cycle) . Rather, it is intended simply to

structure and guide the thought processes involved in

carrying out part of the architectural design activity.

Experience gained from using the template forms to prepare

the requirements for the current SDM application leads to the

following assessment of this approach.

The template approach provides a way of better

understanding the requirements. By working the requirements

statements into template technique, one is forced to consider

exactly what each statement means, and how it ought to be

expressed in terms of templates. With little practice,

statements or parts of statements that are ambiguous or

unclear tend to stand out, as they tend to obstruct the

transformation of the statement into a template form.

The template technique encourages the generation of

"uni-functional" requirements in that a requirement statement

which specifies more than one thing must be split into two or.5
more pieces in order to map it into template form. The

IN

37
5. REQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

template approach also helps to detect procedural statements.

Procedural information is likely to be stated in a paragraph

rather than one simple sentence, for usually one sentence is

not enough to specify "how" things are to be done. Trying to

translate a lengthy statement into template form makes one

suspect the nature of the statement -- is it a functional

statement or a procedural statement? In general, with each

requirement expressed in simple template form, it is easier

to check if requirements contain the desirable

characteristics for the purpose of SDM application.

The template form was found to be flexible and easy to

use. More than one form may be suitable for stating a

requirement. For example, the following two statements

Test program developed on the current system can be

converted to new format.

and

There will be Current-to-New test program

conversion facility.

oI
U - ,-

~88

5. RFQUIREMENTS PREPARATION OF THE APPLICATION SYSTEM

request for the same conversion tool.

The designer who formally wrote up the original system

specifications hnz:, m le the following comment on the template

approach:

"The template technique should have been adopted in

specifying the system requirements at the very

beginning. Regardless of SDM application, the major

advantage of the template approach is that it

allows one to concentrate on what to put down as

system requirements rather than how to nicely put

these requirements together in prose."

This author has found that no great additional effort is

required to translate the original specification, stated in a

more usual form -- an English-prose description -- to

template form. If this is found to be true in the general

case, the universality and usefulness of the SDM approach

will be substantially enhanced.

nn I I ! m I n.l 4-f n'' n an - n

89

5. REQUIREM1ENTS PREPARATION OF THE APPLICATION SYSTEM

5.5 SU'MARY

Immediate design benefits have resulted from the

excercise of SDM requirements preparation. One benefit lies

in the simple fact of having to think carefully and

repeatedly about what each requirement really means, and what

the true functional requirements really are. The set of

functional requirements statements gene ated as a result is a

valuable document in itself. Its value lies in the following

facts. First, the set of functional requirements are

explicitly separated from the procedural information

(implementation issues). Second, each of these requirements

is stated in a brief, one-sentence fashion which is easy to

read. Third, the requirements are stated at a common level of

generality which is easy for the user to understand.

Af

n .un - -I4III I n n n m um m m n m ,- - ,,' " _- "

90
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

Once the requirement statements had been expressed in a

form appropriate for SDM use, work began on determining the

existence and weight of the implementation interdependency

for every pair of requirements.

Recall that since the goal of the methodology advocated

here (SDM) is the identification of design subproblems, the

interdependencies defined among requirements should be

consistent with that goal. At this point, the reader is

recommended to review Chapter 2 and the Section 3.1.2 to

ensure that he is fame] iar with the notion of

"interdependency" and the purpose for performing the

interdependency assessment activity.

The interdependency assessment for the current SDM

application was performed by the chief designer, monitored by

the author, and examined by another designer. Throughout the

interdependency assessment activity, additional modifications

to the set of requirement statements were made. Certain new

statements were added in light of improved understanding that

occurred as a result of discussion. Some statements were

deleted or merged together, to make the set of requirements

more appropriate for SDM use. All the interdependencies

identified and weights assessed were recorded. The final

-- d

AL-H9 07 AFE PSLA SCOL F MAAEMN CAOIG CN C F G _
A SYSTE MATIC APPROACH To COMPLEX SYSTEM DES 1GN AN APPLICATION -ETC(U)
MAY GA P TUNA NOG3 G 03-8-K0573

NCLASSIFIEDCIRAXAAD3N

3ffffffffffffmhhh hh1E

1111 .0 1 2.8 112.5

IIIJIL25I-6

MeROCOTV IOSOWHION HI C H ARI

NA O A N ; IO l

91

6. INTERDEPENDENCY ASSESSMENT OF
THE APPLICATION SYSTEM

version of interdependency statements is presented in

Appendix B. Each statement indicates the two requirements

involved in the interdependency, the weight, and a

description of the interdependency.

It is important to realize that this step is the most

creative one on the part of the designer in the context of

SDM. The designer's expertise, past experience, and

intuition can play a central role in this activity.

In the rest of this chapter, we will discuss how the

existence and weight of an interdependency can be determined,

with examples drawn from the current SDM application. Also

addressed in this chapter is the issue of time involved in

performing interdependency assessment. In the last section,

some summarized comments concerning this methodological step

are presented.

"A.

92

6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

6.1 DETERMINING THE EXISTENCE OF AN INTERDEPENDENCY

For each pair of requirements, the designer considered

whether or not significant implementation interdependencies

existed between the two requirements. The basic approach to

determining the existence of an interdependency is as

follows:

(1) One first thinks about how one of the requirements

would most likely be implemented. This generally

requires thinking through some detailed design or

procedural-type issues.

(2) With that "conceptual model" in mind the same thing

is done as regards the other requirement.

(3) Then the two conceptual models of implementations

are jointly compared to determine whether

(a) One scheme makes it easier to implement the

other (a supporting type of interdependency);

I.I

93
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

(b) one scheme makes it harder to implement the

other (a conflicting type of interdependency);

(c) There is no appreciable overlap, either in

a supporting sense or In a conflicting sense,

between the two.

The result of this comparison suggests the existence or

non-existence of an interdependency between the

requirements under consideration.

(4) If an interdependency is identified, a one-sentence

description is written down to serve as a brief

document of the interdependency. The purpose of this

description is two-fold. First, it helps one remember

why the interdependency was made; second, it briefly

explains to others what the Interdependency is.

The designer should repeat this process, to the extent

possible, by considering more potential implementation

schemes.

, Some informal guidelines for generating the conceptual

*models based on which both supporting type and conflicting

I -.-

94
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

type of interdependencies can be made were developed by

Andreu (Andreu November 1977]. These guidelines were found

helpful in performing the interdependency assessment

activity. Two examples, drawn from the current SDM

application, are presented below to illustrate how supporting

and conflicting interdependencies can be identified.

Given a pair of requirements, a conflicting

interdependency can be identified in case one requirement

poses additional burden on the other. An example is the pair

of requirements 45 and 54:

'There will be a good board simulator," and

"Properties of a particular target tester will be taken

into account by the simulator."

The simulator's ability to take properties of a particular

tester -- the one on which the boards will be tested -- intoI
consideration for simulation is an additional burden posed by

requirement 54. Many examples of such conflicting

Interdependencies were identified for the current SDM

application.

Uf

95

6. INTERDEPENDENCY ASSESSMENT OF THE
APPLICATION SYSTEM

Two requirements may call for some similar type of

support; this common support may be provided to both

requirements by an particular implementation scheme in the

eventual system. An example is the pair of requirements 48

and 59:

"Results of good board simulation can be properly

displayed," and

"Internal faulty activity for an undetected fault can

be displayed to user."

Both requirements call for a. display facility for the

internal nodal values recorded throughout the simulation.

These two requirements are interdependent in a supportive

sense because implementing one such display facility in the

. eventual system could satisfy the two requirements

~ TI 1simul taneously.

Identifying interdependencies was found to be somewhat

harder to perform than expected. Namely, it was difficult

4 for the designer to constantly keep In mind what

* interdependency assessment was supposed to be.

Interdependency assessment is intended to identify

S Interdependencies at the implementation level. However, what

I

96
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

often happened during interdependency assessment was that the

focus tended to shift from issues concerning whether or not

the two requirements were related at the implementation level

to whether they were logically related. This can be seen

with the example of requirements 21 and 22:

*Default driving characteristics of output or

bidirectional pins for each specific tester will be

supported," and

"Default driving characteristics of output or

bidirectional pins for each specific tester can be

overriden by user."

At the first glance, it might appear that since both

requirements concern "default driving characteristis of

output pins or bidirectional pins," they must be

interdependent. This is an instance of what is meant by

'logical relationship" above. Since this kind of logical

relationship is easier to identify than the implementation

interdependency, it tends to occur to the designer's mind

first and thus obscure the search for true implementation

Interdependencies. To overcome this problem, throughout the

interdependency assessment for the current SDM application

97
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

system, the author constantly reminded the designer of the

true meaning of "interdependency" and questioned the nature

of any doubtful interdependency. If an interdependency was

found to be something other than an implementation

interdependency, the designer was asked to re-assess the

interdependency at the implementation level. In the above

example, the implementation for requirement 21 involves

keeping the default information for each specific tester

somewhere in the system and making it available to the

simulator; on the other hand, implementation for requirement

22 involves some mechanism by which the user can override the

default information; the two requirements do not interact in

terms of implementation. It was found that as long as the

meaning of "interdependency" was clearly kept In mind, no

great difficulty was encountered to generate conceptual

models based on which interdependencies could be assessed.

Recall that in preparing the requirements set for the

current SDM application, statements in the original

specification that were considered to be too general, too

detailed, or implementation dependent, were not included as

4 Individual requirement statements in the requirements set.

Although not included in the requirements set, the Ideas

embedded in these statements, which were originally generated

by the designers based on their past experience, expertise,

'11

98
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

understanding of the system objectives and design

constraints, did play a central role in interdependency

assessmet activity. Statements that were considered

"implementation dependent" often suggest conceptual models

based on which interdependenc ies could be assessed.

Requirement statements that were judged to be either "too

general" or "too detailed" often provide a better

understanding of the requirements in the SDM requirements

set. Recall that requirements exist at different levels of

generality, and those at a higher level usually "drive" those

at a lower level. In order to fully understand the meaning of

a requirement, it helps if one knows the motivation behind

the requirement(*), and the specific sub-functions, if there

is any, the requirement intends to contain(**).

Interdependency assessment activity requires one to think

about how a requirement can be satisfied, and a good

understanding of the requirement is essential for performing

this task.

(*) The motivation usually is indicated in one of those
statements that were considered "too general."

(**) The specific sub-functions usually are stated in those
statements that were considered "too detailed."

A-

4

99
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

As far as considering alternative implementation

approaches is concerned, it again relies on the designer's

expertise, knowledge of the currently available techniques,

and his creativity. The range of permissible implementation

approaches, however, is limited by design constraints. Design

constraints exist in a variety of terms, e.g., time

constraint (deadline for the system), constraints imposed by

the particular computer on which the system is to be

implemented, etc. System objectives themselves may imply

design constraints. For example, one of the objectives of the

new test system claims that the new test system must be

compatible with the current test system from the user's

viewpoint. This objective of maintaining compatibility

imposes some design constraints and thus limits the range of

permissible solutions.

6.2 WEIGHT ASSESSMENT AND THE SCALING PROBLEMS

For each interdependency identified, a "weight" mustI
also be assigned to it. Such a weight could be taken to

indicate the "strength of interdependency" between a pair of

,4 requirements. With this interpretation, two requirements that

are seen to be closely related, in implementation terms,

would be judged to be "relatively highly interdependent."

4 Alternatively, the interdependency weight could be defined in

-. l-d

100
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

a subjective probability sense. That is, the weight would

represent "how certain the designer is about the interaction

between the two requirements." This interpretation would be

consonant with uncertainty inherent in the interdependency

assessment process itself. With this definition, a high

weight will be assigned to an interdependency if the designer

Is very certain that the two requirements would be coupled in

implementation; whereas if the designer believes that there

is only a fairly small possibility of the requirements being

coupled, the assigned weight would be lower.

In the current SDM application, for each interdependency

identified (with a few exeptions), the designers were usually

fairly certain that the requirements would be coupled in

implementation. Thus, the weights were almost always assesed

based on "strength of the interdependency" only. This can be

* determined by asking how much harder or how much easier one

requirement makes implemention of the other.

The two examples presented in the proceeding section

will be used here to illustrate the idea of weight

assessment. In the case of requirements 48 and 59:

"Results of good board simulation can be properly

displayed," and

op

j./I i

101

6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

"Internal node faulty activity for an undetected fault

can be displayed to user;"

the interdependency was judged to be a strong one because the

implementations of the two requirements overlap very much.

Once one requirement is satisfied, the other can be satisfied

with little additional implementation effort. In the case of

requirements 45 and 54:

"There will be a (good board) simulator," and

"Properties of a particular target tester will be taken

into account by the smulator;"

the interdependency was judged to be a weak one because the

additional burden requirement 54 poses on the simulator

(requirement 45) is not very much, compared with the entire

effort required for the design and implementation of the

simulator.

Associated with the interdependency weights are some

scaling problems. First, a range must be specified over

which weights will be allowed to vary. Although not

• absolutely necessary, compatibility with the basic model

11-

102

6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

employed in Phase-I SDM, among other reasons, suggested that

link weights be chosen from numerical range [0,1]. Another

scaling problem concerns requiring the designer to choose

from "pre-set" weight values (e.g., low, medium, high) versus

a continuous range of values. If pre-set weights are used,

some mapping to numerical values must also be chosen (e.g.,

"strong" corresponds to numerical weight of 0.8, etc.). All

link weights must eventually be encoded numerically, for use

in the graph partitioning algorithms.

SDM researchers' experience has indicated that system

designers most likely would not require the capability of

specifying weights directly in numerical terms [Huff and

Madnick July 1978]. The following scheme, using a simple

three-way breakdown, was proposed:

Design's Judgement

About Weight Code Numerical Value

Strong S 0.8

Average A 0.5

Weak W 0.2

aA

t ___

103

6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

This particular encoding of weights achieves several useful

results. Firstly, it may be easily interpolated, as shown

below:

Weight: S+ S S- A+ A A- W+ W W-

Numerical Value: 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Secondly, the fact that all weights fall in the (0,1] range

is useful for normalization and later decomposition.

This three-way breakdown approach was used for assessing

interdependency weights in the current SDM application. Most

of time this approach was found satisfactory.

6.3 EXECUTION TIME FOR INTERDEPENDENCY ASSESSMENT ACTIVITY

Andreu expressed concern over the time required to

execute the SDM interdependency analysis on requirement sets

of non-trivial size (Andreu 1978]. The interdependency

assessment activity for the current SDM application system

* consumed approximately sixteen hours of meeting time, which

is not a inconsiderable load. It was found, through the

current SDM application, that the execution time for

interdependency assessment largely depends on how "accurate"

the designer wants the results of the interdependency
"4

j " I

104

6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

assessment to be. The more discipline the designer has in

carrying out the process, the more accurate the results may

be. The discipline here refers to the designer's repeatedly

asking himself the following questions and working until the

answers are satisfactory to him:

(1) For each pair of requirements, have enough

implementation alternatives been considered?

(2) If an interdependency is identified, is it really

an implementation interdependency? Or is it merely a

logical relation?

(3) Are conceptual models used for assessing the

current pair of requirements relevant to pairs of

requirements for which assessment has already been

made?

The more times these questions are asked and answered, the

S more time is spent executing the interdependency assessment.

This activity should not be considered as an additional

effort on the part of the designer. In reality, any system

designer makes use of such conceptual models, implicitly or

explicitly, at some point in the design process; otherwise

-A.

[1 i-- - i l II l l l

105
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

one could not end up with a design at all. The methodology

advocates working through this process explicitly, in a

systematic manner (dealing with a pair of requirements at a

time), so as to help the designer to cope with the complexity

of the design problem.

6.4 SUMMARY

This exercise indicates clearly that there are immediate

design benefits to be had from the SDM interdependency

assessment activity. The common source of the immediate

design benefits lies partially in the simple fact that this

activity requires the designer to carefully and repeatedly

consider what each requirement means, how each might be

implemented, and how alternative implementation schemes

interact, in a structured way.

The chief designer who performed the interdependency

assessment made the following comment about this activity:

"The exercise allows me to recognize which requirements

are the features the system aims to provide, which

requirements are mainly for the purpose of users'i

* -.4

106
6. INTERDEPENDENCY ASSESSMENT OF THE APPLICATION SYSTEM

convenience or for ease of implementation. Such

recognition encourages me to consider other

implementation alternatives To faithfully

perform the interdependency assessment process is not a

easy task; but the entire exercise is worthwhile."

Another designer has made the following remark concerning the

explicit links established among requirements as a result of

the interdependency assessment activity:

"An ad-hoc architecture may not be bad at all. What

usually causes the problem.is the overlooking of the

hidden interaction that exists among subproblems in the

system architecture. The SDM interdependency assessment

activity helps one to identify such interaction;

4 moreover, the resulting interdependency assessment
statements serve to reflect all the interaction

explicitly."

S1~

.it

*J - ~ -

107
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

The interdependencies between pairs of requirements that

were identified and weighed during the interdependency

assessment process define the requirements graph for the

current SDM application system. They were entered as input to

the decomposition analysis package(*). The facilities of the

decomposition package were then used to develop

decompositions of the requirements graph, to evaluate them

using the objective function M (for the definition of M, see

Chapter 3.1.3), and to modify and manipulate the

decompositions in various ways.

Each of the five decomposition techniques (four

clustering techniques, and the interchange algorithm) were

applied to the current SDM application system. These

decomposition techniques are briefly described in Chapter

3.2.3; for detailed descriptions, see (Huff January 1979] and

[Huff February 1979]. The goal was to produce a

decomposition that was the best in terms of identifying

high-strength, low-coupling subgraphs (as measured by M). It

turned out that a decomposition which was initially generated

V (*) This decomposition analysis package was developed by Huff
for decomposing and analyzing the SDM gragh. The package
operates within the VM/370-CMS environment and presently runs
on the MIT 370/168 computer system (Huff February 1979].

108

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

by HIER3 (one of the bottom-up clustering techniques) and

then modified by the author, was judged to be the best (with

M = 0.52). The other thrue bottom-up clustering techniques

(HIERI, HIER2, HIER4) produced decompositions with relatively

low values of objective function. The interchange algorithm,

taking a top-down approach, generated a decomposition which

was close to the best (with M = 0.51). In fact, the author

used the decomposition generated by the interchange algorithm

as a reference to modify the one initially generated by HIER3

to obtain the final best decomposition.

The best decomposition was then studied -- both the

requirements subsets and the sets of interdependencies

between requirements subsets -- so as to formulate a design

framework of the Test Program Preparation System. It was

expected that during the study some counter-intuitive results

would be identified. It was also expected that these

counter-intuitive results, on closer inspection, might either

indicate earlier errors in assessments, requirements

formulation, etc., or prove to be correct but simply

unforseen. It turned out that the latter case never

occurred; on the other hand, some errors in requirements

formulation and assessments were detected and thus some minor

modifications were made accordingly.

,o

f:

109
7. A DESIGN PROBLEM FOR THE CURRENT SDM

APPLICATION SYSTEM

The modified version of the requirements graph was

re-entered to the decomposition analysis package and a second

iteration of the decomposition process was performed. The

best decomposition obtained this time (again it was generated

by HIER3 and then modified by the author) has an objective

function of M = 0.69. The graph decomposition was studied to

formulate a design framework for the current SDM application

system. In the sections that follow, the results of the

study are to be discussed.

7.1 ANALYSIS OF THE DESIGN SUBPROBLEMS

A total of eight design subproblems are identified in

the best decomposition of the requirements graph. Table 7.1

contains the summary description for each subproblem. Also

included in the table are the size of each subproblem and the

specific requirements it contains. A listing of the

abbreviated system requirements (no Comment sections included

there for brevity) organized according to subgraphs can be

K: j. found in Appendix C. In this section, the central focus of

each subproblem and the reason for requirements falling into

each specific subproblem will be discussed.

fi
, -.

110

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Subproblem Summary Description Requirements
and NZ.o. f7

requTrements

1 (8) Test Program Processing 1,2,7,10,
11,12,13,14;

2 (24) Circuit Description 5,6,8,9,15-26,
Coding and Processing 31,34,36,43,51,

52,68,69;

3 (4) IC Models Conversion 28,29,41,42;

4 (5) IC Library Handling 27,30,32,33,35;

5 (13) Output Patterns 37-40,44,45,47,
Simulation 48,50,53-55,59;

6 (4) Fault Modeling and 64-67;
Insertion

7 (9) Test Program Evaluation 46,49,56,57,58,
and Fault Isolation 60-63;

Preparation

8 (2) Test Program Macro 2,3;
Processing

TABLE 7.1
Subproblem Summary Descriptions

4 of the Best Located Decomposition

. !

4

Oki

ill
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Subproblem 1 -- Test Program Processing

This subproblem contains 8 requirements, including 1, 2,

7, 10, 11, 12, 13, and 14. The central focus of this

subproblem is Test Program Processing. At the heart of this

subproblem are requirements 1 and 2. Requirement 1 calls for

a proper test language definition. The test language should

allow the test engineer to control the input test signals and

device power for the purpose of testing. Requirement 2

pertains to the test program processor. The processor is

responsible for generating the data base needed for

simulation and the data base needed for diagnosis. Other

requirements in his subproblem are related to these two

requirements in various ways.

Requirements 12 and 13 are concerned with allowing

multiple sets of test patterns be contained in the same test

4 program. These two are interdependent with each other for

. they require common implementation support. Requirement 7

requests the capability to incrementally compile the test

steps added to the end of a processed test program without

re-compiling the entire test program. These requirements

* more or less impose additional burden on requirements 1 and

2.

*

K.._ _ _ _ _ _ _

112
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

This subproblem also includes requirements concerning

program conversion facilities. Requirement 11 calls for a

facility that converts test programs developed on the current

test system to the new format. Requirement 14 requests a

conversion facility that converts a GO/NO-GO program

generated in the new format to the format compatible with the

current test system. These two requirements are to support

those current users who will use the new system for test

program preparation, but will keep the current testers for

testing and diagnosis. They fall into this subproblem

firstly because the conversion facility must be aware of the

new test program format; secondly, the design and

implementation of the test language and the test program

format should also take these two requirements into

consideration to insure the feasibility of the conversions.

Requirement 10 is concerned with the generation of a

GO/NO-GO test program. A GO/NO-GO test program is a program

that contains both input patterns (the original user-created

program) and output patterns at the proper test step. The

reason that this requirement falls into this subproblem is

because the test program processor may serve to support part

of its implementation.

K
1-- --

113
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Subproblem 2 -- Circuit Description Coding and Processing

This subproblem is the largest in terms of the number of

requirements: twenty four requirements, including 5, 6, 8, 9,

15-26, 31, 34, 36, 43, 51, 52, 68, and 69. The central focus

of this subproblem is Circuit Description Coding and

Processing.

At the heart of this subproblem are requirements 15 and

19 which correspond to circuit description coding and

processing respectively. Requirement 15 calls for a proper

Circuit Description Language (CDL) which will allow the user

to specify all the board-related information, e.g. the

components on the board and their interconnections,

tester-board interface description, etc. Requirement 19

pertains to the processing of the circuit description

information. It is responsible for generating the data bases

required by other tasks involved in test program

preparation, and data bases needed by the Guided Probe

Facility for the purpose of diagnosis. Most other

requirements in this subproblem directly relate to

I , requirements 15 and/or 19.

Requirements 16, 17, and 18 are concerned with various

types of partial sharing of circuit description information.K * ; ~ Requirement 20 calls for a partial re-processing capability.

li-A

114

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

This enables the user to modify some information without

having to re-process the entire circuit description file.

These requirements fall into this subproblem because they

should be taken into consideration for the design and

implementation of requirements 15 and 19.

Some requirements are placed in this subproblem because

they impose additional burdens on requirements 15 and 19.

Requirements 5, 6, 21, 22, 31, 36, 51, 52, 68, and 69 are

concerned with output pin characteristics for each specific

tester type and output pin characteristics for each specific

IC family type. The new simulator will take output pin

characteristics into account for the purpose of accurately

modeling the board activity. These requirements end up in

this subprob]em because most likely the circuit description

processor (requirement 19) will be responsible for providing

the simulator with the proper information with respect to

output pin characteristics. Furthermore, CDL may have to

provide constructs which allow the user to override the

default characteristics.

Requirements 8 and 9 are concerned with proper handling

of devices that cannot be modeled (e.g. analog devices), and

direct manipulation of the internal node values by the user.

These two requirements are strongly interdependent with each

-:

.i.9 m

115
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

other for they require very common support and thus can be

satisfied simultaneously. They are interdependent with

requirements 15 and 19 in that they impose additional burdens

on these two requirements: CDL must provide the user with

the proper mechanism, and the processor must provide the

simulator with the proper information, in order to realize

these two requirements.

Some requirements are interdependent with requirements

15 and 19 in a supportive sense. Requirements 23, 24, and 25

pertain to the reporting of various board-related information

that is to the user's interests. These requirements end up

in this subproblem because these reports can be generated

with no great difficulty after completing a good run through

the circuit description processor. Requirement 34 requests a

"circuit description" IC modeling technique, an IC modeling

technique which models an IC in terms of the basic elements

$ the IC consists of. This requirement ends up in this

subproblem because describing a model of an IC in terms of

its basic elements is very similar to describing a board in

"1 terms of the components on the board (which themselves are

IC's and other special devices). The user can treat the

basic elements within the IC as if they were IC's on the

board. Effort must be put into the design of CDL and CDL

S ,4 processor so that they can be used for both board modeling

* w:.

K *-- _ __ _ _ _ _

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION
SYSTEM 116

and IC modeling. Requirement 43 pertains to Conditional

Connectivity Language (CCL) which allows the user to define

connectivity of an IC model. Connectivity information, which

indicates for each specific output of the IC, the subset of

the inputs that can affect this output, is needed to support

Guided Probe Facility. The reason why this requirement ends

up in this subproblem is that a syntax similar to that of the

CDL can be used for CCL.

Requirement 26 pertains to the conversion of the circuit

description source files on the current test systems to the

new format. This is to support users of existing test

systems who are to use the new test program preparation

facility. This requirement falls into this subproblem for

two reasons. Firstly, the conversion facility, concerns the

new format of the circuit description file. Secondly, this

conversion requirement should be taken into consideration for

the design and implementation of the circuit descripton file

format to ensure the feasibility of the conversion.

* I

117

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION
SYSTEM

Subproblem 3 -- IC Models Conversion

This subproblem includes four requirements, including

28, 29, 41, and 42. All of the four requirements directly

relate to IC Models Conversion. A tremendous amount of effort

has been put into the development of the existing IC

libraries, both the system library and many user libraries.

The objective here is to fully utilize previous work so as to

reduce the effort to re-build the libraries. The major

effort involved in building an IC library is modeling the

IC's. Conversion tools will be provided so that individual

IC models built on the current system can be converted to

models represented in the new format. Requirements 41 and 42

call for IC models conversion tools for two different types

of IC models. Implementation for these two requirements will

be reduced to a source-to-source conversion effort with the

support of requirement 29, which provides the basic elements

that have been widely used for building currently existing IC

models. The inclusion of 90% of the existing system library

(requirement 28) is required because IC models supported in

the system library are widely utilized by current users to

model their own IC's. This requirement ends up in this

subproblem because its implementation will be greatly

simplified if the other three requirements in this subproblem

are properly satisfied.
i

a .-. -.,

118
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Subproblem 4 -- IC Library Handling

This subproblem contains five requirements, including

27, 30, 32, 33, and 35. The central focus of this subproblem

is IC Library Handling. Requirements 27, 32, and 33 ending

up in the same subproblem makes good sense since their

implementations are all concerned with the organization of

and access to libraries. Requirements 30 and 35 pertain to

modeling of ROM's and PLA devices respectively. These two

requirements end up in this subproblem because ROM's and PLA

devices are two types of IC models to be contained in the

library and thus are interdependent with the other three

requirements in this subproblem.

Subproblem 5 -- Output Patterns Simulation

This subproblem contains thirteen requirements,

including 37--40, 44, 45, 47, 48, 50, 53, 54, 55, and 59.

The central focus of this subproblem is Output Patterns

Simulation.

At the heart of this subproblem is the simulator itself

(requirement 45). A few new "sub-functions" are embedded in

this requirement, e.g. better timing analysis will be

provided by the new simulator, high impedance state (Z state)

a.

-

119
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

will be simulated (for recent popular use of bus type

devices), etc. Requirement 47 is concerned with the speed of

the simulator; its being in this subproblem is only natural

because the realization of this requirement strongly depends

on the design and implementation of the simulator. Other

requirements in this subproblem directly relate to

requirement 45 in various ways.

Requirements 50, 53, 54, and 55 represent features that

ensure an accurate modeling of the board activity. They are

interdependent with requirement 45 in that they impose

additional burdens on the simulator.

Requirements 37, 38, 39, and 40 are concerned with

high-level functional IC modeling and the language used to do

the modeling (SCL -- Simulation Command Language).

High-level functional IC modeling offers the only viable

solution to the problem of modeling complex IC device [Grason

1977) [Armstrong and Woodruff 1977]. The word "functional"

refers to the internal function within the chip (from any

. input change to any resultant output change). To

functionally model an IC, procedures which describe the

function of the IC must be written by the IC modeler. SCL is

a high-level language used to write the procedures. Some of

* these requirements reflect the inadequacies of the SCL used

V VIA

., -v

-~~~~~ 7" - 77r""LI 7~___

120
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

on the current system. These requirements end up in this

subproblem because the procedures will run as subroutines of

the simulator, and additional effort must be put into the

design of the simulator to properly satisfy these

requirements.

Requirement 44 pertains to the automatic simulation of

the internal circuit activity of an IC that has been modeled

using circuit description technique (see Subproblem 2 for

circuit description IC modeling technique). The purpose here

is to automatically generate the connectivity information of

the IC (see requirement 43 in Subproblem 2 for the use of

connectivity information). This requirement ends up in this

subproblem because the same simulator used for board

simulation (requirement 45) can be used to carry out

connectivity simulation.

Finally, Requirement 48 requires a nodal-status listing

facility, i.e., the display of the internal nodal values

recorded throughout the simulation. This requirement falls

into this subproblem mainly because its implementation

depends on what kind of information is generated throughout

the simulation, and how the information is recorded by the

simulator. The presence of requirement 59 -- display of

internal nodal faulty activity for an undetected fault -- in

121
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

this subproblem was not initially obvious to the author. At

first, the author wondered why it did not fall into

subproblem 7 -- test program evaluation and fault isolation

preparation. (This is another instance of how logical

relationship tends to occur to one's mind first.) The

question was raised to the designer who performed the

interdependency assessment activity. From his viewpoint, the

presence of requirement 59 in this subproblem rather than in

subproblem 5 makes good sense; the rationale for it is that

once requirement 48 (display facility for internal nodal

values recorded throughout the simulation) is implemented,

requirement 59 can be satisfied with little additional

effort. It makes no difference to the display facility

whether the internal nodal values to be displayed are

resultant from simulation of a good circuit or simulation of

a faulty circuit.

Subproblem 6 -- Fault Modeling and Insertion

This problem contains four requirements (64-67). Fault

models must be built before they are inserted into a good

circuit for fault simulation. The central focus of this

subproblem is Fault Modeling and Insertion. Requirements 64,

65, and 67 are interdependent with each other in that

4 -implementations of these requirements all involve fault

A.-

9xj ,

122

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

modeling mechanism. Requirement 66 is in this subproblem

because it represents a constraint which largely eases the

implementation of these requirements.

Subproblem 7 -- Test Program Evaluation and
Fault Isolation Preparation

This subproblem has nine requirements, including 46,

49, 56, 57, 58, 60, 61, 62, and 63. Its central focus

corresponds to Test Program Evaluation and Fault Isolation

Preparation. At the heart of this subproblem is requirement

46 -- fault simulation activity. In a simulator-based test

program preparation system, fault simulation activity

supports both test program evaluation and fault isolation

preparation (as described in Section 4.2.4 and Section

4.2.5). Other requirements in this subproblem directly

relate to this requirement in various ways.

Requirements 57, and 58 are concerned with reporting of

test program quality evaluation. Faults undetected

(requirement 57) and percentage of faults detected

(requirement 58) must be reported to the user. These two

requirements are interdependent with requirement 46 in a

supportive sense: they can be easily satisfied as a result of

fault simulation activity.

*

123
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Requirements 49, 60, 61, 62, and 63 are all

interdependent with requirement 46 in that they represent

fault simulation related features which impose additional

burdens on the design and implmentation of fault simulation.

Requirement 56 concerns the speed of fault simulation

activity. Fault simulation has been the bottleneck for the

test program preparation process; this is due to the large

number of faults which must be simulated. In addition to the

necessity of a faster simulator (requirement 46 in Subproblem

5), other techniques must be employed to reduce the time

consumed in the fault simulation activity.

Subproblem 8 -- Test Program Macro Processing Facility

This subproblem only contains two requirements, and is

rather easy to interpret. The two requirements (requirements

3 and 4) are concerned with test program macro processing

capability. It was argued during the requirements

preparation process whether these two requirements should be

included or not. The reason for not including them was that

a general purpose macro pre-processor would be sufficient

for satisfying these two requirements. They do not seem to

be interdependent with any other requirement in terms of

* U

124
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

implementation and thus they should not be included in the

SDM requirements set (the SDM requirements set contains those

requirements that are revelant to interdependency assessment

only) . Nevertheless, the designer who performed the

interdependency assessment decided to include them for he did

envision a weak interdependency between requirement 3 and

requirement 1 (the test language): in order to successfully

implement a test program macro processing facility, one

should take test language into consideration. These two

requirements (3 and 4) forming one subproblem makes good

sense in that their implementation is largely independent

from other requirements. Their weak interaction with the rest

of the system requirements is reflected in the weak link

between requirement 3 and 1 (contained in subproblem 1).

This concludes the analysis and interpretation of the

eight identified system design subproblems. In the next

section we will briefly analyze the interrelationships (sets

of interdependencies) between the subproblems.

A,1

,"a

J.

125
7. A DESIGN PROBLEM FOR THE CURRENT SD4 APPLICATION SYSTEM

7.2 ANALYSIS OF SUBPROBLEMS INTERRELATIONSHIPS

There are a total of 13 links interconnecting the 8

design subproblems in the design framework of the current SDM

application system. A listing of the set of

interdependencies between each identified pair of subproblems

is presented in Table 7.2 Some statistics regarding these

links are shown in Table 7.3. Since both the number of

interdependencies as well as interdependency weights are

important determinants of link strength, Table 7.3 also shows

total weight for each link. This is just the sum of the

weights on all the interdependencies making up each link. In

this section, we will provide a brief interpretation of the

nature of each subproblem linkage. Summary descriptions of

the 13 inter-subproblem linkages are given in Table 7.4 at

the end of this section.

$1

I ..

12

t s--

126

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

SUBPROBLEMS PAIR INTERDEPENDENT NODES

1 -- 2 1-8 ,W 1-9 ,W 1-15,W
2-8 ,W 2-9 ,W 2-19,W

1 -- 3 **NONE**

1 -- 4 **NONE**

1 -- 5 1-45,W 1-53,W 1-55,W
2-45,W 2-48,W 2-53,W
2-55,W 10-45,W 10-55,W

1 -- 6 **NONE**

1 -- 7 2-46,W 7-49,W 10-49,W

1 -- 8 1-3, W

2 -- 3 26-41,S

2 -- 4 15-30,W 15-35,W 19-27,W
19-32,W 19-33,W 20-27,W
27-34,A 32-34,A 33-34,A

2 -- 5 8-45,W 9-45,A 15-55,W
19-45,A 19-53,A 20-45,W
34-44,A 34-45,W 34-53,W
34-55,W

2-- 6 34-67,A

2 -- 7 19-46,A 20-46,W

2 -- 8 ** NONE **

U.

i~

127

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

3 4 **NONE**

3 -- 5 37-42,A

3 -- 6 **NONE**

3 7 **NONE**

3 -- 8 ** NONE **

4 5 **NONE**

4 -- 6 **NONE**

4 7 **NONE**

4-- ** NONE**

5 -- 6 37-67,A 38-65,A 38-67,W
40-67,W 53-64,W 54-64,W
54-65,W 55-64,W 55-65,W

5 -- 7 38-46,W 40-46,W 40-49,W
45-46,A 45-49,W 48-49,W
55-46,W 55-49,W 55-60,W
55-62,W 59-46,A 59-61,W

5 -- 8 ** NONE **

6 -- 7 46-64,S 46-65,S 46-66,A
46-67,A

i 6-- ** NONE**

S7 -- **NONE**

Table 7.2

Interdependencies Between Requirements Subsets
In Best Decomposition

I7

128

7. A DESIGN PROBLEM FOR THE CURRENT SDM
APPLICATION SYSTEM

Subproblems Number of Total Average
ID No. Pair Linking Weight Weight

Interdep.

1 1 2 6 1.2 0.20

2 1 -- 5 9 1.8 0.20

3 1 -- 7 3 0.6 0.20

4 1 -- 8 1 0.2 0.20

5 2 -- 3 1 0.8 0.80

6 2-- 4 9 2.7 0.30

7 2 -- 5 10 3.2 0.32

8 2 -- 6 1 0.5 0.50

9 2 -- 7 2 0.7 0.35

10 3 -- 5 1 0.5 0.50

11 5 -- 6 9 2.4 0.27

12 5 -- 7 12 3.0 0.25

13 6 -- 7 4 2.6 0.65

Table 7.3 Statistics for Inter-Subproblem Linkages

129
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Link 1: (Subproblems 1 and 2)

This link contains six weak interdependencies. Two

interdependencies pertain to circuit-related information

needed for test program processing (1-15, 2-19). The other

four are concerned with proper test langauge constructs that

allow the user to directly manipulate the internal nodal

values (1-8, 1-9, 2-8, 2-9).

Link 2: (Subproblems 1 and 5)

This link contains nine weak interdependencies. Eight

of them pertain to information specified in the test program

that is needed for simulation: the sequence of test steps

which the simulator will follow, and other information

concerning delay, bus direction, synchronization, etc., which

the simulator will take into account. One interdependency

pertains to the simulated output patterns that are to be

incorporated into the GO/NO-GO test program preparation

(interdependency 10-45).

I!

8.'

o:'-

130
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Link 3: (Subproblems 1 and 7)

This link contains three weak interdependencies. One

interdependency pertains to test program information needed

for fault simulation activity. The other two are concerned

with proper cooperation among incremental test program

compilation, incremental simulation, and incremental GO/NO-GO

test program generation, for the purpose of preparing the

test program in increments through interaction with the

simulator.

Link 4: (Subproblems 1 and 8)

This link contains only one weak interdependency. it

refers to taking test language into consideration for the

implementation of the test program macro processor facility.

Link 5: (Subproblems 2 and 3)

This link contains one strong interdependency. It

pertains to the common current-to-new conversion facility for

both board circuit description source files and IC circuit

description source files.

* a

I 131

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Link 6: (Subproblems 2 and 4)

This link contains nine interdependencies (three average

ones and six weak ones). Three interdependencies pertain to

sharing of common IC library access tools (19-27, 19-32,

19-33). One interdependency is concerned with proper

modification of IC models in an IC library as a result of

partial re-processing (20-27). Two interdependencies pertain

to using CDL to specify contents of ROM models and PLA

devices (15-30, 15-35). Finally, three interdependencies

(27-34, 32-34, 33-34) are concerned with containing Circuit

Description type IC models in IC libraries.

Link 7: (Subproblems 2 and 5)

This link contains ten interdependencies (six weak ones

and four average ones). One interdependency pertains to

automatically simulating connectivity information for Circuit

Description type IC models (34-44). Two interdependencies

ensure that the mechanism used for direct manipulation of

inteinal nodes is consistent with charateristics of the

simulation. The rest of the interdependencies pertain to

circuit-related information required for the circuit

simulatoc.

* a,

1 . -
-

i 132

7. A DESIGN PROBLEM FOR THE CURRENT SDM
APPLICATION SYSTEM

Link 8: (Subproblems 2 and 6)

This link contains one average interdependency. It

pertains to using Circuit Description IC modeling techniques

to model internal LSI faults.

Link 9: (Subproblems 2 and 7)

This link contains two average interdependencies. The

focus of this linkage concerns circuit-related information

needed for fault simulation process.

Link 10: (Subproblems 3 and 5)

This link contains only one average interdependency. It

pertains to conversion of functional IC models. The

conversion facility must be aware of the new SCL definition;

furthermore, the design and implementation of the new SCL

must also insure that the conversion is feasible.

Link 11: (Subproblems 5 and 6)

This link contains nine interdependencies (two average

ones and seven weak ones). Of the nine interdependencies,

four pertain to using functional IC modeling technique to

support user inserted faults and internal LSI faults

a,

-- - -.--.. -_ +

133
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

modeling. The other five interdependencies focus on accurate

modeling of faulty circuit (good board with fault models

inserted in it).

Link 12: (Subproblems 5 and 7)

This link has twelve interdependencies (ten weak ones

and two average ones). The relatively large number of

interdependencies in this link is due to the fact that the

simulator is used for both good circuit simulation and fault

simulation (specifically, interdependency 45-46). The central

focus of this link is on common simulation issues. Some

interdependencies concern the complication brought up by

incremental simulation (49-40,45,48,55); some concern the

complication brought up by better synchronization between the

tester and the simulator (55-46,49,60,62). Three

interdependencies pertain to support provided to the SCL

(Simulation Command Language) by fault simulation (38-46,

40- 6 , 40-49). One interdependency is concerned with common

fault selection mechanism (59-61). One interdependency is

, concerned with information, recorded during fault simulation,

* that is relevant to the display of internal node faulty

circuit activity.

'+

I.

H ill r I I II I II I ' . .. IIII I I I - . . I i I

134

7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

Link 13: (Subproblems 6 and 7)

This link contains 4 interdependencies (2 strong ones

and 2 average ones) . The central focus of the link is on the

use of fault models in fault simulation. The link ensures

that insertion of fault models is consistent with simulation

machinary (46-66), fault simulation provides support to

modeling of internal LSI faults (46-67), and finally, that

fault analysis for each fault model is properly done prior to

fault simulation activity.

This completes the description of the individual

linkages between the design subproblems. Summary descriptions

of the 13 inter-subproblems linkages are given in Table 7.4.

K

I

135
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

ID Subgraphs Summary Description

1 1,2 circuit description information relevant
to test program processing;
test language constructs for manipulation
of internal nodal values.

2 1,5 test program information relevant to
simulation;
simulated output patterns for GO/NO-GO
test program generation.

3 1,7 test program information relevant to
fault simulation;
incremental program preparation issues.

4 1,8 concern of test language syntax for
test program macro processing facility.

5 2,3 common conversion facility for existing
circuit description files.

6 2,4 common access tools to IC libraries.

7 2,5 circuit description information required
Af for simulation;

automatic connectivity simulation.

8 2,6 use of the circuit description IC modeling
technique for fault modeling.

,'1 9 2,7 circuit description information required
for fault simulation process.

4

10 3,5 SCL models conversion.

4..

" .

136
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

11 5,6 SCL's support to fault modeling;
accurate modeling of faulty circuit.

12 5,7 common simulation issues.

13 6,7 use of fault models for fault simulation;
preparation work concerning fault models
before fault simulation process.

Table 7.4

Summary Descriptions of the 13 Inter-subproblem Linkages

* w

137
7. A DESIGN PROBLEM FOR THE CURRENT SDM APPLICATION SYSTEM

7.3 SUMMARY

While the decomposition process supports the

architectural design phase by clustering the global system

requirements into subproblems, it does not purport to provide

the best answer since the techniques are satisfying rather

than optimizing. In the case of the current application

study, the subproblems and linkages presented in the design

framework of the new test program preparation system are

quite clear and easy to interpret. All the subproblems were

found to have an obvious design focus and the important

design implications of the various inter-subproblems linkages

were easily identified. Judged by this mixture of intuitive

and explicit measures, SDM functioned well in guiding us to

the identification of a good design framework.

Overall, among the five decomposition techniques (four

bottom-up clustering techniques and one top-down partitioning

technique), the top-down interchange partitioning technique

appears to be the most promising in terms of producing

satisfying results with the least amount of effort from the

* user. More about the decomposition techniques and the

analysis packages will be addressed in the next chapter.

138
AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

8. Areas for Further Research and Improvement

The original objective of this thesis is to test the

applicability of the SDM to software system architectural

design. The SDM application to the test program preparation

system was quite successful, as far as it went. SDM "worked"

in a technical sense, and it was perceived to be useful by

(presumably unbiased) system designers who participated in

the SDM application. The purpose of this chapter is to take

a retrospective view of the current application and discuss

the areas which deserve some attention for further study.

While there are undoubtably many avenues for further research

in the SDM and related areas, to limit the scope of this

brief discussion, we will address only those areas which we

believe to be most important based on the experience of the

current application study.

8.1 The Common Level of Generality Issue

As was mentioned in Section 5.3, it was difficult to

frame all the requirement statements at a common level of

generality. Indeed, starting from the very first

methodological step, the greatest expenditure of time and

energy for the current SDM application seemed to be on

!

rV~

139
AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

dealing with the "common level of generality" issue.

Apparently, this is an area that deserves further study. The

following questions ought to be considered:

(1) Which level is appropriate for specifying the

SDM requirements?

(2) Given that a level is chosen, to what extent

can all the requirements be specified at that

common level?

(3) From the viewpoint of applying the SDM, is the

above extent good enough, to avoid undesirable

impact on the decomposition process?

During the SDM requirements preparation process for the

current application, the designers and the author

occasionally found it necessary that requirements be stated

at various levels of generality: the general requirements

serve to indicate the origin of some detailed ones, and the

detailed ones serve to elaborate the general ones. Thus,

based on the experience learned from the current application,

it seems to be impractical to state all the requirements at

*

.J

i:-

140
AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

only one common level of generality. Thus, it is advisable

to at least allow requirements to be specified at various

levels of generality. Then, for the purpose of applying SDM,

one may choose a particular level and regard requirements

specified at that level as the "requirement nodes" of the SDM

graph model. In fact, as was already mentioned in Section

6.1, the presence of those either "too general" or "too

detailed" requirements is helpful for performing the

interdependency assessment because they provide a better

understanding of the requirements in general.

Recall that during the Phase-I methodology development

stage, Andreu identified a list of characteristics which the

set of SDM requirements should exhibit (see Section 3.2.1).

The need for the inclusion of each of these characteristics

was justified based on the goal of the methodology [Andreu

November 1977]. It is important to note that the "common

level of generality" property was not included in this

initial list. Rather, it was added to the list later based on

a lesson learned from the SDM application to the design of a

DBMS -- the first SDM testing case [Andreu December 1977].

The lesson indicated that for the purpose of proper set

decomposition, all the SDM requirements should be specified

at a common level of generality (see Section 5.3 in this

thesis for the quote from Andrue's report). In other words,4

p1

'I

I
141

AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

unlike those included in the original list, this particular

property is basically concerned with proper set

decomposition.

This fact raises the question: how about removing the

Mcommon level of generality" restriction, i.e., how about

allowing requirements to be specified at various levels of

generality (*). Perhaps some kind of "hierarchical

structuring" mechanism should be incorporated into SDM to

support this - another area for further research which is to

be discussed more below.

8.2 Study of Hierarchical Structuring Principle

While the motivation behind incorporating hierarchical

structuring into SDM is to allow requirements to be specified

at various levels of generality, more research work is

*required concerning the following:

(1) how should hierarchical structuring be

incorporated into SDM, and

(*) we may still want to restrict the range of levels for
design purpose

g

f1 142

AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

(2) whether it indeed aids designers in coping with

the complexity of the system design problem.

It is well known that hierarchical structuring is a very

common and powerful way for humans to deal with complex

system (e.g. see [Simon 1969]). In the case of the current

SDM application, the original requirements specifications

were organized in a hierarchical fashion: the top level

sections contain the general requirement statements, and

under each of these sections, more detailed requirements were

specified. As was observed in the other real world SDM

application, the hierarchical structuring approach was also

used by the system designers. to specify the requirement

statements [Huff June(a) 1979):

.... Following initial discussions with the Budget

System designers, it was decided that the designers

would prepare an initial requirements list

This initial set of Lequirement statements proved

somewhat inappropriate for SDM use for various

reasons. The most important difficulty concerned

the manner in which many of the statements had been

constructed by the designers , many statements

consisted of a very general leader statement,

a

143

AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

followed by a series of sub-statements..."

In order to support the incorporation of hierarchical

structuring, the succeeding methodological steps (i.e.,

interdependency assessment, decomposition process, etc.)

should be extended accordingly. Recall that during the

Phase-II SDM development stage, Huff proposed a variety of

extensions to the basic binary model (see Section 3.2.3);

among them are "hierarchical implication relationships."

While being applied to a subset of DBMS requirements for

experimental purposes, the hierarchical relationships turn

out not to buy the designers much [Huff July 1978]. This is

because the requirements were already framed at a common

level of generality. If the "common level of generality" is

not a restriction for requirements specifications anymore, it

is certainly worth re-examining the hierarchical implication

relationships.

Finally, proper decomposition techniques must be

.1 developed to support incorporation of hierarchical

* "~structuring into SDM.

.4

*

4p

P!.~-

144

AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

8.3 Techniques for Using the Methodology

Another aspect of further study concerns techniques for

using the methodology; in particular, techniques for carrying

out the interdependency assessment activity.

In the current application study, two analysis methods

were tried: (1) individual, and (2) individual followed by

group; although no attempt was made to monitor tne relative

effectiveness of the different approaches. The author's

opinion on this is that the second approach may be better in

terms of obtaining a convergence of design opinion less

susceptable to bias (i.e., regarding the existence or

strength of interdependencies).

8.4 Analytical Techniques for the Decomposition Process

Based on the experience learned from the current

application study, the important analytical techniques for

applying the SDM concept are reasonably well developed at

this point. Nevertheless, from the viewpoint that the

decomposition process is the methodological step intended to

be automated the most, i.e., the "best" decomposition should

be generated with as little amount of effort contributed from

the designer as possible, more work is required to automate

145
AREAS FOR FURTHER RESEARCH AND

IMPROVEMENT

this process to the fullest extent possible. As was pointed

out by Huff, there are certain graph decomposition techniques

that have not been tried in the SDM context; among them,

McCormick's approach appears especially promising (see

Chapter 5 in Huff's Doctoral Thesis [Huff June(b) 1979]). It

is likely that additional study of the clustering and network

literature would unearth more potentially useful approaches

to the decomposition problem.

Another area that deserves attention concerning the

decomposition process is the "friendliness" of the

environment in which the dLs.igner and the decomposition

techniques cooperate to generate the best result. Of course,

if the decomposition techniques are intelligent enough to

efficiently produce the best result with no human interaction

at all, little has to be done concerning the "human

interface" issue. As long as there involves human

interaction, it is strongly recommended that a friendly

interface be provided. An unfriendly interface not only would

hinder the popularity of the SDM, but more importantly, it

simply defeats the purpose of the methodology. For after all,

the idea of the SDM is to aid the designer to cope with the

complexity involved in system design; an unpleasant interface

is not consistent with this goal.

p,

. p

146
AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

8.5 Linkage to the Detailed Design Stage

Another area for further research concerns the question

of linking a SDM-based design problem structure to the system

detailed design process. This problem is regarded by Huff as

the single most important problem to be addressed in future

SDM-related research (see [Section 9.1, Huff June(b) 1979)).

Basically, the SDM design framework is seen as a

structuring scheme for thinking about alternative

implementation techniques and deciding upon the most

appropriate ones in an organized fashion. Based on the

experience learned from the current application study, it

seems that SDM can be applied continuously, in various ways,

to aid the organization of subsequent design activities. For

example, as a result of carefully studying the trade-offs and

concurrencies in the design framework, the original graph

model may be modified in terms of the existence and strength

of the interdependencies. The modified graph model can then

be decomposed so as to obtain a decomposition possibly

different from the previous design problem structure. The

difference is due to the fact that while the previous design

problem structure is based on various implementation

alternatives, the new decomposition is based on

implementation approaches that have been decided upon.

a

147
AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

Each subproblem in the newly obtained decomposition can

then be attacked individually (each subproblem may be

assigned to a design team). Given each subproblem as a

subsystem, SDM can be applied to the subsystem in a similar

manner as before: more detailed requirements can be generated

and interdependency assessment activity will be performed to

define an SDM graph model which in turn will be decomposed.

By applying SDM in this recursive fashion, it is conceivable

that at some point implementation issues one thinks about for

performing interdependency assessment would heavily concern

the alternative ways for the design of software modules.

This is probably a reasonable entry point to the 'detailed

design stage."

Of course, whether the above suggestion is the right

approach to the linkage problem or not requires further study

and testing.

4

S.

148

AREAS FOR FURTHER RESEARCH AND IMPROVEMENT

8.6 Summary

While still a research project, the Systematic Design

Methodology is proving its effectiveness in aiding system

architects to organize and manage the many and diverse

requirements typical of complex systems design. While again

confirming its fundamental soundness and value, this study

has suggested new improvements that may be made to the

methodology and has pointed out areas that deserve further

research.

The faith which the designers and the author (who have

participated the current application study) have in the

potential of the methodolog to improve quality of complex

system design is reflected in our being willing to try SDM on

future projects. Hopefully, this study will motivate further

development and testing work on the methodology.

149

REFERENCES

Alexander, C.: Notes on the Synthesis of Form, Harvard

University Press ,- 9(-6. -

Anderson, R.: Handbook of Logic Circuit Testing, Omnicomp
Inc., Phoenix, AZ 1975.

Andreu, R.C. and Madnick, S.E.: "An Excercise in Software
Architectural Design: From Requiremets to Design Problem
Structure", Technical Report no. 3, Sloan School of
Management, MIT, November 1977.

Andreu, R.C. and Madnick, S.E.: "Completing the Requirements
Set as a Means Towards Better Design Frameworks: A Follow-up
Excercise in Software Architectural Design", Technical Report
no. 4, Sloan School of Management, MIT, December 1977.

Andreu, R. C.: "A Systematic Approach to the Design and
Structuing of Complex Software Systems", PhD. Thesis, Sloan
School of Management, M.I.T., Cambridge, Mass. 1978.

Armstrong, J. R., Woodruff, G., "Simulation Techniques for
Microprocessors", Proceeding of Design Automation Conference
No.14,, June 1977.

Beldford, P., et. al.: "Specifications: The Key to Effective
Software Development", Proc. 2nd. Int. Conf. on Soft. Eng.,
1976.

Breuer, M.A., Friedman A.D.: Diagnosis and Reliable Design of
Digital System, Computer Science Press, Woodland Hills, A
1976.

DeWolf, B.: "Requirements Specification and Design for
Real-time System : A Problem Statement", IR&D Memo No. 4,
C.S. Draper Labs., Jan. 1977.

Endres, A.B.: "An Analysis of Errors and Their Causes in
System Programs", IEEE Transactions on Software Engineering,
June, 1975.

Pagan, M.E.: "Design and Code Inspection and Process Control
,! in the Development of Programs", IBM TR 21-572, December,

1974.

Freeman, P.: "The Context of Design", in "Tutorial on
Software Design Techniques", P. Freeman and A.I. Wasserman,
Eds. - IEEE Catalog No. 76CH1145-2C.

w

A.

(°

150
REFERENCES

Grason, J., "Testing Circuit Packs Containing LSI
components", ELECTRO-77, Session 32, "Testing Complex Digital
Assembl ies".

Holden, T.: "A Systematic Approach to Designing Complex
System: Application to Software Operating Systems",

Technical no. 5, Sloan School of Management, MIT, May 1978.

Howland, J. C.: "An Examination of Systems Integration", TSP
Division, GenRad Inc., August 1978.

Huff, S. L., and Madnick, S. E.: "An Approach to the
Construction of Functional Requirement Statements for System
Architectural Design", Technical Report no. 6, Sloan School
of Management, MIT, June 1978.

Huff, S. L., and Madnick, S. E.: "An Extended Model for a
Systematic Approach to the Design of Complex Systems",
Technical Report no. 7, Sloan School of Management, MIT, July
1978.

Huff, S. L.: "A Methodology for Designing the Architecture of
Complex Systems", Doctoral Thesis Proposal, Sloan School of
Management, MIT, Oct. 1978.

Huff, S. L., and Madnick, S. E.: "Decomposition of Weighted
Graphs Using the Interchange Partitioning Technique",
Technical Report no. 8, Sloan School of Management MIT, Jan.
1979.

Huff, S. L., and Madnick, S. E.: "Analysis Techniques for Use
With The Extended SDM Model", Technical Report no. 9, Sloan
School of Management MIT, Feb. 1979.

Huff, S.L.: "Architectural Design of a New M.I.T. Budgeting
System: An Application of the Systematic Design Methodology",
Technical Report no. 11, Sloan School of Management MIT,
June(a) 1979.

Huff, S.L.: "A Systematic Methodology for Designing the
Architecture of Complex Software Systems", PhD. Thesis, Sloan
School of Management, M.I.T., Cambridge, Mass., June(b) 1979.

Madnick, S. E., and J. Donovan: Operating Systems,
* McGraw-Hill 1975.

Myers, G.: Structured/Composite Design, Van Nostrand Reinhold
Co., 1978.

"!4,

V w

'I

151
REFERENCES

Simon, H.: The Science of the Artificial, MIT Press, 1969.

Stevens, J., et. al.: "Structured Design", IBM System
Journal, Vol. 13, no. 2, April 1974.

Szygenda, S.A.: "Digital System Simulation", Computer, March
1975.

Thayer, T.A.: "Understanding Software through Analysis of
Empirical Data", Procs., 1975 National Computer Conference
-AFIPS.

Wasserman, T., et. al.: "Software Engineering: The Turning
Point", Computer, September 1978.

White, J., and T. Booth: "Towards an Engineering Approach to
Software Design", Proc. 2nd Int. Conf. on Soft. Eng., 1976.

'MEMO

1

152
APPENDIX A

FINAL SET OF REQUIREMENTS FOR

THE TEST PROGRAM PREPARATION SYSTEM

AS USED IN SDM ANALYSIS(*)

I] There will be a test language in which user can

write test procedures to control the testing.

COMMENT --

Digital test commands will be specified in the

new test language format, which is very similar

to the current digital commands.

The non-digital commands can be specified in

current format.

Errors must be properly reported so as to enable

the user to quickly diagnose and locate the error.

Furthermore, errors can be optionally corrected

on-line as in the current system.

This requires an automatic chaining into the editor

upon errors and back into the processor for

(*) Each functional statement may have a Comment Section
attached to it. Information that the designers desire to
have formally stated in the specifications but was deemed not
appropriate to be specificled as part of the SDM requirement
statement was included in the Comment Section.

4

iJ; _

153
APPENDIX A

retries.

The original source file must be replaced

with the output listing file.

[2] There will be a test program processing facility.

COMMENT --

For non-digital commands, which are not to

be used by the simulator, there will be syntax

error checking on them within test program

processing. No binary translation will be done.

At the same time, we may want to generate the TP

Label Table.

[31 There will be a test program macro processing

facility.

[4] There will be a test program macro library.

: l
At COMMENT --
,i

Macros can be inserted into or deleted from the

library.

.i

154
APPENDIX A

There may be syntax error checking before a macro

definition is inserted into library.

[5] Default driving characteristics associated with

output or bidirectional pins for each standard

device type will be supported.

[6] Default driving characteristics associated with

output or bidirectional pins for each standard

device type can be overriden by user.

[7] Incremental test program compilation will be

supported when more test steps are added to the end

of the test program.

[8] Simulation results for a device model can be

overriden by user.

COMMENT --

This can be done using transitionals.

Specific transitionals can be turned on or off

within test program.

There can be multiple transitional changes within

155

APPENDIX A

the same test step.

Support to transitionals will be consistent with

characteristics of the simulator:

Transitionals can have H,L,X,Z value.,

Different delays can be assigned to multiple

transitional changes within the same test step.

The timing and control of occurrence of the

transitional change must be with reference to

driver timing plus a delay.

Transitionals attached to output pins will take

on the output drive characteristics of the IC pin.

Transitionals attached to input pins will change

only that pin without affecting the nodal value.

(9] Output of a device for which no simulation model

exists can be controlled by user.

COMMENT --

Use transitionals to support this.

[i0] The GO/NOGO test program will be generated.

COMMENT --

1 -- -", . .. "', xII. _____________."- ._ .

156
t APPENDIX A

The good board simulator will generate the output

patterns, based on the translated test program

database and circuit description.

Results of good board simulation, i.e., the

output patterns and the original test program

will be merged together to produce the

GO/NOGO test program.

Non-digital test commands originally specified

in the user-created test program, which are not

used for simulation, should also appear in the

GO/NO-GO test program.

(i] There will be New-to-Current GO/NO-GO test program

conversion facilities.

COMMENT --

The conversion here involves translating any

test commands whose new format is different

from the current format.

GO/NOGO program can be manually generated by the

user.

Macro processing facility is not supported in

157
APPENDIX A

this case.

(121 A test program can contain multiple sets of input

test patterns each testing a different part of the

same board.

[13] A test program can contain multiple sets of input

test patterns all of which test the same part of a

board.

(14] There will be Current-to-New test program conversion

facilities.

COMMENT --

This does not have to be interactive or fast

enough to allow continued ongoing use of the old

digital test language.

(15] There will be a Circuit Description Language which

allows the user to specify board-related or IC-

related descriptions.

COMMENT --

.4

9'

- -,~
i • " - - ..." . .. ' :iA

158
APPENDIX A

Circuit description will contain schematic

diagram of the UUT:

The UUT schematic diagram description will

contain the list of components on the circuit

board, their interconnections, and their

connections to the external signal paths.

Circuit description source will contain

Tester-UUT interface description.

Circuit description source can also contain

user-specified attributes, for example like

NONNIL, etc.

Each external signal path, IC, and special device

will be assigned an unique name. Devices must be

allowed to be mentioned more than once.

Each physical package is considered a single

component and therefore will be assigned a single

name.

Relevant attributes supported by current test

system will be supported.

(16] Format of Circuit Description Source file

will be compatible with that of In-Circuit test

systems.

159
APPENDIX A

COMMENT --

This implies that Circuit Description Source

will be divided into sections preceded by a

section header (%CIRUICT, ADAPTOR, etc.).

[17] Different sections of the circuit description

source file can be used by more than one product

type if so specified.

COMMENT --

For example, %CIRCUIT : A,B; specifies

that the %CIRCUIT section is valid for both

tester type A and tester type B.

[18] Different sections of the circuit description

source can be shared by multiple sets of input

patterns in the same test program

which have the identical circuit topology.,i

[19] There will be a circuit description processing

facility.

"- -

APPENDIX A
160

COMMENT --

There will be error checking during circuit

description processing. The most common errors

are errors in the connection field in the

%circuit section.

The best solution is a solution that minimizes

the processing between the start of processing

and the first error report. Not acceptable is

a solution that processes most or all of the

Circuit Description File before reporting any

errors.

[20) There will be partial re-processing facility for

circuit description source file.

[21] Default driving characteristics of output or

bidirectional pins for each specific tester

will be supported.

COMMENT --

For each output or bidirectional pin, there will

U

i __ _____

161
APPENDIX A

be overdrive, hard, and soft associated with its

"0" and "l" states.

The default information must be kept

somewhere in the system. CDL must allow user to

indicate the tester type.

[22] Default driving characteristics of output or

bidirectional pins for each specific tester

can be overriden by user.

COMMENT --

For each specific tester, user may override the

default in %ADAPTOR.

CDL must allow user to override the default.

(231 Board-related statistical data will be reported to

user.

(24] Board-related warnings will be reported to user.

(25] Circuit network connection cross-reference data will

be reported to user.

a.

(p

* *

162
APPENDIX A

[26] There will be Current-to-New circuit description

source file conversion facilities.

COMMENT --

The translator must be able to process source

imbedded with line numbers and error messages.

[27] There will IC model libraries.

COMMENT --

At the minimum, there will be a system

library, which must be locked, a system

update library, and one or more user libraries.

[28] About 90% of the existing System IC model library

will be converted.

(29] Every widely used primitive element and SSP Boot

element will be supported.

[30] Models for ROM's will be supported.

N

* -J

163

APPENDIX A

COMMENT --

Alternative techniques for ROM space

saving will be implemented.

%ROM section may be used, in Circuit

Description Source File, to contain the

content of a specific ROM.

(31] Default transport delay characteristics associated

with output pins of each standard IC family type

will be supported.

[32] There will be IC library maintenance facilities.

COMMENT --

Content of the library can be obtained.

IC can be inserted into the library.

IC can be deleted from the library.

A binary copy of a model can be extracted from

one library and then inserted into another

library.

[33] There will be an IC model information display
i64

* U

- _ _ 4 . '

164
APPENDIX A

facility.

COMMENT --

The information displayed shall be that information

that is easy to obtain and display.

[34] IC's can be modeled using circuit description

technique.

COMMENT --

%LIB: replaces the $ processing for IC model

circuit descriptions. The format of the section

follows that for the current system with

additions to support the universal bus device

and transport delays.

[35] Models for Gate Arrays (PLA devices) will be

supported.

COMMENT --

Gate Arrays and PLA refer to the same category of

i;~

165
APPENDIX A

devices. There will be an upper limit on the size

of PLA device, for now, PLA devices as large as

2000 gates or smaller will be modeled.

[36] Default transport delay characteristics associated

with output pins of each standard IC family type

can be overriden by user on a pin by pin base.

(37] IC's can be modeled using functional modeling

technique (SCL-II).

COMMENT --

This requirement calls for the language

(Simulation Command Language, Version II)

itself and the language processor

(be it a compiler or interpreter).

[381 SCL-II will be convenient to use for both system

manufacturer and customer.

COMMENT --

4
4.

all

" ' " ++. . .. " " ""

166
APPENDIX A

Machinary of the simulator will be hidden from

SCL-II users.

[391 SCL-II will be efficient enough to be suitable for

some in-house modeling of primitives.

COMMENT --

Both speed efficiency and core efficiency.

[40] There will be SCL-II debugging tools.

COMMENT --

SCL-II debugging will be supported by the good

board simulator to make SCL-II a good tool

for the average IC modeler.

A clean interface between SCL-II models and the

simulator should be maintained for debugging

purpose.

Don't forget to debug fault models.

(41] There will be tools aiding .SR-type IC models

conversion.

S or

167
APPENDIX A

[42] There will be tools aiding SCL-I TO SCL-II IC models

conversion.

[43] There will be a conditional connectivity language for

user to define connectivity of an IC model.

COMMENT --

For both .SR-models and SCL-II models.

[44] Connectivity of .SR-IC models can be automatically

simulated using connectivity simulator.

[45] There will be a (good board) simulator.

A
COMMENT -

The simulator will be used for both good value

simulation and fault simulation.

The simulator will be a multi-delay simulator.

The simulator will be at least a 4-value

simulator (4-value: 0,l,X,Z).

j .4
* JgI

€
b .

'Ia

l683

APPENDIX A

[46] There will be fault simulation activity.

COMMENT -

This requirement implys all the work needed to be

done prior to simulation and fault simulation

itself.

Work needed to be done prior to simulation

includes fault analysis, fault insertion, perhaps

fault collapsing (for speed reason), etc.

Fault simulation itself uses the good board

simulator.

(47] The simulator will be as fast as possible.

COMMENT --

The new simulator will be at least 5-10 times as

fast as the current simulator.

The simulator will be a selective-trace simulator

for the purpose of faster speed.

K .

169
APPENDIX A

[48] Rcsul ts of good board simulation can be properly

displayed.

[49] Incremental simulation will be supported when more

steps are added at the end of the test program.

COMMENT --

This applies to both good board and fault

simulation.

[50] Output pin transport delay characteristics will be

taken into account by the simulator.

COMMENT --

The purpose of having a multi-delay simulator is to

satisfy this requirement.

(51] Default transport delay characteristics associated

with output pins of each specific tester type

will be supported.

4
[5] D f u t o t u iar n p r e a h r c e i t c

C'

"' • I i I I I I - In
I . . I ~

170
APPENDIX A

for each tester type can be overriden by user.

[53] Bus type logic will be properly handled.

COIMENT --

The simulator and the circuit

description assembler must be smart about bus

connections, the new Z state and family types.

Any output or bidirectional pin will have

overdrive, hard, and soft associated with its

"0" and "1" states.

Whenever pins, including drivers, are bused

together, the appropriate information will be

loaded into the universal bus device that

combines bus output values.

(54] Properties of a particular target tester will be

taken into account by the simulator.

COMMENT --

For example, driver pins characteristics,

12*12 feature, etc.. (Not include synchronization)

a

[____,

171

APPENDIX A

[551 Tester will be better synchronized to the simulator.

COMMENT --

Some effort should be made to synchronize the

tester to the simulator just as it is now possible

to synchronize the tester to the board.

[56] Fault simulation will be as fast as possible.

COMMENT --

Fault simulation speed will be about 10-20 times

faster.

A fast good board simulator will serve as the

base for fast fault

simulation. Other techniques can be used to speed

up fault simulation, for example, fault

activation sorting and late start-up, fault

collapsing.

[57] Test program fault coverage scoring will be reported

to user.

172

APPENDIX A

[58] Detected/Undetected faults will be reported to user.

[59] Internal node faulty activity for an undetected fault

can be displayed to user.

[60] Aborted fault simulation can be resumed.

[61] Faults to be simulated can be selected by user.

[62] Fault simulation can be resumed for more resolution.

COMMENT --

Normally, simulation stops at the first step

where the fault is detected.

This requirement allows more than one fault

signature be simulated for a single fault.

(63] More than one fault signature can be stored for

a single fault.

COMMENT --

This feature can be used for X-detects or poor

-

t I ,

173
APPENDfX A

signature resolution.

[64] The Stuck type fault models will be supported.

COMMENT --

Includ ing:

Output-stuck-at-I fault model

Output-stuck-at-0 fault model

Input-stuck-at-0 fault model

Input-stuck-at-I fault model

An output pin stuck-at fault model must comply

with the drive characteristics of the stuck pin.

[65] There can be user-inserted faults.

[66] User-inserted faults will be consistent with fault

insertion machinary.

[67] Some f, -m of internal LSI fault models will be

supported.

[681 Default transport delay characteristics associated

.4.- 2% -

,,, I na "' lI m l iH e 1 " '

174
APPEODIX A

with output pins of each standard IC family type

will be supported.

[69] Default transport delay characteristics associated

with output pins of each standard IC family type

can be overriden by user on a pin by pin base.

a'

175
APPENDIX B

INTERDEPENDENCY ASSESSMENT STATEMENTS FOR
THE TEST PROGRAM PREPARATION SYSTEM

FROM TO WEIGHT I DESCRIPTION

[I] [2] 5 THE PROCESSOR MUST PROPERLY
PROCESS THE TEST PROGRAM.

I] [3] W MACRO PROCESSING FACILITY MAY HAVE
TO KNOW ABOUT THE TEST LANGUAGE.

[I] [8] W TEST LANGUAGE MUST INCLUDE
CONSTRUCTS TO SUPPORT TRANSITIONALS.

[I] [9] W SEE [1], [8].

[I] [10] A GO/NO-GO GENERATOR HAS TO UNDERSTAND
THE LANGUAGE.

[i] [il] A THE TRANSLATOR MUST UNDERSTAND THE
TEST LANGUAGE.

[I] (12) W TEST LANUGUAGE MUST SUPPORT THE
SPECIFICATION OF EACH SECTION.

[Il [13] W SAME AS [1], [12].

[I] [14] A THE TRANSLATOR MUST UNDERSTAND THE
LANGUAGE.

[I] [15] W EXTERNAL NAMES ARE PASSED TO TEST
PROGRAM.

[I] (45] W DELAY, VALUES, ETC., CAN BE
SPECIFIED IN TEST LANGUAGE.

[I] [53] W USE TEST LANGUAGE TO SPECIFY BUS
DIRECTIONS.

[I] (55] W SYNCHRONIZATION WILL BE SPECIFIED IN
TEST LANGUAGE.

(2] [7] A SAVE INTERNAL VALUES FOR INCREMENTAL

COMPI LATION.

[2] [8] W PROPERLY PROCESS TRANSITIONALS.

all

176
APPENDIX B

[21 [91 W SAME AS [21,[81.

[2] (101 A TP PROCESSOR MAY BE USED TO GENERATE
GO/NO-GO.

[2] [12] W TRANSLATOR MUST PROPERLY TRANSLATE
"MULTIPLE SECTIONS."

[2] [13] W SAME AS [2], [12].

[2] [19] W EXTERNAL NAMES HAVE TO BE PASSED TO
TP TRANSLATOR.

[2] [45] W INFORMATION GENERATED BY THE TP
TRANSLATOR IS NEEDED FOR SIMULATION.

[2] (46] W INFORMATION GENERATED BY THE TP
TRANSLATOR IS NEEDED FOR FAULT
ANALYSIS.

(2] (48] W CORRESPONDENCE BETWEEN "LABELED TEST
STEP" AND "TEST STEP" IS NEEDED.

[2] [53] W BUS DIRECTION INFORMATION MUST BE
PASSED TO SIMULATOR FROM TP
TRANSLATOR.

[2] (551 W SYNCHRONIZATION INFORMATION MUST BE
PASSED TO THE SIMULATOR.

[3] [4] A MACRO PROCESSOR MAY USE MACRO
LIBRARY; LIBRARY WILL BE CREATED
AND MODIFIED BY THE PROCESSOR.

[5] [15] W USE CDL TO INDICATE IC FAMILY TYPE.

[5] (19] W THE PRE-PROCESSOR MAY PROVIDE THE

SIMULATOR WITH THE DEFAULT
INFORMATION.

[6] [15] A CDL WILL SUPPORT USER TO OVERRIDE

THE DEFAULT.

[6] [19] A THE PRE-PROCESSOR MAY PROVIDE THE
SIMULATOR WITH THE OVERRIDEN
INFORMATION.

[7] [10] A GO/NO-GO MAY BE GENERATED

V.l

177

APPENDIX B

INCREMENTALLY.

[7] [49] W PROBABLY INTERACT BECAUSE BOTH

SUPPORT INCREMENTAL PROGRAM
PREPARATION.

[8] (91 S [9] IS SUPPORTED BY (8].

[8] [15] W THERE MUST BE A WAY FOR THE TEST
LANGUAGE COMMAND TO REFER TO AN IC
PIN.

(8] [19] A PRE-PROCESSOR MUST PROPERLY HANDLE
TRANSITIONALS TO SUPPORT THE
SIMULATOR.

(8] [45] W SUPPORT TO TRANSITIONALS WILL BE
CONSISTENT WITH THE CHARACTERISTICS
OF THE SIMULATOR.

(9] [15] A CDL MUST PROVIDE CONSTRUCTS TO
HANDLE DEVICES THAT CANNOT BE
MODELED.

[9] [19] A SAME AS [8],[19].

[9] [45] W SAME AS [9], [45].

[10] (12] W GO/NO-GO GENERATOR MUST MERGE THE
SIMULATION RESULTS INTO THE RIGHT
SECTION.

[10] [13] W SAME AS [10], [12].

[10] [45] W GOOD VALUES ARE NEEDED FOR GO/NO-GO
TEST.

[10] [49] W MUST BE ABLE TO TELL WHICH GO/NO-GO
ARE ACCEPTED OR REJECTED..

[10] [55] W TESTER-SIMULATOR SYNCHRONIZATION HAS
TO BE TRANSLATED TO TESTER-BOARD
SYNCHRONIZATION.

(12] [13] A BOTH NEED TO USE MULTIPLE
SECTIONS IN THE TEST PROGRAM.

[15] (16] W CDL HAS TO SUPPORT SPECIFICATION OF

p

178
APPENDIX B

THE SECTIONS.

[15] [17] W CDL HAS TO SUPPORT SPECIFICATION OF
SECTIONS.

(15] (181 W SAME AS [15) [17).

[15] [19] S [19] PROCESSES (15].

[15) (20] S SAME AS [15], [19].

(15] [21] W USE CDL TO SPECIFY THE SPECIFIC
TESTER OR IC TYPE.

[15] (22] A USE CDL TO SPECIFY THE OVERRIDEN
INFORMATION.

(151 [261 5 TRANSLATOR MUST UNDERSTAND SYNTAX OF
THE NEW CDL.

[15] [30] W MAY USE A %ROM SECTION FOR PROVIDING
CONTENTS OF A ROM MODEL.

(15] [31] W USE CDL TO INDICATE THE IC FAMILY

TYPE.

[151 [34] S .SR-IC'S ARE MODELED USING CDL.

[15] [35] W MAY USE %PLA FOR SPECIFYING CONTENTS
OF A PLA.

(15] [36] A USE CDL TO OVERRIDE DEFAULT.

(15] [43] A CCL MAY BE A SUBSET OF CDL.

[15] [51] W USE CDL TO INDICATE WHICH SPECIFIC
TESTER OR IC TYPE.

(15] [52] A USE CDL TO OVERRIDE THE DEFAULT.

[15] [55] W CDL MAY BE USED TO TELL THE
SIMULATOR HOW TO SYNCHRONIZE WITH
THE TESTER.

(15] (68] W USE CDL TO INDICATE IC FAMILY TYPE.

((15] (69] A USE CDL TO OVERRIDE THE DEFAULT.

4

C-.a

" i.i

179
APPENDIX B

[16] [19] W PROCESSOR PROCESSES SOURCE WHICH IS

IN THE "SECTIONS" FORM.

[16] [201 W SEE [16], [19].

(16] [26] A CURRENT-TO-NEW TRANSLATOR MUST
TRANSLATE CURRENT SOURCES INTO
"SECTIONS" FORM.

[16] [34] A USE %LIB AS ONE SECTION OF THE
SOURCE.

[16] [43] W CONDITIONAL CONNECTIVITY MAY BE ONE
SECTION.

[17] [19] W PROCESSOR MUST RECOGNIZE THE PROPER
SECTIONS.

[17] [20] W SAME AS [17], [19].

[18] [19] A PRE-PROCESSOR MUST PROPERLY
PREPARE THE DATA BASE FOR THE
MULTIPLE SECTIONS WHICH HAVE THE
SAME CIRCUIT TOPOLOGY IN ORDER TO
REDUCE DATA REDUNDANCY.

(18] [20] W SEE (181, [191.

[19] [20] A REQUIRE COMMON PROCESSING.

(19] [21] W PRE-PROCESSOR SHOULD PROVIDE THE
SIMULATOR WITH THE DEFAULT
INFORMATION.

[19] [22] W PRE-PROCESSOR SHOULD PROVIDE THE
SIMULATOR WITH THE OVERRIDEN
INFORMATION.

[19] [23] A REPORT GENERATION USES DATA BASE
J PRODUCED BY THE PROCESSOR.

', [19] [24] A SAME AS [19], [23].

[19] [25] A SAME AS [19], [23].

[19] (27] W PRE-PROCESSOR NEEDS INFORMATION FROM
THE LIBRARY AND THUS MAY NEED TO

.4 KNOW HOW THE DATA IN THE LIBRARY ARE

.

C.

; -

'.

_ , - , °#i l- _ 7
- '

. .

180

APPENDIX B

ORGANIZ

[19] [31] W PRE-PROCESSOR HAS TO PROVIDE
SIMULATOR WITH THE DEFAULT.

[19] [32] W MAY USE COMMON MECHANISM TO GET

ACCESS TO THE LIBRARY.

(19] [33] W SAME AS [19], (32].

[19] [34] S PRE-PROCESSOR HANDLES BOTH CIRCUIT
BOARDS AND IC MODELS.

[19] [45] A PRE-PROCESSOR GENERATES INFORMATION
NEEDED BY THE SIMULATOR.

(19] [46] A PRE-PROCESSOR GENERATES INFORMATION
NEEDED BY FAULT ANALYSIS.

[19] (51] W PRE-PROCESSOR SHOULD PROVIDE
SIMULATOR WITH THE DEFAULT.

(19] [52] A PRE-PROCESSOR CAN PROVIDE THE
SIMULATOR WITH THE OVERRIDEN
INFORMATION.

[19] [53] A PRE-PROCESSOR IS RESPONSIBLE FOR
BUILDING THE UNIVERSAL BUS DEVICE.

[19] [68] W PRE-PROCESSOR WILL PROVIDE THE
SIMULATOR WITH THE DEFAULT.

(19] (69] A PRE-PROCESSOR CAN PROVIDE THE
SIMULATOR WITH THE OVERRIDEN

INFORMATION.

(20] [23] A REPORT MAY BE RE-GENERATED AS A

RESULT OF RE-PROCESSING.

(20] [24] A SAME AS (20], [23].

[20] [25] A SAME AS [20], [23].

[20] [27] W INFORMATION ABOUT A PARTICULAR
ELEMENT IN THE LIBRARY CAN OR CANNOT
BE CHANGED AS A RESULT OF PARTIAL
RE-PROCESSING.

* w

APPENDIX B

[20] [451 W PARTIAL RE-PROCESSING MAY UPDATE
INFORMATION NEEDED BY SIMULATOR.

[20] [46] W PARTIAL RE-PROCESSING MAY UPDATE
INFORMATION NEEDED BY FAULT
ANALYSIS, ETC..

(23] [24] A BOTH CAN BE GENERATED FROM THE SAME
DATA BASE, THUS CAN BE GENERATED

SIMULTANEOUSLY.

[23] [25] A SAME AS [23], [24].

[24] [25] A SAME AS [24], [25].

[26] [41] S CONVERSION OF CIRCUIT DESCRIPTION
FILE FOR IC MODELS CORRESPONDS TO
.SR-IC TYPE MODEL CONVERSION.

[27] [30] A ROM MODEL IS ONE TYPE OF IC MODEL.

[27] [32] A MAY USE COMMON ACCESS TOOLS.

[27] [33] A MAY USE COMMON ACCESS TOOLS.

[27] [34] A ONE TYPE OF IC MODEL.

[27] [35] A ONE TYPE OF IC MODEL.

[27] [371 A ONE TYPE OF IC MODEL.

[28] [29] S [29] GREATLY EASES THE CONVERSION.

[28] (41] A .SR MODELS CONVERSION IS PART OF THE
LIBRARY CONVERSION.

[28] [42] A SCL-I MODELS CONVERSION IS PART OF
THE LIBRARY CONVERSION.

[29] [41] A [29] EASES .SR-IC MODELS CONVERSION.

[29] [42] A SEE [29], [41].

[30] [35] W MAY SHARE COMMON TOOLS.

[32] [33] W BOTH MAY USE THE SAME MECHANISM TO
GET ACCESS TO THE ELEMENTS OF
THE LIBRARY.

I.

182
APPENDIX B

[33) [44) A CONNECTIVITY SIMULATION IS PART OF
THE .SR-IC MODEL GENERATION.

[34] [45] W THE SIMULATOR HAS TO KNOW WHICH
NODES ARE EXTERNAL NODES.

[34] [53) W .SR-IC MODELS MUST SUPPORT PROPER
HANDLING OF BUS TYPE DEVICES.

[34) [55) W CONSIDER PIN ATTRIBUTE "CLOCK".

[34] [67) A [34) WILL SUPPORT [67].

[37) [38) W [38]-[40] SCL-II RELATED.

[37] [39) A SEE 37,38.

[37] [40) A SEE 37,38.

[37] [42] A THE CONVERSION TOOL MUST UNDERSTAND
SCL-II; DESIGN OF SCL-II MUST TAKE
THIS CONVERSION REQUIREMENT INTO
CONSIDERATION.

[37] [45] A SCL-II INTERPRETER IS PART OF THE
SIMULATOR.

[37] [47] W SEE [37], [45].

[37) [53) W SEE [34), [53].

[37] [55] W SEE [34), [55).

[37] [67] A SEE [34],[67].

[38] [39] W MAY CONFLICT WITH EACH OTHER.

[38] [40) W DEBUGGING IS A "CONVENIENCE ISSUE."

[38] [45] A [38) IMPLYS SUPPORT NEEDED FROM THE
SIMULATOR.

[38] [46] W BEING CONVENIENT TO USE SCL-II HELPS
FAULT INSERTION (SCL-II SUPPORTS
FAULT INSERTION).

[38] [65] A "CONVENIENT TO USE SCL-II" ALSO

a.A

183
APPENDIX B

MEANS "CONVENIENT FOR FAULT
MODELING".

[38] [67] W SCL-II SUPPORTS INTERNAL LSI FAULT
MODELS.

[39] [47] A EFFICIENCY OF SCL-II AFFECTS
SIMULATOR'S SPEED.

(40] [45] A SCL-II DEBU3GTNG MUST BE SUPPORTED
BY THE SIMULATOR.

(40] [46) W SCL-I DEBUGGING MUST BE SUPPORTED BY
FAULT SIMULATION.

(40] (49] W INCREMENTNL SIMULATION COMPLICATES

SCL-II DEBUGGING.

(40] (55] A [55] COMPLICATES [40].

[40] (59] W INTERNAL FAULTY ACTIVITY RECORDS
HELP DEBUGGING.

[40] [67] W SEE [40], [62].

(44] [45] S USE THE SAME SIMULATOR.

(44] [50] W MAKE SURE THAT OUTPUT PIN
CHARACTERISTICS ARE TAKEN INTO

ACCOUNT.

[44] [53] W MAKE SURE BUS TYPE LOGIC IS PROPERLY
HANDLED.

(45] [46] A FAULT SIMULATION IS MAINLY BASED ON

GOOD BOARD SIMULATOR.

(45] [47] S SPEED CONSIDERATION FOR GOOD BOARD
SIMULATION.

[45) (48] S DISPLAY OF GOOD BOARD SIMULATION
RESULTS.

[45] [49] W INCREMENTAL SIMULATION MAY ADD
BURDEN TO THE SIMULATOR.

[45] [50] A PUTS BURDEN ON SIMULATOR:
THE SIMULTOR WILL BE A MULTI-DELAY

a

APPENDIX

SIMULATOR IN ORDER TO SATISFY
[50].

[45] [53] W [53] PUTS BURDEN ON SIMULATOR: SOME
MACHINARY MUST BE NEEDED BY THE
SIMULATOR TO USE UNIVERSAL BUS
DEVICE.

[45] [54] W [54] ADDS BURDEN ON SIMULATOR.

[45] [551 A [551 PUTS BURDEN ON SIMULNTOR.

[46] [49] W CAPABLE OF DOING INCREMENTAL FAULT
SIMULATION.

[46] [55] W FAULT SIMULATION HAS TO TAKE
SYNCHRONIZATION INTO CONSIDERATION.

[46] [56] A SPEED CONSIDERATION OF FAULT
SIMULATION.

[46] [57] W TEST PROGRAM FAULT COVERAGE SCORING
IS OBTAINED \S A RESULT OF FAULT

SIMULATION.

[46] [58] A SEE [46], [57].

[46] [59] A DISPLAY IS AFFECTED BY HOW FAULT
SIMULATION IS CARRIED OUT.

[46] [60] W [60] MAY COMPLICATE FAULT

SIMULATION.

[46] [61] W FAULT ANALYSIS REQUIRED FOR FAULT

SELECTION.

[46] [62] W [62] COMPLICATES FAULT SIMULATION.

[46] (63] W [63] COMPLICATES FAULT SIMULATION.

[46] [64] S FAULT ANALYSIS IS REQUIRED FOR EACH
FAULT MODEL.

[461 [65] S SEE [461,[641.

(46] [66] A [46] DEFINES THE MACHINARY.

(46] [67] A [46] SUPPORTS [67].

I

m i - II I " " I ~~I I l I1II II II- _

185
APPENDIX B

[481 [49] W SIMULATOR MUST RECORD OUTPUTS MUST

INCREMENTALLY.

[48) [55] W SYNCHRONIZATION/TIMING WILL HAVE TO
BE DISPLAYED.

[48] [59] A MAY USE SIMILAR MECHANISM.

[49] [55] W SYNCHRONIZATION ACROSS INCREMENTS
MUST BE HANDLED.

[49] [57] W INCREMENTAL FAULT SIMULATION AFFECTS
57-63 LOGISTICALLY (DUE TO THE FACT
INCREMENTNL PROCESS MAY BE
REJECTED).

[49] [58] W SEE [49], [57].

[49] [59] W SEE [49], [57].

[49] [60] W SEE [49], [57].

[49] [61] W SEE [49], [57].

[49] [63] W SEE [49], [57].

[50] [54] A [50] IS A MAJOR PROPERTY OF A
SPECIFIC TESTER.

[53] [54] A [53] IS A MAJOR PROPERTY OF A
SPECIFIC TESTER.

[53] [64] W [53] COMPLICATES [641.

[54] [64] W DEPENDING ON THE OUTPUT PIN
CHARACTERISTICS OF THE D/S'S OF A
PARTICULAR TESTER, USE THE PROPER

TYPE OF FAULT MODEL.

[54] [65] W SAME AS [54], [64].

[55] [60] W [55] ADDS BURDEN ON [60].

[55] t62] W SEE [55], [60].

[55] [64] W FAULTS WILL CAUSE SYNCHRONIZATION BE
INTERRUPTED.

!U

186
APPENDIX 3

[55] [65] W SEE [551, [64]

[56] [57] W [57] SLOWS DOWN FAULT SIMULATION
SPFED.

[56) [65) W SAME AS ABOVE.

[56) [671 W SAME AS ABOVE.

[57) [60) w [60) COMPLICATES [57].

[57) [61) W SEE [57), [60).

[57) [63) A MAY HAVE TO REPORT CASES WHERE MORE
THAN 1 FAULT RESOLUTION ARE
OBTAINED.

[59) [61) W MAY USE THE SAME "FAULT SELECTION"
MECHANISM.

[60] [61] W [61] COMPLICATES [60]: ANOTHER PIECE
OF INFORMATION TO STORE.

[60) [62) W SAME AS [60] [61).

[60) [63] W SAME AS [60] [61].

[61] [62) W COMMON SELECTION MECHANISM.

[62) [63) S [62) IS NEEDED FOR [,-31.

[64) [65] s [65) COMPLICATES [641.

[64] [66) S [66] EASES [6,1).

[64) [67) s [67] COMPLICATES [64].

[65) [66) S [66) EASES [65)'S JOB.

[65) [67) A THERE CAN BE LSI INTERNAL FAULTS
INSERTED BY USER.

[66] [67] w LSI INTERNAL FAULT MODELS CAN BE A
SUBSET OF USER INSERTED FAULTS.

a

t ~~

."., 07 ALFRED P SLOAN SCHOOL OF MANAGEMENT CAMRIDGENMA CEN--ETC F/G 9/2
A SYSTEMATIC APPRO AC H To C OMPLEX SY STEM D ESI GN AN APPLICAT ION --ETCIU)
MAY GO P TUNG N00039A801(.0573

UNCLAGGIFIED CISR-POIGOG 1 NL3 EEEL

2811&5

MtROCOPY RESOLUTION TEST CHART

NA1I0NAlA AWIl 01 STANPAIU?). 140 A

187
APPENDIX C

REQUIREMENTS SUBSETS DERIVED FROM THE
BEST SYSTEM DECOMPOSITION

SUBPROBLEM 1 -- TEST PROGRAM PROCESSING

[1] There will be a test language in which user can
write test procedures to control the testing.

(2] There will be a test program processing facility.

(3) There will be a test program macro processing
facility.

[4) There will be a test program macro library.

17] Incremental test program compilation will be
supported when more test steps are added to the end
of the test program.

[10] The GO/NOGO test program will be generated.

[11] There will be New-to-Current GO/NO-GO test program
conversion facilities.

[12] A test program can contain multiple sets of input
test patterns each testing a different part of the
same board.

[13] A test program can contain multiple sets of input
test patterns all of which test the same part of a
board.

[14] There will be Current-to-New test program conversion
facilities

SUBPROBLEM 2 -- CIRCUIT DESCRIPTION CODING AND PROCESSING

(5] Default driving characteristics associated withY output or bidirectional pins for each standard
device type will be supported.

[61 Default driving characteristics associated with
output or bidirectional pins for each standard
device type can be overriden by user.

'hd

188
APPENDIX C

(8] Simulation results for a device model can be
overriden by user.

(9] Output of a device for which no simulation model
exists can be controlled by user.

(15] There will be a Circuit Description Language which
allows the user to specify board-related or IC-
related descriptions.

(16] Format of Circuit Description Source file
will be compatible with that of In-Circuit test
systems.

(17] Different sections of the circuit descrition
source file can be used by more than one product
type if so specified.

[18] Different sections of the circuit description
source can be shared by multiple sets of input
patterns in the same test program
which have the identical circuit topology.

[19] There will be a circuit description processing
facility.

[20] There will be partial re-processing facility for
circuit description source file.

[21] Default driving characteristics of output or
bidirectional pins for each specific tester
will be supported.

[221 Default driving characteristics of output or
bidirectional pins for each specific tester
can be overriden by user.

[23] Board-related statistical data will be reported toi user.

(241 Board-related warnings will be reported to user.

t I* 25] Circuit network connection cross-reference data will
be reported to user.

126] There will be Current-to-New circuit description
source file conversion facilities.

VI

,U

',A

189
APPENDIX C

(31] Default transport delay characteristics associated
with output pins of each standard IC family type
will be supported.

[34] IC's can be modeled using the circuit description
technique.

[36] Default transport delay characteristics associated
with output pins of each standard IC family type
can be overriden by the user on a pin by pin base.

[43] There will be a conditional connectivity language for
the user to define connectivity of an IC model.

[51] Default transport delay characteristics associated
with output pins of each specific tester type
will be supported.

[52] Default output pin transport delay characteristics
for each tester type can be overriden by user.

[68] Default transport delay characteristics associated
with output pins of each standard IC family type
will be supported.

[69] Default transport delay characteristics associated
with output pins of each standard IC family type
can be overriden by user on a pin by pin base.

SUBPROBLEM 3 -- IC MODELS CONVERSION

[28] About 90% of the existing System IC model library

will be converted.

[29) Every widely used primitive element and SSP
Boot element will be supported.

(41] There will be tools aiding .SR-type IC modelsconversion.

[421 There will be tools aiding SCL-I TO SCL-I IC models
conversion.

*Wood,

- -.. ...M

190
APPENDIX C

SUBPROBLEM 4 -- IC LIBRARY HANDLING

(27] There will be IC model libraries.

[30] Models for ROM's will be supported.

(32] There will be IC library maintenance facilities.

[33] There will be an IC model information display
facility.

(35] Models for Gate Arrays (PLA devices) will be
supported.

SUBPROBLEM 5 -- OUTPUT PATTERNS SIMULATION

(37] IC's can be modeled using the functional modeling
technique (SCL-II).

[381 SCL-II will be convenient to use for both system
manufacturer and customer.

(39] SCL-II will be efficient enough to be suitable for
some in-house modeling of primitives.

[40] There will be SCL-II debugging tools.

(441 Connectivity of .SR-IC models can be automatically
simulated using a connectivity simulator.

(45] There will be a (good board) simulator.

(47] The simulator will be as fast as possible.

[48] Results of good board simulation can be properly
displayed.

[50] Output pin transport delay characteristics will be
taken into account by the simulator.

[53] Bus type logic will be properly handled.

[54] Properties of a particular target tester will be
taken into account by the simulator.

15

191
APPENDIX

C

ie tester will be better synchronized to the
,mulator.

iternal node faulty activity for an undetected fault
in be displayed to user.

SUBPROBLEM 6 -- FAULT MODELING AND INSERTION

ie Stuck type fault models will be supported.

iere can be user inserted faults.

ier inserted faults will be consistent with fault
isertion machinary.

ome form of LSI internal fault models will be
ipported.

SUBPROBLEM 7 --
IROGRAM EVALUATION AND FAULT ISOLATION PREPARATION

iere will be fault simulation activity.

icremental simulation will be supported when more

eps are added at the end of the test program.

iult simulation will be as fast as possible.

st program fault coverage scoring will be reported
user.

itected/Undetected faults will be reported to user.

,OBLEM 8 -- TEST PROGRAM MACRO PROCESSING FACILITY

'here will be a test program macro processing
facility.

'here will be a test program macro library.

---WIN

