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ABSTRACT

--:: The set partitioning model is used as the basis for an interactive

approach for solving a broad class of routing problems. A pricing mecha-

nism is developed which can be used with a variety of methods in generat-

ing improving solutions. A version of the approach has been implemented

via a colorgraphics display.
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1. INTRODUCTION

We will consider here a set partitioning based approach for

solving a broad class of routing problems. The approach is designed

to take advantage of a high level of human interaction; the

current implementation is interactive via a colorgraphics display.

However, many of the concepts discussed here could be easily implemented

in an automatic system.

The routing problem which motivated much of this work is what

is called the static or subscriber dial-a-ride problem. This problem

will be discussed in detail in latEr sections. It is one of the more

complex members of the class of routingproblems which are amenable to

the approach presented here. 'this class also includes many practical.

delivery problems. In order to introduce the underlying methodology

which provides the basis for the approach, consider a very

simple delivery example. Assume that a depot is located at the

square box labeled D in Figure 1. From this depot a single delivery

is to be made to each of the points represented by numbered circles.

The numbers on arcs connecting the circles represents the travel dis-

tance between delivery points. Assume also that each vehicle (e.g.

truck) can deliver to a maximum of two points on a single trip. The

objective is to determine which vehicle should deliver to each point

and the routing for the vehicles which minimizes the total distance

travt I led.
Each colimn in the matrix of Table I represents one possible vehicle

route. For example, column one represents a vehicle travelling from the

depot to delivery point (1) ann returning. The c row indicates the

Mol



22

22

4 2

32

2
22

1 5
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route 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c. 8 10 4 4 2 14 10 8 8 10 11 12 6 6 5

1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 1 1 0

0 0 0 1 0 0 0 1 0 0 1 0 1 0 1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

Table 1. Matrix Corresponding to Routes in the Delivery

Example of Figure 1.
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distance traveled for each trip. For example, column six represents

a veiicle proceeding from te depot to delivery point (I), on to delivery

point (2) and from there, back to the depot. The value of c6 is 14,

the total distance traveled for this trip. By enumerating each of the

possibilities, as has been done for this matrix, the problem becomes

one of selecting a set of columns such that every row is represented

in exactly one column and the sum of the costs of the columns selected

is the smallest possible. This integer program is called a "set parti-

tioning model".

The set partitioning model was originally proposed for the delivery

problem by Balinski and Quandt [2]. The model is very powerful in the

sense that many realistic route constraints and cost functions can be

handled easily in the column enumeration process. The obvious short-

coming of thc model is that there are typically a very large number of

column1S to be enumerated and the resulting integer program is very

large. The approach presented here is heuristic in the sense that we

generate only a subset of the possible columns or routes and in general

we do not solve the set partitioning model to optimality.

The set partitioning model has two very desirable features for

interactive optimization. The first is that any route generated can be

Included as a column in the model. This allows the human interactor

Lo titlIlze his/het InLtultion and spatial preceptLion as well as a wide

spectrum of mathematical techniques to generate new routes. The second

feature is that, unlike more general integer programs, a feasible

Isolution to the set partitioning model provides the basis for pricing

K



5

information which can be used to generate new candidate columns.

We will restrict the class of routing problems considered here

to be those for which any subroute of a feasible route is also a

feasible route with cost less than or equal to the cost of the original

route. By imposing this restriction, as long as there is at least one

I in every row of the partial set partitioning model that we have

enumerated, we can easily generate feasible partitions. The only

other restriction that we put on the class of routing problems is

that we be able to pose them in a natural way as set partitioning

problems. However, it should be noted that if there is not a nice

spatial representation of the routing problem, the human interactor

is much more restricted in his/her contribution.

i ,
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2. SET PARTITIONING AND ROW PRICES

The set partitioning problem can be stated as

n

minimize Z = c.x.

n
subject to I a1 jxj = 1 for i = 1,2,...,m

x =0 or I for j = 1,2...,n.
J

For the delivery example in Table 1, the set partitioning

model has the second row as the value of the c. and rows three
J

through seven as the values of the a... The variables which are

set to one in a solution to the set partitioning problem will be

k kcalled a "partition." We will denote a partition as J = {j x =I.

Balas and Padberg [I] provide a recent survev of results related to

set partitioning problems.

A fundamental idea underlying much of the work presented here

is the concept of "row prices."
1 p 1 1 1

Definition: = (p 1,P2 ,...,pm) is a set of feasible row prices

corresponding to the partition J if

m 1
Piaij = c. for Jej

--- JILL



It will be useful to interpret the price p1 as an estimate of the

I
cost to satisfy constraint i using solution X For the delivery problem,

1P is then an estimate of the cost of satisfying the requirement of

delivery point i using the route corresponding to partition J
11 1

Theorem 1: Given a set of feasible row prices (pl,p2 , .... pm corresponding

1 1 2
to partition J with value Z , any other partition J has value

z 2  z El Y M 1 a -ij j2 1 1Pi

Proo :

m m2

2 ( Y Pi *-c.) = p 2 a. -j E J i 1l i]] =iij i

Since J2 is a partition, 2 = 1 for each i = 1,2,...,m. Also,
jcJ 2

since (p ,p ,.. .,pm) are feasible row prices corresponding to Xwe
m1 1mZ 1

have P. =Z Hence the result follows.
i=l 1

1
Corrollary 1: For any set of feasible row prices P corresponding

to partition if < 0 for j = 1,2,...,n then X is
to a pattonJi p a. i.i=l - -

optimum.

It can also be shown, using linear programming duality, that a

set of feasible row prices P satisfying Corrollary I exists if and

only if X is an optimum solution with the constraints x. =0 or 1

replaced by x >0 for j= ,2,...,n.

i --
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m
The quantity Pia.. - c. will be interpreted as the "potential"i=I  3

i= 1

savings over the value of Z which can result from constructing a parti-

tion that includes column j. Note from Theorem 1 that the potential

savings can actually be achieved only if a partition can be constructed

from columns with nonnegative potential savings.

,W,

i
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3. POTENTIAL SAVINGS HEURISTIC

Given a partition J a corresponding set of feasible row prices

Pl, an attractive heuristic for attempting to generate a better parti-

tion is the following:

2 2
Step (0): Let J = 0 (j will be the indices of columns in the new

partition) and N = {l,2, ... ,n}, (N will be the indices of

columns which are candidate for inclusion in J 2)
m

Step (1): Calculate the potential savings pLa cfor
i=l 13 -

j = m,2... ,n .
m 1 m

Step (2): Determine kgN such that P 5i"k - ck > 1 j - c -

For all jEN (i.e., pick the column in N with the largest

potential savings)

Step (3): if Z 2aij = I then set aik = 0. (Note from the assumption
3J

of section1 L that any sobroute of a feasible route is also

a feasible route the new column is legitimate)

2 "1Step (4): Let J = ,IJ{k} (i.e., put column k in the new partition)
Step (5): Delete from N all j for which aik 1 and a.. = 1 for some

i = 1,2,...,m.

Step (h): If N = 0 stop. Otherwise go to step (2).

Note that under the assumption that any subset of a route is

also a feasible route (discussed in section 1) this procedure will

2
always terminate with J as a partition although not necessarily a

better partition than J . In addition, computation to (late indicates

that an optimum or near optimum solution to the set partitioning

problem is determined very quicklv by repeated application of the

...--
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potential savings heuristic. 'File heuristic is repeated

k
until either optimality is proven (i.e., for some X all
In k

piai - cj < 0) or until some specified number of partitionsi=1 J J-

has been generated.

To illustrate the potential savings hueristic, consider again

the delivery example depicted in Figure 1 and Table 1. Suppose

that we select J = {t,2,...,5} as an initial partition. A set of

feasible row prices P is given in Table 2. (The question of how

to generate "good" feasible row prices will be addressed in the
In

next section.) The corresponding potential savingsf)' Paij - cj

are also given in Table 2. Applying the potential savings heuristic

and breaking ties by selecting the column with the lowest 'index

yields the new partition J = {6,13,5}. The new partition has a cost

of Z2 = 22 as compared to a cost Z 28 for the initial solution.
2 In 2

Using the row prices P and potential savings L paij - c.

of Table 2 and reapplying the potential savings heuristic yields the

3 3
partition .3 = t8,10,5} which has a cost of Z = 20. Again, from

Table 2 we find that using the row prices P 3given potential savings
p l pi. -1 c. 0 for j = 1,2,...,n. Hence, from Corrotlary I the

1 3J

, partition J is optimum.
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4. ROW PRICING

For a given partition Xk a set of feasible row prices is obtained
by allocating the column cost c for each jcJk among the rows having

aij = 1. For the delivery example, this corresponds to allocating

the trip cost among the delivery points of the trip. When a column

jejk dontains only one a.. = 1, the row price is p. = c.. However,

when a columnj contains more than one a.. = 1, there are an infiniteii

number of possible sets of prices. As an example consider the parti-

tion j3 = {8,10,5} for the problem in Table 2. Since column 5 has
3

only a5, 5 = 1 the value p5 
= 2 is unique. Column 8 has both a = 1

and a48 = 1, hence the cost c8 = 8 could be allocated between rows

1 and 4 in an infinite number of ways. Similiarly, column 10 has

both a2 .1 0 
= l and a3,10 =1 , hence c10 = 10 could be allocated

between rows 2 and 3 in an infinite number of ways. If we allocate

3 3 3 3
c8 as p 1 4 and p4 = 4 and allocate c as p2 = 5 andP 3 5, the

m 3 3

resulting Piaij - c do not indicate that J is an optimum parti-

3 3
tion. Hence the set of prices P given in Table 2 are clearly better

since they do indicate that J3 is on optimum partition.

! tIdeally, we would like a set of prices which would drive the

potential savings heuristic toward an improving solution and would

indicate optimality when no improving solution is possible (i.e.,

* We would like the prices to be analogous to dual variables in linear

programming). Unfortunately, it is easy to construct cases for which

no such prices exist (i.e., any problem for which the integer and

* Ocontinuous solution differ). For the delivery problem and the more

J

t 2 .. .. . ............. ... ... . ..
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complex dial-a-ride problem (to be discussed later), allocating column

cost in proportion to the cost of serving the delivery points one-at-

a-time is intuitively appealing and seenis to work very well. As an

illustration consider again the partition J3 in Table 2. Column 8

has a1,8 
= 1 and a4,8 = 1. The cost of serving delivery point 1 if

it is the only point in a trip is c 1 = 1. The cost of serving delivery

point 4 if it is the only point in a trip is c, = 4. The prices for
CC8 cc8

rows 1 and 4 were determined as P 1 5.3 and p4
C C 4  4 c1 + c 4

- 2.7. The other prices in Table 2 were determined similiarly.

' A.

S,t
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5. COLUMN GENERATION

For large scheduling, and routing problems it is generally aot

practical to generate all columns of the cotresponding set partitioning

model. The remainder of this paper will be concerned with using in-

formation gleaned from one solution via Theorem I to generate a new

and hopefully better solution. This is accolnplished by eitlhe r gl nerating

new columns, adding them to the current set partitioning model, and

then resolving the model or by using the information from herei 1

directly to generate a new solution. In the latter case it is not

necessary to retain the columns of the set partitioning model. How-

ever, if the columns are retained, it is possible to further improve

the solution by periodically solving the set partitioning model.

We should note that for the class of scheduling and routing prob-

lems being considered here, it is very easy to generate an initial

solution. For our examples we use the identity solution (e.g., in

the delivery problem this is the solution which has each vehicle making

a single delivery) as our initial solution. However, any feasible

solution could be used as the initial solution.

.1 Clearly there is a broad spectrum of possible approaches that

one might use to generate new columns and/or new solutions to the

set partitioning model. In fact, variations of many of the heuristics

S, - which have been applied to delivery problems can be used very effectively

in conjunction with Theorem 1. In the next section we will discuss

the use of the Clktrke and Wright [3] savings procedure in conjunction
with the delivery problem. In later sections we will discuss more

complex clustering and chaining heuristics as we have applied them

to the dial-a-ride problem.

,gt



6I. CLA.RKE AND).~~i P *Ll)l W I- I'l PRk.Ixi; 1

Fh, ~itg litiiri.-,t iv )I (ltirko and W.right is thle Most

widicl v knownl ot thl lit i.t I, , developed to date lor del ivery problems.

[it aI o~ithin pr-Oo ted- I i-a IItltg a sayvings foi each pair of deli-

whitIt ii . tiw s~iv ing> i i i 1og. 1 '-upplv iitt1 ' del ivorN. points i andj

on lo at rout. i a opyo-ot to ,uiyl ving them individuial 1Y~ directly

t I t i I t d1 it - kl i tt i I r on I i t dep1)ot to dot I I vt r v I)o i nt i

ARout tslH Il ) IIStrti( te-d e it her onc-at -a-t ime or ill paral iI et b

P tI idt-riig pd irs ot poit-,, itl order o1 decreaIsinlg savings; and including

LliC-11 ill tOwsm route itI suh a route is i e~sble.

111'p' t it WO L a't-,idjr once m- iore tit h l ivet-v c.\ip to inl Figure I

* and hi.- cvering sot0Ilt i1Ii ititOriwiticin inl tabIl 2. Note that the Clarke

anid Wriltsavilngs vat I rt- exc Ir 'thelues I OS Of A c -~In

lab Ic -, s;i it.d p : 1 2 o I v I,. , Ap> ug il li -W sav ings

* 9 i g t i him i L~ 1t 1i sant vilt ill, og ,-onV i gtrat iotn i-si J - I, I, . At

this to lilt tlte (-N' I go) i t lin woulId I ermijuate. However , supp)1ose that

wt- Set of 1) 1~2 for fi 2.......,. The new savings are then exactly

t t p1 i -e In tabilc 2. App I vintg (-W i got ititin vjieds the

im c rout i ng corif f glirat ion as 1 8 8, 101- which as noted previously is

thlt opt imum soluit ion to t Itis deli vtrv exampi I. Hone e O, for thu is example

at lets t tit, C-W at gor ithinn withtout p~ri e i tg (]Ii not V'i e d anl opt imulit SOlut ion

wh ii.- tilt- sametlo.1go rit hi When comintind withi pr i cinig did vivild t he' opt imum

solution.

K 7 ' - - - . _ _ _ _ _ _ _ _ _ _
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Note that when routes art, allowed to contain more than two trips,

onlv a small subset of the set partitioning columns would be generated

using this procedure. Also, note that the pr iceC: and savings can be

calculated without cver gcnerating the set partitioning matrix.

When the numbert o points allowed in a route exceeds two, some

inter',,,ting question,. irist, as to exactly how the algorithm should be

implcimeoted. As a in lustr'tion, suppose that in the example we ailow a

VelliClt Lt deli ver to at most three points rather thani two. Now suppose

that wt- start with the solution J3 in Table 2. We see that the two-at-a-

time potential savings are all non-positive. However, if we ignore this

fact and proceed with the algorithm, we would put points 1 and 4 in the

same routc since their potential savings of zero is maximum. If we then

consider adding a third point to this route, we find that adding point 5

has a potential savigs of 2 which is maximum. Finally, we combine points

2 and 3 into a ,,ingle route since this has a potential savings of zero.

The resulting routes (4,15) and (2,3) has a length of 10. Therefore,

it appear,- that we can get btter information by recalculating the poten-

tial savings aft(.r ealh augmentation of a route. This recalculat on is

not done in most imple mentat ions of the C-W algorithin.

Clearlv , when constructing a route containing more than two points

one must dt cide where in the route to put each additional point. The poten-

tial savings can he dtt'rinined exactly only by solving a travelling sales-

men problem over each new point which is a candidate to be added to the

route. This is computationally expensive if a route can contain a large

number of points. In most implementations of the C-W algoritni, new points

are s;impl y iddedl on to) hel end of the route(,)being constructed. When the

m*Jr
-' ' '

--
' 

.... ----- "' -.-.----; 7"-.
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algor ithmn is impleenited interac LiVely uSlog >)IIputter 01rapiiiCS, it appears

that the human can perform an impor tant rotc, both in selectilng candidate

points and in loser t log them logically into rou ts.
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7. LCATION - AI.OCAT[ON WITrH PRICING

Anotther proceduie wich Krolak and Ne [son [5] have found effective

in approaching tire delivery problem utilizes the location - allocation

model ot Cooper [4] This basic concept can also be used in conjunction

wit Ii theorem I to ,vner ite~ intuitively appealing columns to add to the

set pat tit ion ing model.

1'0 illUStrate the procedurte consider the delivery example illustrated

in Figure 2. Again 1-he circles represent delivery points and thE square

rep~rcSLntL the dep)ot. The hasic idea is to use a surrogate distance

rathier tlian thec ictual distance in determining thie points which are assigned

to CW tat elaic le. Fit' -Urrugate distance is obtained by assuming that the

vehicle traivels trom the depot to a specified cluster point, represented

in Figure 2 by the daslihed (-irc leb. It then makes the deliveries, returning

aft tr tachi-t del ivery t, thie cluster point. After all deliveries have been

miade, Lnt Vehic It returns to t lie depot. Linder this surrogate distance,

thU p oo0Mll~ becomesC! k)IIL 01 locating I he cluster points, one for each

Vehi it, .a1nd nonl Aii ing the del iverv poinits to ea1ch vehlicle.

It (at t'1 cet resenUth Ie coordinatue- (it the depot, (a b represents

tW 1lie1c1rd i nltt' c ) I , Lr cv point i , (X V, repretients thle coordinates

01 lIVst 11~ [it I, a1r1d assuming Euc i idean distance, the problem can be

4 m~~~[odc Ied as oiow

mIIi 1 221 (x -aI + (Y h )]

*1ij
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s.t. Z1 . < K j =

n

j=l z3

z.. = 0 or 1 all i,j

where n is the number of vehicles and K is the vehicle capacity. When

z.. =  , delivery point i is assigned to vehicle j and when z = 0,

delivery point i is not assigned to vehicle j.

While there is no method for efficiently solving this problem

optiMally, the following is an attractive heuristic. Pick a set of

locations for the cluster points. With these coordinates fixed, solve

the resulting assignment problem. With these values of z fixed,
ij

solve the resulting location problem. Continue alternating between

the assignment and location problems for some specified number of

iterations or until there is no further improvement in the objective.

Once a cluster has been determined, the vehicle is then routed among

the points of the cluster.

A slight modification of this model, together with Theorem 1,

allows us to generate attractive new columns for the set partitioning

problem. Suppose that we have a solution to the set partitioning

problem and a set of row prices pl,p 2 ,...,p. Now consider the model
• o osde h oe
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2 21
m n 2m1I n

min 2[(x -a + (y.-bi) ]z z

x,y,z i=O j=l i=l j= i

m
f s.t. z.. < K j 1,2,...,n

i=l -

n
Sz ij < , . .

j=l

z 0 or 1.
ii

Any cluster generated by this model will have a positive potential

savings, with respect to the surrogate distance. Hence, it corresponds

to an attractive column to add to the set partitioning problem (consider-

ing surrogate distances).

Since the second constraint has been changed to an inquality, not

all delivery points will be assigned to cluster points. This simply

* means that the current row price for the delivery point is more attrac-

tive than the cost of serving the delivery point in alternative clusters

considered by the model. The model can be solved using the same heuristic

* * discussed for the earlier location - allocation model.

14

D~4Mi
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8. I)IAL-A-RIDE PROBLEMr
The dial-a-ride problem is a much more complex routing problem

than the delivery problem. In the dial-a-ride problem we are given

an origin-destination trip matrix and an underlying network on which

the trips are to be made. There is a single item (people, goods,

etc.) (demand for service) at each origin that needs to be transported

to its specified destination. The items are transported from origins

to destinations on vehicles each having capacity K. We wish to satisfy

the trip requirements while travelling the minimum distance.

'[his is a "static" version of the Uia L-a-riJe problem since time

i s c idere(:. Thor.: are a : o,:-:L. a .lore comnlex versio-ns of

tis ,cb ei:m, but this version is sufficient to deonstrate the basic ideas

of our approach.

The set partitioning model for the dial-a-ride problem is analogus

to that of the delivery problem, but here rows represent trips rather

than simply delivery points. The vehicle capacity constraints are handled

by generating only routes which satisfy them.

, ¢
.V

.. - ' --4V
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9. DECOMPOSITION

In delivery problems, representative of thc 'on--ended" class of

routing and scheduling problems, we need onl': be concerned with a single

stop for a vehicle to satisfy a particular demand for service. In con-

trast, the "two-ended" class, which includUs dial-a-ride problems, requires

two stops in a specific order (sequence) to satisfy a specific demand for

service. It is this requirement for sequencing of "pickup" and "dropoff"

point pairs which adds greatly to the difficulty of handling the two-ended

class of vehicle routing problems.

When one considers examples of two-ended problems, it becomes imme-

diately apparent that the sequencing requirements greatly inhibit the

complex pattern processing abilities of the human. Figure 13 illustrates

an example of a 25 trip dial-a-ride problem. Rather than displaying

order and structure, the p robLem resembles so much , Jetti. It is

clear that for such problems the hullnlli ilnter-,or .cl,:or- help in

gene rat in 4ood co t ulns inr the s t p i r t it ion I ng nod 2.

Unfortunately, it is also more difficult to apply straight forward

methods such as the savings approach discussed earlier for the delivery

example. In generating a dial-a-ride route one must be concerned with

where both the origin and the destination occur in the sequence in order

to calculate the potential savings. In addition, the capacity constraint

may negate what otherwise appears to be good positions for the origin

and destination in the sequence.

Because of this complexity, it is lhelplul to "decompose"

the problem into two levels which we call "clustering" and "chaining".

In essence, we consider a route to he Mad.' up 01' two Components. Clusters

I,,

t,. -

! .. . .... ..
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correspond to trips which can all be on a vehicle at one time, while

chains correspond to movement from thle end of one cluster to the beginning

of thle next. Figure 4 provides an example of five good clusters, while

Figure 5 illustrates one way in which these five clusters might be linked

into two chains.

The partitioning model and pricing concepts can be effectively exploited

to aid in generating improving clusters and chains in a column generation

approach to solving two-ended vehicle routing problems. One partitioning

model can be utilized in generating improving clusters while another parti-

tioning model helps idnifhette r chains.

In the partitioning model for clustering, the columns represent clusters

and thle rows represent the individual trips (demand for service). We shall

demonstrate, in time next section, just how the pricing information from the

partitioning problem can be used to generate additional clusters.

In thle partitioning model for chaining, the columns represent chains

and the rows repre ;ent the individual trips. rhe function of the chaining

partitioning model is to combine thle clusLers into g ood vehicle routes.

Trhe overall solution procedure consists of linking the clustering

*models and chaining models together in anl interactive manner. The

clustering models, partitioning matrix and pricing information are used

to generate good clusters. These clusters are then passed to the chain-

ing phlase where they are linked together via the chaining models, par-

tiuioning matrix and associated pricing information. After chaining,

it is possible to return to thle clustering phase to identify additional

* clusters.

Theli next two sections discuss the specifics of clustering and chaining

fiWi
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10. CLUSTERING

In the previous section we introduced the clustering concept. In

this section we shall provide more details of the concept as well as

the structure and operation of various clustering models. Figure 6

depicts a typical cluster (in this case, three trips).

Clustering makes sense if the origins are reasonably close to-

gether and the destinations are also close together. One way to

develop an evaluation of such circumstance is to locate the centroid

of the origins, the centroid of the destinations and accumulate the

resulting distances from the original trips. In Figure 6 we could

evaluate the distances represented by (a+b+c) + (d+e+f). If this

Sstin is small then it would make sense to cluster the trips.

By utilizing surrogate distances we lose the actual route dis-

tance evaluation; however, we gain the ability to evaluate large

numbers of cluster possibilities conveniently and simultaneously.

In Figure 6 we might employ Euclidean distances. In this case we

could compare the sum of the row prices, p1 + p2 + p2, generated in

* Ithe covering model for clustering to the quantity 2(a+b+c) + 2(d+e+f)

+ g to determine whether clustering is appropriate. We can think of

the latter quantity as a surrogate for the vehicle routing distance.

* We can develop a straight forward extension of the Location -

Allocation model discussed in Section 7 to identify good clusters

.44 for the dial-a-ride problem. In place of the quantity

~ ' 
2,



29

41p

.1d

Fiue6aurgt itne o yia lse

-, p

3-'-



p 30

ii i

we would employ a quantity

2 -2
S2[(x.j-a.i) + (y -b) z zij

2 12

+ j'2((x -a.2 + cyj-bi 12Zi.

pwhere X, ty., a~ and b. correspond to origins and x*, y., and a i

b . correspond to destinations of trips.

it is also possible to develop a savings approach to clustering

Pin a similiar manner to that described earlier for the delivery problem.
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11. CHAINING

Upon termination of the clustering process, a number of reasonably

good clusters are available. This set includes not only the "best"

cluster sets as selected by the covering model for clustering, but

also a number of other clusters which might be nearly as good, but

which were not selected in the optimal solution to the covering model.

Figure 7 illustrates a set of clusters which might result from the

clustering process. The clusters in the figure represent only the

optimal solution to the clustering process. In addition, we might

have other clusters available, e.g., a cluster containing only trips

1 and 2.

The clusters obtained represent good possibilities for segments

(legs) of a vehicle route. The next step in the process is to link

("chain") these clusters into complete vehicles routes. Figure 8

illustrates the chaining concept. Trips 1 and 2 form one cluster,

while trips 3, 4 and 5 form another cluster (see Figure 8a). In
I

Figure 8b, trips 1 and 2 are replaced by a single pseudo (cluster)

trip, as is also the case for trips 3, 4 and 5. These cluster trips

S ,are then chained together.

The interpretation of chaining is that a single vehicle will

service the first set of trips (in Figure 8b these would be trips I

and 2) and then proceed to service the next set of trips (i.e., trips

3, 4 and 5) in the chain. Figure 9 illustrates the likely vehicle

route to service the two clusters.

We shall demonstrate how mathematical models can be developed to

aid the human in developing good chains (vehicle routes).

. - ,
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2

3

4

5

a. Two Typical Clusters

b. The Associated Cluster Arcs Chained Together

Figure S. An Example of Chaining Clusters Together
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Figure 9. Probable Vehicle Route
or the Cha in of Figure 8h



The most fundamental model of chaining is based on network flows.

In a network we represent each cluster trip by two nodes (an origin

and a destination node) and an arc. We then add additional arcs to the

network which link the destination node of one cluster arc to the origin

node of another cluster arc on the basis of proximity considerations.

In Figure 10, we indicate one network flow model for the clusters of

Figure 7.

To establish the flow variables for the network flow problem consider

the case where each trip appears in exactly one cluster. We assign every

arc an upper capacity of 1, the dashed arcs a lower capacity of 0 (zero)

and the solid cluster arcs a lower capacity of I indicating that these

trips must be serviced. Arc flow costs for the network flow problem

ire the associated vehicle travel distances. If the "starting node"

and the "ending node" represents the vehicle storage depot, then we may

also assign additional costs to the arcs originating at the starting

node to reflect the fixed cost of using each vehicle (provided they

arc all thie sane).

If the network flow problem for chaining contains no circuits and

'I if the same trip does not appear in two different clusters in the network,

then the resulting cains (vehicles routes) will be valid ones. If either

V of these two conditions are explicitly included in the model, then the

underlying network flow problem becomes considerably more complicated.

We can circumvent some of the problems associated with the difficult

4 problems of chaiming by utilizing a partitioning model, of chaining. (Actually

we substitute one difficulty for another.) In a partitioning model of chaining,
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We ISsoc ilate a co Lumn of the oi-t it ioning ima trix Ior oac I fasi hi chain

(vehicle route) and a row for each trip. Column j contains 1 in row

i iC trip i is serviced by chain (vehicle route) j. Otherwise, it

contains a 0 (zero). The zero-one variable associated with the

columns provide indications of which chains were selected in the optimal

part itionill solItion. 'labhl i illustrates a part itioning, matrix

I ot severa I chains in Fi gure 10.

Ioolcl, so lv in,, the part itifoning model optimally (which we Would 1ot

likoeLv do), the obvions dIS f :ultv with suchI a model is in generating

t 1w canIdidaLt chliins (coIluIPns). To aide in this column generation

proc o-, we COn I d employ' (1) the human (which would certainly be part

t 111nV inte'ractive process), (2) a savings approach to combine clusters

into chains, (M) a network flow model or (4) some other method. The

first two of these column generation approa ches should be reasonably

i tuiitv, to dIcvl p. BY shall briefly describe the third one.

Spa -, We have identified some candidate columns (chains) for the

mar-t it liii n; poleflm (e .:;. the individual cIlstLers from the clustering

pe-oosC(,.!) [lien, the, partit iolnill.; model wi II \'1 i ld (I ) n o1 ptimal
r

so lution and (2) a set of- row pi ices. As before, a column j not in the

s'olt ionl iyppeiaro favorable if

P ii .

I,i

I.
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tNow, 0 i t ik. ceat (I istance) oi SerV i c ing Lh I L' (11i in.1 Ihe a i j

i S t Ii ' O.st 1) s;civ i c i ng , tilt, g i Von tr ipS inl thle curren~l ),I t ti L i On ll',

so I li t ion. (:0ns i LJ Cr hew L lieSC two t erms i gu 91) b re presun t ed inl the

10.

W" 1, .5(ctt itl Ii aChil &hiisiRd ar-C teie OIC ive of Wli t -

cOver , osLO i thtarc inICUrred ilI traversing the arc: (this is t 1w samic as

I) Of re Wit tl sign ch1ange) . Assoc iated withI (lac I ch lsto ring arlc

ho na, nt I t v p c , where the I terml p replresent s the sum of row

ho.- ork 1( tr ip-; it) thlt cluster and c represents the cost of the c'luster.

Ic-i11 tsi Flao.i Ol tilt'h no t1.'0rl( ;I sor.a tj I! or ci]:;) ii)

ho1L no twerk, f rom tilt startinog to the end ing node, which hias positive

totail cost-;. It ; I10 L Id h11e clIea r thatlL 1 schII 11 a i pthII~ at i Sf ies, the1 c orid it i oni

for aI potent ia Ilv imlprov i ng chain., and can he added to the partitioning

taiiii'ithI thlis 5 uitWerk flow 11)(101I (a slior test pa tl~ miodel Ior a

Ii F Vi i (i L.0 I s p' C. iv ict 1cer 1: tiu ; b) a J no i I o 10 Cci; in 1 de

phioemeien Ia trip being serviced several times seemls to occur in-

rireuiklitL Iy Silice in sio ck jug ai least cost soiuit ion, the mlode I tonlds to

IVid :UIIi .111a instan;I~Ce. When it does occur, an1 aIttralct i hleur ist ic

is t ilv del CICtt' one of- tiet- cenf I ic ting c lusters I rem thle eel umn

1wi iic acuerai ted. We are cur rently it ti I i zimng the humain i ttrac t or to

hi,11d IVe the case whre' tife flow prohlem contai ins c ircuitLs. The hutman

hir-ik.a tie( cicutsad patches the pathis hack togethier. I F we re-
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strictL the procedure to locating a single improving path each time,

the resulting shortest path model lends itself more intuitively to

the development of good heuristic procedures for solving both of the

major dtfficulties associated with the flow mode. In particular it

is much easier for the human to break the circuits in a single path

than in MUitipathis.
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12. CONCLUS IONS

An interactive dial-a-ride system based on the concepts presented

here has been implemented on a Chromatics color graphics terminal inter-

[aced with a CYBER 74 mainframe computer. Although the system is in

many ways very rudimentary, it dramatically indicates the potential

for this kind of interactive optimization. We are in the process of

making extensive modifications in the software and are testing a

variety of new models and heuristics to aid in route generation.
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