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ABSTRACT

~—Y The set partitioning model is used as the basis for an interactive
approach for solving a broad class of routing problems. A pricing mecha-
nism is developed which can be used with a variety of methods in generat-

ing improving solutions. A version of the approach has been implemented

via a colorgraphics display.
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1. INTRODUCTION

We will consider here a set partitioning based approach for
solving a broad class of routing problems. The approach is designed
to take advantage of a high level of human interaction; the
current implementation is interactive via a colorgraphics display.
However, many of the concepts discussed here could be easily implemented
in an automatic system.

The routing problem which motivated much of this work is what
is called the static or subscriber dial-a-ride problem. This problem
will be discussed in detail in later sections. It is one of the more
complex members of the class of routing problems which are amenable to
the approach presented here. ‘This class also includes wmany practical
delivery problems. In order to introduce the underlying methodology
which provides the basis for the approach, consider a very
simple delivery example. Assume that a depot is located at the
square box labeled D in Figure 1. From this depot a single delivery
is to be made to each of the points represented by numbered circles.

The numbers on arcs connecting the circles represents the travel dis-

tance between delivery points. Assume also that each vehicle (e.g.
truck) can deliver to a maximum of two points on a single trip. The
objective is to determine which vehicle should deliver to each point
and the routing for the vehicles which minimizes the total distance

travelled.
Fach column in the matrix of Table 1 represents one possible vehicle

route.  For example, column one represents a vehicle travelling from the

depot to delivery point (1) ana returning. The Cj row indicates the
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Figure 1. Delivery Example Network




Matrix Corresponding to Routes in the Delivery

Example of Figure 1.
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distance traveled for each trip. For example, column six represents
a veuicle proceeding tfrom the depot to delivery point (1), on to delivery
point (2) and from there, back to the depot. The value of e is 14,
the total distance traveled for this trip. By enumerating each of the
possibilities, as has been done for this matrix, the problem becomes
one of selecting a set of columns such that every row is represented
in exactly one column and the sum of the costs of the columns selected
is the smallest possible. This integer program is called a "set parti-
tioning model”.

The set partitioning model was originally proposed for the delivery
problem by Balinski and Quandt [2]. The model is very powerful in the

sense that many realistic route constraints and cost functions can be

handled easily in the column enumeration process. The obvious short-

coming of the model is that there are typically a very large number of

columns to be enumerated and the resulting integer program is very
large. The approach presented here is heuristic in the sense that we
generate only a subset of the possible columns or routes and in general

we do not solve the set partitioning model to optimality.

The set partitioning model has two very desirable features for
interactive optimization. The first is that any route generated can be
included as a column in the model. This allows the human interactor
to utllize his/her Intultion and spatjal preception as well as a wide
gpectrum of mathematical techniques to generate new routes. The second
feature is that, unlike more general integer programs, a feasible

solution to the set partitioning model provides the basis for pricing
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information which can be used to generate new candidate columns.

We will restrict the class of routing problems considered here
to be those for which any subroute of a feasible route is also a
feasible route with cost less than or equal to the cost of the original
route. By imposing this restriction, as long as there is at least one
1 in every row of the partial set partitioning model that we have
enumerated, we can easily generate feasible partitions. The only
other restriction that we put on the class of routing problems is
that we be able to pose them in a natural way as set partitioning
problems. However, it should be noted that if there is not a nice
spatial representation of the routing problem, the human interactor

is much more restricted in his/her contribution.
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) Definition: Pl = (pi,pé,...,p;) is a set of feasible row prices
corresponding to the partition Jl if
i
c:: m 1 1
4 X p.a,. =c, for jeJ .
t ¢ g=1 * 4
1
_— _— . e . .'h-.“" ’p‘k“" *

2. SET PARTITIONING AND ROW PRICES

The set partitioning problem can be stated as

n
minimize Z = Z C¢.X,
j=J- J J
n
subject to Z a,.x, =1 for i=12,...,m
PR S
j=1
xj =0or 1 for j=1,2,...,n.

For the delivery example in Table 1, the set partitioning
model has the second row as the value of the c, and rows three
through seven as the values of the aij' The variables which are
set to one in a solution to the set partitioning problem will be
called a '"partition." We will denote a partition as gk - {jIx? = 1}.
Balas and Padberg [1] provide a recent survey of results related to
set partitioning problems.

A fundamental idea underlying much of the work presented here

is the concept of "row prices."

3
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It will be useful to interpret the price pi as an estimate of the

cost to satisfy constraint i using solution Xl. For the delivery problem,

1.
p; is then an estimate of the cost of satisfying the requirement of

delivery point i using the route corresponding to partition Jl.

Theorem 1: Given a set of feasible row prices (pi,p;,...,pl) corresponding
—_— m

- 1 . y
to partition J  with value Zl, any other partition J2 has value

Proot:

m 1 m l
( .a, ,-c,) = . .- Z
PEER TSR A PR

. 2, .
Since J” is a partition, z
jeJ

231j =1 for each { = 1,2,...,m. Also,

. 1 1 1
since (pl,pz,...,pm) are feasible row prices corresponding to Xl we

m
1 1
have Z P = Z~. Hence the result follows.
i=1

Corrollary 1: For any set of feasible row prices Pl corresponding
to a partition Jl if‘§ (piaij—cj) < 0 for j = 1,2,...,0n then Xl is
optimum. =

It can also be shown, using linear programming duality, that a
set of feasible row prices Pl satisfying Corrollary 1 exists if and
only if Xl is an optimum solution with the constraints xj =0or 1l

replaced by xj >0 for j = 1,2,...,0.
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The quantity Z piaij - cj will be interpreted as the "potential”
i=1
savings over the value of Zl which can result from constructing a parti-
tion that includes column j. Note from Theorem 1 that the potential

savings can actually be achieved only if a partition can be constructed

from columns with nonnegative potential savings.

bR it




3. POTENTIAL SAVINGS HEURISTIC

. o 1 . .
Given a partition J° a corresponding set of feasible row prices
1 . C o .
P", an attractive heuristic for attempting to generate a better parti-
tion is the following:

Step (0): Let J2 =P (12 will be the indices of columns in the new

partition) and N = {1,2,...,n}, (N will be the indices of

. 3 , . 2
columns which are candidate for inclusion in J )

m p
Step (1): Calculate the potential savings Z plaij - cjfor
i=1
i=1,2,...,n.
m m 1
Step (2): Determine keN such that Z p.a.,, — Cc, > l p.a.. — ¢,
i, ° ik k=0 "1dj ]

For all jeN (i.e., pick the column in N with the largest
potential savings)
! Step (3): 1If Z Zaij = 1 then set aik = 0, (Note from the assumption

of section 1 that any subroute of a feasible route is also

a feasible route the new column is legitimate)

Step (4): Let Jz = JzU{k} (i.e., put column k in the new partition)
E ! Step (3): Delete from N all j for which aik = 1 and aij = 1 for some
i =1,2,...,m.
t; i Step (p): If N = P stop. Otherwise go to step (2).

Note that under the assumption that any subset of a route is
also a feasible route (discussed in section 1) this procedure will
always terminate with Jz as a partition although not necessarily a
better partition than Jl. In addition, computation to date indicates

that an optimum or near optimum solution to the set partitioning

4

4

4

)

? problem is determined vervy quickly by repeated application of the
i
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potential savings heuristic. The heuristic is repeated

until either optimality is proven (i.e., for some Xk all
m k

Z pjaij - cj < 0) or until some specified number of partitions
i=1

has been generated.
To illustrate the potential savings hueristic, consider again

the delivery example depicted in Figure 1 and Table 1. Suppose

that we select Jl = {1,2,...,5} as an initial partition. A set of

. . 1 . . .
feasible row prices P is given in Table 2. (The question of how

to generate '

'wood" feasible row prices will be addressed in the
m !
next scction.) The corresponding potential savings ; p.a,. - ¢,
L i 1ij N
i=1
are also given in Table 2. Applying the potential savings heuristic

and breaking ties by selecting the ecolumn with the lowest index
. 2
yields the new partition J~ = {6,13,5}. The new partition has a cost

of 2~ = 22 as compared to a cost Zl = 28 for the initial solution.
2 m
Using the row prices P~ and potential savings Z piaij - Cj
i=1
of Table 2 and reapplying the potential savings heuristic yields the

partition Jj = {8,10,5} which has a cost of 23 = 20. Again, from

. L. . . 3 . . .
Table 2 we find that using the row prices P~ given potential savings
m 3
Z p.Ji] - c1 < Q for j = 1,2,...,n. Hence, from Corrollary 1 the
i=1 -

partition J° is optimum.
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4. ROW PRICING

For a given partition Xk a set of feasible row prices is obtained

by allocating the column cost ¢  for each jeJk among the rows having
J

. aij = 1. For the delivery example, this corresponds to allocating

the trip cost among the delivery points of the trip. When a column
jeJk dontains only one a5 = 1, the row price is pli( = c¢,. However,

. when a column j contains more than one aij = 1, there are an infinite
number of possible sets of prices. As an example consider the parti-
tion J3 = {8,10,5} for the problem in Table 2. Since column 5 has

only ag ¢ = 1 the value P; = 2 is unique. Column 8 has both a 1

1,8

and a, g = 1, hence the cost C8 = 8 could be allocated between rows
bl

v—— . o

1 and 4 in an infinite number of ways. Similiarly, column 10 has

both a 10 = 1 and a. = 1, hence ¢

3,10 = 10 could be allocated

10

between rows 2 and 3 in an infinite number of ways. If we allocate

3 _ 3 _ 3 _ 3 _
cg as p] = g and P, = 4 and allocate Cio 28 Py = 5 and p3 = 5, the

J

' resulting Z pja; . - cj do not indicate that J3 is an optimum parti-
i=1
'* tion. Hence the set of prices P3 given in Table 2 are clearly better

' k since they do indicate that J3 is on optimum partition.
[deally, we would like a set of prices which would drive the

]
i ) . R ; . .
; } potential savings heuristic toward an improving solution and would

’ We would like the prices to be analogous to dual variables in linear

'

i
'* indicate optimality when no improving solution is possible (i.e.,
]

t

programming). Unfortunately, it is easy to construct cases for which

: 3 no such prices exist (i.e., any problem for which the integer and 1
i

]

; » continuous solution differ). For the delivery problem and the more .

et vy vt - e e rrwme e e e e wear e e aa el e e
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complex dial-a-ride problem (to be discussed later), allocating column
cost in proportion to the cost of serving the dclivery points one~at-
a-time is intuitively appealing and seems to work very well. As an

illustration consider again the partition J3 in Table 2. Column 8

has al g = 1 and a4 g = 1. The cost of serving delivery point 1 if
E] bl

it is the only point in a trip is ¢ = 1. The cost of serving delivery

' point 4 if it is the only point in a trip is ¢, = 4. The prices for
4

3 C1C8 3 c,c
rows 1 and 4 were determined as P Fuapnea 5.3 and p) = — 48

1 4 4 C1+C4

= 2.7. The other prices in Table 2 were determined similiarly.

’ )
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5. COLUMN GENERATION

For large scheduling and routing problems it iIs generally unot
practical to generate all columns of the corresponding set partitioning
model. The remainder of this paper will be concerned with using in-
formation pleaned from one solution via Theorem | to generate a new
and hopefully better solution, This is accomplished by either senerating
new columns, adding them to the current set partitioning model, and
then resolving the model or by using the information from Theorem 1
directly to generate a new solution. 1In the latter case it is not
necessary to retain the columns of the set partitioning model. How-
ever, if{ the columns are retained, it is possible to further improve
the solution by periodically solving the set partitioning model.

We should note that for the class of scheduling and routing prob-
lems being considered here, it is very easy to generate an initial
solution. For our examples we use the identitv solution (e.g., in
the delivery problem this is the solution which has each vehicle making
a single delivery) as our initial solution. However, any feasible
solution could be used as the initial solution.

Clearly there is a broad spectrum of possible approaches that
one might use to generate new columns and/or new solutions to the
set partitioning model. In fact, variations of many of the heuristics
which have been applied to delivery problems can be used very effectively
in conjunction with Theorem 1. 1In the next section we will discuss

the use of the Clarke and Wright [3] savings procedure in conjunction

with the delivery problem. 1In later sections we will discuss more

» complex clustering and chaining heuristics as we have applied them

to the dial-a-ride problem.
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6. CLARKE AND wWwRIGHD PRlocEDURE WITH PRIGCING

The "savings" heuristic of Clarke and Wright | 3] is the most

widelv known ot the henristics developed to date tor delivery problems.
The algorithm proceeds Ly valeulating a savings for cach pair of deli-

very poinis 1 oand ) odoettoed as
: ' B (i,j):>d,+l\i. - (d .fd.*‘d‘)'—“i,+tl_ -,

whitch is the savings in mileage of supplving delivery points | and j
1 on the same ronte as opposed to supplyving them individually directly
trow e depot (dﬂi is> the distance trom the depot to delivery point 1).
Routes are then constructed either one-at-a=time or in parallel by
! 4 considering pairs of points in order o decreasing savings and including
them in the same route i1 such o route is teasible.

Suppose that we consider once more the deliverv example in Figure 1

? and the covering solution information in Table 2. Note that the Clarke

m
1 . . . . - l
)‘ dand Wrivht savings values are exactly the values of / p.a,, —c, in
i

i 3
|

lable 2 since d()i - Lri,'l tor 1 = 1,2, .0 m. Applyving the (=W saviags

[

)
E  / alvorithn vields the same vouting configuration as J°7 = t6,13,9}. At

o,

this point, the C-W alporithm would terminate. However, suppose that
Y

we set ‘Il)i = pi/Z tor 1 = 1,2,...,m. The new savings are then exactlyv

- 2

‘ . the ; p;.li,l - \',‘ in Table 2. Applving C-W algorithm vields the
i=1

, . . 3 ) ,
same routing configuration as I 5 = {R.I()‘Hi which as noted previously is

the optimum solution to this delivery example.  Hence, for this example

at least the C-W algorithm without pricing did not vield an optimum solution
while the same alpgorithm when combined with pricing did vield the optimum

solution.




’
16
Note that when routes are allowed to contain more than two trips,
' onlv a small subset of the set partitioning columns would be generated
! using this procedure. Also, note that the prices and savings can be
calenlated without ever generating the set partitioning matrix.
ﬂ : ' When the number of points allowed in a route exceeds two, some
. |
interesting questions arise as to exactly how tihe algorithm should be |
|
l
!

implemented.  As an illustration, suppose that in the example we allow a

venicle to deliver to at most three points rather than two. Now supposc ]
that we start with the solution J3 in Table 2. We see that the two-at-a-
time potential savings ave all non-positive. However, if we ignore this
fact and proceed with the algorithm, we would put points 1 and 4 in the
same route since thelir potential savings of zero is maximum. If we then
consider adding a third point to this route, we find that adding point 5
has a potential savings of 2 which is maximum. Finally, we combine points
2 and 3 into a single route since this has a potential savings of zero.

The resulting routes (4,15) and (2,3) has a length of 10. Therefore,

it appears that we can get better information by recalculating the poten- !
j

tial savings atter cach augmentation of a route. This recalculat . on is
not done in most implementations of the C-W algorithm,

Clearly, when constructing a4 route containing more than two points
one must decide where in the route to put each additional point. The poten-
tial savings can be determined exactly only by solving a travelling sales-
men problem over cach new point which is a candidate to be added to the
route. This is computationally expensive if a route can contain a large
number of points.  In most implementations of the C-W algorithm, new points

are simply added on to the end of the route being constructed. When the

s I LR

B
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algorithm is implemented

points and in inserting them logically into routes.

interactively using computer graphics,

that the human can perform an important rolc both in sclecting candidate

it appears

17
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7.  LOCATION - ALLOCATION WITH PRICING

Another precedure which Krolak and Nelson [5] have found effective
in approaching the Jdelivery problem utilizes the location - allocation
model ol Cooper [4].  This basic coancept can also be used in conjunction
with Theorem 1 to generate intuitively appealing columns to add to the
set partitioning model.

To illustrate the procedure consider the delivery example illustrated
in Figure !, Apain the circles represent delivery points and the square
represents the depot.  The basic {dea 1s to use a surrogate distance
rather than the actual distance in determining the points which are assigned
to cach vehicle.  The surrogate distance is obtained by assuming that the
vehicle travels trom the depot to a specified cluster point, represented
in Figure 2 by the dashed circles. It then makes the deliveries, returning
after vach delivery te the ¢luster point. After all deliveries have been
made, the vehicle returns to the depot. Under this surrogate distance,
the problem becomes one o1 tocating the cluster points, one for each
vehicie, and then assigning the delivery points to each vehicle.

[t (a b ) represents the coordinates of the depot, (ai’bi) represents

0"

the coordinates ot dediverv poine i, (x 'Vi) represents the coordinates

j

of cluster point §, and assuming Euciidean distance, the problem can be

modeled as tollows:

n l} y

- ) 2
min ) Y2[(x.~a )" + (v . -b.) |
X,V.2 i=0 j= i Pt v

oy PRSI W o >

' - :‘(“"‘v"*“
Pl .N."‘v&::’ﬁ:‘ l‘~ "r
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Figure 2. Delivery Example to Illustrate the
Location - Allocation Model for Clustering.
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z,., = 0or 1 all i,j

where n is the number of vehicles and K is the vehicle capacity. When
zij = 1, delivery point i is assigned to vehicle j and when Zij = 0,
delivery point i is not assigned to vehicle j.

While there is no method for efficiently solving this problem
optimally, the following is an attractive heuristic. Pick a set of
locations for the cluster points. With these coordinates fixed, solve
the resulting assignment problem. With these values of zij fixed,
solve the resulting location problem. Continue alternating between
the assignment and location problems for some specified number of
iterations or until there is no further improvement in the objective,
Ounce a cluster has been determined, the vehicle is then routed among
the points of the cluster.

A slight modification of this model, together with Theorem 1,
allows us to generate attractive new columns for the set partitioning

problem. Suppose that we have a solution to the set partitioning

problem and a set of row prices pl,pz,...,pm. Now consider the model

TR P

ERRRY S ogd
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m n 2 21
min z Z 2[(x,-ai) + (y,—bi) ]1zi
X,¥,z 1i=0 j=1 J J

RN P

3 q=1 3=12 * M

m
s.t. )z, <K j=1,2,...,n
i=1
n
Izii<1 1=1,2,...,m
=1
z,, = 0or 1.
ij

Any cluster generated by this model will have a positive potential
savings, with respect to the surrogate distance. Hence, it corresponds
to an attractive column to add to the set partitioning problem (consider-
ing surrogate distances).

Since the second constraint has been changed to an inquality, not

all delivery points will be assigned to cluster points. This simply

means that the current row price for the delivery point is more attrac-
tive than the cost of serving the delivery point in alternative clusters
considered by the model. The model can be solved using the same heuristic

discussed for the earlier location - allocation model.

L Nk, o
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8. DIAL-A-RIDE PROBLEM

The dial-a-ride problem is a much more complex routing problem
than the delivery problem. 1In the dial-a-ride problem we are given
an origin-destination trip matrix and an underlying network on which
the trips are to be made. There is a single item (people, goods,
etc.) (demand for service) at each origin that needs to be transported
to its specified destination. The items are transported from origins
to destinations on vehicles each having capacity K. We wish to satisfy
tlhe trip requirements while travelling the minimum distance.

This is a "static" version of the dial-a-ride problem since time

iy ol considered.  There are a number of more comnlex versions o

f
titis oroblem, but this version is sufficient to demonstrate the basic ideas
of our approach.

The set partitioning model for the dial-a-ride problem is analogus

to that of the delivery problem, but here rows represent trips rather

than simply delivery points. The vehicle capacity coastraints are handled

by generating only routes which satisfy them.

22
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9. DECOMPOSITION

In delivery problems, representative of the "one-ended” class of
routing and scheduling problems, we need only be concerned with a single
stop for a vehicle to satisfy a particular demand for service. In con-
trast, the "two~ended" class, which includes dial-a-ride problems, requires
two stops in a specific order (sequence) to satisfy a specific demand for
service. It is this requirement for sequencing of "pickup" and "dropoff"
point pairs which adds greatly to the difficultv of handling the two-ended
class of vehicle routing problems.

When one considers examples of two-ended problems, it becomes imme-
diatelv apparent that the sequencing requirements greatly inhibit the
complex pattern processing abilities of the human. Figure 3 illustrates

an example of a 25 trip dial-a-ride problem. Rather than displayin

o
order and structure, the problem resembles so much spagherti. 1t is
clear that for such problems the human interactor needs more help in
senerating good columns for the set partitioning model.

Unfortunately, it is also more difficult to apply straight forward
methods such as the savings approach discussed ecarlier for the delivery
example. In generating a dial-a-ride route one must be concerned with
where both the origin and the destination occur in the sequence in order
to calculate the potential savings. In addition, the capacity constraint
may negate what otherwise appears to be good positions for the origin
and destination in the sequence.

Because of this complexitv, it is helptul to "decompose"

the problem into two levels which we call "ctlustering'” and "chaining".

In essence, we consider a route to be made up ol two components. Clusters
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correspond to trips which can all be on a vehicle at one time, while

chains correspond to movement from the end of one cluster to the beginning
of the next. Figure & provides an example of five good clusters, while
Figure 5 illustrates one way in which these five clusters might be linked
into two chains.

The partitioning model and pricing concepts can be effectively exploited
to aid in generating improving clusters and chains in a column generation
approach to solving two-ended vehicle routing problems. One partitioning
model can be utilized in generating improving clusters while another parti-
tioning model helps identify better chains.

In the partitioning model for clustering, the columns represent clusters
and the rows represent the individual trips (demand for service). We shall
demonstrate, in the next section, just how the pricing information from the
partitioning problem can be used to generate additional clusters.

In the partitioning model for chaining, the columns represent chains
and the rows represent the individual trips. The function of the chaining
partitioning model is to combine the clusivrs into good vehicle routes.

The overall solution procedure consists of linking the clustering
models and chaining models together in an interactive manner. The
clustering models, partitioning matrix and pricing information are used
to generate good clusters. These clusters are then passed to the chain-
ing phase where they are linked together via the chaining models, par-
titioning matrix and associated pricing information. After chaining,
it is possible to return to the clustering phase to identify additional
clusters.

The next two sections discuss the specifics of clustering and chaining

Se L v
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10. CLUSTERING

In the previous section we introduced the clustering concept. In

! this section we shall provide more details of the concept as well as

the structure and operationof various clustering models. Figure 6
depicts a typical cluster (in this case, three trips).

' Clustering makes sense if the origins are reasonably close to-
gether and the destinations are also close together. One way to
develop an evaluation of such circumstance is to locate the centroid

' of the origins, the centroid of the destinations and accuvmulate the
resulting distances from the original trips. In Figure 6 we could
evaluate the distances represented by (at+b+c) + (d+et+f). If this

' sum is small then it would make sense to cluster the trips.

By utilizing surrogate distances we lose the actual route dis-

tance evaluation; however, we gain the ability to evaluate large

» numbers of cluster possibilities conveniently and simultaneously.

i . In Figure 6 we might employ Euclidean distances. In this case we

) could compare the sum of the row prices, Py + p2 + Py generated in

;( $ the covering model for clustering to the quantity 2(a+btc) + 2(d+e+f)
+ g to determine whether clustering is appropriate. We can think of

the latter quantity as a surrogate for the vehicle routing distance.

» We can develop a straight forward extension of the Location -

Allocation model discussed in Section 7 to identify good clusters
L

gy for the dial-a-ride problem. In place of the quantity
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we would employ a quantity

- - 2 - - .2

+ Zfz[(x-a) +(y—b)] 245
i]

vhere x., y., a, and bi correspond to origins and x_, yj, and a

~

b,
i

i
correspond to destinations of trips.

It is also possible to develop a savings approach to clustering

in a similiar manner to that described earlier for the delivery problem
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11. CHAINING

Upon termination of the clustering process, a number of reasonably
good clusters are available. This set includes not only the "best"
cluster sets as selected by the covering model for clustering, but
also a number of other clusters which might be nearly as good, but
which were not selected in the optimal solution to the covering model.
Figure 7 illustrates a set of clusters which might result from the
clustering process. The clusters in the figure represent only the
optimal solution to the clustering process. In addition, we might
have other clusters available, e.g., a cluster containing only trips
1 and 2.

The clusters obtained represent good possibilities for segments
(legs) of a vehicle route. The next step in the process is to link
("chain") these clusters into complete vehicles routes. Figure 8
illustrates the chaining concept. Trips 1 and 2 form one cluster,
while trips 3, 4 and 5 form another cluster (see Figure 8a). In
Figure 8b, trips 1 and 2 are replaced by a single pseudo (cluster)

trip, as is also the case for trips 3, 4 and 5. These cluster trips

are then chained together.

The interpretation of chaining is that a single vehicle will
service the first set of trips (in Figure 8b these would be trips 1
and 2) and then proceed to service the next set of trips (i.e., trips
3, 4 and 5) in the chain. Figure 9 illustrates the likely vehicle
route to service the two clusters.

We shall demonstrate how mathematical models can be developed to

aid the human in developing good chains (vehicle routes).
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a. Two Typical Clusters

b. The Associated Cluster Arcs Chained Together

Figure 8. An Example of Chaining Clusters Together
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The most fundamental model of chaining is based on network flows.
In a network we represent each cluster trip by two nodes (an origin
and a destination node) and an arc. We then add additional arcs to the

network which link the destination node of one cluster arc to the origin

node of another cluster arc on the basis of proximity considerations.
In Figure 10, we indicate one network flow model for the clusters of
Figure 7.

To establish the flow variables for the network flow problem consider
the case where each trip appears in exactly one cluster. We assign every
arc an upper capacity of 1, the dashed arcs a lower capacity of 0 (zero)
and the solid cluster arcs a lower capacity of 1 indicating that these

trips must be serviced. Arc flow costs for the network flow problem

are the associated vehicle travel distances. If the "starting node"
and the "ending node" represents the vehicle storage depot, then we may
also assign additional costs to the arcs originating at the starting
node to reflect the fixed cost of using each vehicle (provided they
are all the same).

If the network flow problem for chaining contains no circuits and
if the same trip does not appear in two different clusters in the network,
then the resulting ctains (vehicles routes) will be valid ones. If either
of these two conditions are explicitly included in the model, then the
under lying network flow problem becomes considerably more complicated.

We can circumvent some of the problems associated with the difficult
problems of chaining by utilizing a partitioning model of chaining. (Actually

we substitute one difficulty for another.) In a partitioning model of chaining,

R S ond
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we o dassociate a column of the partitioning matrix for cach feasible chain
(vehicle route) and a row for each trip. Column j contains 1 in row

i irf trip i is serviced by chain (vehicle route) j. Otherwise, it
contains a 0 (zero). The zero-one variable associated with the

columns provide indications of which chains were selected in the optimal
partitioning solution. Table 3 illustrates a partitioning matrix

tor several chains in Figure 10.

Besides solvine the partitioning model optimally (which we would not
Fikelv do), the obvious diftficulty with such a model is in generating
the candidate chains (columns). To aide in this column generation
process, we could emplov (1) the human (which would certainly be part
ot anv interactive process), (2) a savings approach to combine clusters
into chains, (3) a network flow model or (4) some other method. The
Virst two of these colunn generation approaches should be reasonably
futuitive to develop.  We shall briefly describe the third one.

Suppose we have identified some candidate columns (chains) for the
partitioning problem (e.p. the individual clusters from the clustering
process) . Then, the partitioning model will vield (1) an optimal

solution and (2) a set of row prices. As before, a column j not in the

solution appears favorable if

37
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Now, v is the cost (distance) of servicing the chain.,  The ) pi”ii
1 i .

is the cost of servicing the given trips in the current partitioninag
solution. Consider how these twoe terms might be represented in the
network of Vivare Lo

Supposce we associate with ecach dashed are the negative ot what-
cver costs that are incurred in traversing the arce (this is the same as
betfore with a sign change). Assocliated with each clustering arc
the quantity Z p - ¢, where the term S p represents the sum of row
prices tor trips in the cluster and ¢ represents the cost of the cluster.
Jth these costs detined on the petvork, wve scel o pata (or pathn) in

the network, trom the starting to the ending node, which has positive

total cost. Tt should be clear that such a path satisfies the condition

ror a potentially improving chain, and can be added to the partitioning
prohlem.
Acain, with this network fflow model (a shortest path model for a

Sinedle chain) we have the diticultices associated with cireuits and

3
' with the e trip corviced several times by oa single chain.  The
phenomenon o g trip being serviced several times scems to oceur in-
r ) . . . .
! ‘ trequent Iy since in secking a least cost solution, the model tends to
A
: avoid such an instance.  When it does occur, an attractive heuristic
3
¥ is Lo simply delete one of the conflicting clusters trom the column

being penerated. We are currently utilizing the human interactor to

hiind le the case where the flow problem contains circuits.  The human

- et

breaks the circuits and patches the paths back together. 1f we re-
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; strict the procedure to locating a single improving path each time,
| '
! the resulting shortest path model lends itselfl more intuitively to
| .
t i
[ i the development of good heuristic procedures for solving both of the
f
: major difficulties associated with the flow mode. 1In particular it
! is much easier for the human to break the circuits in a single path
I
‘ than in multipaths.
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12,  CONCLUSIONS

An intcractive dial-a-ride system based on the concepts presented
here has been implemented on a Chromatics color graphics terminal inter-
faced with a CYBER 74 mainframe computer. Although the system is in
many ways very rudimentary, it dramatically indicates the potential
for this kind of interactive optimization. We are in the process of
making extensive modifications in the software and are testing a

variety of new models and heuristics to aid in route generation.




A e m———

ACKNOWLEDGMENT

This work was partially supported by the Transportation Systems
Center and the Office of Naval Research.

The implementation of the interactive dial-a-ride systems was
performed by Frank H. Cullen, David J. Friedman, and Robert T. Lewis.

The extension of the location ~ allocation model to the dial-a-ride

problem is due to Robert T. Lewis.

S bd "o. R el )
i S ot




14,

REFERENCES
Balas, E. and Padberg, M. W., '"Set Partitioning: A Survey."
SIAM Review, 18, (1976) 710-760.

Balinski, M. L. and Quandt, R. E., '"On An Integer Program for a
Delivery Problem,'" Operations Research, 12 (1964) 300-304.

Clarke, G. and Wright, J. W., 'Scheduling of Vehicles from a
Central Depot to a Number of Delivery Points," Operations Research,
12 (1964) 569-581.

Cooper, L., "N-Dimensional Location - Allocation Used for Cluster
Analysis,'" Report No. C00-1493-23, Washington University, St. Louis,
MO, 1969.

Krolak, P. D. and Nelson, J. H., "A Family of Truck Load Clustering
(TLC) Heuristics for Solving Vehicle Scheduling Problems," Technical
Report 78-2, Computer Science, Vanderbilt University, Nashville,
TN, 1978.

43




