
7 AD-A090 560 DELAWARE UNIV NEWARK DEPT OF COMPUTER AND
INFORMATI--ETC F/6 5/2

FI RST I TERATI ON AT A MINI-SET OF FEATURES FOR A KNOWL EDGE REP--ETC(UI

AU AS0 L SALSBUR F4962079-C-0131

UNCLASSIFIED TR-80-I AFOSR-TN 80-1025 N.U EhhEmhEEEohE

FistLEVEUV

A First Iteration at a Mini-set of

Features for a Knowledge Representation Language'

O.. by

ind~alsburg.

August, 1980

Technical Rep t 80-1

A..
/ I .. I

--.,*Research sponsored by the Air Force Office of Scientific
MRastems Comand, USAF, under contract

F49620-79-C-0131_ The United States Government is
*- authorized to reproduce and distribute reprints for

4 FGoverTmental purposes notwithstanding any ccpyright notation
herein.

/e fe

Approved for Public release%

disribtin 1.,,-1

1

Abstract

In the last three years, several initial versions

of a new class of languages, called knowledge represen-

tation languages, have emerged, 4Bobrow and- Winogr-ad,

1977; Brachman, 19781 and Roberts and Goldstein, 1977).. -

Rather than presenting new solutions to issues in

knowledge representation, this paper selects a mini-set

of features that seem necessary to attain the goals of

knowledge representation languages. The mini-set

selected is definitely not complete, but merely

represents the first iteration in trying to define such

a mini-set. An example, specifying the meaning of the

square root function, is included. Though the example

is presented, we are not committed to the syntax

presented there; rather, we are committed to finding a

more reasonable syntax and user interface for the

language. The language has not been implemented, since

we plan a second iteration prior to that.

Accesnion T r

P~y..

:. : l, OTICE OF T::A,.
r 1"t P.'TC ; ! Th is t c ,;:'. . . , . .ie e . and is

approVed ft , .1 9.t.) iA,'1 A ' - - 2 (7b).
i)istrlbutioll is u!Ilir1ited.

A. D. SLOSE

-echnical Informtion Officer

2

I. Basic Features

In semantic nets (a formalism often used to

represent knowledge), the routines for processing the

nets often completely determine what the representation

means. Two nodes may be tied together by a link, but

the interpretation of each of the elements, both nodes

and links, can only be found implicitly within the pro-

cessing routines. The representation itself provides no

explicit knowledge of the import of the links. What

often results is a knowledge net which is ambiguous and

not readily extended plus a set of routines that are not

domain independent. One is often forced to begin almost

from scratch when trying to work in a new area of

knowledge.

By requiring that the representation language carry

a fixed interpretation of each interrelationship and of

the participants, one is faced with two problems.

First, the precise meaning of the above must be under-

stood. Second, one must attempt to capture the kinds of

things that would be required to represent any domain.

The following features are necessary in a knowledge

representation language. Our features are drawn from

three existing languages: KRL (Bobrow and Winograd,

1977), KL-ONE (Brachman, 1978), and FRL (Roberts and

Goldstein, 1977).

i) The language must partition knowledge.

Not only must the representation language be able

to unambiguously represent the knowledge needed, but it

i H I I n. I i

. . . 3

must facilitate subsequent processing of that knowledge.

This includes making changes to the knowledge base as

well as retrieving information from and deriving conclu-

sions based on the knowledge that is stored.

When trying to reason using the knowledge base, it

is important to constrain the number of possible infer-

ences that can be made in an attempt to avoid combina-

torial explosion. So, if one is trying to draw a par-

ticular conclusion about Martians, only the information

relevant to the topic should be used to make inferences.

For, in trying to discover whether or not Martians are

extraterrestrial beings, it probably would not help to

know that Rover the dog lives next door. Therefore, it

is necessary to chunk or partition knowledge in order to

use it effectively in subsequent processing.

A necessary feature of a knowledge representation

language is that it facilitates this chunking or clus-

tering of knowledge. In trying to represent some con-

cept, one must be able to use that concept as a central

repository for what must necessarily be associated with

it. This should not place any restrictions on the way

things are partitioned, but make it easier to bring

relevant information into focus.

ii) The language must distinguish between extensional

and intensional descriptions.

A representation language must be able to distin-

guish between describing an individual and what it means

to be an individual. For example, one may want to

,o

4

represent Rover as the dog that lives next door, who is

brown in color, who bites when provoked, etc. Yet, one

may also want to represent what it means to be a Martian

as a creature from Mars, who is possibly green, etc.

Notice that with the Martian, there is no commitment to

the existence of that which is being described. The

former is what is called an extensional description,

while the latter is an intensional one. It should be

clear that sometimes, one would want to represent exLn-

sional descriptions, while at other times intensional

descriptions would be necessary. Therefore, a knowledge

representation language must be able to capture this

distinction.

iii) The knowledge language should allow for class

membership and inheritance of properties.

An intensional description can be thought of as

capturing a generality or describing a class of objects.

For instance, one can describe the attributes of any

dog, not a specific one, and then know that these pro-

perties will be true of any extensional object which is

* a dog. The intensional description captures features

that any object in that class being described will have.

The extensional object inherits these attributes.

A knowledge representation language should be able

to exhibit the relationship between intensional and

extensional descriptions in terms of class membership

and inheritance of properties. First, this helps to

keep the knowledge base eonsistent. One can say that

It -- r 'ri

~..'

5

dogs are in the class of mammals. Then, each specific

occurrence of a dog inherits the properties of mammals

by virtue of being in the class of dogs which are in the

class of mammals. The attributes are attached higher up

in the hierarchy created by class membership, and it is

not necessary to remember to attach these properties to

each individual dog. As a by-product of attaching pro-

perties higher up, the descriptions at the lower levels

(which are more numerous) are shortened. As previously

stated, it is important to factor knowledge. This

hierarchy of class membership helps to do precisely

that.

iv) A knowledqe language must allow an object to be in

more than one class.

Generally, it is agreed that capturing class

membership and inheritance from more general classes is

important in any knowledge representation language. It

seems that aknowledge representation language shoulda l t i g e d t a a t ngc l a s

have multiple class membership and inheritance paths for

the following reasons. First, since what is being

represented may serve multiple functions whose attri-

butes are not even vaguely similar, it makes sense to be

able to view things from different viewpoints. For

example, a rock has certain properties of interest when

viewed by a geologist (type, weight, etc.), and still

others when being purchased in a store as a "pet rock"

(price, packaging, etc.). Second, multiple class

membershio paths help in subsequent processing by

-"jai

6

further factoring the knowledge base. Lastly, a linear

scheme can result in extensive changes to the knowledge

base should a shift in emphasis occur.

V) The knowledge language should allow inherited

properties to be modified.

It is not always desirable to inherit properties

directly. For instance, Rover the dog may only have

three legs, but the idea that dogs have four legs is

probably stored higher in the hierarchy than with the

individual. There is nothing preventing the property of

number of legs from being stored with the individual, it

just makes more sense that it be stored higher up. One

would still like to say that Rover is in the class of

dogs and modify the attribute of having four legs. This

is just one type of modification to inheritance without

which it would be difficult to group certain items to-

gether and still capture the generality at the highest

level possible in the hierarchy. The most important

factor here too is that all interrelationships be

represented explicitly and unambiguously in the

knowledge representation language.

vi) One must be able to represent knowledge about the

parts making a an entity or about the entities normally

associated with it.

So far, some necessary and desirable features of

any knowledge representation language have been dis-

cussed. But, what is needed to represent a concept,

/I:

'° tt ,

7

such as a physical object, a function, a class of ob-

jects, or virtually anything that one desires to cluster

information around? First, the knowledge representation

language must be able to describe the attributes of the

concept being represented. For example, that a person

has a heart and lungs, or that a function operates on

two variables in order to derive its result. The use of

attributes is common to most representation schemes

including KL-ONE, KRL and FRL. Second, the language

must be able to express how the attributes interrelate.

Saying that a function takes two arguments does not ful-

ly capture what the function means. The interrelation-

ship of the two arguments in deriving the final result

must also be stated. Among KL-ONE, KRL, and FRL, KL-ONE

is the only one to have explicitly captured this need in

the representation language, what Brachman calls a

structural condition. Lastly, the language must also be

able to specify how the concepts themselves interact.

Class membership is only one example of the ways in

which two concepts may relate to one another.

vii) Default values are necessary in the knowledge

* *1language.
*Both KRL and FRL allow default values to be associ-

ated with attributes. When the value of an attribute is

not known, the default value for that attribute may beI

used if one exists. This makes sense in terms of every-

day reality since people rarely have complete knowledge.

Default information allows processing to continue even

p-

,i i

8

in the absence of certain information.

viii) It should be possible to attach procedures to the

objects in the representation.

KL-ONE, KRL, and FRL all allow for attached pro-

cedures in the form of a programming language. This

does violate the desire to capture knowledge explicitly

in the knowledge representation language itself, as

meaning will be couched in these routines. However, the

benefits to processing because of these procedures is a

factor which argues for including them. In FRL, an IF-

NEEDED procedure attached to an item of information will

be executed if the information is needed. A procedure

such as this can be viewed as performing goal directed

processing. IF-ADDED and IF-REMOVED procedures are exe-

cuted when an item is added or removed, respectively.

IF-ADDED procedures represent data directed processing

and IF-REMOVED procedures are just the negative of

these.

II. An Example

To further define and elaborate the features of the

knowledge representation language, a few examples are

presented: the concept of a function, the specification

of the function square root, and a specific call of the

4function.

Briefly, we may specify square root as a function

which takes two required arguments, say x and y, with x

greater than or equal to zero and y (the tolerance) at

lo

9

least .005. The result of the function, which is as-

sumed to be positive, has the following relationship to

the two input parameters:
2

x-y <= result <= x+y.

First, we define the concept of a function in gen-

eral; square root is a member of that class.

(1) [CONCEPT function CLASS
(2) <ATTRIBUTE
(3) (ROLENAME arguments)
(4) (MODALITY NECESSARY)
(5) (VALUE/RESTRICTION (THECONCEPT type))
(6) (NUMBER (>= arguments 1))>
(7) <ATTRIBUTE
(8) (ROLENAME result)
(9) (MODALITY DERIVED)
(10) (VALUE/RESTRICTION (THECONCEPT type))
(11) (NUMBER 1)>]

Figure 1

The definition itself is enclosed in square brack-

ets, [1, with keywords capitalized. Line 1 contains

the concept's name, i.e. "function". The word CLASS, as

opposed to INDIVIDUAL, indicates that the definition of

"function" represents an intensional description of a

class of objects. Each attribute for "function" is con-

tained within angle brackets, < >. As Brachman (1978)

suggests, there is additional information regarding each

attribute other than constraints on its values. Each

piece of information is surrounded by parentheses, and

preceded by the keyword indicating its significance.

The breakdown chosen for the attribute subparts is

modeled after those suggested in Brachman's work. The

ROLENAME of an attribute names the part or role that the

- --

10

attribute plays in the definition of the concept. It is

an arbitrary word that one chooses to aid in the under-

standing of the description. The possibility for name

conflicts does exist, but this will be discussed later.

When defining a concept which is a member of a more gen-

eral class, the ROLENAME is used to allign the attri-

butes. In this example, as lines 3 and 8 indicate,

"function" has two attributes whose names or roles are

"arguments" and "result".

MODALITY may be employed to indicate how critical

an attribute is in the definition of a concept. An

instance of "function" must have an attribute called

"arguments", as indicated by the keyword NECESSARY on

line 4. The keyword OPTIONAL would carry with it the

meaning that the particular attribute is not essential

in order to have an instance of the concept. For exam-

ple, a picnic would still be one without ants. The word

DERIVED which accompanies the MODALITY on line 9 signi-

fies that the attribute named "result" is not part of

"function" per se, but rather is a by-product of the

other attributes.

In the definition of a concept, the

VALUE/RESTRICTION of an attribute limits the set of

legal fillers for a particular role. In this example,

line 5 specifies that the only legal values for "argu-

ments" are in the class of "type".

It is possible to have more than one item filling

an attribute. NUMBER represents a predicate which must

be true of the number of entities filling the particular

role in an occurrence of the concept. In an instance of

the "function" concept, there must be one and only one

"result". Line 6 indicates that there is an unspecified

number of "arguments" in an instance of "function".

This example helps demonstrate why a NUMBER indicator is

needed. First, at the time of defining "function" it is

not known just how many entities will fill the role of

"arguments" in an occurrence of the concept. Second,

the role may potentially be filled by a large (and with

some roles even infinite) number of items. One would

not want to have an individual attribute for each of

these, especially since, as in this case, they all act

the same. Conceptually what results is a single name

for a group of entities.

The concept "function", being an intensional defin-

ition, describes a class or set of concepts. Every time

another concept has "function" as its superconcept, it

is the same as saying that the new concept represents

some subset of the set defined. In the case of an indi-

vidual (extensional) concept in a class, it defines a

set which contains one member.

1,

12

(1) [CONCEPT two-argument-function CLASS
(2) (SUPERCONCEPT function
(3) <ATTRIBUTE DIFFERENTIATE

(4) (ROLE arguments)
(5) (NUMBER 1)
(6) (ROLENAME x)>
(7) <ATTRIBUTE DIFFERENTIATE
(8) (ROLE arguments)
(9) (NUMBER 1)
(10) (ROLENAME y)>}]

Figure 2

The description above is for "two-argument-

function", an intensional object. "Two-argument-

function" is in the broader class defined by "function".

The keyword SUPERCONCEPT on line 2 indicates membership

in a class, with the following word specifying the class

concept's name. All facts about "two-argument-

function", as a subclass of "function", are contained

within the set brackets, { 1.

Recall that the definition for "function" had a

required attribute that played the role of "arguments"

in the concept. In "function", the number of items in

an instance of the concept that would ultimately play

the role of "arguments" was not known. However, with

"two-argument-function" it is known that there are pre-

cisely two "arguments". One would like to further re-

fine the attribute specification for "arguments" to sin-

gle out the two required ones for an instance of "two-

argument-function". The keyword DIFFERENTIATE on line 3

indicates that the particular attribute is a refinement

of some attribute in the hierarchy which potentially

stood for more than one item. On line 4, ROLE names the

13

attribute which is being differentiated.

When differentiating an attribute, all pieces of

information for the attribute from the more general con-

cept are inherited. Only the NUMBER aspect of the at-

tribute can be replaced. Line 5 declares the attribute

as having one and only one item filling that role in an

instance of "two-argument-function".

In "two-argument-function", both of the attributes

are a result of differentiating the attribute "argu-

ments" in "function". There must be some way to refer

individually to the two attributes in "two-argument-

function" from concepts still lower in the hierarchy.

Using "arguments" would be ambiguous. When an attribute

modifies another attribute through differentiation, it

is given a new name. Here, as lines 6 and 10 indicate,

the attributes are now named "x" and "y".

"Two-argument-function" inherits all attributes

from "function" by virtue of being a subset of that

class. Only those attributes being modified appear in

the definition. "Two-argument-function" could also be

in other classes and thereby inherit attributes from

them. The problem of name conflicts arises. It is

assumed here, as well as in the remainder of the exam-

ple, that a mechanism for specifying unique path names

*1 and for accessing any piece of information exists.

So far the example has clearly concentrated on the

aspect of representing the attributes of a concept

within the knowledge representation language. How one
/ I.

.-- .. -.. - - - - -

o° a~mm-- .. ,

14

expresses the interrelationships among the attributes

needs further elaboration. Below, the concept for the

specification of "square-root" (given earlier) is

represented.

(1) [CONCEPT square-root CLASS
(2) {SUPERCONCEPT two-argument-function
(3) <ATTRIBUTE RESTRICT
(4) (ROLE x)
(5) (VALUE/RESTRICTION (THECONCEPT positive-number))>
(6) <ATTRIBUTE RESTRICT
(7) (ROLE y)
(8) (VALUE/RESTRICTION f (THECONCEPT positive-number)
(9) (PREDICATE (>= y .005)
(10) (DEFAULT .01)1)
(11) <STRUCTURE
(12) (AND (<= (- x y) (square result))
(13) (<= (square result) (+ x y))
(14) (>= result 0))>}]

Figure 3

"Square-root" is a concept which is in the more

general class represented by "two-argument-function" and

therefore "function". Two of the attributes from "two-

argument-function" are being modified. This time they

are being restricted as indicated by the keyword

RESTRICT on lines 3 and 6. Within a restricted attri-

bute, the NUMBER and VALUE/RESTRICTION may be specified

which are in turn added conjunctively to the information

in the more general concept. As indicated by lines 8

and 9, the attribute "y" is in the class of "positive

number", is greater than or equal to .005, and is a

"type" (inherited from above). Line 10 indicates that

the default value for "v" is .01. This information

would help processing routines reason about "square-

root" even though there may not be an instance of the

15

concept.

The purpose of STRUCTURE beginning on line 11 is to

indicate how the attributes interrelate. The STRUCTURE,

enclosed in angle brackets, contains an expression which

is instantiated any time an instance of "square-root"

occurs. Attributes from "square-root" participate in

the concept within the STRUCTURE by filling ROLEs,

thereby indicating how they interrelate.

Square, and, <=, >=, -, and + are assumed to be

concepts defined elsewhere; the expression indicates how

their roles are filled by position (in this case).

Recall that three facts must be true of "square-root".

First, the difference between "x" and "y" must be less

than or equal to the "result" squared. Second, the

"result" squared must be less than or equal to the sum

of "x" and "y". Lastly, the "result" must be greater

than or equal to zero. We have assumed that a con-

sistent way of viewing concepts as predicates and attri-

* butes as arguments can be worked out; this assumption

allowed us to state the STRUCTURE as an expression in a

'A LISP-like syntax and semantics. We have left the

language details that would make such an assumption

valid for the second iteration in defining a knowledge

representation language.

The final part of this example is an actual in-

*stance of "square-root".
* £

f.1,
..**. 7

b ... - * -- .. . - ' II IIII I - " ' -- 'II • IIIIn a ,

16

(1) [CONCEPT square-root-of-4 INDIVIDUAL
(2) (SUPERCONCEPT square-root
(3) <ATTRIBUTE SATISFY

(4) (ROLE x)
(5) (VALUE 4)>
(6) <ATTRIBUTE SATISFY
(7) (ROLE y)
(8) (VALUE .02)>)]

Figure 4

"Square-root-of-4" is an -xtensional concept. The

attributes of "square-root" are modified by actually

fixing their values. The keyword SATISFY is used to

indicate that the filler of the attribute is fixed.

Line 5 states that "x" has the value of 4 and line 8

that "y" is equal to 0.02.

III. Conclusions

The basic features of section I seem necessary to

any knowledge representation language. However, there

are several issues that must be considered for a second

iteration in the language.

i) The potential of having multiple views as in KRL

seems high, but it is unclear how to add them without

sacrificing the semantic clarity of inheritance based on

subset relationships.

ii) Establishing a correspondence between concepts and

predicates and between attributes and arguments would be

very useful, since this would enable one to write

STRUCTUREs as expressions. Not only is this compact but

it would make the STRUCTUREs more readable as in the

A ..

17

square root example.

iii) The user interface and syntax needs careful review

and design.

iv) An appropriate implementation has to be undertaken

when the second iteration of the language is defined.

.4

18

References

Bobrow, Daniel G. and Terry Winograd, "An Overview of
KRL, a Knowledge Representation Language," Cognitive
Science, Vol. 1, #1, 1977, 3-46.

Brachman, R. J., "A Structural Paradigm for Representing
Knowledge," Report No. 3605, Bolt Beranek and Newman
Inc., Cambridge, MA, 1978.

Roberts, R. B. and I. P. Goldstein, "The FRL Manual",
AIM-409, Artificial Intelligence Lab, Massachusetts
Institute of Technology, Cambridge, MA, 1977.

IR

