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interaction). The laser gain parameter, radiation extraction efficiency, maximum
power generation and spectral width are given and compared in the various kinds
of FELs and gain regimes. The maximum power generation of all FELs (except
Compton-Raman scattering) is shown to be limited by an interaction region widthparameter. This parameter and consequently the laser power is larger in the
highly relativistic limit by a factor ^yo in all bremsstrahlung FELs incomparison to Cerenkov-Smith-Purcell FELs. Some expressions which were derived
earlier for the magnetic bremsstrahlung FEL, like the expression for gain in the
low gain regime with space charge effect correction and the low gain expression
for efficiency are shown to be special cases of more general expressions.
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1. INTRODUCTION

We presently have a number of detailed theoretical analyses of free

electron lasers (FEL) of various kinds: magnetic bremsstrahlung [-101

electrostatic bremsstrahlung l'13timulated Compton-Raman scattering L3-16 ]
[17-21]

and Cerenkov-Smith-Purcell However, it would be desirable at this

point to have a simple unified model which describes simultaneously all the

kinds of FELS, allowing easy comparison among the various lasers and providing

simple expressions for the various operating parameters required for laser

design.

As is shown in the next sections, such a unified analysis is possible

because the different kinds of FELS all satisfy to a good approximation similar

dispersion and gain relations. The origin of the similarity of the various FELs

is thidt tLihe all involve longitudinal coupling between single electrons or electron

plasma waves and an electromagnetic wave. It is obviously so for the

Cerenkov-Smith-Purcell FELS, but also in the magnetic bremsstrahlung FEL in

which the electromagnetic wave has a transverse field only, and the electron

beam is primarilytransversely modulated by the static magnetic field, there is

a longitudinal interaction between the electromagnetic wave and the electron

beam plasma, carried out through the ponderomotive potential (radiation

pressure)

The qualitative distinction among the different kinds of FEL mechanisms

• ' was discussed in detail in Ref. [17]. The basic diffe ence between bremsstrah-

lung FELS and Cerenkov-Smith-Purcell FELS is 0' in the first case a periodic
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(magnetostatic or electrostatic) force operates on the plasma waves, allowing

phase matching (synchronism) with the electromagnetic wave by providing to

the plasma waves negative crystal momentum -ko

2 T
;k _ 7 (I)

o L

where L is the periodicity of the periodic field. On the other hand, in

the Cerenkov-Smith-Purcell FELS the synchronism is obtained by increasing

the momentum (wave number) of the electromagnetic wave in a slow wave structure

* (a periodic waveguide or a dielectric waveguide).

The stimulated Compton Raman scattering problem is very similar to that

of the bremsstrahlung FEL, except that instead of a static periodic force,

the electron beam is modulated by an intense electromagnetic (pump) wave which

propagates in a counter direction to the electron beam, and facilitates

coupling between the electron plasma waves and a forward going scattered wave

of higher frequency. The bremsstrahlung FEL is sometimes regarded as a

special case of Compton-Raman scattering with zero frequency pump.

Fig.l illustrates schematically the general structure of all the FELS

discussed in the present article. They are all composed of an electron beam

of uniform cross section which propagates at an average velocity Voz through

an electromagnetic waveguide and parallel to its axis (z direction). The

crossed areas symbolically represent the source of intrc action agent (pump)

which allows the interaction between the electromagnetic wpve and the electron

plasma. This can be in different FELs coil windings, )eriodic magnets,

periodic electrodes, a helix, corrugated walls, dielectric walls etc. The

iANN
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Fig. 1: A schematic representation of all kinds of FEL amplifier structures.
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figure shows a schematical laser amplifier structure in which the input radia-

tive power P(o) is amplified along an interaction length L, producing

an output powpr P(k) > P(o). A free electron laser oscilator structure

will consist of similar elements but will need in addition also means for

a feedback mechanism (for example a Fabri-Perot resonator).

In the next section the radiation condition (wavelength of radiation) is

derive for all FELs. In section 3 the common dispersion-gain relation of

SFELs is discussed. The different gain regimes, which evolve from the dispersion

relation (and apply to all FELs) are delineated in section 4. Expressions for

the maximum gain, efficiency, power and spectral width of the various FELS are

derived in sections 5 to 8 and discussed in a comparative way.

Along the whole article we kept a full relativistic analysis. In most

of the recent work on FELs the electron beam is highly relativistic. Therefore

we gave the extreme relativistic limits of the relevant expressions (given

I in brackets ). But in some FEL structures like the Smith-Purcell experiment

[221, the Orotron [3,24 ] the Ledatron [25 1 or the Ubitron (26 1, the electron

beam is non-relativistic or moderately relativistic. For this reason the

derivation was made for all FELs (except stimulated Compton-Raman scattering)

in a general way without using the somewhat simplifying assumption that the

beam is highly relativistic.

The system of units used in this article is M.K.S.

9

lU



2. THE RADIATION CONDITION

The radiation condition of the various free electron lasers can be

derived from the kinematics of the interaction scheme, without requiring

involved analysis.

In all FEL structures, shown schematically in Fig.l, an electron beam

propagates inside the FEL structure together with a waveguided electromagne-

tic wave along the same direction (z axis). A necessary condition for inter-

action is close synchronism (phase matching)between the interacting electro-

magnetic wave and electron (plasma) waves. When such "near synchronism" is

obtained, energy can be transferred from the electron beam to the radiation

field (amplification) or vice versa (electron acceleration). This "synchronism"

condition results in the radiation relation which determines the wavelengths

at which amplification should be expected.

Fig.2 describes schematically the interaction schemes of the various free

electron lasers discussed. The approximate wave numbers of the interacting

waves or wave components (space harmonics) are listed in the first two columns

1 of Table 1. Equating the wave numbers (phase matching or momentum

* conservation) yields the radiation condition (third column in Table 1). The

expressions in brackets correspond to the highly relativistic limit y >>l
oz

(1oz is defined later in Eq. 7).

j .-
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TABLE 1: The wavenumbers of the synchronous components of the interacting

waves and the radiation condition for various FELS

FEL EM Component Plasma Component Radiation
wavenumber wavenumber Condition

Cerenkov k n (W n ) =Bo costZO0

V
0

Smith Pur. k '+k w -l
0o 0 L _ cos

kz+°v L 0

0

Long.Brem. k k A --
v 0 L 0

0 iI __________________ _ _ _

Trans.Brem. k k = -1=zo v oz L oz (+ )aY2 22

oz) ooz oz

(6- o A 1 1
Compton-Raman k -- k -

v o A 2 2 [ 4y2Joz o i+ 4 oz 4oz

In Table I and Fig. 1 kzo represents the wave number of the interacting

electromagnetic wave which can be in general a waveguided mode for which

k <k-w/c. Only for a plane wave propagating in the z direction, or alter-ZO

natively a low order mode in a wide waveguide,one has k o k wc. v
zo 0

is the mean velocity of the electron beam which is propagating in the z direction.

In the case of the transverse pump FELs (two last rows in Table 1) the electron

beam ias at each point also transverse velocity and the parameter which is used1
in the synchronism condition is v the longitudinal component of the average

beam velocity. For the longitudinal FEls (first three rows in Table 1)

- v-'-= :
0/ 07O 0
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Fig. 2: Dispersion diagrams of the interacting waves illustrating the

synchronism (phase matching) condition for the different EEL schemes.
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The dispersion curve of the electron waves is represented symbolically

in Fig.l by the thick line of slope - = v . A single electron which
k oz

z

is forced to oscillate at frequency w and at the same time propagates in

the z direction with velocity v is generating a travelling current wave

with wave number /v . In the case of a warm electron beam there is some spread
z

in the wave numbers w/v due to the variance v in the velocities.z z i

When the beam is cold enough the eigenmodes cf the beam plasma will be the

longitudinal space charge waves with wave number (w+ ')/v . where ' is
-p oz

the modified plasma frequency of the electron beam. Either case is represented

approximately by the thick dotted line of slope v assuming v th oz

and .,' <-
P

The dispersion curve o. the electromagnetic wave is in the case of

Cerenkov FEL (Fig.v2a)the well known dispersion curve of a dielectric waveguide

mode which at high enough frequency tends to a slope (phase velocity) c/n

(i1 is the high frequency index of refraction). if the beam which is propagated

i (lose proximity to the dielectric waveguide, has a mean velocity v - c/n,

tacn synchronism betwaen tile electron beam and an electromagnetic mode may

,!c p,sible iround the curves crossing region:

v k " (2)
0 z:

nt.*rLon~ !r or -sxnchronism 1hctweo'p ti

i ,i'., '*i-/.c* v'I it:'" dm1] Llt .,2d2:1 vcIocjt\" -,.k \V . Thet Radt~t ,' ,'n

T d, r; -0 using tht deri - ion of th , "' zig-zag

n
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where k J wIc.

In the case of the Smith Purcell FEL (Fig.lb) the synchronism (phase

matching) between the electron beam waves and the electromagnetic mode is

obtained by adding "crystal momentum k° l' to the mode wave number k.o. To

be more concrete we may say that in the periodic waveguide, of which the

Smith Purcell FEL is composed, the electromagnetic eigenmodes are Floquet-Bloch

modes and the smooth waveguide dispersion diagram is modified into a Brillouin

diagram with period k .(which for clarity is only partly drawn ). The
0

synchronism condition is obtained when the dispersion curve of the first order

space harmonic (k +ko ) matches the curve of the electron beam wave:
zo 0

- k + k (4)
V zo 0
oz

This can also be interpreted as synchronism between the wave phase velocity

and the beam velocity: w/(k +k ) v . The radiation condition of the SmithzO 0 OZ

Purcell effect [22] is derived in Table I from (4) using the definition for

the "mode zig-zag angle" :

k
cos : ZO (5)

The scheme for the bremsstrahlung FEL (Fig.lc) is similar to that of the

Smith-Purcell FEL and results the same synchronizm condition (4) and consequentlv

C. ,amtn radiaLion condition iTaVe 1). The difference is that n t , case a

.A periodic magnetic or electric force operates on the clcctron beam and endows

its waves with a negative crystal momentum -ko . Thus the electromagnetic

wa',eguide mode interacts with the -1 order space harmonic of the electron

IV
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beam wave.

In the case of the most familiar transverse hremsstrahluni

FEL (magnetic or electric), the interaction can take place with a transverse

electromagnetic (TE ) wave for which k =k ((p=O). Hence the radiation condi-zO

tion for this case which is given in Table 1 (row 4) is derived by simply substi-

tuting 4=O in the previous result (row 3). In this case and also in the trans-

verse electrostatic and Compton-Raman FELs the electron beam has a transverse

component of the average beam velocity due to the transverse force applied

by the pump, and v #v We defined for these cases
OZ 0

v
- o (6)

Oz C

o= (1-o)B (7)

In the first three rows of table 1 the FELs listed have only longitudinal

interaction and the beam has no average transverse velocity. We substituted

*there v = v
oz 0

In the case of Compton-Raman scattering (Fig.ld) the periodic electro-

static or magnetostatic pump of the transverse bremsstrahlung FEL is replaced

bv an intense TEM wave with frequency wo and wavenumber k = 2l/X o )0 0

propagating in a counter direction to the electron beam. The combined

effect of the scattering and ;cattered electromagnetic waves generates in

4
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the beam an electron current wave which oscillates with the difference frequency

W-t0° and propagates with wave number (w-aw0)/voz-ko. The synchronism condition

is

u-u
- k 0 =k (8)V 0

oz

which results the radiation condition of Table 1 (row 5).

This synchronism condition can be also explained in a different way.

The combined effect of the scattering and scattered waves generates in a parametric

process. a current with frequency W-W and wave number k+k
0 0

The scattering process is resonant when the phase velocity of the current

is synchronous with the electron beam

o =v (9)
Sk+k oz

0

This is of course equivalent to (8).

4
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3. THE DISPERSION-GAIN RELATION

We consider the interaction between an electromagnetic waveguide mode

ik z
E(x,y,z) = a(of_(x,y,z)e zo (10)

and an electron beam, both propagating in the +z direction in a free electron

laser structure as shown in Fig.l. The waveguide can be either a uniform or a

periodic waveguide.

Due to the interaction of the electromagnetic wave with the electron beam,

its amplitude grows gradually at a spatial growti ratv assumed to be small compared to a

wavelength. With this assumption, and an assumption that only one mode exists

in the waveguide, the Maxwell equations may be reduced into two simple one

dimensional equations for the amplitude of the electromagnetic mode:27 '2 0 '2 1]

da(z) ika(z) J(x,y,z) xyz) dxd

=- "k axy~) xd (
dz zo 4 JJ--

E (x,y,z) = a(z) z(xY, Z) + --- (X,y,z) (12)

where a(z), the amplitude of the electromagnetic mode is defined by

Et (x,y,z) = a(z) t (x,y,z) (13)

f-_(x,y,z) is the transverse field component of the uncoupled electromagnetic

mode (Eq.10), P is the Poyntingvector power of this uncoupled mode

P Re [C (x,y,z) X (x,y,z)]. dxdy (14)[ . ..



This formalism is useful for most kinds of waveguides of relevance to tree

electron laser structures, including periodic waveguides. In the particular

case of a uniform cross section waveguide (which is of relevance for all FELs

except Smith-Purcell type) the uncoupled mode field is independent of z:

( (x,y,z) = (x,y ). In the Smith-Purcell FEL k.(x,y,z) is a periodic function

of z with the period of the periodic waveguide-L.

The current J (x,y,z) is the alternating current which is induced in the

electron beam by the interaction mechanism of any kind of free electron laser

scheme. When J=o (no interaction) the solution of (11) is

ik z

a(z) = a(o)e zo 
(15)

giving back (considering also (12) and (13)) the uncoupled mode (10).

in order to complete the analysis ot any particular free electron laser

scheme, the alternating current J(x,y,z) which is induced by the electromagnetic

wave in the electron beam should be calculated by solving the electron equations

6(force equation, Vlasov equation, Dirac equation or other) in the particular

structure considered. In the linear regime this will usually lead to a linear

relation between the current and the electromagnetic field. Equiped with such

a relation it would be usually straightforward to solve the linear equations

(11,12) by a Laplace transform technique.

This procedure was used successfully on both Cerenkov-Smith-Purcell

and longitudinal electrostatic bremsstrahlung I FEI.s. The Laplace transformed

. .. . .. ..S. I I I llI l - i 
'
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amplitude of the electromagnetic wave 3(s) - j e a(z)dz was found in either

case to be given by the same expression

a~s) 1 + K(w s + iko)/c=S a(o) (16)

ts-ik zo)M + x(w,s+ik )/]i X(,s+ik )/,:

where

.(,,s+ik ) (1" 2 p(w,s+ik (17)

p-,s) is the well known plasma susceptibility of an electron beam plasma

propagating in free space in the z direction. It is defined by

: . 'pxPP)/'nz
2(,s) -i - (p dp dp dp (18)pJ s - W/v dxdpydz

z

g is the electron distribution function of the electron beam when entering

the interaction region, v. = pz/(Ym) is the electron longitudinal velocity

component.

The parameter C in Eq. (17) is equal zero for all FELs discussed except

the longitudinal electrostatic bremsstrahlung FEL for which it was found to be ill

= 2 3 ,, (19)

2lo Y" mc

*. -a-. , . -a. -WP , -



where o=E /k is the amplitude of the periodic electrostatic potential in this laser.

In Eq. (16) k is the periodicity parameter which is given for all FELs
0

except the Cerenkov FEL by Eq.l. In the Cerenkov FEL,which does not utilize a

periodic structure ,one uses k =0.
0

The coupling parameter K is listed in Table 2 for the various kinds of

FELs. A is the thin electron beam cross section area. X e Ye are thee

transverse coordinates of this beam. zl(x,y), which appears in row 2 of the table,

is the longitudinal electric field profile of the first order space harmonic of

tiv flctromagnetic mode in the Smith-Purccll FEL periodic waveguide

Cz 1 -ikoz

r (x,y) e 0  (x,y,z)dz (20)

ai

'1'
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Table 2 The coupling parameter K of various FELs (the highly relativistic

limit expressions are given in brackets).

FEL

Cerenkov
P

2

Smith-Purcell 21e Y -z(xeye) IT

P

2 Ae 16 0(x e y e)

Long. Elec. z 2 e-

2 44

eE 2 (1+6 ) 4 A 2y A
0=.o oz oz e 1 e-E a oz

Trans. Elec. 8 -2) 2 2 AA 2)  2 Ag
mc aoz Yo mc 0

eBc2 2 4 A eBc 2 y 4 Ao -°2e c l8z oz e 1 o oz ek

Mag.Brem. ) 2 Ag X [I (- ) 2 A X
mc g mc YO

14eE 2 A .2 1 /, . .
Compton-Raman eE 0 2 y oz A S

2-2 o 2 A
mc YO m r 0 g

'I,)

. -.



It is instructive to find out that Cerenkov, Smith-Purcell and longitudinal

electrostatic bremsstrahlung FELs all have similar expressions for the coupling

coefficient K . This stems from the fact that they all involve direct longitudi-

nal interaction of an electromagnetic wave component with a synchronous electron

plasma wave component. In the Cerenkov scheme the z component of the total

electromagnetic mode field e(x,y) can be synchronized and coupled to electron

plasma waves. In the Smith-Purcell (or traveling wave tube) type scheme only the

electromagnetic mode first order, space harmonic gl(x,y) is synchronous with

the electron plasma waves. In the longitudinal electrostatic bremsstrahlung

scheme the total electromagnetic mode &x,y) is synchronous with only the -1

order space harmonic of the electron plasma wave which has an amplitude a (Eq. 19).

In all three cases the coupling coefficient is proportional to the radiation

wavenumber k - 2r/X and to "relative power" factors of the interacting wave

components.

The dispersion-gain relation (1b) applies to a good approximation also to

the case of magnetic bremsstrahlung FEL. Assuming operation near synchronism,

and introducing a "relative power" factor (filling factor) A e/A (A is the

witv , ;c cros -ection area or morc generallv thL. ettective cross section of

,,, ctromagnttic mod,,), w . crt, iolt- to rkeduc, tlIC dispersion equation

developed in [1()]for the magnetic bremsstrahlung laser to a form identical with

(16). ['he coupling coefficient which results for this case is listed in

Table 2 row 5. S in this expression is the amplitude of the periodic magnetic

field modulation. NoLice that for the magnetic bremsstrahlung FEL as well as

f



for the other transverse modulation FELs the electron distribution function

f (pxPy pz) has an average transverse momentum pol # 0 (while for the

longitudinal FELs p = 0). In the magnetic bremsstrahlung case

eB

Po p ox 2 + Po y -= (21)

thus, in the velocity space, the average longitudinal velocity of the beam

will be given by

Poz 1 _

V- = Y , 2 2 (22)
Soz Y 0m Y"0 m Yo -0 P C

The transverse electrostatic bremsstrahlung FEL scheme is essentially

equivalent to the magnetic bremsstrahlung FEL except that a periodic transverse

electrostatic force is applied on the electrons by periodic alternating electrodes

replacing the periodic magnetic (Lorentz) force which is applied in the magnetic

bremsstrahlung FEL by means of static magnets or coils. It was also suggested

that high amplitude electrostatic field modulation can be obtained due to the

change in the space charge field of an electron beam traversing through a periodically

rippled waveguide, and that this can be utilized for a free electron laser scheme[1 2 ,2 8)

It is possible to avoid a detailed analysis of the transverse electrostatic

bremsstrahlung laser scheme, using a reasonable assumption that the electrons

' respond to the periodic transverse electric force eE°  in the same way that they

respond to the transverse magnetic (Lorentz) force eF xV . We thus will assume-- -- z

that the existing theory of the magnetic bremsstrahlung FEL can be applied to a

good approximation to the transverse electrostatic bremsstrahlung FEL when we

',

t -

-- l l . . I . . . . . .. . . . .
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substitute B 0 by E , where E is the amplitude of the transverse electrostatic

field modulation. Hence Eq.16 will hold for the transverse electrostatic brems-

strahlung laser as well, with the coupling parameter < given in Table 2

row 4 and X defined by (18). Instead of (21) we should use in this case

eE (23)
Po- T v_

0 OZ

In the Compton-Raman FEL the electron beam is pmped by both the transverse

electric and magnetic fields of an electromagnetic wave propagating in counter

direction to the electron beam. The dispersion relation which results from the

analysis of this interaction D,,) can be also reduced to the general form (16).

The analysis of Ref. [(It)] is limited to small transverse oscillation (yoz = YO )
.

However at least in the highly relativistic limit the parameter K can be directly

derived from the expressions for the magnetic bremsstrahlung laser taking advantage

of the fact that in this limit a static magnetic field and an electromagnetic wave

look alike in the beam moving frame, and using the appropriate synchronism condition

for this case (3 or 9). In Eq. 16 one should substitute then w - of
0

The coupling coefficient K for the Compton-Raman scattering FEL is given

in Table 2 row 6 in the limit of a highly relativistic beam. This is actually

the more interesting case because only in this limit the laser can produce radiation

4 2
at a wavelength appreciably shorter than the pump (X = Xo/(4yo)). The parameter

0 oz

is also given in terms of the power density value of the pump field So.
O

-- *. • .



-21-

The common gain-dispersion relation (16) would yield the power gain for any

FEL at any wavelength when a(s) is inverse Laplace transformed and substituted

in

P(z) - a(z) (24)P(o) Ia(o) i

The operating wavelength is determined from the solution of the dispersion

equation which is the condition for the vanishing of the denominator in (16).

(s-ik )[l + x (w,s+ik )/c] -i < (w,s+ik )/=o (25)
zo 0 0

For a weakly coupled system (< is small), the eigenmodes of the system

have wavenumbers close to the eigeniodes of the uncoupled system (K=o) which

are the electromagnetic wave (s = ik ) and the electron beam plasma waves
zo

(solutions of the plasma dispersion equation : 1 + X/c = o). The approximate

wavenumbers of these waves (more precisely - the wavenumbers of the space
* !1

harmonics which participate in the interaction), are listed in Table 1, giving

rise to the radiation conditions listed in the third column of the table. whien

the wavenumbers of the interacting waves match (synchronism), the dispersion

equation (25) vanishes and the appearance of a pole in (16) indicates strong

coupling of the electron plasma and electromagn.'Lic waves. We should point out

that Eq.16 and the parameters in Table 2 were all derived with th assumption

• I



of operation near synchronism.

The susceptibility function X ( ,s) (Eqs.17,18) can be expressed in terms

of familiar functions and parameters. The distribution function g ()(P) may

be substituted in terms of a normalized distribution function of a single

variable:

g(O) (pz) Pzth gp n z-poz)g(O) 9 (pxPy p) d pxdpy P 9 (26)

Z n X y z x y Pzth

where n is the electron beam density, p zth -the longitudinal momentum spread

of the electron beam distribution, and poz is the average electron beam momentum

in the longitudinal (z) direction. In terms of the normalized function g, the

plasma susceptibility (18) can be written as

SD (27)(+,s) -5 2 --- G( 7(
- S

where

G' (x) d x (:)

iW/s - V (29)

Vzth

,2
2 'p2 Vth (30)

Vzth2

I:
,..



22 2 e2 W 1+ ,, e n 0
p ( + a - (31)

SY oz  -,o'oz- m

Pzth E zth

zth - 0 y 2 IQ (32)zt o~ozm 7 mc
0 og oz

Ezt h  is the longitudinal kinetic energy spread of the electron beam. 'n stiriulated

Compton Raman -;cattLring subs Ltut1 --

Often the electron distribution is approximated by a shifted Maxwellian

distribution.

For this case

-X

g(x) e (33)

and

1 -x
G() =e dx (34)

is the so called plasma dispersion function which is tabulated in Ref.{ >,

Before we go to the next section where the solution of (16,25) and the laser

gain regimes are discussed, let us examine Eq.25, in the limit of a cold beam

(P - Io ). In this limit we get from (29,28) * and G'(;)(zth

pSubstitution in (27) and (16) gives

[ .,
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x (w,s) = 2 (35)
(w+iv S)

oz
w ,2

(s + iko-i ---- ) 2  +
a(s) = 2 a(o) (36)

2 ~,(s - ikzo (s+ik O - i __)2+--- ]p, i _

zo0 v oz vo v oz2

and the dispersion relation (25) is

(s - ikzo) [(s + k°  -i w ) 2 + 0 (37)
zo 2 2,

v v v
oz oz oz

This equation is similar to the conventional traveling wave tube dispersion

[30 ]equation Its physical significance is seen when we take the limit

K = 0 (no interaction). We see that the uncoupled eigenmodes of the system

in the cold beam limit are the electromagnetic wave

s ik (38)zo

and the slow and fast plasma waves (correspondingly)

s+ i k i---- + - ) (39)
oz oz

s_+ik i (40)
0 V Voz 0?.
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The dispersion relation (37) can be further simplified into the compact

form

:,k (. k - - ' )(!k - + ) + Q = 0 (41)pp

whert we2 defied the complex wave number modification due to coupling - 6k,

by

(42)

it int c r:

(43)

1 < IMa J t, - tt. 1ng

(44)~1 V

and Lhv gain pdraint,ter

(45)
I v

OZ

i . , x,'

. .. . -- l~l 0/

-- I6 I l l I I l l . . . .. .



4. FREE ELECTRON LASER GAIN REGIMES

In principle the calculatio of the gain of any FEL at arbitrary operating

conditions is straightforward, requiring only to perform an inverse Laplace

transform of (16), then using (24) and the appropriate coupling parameter

from Table 2. In practicv the execution of an inverse Laplace transorm may

be somewhat difficult in the general case (p #o) wlhere the exact plasma

dispersion functton (28 or 34) must be used in (27). In this general case it

may be most useful to evaluate the inverse transform

a(Z) - a (s)e SZds (46)

by numt.rical integration in the complex field. A computer program for per-

forming this integral was developed Representative gain curves calcu-

lated by this program art- shown in Fig. 3. As a function of the interaction-

length-normal izcd-svynclhronizm-parameter :

( -k - k) (47)
V Zk) 0

and various values of the normalized thermal spread parameter th

V
v

. Zth 2 " zth 1 1( 8
t...(48)

th v V v
oz oz 07. 02

LOW--

I $, i i , i, , _ nl . . . . m - .. '. . . lll~
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2'r v'__

k = zth (49)
7th th v

oz OZ

The thermal spread parameter e has the interpretation as the spectral
t h

width (evaluated in wave number space) of electron wave numbers A(
v
z

in an electron beam with average longitudinal velocity v and velocityoz

spread v' As we will see later in this section the beam is consideredZth"

cold or warm if .7 <<I or a >>1 respectively. Fig. 3 displays examplesth th"

in both limits as well as intermediate cases. The normalized coupling and

space charge parameter < and 0 which appear in Fig. 3 are defined by
p

K : -- (50)

(51)p p v
oZ

In many practical limits exact calculation of the gain curve is not

necessarv; and analytical expressions for the gain may be derived with certain

approximations. These different limits (gain regimes) were delineated by a

number of authors (4,7,10,17,18,2q for various kinds of FELs. Indeed they

are common to all of them, since they result from the same gain-dispersion

relation (16). We will briefly describe the gain characteristics in these

regimes.

t; . . ..... *-_... .. _____7:__ _ _ _ _
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Fig. 3: Numericallv calculated gain curves of the FEL~ for v~irious values o:

the normalized thermal spread parame)Lter (K I,1)



Fig. 4 displays "phase matching" (momentum con. crvation) diagrams which

help to understand the various gain regimes discussed. It is essentially a

"blow up" of the phase matching diagram in Fig. 2 (b), looking at the details

of the phase matcning near the electron waves dispersion curve at the various

gain regimes. in the bremsstrahlung FEL., k in Fig. 4 is reversed in direction.

O OA~~~~~~~~~ ~ ~~ ~ L. 1LI-; l=i~dCmpolRfln1itrl /c is reversed and ,, /v o

k. - ) V . In th cerenkov FIA. ' M o. ii, oLtcr AL!tails remain twi samt in all FELs.
t 

, "  
0

Cold beam Low gain regime

AS was shown in the previous section, in tie cold beam limit (pzth - o) the dis-

o,,rsi, equation 2D) reduces to (3> or (41) which are simple third degree polinomial

,obuat ion. with a iinitt. number of roots (three3 . If the roots are found, then the

evaluation of the inverse Laplace transform (46) may be straightforwardly

calculated by use of the r,,iduum method. This gives

.3a() s z1 Z (52)
i(o) l J

where A are the residues of (36) at s.

The low gain regime occures at the limit when the normalized gain para-

meter K is very small: <<I (a sufficient condition).

-- 2 3 Q(53)

In this limit the roots of (37) and (41) will , iosc to the roots of the

bvl!
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(a) WARM BEAM
kzo o ko

S, 2th

//Voz et h

(b) LOW GAIN TENUOUS BEAM
kZ0  ko

(c) LOW GAIN SPACE- CHARGE DOMINATED

(dHIGH GAIN COLLECTIVE

2 VP2K'

Skzo+B ko

'20

(d)HIGH GAIN STONGECIPVE N

* 2
Fig. 4: "Phase matching" (momentum conservation) diagrams at the different

gain regimes assuming operntion at the maximum gain point.

The section under each diagram indicates the width of the gain region.

-oom, "
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uncoupled waves (Q = o) - Eqs. 38 - 40,and may 'v xpanded to first order

in K or Q around this zero order values. After a lengthy mathematical cal-

culation, 1211 substituting (52) in (24), and calculating the power output

to first order in : (or Q), one gets

Q' Q F ) (54)

whure P P( ) - P(O) <- P(O), and

sin sin-(
2F("'- ) :

The function F(7, -) is shown in Fig. 5 for various values of th, parameter
p

0 k -,1). Since F <j the parameter Q indicates an upper limit on

the power gain available.

iEq . S-i,55 give the low gain characteristics of tree electron lasers

including space charge effect. For a tenuous beam or a short interaction length

S-" and (55) reduces to

F d sin (-/2)
d[' 'I:!(56)

which is tht iamilial .:lg l,. ,'ron gain function whlcr. appears in the

,t the var ou 're ,, '[ectron lasers w> , ' ,'jtL ctharge ett ct

, - l ,, ' NotiCL also thaL the gain curve for this case

(Fig. 0, ) resembles the computer calculated curve of Fig. 3 for

, .. -- _.*U. ' _ _ _ _ _ _
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0.16
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Fig. 5: The normalized low gain curves E( ,- Eq. 55) for various values

of the normalized space charge parameter
p"

0
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th = 0.1 <<i (cold beam). It attains its maximum value at

. -- or =k k (57)
V ZO 0

oz

This situation is illustrated in Fig. 4(b).

it is interesting to point out that the expression which was derived by

Lousi'li et all [31 for the magnetic bremsstrahlung FEL gain in the low

gain regime including space charge effect, is actually just the Taylor ex-

pansion of (55) to first order in
P

d-.- i (" - -d- i i

d- /2 d 3  - ,d" '

xha~Lo is kctri'et ot catrso onl' :ar '<

T !k. g'neral spat, chargt limited expression (57) has the interesting

. aiterpretAt aoi as the rLesult of the interference of the electromagnetic

I%'d) 'ith the. -low spact, charge wave (39) on one iLand and with the fast

a.rg t r.e wa,v (40) on the other hand. Whenever the electromagnetic wave is

svncirneu witil tile lo, :space charg,, -. (rk , k +
oz

toe Itcr rence v i.- i- M. I:i;'urn :LJn'L g 1n. When the L ectromagnetic wave is

s'.'nchron,,us with tht ao-t ,pace charge wave (. or K +k -
p zo 0 Voz pE -z

max im i t t enuat i on ., tt !CLd . " e pihase mr.it, .ini diagram in the space charge

low co1i : r imt. ( a-I at 'i, maximum iain point

if -



or + e =k + k (59)p v oz p zo 0

is shown in Fig. 4(c).

The gain expression (54) may be of practical importance in situations

wh-n low gain operation is expected (as in laser oscilators), and weak

coupling parameter (K) is unavoidable (as in the case of short wavelength

operation). In this situation one may try to increase the gain parameter

(53) by increasing the electron density and the interaction length Z,

thus arriving to the regime >>7. For example with beam parametersp
n11 -3
10 cm ,o = 10, v o c, and = 2 m one gets = 5, and ito oz p

is necessary to use (55) to describe the gain.

When we are in the space-charge dominated limit j >>7 at the maximum
p

gain point (59), the normalized gain function (55) attains a value

F(- ) = 1/(20 ). Thus the maximum gain (54, 55) is given by.

C-) = Q 2, Z' (60)P - max - /2 P

we notice that in this low gain space charge dominated regime the gain

grows proportionally to V-- while in the tenuous beam limit (56) where
o

collective effects were negligible, the gain was proportional to n (single

4electron interaction). Notice also that since >>r was assumed, the para-4 P

meter Q gives again an upper limit on the gain available.

\Z<I



It should be pointed out here that as the electron density is increased,

and space charge effects become important, saturation (trapping) effect would

start at a lower input power level of the electromagnetic radiation. In this

case the linear analysis which led to (54) may fail to describe the situation

with practical power levels, and a complete nonlinear analysis should be

used [32,33]

Cold beam high gain collective (Raman) regime

For weak enough coupling (Q <<) the roots of (41) are all real and small,

thus the roots s. (Eq. 42) are all imaginary and close to the uncoupled

wave numbers (38 - 40), and give rise to the "interferential" gain expression

(54,55), As Q is increased, the polynomial equation (41) starts having one

real and two complex (conjugate) solutions. Consequently, one of the roots

s (Eq. 42) must have positive real part (corresponding to gain) and the

other two have a negative and a vanishing real part (corresponding to loss and

a constant amplitude respectively). In this limit - "the high gain limit" -

we can neglect the interference between the different roots, in (52), (24),and

keep only the exponentially growing wave. Then from (24)

Pn ) = 2ZnlA I + 2(Res.) Z = 2(Res.) - 2 (Iu6k)Z (61)
P(0)

where s. is the exponentially growing root.

In the particular case when the electromngnetic wave is synchronous with

the slow space charge wave:

W-!



= or -+ o = k +s k (62)
T OZ 0

and assuming 'jSk' -6 , Eq. 41 may be approximated by a simple second degree
p

equat ion

(k) Q = -
(63)

2e
p

The root of this equation which corresponds to a growing wave is

k= ivQ/2-p , arna substituting in (61) it gives

1/2 1/2
P(O) (()-n p p

This gain regime is often termed as the stimulated Raman regime since

it involves stimulated scattering of the electromagnetic wave by the slow

space charge plasma wave [4,10,34,33,31]. The phase matching diagram of these

waves (Eq. 62) is shown in Fig. 4(d).

In this gain regime the gain grows witt: electron density proportionally
1,'4

to n Also we point out that the derivation ef (64) required the

constraints - >> lm6ki >>l, thus we see from (64) that the parameter
p

Q gives an upper limit of the gain available in this regime.

Cold heam - high gain - strong coupling regime

in t ii limit of high gain and strong coupling ("strong pump") the FEL

paramrtors *atisf, Q i/3 > - (or equivalently : ). Near

I7



Svflchron i zm

- c or - - "" '- (~,5)

oz

and are negligible relative to k in Eq. 41, which reduces then into
p

a straightforwardly soluble third degre, polinomial equation

3

The root of this equation which corresponds to a growing wave is

I K - i3 11/3 (t,7)

and using ((1) it gives

_ ,) - -y - 1,3 ,- 1,3(
P(O) (b8)

Henc, in this gain regime the parameter C solely determine, the available

powcr gain. The gain depends on the electron beam density in proportion to
1/3

o

SEq. ,7 indicates that tie real pirt of the wav,., number k ciang's4 zo

appreciably due to the interaction (by ReSk). Instead of (65) it would be

preceptive to draw the phase matching diagram it '.:L, maximum gain point

K



(Fig. 4e) in terms of the modified wave number k + Rek
zo

1/k=  ~3 , i 1/3

ReA or + - = (k + Rek) + k (69)
v 2 zo 0
oz

Wa r' beam high gain regime

In deriving the cold beam dispersion and gain relations (36,37) we used

an asymptotic expansion of (28) which is valid only for 1; >>I. If this

condition is not satisfied, one has to go back and solve (25) with the plasma

susceptibility given by (27,28) and not by (35).

Using (42) in (29), the parameter - may be written around s = ikzo

in terms of the detuning parameter (43):

. .k (70)

th

where is defined by (4S). If th Imk (which later yields
th

h Q) and t ">a (which is equivalent to ko +o "> D  - the space

charge wave number is much shorter than the Debve length), then it follows

from (70) that the requirement > O(- Re, k)2 + (Imck)> / cannot
/th >Icno

be satisfied at any of the synchronizm conditions required for the gain regimes

previously discussed. In these conditions we are hound to look for gain in

the regime K I and solve (25) with X( w,s) given by (27,28).

I'i-
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With small enough coupling coefficient K, it is possible again to solve

the dispersion equation (25) by means of a first order expansion of the

roots in terms of K. In the conditions stated above it is possible to show

that apart for the electromagnetic-liku root (38), all the other zero order

solutions of the dispersion equation are complex, corresponding to plasma

waves which decay strongly by Landau damping. It is sufficient then to con-

sider only the isolated root s = ik (38) which would given an exponentially
zo

growing wave.

The first order expansion of (25) around s = ik gives

oz

Res 6k K k; Im C (G )
i 2 (kzo+ko)2~ kD 2 G' q2 71

il2 1, ' 71)
- (k +k ) (, -

zo 0

where 'k. £ Im6k, and is given by (70).

• tic,.(72)
r I

'i-Re6k e
r th th (73)

(74)

1 th

-7 -- -



-4.3-

From the definition (28) we have

Im (4) = g'(x) ? . dx (75)
-I r 1

Because of our initial assumptions > th<< 1 the Lorentzian

inside the integral (73) is much narrower than the function g'(x). Hence

Im . = n g'(r )

Im G'(.,) g,( ) (76)
r r

Using the previously assumed inequality k < k zo+k (71) can be

written in the form

k;2

k. - K Im G'( ) - Im G'(, )
2 (k zo+ko )2 r - 2 r

(77)

In terms of the detuning parameter e the gain is given by [4,10,17,18,201

n P____ 2k. 2 T ImG' (-) =  2g' (78)P(O) - t - -) th hth th

For a Maxwellian electron distribution (33) the imaginary part of the

plasma dispersion function (76) is

t __ .______



-41-

Im(;' ) - 2 e (79)
r r

This function is shown in Fig. h. We see that it attains its maximum value

when

=- li/ or .... / -2 o
r tr

(80)

-k + k
V z t7 th zo 0

The diagram of this phase matching condition is shown in Fig. 4a.

At the maximum gain point (80) Im (A-1,')=1. ,and the maximum gain

is

P(- 3 3

th th81

Since we assumed initially >i, again the parameter Q indicates an
th

upper limit on the power gain available.

The warm beam regime is a regime of single electron interaction

and therefore the gain turned out to be proportional to the electron beam

density n •
0

*Warm beam low gain regime

Assuming in the low gain limit that . o and also that space charge

effect can be neglected (Ct>> p or k + k >> k' ) Eq. (16)
th p zo o



ImG"

1.5

I

0,5

- 3 rth
-0.5-

-1

* i

'I

* 4

Fig. b: The gain curve function Im G( ) for a maxwellian distribution

(Eq. 79).

I _

- 4.



reduces to

- 1 lir i- ,,t > -, 1k I,C

a(s) +i, (82)
S-s -ik eK-k~§7~7ZO0

Bv substituting (27) to (29) in (82) we get til. explicit dependence of

a (s) on s. The inverse Laplace transform (4n) can .e carried out now through

the integral o',r x (or v ) in the expression for , (27,28), and evaluatedZ

by means of the residuum method. The result can be then substituted in (24),

resulting after some tedious mathematical expansion (to first order in <)

S. sin- /2) -, - (83)
- " ,' 2 g - ) a 8

th t/)

Fhis expression can be interpreted a : a convolution between the warm

beam gain (urve g' (, th) (78) and a spectral line shape function

sin ( /2' (-/2) which can be attributed to tht wavenumber uncertainty

due to the limite interaction length. When interaction by parts is applied

to (84), the resulting expression will involve con\%-lution het,,,n the cold

beam gain curve - in-(2)/ ) and a

line shape function g ( /,t) which corresponds to line broadening due to
th

electron velocity spread. Notice that the linear convolution relation (83)

is applicable only in the limit of single electron inttaction (k + k-> k
zo o D

and low gain (!,P/P(0) <-I ). Io)wevir in the derivat L( n ef (83) there was no

restriction on and it would apply to both cold ,,r4 warm beams as well
th,

as LithI intermediate regime.

• --..-. _ - Il
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In tlc limit I (warr. :),,am) t.je line s'i ;, t il- 2)]

rcduces ,,, d i :unct ion anu , r -ucs. tc

P2 g' (-)
P()

th th

Thlis ,xpru.ssion is consistent with t hL' hi :i gain expression (78) whict gives

in id&ntical rcsult when we approximate' ,n[P(,)/P(t) -' P/P(O). The high

;an ,xpr s,-ion (78) thus applies in th' low gain limit as well. The reason

!tIit i t.tec case we had, where the dispersion equation (25) had only a

i: -i ni: ,'ant rot (.4 " , I h , gai: rex rat ion ( "rr t

I .

. . . . . +: . .- 4 vl
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5. THE GAIN PARAMETER OF FELS

From the discussion above it appears that the normalized gain parameter

Q (53) is a good figure of merit to characterize the gain of anv free electron

laser in all gain regimes (34, 60, 64, 68, 78, 83). While the maximum gain

obtainable depends also on parameters which characterize the beam (p I )p, "th)

the dependence of the gain on the kind of FEL considered enters in all these

equations only through the parameter Q. Furthermore, the parameter Q

indicates an upper limit of the gain in all regimes. As we increase Q by

either increasing the coupling coefficient or the electron beam density, this

1 '
upper limit grows at a declining rate from roughly Q, through Q (if

we go through the high gain collective regime) and finally as Q

simple necessary condition for obtaining appreciable gain in any FEL structure

and any gain regime is Q > 1.

In comparing the gain of various kinds of the free electron lasers dis-

cussed in this chapter, it is best to compare their normalized gain parameter

Q . This was calculated by -uiu stitut .';g I r, 1i " U n . ,3 and is

"rvsunted in Table 3 for the various kindsof FELS.

e
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TABLE 3: The normalized gain parameter Q for various ELs (the highly relativ-

istic limit expressions are given in brackets

J r 3 2 e o o
Cerenkov 4 0T e --

e C N p :o o
0 0

2 J r e A i l(XeYe) 2
Smith Purcell 4T -9 - I__ 1T _

e c P 0 0

Jo rVk/ E_ A 2e 3 o o o e sin1
Long Elect. - - 4 59e 2 2 A cos¢ l cos ) 4 y

c mc g (0-6 0 °0
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r E A OZ12 7 jo e 3 o o o e
16 e 2 2 A

C mc g -3
0

J r H_ A I+:
o e 3 0 1) e (Z OzTrans. Mag. 2 _ee 2 2 A ~3 3
c mc -

O 0

J r A. -AV
' e 3 o oo

18 - ---
e e2 2 A 3

c mc g 9
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Tras Elect. e 1 3 o o o e 0z
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Since in many cases the current density .1 is a limiting factor,

we expressed in Table 3 the modified plasma frequency in terms of the cur-

rent density: ' = eJ /(m, v " . The parameter r which appears
p 0 oz oz 0

in the table is the classical electroi, radius:

r e 2.818 x 10 m (85)
e 4rc mc2

o

The expression given for the longitudinal electrostatic bremsstrahlung FEL

(row 3) is taken from Ref. [ii]. The expression in brakets corresponds

to the highly relativistic limit, assuming operation at an angle l=(v3 Y)m o

at which the gain parameter is maximal.

When one considers the dependence of the parameter Q on the operating

parameters of the various FELs, it should he noticed that some of these

parameters are dependent on each other. For example thie wavelength ;, period

L, velocity v and radiation angle depend on each other through the0

radiation relationswhich arc given for the various kinds of FELs in Table I.

In comparing various types of FELs and examining the dependence of their gain

on the operating parameters, one should specify which are the independent

parameters. In Table 3 the independent parameters are assumed to be '., v0

and :. The period L (or in the Cerenkov FEL - the index n) should be de-

termined from the relations of Table 1.

The factor I/2 A /e. , (.x

which appears in the first three rows of Table 1 can e interpreted as a

generalized "filling factor" which indicates v.'1 raction of the electro-

magnetic wave power participates in the interaction. In Table 3 row 3 tne

calculated .x',r,.ss ion Iort i :ii1 n4 Inc tor o I Le elect rostat ic bremsstrahlung

FEI IlI ! wa, substituted in. Numerialca Calculat in ofp __ 1~~i



this factor for Cerenkov FEL w;i ,, inl I . In tht. case of a

Smith Purcell laser structure, tht, calculatiun of tile f.luing factor requires

the tull Floquet mode solution of the electromagnetic wave in the pe riodic

waveguide. While such involved calculation would he avoided in the present work,

it is important to point out that the filling factors of th,- Cerenkov and

Smith-Purcell FELs are only a function of the waveguide and electron beam geo-

metrical dimensions normalized t, the radiation wavelength. Therefore if one

scales the geometry of the waveguide and the beam in proportion to the operation

wavelength, then it appears from the radiation conditions of Table 1, that over

a wide range of wavelengths the filling factor is only a function of the inde-

pendent parameters v and ¢, and do:s not depend directly on the wavelength .0

Consequentlv TaLle 3 is an explicit representation of the gain dependence on A

for the various FELs, assuming that the limiting factor is the current density

J and that the waveguide geometrical dimcnsions of tihe laser amplifier are0

optimized :-or the operating wavelength. It is instructive to note that the

wavelength dependence of the 'L. I a proportionality

relat ion ,or all FELs exce[pt the Cerenkov-Smitn-Purcell typt, for which it is

an inverse proport ion.

The dependence of the gain parameter on the electron beam energy is not

explicit in Table 3 for the Cerenkow-Smith-Purcell FELs,since the filling

factors are a function of the electron velocity. However, it is prohably

correct to conclude that the gain parameter Q goes down as the energy is

increased in all kinds of FELs, but in the longitudinal interaction FELs (first

three rows in Table 3) it drops it a faster rate than n the transverse inter-

act ion FEI.s (last three rows).

II



In comparing magnetic and electrostatic bremsstrahlung FELs it is

necessary to point out the basic advantage of the first kind which stems

from the fact that the force applied on a relativistic electron by a

magnetic field is usually much greater than the force applied by an electro-

static field considering the state of the art of laboratory available

periodic magnetic and electric fields. However, if one considers free elec-

tron lasers also in the non relativistic regime, the magnetic force reduces

by a factor I leading to the 2 reduction factor in thf, gain parameter
oz oz

of the magnetic bremsstrahlung FEL as compared to the electrostatic brems-

strahlung FELs.

As a last point in the comparative discussion of :rcv electron lasers

gain we should indicate the advantage of transverse interaction FELs com-

pared to the longitudinal interaction FELs in the consideration of waveguide

loscj- of the electromagnetic wave. The effect of waveguide losses were not

incu~icd in the present model. However, for practical FEL design it ma' be

ii,. cases an important consideration, which cannot be ignored. To a good

a pproximaLion it may 'e argued that the net gain of a free electron laser is

cuall to the gain ot a lossless FEL structure substracted by the waveguide

lossuS of the electromagnetic mode. Since transverse electric or transverse

electromagnetic modes which are used in transverse interaction FELs suffer

usually less waveguide losses than the transverse magnetic modes used in

longitudinal interaction FELs, this provides a substantial advantage to tile

first kind when net gain is being compared.

* - >*- 4jqV
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b. FREE ELECTRON LASER EFFICIENCY

As discussed in a number of articles [ 2,33,371 high efficiencies

of the order of tens of percents arc potentially achieveable in free

electron lasers using various efficiency enhancement techniques like tapering

the pump period and intensity ,or using energy retrieval schemes like storage

ring or depressed collector (which is currently used in conventional

traveling wave tubes). In this section we will consider only the basic

efficiency n of the various FELs, noting, though, that this efficiency
0

may be increased appreciably when efficiency enhancement techniques are

used.

Since the efficiency of radiative energy extraction from the electron

beam is limited bv saturation effects, a full non linear analysis is

necessar% to derive the FEL efficiency r . Nevertheless it is possible to
0

estimate its value from the linear analysis, by using a simple consideration

[ l(]
pr- n ltd by # rugle t i For a magnetic bremsstrahlung FEI. with a

cold beam, this estimate ias been shown to be in excellent agreoment with

thie more rigorous .,elf consistent nonlinear formulation of Ref. 132

AI.-, it agrees in the low gain regime with thet results of Ret. 3,5 which

was obtained with a much more elaborate analysis.

Consider any kind of FEL operating at any of the cold beam gain regimes

discussed before (the warm beam regime must be discussed separately). The

,om incd cxcitation oi the cOupled electromagnetic wa't and the electron

beam space charge waves has a component which prcpogatC.z with wavenumber

, + Re: k and phase velocity
I0

(v-.-.
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pil K + k + Re k (Ob)zo 0

The estimate o FLL eiiicienc. is :ased on the argument that the saturation

mechanism is electron trapping in the periodic potential of the excitation

which propagate, itn prias, vulocitv % (8b). It can be shown that the

maximum decce lerati o:i in cl ,zron velocitv during the interaction up to

full trapping is 2 -v , ih r ., kit . initial t-ial velocity differencez

between the electron DeJam aa: I t:i,, :,:a, t' of the trapping pote-ntial:

v v - v . (87)
ozL

hus the maximum radiat ivt eier..,v, :. " ':- ci.Ouitl a>

the relative change in t ,. , r, , .

veioc itv decreases bv
z

xv0 -1 , -1 v - z 2 .
0 0 OZ

2 A
0 (Z

EI



where

7 Rek- (89)

The expression in brck t. corresponds to the highly relativistic limit.

The efficiency can now be calculated for any of the cold beam gain

regimes described in section 4 by simply substituting the appropriate 6

and Reik in (88,89). These values of these parameterswill be usually assumed

to correspond to the maximum initial gain condition. The efficiency coefficient

is in the case of a cold beam exactly the wavenumber mismatch drawn for

various gain regimes in diagrams (b) to (e) of Fig. 4. It is listed in Table

4 for the different gain regimes. Notice that in the low gain and collective

gain regimes iRelk < and .... and in the high gain strong coupling

regime Re6kK>o ard n Re k.

TABLE 4: The efficient,' coefficent used for

calculating the efficiency k68) at different

a jj re.gimes.

G(iin regime

Low gain tvnuous bream 2.6/Z

,ollective (low or high gain)

I 3
: ' ,trong coU n' ,. Q11 1

3
4Ainm bhuim gih cain K>.:' )J4--- ~I

.. t 1

t ih::



The estimate of the laser efficient\ in tIh warm :cuam higit anu low gain

limits requires a somewhat different considration. As is indicated from

Eqs. (75) and (83), in these gain regiMU.s only a -mall fraction of tilt elec-

trons in the electron beam distribution participate in the interaction. In

the high gain case these are the electrons with normalized axial velocities

which lie in the regime x - r v - V %I , k /r z ph zth i till

or that their velocit ies lie witihin tile spectral

width of the wave due to its growth u/, - k r - 'k.. From either of these

relations we find that the class of electron velocities, which takes place in

the interaction is:

V - vv \ . .. ___( (ph h k k +k k -k oe k +k
0- /0 o 0 e 0 o

During the interact ion the trapped Iec t rons reversj, their velocitv relative

to th<, phase velocitv of the potential wave ' , until at saturation apnl

local plateau is generated and V T - oz = se Fig.
V
zth

In the warm beam low gain case the saturation process is similar, except

that tilt' class of electrons which participate in the interaction, is de-

tormined by the width of the spectral line shape function siu' .,.2)/ ( 2)

woich appcars in the convoLution (h3):

b.

I.F
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t h 28Vz
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Fig. 7: The electron distribution function in the warm beam gain regime

drawn in velocity space before (continuous line) and after

saturation (broken line).

t



7 - = ,/v - v - The wavt- nuM I)t rs of tLIse electrons

z Ph-

lie within the spectral width duc to finite interaction length:

V These r, lations can be written as

, -v v v (91)z h'z o.. k -tk
ph 0 +

.. o 0

The radiation extract Lon e. cLenc\ of the free electron laser in

the warm beam regimes is c!ua to 1:Ie relit i ve change in the kineti( energy

due to the interaction, w,,r. ,:i, -il:ulation of the change in beam kinetic

energy before the interact io,1 A:,' : t r -;.turation is most convenient':

done in momentum space,

'WI

..



r .... .. .. . . ..- - . ..- -

E __ __ (0) (P)g(0) ( dL2KE 1 1 " z-hg°-= -l) (pz)-g (° (p) ]dpz

KE 0 0 p

2

wi.ere pzph = Mph Vph and pz - -o~oz2 mvz. First order expansion of
(o)

both and g )(pz around Pz Pzph and some mathematical steps give

"~ 3, , (5v )3

01 d do 2 oozoz g,(. ) z. (93)

- dp dp 3 3 1 r tcv
Z0 z zph 0 Zth

U~ing (90) (91) and (77) we finally find that in both high and low-warm beam

regimes the efficiency is given again bv (88) with the parameter listed in

Taale 4 rows 4 and 5 for the high and low beam limits respectively. The ex-

pressions in parenteses were calculated for an electron beam with a Maxwellian

distribution (33), assuming initial tuning to the maximum gain point

r

The radiation extraction efficiency for all FELs and all gain regimes

s estimated by the simple expression (88) with the efficiency coefficient

i given in Table 4 for the different gain regimes. This expression applies

I0 FEL amplifier structures assuming saturation is reached within the inter-

action length Z. For oscilator structures (in which saturation is always

obtained within tht- intoraction gLtt it appli s i he assumption of

iingl, mode operation (in part Lt lar tIr th,. s.tr. beam case).

IW:p7
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The efficiency depends on the interaction length k. only in the low

gain-tenuous beam regimes (both cold and warm beam). Notice though that the

expressions in Table 4 rows 1 and 5 apply with the assumption that saturation

is reached right at the interaction length . In the cold beam low gain

and collective regimes (rows 1, 2 in Table 4), the efficiency is proportional

to A and depends only on the beam parameters (velocity and density) and

the interaction length. It is thus the same for all FELs considered. Also

in the warm beam low gain regime (Table 4 row 5) the efficiency is independent

on the kind of FEL considered and depends only on the parameters of the beam

and the interaction length. The efficiency in this limit is proportional

3
to ,

In the high gain-strong coupling and high gain-warm beam limits

(rows 3, 4 in Table 4) the efficiency aepends on the kind of FEL considered

through the parameter Q. Its depe-ndence on wavelength and beam velocity

varies for different FELs and can be found by substituting in (88) the corres-

ponding n parameter, the parameter t (49) and the values of the para-
t h

meter Q as listed in Table 4 for the different FELs. In all cases the

efficiency n grows with the wavelength i. This dependence is particularly
O6

strong in the high gain warm beam case, where it goes like A in the

12
Cerenkov-Smith-Purcell FELs and in the bremsstrahlung FELs.

In the case when beam energy retrieval schemes are used the total

, efficiency can be calculated from the expression for the basic efficiency (88)

by multiplying it by an efficiency enhancement factor M. This factor is

equal in the cas, of a storage ring to the number of times that the electron

beam can be recycled before its spread becomes intolerable, and in the case of aF depressed collector scheme it is Uqual to the ratio between the electron beam



accealeration and collection voltagu , in tiie case of efficiency enhancement by

pum.u tappering we cannot us, at all tilt cstimate (88) and a full nonlinear analysis

is necessarv[32,331

In conclusion of this section we will briefly discuss the revelations of

the different saturation characteristics in the two seperatelv treated limits

of warm and cold beams. We saw that while in the warm beam case only a class

of electrons (90) or (91) participates In tnt. interaction and guts trappcd at satura-

tion, in the cold beam limit all the electrons participate in the interaction

and trapping process. As pointed out before in [17,39] the local plateau

formation (Fig. 6) is analogous to the saturation and diminishing of population

irversion in a class of atoms in Doppler broadened gas lasers. In terms of

liser theory, the saturation nature of a warm beam FEL corresponds to inhomo-

geneous broadening and that of a cold beam to homogeneous broadening 40]

As in gas lasers there is "hole burning" effect in the gain curve of the

wirm beam FEL. However, there is still an important difference between the two:

in contrast to the homogeneously broadened gas laser, the interaction mechanizm

itslef changes the population of velocity classes in the vicinity of the inter-

Ecting class of electrons. The gain curve of the saturated FEL (the derivative

of the saturated distribution curve in Fig. 6) displays from the point of

;aturation on an effect of "hole burning" at v IV v . but it also shows
z - ph

.I new effect of "hill heaping" at the sides of the "hole" (v v 'v
z ph z

These different saturation behaviours will have explicit expression

in EEL oscilation characteristics. In the homogeneous broadening-cold beam

regime there will be "mode competition" between the modes of a long cavity

laser, all "attempting" to extract *ower from th, same electrons. This will

tend to depress multimode operation in the laser. In the inhomogeneous

broadening-warm beam regime, there will be at saturation an interesting new

- 'i-' 4



'ffect of "mode coot _ration which will tend to increase the number of

oscilating modes in a laser cavity which has a sufficiently dense spectrum

of modes. The effect of mode coceration will tend to wash out an, bumps on

the electron distribution function and spread it out, and will produce

wid b and radiation. Notice that this saturation ebhaviour is different from

that of inhomogeneously broadened gas lasers, where there is no

ration between the modes and there is even slight competition between

close modes.

W,

b -
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7. FREE ELECTRON LASER POWER

One of the most attractive qualities of free electron lasers seems

to be the potential capability of high power operation. Since the inter-

action is done in vacuum and the active medium is not a material, problems of

material damage and thermal distortion of the wave front are avoided. Since

the radiation extraction efficiency of FELs can be made quite high, the laser

power can be quite high too, and limited essentially by the electron beam

power which can be drawn into the interaction region.

The radiative power which is generated by the free electron laser is

AP= VIn (94)
0

where n is the basic radiation extraction efficiency (88), I is the total
0

beam current and V is the beam acceleration voltage

V - I) mc>'e (95)
0

For a given efficiency and beam acceleration energy the radiative

power generation (94) will depend only on the amount of electron current I

which can be made to interact with the electromagnetic wave in the free

electron laser. In many circumstances there will be a limit on the current

density J which can be generated at the FEL input and propagated along0

the interaction length, hence the elimiting amount of interacting current

will be given by

" I = A 1T (96)
e o

7 -



Can the electron beam cross section A he increased indefinitely?

Appart from various technical limitations we should be aware that the trans-

verse dimensions of the electron beam should be limited by the range over

which the periodic static fields and the electromagnetic mode field have

an appreciable value, so that appreciable coupling coefficient (Table 2)

exists to carry out the interaction. This limitation stems from the fact

that the static periodic fields and the electromagnetic modes should satisfy

the Laplace equation

( - 1 E (x,v) sink z; B (x,V) sink z } = 0-0 0 -0 0 (97)

in the case of bremsstrhlung FELs, and the wave equation

(" ) -1 (x,v)e zo )z (98)

c

for the Cerenkov-Smith-Purcell type (in the Cerenkov case k = OL- o)

The solution of Eqs. 97, Q,* in tie case of a planar waveguide structure

(Fig. 8a) is straightforward, 4iving for the bremsstrahlung FELs

. tx,x); B (x,>) ze- q x  
(99)

i0 0

where

k 2...
o L (100)

(.1

• , -- - - I I I . . . . I I I I I I I " : " I I . . .II
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and for the Cerenkov-Smith-Purcell FELs

f 1 (x "y ) A qt (101)

where

2 1 ,'2

q (k L - 2 -2 (102)
c

Thus both the-static pump field in the case of bremsstrahlung FELs

.and the slow electromagnetic wave component in the Cerenkov-Smith-Purcell

FELs decay exponentially away from the source of periodic static field

(magnets, coils or electrodes) or from the slow wave structure (periodic

waveguide, dielectric waveguide). In order to obtain appreciable coupling

coefficient (K), the electron beam should be passed roughly within the range

of nne exponential e-folding distance of the squared field intensity: 1/(2q).

Thi- distance which we will term "the interaction range" can be found in

'erms of , and by substituting in (100,102) the synchronizm con-oz

lit ion (4) and the radiation conditions of Table 1. The interaction range for

th various FELs are listed in the second column of Table 5. The expressions in

.)rakets correspond to the special case of (0 >1) where for the longi-
o

tudinal bremsstrahlung case we substitute in this limit = ¢= (V yo)-i

40

, ..

-. .



TABLE 5: Interaction range and maximum

power of FELs

FEL Interaction rage -- Max. Power _P.

: j W

4 T

Trans. Brem. oz 4l+ 4>2~) ~ ~ -

1-3oz oz OZ oz oz oz 0 0 oz

oz

~4 3

Iy

Long. Brem. - -f I' F
0 0

4 4 o

0 0 0 )0 -Y0 ]

In all EELs the interaction 1iiu1e -- is proportional to the

wvive Iengtrh and only when the beam is highly relativistic (y -l

the, interaction range can be appreciably larger than a wavelength. This

explains why at short wavelengths it was necessary in recent EEL research

to go to relativistic electron beams in order to obtain aippreciable

radiation. We see from Table(2 that i n tl+e highl rat ivisic limit

hremstirahlung FL~ s have an advantage of roughly a Iactor Y in the

nt eract ion widti (-empared to (erenkov-Smith-Purcc:~Ls There s no

dil CLerence be.(tween' them in tht! nonrelativ! t. limit kb <<I)

40 3

Ji g " o



For other waveguide cross sect ion gteomtt ries I ik.c a cylindrical waveguidt-

(Fig. ib,c) the solution of (97,9S8) gives other function solutions for the

transverse variation of the fields instead ot (9q, 1(Il). For thle case of a

cvlindrical wavegauide thle fields depenoj on L t, transverse coordinates like

modified Bessel functions of the argumenit C r (r - tueL distance from the

cvIinder axis). 'Ahen r-> , i. toe- modifited Be.sel fuinctions behave near

thec wovegtr ide walls like exponenti,11 funct ons; In a crude

approximation we may extend the notion ot interaction range to waveguides

with general cross sect ions and claim tlhat the interact ion region, at which

thti coupl ing coetfficitent K has an apprec tahle. vale, extends along tine

Pen ferv of the waveguide within one interact ion rang4e I-- away fromt the
-q

soils (see Fig. 8 a, b) .(Ot of tnis reclon th. couPl ing coefficient drops

d own e xp o nn t ially,.

~is evident that for olhtainingiog interaict ion it is,, Usuall,.

<o. abeto pass tihe tilectron beam wit' in tpi interact ion region, wiikrE

:as t, maximumi value. So in tt cia. t k, ., Ianar ge-ometry (Fig. i~a)

e I e prfr t o use a s I e (3t he.,a rr of dm, n, ; ott I I whc r %,

Ji. avg-uide width and !I 7( In the, caset ot* a cvi indr :cal wave-

ft iI.it ijs best to lise- an annular beam oif thickness h I I and periferv

2irK\ (Fig. 8b) . Fi case that tire experimental conditions req i rt the

iso of a -;ol id cyl indr ical beam it is pIreferable (for the sake of obtaining

apprec iable gain) to kvep the wavegUide radius not much igger than R I, ( 2 q

Tht lri-,i cross; sect ion i -. l Proxlmatele A -r ,

1! should be POinted Out that it pceett, -1 deti 1-d theoretical

itt o! frefe electron laser interaict i on i , tiit capt where the' f td

var'. riaesl cross, the bt am (ros,, tct ion is not avai lahl& (exct -t for



the thin beam approximation used here). In addition technical limitations

may make it difficult in some cases to keep the electron beam within the

interaction region, right next to the waveguide walls. Nevertheless, it

is generally true that in either case the electron beam cross section area

cannot be made much larger than the interaction region area if appreciable

gain is to be attained, hence for the goal of estimating the upper bound

o- radiative power generation in free electron lasers the estimate that the

useful electron beam cross section area is equal to the interaction region

a rea:

w x i/(2q) (103)

is an appropriate approximation.

Using (95) (96) and (103) in (94,, we get th' expression for the

maximum available power

1 mc j 3 2 , 7 (104)4-2 o e z "," "0 LX/4 Tr . i 4

[his is listed in the third column of Table 5 for the different

kinds of FELs. The efficiency coefficient is listed in Table 4 for the

different gain regimes. The expressions in raKts r, Table 5 correspond

to tic highly relativistic limit (-1 >>I), where in the ca.;e of longitutinal
O

ltctrotatic bremstrahlung FEL, operation at the maxLmum radiation angle

-1-~ was assumed.

)



The stimulated Compton-Roman scatuering is not included in Table 5,

because in this special case there is no limit on the interaction region

width and it is simply determined by tiI electron beam width (assuming it

is narrower than the pump electromagnetic wave). The maximum power in this

case (in the highly 'elativistic limit) is given by

MC' = -__. (105)
',! e 0 e z 0"

The lack of interaction width limitation in the case of the Compton-Riman

FEL is a very important advantage of this FEL kind in the limits of short

wavelengths and moderate beam energy. TI-is a viable option for producing

radiation in this limit may be the composition of a two step FEL, in which

one kind of FEL produces high power radiation at a relatively long wavelength,

and this radiation operates as a pump in an adjacent Compton-Raman laser

whici produces radiation at a short wavelength. Simultaneous operation of

a bremsstrahlung and a Compton-Raiman FELs, operating as spontaenous emission

amplifiers, was demonstrated in Ref. 141].

In t ir cold beam Jow gain regFime wirich may b in particular a useful operation

r2gime in FEL oscilators) and in the collective regime (n = 2.6/Z and = p
P

respectively) the maximum power is proportional to X for all FELs, and

t X for Compton-Raman scattering. In both cases it is independent on the

FL gain parameter (or coupling coefficient). Nevertheless it cannot be con-

cluded that laser gain is inmaterial in determining the laser power. It should

bi recalled that the assumption is in all cases atL the laser saturates within

!



the interaction length In the case of a very low gain laser this assumption

would require an impracticable input power (in the case of amplifier) or

impracticable resonater quality (in the case of a laser oscilator). Thus, even

in the low gain regime the laser gain will indirectly affect the maximum available

power through the choice of

In the warm beam low gain regime the substitution of &'th (49) and r,

)
(Table 4 row 5) results in (104) a wavelength dependence! of the maximum

power available in all FELs except Compton-Raman FEL (105) for which there is

,4
a ' dependence.

In the high gain strong coupling and warm beam regimes there is an explicit

dependence of the maximum power on thir gain parameter Q. From Tables 3,4,5

wet find that the maximum power generation of all FELs still grows with \ for

all FELs considered. There is a particularly strong wavelength dependence in

7
t e hign gain warm beam case. This dependence, goes like in the Cerenkov-

Sirith Purcell FELs, like in the bremsstrahlung FELs, and like ^l2 in

the- Compton-Raman FEL.

It is instructive to point out that the maximum power generation grows

v(rv strongly with beam energy in all FELs and all cold beam regimes. We may

- zv that appart from the possibility of generating short wavelength at high

electron beam energies, the high power generation level at this limit is what

distincts most markedly modern free electron lasers development from classical

microwave tubes.

We see from Table 5, Column 3, that in the highly' relativistic limit brems-

strahlung FELs have an advantage in maximum power generation by a factor of

atout compared to the Cerenkov-Smith-Purcel, i- .ns, (at least in the low gain

and collective regimes). This stems from the fact that the interaction width

o: the first kind is larger from that of the second

I I I I I II I : * II II ,. ,i , , , ,,, . ..
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kind by the same factor (Table 5 column 2). in the nonrelativistic limit

(0 << I) the maximum power generation drops down in these regimes at the
0

same fast rate (like -' 4) for both kinds of FELs.
0

We point out that the expression of maximum power generation derived

in this section applies without change also for FELs with energy retrieval

schemes, but of course fails completely in efficiency enhancement schemes

like tapering. However, if the total efficiency ! in the latter case is

known, the maximum power 'P can be still calculated from Eqs. 94, q,m

ch and 103 with n substituted by r: and 1/(2q) given in Table 5.

In practice various technical limitations will not allow passing tne

electron beam too close to the magnetic coil, grating etc. and the optimal

case where the whole interaction rangt, cross section is filled witi electrons

103) cannot be materialized. in this cast the practically Lxtractable power

falls sihort of the maximum extractable, power by a factor 1 / J w 1/2 g) which

is the ratio between the actual current and the maximum current which would
0

idcilLv be passed through the interaction region cross section.

As an example consider a case of a transverse bremsstrallung FEL

operating in the cold beam low gain regimL with parameters values similar to

those of the Stanford experiment [49] =8, 07 39 (Bo = 0.24 Tesla),

n 2 x cm (J = 9.6 A/cm'), . = 1O.h' m and =5.2m. We assume in

this example that a solid cylindrical beam i- used and therefore substitute in

(104) w'. xl/( 2 q) where 1i( 2q) is given in ra:,, . row 1 and

in 'able 4 row 1. Hence the maximum extractable power in such a case is

r ,1ven h',

- 2.b 2 )
" -p mc ,3- , -

__ 6
m 42 0 0z o

:I



- --- 7- -

-70-

which gives AP = 84 KW. In the actual experimen' the need to insulate the

superconducting magnet did not allow the use of an optimal size beam which

fills the whole interaction region J x (1/2q) 2 = 2A (as assumed in (106)0

and only a current of 70 mA was passed in the center of the waveguide.

Hence the expected (nnd indeed also the measured power generation falls

short from the calculated maximum power generation in proportion to the

current (AP 84 x 0.07/2 3 KW).



- --

8. Free Electron Laser Spectral Width

In all gain regimes considered in section 4 the gain is a function of

the dutuning parameter " k - k (43). In each gain regime
V ZO 00Z

there is an optimal value of the detuning parameter - (which is always

negative), for which the gain is maximal. The values of f at them

different gain regimes are given in Table b. The phase matching diagrams

corresponding to the maximum gain condition are drawn in Fig. 4 for the

different gain regimes.

When we keep all the laser Operating Parameters constant and only change

tie radiation wavelength X , the detuning parameter c Cangu,- fron ts naximur,

gain value " . The differentiation of (43) gives
m

S-(107)

V -v
oz g

wne re

v d(108)
g dk

z

is the group velocity of the electromagnetic mode in the waveguide.

Eq. (107) applies to all FELs. In Cerenkov FEL the cvaluation of

tle group velocity of the modt v may require the complete solution of the.: g

uncouplud mode dispersion relation in the dielectric waveguide. The group

velocity in this case may depend on the index of rfraction dispersion of

thc dielectric dn/du as wel as the waveguide dispersion. In all other FEL

V d,.-"
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structures the group velocity can be evaluated straightforwardly if we assume

that (in Eq. 5) is a weak function of the wavelength. This is true in

modes of waveguides with wide cross section, and particularly true in all

the transverse FELs, in which o. In these cases

c (109)C
Vg cos 

(

and substitution in (107) gives

(110)
z -Cos

or using the radiation conditions of Table 1.

0

If %, is the range of detuning parameter value around t over whichm
thcre is still gain, than Lw or X are the laser spectral widths in

the frequency or wavelength domain.

The parameter A6 can be evaluated in the different gain regimes

simple inspection of the gain dependence on C (Eq. 78, Fig 6 in the warm

beam limitand Eq. 55, Fig. 5 in the low gain-cold beam limits) and by

some algebraic investigation of the dispersion relation (41) in the cold

beam-high gain regimes (collective and strong pump). The results are given

* '1
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in Table 6. The wave number mismatch rangesover which the laser has gain,

are also illustrated in Fig. 4 for the various gain regimes.

Table 6: The detuning parameter value of

maximum gain m9 and the detuning

parameter range of gain AV.

Regime L

Low gain-tenuous beam - 2.6/Z 27/Q

Low gain-space charge - 0 27/Zp

High gain-collective - A 22V-:P P

High gain-strong pump 0 2Q 1 /3

Warm beam -
26th

For all FELs the spectral width is given by substituting the appropriate

parameter A8 in Eqs. 110, 111 or 104 . Only in the high gain regime

(rows 3,4, in Table 6) does the spectral width _ depend on the particular

kind of laser or on the wavelength through the coupling parameter K

or the gain parameter Q which are given in Table 2 and 3 respectively.

From the validity conditions of the different gain regimes it comes

out that the parameter A6, and consequently the spvctral width, grow up the

lower the gain regime is listed in Table 6. Hence the lower limit

V.

~~*1
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On the spectral width occures in the low gain regime. (row 1,2). In

Eq. Il1 it gives

, L
(112)

This is usually quite a wide spectral widthwhich grows with wavelength

and beam velocity (as can be varified by substituting the radiation

conditions from Tabel 1). In a typical example like the Stanford experiment[42]

(L 3.2 cm 5.2 m), o.

t I.. . I I I II I . . . . . .. I - - I I -
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