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interaction). The laser gain parameter, radiation extraction efficiency, maximum

power generation and spectral width are given and compared in the various kinds

of FELs and gain regimes. The maximum power generation of all FELs (except

Compton-Raman scattering) is shown to be limited by an interaction region width '

! parameter. This parameter and consequently the laser power is larger in the

; highly relativistic limit by a factor “Yo 1in all bremsstrahlung FELs in e
i comparison to Cerenkov-Smith-Purcell FELs. Some expressions which were derived 2B
earlier for the magnetic bremsstrahlung FEL, like the expression for gain in the ok
low gain regime with space charge effect correction and the low gain expression
for efficiency are shown to be special cases of more general expressions.
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1. INTRODUETION

We presently have a number of detailed theoretical analyses of free
electron lasers (FEL) of various kinds;.'magnetic bremsstrahlung i-10}
electrostatic bremsstrahlung D‘J"l:gt:ixnulat:ed Compton-Raman scattering 3-16 ]
and Cerenkov-Smith-Purcell (17-21] However, it would be desirable at this
point to have a simple unified model which describes simultaneously all the

kinds of FELS, allowing easy cémparison among the various lasers and providing

simple expressions for the various operating parameters required for laser

design,

As is shown in the next sections, such a unified analysis is possible
because the different kinds of FELS all satisfy to a good approximation similar
dispersion and gain relations. The origin of the similarity of the various FgLg
is that they all involve longitudinal coupling between single electrons or electron
plasma waves and an electromagnetic wave. It is obviously so for the
Cerenkov-Smith-Purcell FELS, but also in the magnetic bremsstrahlung FEL in
which the electromagnetic wave has a transverse field only, and the electron
beam is primarilytransversely modulated by the static magnetic field, there is
a longitudinal interaction between the electromagnetic wave and the electron

beam plasma, carried out through the ponderomotive potential (radiation

pressure) [10].

The qualitative distinction among the differen. kinds of FEL mechanisms

was discussed in detail in Ref. [17]. The basic diffe ence between bremsstrah-

lung FELS and Cerenkov-Smith-Purcell FELS is t* - in the first case a periodic
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(magnetostatic or electrostatic) force operates on the plasma waves, allowing
phase matching (synchronism) with the electromagnetic wave by providing to

the plasma waves negative crystal momentum -ko :

. 2m
ko= 5 (1)
where L 1is the periodicity of the periodic field. On the other hand, in
the Cerenkov-Smith-Purcell FELS the synchronism is obtained by increasing

the momentum (wave number) of the electromagnetic wave in a slow wave structure

(a periodic waveguide or a dielectric waveguide).

Thelstimulated Compton Raman scattering problem is very similar to that
of the bremsstrahlung FEL, except that instead of a static periodic force,
the electron beam is modulated by an intense electromagnetic (pump) wave which
propagates in a counter direction to the electron beam, and facilitates
coupling between the electron plasma waves and a forward going scattered wave
of higher frequency. The bremsstrahlung FEL is sometimes regarded as a

special case of Compton-Raman scattering with zero frequency pump.

Fig.l illustrates schematically the general structure of all the FELs
discussed in the present article, They are all composed of an electron beam
of uniform cross section which propagates at an average velocity v,; through
an electromagnetic waveguide and parallel to its axis (z direction). The
crossed areas symbolically represent the source of interaction agent (pump)
which allows the interaction between the electromagnetic wave and the electron

plasma., This can be in different FELs coil windings, periodic magnets,

periodic electrodes, a helix, corrugated walls, dielectric walls etc, The
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A schematic representation of all kinds of FEL amplifier structures.
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figure shows a schematical laser amplifier structure in which the input radia-

tive power P(o) is amplified along an interaction length 2, producing
. an output power P(L) > P(o). A free electron laser oscilator structure
will consist of similar elements but will need in addition also means for

a feedback mechanism (for example a Fabri~Perot resonator).

In the next section the radiation condition (wavelength of radiation) is

derive for all FELs. In section 3 the common dispersion-gain relation of

.. FELs is discussed. The different gain regimes, which evolve from the dispersion
relation (and apply to all FELs) are delineated in section 4. Expressions for
the maximum gain, efficiency, power and spectral width of the various FELS are )

derived in sections 5 to 8 and discussed in a comparative way.

e e A
.

Along the whole article we kept a full relativistic analysis. In most
of the recent work on FELs the electron beam is highly relativistic. Therefore

we gave the extreme relativistic limits of the relevant expressions (given

et e

in brackets ). But in some FEL structures like the Smith~Purcell experiment

[22], the Orotron (23,24 ] the Ledatron [35] or the Ubitron [2¢ ], the electron

———— s

beam is non-relativistic or moderately relativistic. For this reason the
derivation was made for all FELs (except stimulated Compton-Raman scattering)
in a general way without using the somewhat simplifying assumption that the

beam is highly relativistic.

The system of units used in this article is M.K.S.




e e, g - W

f
|

2. THE RADIATION CONDITION

The radiation condition of the various free electron lasers can be

derived from the kinematics of the interaction scheme, without requiring

involved analysis.

In all FEL structures, shown schematically in Fig.l, an electron beam
propagates inside the FEL structure together with a waveguided electromagne-
tic wave along the same direction (z axis). A necessary condition for inter-
action is clese s&nchronism (phase matching)between the interacting electro-
magnetic wave and electron (plasma) waves. When such "near synchronism" is
obtained, energy can be transferred from the electron beam to the radiation
field (amplification) or vice versa (electron acceleration). This "synchronism"
condition results in the radiation relation which determines the wavelengths

at which amplification should be expected.

Fig.2 describes schematically the interaction schemes of the various free
electron lasers discussed. The approximate wave numbers of the interacting
waves or wave components (space harmonics) are listed in the first two colummns
of Table 1. Equating the wave numbers (phase matching or momentum
conservation) yields the radiation condition (third column in Table 1). The

expressions in brackets correspond to the highly relativistic limit Yo;>1

Gy is defined later in Eq. 7).
(S94
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TABLE 1: The wavenumbers of the synchronous components of the interacting

waves and the radiation condition for various FELS

FEL EM Component Plasma Component Radiation
wavenumber wavenumber Condition
Cerenkov k w _l(k)=8 cos¢
zo —_ n o
v
o)
Smith Pur. kzd+ko w_ A__= B_l—cos¢
v L 0
o
Long.Brem. kzo @k AL 8-1 —cost
v o L o}
0
Trans.Brem, k ok LY B_l ~-1= 1 [« 1] -
20 Voz o L oz (148 )8 2 2 2
oz’ YozY0z Yoz
w-w )
Comp ton-Raman k ° _k L. = L = L ]
Voz ° Xo (1+ )2 2 4 2
Boz Yoz Yoz

In Table 1 and Fig. 1 kzo represents the wave number of the interacting
electromagnetic wave which can be in general a waveguided mode for which
kzo<kzm/c. Only for a plane wave propagating in the =z direction, or alter-
natively a low order mode in a wide waveguide,one has kzo = k = w/c. v,
is the mean velocity of the electron beam which is propagating in the z direction.
In the case of the transverse pump FELs (two last rows in Table 1) the electron
beam has at each point also transverse velocity and the parameter which is used

in the synchronism condition ig Yoz the longitudinal component of the average

beam velocity. For the longitudinal FELg (first three rows in Table 1)

Y =V ([‘ = )
(4 Q [$ 4 (8]
4 LI YR L,
—— . iyl




(A) CERENKOV

(B) SMITH - PURCELL

. }
]
i +
;o
. 't
‘ .

i

R e

(C) BREMSSTRAHLUNG




e

Fig.

2: Dispersion diagrams of the interacting waves illustrating the

syachronism (phase matching) condition for the different FEL schemes.
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The dispersion curve of the electron waves is represented symbolically

“— = v . A single electron which
k oz
zZ
is forced to oscillate at frequency w and at the same time propagates in

in Fig.l by the thick line of slope

the z direction with velocity v, is generating a travelling current wave
with wave number n/vz. In the case of a warm electron beam there is some spread
in the wave numbers w/vZ due to the variance v_ , 1in the velocities.

ztn

When the beam is cold enough the eigenmodes ! the beam plasma will be the

longitudinal space charge waves with wave number (uiyé)/voz. where u; is

the modified plasma frequency of the electron beam. Either case is represented
approximatelv by the thick dotted line of slope v assuming v <<y
’ oz zth 0oz

and o' << L.
p

The dispersion curve o! the electromagnetic wave is in the case of
Cereaxov FEL (Fig.23)the well known dispersion curve of a dielectric waveguide

mode which at high enough frequencv tends to a slope (phase velocitv) ¢/n

(u is the high frequency index ot refraction). I the beam which is propagated

in (lose proximity to the dielectric vaveguide, has a mean velocity Yoz c/n,

then svnchronism betwzen the electron beam and an electromagnetic mode may

¢ possible around the curves crossing region:
— > k (2)
Y zZo
oz
cacall adse De Intoerpreted as oo condition Lor svnchronism hetween f e
cave o poase velee{te and tae eam velocity w 'k v . The Rad:iati» con-
0 (S

cnTanle 1ois derived trom -0 using the defivition of the Taode zig-zag

(o
e

CQsL
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where k I ,/c.

In the case of the Smith Purcell FEL (Fig.lb) the synchronism (phase

matching) between the electron beam waves and the electromagnetic mode is
obtained by adding ''crystal momentum ko" to the mode wave number kzo. To

be more concrete we may say that in the periodic waveguide, of which the

Smith Purcell FEL is composed, the electromagnetic eigenmodes are Floquet-Bloch
modes and the smooth waveguide dispersion diagram is modified into a Brillouin
diagram with period k_.(which for clarity is only partly drawn ). The
synchronism condition is obtained when the dispersion curve of the first order

space harmonic (kzO+ko) matches the curve of the electron beam wave:

<|£

=k 4+ k (4)

This can also be interpreted as synchronism between the wave phase velocity
and the beam velocity: w/(kzo+ko) 2V The radiation condition of the Smith
i Purcell effect [22?] is derived in Table 1 from (4) using the definition for

the ""mode zig-zag angle''$

(5)

kzo
cosd = <
The scheme for the bremsstrahlung FEL (Fig.lc) is similar to that of the
Smith-Purcell FEL and results the same synchronizm condition (4) and consequentlv
K : t;. =ame radiation condition (Table 1). The difference is that in t.1s case a
periodic magnetic or electric force operates on the c<lcctron beam and endows
- its waves with a negative crystal momentum —ko. Thus the electromagnetic

e wareguide mode interacts with the -1 order space harmonic of the electron

r e
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beam wave.

In the case of the most familiar transverse bremsstrahlung
FEL (magnetic or electric), the interaction can take place with a transverse
electromagnetic (TE )} wave for which kzo=k (¢=0). Hence the radiation condi-
tion for this case which is given in Table 1 (row 4) is derived by simply substi-

tuting $=0 in the previous result (row 3). In this case and also in the trans-

verse electrostatic and Compton-Raman FELs the electron beam has a transverse
component of the average beam velocity due to the transverse force applied

by the pump, and VOZ*VO' We defined for these cases

vOZ
S0z © ¢ )
s e
Yo, = (1-8°) @

In the first three rows of table 1 the FELs listed have only longitudinal
interaction and the beam has no average transverse velocity. We substituted

there v =v , 4
oz o

In the case of Compton-Raman scattering (Fig.ld) the periodic electro-
static or magnetostatic pump of the transverse bremsstrahlung FEL is replaced
by an intense TEM wave with frequency %o and wavenumber ko = 2n/x,)

propagating in a counter direction to the electron beam. The combined

effect of the scattering and scattered electromagnetic waves gemerates in
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the beam an electron current wave which oscillates with the difference frequency

The synchronism condition

- i v - v -k .
wew and propagates with wave number (w mo)/ oz %6

is

° -k =k (8)

which results the radiation condition of Table 1 (row 3).

This synchronism condition can be also explained in a different way.

The combined effect of the scattering and scattered waves generates in a parametric

process . a . current with frequency w=w and wave number k+k°.
The scattering process is resonant when the phase velocity of the current
is synchronous with the electron beam

u)‘u)o

T =V 9

k+ko oz (%)

This is of course equivalent to (8).

“
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3. THE DISPERSION-GAIN RELATION

We consider the interaction between an electromagnetic waveguide mode

ik =z
Zo

E(x,y,z) = a(0)§(x,y,2)e (10)
and an electron beam, both propagating in the +z direction in a free electron

laser structure as shown in Fig.l. The waveguide can be either a uniform or a

periodic waveguide.

Due to the interaction of the electromagnetic wave with the electron beam,
its amplitude grows gradually at a spatial growtii rate assumed to be small compared to a

wavelength, With this assumption, and an assumption that only one mode exists

in the waveguide, the Maxwell equations may be reduced into two simple one

27,20,21
dimensional equations for the amplitude of the electromagnetic mode:[ ’ 1

r
%giil - ikzoa(z) = Z% J J g(x,y,z)'é}x,y,z) dxdy (11) i
-0 w30 ?
E (x,y,2) = a(z2) 5z(x,y,2) + ;i-g J, (%,y,2) (12)

where  a(z), the amplitude of the electromagnetic mode is defined by |

E  (x,y,z) = a(z)

. (x,y,2) (13) |

A\\)

-

s
f_t(x,y,z) is the transverse field component of the uncoupled electromagnetic

mode (Eq.10), P is the Poyntingvector power of this uncoupled mode

© -

P z-;- [ [ Re [ét(X.y,z) x:f_{;(x,y,Z)]' iz dxdy (14)

-® =
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This formalism is useful for most kinds of waveguides of relevance to free
electron laser structures, including periodic waveguides. In the particular
case of a uniform cross section waveguide (which is of relevance for all FELs
except Smith-Purcell type) the uncoupled mode tield is independent of =z:

& £ S o L . Lo .
~(z,y,2) =< (x,y ). In the Smith-Purcell FEL (x,y,z) is a periodic function

of z with the period of the periodic waveguide-L.

The current J (x,y,z) is the alternating current which is induced in the
electron beam by the interaction mechanism of any kind of free electron laser
scheme. When J=0 (no interaction) the solution of (ll) is

ik z

a(z) = a(o)e Z2° (15)

giving back (considering also (12) and (13)) the uncoupled mode (10).

In order to complete the analysis o! any particular free electron laser
scheme, the alternating current J(x,v,z) which is induced by the electromagnetic
wave in the electron beam should be calculated by solving the electron equations
(force equation, Vlasov equation, Dirac equation or other) in the particular
structure considered. In the linear regime this will usually lead to a linear
relation between the current and the electromagnetic field. Equiped with suca
a relation it would be usually straightforward to solve the linear equations

(11,12) by a Laplace transform technique.

?
This procedure was used successfully on both Cerenkov—Smith-PutcellQO’“1]

1}

and longitudinal electrostatic bremsstrahlung FEl.s. The Laplace transformed
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! amplitude of the electromagnetic wave 3(s) - | e °% a(z)dz was found in either
: case to be given by the same expression
— ~+ 3 -
ies) = 2t glas * ko) a(0) (16)

(s-ikzo)[l + x(w,s+iko)/5]-ia x(w,s+iko)/€

where
, 2 .
l.(W,s-ﬁlko) - (1) xp(w,s+1ko) (17)

i \p(*’S) is the well known plasma susceptibility of an electron beam plasma

\ propagating in free space in the 2z direction. It is defined by

w (o) .
2 r” '8 (px.pv,pz)/:pz
3

dpxdpydpZ (18)

s - 1 wlv
z

(o) . . . .
g is the electron distribution function of the electron beam when entering

the interaction region, v = /(ym) is the electron longitudinal velocity
! ’ 5 2 Pz >4 b

component .

“y
The parameter :  in Eq. (17) is equal zero for all FELs discussed except

[11],

the longitudinal electrostatic bremsstrahlung FEL for which it was found to be
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] where 90=E0/ko is the amplitude of the periodic electrostatic potential in this laser.

In Eq. (l6) k, is the periodicity parameter which is given for all FELs
) except the Cerenkov FEL by Eq.l. In the Cerenkov FEL,which does not utilize a

periodic structure,one uses k0=0.

The coupling parameter « is listed in Table 2 for the various kinds of
FELs. Ae is the thin electron beam cross section area. X,» ¥, are the
transverse coordinates of this beam, (le(x,y), which appears in row 2 of the table,
is the longitudinal electric field profile of the first order spacc harmonic of

the cloectromagnetic mode in the Smith-Purceil FEL periodic waveguide

v s

L

-ikoz ~
é?;l (x,y) - e Cé(x,y,z)dz (20)

(ol Tl




! Table 2 : The coupling parameter « of various FELs (the highly relativistic i
limit expressions are given in brackets).
i
FEL £
1 Vo 2
2 Ae e/u ,é;o(xe’ye)!
it
Cerenkov a2
A
P
1 — 2
?Ae e/u ré)zl(xe’ye)f 1
Smith-Purcell LS
P A
2
238, T 16, (v ) ]
2 e zo e’’e n
‘ Long. Elec. a -
P pY
2
1 eEo 2 ('1+6o ) Yoza Ae 1 ,eE 2 Yoza %f‘
Trans. Elec. 3= (—= — i 5,0 A
gn 2 2 2 A 27t 27 vy 2 A
mc 8 Y 2 me o 4
oz o
1 B 2 2 Yoza Ae 1 eBjc 2 Yoza ‘\e
Mag.Brem. T (—3) (1+8_,) 7 5t (37 ( 5) T A A]
mc o4 mc Y 3
o o
l‘ /.
2 eEO 2 YOZ Ae -+ v - Iic '0: :\('
Compton-Raman [ = (—-E) 7 A o= :) - so 5 ]
mc g me o Y
o] Q
r b,
o e e gy - ’:\wﬁf’r",;,’r
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It is instructive to find out that Cerenkov, Smith-Purcell and longitudinal
electrostatic bremsstrahlunyg FELs all have similar expressions for the coupling
coefficient x , This stems from the fact that they all involve direct longitudi-
nal interaction of an electromagnetic wave component with a synchronous electron
plasma wave component. In the Cerenkov scheme the =z component of the total
electromagnetic mode field {i(x,y) can be svanchronized and coupled to electron
plasma waves. In the Smith~Purcell (or traveling wave tube) type scheme only the

electromagnetic mode first order, space harmonic gl(x,y) is synchronous with

the electron plasma waves. In the longitudinal electrostatic bremsstrahlung

scheme the total electromagnetic mode £(x,y) is synchronous with only the -1

order space harmonic of the electron plasma wave which has an amplitude o  (Eq. 19).

In all three cases the coupling coefficient is proportional to the radiation

wavenumber k = 2n/) and to ''relative power' factors of the interacting wave

components.

The dispersion-gain relation (16) applies to a good approximation also to
the case of magnetic bremsstrahlung FEL, Assuming operation near synchronism,
and introducing a "'relative power" factor (filling factor) Ae/Ag (Ag is the
waveruide cross section area or more wvenerallv the effective cross section of
the clectromagnetic mode), we were able to reduce the dispersion equation
developed in llulfor the magnetic bremsstrahlung laser to a form identical with
(16). The coupling coefficient . which results for this case is listed in

Table 2 row 5. B“ in tiis expression is the amplitude of the periodic magnetic

field modulation. Notice that for the magnetic bremsstrahlung FEL as well as
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for the other transverse modulation FELs the electron distribution function

fo(px,py,pz) has an average transverse momentum p_, # 0 (while for the

longitudinal FELs PoL = 0). In the magnetic bremsstrahlung case

7 = —

Pot Pox” + Poy k (21)

thus, in the velocity space, the average longitudinal velocity of the beam

will be given by

2
oz T om Yom Vop - y (22)

The transverse electrostatic bremsstrahlung FEL scheme is essentially
equivalent to the magnetic bremsstrahlung FEL except that a periodic transverse
electrostatic force is applied on the electrons by periodic alternating electrodes
replacing the periodic magnetic (Lorentz) force which is applied in the magnetic
bremsstrahlung FEL by means of static magnets or coils. It was also suggested
that high amplitude electrostatic field modulation can be obtained due to the

change in the space charge field of an electron beam traversing through a periodically

rippled waveguide, and that this can be utilized for a free electron laser schemé}z'zal

It is possible to avoid a detailed analysis of the transverse electrostatic
bremsstrahlung laser scheme, using a reasonable assumptjon that the electrons

respond to the periodic transverse electric force eE  in the same way that they

respond to the transverse magnetic (Lorentz) force e? xv . We thus will assume

that the existing theory of the magnetic bremsstrahlung FEL can be appiied to a

good approximation to the transverse electrostatic bremsstrahlung FEL when we
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? substitute Bovz by Eo’ where Eo is the amplitude of the transverse electrostatic
field modulation, Hence Eq.16 will hold for the transverse electrostatic brems-

2

strahlung laser as well, with the coupling parameter « given in Table 2

row 4 and Xp defined by (18). Instead of (21) we should use in this case

ek, (23)

In the Compton-Raman FEL the electron beam is pumped by both the transverse

electric and magnetic fields of an electromagnetic wave propagating in counter

direction to the electron beam. The dispersion relation which results from the

[1v])

analysis of this interaction ' can be also reduced to the general form (16).

le
The analysis of Ref.[ J is limited to small transverse oscillation (Yoz x Yo).

However at least in the highly relativistic limit the parameter « can be directly

derived from the expressions for the magnetic bremsstrahlung laser taking advantage

? of the fact that in this limit a static magnetic field and an electromagnetic wave
look alike in the beam moving frame, and using the appropriate synchronism condition

i ' for this case (83 or 9). In Eg. 16 one should substitute then w - o of ..

The coupling coefficient « for the Compton-Raman scattering FEL is given
in Table 2 row 6 in the limit of a highly relativistic beam. This is actually

the more interesting case because only in this limit the laser can produce radiation

: 2
-; f at a wavelength appreciably shorter than the pump () = Xo/(4Y022))- The parameter
: + is also given in terms of the power density value of the pump field S0
"
. {
‘ s LT

© ke o . BEERARTEVE P
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The common gain-dispersion relation (16) would yield the power gain for any

FEL at any wavelength when 5(5) is inverse Laplace transformed and substituted

in

P (o) | a(o) I (24)

iocaemet

The operating wavelength is determined from the solution of the dispersion

equation which is the condition for the vanishing of the denominator in (16).

(s—ikzo)[l + ¥ (w,s+iko)/c] -i x ¥ (w,s+iko)/€=o (25)

J For a weakly coupled system (x is small), the eigenmodes of the system

- r—— -

have wavenumbers close to the eigenuwodes of the uncoupled system (k=o0) which

are the electromagnetic wave (s = ikzo) and the electron beam plasma waves

- - e,

(solutions of the plasma dispersion equation : 1 + x/c = o). The approximate

; wavenumbers of these waves (more precisely - the wavenumbers of the space

harmonics which participate in the interaction), are listed in Table 1, giving
rise to the radiation conditions listed in the third column of the table. when
the wavenumbers of the interacting waves match (synchronism), the dispersion
equation (25) vanishes and the appearance of a pole in (16) indicates strong

coupling of the electron plasma and electromagn.oiic waves. We should point out

" that Eq.16 and the parameters in Table 2 were all derived with th~ assumption
O‘J

! f?
(e

H
¥

e e




' of operation near synchronism.

The susceptibility function x (w,s) (Eqs.l17,18) can be expressed in terms

of familiar functions and parameters. The distribution function g(o)(g) may

be substituted in terms of a normalized distribution function of a single

t variable:

! n p,-P
(o) o Path 11 () B .- 2 Poz.
g (p,) - o ). 8 (px,py,pz) dpydoy = P 8 ( ———pZth ) (26)

where g, is the electron beam density, Poeh ~the longitudinal momentum spread
of the electron beam distribution, and Poz is the average electron beam momentum
! in the longitudinal (z) direction. In terms of the normalized function g, the

plasma susceptibility (18) can be written as

kI')z
v G'(2) (27)

AY (‘)S) /L =

t |

where




ey e Tt ey wera -

K]

T TR

e —

R

- e
~
-
Pt

2 2)
2 w ” 2 e’ n
! 2 1+ 0
l - I - 31
p (1 +a7) _LZY » T T Tm (31)
o'oz o'oz
P E
' zth _ zth .
Vzth Yy, 2 v 24 (32)
ooz m [ = mc
0 0z oz
E op I8 the longitudinal kinetic energy spread of the electron beam. In stimulated

Compton Raman scattering substitute -~

O

Often the electron distribution is approximated by a shifted Maxwellian

distribution.

For this case

P = o (33)
v F
and
< 2
. 1 e " ,
G(zg) = =- — dx (34)
CE

is the so called plasma dispersion function which is tabulated in Ref.{ ¢

;.

Before we go to the next section where the solution of (16,25) and the laser
gain regimes are discussed, let us examine Eq.25, in the limit of a cold beam
)
(pZth 20 ). In this limit we get from (29,28) (>~ and G'(3) - 1/z".

Substitution in (27) and (16) gives
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W
: x (w,8) = ¢ —F (35)
E (w+ivo s)
'2
2 w
(s + ik -1 —>)
a(s) = o oz Joz a(o) (36)
w 2 W .2 wyl
(s ~ lkzo) [(s+1ko - i ;——) + -2—3 ] -1« ;é—f
oz v oz
0oz
and the dispersion relation (25) is
- w 2 w_y2 w v2
(s - ik_ ) [(s + ik_ -i )y o+ -] - ic-B— = 0 (37)
Z0 o 2 2
v v v
oz oz oz

This equation is similar to the conventional traveling wave tube dispersion

| [30]

equation . Its physical significance is seen when we take the limit

« = 0o (no interactjon). We see that the uncoupled eigenmodes of the system

in the cold beam limit are the electromagnetic wave

| s =1k (38)

. and the slow and fast plasma waves (correspondingly)

[]
s+ik =i (=2 + —R) (39)
(o] v
[o ¥4 [s ¥4
N
T s ik, =i (5 - ) (40
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The dispersion relation (37) can be further simplified into the compact

form
ko (Ok ~ o - hp)(:k -3 + ﬁp) +Q=20 (41)

where we defired the complex wave number modification due to coupling - Sk,

by
- ios L n (42)
0
[ T B A 0 . . el e Lol
(43)
£iman  ~cattering)
e D LAl e g s Ne T
K
: -L (44)
Al Vv
(8]

and the gain pdarameter
Ee)

SRS (45)
o2




4, FREE ELECTRON LASER GAIN REGIMES

! In principle the calculation of the gain of any FEL at arbitrarv operating
conditions is straightforward, requiring only to perform an inverse Laplace

transform of (16), then using (24) and the appropriate coupling parameter

from Table 2. In practice the execution of an inverse Laplace transorm may
be somewhat difficult in the general case (pth#o) where the exact plasma
In this general case it

dispersion runction (28 or 34) must be used in (27).

mav be most useful to evaluate the inverse transform

(40)

a(z) = 3

by numerical integration in the complex field. A computer program for per-

21
forming this integral was developed[, ) Representative gain curves calcu-

lated bv this program are shown in Fig. 3. As a function of the interaction-

length-normalized-svnchronizm-parameter <

-k - k). (47

and various values of the normalized thermal spread parameter eth

\Y
o zth R zth 1
L Wy N o T T T (48)
; 0z oz Oz 0z
| ]
o
!
o
!
{

‘ . _ - h"::‘A .
m e

o




v .t

-a

(49)

The thermal spread parameter € has the interpretation as the spectral

th

width (evaluated in wave number space) of electron wave numbers 4 (5—)
z

in an electron beam with average longitudinal velocity Vos and velocity

oth’ As we will see later in this section the beam is considered

spread v

cold or warm if ¢

h <<1 or 5t >>1 respectively. Fig. 3 displays examples

h

in both limits as well as intermediate cases. The normalized coupling and
space charge parameter < and Sp which appear in Fig.3 are defined by

Kool (50}

T. o) = _L J (51)

In manv practical limits exact calculation of the gain curve is not
necessary and analytical expressions for the gain may be derived with certain
approximations. These different limits (gain regimes) were delineated by a

number of authors (4,7,10,17,18,2 for various kinds of FELs. Indeed theyv

are common to all of them, since thev result from the same gain-dispersion
relation (16). We will briefly describe the gain characteristics in these

%
ﬂ
regimes. 1
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Numericallv calculated gain curves ot the FEL for various values of

the normalized thermal spread parameter - \ (x =1, = 1).
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Fig. 4 displays ''phase matching" (momentum conservation) diagrams which
help to understand the various gain regimes discussed. It is esscntially a

"blow up" of the phase matching diagram in Fig. 2 (b), looking at the details

of the phase matcning near the electron waves dispersion curve at the various

gain regimes. In the bremsstrahlung FELs, ko in Fig. 4 is reversed in direction.

Als0 in tae stimulated Compron~Raman scattering = . /¢ is reversed and . /v -
o O oz

G- v In the cerenkov FEL k= o, The otner details remain tae same in all FELs.
. [ o

Cold beam low gain regime

As was shown in the previous section, in the cold beam limit (pZth - 0) the dis-

persion cquation (o) reduces to (37) or (41) which are simple third degree polinomial
i equations with a {inite number of roots (three). If the roots are found, then the
evaluation of the inverse Laplace transform (46) mav be straightforwardly

calculated by use of the residuum method.  This gives

—n

a(z) . S.z

L : «'](0) (52)

[

2

"
5

where A are the residues of (36) at s .
1 1

|

‘ .
j
The low gain regime occures at the limit when the normalized gain para-
]
meter ' is very small: Q <<l (a sufficient condition),
: . o - =2 3
! . % 8} PR = Qf (53)
]
A ¢ N p
{
-
; [n this limit the roots of (37) and (41) will “. (i0se¢ to the roots of the
q'l,
...’
- ’ * e LT . ‘&rv.r . - n me e g i o w e
‘ fag Hawe T .

[T & U

o~ "_fv\.‘i..;‘.i"-,w a-»;'fr
* s ‘




' (o) WARM BEAM
: kzo

-

! oz
(b) LOW GAIN TENUOUS BEAM

—t—i 2T/g
e ——
WA/oz 2.8

(c) LOW GAIN SPACE- CHARGE DOMINATED
Kzo ko

| - -

| Yoz G

(dJHIGH GAIN COLLECTIVE

; K20 — Ko
% 2 V2xBe
=
b “Woz 9%
* (e)HIGH GAIN STRONG COUPLING
k k
| zo+8 -~ koI - 20% |
| Noz %&fﬁ
7 Fig. 4: '"Phase matching' (momentum conservation) diagrams at the different

gain regimes assuming operation at the maximum gain point.

’ The section under each diagram indicates the width of the gain region.
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uncoupled waves (0 = o) - Egs. 38 - 4Uyand mav be cxpanded to first order

in wx or Q around this zero order values. After a lengthy mathematical cal-

[21]

culation, substituting (52) in (2%

), and calculating the power output

to first order in « (or Q), one gets

P - - -

) P’

[

2

sl

—_

—_
I
£~
~

where 0P P(.) - P(O) << P(0), and

{ The function F(?,*p) is shown in Fig. > for various values of the parameter
i

Op (21). Since F(,e » <1 the parameter Q indicates an upper limit on

il

the power gain available,

' . tiqs. S+, 55 give the low gain characteristics of {ree electron lasers
i \ including space charge effect. For a tenuows beam or a short interaction length
]
b f . )
) r<t - and (35) reduces to

8

R - 5
‘ L~ d sin (&/2) °
l‘(',‘\)) = — [__—— ]
d¢ Al (56)

winich s the tamiliav < ingle cleciron gain function whiec' appears in the

analvees ot the various free clectron lasers when cacl charge offoet s

. - Nyl 2o . . . - .
I St '_ Notice alse that the gain curve for this case
(Fig. », - = 0) resembles the computer calculated curve of Fig. 3 for
}\
IR e S SOLP RPN VR S I ———— e

R i )

o ~ RS




Fig. 5: The normalized low gain curves F(f,:P\ (kq. 55) for various values

of the normalized space charge parameter ~ .
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ath = (0.1 <<1 {(cold beam). It attains its maximum value at
t
|
: 2.0 - 2.0 ,

= - - or T T = W + k (57)
\Y . z0 8]
oz
This situation is illustrated in Fig. 4(b).
it is interesting to point out that the expression which was derived by
. 311 . S

Lousicll er all for the magnetic bremsstrahlung FEL gain in the low

gain regime including space charge effect, is actuallv just the Tavlor ex-

- ) _

pansion of (53) to first order in Pp :
!
i -0 5

. . - _ ] - -
! ey - 4a sin( 2 D d7 sia( /)
PN - - ] -+ — — [--—*'“_»] (38‘
: d U ty ~3 - B ,
[ d, :
Thi~ «xpansion is correct of course onlv tor _'“<".
I3

The peneral space charge limited expression (53) has the interesting

¢ . . N - . - c .
! povsical Interpretatuon as the result of the interference of the electromagnetic
wave 3¥)  with the slow space charge wave  (39)  on one iand and with the fast
1
spave vnarge wave (40) on the other hand. Whenever the electromagnetic wave is
svacaronous with the -low space charge oave (o - or k + Kk T +),
: zo o v p
oz
- the interterence vield- maxinum net gain.,  When the cilectromagnetic wave is
L3
Lo . . . ‘ . i
, svnchronous with the tast <pace charge wave (o oor k. tk oz —— - 7))
: P 20 0 v p
] oz
’ maximun attenuation s obtained.  The phase mateing diagram in the space charge
i dominat. f fow wain rogime (0 o) at e maximum wain point

-
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b= -h or = 48 =k +k (59)
v
is shown in Fig. 4(c).

The gain expression (54) may be of practical importance in situations
when low gain operation is expected (as in laser oscilators), and weak
coupling parameter (x) is unavoidable (as in the case of short wavelength
operation). In this situation one may try to increase the gain parameter
Q (33) by increasing the electron density and the interaction length £,
thus arriving to the regime Ep>>ﬂ. For example with beam parameters

Oll -3 = .

= = = 10 > = N g:— i
1 cm ’Yo Yoz ’ voz ¢, and ¢ 2 m one gets P 5,and it

0
is necessary to use (55) to describe the gain,

When we are in the space-charge dominated limit 5p>>n at the maximum

gain point (59), the normalized gain function (55) attains a value

F(—?p,?p) = 1/(25P). Thus the maximum gain (54, 55) is given by.
A Q 2
(=) = = 2¢9 1 (60)
P “max §p/2

we notice that in this low gain space charge dominated regime the gain
grows proportionally to Ai: while in the tenuous beam limit (56) where

collective effects were negligible, the gain was proportional to n (single

electron interaction). Notice also that since ep>>n was assumed, the para-

meter Q gives again an upper limit on the gain available.
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it should be pointed out here that as the electron density is increased,
and space charge effects become important, saturation (trapping) effect would
start at a lower input power level of the electromagnetic radiation. In this
case the linear analysis which led to (54) may fail to describe the situation

with practical power levels, and a complete nonlinear analysis should be

used [32’33]

Cold beam high gain collective (Raman) regime

For weak enough coupling (Q <<1) the roots of (41) are all real and small,
thus the roots Sj (Eq. 42) are all imaginary and close to the uncoupled
wave numbers (38 - 40), and give rise to the "interferential gain expression
(54,53). As Q is increased, the polvnomial equation (41) starts having one
real and two complex (conjugate) solutions. Consequently, one of the roots
s. {(Eq. 42) must have positive real part (corresponding to gain) and the
other two have a negative and a vanishing real part (corresponding to loss and
a constant amplitude respectivelv). In this limit - "the high gain limit" -

we can neglect the interference between the different roots, in (52), (24), and

keep only the exponentiallv growing wave. Then from (24)

i 280 L pnla | + 2(Res,) € = 2(Res. )i =- 2 (Imok)2 (61)
P(0) 3 J i

where s, 1s the exponentially growing root.
4

In the particular case when the electromagnetic wave is synchronous with

the slow space charge wave:




R

- ——
- e —— e —_— ‘- ~
i
¢ = =3 or —+ 9 =kzo+k0 (62)
v
P 0z P

and assuming !Sk! <<6 , Eq. 41 may be approximated by a simple second degree
1%

equation

R (63)
(~"\) 2(“
P

The root of this equation which corresponds to a growing wave is

3k = - in/Z*p, ana substituting in (61) it gives
() 2512 1/2
N 2 = _—) = ) ) 2
YR (gp) (2x - (64)

This gain regime is often termed as the stimulated Raman regime since

it involves stimulated scattering of the electromagnetic wave by the slow

[4,10,34,33, 36

space charge plasma wave - The phase matching diagram of these

waves (LEq. h2) is shown in Fig. 4(d).

[n this gain regime the gain grows wirtn electron density proportionally
/7,
to n Lis Also we point out that the derivation of (64) required the

constraints :p > }lmékii >>1, thus we see from (64) that the parameter

r=
* Q gives an upper limit of the gain available in this regime.

Cold beam - high gain - strong coupling regime

in the limit of high gain and strong coupling ("strong pump") the FEL

- 1/3 .
paramelers satiste Q) s ”p (or equivalently : . >> Mp)' Near

TN & e
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N

and = are negligible relative te ‘k, in Lq.

a straightforwardly soluble third degree polinomial ¢quation

(V%)

(p5)

41, which reduces then into

k)™ = -0 (66)
The root of this equation which corresponds to a growing wave is
o= 1 —) iv3 Ql/3 (h7)
‘Z*)ﬂs )‘*\!~—OJ'
and using (A1) it gives
"
L T T L - L3
on P(Q) =33 Y = 43 (.(:D ) . (bS)

Hence in this gain regime the parameter O

power gain.

1/3

.

The gain depends on the electron beam density in proporticn

i
(@]

Eq. #7 indicates that the real part of the wave number kz changes

L N

appreciablv due to the interaction (bv Redk). Instead of (65)

] preceptive to draw the phase matching diagram ot e maximum gain point

o

solelyv determines the available

to

it would be
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(Fig. 4e) in terms of the modified wave number kzo + Re:sk

/3 _ . .-
Q = (kzo + Rezk) + ko (69)

[om

Reik = —'Ql/3 or =

5|

0oz

warm beam high gain regime

-

In deriving the cold beam dispersion and gain relations (36,37) we used

an asymptotic expansion of (28) which is valid only for r; >1. If this
condition is not satisfied, one has to go back and solve (25) with the plasma

susceptibility given by (27,28) and not by (35).

Using (42) in (29), the parameter . may be written around s = ikzO

in terms of the detuning parameter & (43):

ok (70)
HCh
where . is defined by (4%). If = =~ ¢ »> Im'k. (which later yields
th th th d
Qih >>Q) and Gth>>8p (which is equivalent to kzo + K, 7> kb - the space

charge wave number is much shorter than the Debve length), then it follows
K 2 2, 2
from (70) that the requirement i:I= | (8- Redk)™ + (Imek) ™! /Eth>>l cannot

be satisfied at any of the synchronizm conditions required for the gain regimes

previously discussed. In these conditions we are hound to look for gain in

the regime (4751 and solve (25) with x( w,s) given by (27,28),
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With small enough coupling coefficient v, it is possible again to solve

the dispersion equation (25) by means of a first order expansion of the
| roots in terms of «. In the conditions stated above it is possible to show
that apart for the electromagnetic-like root (38), all the other zero order

solutions of the dispersion equation are complex, corresponding to plasma

waves which decay strongly by Landau damping. It is sufficient then to con-
sider only the isolated root s = ikz0 (38) which would given an exponentially

growing wave.

The first order expansion of (25) around s = ikzo gives

k'2 ' !
5 = - . & _D Im G ()
, Res Sky = 3 (kzo+ko)2 oo 2
; .1 AP ‘71) :
' | 2 (k_ +k ) 7 i
zo © !
where 6ki z Imdk, and & is given by (70).
; |
.' !
A (72) J
r i i
v-Redk ¢ (73)
. - T g 7
r Sth %th
. ] ) ok, (74)
> = a




From the definition (28) we have

' r T
Im G (2) = 8'(0 s dx (75)
- +py
- (x sr) g
Because of our initial assumptions g T liki‘/éth<(l , the Lorentzian

inside the integral (75) is much narrower than the function g'(x). Hence

Im g'(;r) = g'(:r)
lm ') = g’ (z) (76)

Using the previously assumed inequality Kk} << k o+k (71) can be
zo o

written in the form

k2 ~
W o~k D sy = o- (s
‘vki B 2 (kzo+k0)2 Im G (ﬂr) _ Im G (k‘r)

(77

In terms of the detuning parameter & the gain is given by {4,10,17,18,20]

Q ¢ , @
i BB L g =2 B et () = S 2ng' ) (78)
P(0) L 5 .~ “th 3 - “th
th th

For a Maxwellian electron distribution (33) the imaginary part of the

plasma dispersion function (76) is




This function is

shown in Fig. h. We sce that it attains its maximum value

when
= -~ 1/¥2 or omeoe i 2 or

(80)

The diagram of this phase matching condition is shown in Fig. 4a.

. . . . K . . .
At the maximum gain point (80) Im ¢{-1,/32)=1.> , and the maximum gain

is
- ,\'v.—
P& Loy Gyl
I‘ = il al
P(0) - - .-
th th (81)
Since we assumed initiallv i >>1, again the parameter 6 indicates an

th

upper limit on the power gain available.

The warm beam regime is a regime of single clectron interaction
and therefore the gain turned out to be proportional to the electron beam

density n .
o

Warm beam low gain regime

Assuming in the low gain limit that ~ - o and also that space charge

effect can be neglected (6 > o or kzo Eq. (16)

+ k > k!
th P ko g kD >

N
»

ISR )
. . “AJJ rh .
-~ — ""“.- ”(
* S ‘
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Fig. 6: The gain curve function Im G'(zr) for 1 maxwellian distributionm

(Eq. 79).
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reduces to

Ao

By substituting (27) to (29) in (82) we get the explicit dependence of

a (s) on s. The inverse Laplace transform (46) can de carried out now through
the integral over x o (or vz) in the expression for o (27,28), and evaluated
by means of the residuum method. The result can be then substituted in (24),

resulting aiter some tedious mathematical expansion (to first order in «)

_ X T _ 1
B Q sintCoyn - (83)
ST TS o 8 ! ) d
f(\,l) - it /))-, -

th /s th

This cxpression can be interpreted as a convolution between the warm

beam gain curve g' (., th) (78) and a spectral line shape function
A -

sin “( /27,(-/2)" which can be attributed to the wavenumber uncertainty

due to the limite interaction length. When interacticon by parts is applied

to (34), the resulting expression will involve conwvlution between the cold
]

. 1 R - N -
beam gain curve fr; [<sin~(C/2) /¢ /0! (56)

) and a
a-

line shape function é (ﬁ/ﬁth) which corresponds te line hroadening due to
clectron velocity spread. Notice that the linear convolution relation (83)

is applicable only in the limit of single clectron int.raction (kzO + ko*> kD)
and low gain (AP/P(0)<<1). However in the derivaticn ¢f  (83) there was no
restriction on :th, and it would apply to both cold .nd warm beams as well

as the intermediate regime.,

o

R P
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In the limit Atk -1 (warm seam) the line shape Tunction sin o ol (2
, ;

reduces oo a delta function and (o3 reduces o

P(0) LT -

th th

This expression is consistent with the hign gain expression (78) which gives

an identical result when we approximate  .n[P(.)/P(O)] I 1P/P(D). The high
pain expression  (78) thus applies in the low gain limit as well. The reason
1= tudat in tae case we had, wherce the dispersion equation (25) had only a

nele <ign: i

1o oy Lovel,

0o T, t L e Troduct = Liie bow il -
t - '

sioant root (o ik ), the Bighoogaln approxamation (1Y I orreot
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S. THE GAIN PARAMETER OF FELS

From the discussion above it appears that the normalized gain parameter

Q (53) is a good figure of merit to characterize the gain of any free electron

laser in all gain regimes (34, 60, 64, 68, 78, 83). While the maximum gain

obtainable depends also on parameters which characterize the beam (Z

)

p’ “th
the dependence of the gain on the kind of FEL considered enters in all these

equations only through the parameter Q. Furthermore, the parameter Q

indicates an upper limit of the gain in all regimes. As we increase ( by

either increasing the coupling coefficient or the electron beam densitv, this

- - /0
: upper limit grows at a declining rate from roughlv Q, through Q 172 (if

3 we go through the high gain collective regime) and finallyv as 61/3. A

simple necessary condition for obtaining appreciable gain in anv FEL structure

and anv gain regime is Q > 1.

In comparing the gain of various kinds of the free electron lasers dis-
cussed in this chapter, it is best to compare their normalized gain parameter
| 6 . This was calculated by substituting - From Table

Z2oan koo 53 and is

sresented in Table 3 for the various kindsof FELS.

f
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TABLE 3:

istic limit expressions are given in

i Jo re n3
Cerenkov 4o — = =
e c h\
2 Jo e QJ
Smith Purcell 4" — -
J r
0 e
Leng Elect. T o 3 A2
¢
J <
(21, o le
16 e 2
c
J r “ 5
Trans. Mag. 2n —% -J; 2
o2
J r -
[877 el ? s 3
&
J r <
Trans [lect. 1.2 2
e 2
C
J r
o e
(8 — =
N
Jw r-
Compton Raman (64~ -2 £

—46-

The normalized gain parameter 6 for various FELs (the highly relativ-

brackets ).
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Since in many cases the current densitv is a !'imiting factor,

we expressed in Table 3 the medified plasma frequency in terms of the cur-

rent density: TCos el /(mo v v v : = hi
y - o/( "oVoz oz Yo The parameter r, which appears

in the table is the classical electron radius:

02 _i
r /. = 2.818 x 10 m (85)

e 4me mc?
o

The expression given for the longitudinal electrostatic bremsstrahlung FEL
(row 3) is taken from Ref. [l11]. The expression in brakets corresponds
1

to the highlv relativistic limit, assuming operation at an angle Cm=(.§—yo)-

at which the gain parameter is maximal.

When one considers the dependence of the parameter Q on the operating
parameters of the various FELs, it should be noticed that some of these
parameters are dependent on each other. For example the wavelength +, period
L, velocity Yo and radiation angle » depend on vach other through the
radiation relationgswhich are given for the various kinds of FELs in Table 1.
In comparing various types of FELs and examining the dependence of their gain
on the operating parameters, one should specify which are the independent
parameters. In Table 3 the independent parameters are assumed to be °, vo

and . The period L (or in the Cerenkov FEL - the index n) should be de-

termined from the relations of Table 1.

— fal
The factor /2 A . /. o \x ~ 0 /P
e o Wz e, e
which appears in the first three rows of Table 1 can be interpreted as a
generalized "filling factor” which indicates v'.° - iraction of the electro-
magnet ic wave power participates in the interaction. In Table 3 row 3 tne
calculated c¢xoression for the tilline tactor of the clectrostatic bremsstrahlung

FEI. [ 11, was substituted in. Numerical calculation of
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this factor for Cerenkov FEL wax ... in [21]. Ino the case of a

Smith Purcell laser structure, the calculation of tne {:illing factor requires
the tull Floquet mode solution of the electromagnetic wave in the periodic
waveguide., While such involved calculation would be avoided in the present work,
it Is important to point out that the filling factors of the Cerenkov and
Smith-Purcell FELs are onlyv a function of the waveguide and electron beam geo-
metrical dimensions normalized to the radiation wavelengtn. Therefore if{ one
scales the geometry of the waveguide and the beam in proportion to the operation
wavelength, then it appears from the radiation conditions ot Table 1, that over
a.wide range of wavelengths the filling factor is onlv a function of the inde-
pendent parameters vy and ¢, and does not depend directly on the wavelength 3.
Conscquently Tabtle 3 is an explicit representation of the gain dependence on &
for the various FELs, assuming that the limiting factor is the current density
JO and that the waveguide geometrical dimensions of the laser amplifier are
optimized ior the operating wavelength. [t is instructive to note that the
wavelength dependence of the zain parametor . a proportionality
relation ror all FELs except the Cerenkov-smitn-Purcell tvpe for which it is

an inversce proportion.

The dependence of the gain parameter on the vlectron beam energy is not
explicit in Table 3 for the Cerenkow-Smith-Purcell FELs,since the filling
factors are a function of the electron velocity, However, it is probably
correct to conclude that the gain parameter (Q goes down as the energy is
increased in all kinds of FELs, but in the longitudinal interaction FELs (first

three rows in Table 3) it drops at a faster rate than in the transverse inter-

action FELs (last threc rows).
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In comparing magnetic and electrostatic bremsstrahlung FELs it is
necessarv to point out the basic advantage of the tfirst kind which stems
from the fact that the force applied on a relativistic electron by a
magnetic field is usually much greater than the force applied bv an electro-
static field considering the state of the art of laboratory available
periodic magnetic and electric fields. However, if one considers free elec~
tron lasers also in the non relativistic regime, the magnetic force reduces

a

bv a factor 502 leading to the ;o; reduction factor in the gain parameter

of the magnetic bremsstrahlung FEL as compared to the electrostatic brems-

’strahlung FELs.

As a last point in the comparative discussion of {ree electron lasers
gain we should indicate the advantage of transverse interaction FELs com-
pared to the longitudinal interaction FELs in the consideration of waveguide
losses of the electromagnetic wave., The eftfect of waveguide losses were not
inciuded in the present model. However, for practical FEL design it mav be
{n wom cases an important consideration, which cannot be ignored. To a good
approximation it mav be argued that the net gain of a free electron laser is
vqual to the gain ot a lossless FEL structure substracted by the waveguide
losses of the electromagnetic mode. Since transverse electric or transverse
vlectromagnetic modes which are used in transverse interaction FELs suffer
usually less waveguide losses than the transverse magnetic modes used in
longitudinal interaction FELs, this provides a substantial advantage to the

first xind when net gain is being compared.




mayv be increased appreciably when efficiencv enhancement techniques are

-

6. FREE ELECTRON LASER EFFICIENCY

As discussed in a number of articles [52,33,37] high ettficiencies

of the order of tens of percents arv potentiallv achieveable in free

electron lasers using various efficiencv enhancement techniques like tapering
the pump period and intensity ,or using energy retrieval schemes like storage
ring or depressed collector (which is currently used in conventional

traveling wave tubes). In this section we will consider only the basic

efficiency S of the various FELs, noting, though, that this efficiency {

used.

Since the officiency of radiative energv extraction from the electron
beam is limited by saturation etffects, a full non linear analvsis is
necessary to derive the FEL efficiency "o Nevertheless it is possible to
estimate its value from the linear analvsis, by using a simple consideration
prescented by Sorangle ot zl[IU]. For a magnetic bremsstrahlung FEL with a
cold beam, this estimate aas been shown to be In excellent agrecment with
the more rigorous -~elf consistent nonlinear formulation of Ref. [32] .

Al-e it agrees in the low gain regime with the results of Retf. 3%’ which

was obtained with a much more elaborate analvsis,

Consider anv kind of FEL operating at any of the cold heam gain regimes
discussed before (the warm beam regime must be discussed separatelv). The
combined excitation ot the coupled electromagnetic wave and the clectron

beam space charge waves has a component which propogates with wavenumber

3 =k 4+ Rerk and phase velocitv
S 0 )




o —

[}
P
!

ESSEGE.

oS

+ k_—z—ﬁé*k (86)

The estimate of FEL crriiciency is based on the argument that the saturation

mechanism is electron trapping in the periodic potential of the excitation ’

which propagates witn pnase velocitw v (8h). It can be shown that the
e

maximum decceleration in the eleciron velocity during the interaction up to

full trapping is 2 v , whore voois tie initial <iial velocitv difference

between the electron peam and tiae prase Velocity of the trapping potential:

Re o - N
v v - v E 9 - - e (81
2 oz pis v - or
e
“hus the maximum radiativeeneray XT: i o - A 1ohe o carculated as
the relative change In the eleoires foam o000 s e 10 aXias
velocity decreases by v
2
! 1
O 1 Q N u . -
2 e - = — - ov ==, .-
N -1 , -1 v pd o -
o Q oz
O
[Gatelt
, -
f =, 7 . 2
o oz -
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Redk-v (89) :

The expression in brackets corresponds to the highly relativistic limit.

E
The efficiency can now be calculated for any of the cold beam gain t
regimes described in section 4 by simplyv substituting the appropriate 5]
and Redk in (88,89). Thesc values of these parametergwill be usually assumed
to correspond to the maximum initial gain condition. The efficiency coefficient
is in the case of a cold beam exactlv the wavenumber mismatch drawn for
various gain regimes in diagrams (b) to (e) of Fig. 4. It is listed in Table
4 for the different gain regimes. Notice that in the low gain and collective
gain regimes {Reik{<<f%[aud ; L and in the high gain strong coupling

~

regime |Redk|>>16! amdn - Relk.

TABLE 4: The efficiency coefficent -, used for t

calculating the efficicency (8R) at different

gain regimes.

[ e —————

Gain regime -

Low gain trnuous beam 2.6/%

"ollective (low or high gain)

8l
T i vaan strong coupling L0 = P CS !
; i N ; p
3 ) .
i . . . - 4 Y
warm beam Gigh aain Slet e )] — = (= 0,03 1L>)
A by o ‘\
Lo - %
j ) }
i
| 1 :
X i Tow woin . :“? (= 1. :“ _
E t'\ 1t
}
| - \
‘ ! ,
. | 3
FUSTORE -~ T
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The estimate of the laser efficiency in the warm beam hign ang low gain
limits requires a somewhat different consideration. As is indicated {rom
Eqs. (75) and (83), in these gain regimes onlv a small traction of the elec-
trons in the electron beam distribution participate in the interaction. In

the high gain case these are the electrons with normalized axial velocities

which lie in the regime X - - = v - v ! - =k
‘ r z ph “zth i O A P
or that their velocities lie witinin the spectral
width of the wave due to its growth u/v_ - kr‘ . ‘ki. From cither of these

relations we find that the class of electron velocities, which takes place in

the interaction is:

v o NE— : : . ' - —
z ph z phok <k K OtR a0z w +k (90)
. . 20

During the interaction the trapped clectrons reverse their velocity relative

to the phase velocity of the potential wave v, until at saturation a
: ph

. v - v
local plateau is generated and U oh oz,
R a——

0 (s l"i};. Ty,

zth

In the warm beam low gain case the saturation process s similar, cxcept

that the class of electrons which participate in the interaction, is de-
A ] L}

- —_ >
termined by the width of the spectral line shape function sin”(-/2)/(6/2)7

witich appears in the convolution (83):
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Fig. 7: The electron distribution function in the warm beam gain regime

drawn in velocity space before (continuous line) and after

saturation (broken line).
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R i¢/vz - Vph:' < The wave numpers of tnese clectrons
' lie within the spectral width due to tinite interaction length:
; Jw L ) . .
! - -V peoS T These rolations can be written as
f v, ph' . .
A N Y = v —— 91
z oh' 2 oz KR K (91)
0o
The radiation extraction cificiency ot the free electron laser in
the warm beam regimes is caoual to the relative change in the kinetic energy
due to the interaction, wnere e calculdtion of the change in beam xinetic
g energyv before the interaction and altoer saturation is most convenientiv
! done in momentum space:
Y | :
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' = T = _ - N & -8 -
: o EKE ‘o 1 n, L z zph z
i Pyph™ 7Py

2. . .
where pzph = thm Vph and °p, 7 Yoyoz vaz First order expansion of
beth v and g(o)(pz) around pz = pzph and some mathematical steps give

. 3 2 3
3 2(4 vy CF S
o 1 dfo dg(o) 2( Pz) ) —2_ "o'oz oz - )( Vz) (93)
N y -1 dp dp 3 3 y ~1 5 cv' -
o z0 z P 0 zth
’ zph

Using (90), (91) and (77) we finallv

resimes the efficiency is given again

Taale 4 rows 4 and 5 for the high and low beam limits respectivelyv.

find that in both high and

bv (88) with the parameter

low-warm beam

r listed in

The ex-

pressions in parenteses were calculated for an electron beam with a Maxwellian

distribution (33), assuming initial tuning to the maximum gain point

" =-l/v§ .
r

The

radiatjion extraction efficiency for all FELs and all gain regimes

s estimated by the simple expression (88) with the efficiency coefficient

1 given in Table 4 for the different gain regimes.

This expression applies

to FEL amplifier structures assuming saturation is reached within the inter-

e e

action length £, For oscilator structures (in which saturation is always

[

interaction length) it applies wita (he assumption of

- -y

obtained within the

single mode operation (in particular tor the warm beam case).




The efficiency depends on the interaction length &« onlyv in the low
gain-tenuous beam regimes (both cold and warm beam). Notice though that the
expressions in Table 4 rows 1 and 5> applv with the assumption that saturation
is reached right at the interaction length L. In the cold beam low gain
and collective regimes (rows 1, 2 in Table 4), the efficiency is proportional
to A and depends only on the beam parameters (velocity and density) and
the interaction length. It {s thus the same for all FELs considered. Also
in the warm beam low gain regime (Table 4 row 5) the efficiency is independent
on the kind of FEL considered and depends only on the parameters of the beam
and the interaction length. The efficiency in this limit is proportional
to ,\3.

In the high gain-strong coupling and high gain-warm beam limits

(rows 3, 4 in Table 4) the efficiency aepends on the kind of FEL considered
through the parameter (. Its dependcnce on wavelength and beam velocity
varies for different FELs and can be found by substituting in (88) the corres-
ponding ; parameter, the parameter ch (49) and the values of the para-
meter 4 as listed in Table 4 for the different FELs. In all cases the
efficiency n, 8rows with the wavelength . This dependence is particularly

. . 6 .
strong in the high gain warm beam case, where it goes like 1} in the

Cerenkov-Smith~Purcell FELs and klz in the bremsstrahlung FELs.

In the case when beam energyv retrieval schemes are used the total
cfficiency can be calculated from the expression for the basic efficiencv (88)
by multiplying it by an efficiency enhancement factor M. This factor is
equal in the case of a storage ring to the number of times that the electron
beam can be recycled before its spread becomes intolerable, and in the case of a

depressed collector scheme it is equal to the ratio between the electron beam

G Nt -
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acceleration and collection voltagesn. In tie case of efficiency enhancement by
Fumy tdappering we cannot usc at all the estimate (88) and a full nonlinear analvsis

(32,33]

is necessary

In conclusion of this section we will briefly discuss the revelations of
the different saturation characteristics in the two seperately treated limits
of warm and cold beams. We saw that while in the warm beam case only a class
of electrons (90) or (91) participates In the interaction and gets trapped at satura-

tion, in the cold beam limit all the electrons participate in the interaction

17,39]

b

and trapping process., As pointed out before in { the local plateau
formation (Fig. 6) is analogous to the saturation and diminishing of population
irversion in a clasg of atoms in Doppler broadened gas lasers. In terms of
leser theory, the saturation nature of a warm beam FEL corresponds to inhomo-

geneous broadening and that of a cold beam to homogeneous broadening“‘OJ

As in gas lasers there is "hole burning" effect in the gain curve of the .
wirm beam FEL. However, there is still an important difference between the two:

in contrast to the homogeneously broadened gas laser, the interaction mechanizm

itslef changes the population of velocitv classes in the vicinitv of the inter-
ecting class of electrons. The gain curve of the saturated FEL (the derivative
of the saturated distribution curve in Fig. 6) displavs from the point of
saturation on an effect of "hole burning” at v. ~ v . But it also shows

2 ph

1 new effect of "hill heaping" at the sides of the "hole" (v7 x vPh Ctv o).

] These different saturation behaviours will have explicit expression
4
4 in FEL oscilation characteristics. In the homogeneous broadening-cold beam
) regime there will be "mode competitfn” between the modes of a long cavity -
)
> Py ®
laser, all "attempting” to extract bower from the same electrons., This will

tend to depress multimode operation in the laser. In the inhomogeneous

broadening-warm beam regime, there will be at saturation an interesting new
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effect of "mode cooperation which will tend to increase the number of
oscilating modes in a laser cavitv which has a sufficientlv dense spectrum

of modes. The effect of mode cooveration will tend to wash out anv bumps on
the clectron distribution function and spread it out, and will produce

wide band radiation. Notice that this saturation ebhaviour is different from
that of inhomogeneously broadened gas lasers, where there is no coope-

ration between the modes and there is even slight competition between

close modes.
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7. FREE ELECTRON LASER POWER

One of the most attractive qualities of free electron lasers seems
to be the potential capability of high power operation. Since the inter-
action is done in vacuum and the active medium is not a material, problems of
material damage and thermal distortion of the wave Iront are avoided. Since
the radiation extraction efficiency of FELs can be made quite high, the laser
power can be quite high too, and limited essentially by the electron beam

power which can be drawn into the interaction region.

The radiative power which is generated hv the free electron laser is
AP = VIn (94)
o

where Wo is the basic radiation extraction efficiency (88), 1 is the total .

beam current and V is the beam acceleration voltage

"
VvV = (\0 - 1) mc /e (95)

For a given efficiencv and beam acceleration energy the radiative
.
power generation (94) will depend onlv on the amount of electron current 1
which can be made to interact with the electromagnetic wave in the free
electron laser. In manv circumstances there will be a limit on the current
density JO which can be generated at the FEL input and propagated along

the interaction length, hence the elimiting amount of interacting current

will be given by

I = A (96)
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Can the electron beam cross section A be increased indefinitely?
(&4

. Appart from various technical limitations we should be aware that the trans-
verse dimensions of the electron beam should be limited by the range over
which the periodic static fields and the electromagnetic mode field have
an appreciable value, so that appreciable coupling coefficient (Table 2)
exists to carry out the interaction. This limitation stems from the fact
that the static periodic fields and the electromagnetic modes should satisfy

the Laplace equation

"
v [ . i . 2 3 ) Pl } = (
( { Eo(h,}) slnkoz, Eo(x,y, sxnkoz g (97)
in the case of bremsstrhlung FELs, and the wave equation
R 2 £ xov)e iGh k)2
SRS B G-S W 2o = (98)

<
tor the Cerenkov-Smith-Purcell tvpe (in the Cerenkov case ko = O,L/*(fo)

The solution of Eqs. 97, 9& in the case of a planar waveguide structure

(Fig. 8a) is straightforward, uziving for the bremsstrahlung FELs

qx (99)

Fo(x,v)s B (x,v) ve
o o

where
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L y INTERACTION RANGE
1"'{ l/2 q

INTERACTION RANGE
/29

INTERACTION RANGE
~ R
|/2q

Yig, %@ Uross section Jdiaxrams or various FUHL structures:

) ta) Sheet beam 1o o planar waveguide structure,

[ . . . .

, (b Annalar beam oo ovjtndrical waveguide structure,
K (¢) solid bearm in 1 cvi.ndrical waveguide structure,

[he vruss marked regions symbolize the sour~e of periodic static
field in bremsstrahluny FELs and the slow wave structure in

‘ N Cerenkov-:mith-Purcell FELs.
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and for the Cerenkov-Smith-Purcell FELs

BNRLE
él(xa_\) e (101)

where

(102)

Thus both the-static pump field in the case of bremsstrahlung FELs

-and the slow electromagnetic wave component in the Cerenkov-Smith-Purcell

FELs decay exponentially awav from the source of periodic static field
(magnets, coils or electrodes) or from the slow wave structure (periodic
waveguide, dielectric waveguide). In order to obtain appreciable coupling
coefficient (x), the electron beam should be passed roughly within the range
oI one exponential e-folding distance of the squared field intensityv: 1/(2q).
This distance which we will term ''the interaction range" can be found in

cerms of  oa, F oz and § by substituting in (100,102) the synchronizm con-
dition (4) and the radiation conditions of Table 1. The interaction range for

the various FELs are listed in the second column of Table 5. The expressions in

>rakets correspond to the special case of (\0 >>»1) where for the longi-

) . ) . o -1
tudinal bremsstrahlung case we substitute in this limit ¢ = ¢ = (/3&0)
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TABLE 5: Interaction range and maXimum

power of FELs

1
FEL Interaction rage :a Max. Power ;Pr
P4 s w
3 N -~ 35
A , L mC Ll
. ~ W
/(=) 7 e do¥e A
4 4
Trans. Brem. 502 2 4
— = (1+ F : 1+ 2
1 -8 ( Eoz) oz\oz ( oz) ozYozYo [ Yo} 2]
0z
[ 2
1-\02]
£ 4 3
Long. Brem 0 :} "o YO [i 5]
ong- e 1-2 cos¢ S0 l—Bocos¢ 2 7%
. 4 4 4
Lo TenkKov = SOy - o N [Y }
L o0 Q o o] o
S,
. . 1 . .
In all FELs the interaction Lange 5 is proportional to the
=M
wave length A and onlv when the beam is highly relativistic (7‘ ~>>1)
(4

the interaction range can be appreciably larger than a wavelength., This
explains why at short wavelengths it was necessary in recent FEL research
to go to relativistic electron beams in order to obtain appreciable
radiation. We see from Table > that in the highlv relativistic limit,
brem=strahlung FLLs have an advantage of roughly a factor Y, in the

interaction widtt compared to Cereankov-Smith-Purcei: FELs. There is no

ditference between them in the nonrelativisgic limit (g <<l).
(904
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For other waveguide cross section geometries like a cvlindrical waveguide
(Fig. >b,c) the solution of (%7,98) gives other function solutions for the
transverse variation of the fields instead ot (99, l01). For the case of a

cvlindrical waveguide the tields depend on the transverse coordinates like

modif{ied Bessel functions of the argument cr (r - the distance from the
cvlinder axis). When r> l/g tie modiiled Bessel runctions behave near
. . . . . . gr

the waveguide walls like exponential functions ¢ In a crude

approximation we mav extend the notion of interaction range to waveguides
with gencral cross sections and claim that the interaction region, at which

the coupling coefficient x  has an appreciable value, extends along the

periferv of the waveguide within one interaction range 5 away from the

wialls  (see Fig., 8 a, b). OQut of tnis repion the coupling coefficient drops

down exponentiallv,

It is evident that tor obtaining s'ronyg i1nteraction it is usually

pretforable to pass the clectron beam wit:in tne interaction region, wnere

- has its maximum value. So in the ¢ise ©f 4 planar geometry (Fig. 3a)
we will prefer to use a sheet bear of dimencions X h where  w S
S [ [
the waveguide width and b= 1/(20 0. In the case of a cvlindrical wave-
© -
stuide it is best to use an annular beam of thickness h = 1 ¢ and periferv
v
w o= 2nR (Fig. 8b). In case that the experimental conditions require the

o
use of a solid cvlindrical beam it is preferable (for the sake 0f obtaining
appreciable gain) to keep the waveguide radius not much Higger than R = 1/(2q).

Bl
The Sear cross section i+ then approxaimately A = 7 (2a) 7,
.

It should be pointed out that at present, a deta:'.d theoretical

analvais ot free electron laser interaction o ttie case where the ficlds

vars transverselv across the beam crows section is not available (except tor




the thin beam approximation used here). In addition technical limitations
mav make it difficult in some cases to keep the electron beam within the
interaction region, right next to the waveguide walls. Nevertheless, it
is generally true that in either case the electron beam cross section area
cannot be made much larger than the interaction region area if appreciable
gain is to be attained, hence for the goal of estimating the upper bound
o radiative power generation in free electron lasers the estimate that the
useful electron beam cross section area is equal to the interaction region

area:

.
T
i

w, X 1/(2q) (103)

is an appropriate approximation.

Using (95) (96) and (103) 1in (94, we get the expression for the

maximum available power

_ 1 mc 3 2 1/2q -2
B 75 T oY Tz Yoz Yo (A/Aﬂ) n (194)

This is listed in the third column of Table » for the different

kinds of FELs. The efficiency coefficient » is listed in Table 4 for the

different gain regimes. The c¢xpressions in hrakets 't Table 5 correspond

to tihe highlv relativistic limit (10 >>1), where in the case of longitutinal

¢lectrostatic bremstrahlung FEL, operation at the maximum radiation angle

was assumed.

-
. - o
‘m (31 )

(8]

|
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The stimulated Compton-Roman scattering is not included in Table 5,

because in this special case therc¢ is no limit on the interaction region
width and it is simply determined bv thie clectron beam width (assuming it
is narrower than the pump electromagnetic wave). The maximum power in this

case (in the highlv relativistic limit) is given by

(o =+ "’i JA Ty e (105)

The lack of interaction width limitation in the case of the Compton-Raman

FEL is a very important advantage of this FEL kind in the limits of short
wavelengths and moderate beam energv. Thuas a viable'option for producing
radiation in this limit mayv be the composition of a two step FEL, in which

one wind of FEL produces high power radiation at a relativelv long wavelength,
and this radiation operates as a pump in an adjacent Compton-Raman laser

which produces radiation at a short wavelength. Simultaneous operation of

a bremsstrahlung and a Compton-Raman FELs, operating as spontaenous emission

amplificers, was demonstrated in Ref. [41].

ln the cold beam low gain regime (which mav be in particular a usetul operation
regime in FEL oscilators) and in the collective regime (n = 2.6/% and n= ¢
B
respectivelv) the maximum power is proportional to A for all FELs, and
t> X for Compton~Raman scattering. In both cases it is independent on the

FEL gain parameter (or coupling coefficient), Nevertheless it cannot be con-

c¢luded that laser gain is inmaterial in determining the laser power. 1t should

b recalled that the assumption is in all cases (lat the laser saturates within




the interaction length .. In the case of a verv low gain laser this assumption
would require an impracticable input power (in the case of amplifier) or
impracticable resonater quality (in the case of a laser oscilator). Thus, even

in the low gain regime the laser gain will indirectly affect the maximum available

power through the choice of ..
In the warm beam low gain regime the substitution of :th (49) and
(Table 4 row 5) results in (104) a 2 wavelength dependence of the maximum

power available in all FELs except Compton-Raman FEL (105} for which there is

a dependence.
In the high gain strong coupling and warm beam regimes there is an explicit
dependence  of the maximum power on the gain parameter (. From Tables 3,4,5
we tind that the maximum power generation of all FELs still grows with & for
all FELs considered. There is a particularly strong wavelength dependence in
: . . . . 7.
the hign gain warm beam case. This dependence goes like A in the Cerenkov-
12

Smith Purcell FELs, like L in the bremsstrahlung FELs, and like & in

the Compton-Raman FEL.

It is instructive to point out that the maximum power generation grows
very strongly with beam energy in all FELs and all cold beam regimes. We may
s¢v that appart from the possibility of generating short wavelength at high
electron beam energies, the high power generation level at this limit is what
distincts most markedly modern free electron lasers development from classical

microwave tubes.

Wwe see from Table 5, Column 3, that in the highlv relativistic limit brems-
strahlung FELs have an advantage in maximum power generation by a factor of
about compared to the Cerenkov-Smith-Purcel. rtLs, (at least in the low gain
9]

and collective regimes). This stems trom the fact that the interaction width

o the first kind is larger from that of the second
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kind bv the same factor (Table 5 column 2). In the nonrelativistic limit
(<< 1) the maximum power generation drops down in these regimes at the
o

same fast rate (like 504) for both kinds of FELs,

We point out that the expression of maximum power generation derived
in this section applies without change also for FELs with energv retrieval
schemes, but of course failscompletelv in efficiency enhancement schemes
like tapering. However, if the total efficiencv n in the latter case is

known, the maximum power LPm can be still calculated from Eqs. 94, 95,

46 and 103 with n, substituted bv rn and 1/(2q) given in Table 5.

In practice various technical limitations will not allow passing tne
electron beam too close to the nagnetic coil, grating etc. and the optimal
¢dsv wiere the whole interaction range cross section is filled with electrons
t103) cannot be materialized. In this case the practicallv c¢Xtractable power
falls sihort of the maximum extractable power bv a factor LO/\JOwe 1/2 g) which
Is the ratio between the actual current IO and the maximum current which would

fdeally be passed through the interaction region Ccross section.

As an example consider a case of a transverse bremsstrat.lung FEL

¢perating in the cold beam low gain regime with parameters values similar to

49 .
those of the Stanford experiment[ ]1 v, T 48, oz 39 (BO = 0.24 Tesla),

9 -3 2 - . .
n,o= 2 x 10 ¢cm (J0 = 9.6 A/emT), - = 10.6¥mand . = 5.’m. We assume in
[}

this example that a solid cvlindrical beam i- used and therefore substitute in
(104) woo= 7 xl/(29) where 1,/(2q) is given in Taric 5 row 1 and
-

in Table 4 row 1. Hence the maximum cxtractable power in such a case is

piven by

2.6 2
me - 6

. Y o
© 0O 0z ©

3
— (106)
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which gives Agm = 84 KW. In the actual experimen* the need to insulate the
superconducting magnet did not allow the use of an optimal size beam which
fills the whole interaction region JO X v(l/2q): = 2A (as assumed in (106)
and only a current of 70 mA was passed in the center of the waveguide.
Hence the expected (and indeed also the measured power generation falls

short from the calculated maximum power generation in proportion to the

current (AP = 84 x 0.07/2 = 3 KW).




¢ admme— . oum

8. Tree Electron Laser Spectral Width

In all gain regimes considered in section 4 the gain is a function of

the detuning parameter A o= ; - kzo - ko (43). In each gain regime

there is an optimal value of the detuning parameter “m (which is always

negative), for which the gain is maximal. The values of ?m at the

different gain regimes are given in Table b. The phase matching diagrams
/i

corresponding to the maximum gain condition are drawn in Fig. 4 for the

different gain regimes.

When we keep all the laser Operating Parameters constant and onlv change
tne radiation wavelength X , the detuning parameter - changes Trom .ts maximun

gain value Bm. The differentiation of (43) gives

Sw = ——]ﬁ (107)
v -V
oz g
where
du
Vg = dk7 (108)

is the group velocity of the electromagnetic mode in the waveguide.

Eq. (107) applies to all FELs. In Cerenkov FEL the evaluation of
the group velocity of the mod: vg mav require the complete solution of the
uncoupled mode dispersion relation in the dielectric waveguide. The group
velocity in this case may depend on the index of rcefraction dispersion of

the dielectric dn/dw as well as the waveguide dispersion. In all other FEL

.- - AW s P




A
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structures the group velocity can be evaluated straightforwardly if we assume
that » (in Eq. 5) is a weak function of the wavelength. This is true in
modes of waveguides with wide cross section, and particularlv true in all

the transverse FELs, in which ¢ = o. In these cases

Ve = cos ¢ (109)
and substitution in (107) gives
Ag
s . — (110)
;oz -cos
or usinyg the radiation conditions of Table 1.
= 111
= - (111)
o

If & is the range of detuning parameter value around Pm over which
there is still gain, than 4w or AX are the laser spectral widths in

the frequency or wavelength domain.

The parameter A8 can be evaluated in the different gain regimes
simple inspection of the gain dependence on % (Cq. 78, Fig 6 in the warm
beam limitgand Eq. 55, Fig. 5 in the low gain-cold beam limits) and bv

some ilgebraic investigation of the dispersion relation (41) in the cold

beam-high gain regimes (collective and strong pump). The results are given
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in Table 6. The wave number mismatch ranges over which the laser has gain,

are also illustrated in Fig. 4 for the various gain regimes.

Table 6: The detuning parameter value of

maximum gain fm, and the detuning

parameter range of gain 47,

Regime m . AR
Low gain-tenuous beam - 2.6/¢ 2n/8
Low gain-space charge - Gp 2n/%
High gain-collective - 9p 2¢2k6p
High gain-strong pump 0 2Q1/3
Warm beam L N 26

JZ th th

For all FELs the spectral width is given by substituting the appropriate
parameter A8 in Eqs. 110, 111 or 104 . Only in the high gain regime
(rows 3,4, in Table 6) does the spectral width <Zw depend on the particular
kind of laser or on the wavelength * through the coupling parameter «x

or the gain parameter Q which are given in Table 2 and 3 respectively.

From the validity conditions of the different gain regimes it comes
oul that the parameter A&, and consequently the spevctral width, grow up the

lower the gain regime is listed in Table 6. Hence the lower limit
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on the spectral width occures in the low gain TYegimes (row 1,2). In

Eq. 111 it gives

R L
ol (112)

This is usually quite a wide spectral width which grows with wavelength
and beam velocity (as can be varified byv substituting the radiation

conditions from Tabel 1). In a typical example like the Stanford experiment[42]

(L =3.2cm . =5.2m), — =0.60.
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