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1.

I. Introduction

In these lectures we discuss parameter identification

problems for control systems that frequently arise in certain

physiological models. By a parameter identification problem we

shall mean that we are given a model with unknown parameters

along with observations of the system that the model is supposed

to represent and we must use these observations to determine

values for the unknown parameters. Specifically, we shall focus

our attention on problems for nonlinear models involving either

(1) delay-differential and, more generally, functional differential

equations (FDE), or (2) distributed parameter systems realized by

partial differential equations (PDE). In the first case, we

shall discuss techniques that are applicable to problems that

contain unknown delays as well as unknown transport coefficients

among the parameters. In the case of (2) we present methods for

problems which contain unknown diffusion, solubility, and other

transport coefficients. In both cases the methods can be used in

problems with unknown parameters in the initial/boundary data.

Briefly, our presentation will be as follows. First we

give motivating examples consisting of models arising in respiratory-

circulatory physiology and renal physiology. Before discussing some

inherent difficulties in parameter estimation for the resulting

classes of problems, we review standard methods available for

parameter identification of ordinary differential equation models.

Included for mention in a least-squares formulation are descent
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2.

methods such as gradient, conjugate-gradient, and certain quasi-

Newton algorithms. Finally, we explain how one can use Ritz-

Galerkin ideas to employ the standard techniques in a way that

circumvents the difficulties mentioned and produces convergent

identification algorithms for problems involving nonlinear FDE

and PDE.

We provide an adequate but not exhaustive bibliography.

Many of the publications we have selected to cite here

include rather extensive reference to the current research

literature.
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3.

2. Models from physiology involving delay and distributed

parameter systems

We first consider respiratory models for humans which are

formulated with the overall schematic depicted in Figure 1 in mind.

These models are often ones which combine (1) the respiratory

system (based on gas dynamics) with compartments such as alveolar

space, dead space, airways, and atmosphere which are connected

to a "gas pump" and (2) the circulatory system (often based on

transport theory and fluid dynamics) with compartments such as

pulmonary vein, left heart, aorta, arteries, tissue, veins, right

heart, and pulmonary artery. The respiratory and circulatory

components are connected via a diffusion compartment representing

exchange of the principal gases N2,02 , H20 and CO2 which are

the subject of investigations in these models [131, (171, (191,

[24), [25],[261,[27],[331,[34).This gas exchange takes place, of

course, during the flow of the blood from the pulmonary artery to

the pulmonary vein as it perfuses the alveoli.

Many of the models entail systems of ordinary differential

equations and the more realistic ones usually take into account

transport delays and thus involve delay-differential equations

or functional differential equations. Briefly one uses understand-

* 'V ing of the basic biomechanical and biochemical mechanisms of the

systems to write mass balance equations. These equations relate

the alveolar partial pressures PA(j)' brain concentrations CB(j),

and tissue concentrations CT(j) for the various species

" | i
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5.

= 02' CO21 H20, N2  to other variables such as arterial con-

centrations Ca(j), venous concentrations Cv(j), inspired and

expired volumes Vio V and control parameters consisting of

blood flow rate QB and respiratory minute volume RMV. These

latter variables are under CNS control via sensors for C

in the carotid body and CB(co2) in the brain. Equilibrium

equations relating PA(j) and Ca(j) must also be written.

To illustrate how the transport delays are incorporated, we

refer to the simplified schematic of Figure 2. From this, we see
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RightLUNGSLeft

V HeartI- 1111ar IIlllll

_ _ _ _ _ _ _ _ _ _ _ _ _TISSUE I " _--

Ii

'I Figure 2

sf



6.

that transport delays T come into play when relating the

arterial concentrations CaB(j) (t), CaT(j) (t) at the brain and

tissue entrance to the arterial concentrations C (t) at the

lung exit. Delays are also appropriate in relating the mixed

venous concentrations Cv(j) entering the lungs with the venous

concentrations C vB(j) CvT(j) at the brain and tissue exits.

Using delay parameters as depicted in Figure 2, we have

C aB(j ) (t) = Ca (j ) (t-T aB)

C aT(j ) Wt = C a(j) (t--TaT)

C VW (t) = g(CvB(j) (t- vB ),CvT(j) (t-TvT

The delays themselves are in general functions of some of the

variables (e.g., 6B and thus Ca(o2) and Ca(C0 2) in the

models. However, often it is useful in employing the models in

studies to select "apparent" values for the delays by fitting

them to data. Delays can also arise in modeling the feedback

control loops (see [34]) since the sensors for CO2  are in the

brain and carotid body while control is at the level of expired

volume rate VE. That is, instead of RMV one might equivalently

focus on the control VE = h(PA(002 (t-l), PA(CO)(t-T 2 )) where

T1' T 2 are transport times from the alveoli to the brain and

carotid body respectively.

However the detailed model equations are formulated, it

should be clear that one is lead naturally to feedback control
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systems with delays

(2.1) x(t) = f(a,x(t),x(t-Tl)I,...,Fx(t-z )

in which one often wishes to "identify" the parameters

q a= ( ' '' 'T )"iq!
Models for respiration in certain insects have also been

investigated [111, [121 and these models involve a completely

different type of system for which identification procedures are

needed. Consider a tube (trachea - through which gas flows) of

length L and radius r (cross-section S = fr) as depicted

in Figure 3. Denote by e the thickness of the wall of the tube

and by S1 the cross-section of blood surrounding the tube.

Si

i -- Blood
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8.

Using mass balance and considering (i) diffusion along the axis

of the tube (radial diffusion assumed negligible), (ii) convection

related to movement of the gas, and (iii) diffusion across the

longitudinal wall, one can write equations which the partial

pressures of oxygen, carbon dioxide, and nitrogen must satisfy.

Letting ylY 2,y3 denote the partial pressures in the tube of

02, CO2, N2 respectively and wlw 2 ,w3 denote the corresponding

partial pressures in blood of these substances, one finds (the

first, second, and third terms on the right in each equation

represent axial diffusion, convection and diffusion across the

wall respectively):

3y.y2
q3 1 x2  (Vyj) - 2 (yr-w)D! t -qj 3 x 2 P~S _x reyjw)

(2.2) 2aw a2w. .

_w = q I Q j D 2r(
3t j x2 S x --el (wj-y ),ax S

j = 1,2,3.

Here the parameters qj,qj,Dj represent coefficients of diffusion,

V is the velocity of the convective flow of the gas, P is

atmospheric pressure, and the a. denote coefficients ofJ

solubility. Of course, Q is the blood flow rate. Among the

important parameters to be estimated in use of such a model are

the diffusion and solubility coefficients qj,qj,Dj,o.

Systems of partial differential equations arising from

convective-diffusive phenomena also are found in numerous models

_
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for renal function. These models are usually based on mechanisms

present in the nephron, the basic functional unit of the kidney

(approximately one million per kidney) for which a schematic is

given in Figure 4. Among the important mechanisms for transport

between the blood and fluid in the nephron are filtration (transport

from the plasma to glomerular fluid in Bowman's capsule), reabsorption

(from the tubule back to the plasma; some of this involves active

transport, some passive), and secretion (transport from plasma to

urine which can be active or passive). For example, as fluid moves

down the tubule, NaCI is removed actively, H20 is removed

passively from the tubule, leaving the concentration of urea higher

in the tubule than in the perfusing plasma. Urea is then reabsorbed

passively. The flow velocity in the tubule thus affects directly

the amount of urine produced. For a high velocity flow only about

40% of the urea is reabsorbed whereas for low velocity flow (and

hence a high rate of removal of NaCl and H20) up to 80% of the

urea is reabsorbed.

Since approximately 7/8 of the total number of nephrons in

a kidney are located in the cortex, much of the modeling in the

literature (e.g., see [101,[301,[31],[321) is focused on function

in the renal cortex. Mathematical models are, not surprisingly,

based on principles of conservation of mass and chemical species

as well as the theory of non-equilibrium thermodynamics. A typical

one-dimensional compartmental model might be derived employing a

schematic as depicted in Figure 5. The basic equation for such

f ,
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models is a one-dimensional convection-diffusion equation of the

form

(2.3) (pjA) = (qj -a A) + -
. ~ax - (Vp)-

where p. is the mass density of species j, A is the cross

sectional area of the flow region, V is the volumetric flow

rate in the axial direction x, qj dpi is the axial mass flux,ax

S is the wall surface area per unit length and J. is the massJ

flux of species j across the wall. We note that these equations

result in a model of the same general form as that given in (2.2).

From To Collecting Cortical

Glomerulus Duct Peritubular
Blood1 1D.C.T.

Capillaries
_ ofI - //

Intrrstjta Fo
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To Vi
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12.

Summarizing, we see that models for respiratory and renal

physiological control systems typically yield two basic types of

systems for which parameter identification methods are required.

One may have a delay system of the form (2.1) in which one seeks

to estimate parameters q = (,TI,.. . ,T) including transport

coefficients and the delays. Or one may be faced with identifying

parameters including diffusion and solubility coefficients in

parabolic distributed parameter (i.e., partial differential equation)

systems such as (2.2) and (2.3). In both cases one must impose

appropriate boundary and/or initial conditions and these also may

contain unknown parameters for which estimates are needed.

These problems share certain inherent difficulties which we

shall mention in section 4. Before doing so, however, it is

necessary to review standard techniques that are readily available

for parameter identification in ordinary differential equation

models.

i'Its'



. ..... .. ......... . .. ..

13.

3. Parameter identification for ordinary differential equations

Consider a system which is modeled by an ordinary differential

equation in Rn

x(t) = f(q,t,x(t)), 0 < t < T,

(3.1)
x(O) =x 0

where q is a vector parameter in RIJ to be determined by ob-

servations of the system. A set of observations Yi E R ,

i ,...,m, for y(t i) = Cx(t), 0 < t < ... < tm < T is

given with C an k x n matrix. One wishes to use these to

select a "best-fit" value q in Q; here Q is a given compact

constraint set (admissible parameter values). A rather standard

formulation is the least-squares fit-to-data in which one seeks

to choose q E Q so as to minimize

(3.2) J(q) 2 _ IY(ti;q)

where y(ti;q) = Cx(ti;q) with x the solution of (3.1) corres-

ponding to q. In practice, one turns to iterative methods to

solve such problems.
'i Among the minimization techniques one might consider for

these problems are those classified as direct search methods (for

a detailed discussion of some typical methods in this class, see
[(101). These methods consist of procedures which generate a

*; sequence of trial solutions for minimizing J. Examination of a

'r ; .
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given trial solution is by simple comparison, the result being

used to indicate further steps in the search procedure. These

methods, which make use of only functional evaluations, are

attractive in some cases if one suspects that the function J to

be minimized is not smooth, but they are slow and usually are quite

inefficient when highly accurate solutions are desired. Further-

more, they have been developed heuristically and no proofs of

convergence have been given. Indeed, while they might be quite

useful in indicating the general location of a minimizing point,

often their performance with regard to actual convergence is poor.

One might expect that iterative methods which involve use of more

of the information available about J (e.g., derivatives of

various orders) would give superior performance in practical

situations.

Amiqg a rniuier of nvthods of this latter type are sore in a general

class of nitho s, descer-nt- _ duhs, which generate a sequence {qk } of

approximations so that J(qk+l) < J(q k). Recall that in many cases

minimizing J is equivalent to seeking solutions of J'(q) = 0.

If one applies Newton's method to this latter problem, one obtains

the iterative procedure

(3.3) qk+l = qk _ [J,(qk )]-lj,(qk).

We further recall that this is not a descent method, but under

reasonable assumptions one can prove (see [29]) that there do exist

f
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Sk > 0 such that

(3.4) qk+l = qk a ck[J,(qk)]-iJ,(qk)

is a descent method. This iterative formula defines the Damped

Newton's method, which is a special case of the general iterative

procedures defined by

(3.5) qk+l = qk + Lkpk

where the pk,, are called directions for the method. The

analysis and development of many methods are concerned with how

one is to choose the "directions" p and the "steplengths" ak"
k

To motivate a choice of "good" directions p , consider a

function J that is "quadratic" or "elliptic" in its behavior

2near a minimizing point q in R2 . (A similar argument can be

* j 4carried out in R .) Then the level surfaces of J (actually

their projection onto the R2 plane, i.e., {qlJ(q) = M} for

constants M) are given by closed curves as depicted in Figure 6.

At any point q on a level curve, the gradient vector

* J'(q) = VJ(q) = (J , -J) is an outward normal vector. It is
i l 2

* clear that for "good" directions to move toward q, one wants to

choose directions that are "downhill", i.e., directions given by

vectors p satisfying p.J'(q) < 0. Under reasonable assumptions

4
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q 2

' 
•qD

q,

Figure 6

on J (see [213, [29]), one can show that if the pk in (3.5)

are chosen in a "downhill" manner, then it is possible to choose

the steplengths {ak1  so that the resulting iterative procedure

is a descent method and the iterates {qk} converge to a solution

q of J'(q) = 0.

From the geometric considerations above, one can surmise

that the "best" direction would be in the direction of -J' since

clearly no other direction can give a larger local decrease in J.

Ideas such as this are behind the steepest descent (or gradient)
method where pk is chosen as pk -JI(q', which in the case

(qk

*1 ( 4,
__ --,
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of (3.2) results in the iterative formula

(3.6) qk+l =qk kk J'(q)
(3.6) j, qqk (q yiqkT

where J k(q ) ;q ) ly(ti;qk) - yi}. (We assume here
i-lP

that one is using the usual Euclidean norm in Rp. For "steepest

descent" directions with respect to other norms in Rp, see [29,

p.2451.) While (3.6) represents an intuitively appealing choice

based on a "best" local strategy, the convergence properties of

the resulting method are unfortunately much poorer than one might

expect. One heuristic explanation sometimes offered for this poor

performance is phrased as an "instability under small perturba-

tions" and is depicted in Figure 7.

' 1p

q)

Figure 7
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In this figure q represents the point given by precise computa-

tion while q is the actual computed value (different from q

due to machine errors and the failure to compute exactly the

previous descent step). From the figure it is clear that in

extreme situations one could actually obtain a direction almost

orthogonal to the one desired. In reality the explanation for the

poor performance of the steepest descent method in the general

case is somewhat more involved and is probably related to the fact

that the steepest descent directions (when the method is applied

to a quadratic function J(q) = qAq, A > 0) are in the limit

asymptotic to just two directions [21]. Even though for "nice"

J (e.g., J(q) = qAq with A > 0) one can establish that con-

vergence is geometric, i.e.,

2

J(q < 2 J(q)

where .,... X are eigenvalues of A, it is fair to say that the

practical usefulness of the steepest descent method in locating

*precisely minimizing points for general functions J is probably

*overrated. (It is common to observe extremely slow convergence

* i for this method in the vicinity of the minimizer.)

In a careful analysis of the difficulties with convergence

of the steepest descent method, one actually discovers that the

4 method essentially tries to approach a minimum in a two-dimensional

subspace via use of a very limited choice of directions in the

tI
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iterative formula (3.6). One way to alleviate this problem is

to ensure that one uses an adequate supply of directions by choos-

ing the kth direction pk in (3.5) so that it is mutuallyk- k-2 pk- ()-l)

orthogonal to p p * k.. . This idea leads to the

conjugate gradient or conjugate directions methods, the most use-

ful general minimization methods currently available. The basic

idea underlying these methods grew out of studies of minimization

1
techniques for quadratic functionals J(q) = 2- qAq + B-q + E,

A > 0, on RP. These studies [29] reveal that if-one chooses

mutually A-orthogonal directions pl,...,p (i.e., p iAp= 6ij)

and uses them in the iterative formula (3.5) with a proper choice

of the fak }  (obtained by minimization procedures - see the

discussion below), the resulting sequence {q k converges in at

most p steps to the unique minimizing point for J. (For a

derivation of the conjugate direction methods based on Fourier

expansion ideas which also yield the above results, see Chapter

10 of [23.].) Before turning to a description of one popular

generalization of these conjugate direction methods, we mention

briefly that there are several possible ways for choosing the

steplengths a k in (3.5). Among so-called step-length algorithms

probably the most often used are those based on the minimization

principle

k (37 k k 1
(3.7) J(q +a = min{J(q +ap )I c RI.

K - ._ . ... .. . ....
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That is, one chooses ek so that J is minimized along the
lin {qq k +pk R1

line {qjq 2q + ak a C R. This clearly always leads to a

descent method. In complex problems one usually does not insist

on precisely the minimizing a, but may use a one-dimensional

search or some type of interpolation scheme to find an approximate

to the minimizing c. For a discussion of other methods (Curry,

Altman, majorization, Goldstein) in addition to (3.7) see [29,

p.249-257].

One of the best known conjugate direction methods (the

Fletcher-Reeves algorithm) uses the minimization principle for

choice of step-lengths and chooses the direction "near" to those

of steepest descent or gradient, i.e., those in (3.6), but

modified to give conjugate directions (in the event J is quadratic).

It is commonly referred to "the" conjugate-gradient method. (This

is something of a misnomer since there are other algorithms-e.g.,

that of Daniel [29] - that are also called conjugate-gradient methods).

Letting Gk denote the gradient of J at qk, i e Gk Jt(qk),

we define this iterative procedure by

p0 0

(3.8) pk+l = Gk+l k

i * (3.9) 
8k = IG k+l2I G k 2

"k I

(3.10) qk+l =qk + akPk

T - 7.

L 4
* -- j*~-
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where ak is chosen according to the minimization principle (3.7).

k kWe note that if Gk = 0, we have that q is a critical point of

J and the algorithm is terminated. In the event that J is

quadratic one can show that the directions (3.8) are conjugate

directions. The method is obviously a descent method. In practice

when applying this algorithm to problems with general J it is

th t
common to restart the method every i step (or every (p+l)t

step as suggested in [16]) by taking a purely steepest descent

step. That is, one replaces (3.9) by

0 if k + 1 = Mu for some positive integer M

+
IGk+112/IG k 2 otherwise.

For a discussion of the convergence properties of the

Fletcher-Reeves algorithm, one should consult [29]. We note that

some authors [21] erroneously assume that convergence of these

algorithms in a finite number of steps for quadratic J automatically

implies quadratic convergence in the general situation. For general

J the methods appear not to be that well-behaved [29, p.5121. Other

conjugate-direction type methods are also discussed in Chapter 8 of

[29].

A class of popular quasi-Newton methods that are related to

the above procedures is based on applying the Gauss-Newton scheme

kto a modified functional J. Given an estimate qk, one linearizes

)
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Y(ti;q) in (3.2) about qk obtaining the modified functional

1m

(3.11) J(q) - lY(ti ; q ) + 2i (ti;qk){q-qk - 2
i=l aq

One then chooses q q so as to minimize this functional or
~'(qk+l)

rather, to satisfy Jk(q ) = 0. This yields an equation for

k+lq given by

m 3yt kTD~ ~_k m
il (iqk)T kY(ti;qk){qklqk} = (ti;q k){y(ti;q k)-yi

or, using the notation aki -(ti;q k),

(3.12) qk+l = qk- m T -1 m T k

A modification of this algorithm (usually called the Levenberg-

Marquardt algorithm) is used in a standard IMSL package that is

widely available and involves the iterative formula

. m -im T k
(3.13) q q _ {XkDk+i kj 3 k i }=  i (aki){Y(ti;qk) - y i }

mwhere Dk = diag( ) an
k i l ki aki and Xk is a parameter which can

be chosen to insure that (3.13) is a descent method.

In all of the above procedures ((3.6), (3.8)-(3.10), (3.12),

(3.13)), one needs 2, which satisfies a linearized variational

equation, as well as y, which satisfies the original nonlinear

i"7
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equation (3.1) (or rather x does and y =Cx, _ C 3). These

aq q

must be computed at each iterative step, even though the iteration

itself is in a finite-dimensional parameter space (recall q E Q c R1).

Thus at each step of the algorithms, one must solve (3.1) for

t - y(t;q k) = Cx(t;qk). For Y one can either solve for theaq

fundamental matrix D k of the linear variational equation

f k kk(t) = (- q , xtq HD()

and then employ a standard representation formula for 2-x in terms;q

of Pk (see [6]), or, one can (this is most often done) use a

difference approximation for 3Yq"

While the above methods lead to an iteration in a finite-

dimensional parameter space, there is another widely publicized

method, quasilinearization (see [6], and the references therein),

which leads to a simultaneous iteration in a function space and

parameter space. Given xk and q , one lets t -- x k+l(t;q k + l

be the solution of

f k k+l k
x (t) -(q ,t,x (t)){xk+l(t) - xk(t)} +

(3.14) fq ,t,(t)){q k kq k + f(qk kt,xk(0)

k+lx (0) =x,
0

~k+l
where q is chosen so as to minimize

.. .. .. . , :.. -. 4,. ,
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(3.15) j(qk+l) 1 ' icxk+l tqk+l) 2 2(3 15 2~ j[ (t i ;q Yil

That is, we require that (3.14) and

1 m q~l k+l) 2
(3.16) 2 1cxk 1 (ti; q yil 0

be satisfied in choosing xk+l, qk+l The algorithm, which is

explained in detain in (6], entails the following idea. Observe

that, given xk ,qk, the equation (3.14) is a linear variational

k+l k+lequation for x in terms of qk. One can thus use a

k+l item qk+lrepresentation formula for x in terms q and this can
k+l

be substituted into (3.16) which is then solved for q

Early advocates of the quasilinearization algorithm claimed

that it converged quadratically (when it converged). If this were

true, it might offer significant advantage over standard routines

such as the Gauss-Newton (3.12) or (3.13) above which is usually

quadratically convergent only when the model is exact (i.e., there

exists a choice q so that J(q) = 0 in (3.2)).

Both theoretical and numerical studies comparing the Gauss-

Newton and quasilinearization algorithms have been carried out and

the results reported in [11, [6], [18]. For the identification

problems formulated here, it was found that from a theoretical

viewpoint, the convergence properties of both the quasilinearization

and Gauss-Newton algorithms are essentially equivalent (quadratic

convergence when there is an exact fit of the model to the data;

__ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _
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at best linear convergence otherwise). In the numerical studies

little difference between the algorithms was found in the number

of iterations to convergence. The quasilinearization algorithm

was faster per iteration (requiring fewer equivalent function

evaluations than Gauss-Newton) but required much larger amounts

of storage. The Gauss-Newton algorithm was usually more accurate

and much less complex to program.

Results of these investigations appear to favor a simple

Gauss-Newton algorithm applied directly to J over the quasi-

linearization algorithm for problems of the type formulated in

this section.

A slightly different (but in some respects equivalent)

formulation of the parameter identification problem for (3.1)

seeks a value q that maximizes a "likelihood" function instead

of a minimizer for J given in (3.2). That is, one seeks to

choose q E Q so as to maximize the likelihood function

m
(3.17) L(q) = £n g(yi-y(ti;q)),

i1 1

a heuristic foundation of which we shall explain briefly here. (A

more detailed explanation of these procedures can be found in

almost any standard text on estimation - e.g., see [14], [15], [22],

[28].) A solution q of this problem is then called a maximum

likelihood estimator (MLE) for q*, the "true" parameter value

* (which, of course, may not exist). MLE algorithms are based on

)i~

.t" " " I / . ... . - < . . . . ...
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the following considerations. The observations {yl,...,y m are

assumed to be corrupted by random measurement noises {NI,... ,Nm}

so that we may write Yi = y(ti;q*) + Ni, i = l,...,m. Assuming

that Nil.. .,N are independent random variables with identicalm

probability density functions g, the joint density function is
m

then given by g(nl'n2, = ri g(ni). Intuitively, the
i=l1

function g should possess a maximum at those values of

(nl,.., m ) that are most likely to occur. A procedure for

estimating q* might reasonably be devised on the basis that the

observed values of Ni = Yi - y(ti;q*) correspond to those that

are most likely to occur, that is, g(Nl,...,N) = max g(nl,''',nm)"

Defining the function G(q) = g(yl-y(tl;q),...,ym-y(tm;q)) we

therefore might seek a value q that yields a maximum for G.

For technical reasons, it is more convenient to maximize the

natural log of this function so that one defines the likelihood

function

m
L(q) = ,n G(q) 9.n g(yi-y(ti;q))

i=l 1 1

and equivalently seeks a maximizer q (called an MLE for q*) of L.

In certain cases (see [15]) maximizing L is completely equivalent

to minimizing the least squares criterion J defined by (3.2).

More generally, the MLE procedures reduce to an algorithm to

determine a solution q of L'(q) = 0.

tL 7,
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4. Inherent difficulties in FDE and PDE identification

In all of the techniques outlined in section 3 for ordinary

differential equations, we noted that at each iterative step one

usually required solution of the original system (3.1) as well

as perhaps solution of an associated variational equation. The

system (3.1) and any linearized variational equation involves

nsystems in finite-dimentional state space R . For delay systems

and distributed parameter systems such as those discussed in

connection with the physiology models of section 2, one must deal

with infinite dimensional "state" processes. If applied directly

to such systems the iterative methods of section 3 would entail

huge storage requirements and would, in many cases of practical

interest, prove unwieldly and indeed unfeasible.

Even if one had unlimited storage capabilities so that the

above mentioned difficulties might effectively be circumvented,

there are even more serious problems inherent in using the methods

of section 3 directly for certain identification problems involving

delay systems. As we saw in section 2, it is often very important

to estimate, among other parameters, the delays in a functional

differential equation model. A careful inspection of the techniques

outlined in section 3 reveals that one must deal with the derivatives

or, in the case one is identifying the delays in x(t) =3q

f(0,x(t),x(t-Tl),...,x(t-t ), one must make use of as well
X1

as - . Even if f is extremely smooth, these derivatives need
not exist. Consider, for example,

example

ih'

p
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x(t) -x(t-T), t > 0

(4.1)

x(e) 41() , o < 0

where the initial function is defined by 418)

4(8) =1 for P < -1. For T < 1 this equation has solution
1 1

x(t) = 1 + I t on [0,T]. For T > 1, say T = 1 + C, we find
11+ +

the solution is given by x(t) = + t on [0,cJ, x(t) + c +2 2

(t-c) on (c,l+E]. If one then fixes t. in (0,1), it is

quite easy to demonstrate that T - x(ti;T) is not differentiable

at T = 1; i.e., ti;l) does not exist. Hence one cannot

apply directly the methods outlined in section 3 for identifica-

tion of delay parameters in examples such as this one. The

methods we describe in the next section can be used to overcome

such difficulties as well as those inherent in the infinite-

dimensionality of the state in such systems.

Ii

4
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5. Techniques for FDE and PDE identification

We turn finally to methods for parameter estimation in

problems involving functional differential or partial differential

equations. We shall for ease in exposition assume a least-squares

formulation of the basic identification problem. Thus we seek to

minimize J over Q with

m2

(5.1) J(q) = X I Y (ti;q) -Yi 2
i=l1

as in section 3 except now y is the output for either an FDE or

a PDE. For example, we might have y(t) = Cx(t) with x the

solution of an underlying delay system such as (2.1) or y(t) =

col(Cu(tx 1 ),...,Cu(txp)) with u the solution of a system of

partial differential equations. Before turning to specific cases

which differ slightly in detail, we outline briefly the fundamental

ideas involved in development of the methods we shall discuss.

We first rewrite the system (FDE or PDE) as an abstract

equation in an appropriately chosen Hilbert space Z:

z(t) = 5s'(q)z(t) + G(t)

(5.2)
z(O) = z O.

Here sQ/ may be either a linear or nonlinear operator depending on

parameters q E Q. The identification problem is reformulated in
4"I , a corresponding manner so that one seeks q E 0 that minimizes

4 I
p
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m 
2(5.3) O (q) 2 rzt~) i

il

where y(t) = F(z(ti;q)) is an appropriately defined output.

The problem now has the appearance of a parameter identifica-

tion problem for an ordinary differential equation except, of course,

we are working in an infinite dimensional state space Z instead

of Rn as in section 3. We attempt to reduce the problem for

(5.2), (5.3) to an approximate one in a finite dimensional space.

The approximation idea we employ is a classical one commonly

referred to as the Ritz-Galerkin technique. We choose subspaces

ZN  of Z with projections P N:Z - ZN  and solve a least-squares

problem for the system as it is "projected" or approximated in

these subspaces. That is, we seek to minimize

N 1 m N^i1

(5.4) JN(q) 2 Ir(zN(ti;q ) ) - Yi9 2

over Q subject to the approximate system

zN(t) =l N(q)z N(t) + PNG(t)

(5.5)

zN (0) = PNz

, i
' N  pN and

Our hope, of course, is that by clever choices of Z a
*N, we might be able to insure that z N(t) + z(t) and that

solutions q of minimizing (5.4) subject to (5.5) will, as

N - w, approach some q in Q that is a solution of the original

problem for (5.1).

I.

• !!
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We describe two particular choices for such schemes:

In the case of FDE's we outline developments for spline subspaces

NN

ZN while for PDE's we report on results involving modal (eigen-

function) subspaces ZN.

FDE and spline approxirations

We consider the nonlinear FDE

x(t) -- f(, x(t),xt/X(t-Tl1),...,X(t-T V)) + g(t)

(5.6)

x 00 -

where xt  is the usual notation for the function x t (,J)

x(t+O), -r = - o 0, representing a functional dependence

on the past in our system. In general we seek to determine from

data (observations on Cx) values for the parameters

q = (C,Tl,...,r V). By choosing Z = Rn _1 2(-r,0;Rn) with an

appropriate inner product , and employinq as state

z(t) = (x(t),xt), where x is the solution of (5.6), we can re-
t

write (5.6) as an equivalent abstract system (5.2) with '(q)z =

(f(c,- (0) ,,P(-T ) ... ,w(-t )),w') for z = (4(0),,) in a

,* judiciously chosen domain in Z (for details see [3]) and

In describing the spline approximations we shall for ease

in exposition restrict our considerations to first-order (piece-

wise linear) spline approximations for a scalar equation of the

form (5.6). A general theory for arbitrary-order spline approxima-

*1
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tions is given in (7] for linear FDE and in [3], [20] for nonlinear

FDE. We shall also assume (again only for ease in exposition) that

the delays I,...,r and initial data * are known. In this

case, the theory for nonlinear system parameter estimation via

spline approximations is given in [3], while the general nonlinear

theory for estimation of parameters including delays and initial

data (which is technically more difficult to describe) is given in

[5].

Let e, = 0,1,...N, be the classical first-order spline

functions on [-r,0] satisfying e.(t.) = i where i is
I j 1] i

N
the Kronecker symbol and t. = jr That is, we partition [-r,0]

N NNN
into subintervals It., t .i ] and define e. to be 1 at t

0 at N  t N N N N
0j+l and t I and linear on [t +l,t ] and [t 1, j
with eN vanishing outside [t N+lt -NI Let ZN= span{ 0..., N

where N = (e(0) ,eN) E Z Then ZN is an N + 1

N N
dimensional subspace of Z and for any Z (t) E ZN , we can

N N N N Nwrite z (t) = X w.(t). where w. are the generalized Fourier
j=0 N N N

NN Ncoefficients or "coordinates" of zN  relative to [0 0,.., N ).

Let PN be the orthogonal projection of Z onto ZN which is

characterized by the condition

N N.) =Z B N 0, j = 0,1,...,N, z E Z.

N
If P Nz =  k then (5.7) is equivalent to

k=0

(5.8) KNN = col((z,6 ,..., (ZsN) h N (z)

0 N
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where N = col((0,l,.. aN ) and K N is the (N+l) x (N+l)

matrix with elements ( N
, N For first-order splines this

is a tridiagonal matrix and equation (5.8) is easily solved for
NN
N (for higher order splines the analogue of KN  is a banded

matrix so that computing PN is also easily done in those cases).

Next we define _SVN(q) = pN (q)pN which is readily computed

Nsince we know 3c. and know how to compute PN. The approximating

equation (5.5) for (5.6) thus reduces to an ordinary differential

N N N N Nequation in w = col(wo, wl,...,wN), the coordinates of z

One obtains

*N N N N-iw (t) A (q)w (t) + (KN) col(g(t),O,...,O)

(5.9)

wN (0) = (KN)lhN(((0), ))

where AN(q) is the (in general nonlinear) operator

~N
A N(q)w N(t) = (KN )lhN(_Y(q)( I wN(t)a3N

j=0 I

The problem of minimizing (5.4) subject to (5.5) thus reduces to

an easily implemented problem for an ordinary differential equation

(5.9) for which the standard techniques discussed in section 3 can

readily be employed.

We have tested these ideas on a number of examples and

present now a small sample of numerical results to illustrate our

findings. In each case an IMSL package employing the Levenberg-

%V
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Marquardt algorithm (see (3.13)) was used to solve the ordinary

differential equation approximating identification problems.

Example 5.1.

We return to the example of section 4 (see the comments

following (4.1))

x~tt) : t > 0,

x(e) 00),

with 2e) for -1 < a < 0, (e) = 1 for 8 < -1. We

seek to identify a "true" value T = 1.0 for the delay parameter

even though D- (ti;l) does not exist. We present the numerical

findings in a tabular form with T the "converged" value (from

the iterative IMSL package) of T for the index of approximation

N. Start-up values of TN,0 = .9 were used in each case below.

Very similar results were obtained with start-ups TN 0 = .2 and 3.0.

The true analytical solution was used as "data" on [0,1].

No. of

N TN  IMSL Iterates

2 .8031 3

4 .9080 3

8 .9686 5

16 .9950 6

32 1.0010 7
4 True

Value 1.0000

'S - i



*35.

Example 5.2.

Consider the multiple delay example

x(t) = 2x(t) + cx(t-T) + x(t-2), t > 0,

x(O) = 1, -2 < e < 0,

for which "data" corresponding to "true" values a = 3.0, T = 1.0

of the parameters q = (c,T)are easily generated on [0,3]. In

the table below start-up values aN = 2.6, T = 1.3 were

used for each N. For each N the IMSL package produced a

"converged" estimate in 10 iterations.

-N -N
N T

2 3.888 .9472

4 3.243 .9851

8 3.062 .9961

16 3.0159 .9991

32 3.0040 .9998
True
Values 3.0 1.0

Example 5.3.

Finally we consider the nonlinear equation

x(t) = 2x(t) + 5x(t-T) + ax(t-2) t > 0Sl+x(t2)'
x(e) = 1

SI.

.4 (
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in which we seek to estimate q = (a,T). An independent numerical

method can be used to generate "data" on [0,41 corresponding to

"true" values q =( ,) = (3.0,1.0). Again the approximation

methods described above worked quite well when applied to this

example. For N = 40, the IMSL package converged in 21 iterations

-40 -40 -40to values q =(C T (3.0058,.995) from start-up values

N,0
q = (1.0,.5).

We conclude our brief discussion of the spline methods for

FDE parameter identification with several remarks. First, higher

order spline methods are easily implemented in the manner outlined

above. Computational experiments by F. Kappel and colleagues in Graz

reveal that (at least in the case of cubic splines) the resulting

banded matrices pose no conceptual or practical difficulties in

implementation. Vector systems are also easily treated using these

approximations (see, for example, the column reactor identification

example where n = 8 in [2]). Proofs of convergence for the

fundamental approximations in the case of linear systems are given

via use of abstract approximation theorems from semigroup theory

(a Trotter-Kato approximation theorem) in [7] where error estimates

for the "state" convergence (zN _ z) are also given. The

fundamental theory for nonlinear systems is given in [31, [20].

As one might expect, one obtains that the piecewise-linear elements

yield O( ) estimates of convergence, cubic elements converge like

0_)(N 1, etc. We have made numerous computational tests (see [3],
N3

[4], [71, [20]) with these methods involving state approximation

Op
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only, parameter identification problems, and optimal control

problems. Our experience has been similar to that realized in the

use of finite-element methods for certain boundary value problems

in that we observe convergence rates that are better than predicted

by the theory. For example, the piecewise linear elements generate

schemes that appear basically second order in behavior (i.e.,

errors like O(-) and this is observed not only in convergence
NN

of the states z z but also in parameter estimates and in

optimal controls and performance criteria.

PDE and modal approximations

To facilitate our discussion of modal approximation schemes

we consider simple scalar nonlinear parabolic equations

(.0 k I 9 q2u + f(q4 ,t,x,u) 0 < x < 1, t > 0,

with initial condition

(5.11) u(0,x) = 3 (x),

and boundary conditions

(5.12) u(t,0) = u(tl) 0,

where p and k satisfy the usual Sturm-Liouville conditions

4
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(p,p',k continuous with p > 0, k > 0). A general approximation

framework (again based on Trotter-Kato type approximation theorems

from semigroup theory) that includes as special cases both nonlinear

parabolic and hyperbolic vector systems (with quite general boundary

conditions allowed)is detailed in some of our joint efforts with

K. Kunisch 181, 19]. We shall here only briefly indicate how one

chooses the spaces and operators in the case of (5.10)-(5.12) so

that we are in a special case of the general Ritz-Galerkin ideas

outlined above.

To rewrite (5.10)-(5.12) as an abstract Cauchy problem we
choose Z = L 2(0,1) with inner product ,) = 1(x)(xlk(x)dx

and define (on an appropriately chosen domain in Z) the operator

_/(q) by SV(q) = !-(p ')' + q2
. Then with a carefully defined

nonlinear map F (see [8]) we find that (5.10)-(5.12) is equivalent

in some sense (one which is sufficient for our purposes) to the

equation in Z

z(t) = W(q)z + F(q,t,z(t)), t > 0 ---

(5.13)

z(0) q 3 .

Sturm-Liouville operator theory can be employed to obtain a complete

orthonormal set of eigenfunctions {f'} for .V(q) with
j=l

q = (1,0,...,0) and these are used to define modal approximation

subspaces ZN span {I ,...,TN. One then defines PN and

- -. i *
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N (q) in a manner similar to that for the FDE approximations

discussed above; i.e., _N (q) = N &(q)pN where PN is the

N N N
orthogonal projection P z = of Z onto Z An

j=l
approximating ordinary differential equation ((5.5) with G

replaced by F(q,t,zN(t))) is then used to formulate and solve

corresponding approximate identification problems in a (by-now)

obvious manner.

We have tested the methods proposed here for both parabolic

and hyperbolic examples and present a sample of our preliminary

numerical findings for parabolic equations. "Data" for the

examples below were generated by employing an independent method

(Crank-Nicolson) to solve numerically the equations with the

parameters q set equal to their "true" values q.

Example 5.4

We consider the equation

u t  U .Uxx + q2 u

with boundary conditions (5.12) and initial condition (5.11) where

'I q3 = 1 and @ is taken as the piecewise linear continuous ("roof")

function that is linear on [0, 1 and [1,11 and satisfies

= () = 1. A true value of q2 = .8 was chosen.

! "" 4,0
For N = 4, a start-up value of q2  = .25 was selected and the

i2

IMSL package for the approximating problem produced a converged

-4
value q2 = 8001.

%-
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We considered then the equation

ut = qlUxx + .2u

with the same initial and boundary conditions. A true value

ql .1 was taken. For N = 4 and start-up value q,0= .25,

the estimate -4 0999 was obtained.

Example 5.5.

The nonlinear equation

2
ut = u "xx + q 4 1+u

with boundary conditions (5.12) and initial condition (5.11)

where 4 is as in Example 5.4 (except ) = was investigated

with "true" parameter values (q3,q4) = (5.0,2.0). With start-up
i values (N,0, N,0)

values (q N =0 (1.0,0.0) the following estimates were

obtained.

* -N -N
N q3  q4

4 5.2274 1.9254

8 5.1374 1.9741

16 5.0668 1.9845

, True 5.0 2.0
Values

[4
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.. .. . . . . . . . . " ... . . . I I . .. i il I~l il . . .. . . .. .. .. . ""__l[ .. . . ..



41.

The theory for modal approximations in the case of hyperbolic

equations is only slightly more involved than that sketched above

for parabolic systems. For example, an equation of the form

utt = qluxx + q2ut + q3u + f(q4 ,t,x,u)

can be written as a first order vector system employing appropriate

Sobolev spaces (e.g., Z = H x L2)

; ut qlA + q3 q2 u t  f

and a convergence analysis carried out with the aid of general

spectral theorems and semigroup approximation results. For details

as well as numerical examples, see [8],[9].
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