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The placement of files among the nodes of a computer

I network can have a significant impact on the performance of

the network. The problem of determining the optimal file

l placement is known as the file assignment problem. This

l work extends previous performance oriented file assignment

research in two major areas. _We- first 1-s a method to

obtain file assignments for read-only files that allows

replication of file copies. 4 then e*-t this method to

I read-write files with both non-replication and replication

of file copies.

The network topology considered is the central server

or star network topology. The star network is analyzed

using techniques that model the system as a network of

queues. The measure of file assignment optimality used is

maximum central node throughput.

For the read-only model, we introduce the concept of

replicated files with split access as a method to improve

central node utilization. The problem is formulated as a

multiple objective integer linear programming problem. We*

solve the problem with a polynomially time bounded

heuristic. The solution in within proven bounds on the

total storage required for an optimal solution.

The ideas used in the read-only model are extended to

allow read-write files. We show that the read-write problem

without file replication reduces to the read-only problem.

We then analyze the read-only solution technique as a

heuristic method for solving the read-write problem. Bounds

are established for the error introduced by this

K



approximation. Case studies are presented and analyzed.

They provide evidence that the method gives reasonably good

answers.
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COMPUTER SCIENCE

FILE ASSIGNMENT IN A
CENTRAL SERVER COMPUTER NETWORK

LAWRENCE GENE JONES

Dissertation under the direction of Professor Derrell V. Foster

The placement of files among the nodes of a computer

network can have a significant impact on the performance of

the network. The problem of determining the optimal file

placement is known as the file assignment problem. In this

work, we present formulations of the problem and present

methods for solving it.

This work extends previous performance oriented file

assignment research in two major areas. We first present a

method to obtain file assignments for read-only files that

allows replication of file copies. We then extend this

method to read-write files with both non-replication and

replication of file copies.

The network topology considered is the central server

or star network topology. This topology also applies to a

single computer system with the central processor unit as

the central node and the peripheral input/output storage

devices as the outlying nodes. The star network is analyzed

using techniques that model the system as a network of

queues. The measure of file assignment optimality used is

maximum central node throughput.
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For the read-only model, we introduce the concept of

replicated files with split access as a method to improve

central node utilization. The problem is formulated ar a

mixed integer linear goal programming problem. A primary

objective is to assign files to match the optimal branching

probabilities as determined by queuing network analysis. A

secondary objective is to use as little storage as possible

to obtain the optimal performance. We prove bounds on the

total storage required for an optimal solution. Since an

exact solution would be computationally costly, a heuristic

solution technique is given to solve the problem in a

tractable amount of time. An algorithm is given for

computing an upper bound on the performance of the

heuristic, and case studies demonstrate the accuracy of the

method to be reasonably good.

The ideas used in the read-only model are extended to

allow read-write files. Two major concepts arise from this

extension. First, we represent update overhead as a

decrease in the number of jobs (customers) in the network.

Then, we show that file access patterns are not constant, as

in the read-only case, but are dependent upon the file

assignment. We show that the read-write problem without

file replication reduces to the read-only problem. Several

possible formulations are given for the read-write problem

allowing file replication. We then analyze the read-only

solution technique as a heuristic method for solving the

- fj- I lI I I, .. ... , l , I I - - .



read-write problem. Bounds are established for the error

introduced by this approximation for both the worst cases

and for less severe cases. Case studies are presented and

analyzed. They provide evidence that the method gives

reasonably good answers.
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CHAPTER I

INTRODUCTION

1.1. Introductory Remarks

Because computers are generally an expensive resource,

the design of efficient computer systems is a traditional

area of research. Within this framework, researchers have

long known that systems can be greatly improved without

adding more and more expensive hardware, but by making

better use of the existiq facilities. This approach is

popular because many solutions obtained this way are cheap

and easy to implement compared to the purchase of new

equipment. The result is that the user gets more

performance for his investment.

In this work, we take such an approach and analyze an

important problem related to system performance, the file

assignment problem. The problem has great applicability

both in the tuning of existing systems and the design of

future systems, including networks of computers. This work

will provide the reader with a better insight into this

important problem.

1.2. The File Assignment Problem (FAP)

A universal characteristic of computer systems is that

information flows among the components. In most systems a
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significant portion of this traffic is due to file access,

and in many applications this traffic may be of the utmost

importance. An I/O bound system, possibly a large data base

query system or a point of sale inventory system, fits this

description very well. However, most general data

processing installations have a moderate to heavy amount of

this activity, and there is much evidence to indicate that

inquiry into the effects of this traffic is valid [Klei76,

Grah78].

The location of files among system storage devices

(i.e., what files go on which devices) obviously affects the

traffic flow, and it has been shown that file placement can

be a critical factor in system performance [Hugh73, Fost74].

We can see this intuitively. If we attempt to place all

files on the fastest system devices in an effort speed up

access, performance is likely to degrade due to queuing

delays. Likewise, underloading the fast devices is

obviously suboptimal because the faster hardware is not

being used to capacity. Obviously, there is value in

determining the "best" placement. The file assignment

problem (FAP) is the problem of where to place files in a

computer system in order to optimize some optimality

measure.

One frequently used optimality measure is minimum cost.

Models that take this approach generally account for query,

update, and storage costs. These models tend to ignore

queuing delays or introduce them indirectly as constraints.

!A
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The other common optimality measure is optimal

performance. Performance oriented models tend to rely on

queuing theory for solutions. Examples of optimal

performance measures would be maximum throughput or minimum

response time. Both cost optimization and performance

optimization produce answers that are useful depending on

the application.

1.3. The Branching Probabilities Problem (BPP)

The branching probabilities problem (BPP) is a

different problem but closely related to the file assignment

problem. To approach this problem we model a computer

system as a network of queues. This approach has served

very well in the past as a method for modeling systems

[Grah78]. Additionally, it can provide a theoretical bound

on the performance we can obtain.

Consider the queuing network of Figure 1.1. Here jobs

(customers in standard queuing terminology) travel among the

service facilities (nodes) and may have to wait in a queue

before receiving service. This particular model is called a

central server model since all traffic is funneled through a

central node, n(O) (the central server). This network is

also said to be a closed network because the total number of

customers in the system is finite and constant. The

branching probabilities, P(j), j=,...,n, represent the

probability that a job from n(O) will request service at



4

node n(j). The probability that a job from n(j) j=l,...n

will request service at n(O) is 1 for the central server

model.

We can see intuitively that the values of the branching

probabilities may significantly affect performance measures.

For example, if p(j) > p(i) and the service rate of n(i) >>

the service rate of n(j), we would expect that increasing

p(i) at the expense of p(j) might result in increased

throughput and reduced expected waiting time.

n

Fig. 1.1. Central server queuing network.

We now have the foundation to define the problem known

as the branching probabilites problem (BPP). This problem

is to find a set of optimal branching probabilities,

P*(j)'s, that yields the optimum performance. Typical

performance measures are maximum throughput at the central

node, or minimum expected response time for a job.



5

1.4. FAP-BPP Relationship

We may demonstrate a close relationship between the

file assignment problem and the branching probabilities

problem. Consider the queuing network model of a computer

system in Figure 1.2. This represents a computer system

with two input/output (I/O) devices and a central processing

unit (CPU). The CPU in Figure 1.2 corresponds to n(O) in

Figure 1.1 since all I/O requests are processed by the CPU.

Note that a particular assignment of files to devices

affects the traffic flow, and hence the P(j)'s, from the CPU

to the I/O devices. A file assignment that routes traffic

in an attempt to match the optimal branching probabilities

may be viewed as a realization of the BPP solution in an I/O

bound system. A simple example will serve to clarify .:he

concept.

Consider the simple system of Figure 1.2 together with

the data in Figure 1.3. Assume we have an oracle that

solves the BPP as: P*(l) = .7, P*(2) = .3 for maximum CPU

throughput (i. e., send 70% of the traffic from the CPU to

device 1, and 30% to device 2. How the p*'s are actually

determined will be discussed in Chapter II. They are a

nonlinear function of the service rates and other

parameters.) In Figure 1.3, the access frequencies for the

three files may be considered as normalized empirical values

obtained by monitoring file accesses during a period of

time.

Y
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Fig. 1.2. Queuing network model of a computer system.

BPP solution
P*(l) = .7, P*(2) = .3.

FILE ACCESS FREQUENCY
A .3

B .5
C .2

An optimal assignment
DEVICE 1 DEVICE 2
Files B,C File A

Fig. 1.3. An optimal file assignment.

In this example the accesses to file A egual 30% of all file

accesses, file B is accessed 50% of the time, and file C is

accessed 20% of the time. Note that the optimal file

assignment routes 70% of the file access to device 1 by

placing files B and C on that device, and routes 30% of the

accesses to device 2 by storing file A on that device. In

[
MP
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this assignment the total file access frequencies assigned

to each device matches the optimal branchinq probabilities

exactly, therefore CPU utilization is maximized.

1.5. Justification for research

In this section we will provide evidence that this

problem is worthy of a signficant research effort. We will

do this by demonstrating that the problem is difficult to

solve and that its solution produces useful benefits.

1.5.1. Difficulty of the problem

The file assignment problem is a computationally

difficult problem. Eswaren has shown a simple formulation

to be NP-complete [Eswa74]. The NP-complete problems are a

set of problems for which there are no known algorithms that

execute in less than exponential time with respect to the

length of the input. This result strongly implies that it

may not be feasible to seek exact FAP solutions for

realistically sized problems, and that good heuristics

should be developed. Researchers seeking exact results have

typically had to solve integer programming problems or use

other computationally costly enumerative methods.

Dowdy also empirically demonstrated that good heuristic

solutions may be difficult to obtain [Dowd77]. Dowdy had

,* eight computer scientists "eyeball" PAP solutions for a

completely connected, three node network with ten files to

assign. Performance measures were computed for all possible

A
f.
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assignments. The results showed that the average of all

possible solutions was slightly better that the average

solution produced by the computer scientists.

1.5.2. Benefits from problem solution

While the problem is difficult to solve, the benefits

from its solution may be substantial. Central processor

throughput improvements of up to 24% have been realized in

actual practice merely by relocation of files [Hugh73,

Fost74]. Hughes and Moe, experimenting with a UNIVAC 1108,

realized a 24% improvement in CPU utilization by

reallocation of files. Foster, working with a CDC 6600,

realized a 20% improvement. These are significant gains

indeed when we consider that they were obtained without any

additional hardware or complications to the operating

system.

1.6. The Problem in Perspective

In this section we will show where the file assignment

problem fits with respect to other computing issues. The

file assignment problem is part of the overall problem of

how to design "better" computing systems. The file

assignment problem impacts both on the improvement of

existing systems and also on the design process. We will

look at how the FAP fits into the analysis of both stand

alone systems and networks of computers.

44Q
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1.6.1 Single System Applications

File assignment is generally recognized as an important

factor in system tuning [Ferr78, Svob76]. This puts file

placement in the same category with specification of

operating system parameters (e.g. quantum size, degree of

multiprogramming), selection of resource management

algorithms, and even pricing policies. From this we see

that FAP solutions may impact on both improvement studies

and selection studies.

FAP solution (and variations on the problem) may also

impact on the design process. For example, file assignment

studies may prove useful in selecting speeds and capacities

for a system storage hierarchy. It is also a factor that

may help a designer choose among a set of optimally tuned

alternatives.

1.6.2 Network Applications

When we expand our horizons to networks of computers,

FAP solutions are still important as a system tuning tool.

As we have demonstrated, the stand alone system may be

represented as by a star network model. As we move to more

complicated structures, FAP solutions become more difficult

to obtain, but we can easily envision how the solutions can

impact on network performance.

However, with regard to the design process, the PAP

takes on added importance in a network. Lee has determined

a a
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that file placement is one of the three major dimensions for

the design of a distributed data base system [Lee78]. His

study lists file placement, real time data control, and data

base structure as the primary areas to consider in a design

methodology. Peebles and Manning also list file placement

among their critical design issues [Peeb78]. Given the

current trend toward networking, it appears that the FAP

will take on additional importance.

1.7. Approach

In this section we will consider the scope of the

problem to be considered, note the major analytic tools to

be employed, and state our major assumptions.

1.7.1 Scope

Here we define the bounds on the problem to be

investigated. We will establish the network topology to be

considered, define our measure of optimality, and state the

generality of our model with respect to the types of file

accesses modeled.

This work will be confined to analyzing a star (central

server) network topology. There are three important

justifications for this restriction. First, as

demonstrated, the star topology can represent a stand alone,

single CPU computer system. This obviously has great

applicability. Second, the results obviously also apply to

a star configured network of computers, and this is af 1
-- I I: I I Il I H
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commonly used interconnection structure (Ande751. Finally,

since there are open questions for the relatively simple

star topology, it is appropriate to more fully explore this

structure before moving to the more complex structures.

With regard to the choice of an optimality measure, we

noted in Section 1.2 that some models optimize costs while

some models optimize performance. In this work we choose to

optimize performance. Specifically, we use maximum CPU (or

central node) throughput as our optimality criterion.

We choose to optimize performance for three primary

reasons. First, performance oriented models have great

applicabiliy. They produce answers that are directly useful

for system tuning studies. Second, for most applications,

peformance models are more realistic. They explicitly

account for the queuing delays that are significant in

multi-user environments. Finally, while we choose

performance as our main thrust, this does not mean that cost

considerations must be thrown out the window. The converse

is not necessarily true. One way cost factors may be

included is as constraints in the assignment formulation.

Another obvious alternative is that a designer may have

several performance optimized alternatives to choose among,

and he can make a cost/performance study to assist him.

Given that performance is to be optimized, we must then

determine which performance measure to use. Throughput has

been chosen, first of all, because it is a very standard

..". r.
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performance metric. For this particular problem it also is

a very appropriate choice. By maximizing throughput we are

also maximizing the utilization of the central processor.

Note that this increased utilization is not in the form of

overhead but derives from useful work performed more

efficiently. It is useful to know the maximum throughput we

can obtain as a function of file placement since the files

must be placed somewhere.

Finally, our study will allow full generality of file

access. We will deal with files that can be queried (read

files), updated (write files), or both. Some studies have

dealt only with read-only files. This is due to the

additional complexity introduced when updates are allowed.

For completeness of presentation, we begin by considering

read-only files, but we ultimately generalize to account

for read-write files.

1.7.2. Analysis Tools

Most of the analytic tools come from operations

research and mathematics. Queuing theory and nonlinear

programming are used in the solution of the BPP. File

assignments are performed using mixed integer programming

and/or linear programming. Many problem formulations are

represented as goal oriented programming problems (see
'4
, * Chapter II). Finally, inductive proofs are used to provide

useful lemmas and theorems.

" 1.
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1.7.3. Assumptions

In this section we identify our major assumptions and

present justification for these assumptions. The major

assumptions deal with the work load on the systems to be

modeled, and the assumptions that are necessary to allow a

reasonable attempt at analyzing the systems.

First of all, we assume that the systems to be analyzed

are not compute (CPU) bound. Obviously this model is most

appropriate for systems that have heavy I/O traffic.

However, the studies by Hughes and Moe fHugh73] and Foster

[Fost74] were based on systems with a wide mix of jobs.

Their studies demonstrate that models such as these can

provide useful results for general purpose systems.

We will model our system as a closed, central server

queuing network with the usual attendant assumptions to

allow closed form solutions. These assumptions will be more

carefully detailed in Chapter II. Briefly, they include the

assumptions of exponential service times,

first-come-first-served queuing discipline, a fixed number

of customers, and a steady state condition of the system.

These standard assumptions have proven to work well in

practice (e.g., see [Klei76] or [Lips77]) and in any case

allow computation of good answers that are otherwise

4unattainable.

Finally, we assume that the file access patterns are

essentially static. Thus, if a significant environment

I!
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change occurs, it may be appropriate to determine file

access patterns under the different conditions. Separate

FAP solutions could then be computed for each configuration.

For example, we might expect different file access patterns

during different shifts in a production environment.

1.8 Overview

The organization of the remainder of this thesis is as

follows. Chapter II is a background chapter. First, it

provides a literature review of work relevant to the FAP and

the BPP. It then introduces some of the notation and basic

concepts that will be used throughout the remainder of the

thesis. Chapter III deals with the file assignment problem

assuming that we are dealing with read-only files. Chapter

IV then generalizes the results to include read-write files.

In both Chapters III and IV we will address both replicated

and nonreplicated file assignments. Finally, Chapter V

summarizes the contributions and points to further areas of

research.

A.



CHAPTER II

BACKGROUND

In this chapter, we provide background material for the

file assignment problem. In Section 2.1, we review the

literature related to the FAP and the BPP. In Section 2.2,

we present concepts and notation that are central to the

rest of this work. We first discuss the goal programming

concepts used in our FAP formulations. We then discuss some

of the main ideas from queuing network theory. Finally, we

briefly discuss the BPP solution techniques we rely on for

the central server model.

2.1. Previous Research

There are many possible ways to organize the existing

literature related to the file assignment problem. I will

adopt a variation of Dowdy's [Dowd77] taxonomy which

classifies the literature by problem formulation and

solution techniques. The main divisions will be among the

FAP, the BPP, the combined problems, and other related work.

The FAP is further subclassified into linear programming

models and queuing models as well as whether the models

consider more than one file.

Recently Dowdy and Foster (Dowd78] have produced a

comprehensive survey of FAP and BPP research. They have

15
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produced a comparative table that summarizes some major

features of the various models. This table can be found in

Appendix A.

2.1.1. File Assignment Problem

2.1.1.A. Linear Programming Models

The largest body of literature is devoted to this

approach. Generally these models are cost, rather than

performance, oriented and as such may be somewhat artificial

for many applications. Sometimes important variables must

be known in advance when they are more appropriately

decision variables. Queuing delays are either ignored or

dealt with indirectly.

2.1.I.A.l. Single File Linear Programming FAP

These models optimize single file placement

independently of the other files and obviously queuing

delays are ignored.

Casey [Case72] formulates a linear cost model including

update, query, and storage costs to determine the number and

placement of copies for a single file. He notes that his

problem is related to the warehouse location problem.

Assuming update and query costs are equal, he proves an

upper bound on the number of copies and shows monotonicity

of a "cost graph" used to heuristically determine a local

optimum solution. Eswaran [Eswa74] shows that this problem

AI
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is NP complete by reducing the minimum set cover problem to

Casey's problem.

Levin and Morgan fLevi75, Morg77] also formulate a cost

model including processing, update, query, and storage

costs. They claim to have solved the multiple file problem

but in reality they optimize file placements independently

of each other. This means that queuing delays cannot be

accounted for correctly. Their contributions include

accounting for file access dependencies, dynamic access

patterns, and probabalistic access patterns. Their

inclusion of response time constraints ignore the fact that

the variables are not independent of the file assignment.

Chandy and Hewes [Chan76] formulate a model similar to

[Case72]. They solve the problem with a heuristic using

linear programming that relaxes the integer constraints on

file copy assignment to obtain a lower bound cost measure.

They then utilize a hill climbing heuristic to search "near

by" for a near optimal integral assignment and to provide an

upper bound cost measure. Computational case studies show

that in almost all cases the lower bound and upper bound

solutions were the same. They recognize that this model

only represents a partial solution to the problem and that

queuing aspects must be considered.
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2.1.1.A.2. Multiple File Linear Programming FAP

These models are generally more realistic than the

single file models. Some tend toward performance

optimization but most still ignore queuing delays.

Ramamoorthy and Chandy [Rama70] consider the assignment

problem in a memory hierarchy. Given a program, its data

requirements, and access profile, and a hierarchy of storage

devices, they determine a set of memory sizes and types in

order to minimize average access time subject to cost

constraints. They model for a multiprogramming, multi-file

environment with integer constraints on the memory modules.

Queuing delays are ignored and the model is most appropriate

for very predictable programs.

Arora and Gallo [Aror7l] seek to minimize the sum of

execution, access, and transfer times in a memory hierarchy

subject to size constraints. Queuing delays are ignored in

this portion of the model. They also consider a separate

queuing model to determine optimal memory sizes from a set

of alternatives. These two procedures are used in an

iterative fashion to improve the cost/performance ratio.

Chu [Chu69, Chu73] deals with queuing delays and file

allocation in a totally connected network. He seeks to

minimize update, query, and storage costs subject to device

capacities, a minimum response time, and a predetermined

number of redundant file copies. This is formulated as a

0-1 nonlinear programming problem and suffers greatly from

I
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intractability. Also it does not seem appropriate to have

to provide the number of file copies. This should be

determined by the solution technique.

Casey [Case73] tackles the problem of finding a file

assignment, a tree network topology for data routing, and

data line capacities to handle the traffic while minimizing

line rental and file storage costs. The problem is a

nonlinear, mixed integer programming problem and solved

heuristically. No measure of optimality is provided.

Mahmoud and Riordon [Mahm76] address the problem of

file allocation and communication link capacity for a fixed

topology. They seek to minimize storage and communications

cost subject to a ceiling on message delay and a file

availability requirement (a reliability constraint).

Solution to the file copy aspect is difficult and therefore

approximated. No bounds are given to measure the "goodness"

of the heuristic. The remaining problem is a nonlinear

integer programming problem. Computational results suggest

that the technique may be intractable for realistically

sized problems. A shortcoming of the formulation is the

exclusion of storage capacity constraints.

2.1.1.B. Queuing Models

The standard assumptions for most queuing analysis

apply here. Service and arrival times are exponential and

the queue disciplines are restricted, usually FIFO. These
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assumptions have proven to work well enough in practice, and

without them, analytic solutions are usually impossible to

obtain.

Hughes and Moe [Hugh73] use a queuing model in a very

pragmatic fashion to analyze a specific computer system.

Their objective is to maximize CPU throughput on a stand

alone system with four primary storage devices. Among other

things they analyze the effect of reallocating the I/O load

by file redistribution. They use a rule of thumb formalized

by Buzen [Buze7la,Buze7lc]: 1) when the degree of

multiprogramming is high, load devices proportionate to

their speeds; 2) when the degree of multiprogramming is low,

overload the faster devices. They demonstrate the

importance of the file allocation in a case study whereby

CPU throughput is improved by 24%.

Buzen and Chen [Buze74a] consider a queuing model to

balance the message traffic in the memory hierarchy of a

central server system in order to minimize response time.

The primary drawback is that they solve for what corresponds

to an open system with an infinite number of customers.

Buzen and Goldberg [Buze74b] show that this is a poor

estimate for a closed system except for very low device

utilization and very high degrees of multiprogramming.

Lipsky and Church [Lips77] apply known queuing theory

results to a case study of an IBM 360/65 J system. Their

objective is to obtain maximum productive (non-overhead)

- ,. ,
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throughput. The decision variables are the branching

probabilities to a nonhomogeneous set of disks. Their model

shows a 30% difference in productive utilization between the

best and worst case tests. As a result they place the most

heavily accessed data sets on the faster disks.

2.1.2. Branching Probabilities Problem

Buzen [Buze7la, Buze7lc, Buze73] considers the BPP as

applied to the central server model. The objective is to

find the optimal branching probabilities to the peripheral

devices so as to maximize CPU throughput. Buzen formally

developes the load distribution rules of thumb used by

Hughes and Moe [Hugh73].

Price [Pric74] provides the important result that CPU

utilization as a function of the branching probabilities is

unimodal for the central server model. This result verifies

the solution techniques of Buzen [Buze7lc], Foster and

Browne [Fost76], and Foster, Dowdy, and Ames [Fost77].

Dowdy [Dowd77] solves for the optimal branching

probabilities in a general network with the objective of

maximizing overall network throughput (netput). Netput is

defined as the sum of all the throughputs for all nodes in

the network. The problem is solved by the same nonlinear

programming technique used by Foster, Dowdy, and Ames

[Fost77]. The unimodality result of Price [Pric74] is

unfortunately not applicable to general networks.

*1
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Therefore, it is unknown whether netput is unimodal in

general. Dowdy provides empirical evidence that netput may

be unimodal by exhaustively examining several cases for a

three node network. In all cases, netput was shown to be

unimodal.

2.1.3. Combined FAP and BPP Problems

The solution techniques here recognize that a

particular file assignment impacts on the branching

probabilities. In particular the number of files stored on

a device affects the average service rate of the device.

Therefore there is an iterative approach between BPP

solution and FAP realization of the probabilities.

Foster and Browne [Fost76] seek to maximize throughput

in a central server model. Queuing delays, device

capacities, and file reusability are included in the model.

The optimal probabilities are calculated via an exhaustive

search. The new file assignment is determined

heuristically. Dowdy [Dowd77] reports that the technique is

nearly intractable.

Foster, Dowdy, and Ames [Fost77] extend the work of

Foster and Browne [Fost76] with a technique that iterates

between a BPP solver (Micro model) and an integer

programming file allocator (Macro model) that seeks to

realize the optimal branching probabilities (BP's). The

network topology is a central server model also called a

-- - - '"



23

star network. The Micro model solves the BPP via nonlinear

programming. The Macro model solves an integer programming

problem that minimizes the sum of the differences between

the optimal BP for a device and the file traffic assigned to

the device. The assignment is subject to device capacity

constraints, and integrality of files (no file splitting).

The Macro file allocator provides exact, optimal answers but

takes a long time to compute moderately sized problems. The

overall process iterates until CPU throughput is maximized.

Jones and Foster [Jone79a) apply heuristic techniques

to the general approach of [Fost77]. They sacrifice some

model accuracy to obtain more reasonable computational

speeds. First, service rates are assumed constant and are

computed on the basis of overall average message length.

This simplification introduces some inaccuracy but

eliminates the costly iteration between the Micro and Macro

models. Second, the integer restrictions are relaxed and a

similar linear programming problem is solved. The answer is

rounded to a feasible integral solution and the possible

error introduced is calculated. While no error bounds are

proven, test cases demostrate that this approach can lead to

reasonable success.

2.1.4. Related Work

Here we reference a pertinent queuing analysis tool

called ASQ that is not specifically related to the FAP or

Ii
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BPP but may be useful in obtaining solutions to these

problems. ASQ is a large FORTRAN IV program that was

developed at the University of Texas and was later extended

at Duke and Vanderbilt Universities [Aspl78]. ASQ stands

for Arithmetic Solutions to Queues and provides the

capability to anlyze queuing networks. Users may

interactively design, build, and analyze networks of queues

with a great deal of flexibility. Among other things, it

can be useful for determining approximate solutions to

complex BPP problems.

Ames and Foster (Ames77b] address the problem of when

to reassign files assuming the file access patterns are

dynamic rather than static. They assume the usage patterns

are unknown and vary with time. A predictive algorithm is

used that bases its prediction on past history. When it is

established that the predicted gain minus the overhead

involved with a file reassignment is greater than the

current performance, then a file reassignment is made.

Various strategies were analyzed using an event driven

simulation. Adaptive file reassingment policies were found

to yield around 50% better performance.

2.2. Notation And Some Basic Concepts

This section will explain most of the basic concepts
4

' needed for the rest of this work. First, we give a brief

overview of the notation and concepts used in multiple
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objective goal programming. Then, we present the basic

notation for queuing networks and discuss the significant

assumptions involved. Finally, we discuss the method of

computing the optimal branching probabilities.

2.2.1 Goal Programming concepts

In many formulations of the file assignment problem, as

well as in many "real world" problems, we encounter the need

to optimize multiple conflicting objectives and find that a

weighted objective function is inappropriate. Goal

programming offers a method of formulating and solving such

problems. In this section we offer an explanation of goal

programmming terms based on the definitions by Ignizio

[Igni76].

2.2.1.A. What is goal programming?

Linear goal programming has its basis in the more

familiar linear programming but it differs in two

significant ways. One primary extension allows the model

builder to specify multiple, preemptive objective functions.

The list of preemptive objectives are grouped into what is

called an "achievement function". The other major

difference is in the nonabsolute nature of constraints.

By allowing a multiple objective achievement function,

the modeler is not forced to choose one objective to the

exclusion of other possibly desirable objectives. Instead

of stressing the optimization of a single objective, goal

-1
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programming stresses the satisfaction of multiple

objectives. For example, a manufacturer might obviously

wish to maximize his profits. However, in the same context

he might also wish to minimize overtime operation, and have

a marketing objective of selling the maximum number of a

particular widget. This type of problem is a good candidate

for a goal programming formulation.

The computation of a goal programming solution proceeds

through the achievement function optimizing objectives in

order of priority. At any given level of optimization, the

solution mechanism allows only those changes that do not

affect the optimality of a higher priority objective. In

effect, at each level we solve a problem that has additional

constraints based on the higher priority objective function

values.

Another aspect of goal programming that differs from

traditional linear programming is the treatment of

constraints. Traditionally, constraints determine the

boundaries of a system, and a solution must satisfy every

constraint absolutely for it to be considered feasible.

Goal programming substitutes nonabsolute "goals" for

constraints and attempts to minimize deviation from a

specified level rather than imposing an absolute

requirement. This is particularly useful when you consider

that many real world constraints are not truly absolute.

Goal programming returns an answer that gives a quantitative

1
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measure of deviation from a goal. The analyst may then make

his own judgements concerning absolute feasibility.

While goal programming offers many advantages over

traditional linear programming, there is a catch. The

problem with solving goal programs is that computational

overhead is increased. This may be particulary significant

when we are solving large problems or a lot of them as in a

branch and bound type approach. For this reason goal

programming may be an unaffordable luxury in many

applications.

In this work we attempt to borrow the good aspects of

goal programming and discard the computationally costly

aspects. The primary strength of goal programming from our

point of view is in the ability to formulate problems. Goal

programming provides a notation and a way of talking about

complex multiple objective problems. We will take advantage

of this strength. However, we recognize the computational

difficulties for this application and therefore do not

necessarily propose to solve all the problems we formulate

by goal programming methods.

2.2.1.B. Goal programming notation

We will introduce the basic goal programming notation

by demonstrating how to construct the objectives, and how to

create the list of goals for the achievement function. The

next section will give a small example to demonstrate the

concepts.

r.
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Each objective will be expressed as a function of the

decision variables, that is:

O(i) = f(i)

where O(i) represents objective i, and f(i) represents the

ith function f(X) where X = (xI , x2, .... x.), the vector of

decision variables.

Every objective will have a right hand side of the form

f(i) = b(i)

We then introduce a negative deviation variable, n(i), and a

positive deviation variable, p(i), so that each objective

has the form

f(i) + n(i) - p(i) - b(i)

We must next group objectives and assign priority

levels to the these groupings. As we do this, we must keep

in mind the preemptive nature of the goal programming

solution mechanism. This means that for priorities Pi and

Pj, i > j, Pi is preferred to Pj regardless of any

multiplier applied with Pj. Thus, if any objectives are of

an absolute nature, they should be placed in the highest

priority level. The remaining nonabsolute objectives should

be prioritized by the analyst.

The final step in model development is to establish a

list of goals as an achievement function. Given the general

form of an objective

,i
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f(i) + n(i) - p(i) = b(i)

we may achieve the three possibilities listed in Table 2.1

by minimizing a linear function of the deviation variables.

Objective Procedure Comments
(a) f(i) >= b(i) minimize n(i) Min + deviation
(b) f(i) <= b(i) minimize p(i) Min - deviation
(c) f(i) = b(i) minimize n(i) + p(i) Min total deviation

TABLE 2.1. Procedure for achieving objectives.

For each priority level we then group linear functions

of the deviation variables into an achievement goal, a i ,

where a i = gi (NP) and where gi (N,P) is the ith priority

level linear function of the deviation variable vectors,

N = (n(1), n(2) ... (m)

P = (p(l), p( 2 ), .... n(m)).

Then the overall achievement function is given as

A = (al, a 2 , ... , ak).

We may thus give the form of the general goal program

as:

Find X = (xI , x2, .... xj)

so as to minimize

A = (al, a2 . , ak)

such that

f(i) + n(i) - p(i) = b(i) i=l, ... , m

and

X, N, P >= 0.

I
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2.2.1.C. Example

In this section we present a simple problem and give

both the goal programming and the linear programming

formulations for a problem. In comparing the two

formilations, keep in mind that the two cannot be exactly

the same due to the fundamental differences.

PROBLEM STATEMENT

A manufacturing company produces two products, product

1 and product 2. Product 1 requires 2 hours of assembly

time and yields a net profit of $12. Product 2 requires 1

hour of assembly time and yields a net profit of $8. The

nonovertime production time available per week is 40 hours.

The demands per product per week are 30 units of product 1

and 15 units of produ-t 2.

The decision variables are the amount of each product

to be produced per week. In order of priority, the

objectives are:

(1) Production must not exceed demand;

(2) Maximize profit;

(3) Minimize overtime necessary.

Assume that it is possible to product a fractional amount of

the products.

4
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LINEAR PROGRAMING FORMULATION

Minimize: W * ( -(8x 1 + 12x 2 ) ) + ( I + 2x 2

subject to:

(a) x1  <= 30

(b) x 2  <= 15

(c) xI  + 2x 2 >= 40

x1 , x2 >= 0 .

We must assume that W can be a weighting factor such

that the profit maximization objective is preemptively

preferable to the overtime minimization objective.

GOAL PROGRAMMING FORMULATION

Find xI , x2 so as to

Minimize: A = ( p(3) + p(4) ), (n(l) ), (p(2) ) }

such that:

(1) 8x1 + 12x 2 + n(l) - p(l) = 10000

(2) x + 2x 2  + n(2) - p(2) = 40

(3) x1  + n(3) - p( 3 ) = 30

(4) x2  + n(4) - p(4) = 15

X, N, P )= 0.

Constraints (a) and (b) from the LP formulation

correspond to objectives (3) and (4) and are treated as

priority 1 goals. Profit maximization (objective (1)) is

priority 2, and overtime minimization (objective (2)) is

priority 3. The right hand side of objective 1 was chosen

arbitrarily but large enough to be an upper bound on weekly

profit.

--a,-
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2.2.2. Queuing concepts

2.2.2.A. Notation

As mentioned before, we will mode] our computer systems

as closed queuing networks. Consider Figure 2.1. In this

model there are a total of "NDEVS" I/O devices, each with a

mean service rate MU(j), j=l,...,NDEVS. Likewise, the CPU

has a mean service rate LAMDBA. The average degree of

multiprogramming (or in standard queuing terminology, the

number of customers) in the system is DMP. The branching

probability, P(j), j=l, .... NDEVS, represents the probability

that a job from the CPU will request service at I/O device

j. This model is called a central server model since all

traffic is funneled through the CPU (the central server).

The network is also said to be a closed network because the

total number of customers in the system is finite and

constant.

P 2

Figure 2.1. Queuing network model.
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2.2.2.B. Assumptions

Our model is based on Markovian queuing theory

assumptions. These assumptions are standard in the

literature and are necessary to allow tractable analysis in

most cases. The assumptions include: the service rates are

exponentially distributed and are independent of queue

length; the system has a fixed number of customers (DMP);

the queue discipline is first-come-first-served; each queue

provides customers for a single server; and, the system is

assumed to be in a steady state condition (i.e., no

transient effects of system initialization are present).

How significant are these assumptions? At first glance

(and indeed after some research), the assumptions seem so

harsh as to render the model useless. However, there is a

much experimental evidence to suggest that good answers can

be obtained using these assumptions [Buze75, Fost74, Giam76,

Hugh73, Lips77, Rose78]. This has puzzled many analysts

since some studies have shown that certain of the

assumptions (e.g., exponentially distributed service rates

[Brin73]) do not generally hold. This has led some

researchers to search for underlying relations in the

Markovian queuing network theory that might relate to

directly verifiable assumptions. This approach is called

operational analysis [Denn781. The application of

operational analysis principles have led to the same

mathematical equations as the Markovian assumptions. This

I
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is a significant result that adds confidence to the

Markovian models.

2.2.3 Branching Probabilities Problem Solution

A prerequisite for solving the branching probabilities

problem is the ability to compute the utilization of queuing

network nodes. The key to this computation is the

calculation of a nonlinear normalization factor, G,

formulated by Gordon and Newell [Gord67]. Buzen [Buze73]

and Dowdy [Dowd77] devised efficient methods for computing

this factor, with Dowdy's method having the computational

edge. We may compute the utilization of the CPU, given

NDEVS, DMP, LAMBDA, MU(j), and P(j), j=l,...,NDEVS, as:

UTILIZATION(CPU) = G(DMP-l)/G(DMP).

The details of the computation are given in Appendix B.

Price [Pric74] has shown that central node utilization

in a star network is a unimodal function of the branching

probabilities. Dowdy [Dowd77) then uses nonlinear

programming to compute the maximum CPU utilization by

solving the unconstrained problem:

Minimize -G(DMP-l)/G(DMP).

Associated with this value is the set of optimal branching

probabilities, P*'s. Since the space is known to be

unimodal, the answer obtained is a global optimum.

" • I L I II . ..



CHAPTER III

MODELS FOR READ-ONLY FILES

3.1. Introduction

If the models in this work were classified according to

the literature review in Chapter II, our approach would be

under the heading of "Combined FAP and BPP Solutions"

(Section 2.1.3). The model devised by Foster, Dowdy, and

Ames [Fost77] for nonreplicated, read-only files serves as a

point of departure for this research. Thus, our fundamental

approach is similar in that we solve a BPP and then solve a

FAP that attempts to realize the BPP solution. This is the

approach illustrated by Figure 1.3 in Chapter 1. In this

chapter we extend the model of [Fost77] by formulating a FAP

that allows replicated copies of read-only files.

The organization of this chapter is as follows. Before

presenting our model, we first define a new concept of file

access that we will use in our model. After this, we

present our model and give both an exact solution

formulation and a heuristic technique for solving the

problem. We then prove bounds on the total storage required

by any solution to our model, and finally, we evaluate the

effectiveness of the heuristic.

3
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3.2 File access concepts

There have been two primary concepts of file storage in

previous work: integral file storage, and split file

storage. In this section we define a new concept, integral

storage with split access. These ideas are illustrated in

Figure 3.1.

Integral file storage is the standard method used in

current computer systems. The idea is simply that a single,

integral copy of a file is stored on a single storage

device. The access mechanics are simple and are built into

conventional operating systems. With respect to system

performance, the disadvantage of this method is is that it

may not be possible to meet the optimal branching

probabilites exactly.

The split file storage concept advocates the physical

splitting of a file in order to be able to match the

branching probabilities exactly. The disadvantage of this

approach is that no operating system supports this type of

access and the problems of implementing this could be

enormous.

The concept we introduce in this work is the idea of

integral file storage with split access. With this concept

we store integral copies of a file but there may be copies

of any given file stored on different devices. By splitting

the access we mean that the operating systems does not

always have to access the same copy of a replicated file.

S... --. . 4
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Thus, the access for any such file is said to be split among

devices. By allowing the assignment of a fraction of the

total file access to a given copy of a file, it is much more

likely that the optimal branching probabilities may be met

exactly.

We can see that the optimal branching probabilities can

be met exactly using this access method if there are no

storage capacity restrictions. Since there are no capacity

restrictions, we may put a copy of each file on all the

devices. If we denote the empirically observed and

normalized access frequency to a file i by FREQ(i), and the

portion of file i access assigned to device j by

FREQFR(i,j), then we will match all P*(j)'s exactly by

assigning FREQFR(i,j) = FREQ(i) * P*(j) for i=l,NFILES

(number of files), j=l,NDEVS (number of devices). To see
NFILES

this, note that FREQ(i) = 1 by definition, and since
i=l

each device contains all files,
NFILES NFILES

X FREQFR(i,j) = FREQ(i) * P*(j) for all j.i=l i=l

Obviously, the file access traffic on each device equals the

optimal branching probability for each device.

While this storage method is not currently practiced on

standard operating systems, it has a potentially simple

implemementation. If we add entries in the system file

directory to indicate multiple copies and the percentage of

access to be given to a particular copy, the system may

generate a random number and, based on a probability

- - 4"
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distribution, access the appropriate copy. In the long run

the correct access frequencies would tend to be realized.

BPP solution :
P*(l) = .7, P*(2) = .3.

FILE ACCESS FREQUENCY
A .5
B .15
C .35

Accessing Method Optimal assignment
Dev. 1 Dev. 2

Integral Storage Files A & B File C
(.65) (.35)

Split Storage File A File B
20/35 File C 15/35 File C

(.7) (.3)

Integral Storage, File A File B
Split Access File C * File C **

(.7) (.3)

• Access frequency = .2
•* Access frequency = .15
Values enclosed in parenthesis are TOTFREQ values.

Fig. 3.1. File accessing methods.

Figure 3.1 compares optimal file assignments for the

various access methods. The values enclosed in parenthesis

are the total file access frequencies assigned to the

device, TOTFREQ. Note that the optimal branching

probabilities can be met exactly using either split storage

i I A
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or integral storage with split access. The integral storage

method misses the match by (.7-.65) = .05 for device 1 and

(.35-.3) = .05 for device 2.

3.3. Read-only, replicated file FAP model

In this section we describe our solution to the model

at a high level. First, we outline the algorithm. We then

give the goal programming formulation for the file

assignment portion of the model, and finally we outline the

heuristic techniques uses to obtain an approximate solution

to the problem.

3.3.1. Outline of Algorithm

The high level structure of the algorithm is given

below. We then describe the major steps in more detail.

(A) Read Input;

(B) Compute Device Service Rates;

(C) Solve BPP;

(D) Assign Files.

3.3.1.A. Read Input

The Read Input step reads the following data which is

summarized in Figure 3.2:

(a) File information: the number of files (NFILES), file

access frequencies (FREQ), physical file lengths (LEN),

average message lengths (MLEN);

id
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(b) Storage device information: the number of devices

(NDEVS), device capacities (CAP), mean latency times

(MLT), transfer times per word (TT);

(c) CPU mean burst time (LAMBDA), and

(d) The average number of core active jobs (DMP).

NFILES Number of files
FREQ(i) : Frequency of accessing file i, 0<=FREQ(i)<=1.
LEN(i) : Length (in words) of file i.
MLEN(i) : Average message length of file i.

NDEVS : Number of storage devices.
CAP(j) : Capacity (in words) of device j.
MLT(j) : Mean latency time of device j.
TT(j) Transfer time per word for device j.

LAMBDA : CPU speed.

DMP Degree of multiprogramming.

The limits for i and j are:
i = 1,...,NFILES, and
j = I,...,NDEVS.

Fig. 3.2. Input to model.

A

3.3.1.B. Compute Device Service Rates

Service rates are computed based on a frequency

A weighted average message length. Specifically we may

'I compute the average message length as

NFILES
AML = FREQ(i)*MLEN(i).i=l

--- ~---,-
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We then compute the service rate, MU(j), for device j as

MU(j) = 1 / ( MLT(j) + TT(j) * AML ).

3.3.1.C. Solve BPP

This computes the set of branching probabilities,

P*(j)'s, that maximize CPU utilization. It is solved using

non-linear programming as discussed in Section 2.2.3.

Recall that the result is known to be optimal for the

central server model [Pric74]. For details see [Fost77].

3.3.1.D. Assign Files

Subject to device storage capacities, we assign files

in an attempt to match the P*(j)'s. The "closest match" is

defined as minimizing the sum of the differences between the

assigned file access to a device, and the P*(j) of the

device. This problem is formulated as an integer linear

goal programming problem. The formulation is given in

Section 3.3.3.

3.3.2. Comments on the Basic Algorithm Structure

Since we state that our approach is similar to the

approach in (Fost77], it is appropriate to point out any

significant differences. The chief difference lies in the

basic structure of the algorithm. In [Fost77] the algorithm

structure in pidgin ALGOL fAho74] is:

f 'I
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Read-input;

UNTIL Convergence DO

BEGIN

Compute-Service-Rates;

Solve-BPP;

Assign-Files;

END;

The algorithm is structured this way based on a

recognition that service rates are assignment dependent.

This, in turn, may result in a different BPP solution. We

may see this dependence intuitively. Consider that if a

device has only files with very short message lengths

assigned to it, it can send more messages per unit time than

if the device has files with very long message lengths

assigned to it. Thus, the assignment determined by the

Assign-Files algorithm may indeed affect the service rates

and the BPP solution.

The most serious shortcoming of this method is that

there is nothing inherent in Assign-Files or Solve-BPP to

force convergence. This obviously means that the algorithm

may not terminate. This cannot be viewed as totally

acceptable.

We can view the algorithm proposed in this work as a

method of forcing convergence. Here we approximate the

actual service rates by using an overall average message

length. In some cases perhaps this sacrifices some

Ij
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accuracy. However, we gain the assurance that our algorithm

terminates. As further justification, the use of constant

service rates has been standard in much of the literature.

3.3.3. Goal Programming Formulation

We present the following informal formulation of the

file assignment problem. For the formal representation,

refer to Figure 3.3. The objectives of the problem are

given below with supplementary explanations when necessary.

We then list the prioritized goals of the achievement

function.

OBJECTIVES:

a. Assign 100% of file accesses. (This is a housekeeping

constraint to insure that the totality of file accesses

is accounted for).

b. Assess a fixed charge for the allocation of a file

copy. (Another housekeeping constraint to charge for

the allocation of a complete file copy even when access

is split).

c. Do not exceed the physical capacity of a device.

d. Match the P*(j)'s as closely as possible. (Try to make

the sum of the differences over all devices = 0).

, I
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e. Minimize total storage used.

f. 0-1 constraint for file copy allocation. (File copies

are allocated in integral units).

g. All variables >= 0. (Standard feasibility
constraints).

ACHIEVEMENT FUNCTION:

Priority Goals

1 Objectives a,b (Assign all accesses,

charge for copy)

2 Objective c (Stay within capacities)

3 Objective d (Match the P*(j)'s)

4 Objective e (Minimize storage used)

A
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VARIABLES: FREQ,LEN,CAP,NFILES,NDEVS same as Fig. 3.2.

ASMTFR(i,j) : Access frequency for file i on device j
divided by FREQ(i), 0 <= ASMTFR(i,j) <= 1.

ASMT(i,j) :the ceiling of ASMTFR(i,j).

n(k) : Negative deviation variable for goal k.

p(k) : Positive deviation variable for goal k.

Limits on i and j: i=l,... ,NFILES, j=l,.. .,NDEVS.

ACHIEVEMENT FUNCTION:
NFILES NFILES NDEVS

Min a=( ! (n(l)i + p(l)i) + (p(2)ij)),
i~li=l j=1

NDEVS
Y p(3)j],

j=l
NDEVS
Y, p()j p)j

j=

NDEVS
(a):~ pSMF()j I ~~ ~~ o l

j~l

(b): Y ASMTFR(i,j) + n( - p(j 1 STij for all i

(c): ASTRij ASM () *LNi)nj - p(3AM~~)j fo CA llj
for all j

NFILES
(d): X ASMTF(i ,j) * LE(i) + () (4j - p ()j CP(j)j

i~l for all j

NFILES
(d): ASMTF(i,j) -LE(i) -n(5 +n)j - p(5)j =

for all j

(e): ASMT(i,j 0,) fo all~i i,5) -j()

(g): ASMTF(i,j) = (0l for all i,j

Fig. 3.3. Goal programming formulation
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3.3.4. Heuristic Solution Outline

The problem formulation for the Assign-Files problem

given in Section 3.3.3 is precise, but unfortunately

contains integer variables. This leads to computational

intractability for realistically sized problems. Therefore,

we resort to heuristic techniques to obtain approximate

solutions in a reasonable amount of time. These heuristics

provide a solution that is optimal for achievement goals 1

and 2 and will be optimal or "near" optimal for goals 3 and

4. Sections 3.3.5 and 3.4 will furnish measures for

establishing how good the heuristics are.

For simplicity, we assume there is at least one large

mass storage device, JL' that can hold all of the files.

This is a reasonable assumption given that off-line storage

such as a tape library can easily fit this requirement. In

pidgin ALGOL the Assign-files problem is formulated as

follows:

Match-BPs;

IF Any-device-capacity-exceeded

THEN Obtain-capacity-optimal-solution;

Minimize-storage-used;

3.3.4.A. Match-BPs

This solves the computationally easier linear

programming problem that is formally stated in Figure 3.4.

The problem is to minimize the sum over all devices of the

't~U,
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differences between P*(j) and the file accesses assigned to

device j (this is goal 3 in the goal programming

formulation). This is subject to device capacity

constraints (goal 2) , the requirement to assign all file

accesses (this is contained in goal 1) , but ignoring the

integral charge for storing a file copy (also contained in

goal 1).

NDEVS
Minimize Y, EPSLN(j)

j=l

Subject to:
NFILES

(a) Y ABS(ASMTFR(i,j) * FREQ(i) - P*(j) )<=EPSLN(j)
i=1 for all j

NFILES
(b) ASMTFR(i,j) * LEN(i) <= CAP(j) for all j

i=l

NDEVS
(c) I ASMTFR(i,j) 1 for all i

j=l

(d) ASMTFR(i,j) >= 0 for all i, j

Limits on i and j: i=l,...,NFILES, j=l,...,NDEVS.

Fig. 3.4. Match-BP's formulation.

By solving this problem we obtain a solution that is

essentially goal 1 optimal (compliance with the integral

requirement is automatically met when we perform the

subsequent steps), but since the integer restriction was

ignored, the solution might not be goal 2 optimal. Thus we

require the test, "IF Any-device-capacity-exceeded", to

insure that we optimize goal 2 at the expense of goal 3, if

t _____
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necessary. This solution also gives a lower bound on goal 3

but not necessarily a greatest lower bound.

3.3.4.B. Obtain-capacity-optimal-solution

If any device capacity is exceeded, then the solution

is goal 2 suboptimal since we may trivially meet this

condition by assigning no files to a device (Recall that we

can place all of the files on the large mass storage device,

jL) . The general idea of this procedure is to reallocate

files from the offending devices in an intelligent fashion

trying to "stay close" to the unrestricted goal 3 optimum.

The offending devices are considered in the following order:

underloaded devices, perfectly loaded devices, overloaded

devices. The underloaded devices (if any) are devices that

are already somewhat capacity constrained, otherwise they

would not be underloaded. These devices then tend to limit

our ability to match the optimal P*(j)'s and should be dealt

with while we have the greatest flexibility to reallocate

files.

Within each of the categories, the offending devices

are examined in decreasing order of P*(j) value, i.e.,

largest P*(j) first. The rationale is that this is roughly

the order in which the devices can do the most "harm" to

optimality, so we deal with them while we are most flexible.

The actual reallocation of files is a localized

swapping of files and file accesses. No attempt is made to

I
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try all possible recombinations because that would be an

exponentially difficult problem, thus defeating the purpose

of the heuristic in the first place. We defer discussion of

the reassignment details until Section 3.3.6 because we

require some notation and concepts from Section 3.3.5.

3.3.4.C. Minimize-storage-used

Using the methods described in Section 3.3.5, we may

shuffle the assignment of shared files so that we do not

affect goal 3 optimality, but we can decrease the total

number of file copies below a proveable bound. The bounds

are proven in Section 3.3.5 and are:

Lower bound: Sum of the length of all files

Upper bound: Lower bound + (# devices - 1) x length

of the largest file.

We again defer some of these details until Section 3.3.6.

3.3.5. Proof of Storage Bounds

In this section we will prove upper and lower bounds on

storage required to meet goals 1, 2, and 3. First, we

provide the basic definitions, then an intuitive overview

and the basic equations. Finally, we provide the formal

proofs.

K I
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3.3.5.A. Defintions

I. TOTFREQ(j) The sum of all file access

frequencies assigned to a device j. TOTFREQ(j) =
NFILES

FREQ(i) * ASMTFR(i,j), where ASMTFR isi=l
defined as in Figure 3.3.

2. File copy matrix (FCM) An NFILES x NDEVS

matrix, M, with entries f(i,j) such that:

if f(i,j) = 0, then file i is not stored on device

j, and if 0 < f(ij) <= 1, then file i is stored

on device j and f(i,j) = FREQ(i) * ASMTFR(i,j).

Furthermore, we call a FCM a feasible FCM if

NFILES
f(i,j) = TOTFREQ(j), j=l,...,NDEVS, and

i=l

NDEVS
j1l f(i,j) FREQ(i), i = l,...,NFILES.
J=l

If 0 < f(i,j) < 1, then we say f(i,j) is a

"proper" entry.

Informally, this is a matrix that defines a file

assignment, i.e., what files are stored on which

devices and what the access frequencies are for

all file copies. The significance of a proper

entry is that more than one copy of the file it

represents will exist in the assignment. If

f(i,j) = 1, then only a single copy of file, i,

will be present.

ti I
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3. File copy walk (FCW) In a FCM, a sequence of

proper f(ij)'s such that the pattern is

[f(i 0 ,j0 ); f(i0 ,jl), f(il,Jl); f(il,j2) .... ;

f(in_3,jn_2), f(in_2,Jn_2); f(in-2,Jn-l) ] and, in

no case does ik = ik+l. For each column in a FCW,

except perhaps column j0, we say there is a "way

in" to the column. Likewise, there is a "way out"

of each column, except perhaps column jn-l"

Hence, we say P "goes through" column Jk' O<k<n-l.

Note that the first two entries are in the same

row. Likewise, the last two entries are in the

same row. A FCW that goes through n columns is

called an n-FCW.

4. File copy path (FCP) A FCW with at most one way

in and at most one way out for each row or column.

A FCP that goes through n columns is called an

n-FCP.

5. File copy cycle (FCC) A FCP such that j0=Jn-l

and i n-2 does not equal i 0 . A FCC that goes

through n columns is called an n-FCC (n-cycle).

6. Two FCM's, Ml and M2, are row equivalent iff for
NDEVS NDEVS

all i, I (f(i,j) for Ml) = Y (f(i,j) for
j=l j=l

M2). Ml and M2 are column equivalent iff for all
NFILES NFILES

j, (f(i,j) for Ml) (f (ii,j) for
ii--l i=

M2). Ml and M2 are row-column equivalent iff Ml

and M2 are row equivalent and column equivalent.
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7. An nxn submatrix, m, is formed from an NxN matrix,

M, by eliminating N-n complete rows and N-n

complete columns. Note that if m contains a

cycle, then M contains a cycle.

3.3.5.B. Overview and basic equations

In Section 3.3.5.C we present the formal proofs of the

storage bounds, but since the concepts are basically simple,

we first present an intuitive view of the main ideas of the

proofs.

Consider the feasible FCM, M, in Figure 3.5. Note that

M contains a file copy cycle, namely,

(f(l,l);f(l,2),f(3,2);f(3,1)). We may compute a row-column

equivalent matrix, M', in at least two ways. First, we

could recompute the f(i,j) as f'(ikJk) - f(ik,jk) - Vl,

f' (iJ k+l) = f(ik,Jk+l) + V1 as long as Vl <= .11. If we

choose Vl = .11, we obtain the matrix in Figure 3.6. Note

that it has one less file copy (non-zero f(i,j)) than Figure

3.5. We could also recompute the f(i,j) as f'(ik,Jk) =

f(ik,jk) + V2, f' (ikjk+l) = f(ikjk+l) - V2, as long as V2

<= .09. If we choose V2 = .09, we obtain the matrix of

Figure 3.7. Note that it also has one less file copy than

Figure 3.5.

I

_

I .... L . . . . . I' I II A,
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Files Devices FREQ(i)

1 2 3

1 .21 .19 0 .4

2 0 0 .3 .3

3 .09 .11 .1 .3

P*(j) .3 .3 .4

Fig. 3.5. A file copy matrix (FCM), M.

Files Devices FREQ(i)

1 2 3

1 .1 .3 0 .4

2 0 0 .3 .3

3 .2 0 .1 .

P*(j) .3 .3 .4

Fig. 3.6. MI. computed using Vl.

Files Devices FREQ(i)

1 2 3

1 .3 .1 0 .4

2 0 0 .3 .3

3 0 .2 .1 .3

P*(j) .3 .3 .4

Fig. 3.7. M', computed using V2.

We now formally present the computations just

illustrated. Later, we will see that it may be useful to
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perform reassignment along a FCP as well as a FCC.

Therefore, both cases are illustrated.

Given a FCM, M, containing a FCP, P = f(i0 ,J0);

f(iOJl),f(iljl); .... f(in_2 ,jn-l);f(in_ 2 ,jnil) ], where

VI <= MIN(f(ikjk)), 0<=k<=n-2, and V2 <= MIN( f(ikljk) ),

l<=k<=n-l, we may compute another FCM, M', as either:

f(imJk) - V1 , m = k

(a) f' (imjk) =

f(imjk) + V1 , m = k-i, or

f(im'Jk) + V2 , m = k

(b) f' (imjk) =

f(imJk) - V2 , m = k-l.

Furthermore, the new matrix, M', is row equivalent to M and

column equivalent except for columns J0 and Jn-l' which

differ as follows:
NFILES NFILES

(1) f'(iJ 0 ) - V1 = f(i'J0)'
i=i i=

NFILES NFILES
f'(i,Ji~) + V1 = f(i,j

i= i=n-

if the f's are computed as in (a), or

NFILES NFILES
(2) f'(i,j 0 ) + V2 = f(iJ0),

i=l i=l

NF ES NFILES
f'(ijn-I) - V2 = i _ f(iJn- 1 )'i "= n-

if the f's are computed as in (b).

,I I . . ...
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In the case where M contains a FCC, C = [f(i 0 ,J0);

f(i0,Jl),f(ilJ I )  ; ... ; f(i k_2,Jk -l), f(i k lJk -l);

f(ik-lJO)], and Vl and V2 are as before, we may compute a

new FCM, M', using either (a) or (b) as above. The

resulting FCM, M', is row-column equivalent to M.

The verification of these assertions is

straightforward. By our choices of VI and V2 we guarantee

that no f(i,j) will be recomputed to be less than 0. Then,

since we add and subtract the same terms exactly once for

each row in the FCP or FCC, we maintain row equivalence.

Note that for a feasible FCM no f' (i,j) will be greater than

1 since the sum along any row is <= 1 to start with. In the

case of the FCP, we perform only one calculation in columns

J0 and in-l hence the excesses/deficiencies follow as

given. The other columns are recomputed like the rows and

column equivalence is maintained. In the case of the FCC,

the final computation occurs in the same column as the first

computation. We thus have the case that the

excesses/deficiencies cancel each other out yielding column

equivalence for all columns for M' as well as row

equivalence.

In Section 3.3.5.C we show that as long as we choose

our Vl's to be the Min (f(ikik)) term on a file copy cycle,

or choose V2's to be the Min(f(ik 1ljk)) on a FCC, we may

eliminate file copies until there are no more cycles. We

establish necessary and sufficient conditions for the

I
'A
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existence of a cycle, and prove the maximum number of matrix

entries (file copies) such that the matrix has no cycles.

Finally, we establish the worst case storage condition to

provide an upper bound on the storage required.

3.3.5.C. Proofs

LEMMA 1.

A file copy matrix, M, has a file copy cycle iff M contains

an nxn submatrix, m, with n<= MIN(NDEVS,NFILES), such that

each of the rows has 2 or more non-zero entries and each of

the columns has 2 or more non-zero entries.

PROOF:

First we assume that each row and column of a FCM must

contain at least one non-zero entry, otherwise we redefine

the dimensions of M. We also note that for a cycle to have

both a way in and a way out of a column (required if an

entry of that column is contained in a cycle), the column

must have at least 2 different rows with non-zero entries

and each of these row entries has a corresponding non-zero

entry in another column.

(1). Given an n-cycle, we must have an nxn submatrix with

the specified properties.

This follows from the definition of a file copy cycle.

We get the desired submatrix by choosing the rows and

columns visited by the n-cycle.

'pro

- -A!,
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(2). Given the n x n submatrix as specified, we will show

that there must be a k-cycle, k <= n.

Any one of the n columns of the submatrix has at least

2 different non-zero entries, i.e., a non-zero entry in at

least 2 rows. In turn, each of these rows has another

non-zero entry in a different column. Therefore, we see

that all n columns have a way in and a way out. We may

build a cycle as follows. Start at a non-zero entry. Go to

a non-zero entry in the same row. Then go to a non-zero

entry in the same column as the previous entry. Then go to

a non-zero entry in the same row, etc.. Repeat this process

until a row or column is visited that has been previously

visited. Delete the portion of the path from the beginning

up to the repetition point. What is left is a cycle.

Observe that this is a standard Eulerian type construction

from graph theory.

LEMMA 2.

An n x m file copy matrix, M, with at least n+m

non-zero entries, n and m >= 2, contains a file copy cycle.

PROOF:

We induct on s = n + m. The basis is s = 4. For s=4

we have a 2 x 2 FCM where all entries are non-zero. This

obviously meets the Lemma 1 conditions for a FCC.

Assume that if 4 <= s' < s and M' is an n' x m' FCM

with s' - n' + m', n' and m' >= 2, and with at least s'

non-zero entries, then M' contains a FCC.
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Let M be an n x m FCM with s = n + m, n and m >= 2, and

with at least s non-zero entries. If every row and every

column of M contains at least 2 non-zero entries, then M

contains a FCC by Lemma 1. Therefore, without loss of

generality, we assume at least one row has no more than 1

non-zero entry. Let R be the set of all rows with <= 1

non-zero entries, and let r 1 be the number of rows in R .

Now let M' = M excluding the R1 type rows. So M' is a

(n-rI) x m FCM with at least s' = (n-rI) + m non-zero

entries. We need only establish that n' = n - r1 >= 2. If

n' = 0, i. e., n = rI , then M had only n = 1 non-zero

entries, a contradiction. If n' = 1, i. e., n = r 1 - I,

then M had n - 1 non-zero entries in R1 type rows and at

most m non-zero entries in the other row for a total of <=

(n-l) + m, a contradiction. Thus, n' >= 2 and M' meets the

criteria of the induction hypothesis. Since M' contains a

FCC, M contains a FCC.

- w w = -
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THEOREM 1.

Given that at least one device has the capacity to hold all

files at one time, the minimum storage necessary to

optimize goals 1, 2, and 3 lies between

NFILES
LEN(i) and

i=l

NFILES
LEN(i) + (NDEVS - 1) x LEN(iL),i=1

where file iL is the largest sized file in words.

PROOF:

LOWER BOUND:

Since all files must be assigned, the lower bound is

trivially a single copy of each file. This requires
NFILES

X LEN(i) words of storage.
i=l

UPPER BOUND:

We know from Lemma 2 that by eliminating file copies

along file copy cycles we can guarantee that no assignment

need have more than NFILES + NDEVS - 1 copies (FCM

dimensions are NFILES x NDEVS). Consider the worst case

example where the largest file must be replicated NDEVS

times. In the worst case we can have FREQ(iL) > 1 -

Min(P*(j)) for all j. This forces NDEVS copies of i The

other files are assigned once, and the bound is as stated

I
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3.3.6. Details of the Reassignment Heuristics

3.3.6.A. Obtain-Capacity-Optimal-Solution Reassignments

In this section we address the file reassignme nt

heuristics used in the Obtain-capacity-optimal-solution

procedure overviewed in Section 3.3.4.B. We will also give

measures of the potential goal 3 optimality loss when we

perform the localized file reassignment. The general idea

of these heuristics is to reassign file accesses until all

devices are goal 2 optimal (i.e., no capacities are

violated) while trying to "stay close" to the

non-integer-restricted goal 3 optimum determined by

Match-BPs (Section 3.3.4.A.). Note that this optimum may be

unrealizable if the integer variables had been taken into

account.

We define the sets J-,J+,J0 as follows: J- is the set

of access underloaded devices (TOTFREQ(j) < P*(j)); J+ is

the set of access overloaded devices (TOTFREQ(j) > P*(j));

J0 is the set of devices having TOTFREQ(j) = P*(j). Note

that after any heuristic reassignment step we must

reclassify the devices into these sets. As mentioned ii,

Section 3.3.4.B, we deal with devices in the following

order: J-, JO, J+. Within each set we consider devices in

decreasing order of P*(j). We treat devices in JO as

members of J- or J+ if they share a file with a device in

the respective set. It is not possible for J- and J+ to

I,4
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share a file and still be goal 3 optimal (see Section

3.3.6.B).

The high level structure of the reassignment process is

given in pidgin ALGOL as:

WHILE Any-capacities-violated DO

BEGIN

Device := Next;

WHILE Capacity-violated(Device) DO

BEGIN

Initial-reassignment (Device);

Secondary-reassignments (Device);

END;

END

The "Next" function furnishes the next device for file

reassignment according to the stated priority scheme. The

following sections describe the other major procedires. All

measures of goal 3 optimality loss are with respect to the

non-integer-restricted solution to Match-BPs (Figure 3.4).

In most cases these measures include a multiplictive factor

of 2. This is because one device's total frequency loss

must be one (or more) other device's total frequency gain.

This is required by constraint (c) in Figure 3.4.

Regarding goal 3 optimality loss, there is a crucial

point to keep in mind. Namely, the loss of goal 3

optimality will not necessarily mean a decrease in CPU

utilization. A utilization decrease will definitely occur

, , . . . .d i -i '
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if the service rates are truly assignment independent as in

the case where all average message lengths (MLEN's; are the

same. Surprisingly, where service rates are actually

assignment dependent it is possible to obtain better CPU

utilization. This phenomenon is difficult to predict due to

tLoe nonlinear nature of CPU utilization. This is

demonstrated in Section 3.4.2.E.

3.3.6.A.1. Initial reassignments

The initial file reassignment considers only those

files stored on an offending device. Exhauctive

reassignment is not attempted for tractability reasons. The

steps below define the initial reassignments used for a

device j'. Only one of the initial reassignments is

performed per iteration.

1. Eliminate all files, i, that cannot fit on device

j', i.e., all i such that LEN(i) > CAP(j'). Place the files

on device JL (the large mass storage). The objective 3

optimality loss is 2*ASMTFR(i,j')*FREQ(i) for all files i

involved.

2. Next we consider three different ways to reassign

files from j' and pick the file that causes the least loss

of qoal 3 optimality. Denote this file by i'.

(a). Check for file copy cycles that include j'. If j'

is in one or more FCC's and if any f(i,j') on the cycle

equals Vl or V2, then we may eliminate file i on device

I
- -
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j' with no loss of optimality. Denote this file by A,

and denote the loss to optimality by A-loss = 0. If

there is no such file, let A-loss = 2 + e, e>0. The

value of e is arbitrarily chosen. As long as e is

greater than 0, A-loss is larger than the worst

possible optimality loss (namely, 2.00) to indicate the

non-existence of file A.

(b). Consider files on j' that are shared with other

devices k. Denote by B the shared file which causes

the least loss to optimality when all of f(i,j') is

allocated to the sharing device k. The loss to

optimality, B-loss, is:

i. If j' is an element of J'-, B-loss =

(MIN (TOTFREQ(k) + f(i,j') - P*(k) for all devices k

sharing copies of any i with j') + f(i,j') ).

ii. If j' is an element of J+, 2*MIN(f(i,j')).

(c). Finally, we denote by C the file with the

MIN(f(i,j')). Denote the potential loss of optimality

as C-loss = 2*MIN(f(i,j'))

We now choose i' the file corresponding to

MIN( A-loss,B-loss,C-loss ), and reassign i as follows: if

P = A, the reassignment is along the cycle as in Section

3.3.5; if i' % B, the reassignment is to the device k

sharing the file; if i' C, the reassignment is to the mass

storage device jL"

-I--
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3.3.6.A.2. Secondary reassignments

In this section we discuss two secondary reassignment

schemes. The first method involves one-for-one file

exchanges between devices in J- and devices in J+. The

second method involves reallocation along a file copy path

between devices in J- and devices in J+. First we will deal

with the one-for-one exchanges.

If the initial reassignment procedure results in an

optimality loss, then there may be some obvious one-for-one

trades between devices in J- and devices in J+.

Specifically, we look for a f(i+,j+) > f(i-,j-) where j- is

an element of J- and j+ is an element of J+, such that

swapping the two files does not violate either device

capacity. We choose two files to exchange such that we

minimize ABS( TOTFREQ(j+) - P*(j+) ) after the exchange.

The file exchange improves goal 3 optimality in a

straightforward way with the optimality gain =

2*(TOTFREQ(j+) - P*(j+) before -

ABS( TOTFREQ(j+) - P*(j+) ) after).

There is a special case of this idea where we simply move a

file from J- to J+ without swapping a corresponding file to

J-. We can consider this to be a swap where LEN(j+)=0 and

FREQ (j+) =0.

A second straiqhtforward method of improving goal 3

optimality exists if there is a file copy path between

devices on J+ and J-. Note that if the initial reassignment

r.
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step did not sacrifice some optimality, this condition

cannot occur. For example, consider two devices, j- an

element of J- and j+ an element of J+, sharing a file i. We

may obviously improve the goal 3 optimality by decreasing

f(i,j+) by some V and increasing f(i,j-) also by V as long

as TOTFREQ(j-) + V <= P* (j-) and TOTFREQ(j+) - V >= P*(j+).

From our basic definition of this process we know that we

can make this recomputation along a path of arbitrary

length.

3.3.6.B. Minimize-Storage Reassignments

Since storage minimization is a lower priority goal (4)

than P* matching (3), we are constrained to not change the

goal 3 optimality measure. We may reassign files in two

similar ways in order to obtain an assignment that has total

storage within the proven bounds.

First of all, we may obviously reassign files along

files copy cycles in as in Section 3.3.5 until there are no

more file copy cycles. We will then be within the storage

bounds. Since any resulting file copy matrices produced

this way are row-column equivalent, we do not sacrifice any

goal 3 optimality.

If the optimum goal 3 measure is not zero, i. e., we

could not achieve exact P* matching due to capacity

restrictions, we may have some additional flexibility to

further minimize storage. We noted in Section 3.3.6.A that

i1
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if file sharing occured, it must be among device within

their own relative loading sets in order to be goal 3

optimal, i. e., elements of J- cannot share files with

elements of J+. Thus in some circumstances, we may be able

to reassign shared file access among devices that are not

along a cycle as long as the devices remain within their

relative loading classification, i. e., J- or J+. Perfectly

loaded devices (JO) can only do this reassignment along a

cycle. Stated precisely, we may reassign all of the file i

access, f(i,j), from device j to device k along a file copy

path and not affect goal 3 optimality as long as

f(i,j) = Vl of path p

and either

(1) TOTFREQ(k) + f(i,j) <= P*(k),

if j and k are elements of J-,

or

(2) TOTFREQ(j) - f(i,j) >= P*(j),

if j and k are elements of J+.

These conditions insure that no device along the path is

assigned an infeasible (negative) access to file i, and that

no device along the path changes its membership from J- to

J+ (3+ to J-). Since f(i,j) is equal to zero after the

reassignment, we may delete that copy of i from j. This

concept is illustrated in the following example when the

file 6 access on device 4 is shifted to device 3.

- r.U m
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3.3.7. Example

In this section we present an example to illustrate and

review some of the major concepts previously presented. The

file assignment matrix entries contain the values of

ASMT(i,j) with ASMTFR(i,j) in parenthesis if the access is

split.

INPUT

DMP = 4

LAMBDA = 0.001

NFILES = 7

NO: FREQUENCY: LENGTH: MLENGTH:
1 0.29 1000.00 100.00
2 0.15 1000.00 100.00
3 0.14 1000.00 100.00
4 0.07 1000.00 100.00
5 0.09 1000.00 100.00
6 0.08 1000.00 100.00
7 0.18 1000.00 100.00

NDEVS = 4

NO: MLT: TT/W: CAPACITY:
1 2000.00 5.00 3000.00
2 6000.00 20.00 1000.00
3 7500.00 10.00 10000.00
4 9000.00 10.00 10000.00

a

.11
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AVERAGE MESSAGE LENGTH =100.00

COMPUTE-DEVICE-SERVICE-RATES OUTPUT:
MU = 0.40000E-03 0.12500E-03 0.11765E-03 0.10000E-03

SOLVE-BPP OUTPUT:
P*= 0.76459E+00 0.95634E-01 0.83218E-01 0.56562E-01

ASSIGN-FILES OUTPUT:
1 0 0 0
1 0 0 0
0(.00) 1(.26) 0(.00) 1(.74)
0 0 1 0
0 0 0 1
0(.00) 1(.74) 1(.17) 1(.10)
1 0 0 0

DEVICE 2 CAPACITY EXCEED
CYCLIC ELIMINATION OF FILE 6
OPTIMALITY LOSS = 0.00

NEW FILE ASSIGNMENT:
1 0 0 0
1 0 0 0
0(.00) 1(.67) 0(.00) 1(.33)
0 0 1 0
0 0 0 1
0(.00) 0(.00) 1(.17) 1(.83)
1 0 0 0

STORAGE MINIMIZATION
] ALLOCATE FILE 6 ACCESS

FROM DEVICE 4
TO DEVICE 3
NO LOSS IN OPTIMALITY

FINAL FILE ASSIGNMENT
1 0 0 0
1 0 0 0
()(.00) 1(.67) 0(.00) 1(.33)
0 0 1 0
0 0 0 1
0 0 1 0
1 0 0 0

TOTFREQ =0.62000E+00 0.95634E-01 0.14962E+00 0.13475E+00
CPU LJTIL 0 .381438E+00
STORAGE 0 .8OOOOOE+03

(0-
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3.4. Evaluating the heuristic

In order to evaluate the worth of a heuristic we must

consider at least two things. We need to know if it offers

computational advantages over an exact solution, and we need

to know if it is accurate enough to be useable. In this

section we evaluate the heuristic proposed in this chapter

by these criteria.

Note that for an exact solution we must solve the large

integer linear goal programming problem of Figure 3.3.

These problems are known to be exponentially difficult

[Taha76]. We thus seek to see if our methodology produces

answers in polynomial time.

3.4.1. Analysis of running times

The thrust of this analysis is toward the heuristics

developed for the Assign-Files portion of the algorithm. We

do not address the problem of evaluating the Solve-BP

portion of the solution. This is thoroughly discussed in

[Dowd77]. Empirical results show Solve-BP to be quite

tractable. For convenience we reproduce the basic

Assign-files structure given in Section 3.3.4.

Match-BP's;

IF Any-capacity-exceeded

THEN Obtain-capacity-optimal-solution;

Minimize-Storage-Used;

ii , -
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We will analyze first the worst case, asymptotic limits

on the heuristic. As we will see, portions of the heuristic

offer poor asymptotic limits. In these cases, we offer

modifications that can be made to make the worst case time

more tractable. Since worst case limits are not always a

good indication of the practicality of a scheme, we also

present some empirical evidence of what we could call

"expected" case computational difficulty. We will see that

the problem is quite tractable for the cases stueied.

3.4.1.A. Worst case asymptotic limits

Here we will analyze each major portion of the

heuristic outlined above. In some cases where the worst

case bound is exponential, we will present alternate methods

that are polynomially bounded.

MATCH-BP's

The Match-BP's portion is the linear programming

problem given in Figure 3.4. As with all linear programming

problems, the worst case bound is not very good. If we have

m equations with m+n unknowns, we may have to consider

m+n solutions to obtain the optimum. From a more
m

practical standpoint, practitioners consider even large

(1000 constraint) linear programming problems to be
i3

tractable taking roughly O((# of constraints) ) to compute

[Wagn75].

-I"
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OBTAIN-CAPACITY-OPTIMAL-SOLUTION

The Obtain-capacity-optimal-solution is composed of

several major portions, we therefore reproduce its structure

for convenience.

Classify-devices;

WHILE Any-capacities-violated DO

BEGIN

Device := Next;

WHILE Capacity-violated(Device) DO

BEGIN

Initial-reassignment;

Secondary-reassignments;

END;

END

In this representation we explicitly show the initial

device classification step. The Classify-devices procedure

can compute the classifications for the devices by computing

the TOTFREQ values taking O(NDEVS*NFILES) operations. We

mentioned earlier that we must reclassify the devices after

each reassignment. However, once the initial sets are

determined, reclassification will only involve a constant

amount of time per assignment. This is because we

reclassify at most 2 devices per reassignment. We thus

absorb this cost into the cost of the reassignments.

We can see that the outer WHILE loop looks at O(NDEVS)

devices to determine if they are capacity feasible. The

' * i ii i II-I I I . .. . .. . . . .
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inner WHILE loop need look at no more that O(NFILES) files

to run through all the possible ways to have a device be

capacity infeasible. So far, we have a basic structure that

takes polynomial time without having to resort to anything

exotic. The reassignment procedures require a more careful

look.

The Initial reassignments are given in detail in

Section 3.3.6.A. The operation of eliminating files that

cannot fit on a device obviously can take no more that

O(NFILES) operations (step 1). Likewise, this is the bound

for finding the smallest f(i,j) (step 2c) or smallest shared

f(i,j) (step 2b). The other operation (step 2a) deals with

tracing file copy paths or file copy cycles and requires a

more detailed look.

The analogy between the file copy matrix and a graph of

nodes and edges is readily apparent. If we make each proper

FCM entry, (f(i,j) with 0 < f(i,j) < 1), a node and connect

two nodes if they occupy the same row or column, we have

formed a supergraph that contains the relations defining

file copy paths and cycles. While some of the paths and

cycles of this graph do not meet the requirements for being

FCP's or FCC's, the supergraph certainly contains all FCP's

and FCC's. In the worst case then, we could have a FCM with

all nonzero entries and the corresponding supergraph would

have NFILES*NDEVS nodes. The worst case graph would also be

totally connected. The problem then of finding all cycles
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would be O(NFILES*NDEVS!), which is not considered

tractable. However, we can offer a modification to the

cycle and path tracing algorithms that can yield a

polynomial time bound by limiting the number of paths or

cycles that we evaluate. We can do this by limiting

ourselves to considering the m shortest cycles (or paths)

instead of all of them. This problem has an asymptotic

bound that is polynomial and is given by
3

O(m*(NDEVS*NFILES) ) [Horo76]. Thus, step 2a is the

computational bolltleneck for the Initial-reassignment step.

For the Secondary assignments, we may again modify the

path tracing portion to include only the m shortest paths.

This yields the same bound as above. The one-for-one swaps

are relatively inexpensive. We seek to find an f(i+,j+) >

f(i-,j-) such that TOTLEN(j+) - LEN(i+) + LEN(i-) <= CAP(j+)

and TOTLEN(j-) - LEN(i-) + LEN(i+) <= CAP(j-). There are at

most NFILES*NDEVS f(i,j) entries. Thus, to compare each one

against the others takes at most O((NFILES*NDEVS) 2

operations. Again the path tracing asymptotic time

dominates.

We will now put all the individual portions together to

yield an overall bound. We will make the assumption that we

have limited the path and cycle tracing portions to consider

only the m shortest paths. Thus, the asymptotic limit for

the Obtain-capacity-optimal-solution heuristic is given by:

° -- -
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O( NDEVS*NFILES + NDEVS * NFILES * m
t (NDEVS*NFILES)

3

4
O( NDEVS*NFILES + m * (NDEVS*NFILES) ) time.

MINIMIZE STORAGF

Storage minimization is only involved with traversing

FCP's and FCC's. Thus, the discussion and analysis for the

Initial-reassignment step also apply here. The Storage

minimization procedure thus is bounded by
3

O(m*(NDEVS*NFILES) ) time.

In summary, we see that the Match-BP's portion of the

alqcrithm is the theoretically limiting part of the

heuristic. In practice, we know that linear programming

problems are not usually considered intractable except for

extemely large problems. If we then concern ourselves with

practical matters, we need to determine what to expect from

the Obtain-capacity-optimal-solution portion when solvinq

actual problems. This is what we deal with in the next

section.

3.4.1.B. Expected case running times

In the previous section we analyzed the worst case

running times for the Assign-files heuristic. Here we take

an empirical approach to give a practical feel for how the

heuristic performs. As already stated, practitioners

generally regard linear programming problems as tractable.

We therefore will consider how the FCC and FCP portions of

the heuristic perform on test cases.

I
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It should be obvious that the computational difficulty

of the FCP and FCC operations is directly related to the

size of the associated graph. The size of the associated

graph is in turn determined by the structure of the file

copy matrix produced by Match-BP's. A graph node exists

when we have proper f(i,j) entries, meaning that the access

is split. We will refer to this as file fragmentation. If

there are a lot of fragmented entries in the FCM, then the

graph is large. The converse is also true. Therefore, a

measure of the likely number of fragmented entries in the

FCM, would be indicative of how long it takes to locate all

cycles and paths.

We present the results of an empirical study of file

fragmentation involving over 100 test cases. The problems

considered included a ranges of parameter values. Problems

of various sizes (NDEVS x NFILES) were tried. There was

4 also an assortment of capacity constraint conditions

(constraints active vs constraints inactive) and service

rate ratios. The results are summarized in Table 3.1. The

maximum number of nodes is computed as NFILES*NDEVS. The
no

maximum number of edges is given as ( 2 nodes) [Bond76.

-~i -Vt,, :
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Problem size Max # nodes/edges Avg # nodes/edges

3 x 10 30 / 435 1 / .5

4 x 7 28 /328 5/ 4

4 x 8 32 /496 4/ 3

TABLE 3.1. Summary of fragmentation study.

Based on these results, we can say that the actual file

fragmentation encountered on the test cases is much less

than the worst case. If we can extend these results to

other cases, we can expect to be able to investigate all (or

nearly all) of the cycles and paths. This would allow more

flexibility in finding a good solution.

3.4.2. Accuracy of the heuristic

In addition to computation time, we must also consider

the accuracy of the answers produced. Here, we provide two

primary measures. First, we present an algorithm similar to

those used in practice. Next, we provide methods of

computing upper bounds and approximate upper bounds on the

solution. Finally, we present some test cases to evaluate

I the heuristic against these measures empirically.

3.4.2.A. The "Industry" Algorithm

In this section we present an algorithm that will be

used as a point of comparison for our heuristic. We call

this algorithm the "industry algorithm' because it is

iL
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similar to file assignment algorithms that are used in

practice. We will first present an intuitive look at the

algorithm and give evidence that it is reasonably similar to

the methods used by practictioners. We then present the

algorithm formally and provide an example of its use.

Roughly statec, the industry algorithm is to load the

most frequently used files on the faster devices subject to

capacity restrictions. We may refine this by also providing

the optimal branching probabilities and then loading the

files subject to both capacity and the P*'s. This rough

statement is a synthesis of the methods described in

[Hugh73], [Fost76], and [Lips77]. The assignments generated

will be limited to the integral storage method because this

is the literature standard. We also disallow any

rearrangement of the files after the assignment is made.

However, we actually strengthen the algorithm by furnishing

the P*'s as determined in [Fost77]. We therefore believe we

are being realistic in using this algorithm as a benchmark.

We now present the algorithm in pidgin ALGOL.

Ii

*• 1
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Sort files by FREQ in decreasing order;

Calculate overall average message length;

Calculate P*'s;

Sort devices by P* in decreasing order;

Totlen(j) :=Totfreq(j) :=0.for all j;

i 1

For j 1 to NDEVS DO

WHILE Totlen(j)+LEN(i) < CAP(j) AND

Totfreq(j)+FREQ(i) < P*(j) DO

BEGIN

Assign file i to device j;

Totfreq(j) :Totfreq(j)+FREQ(i);

Totlen(j) :Totlen (j) +LEN (i);

ii + 1

END;

We now apply the algorithm to a simple example.

FILE FREQ LEN
A .4 100
B .2 100
C .2 100
D .2 100

DEVICE P*CAP
*1 .7 300
*2 .3 500

The assignment
DEVICE 1 DEVICE 2

~Tiis A1 Fies C D
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3.4.2.B. Upper bounds

It is difficult to obtain a non-trivial guaranteed

upper bound for this problem. This is due in part to the

fact that there is no known closed form solution for optimal

CPU utilization as a function of DMP, P*'s, and MU's.

Things are further complicated by the assignment dependence

of the service rates, and the inclusion of device capacity

constraints in our formulation. We can however present an

algorithm to compute an upper bound on the problem. There

are cases where this bound will be exact. However, for a

given problem the bound may be somewhat loose. Therefore,

we also provide method for obtaining an estimated upper

bound. This estimated upper bound is heuristic in nature

and may not truly bound the solution, but empirical results

show that it can sometimes be exact and it seems to be a

useful measure.

To help in establishing a bound, we have two

significant facts. First, CPU utilization is a

nondecreasing function of the device service rates for a

fixed CPU service rate. Second, the service rates are

,* assignment dependent, and with integral storage, there is a

*finite number of possible sets of service rates.

We may use the above facts to establish a simple upper

bound on utilization as follows. First, we compute the

upper bound service rates using the average message length

to be MIN(MLEN(i)) for all i. This guarantees that all

,,* I
I !
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devices will be as fast as is possible (maybe even faster)

for a given set of files. We then compute the optimal P*'s

and the corresponding CPU utilization using these upper

bound service rates. We are thus assured that this value

for CPU utilization is at least as good as any other

assignment using the same set of files since any "real"

assignment may not have any faster service rates, and may

have a poorer match of the P*'s due to capacity constraints.

However, with a little more work we may improve on this

upper bound.

As we hinted above, we will relax some of the problem

constraints : allow a tractable computation of an upper

bound. Firstly, we will ignore device capacity contraints.

Secondly, we will allow physical file splitting. These

relaxations enable us to avoid the combinatorial

difficulties that are otherwise present. We then estimate

the shortest "realizable" average message length for the

fastest device, JF' and use this value for the AML of all

devices.

To illustrate the above ideas, consider the following.

Assume we use AML(jF) = MIN(MLEN(i)) for all i as previously

suggested, and designate all files that have MLEN(i) -

MIN(MLEN(i)) to be in set I. Then assume that based on this

AML, P*(jF) - .6. Consider what happens if the sum of the

FREQ(i) for all i in I is less than 0.6. We are faced with

the situation where in order to achieve a

I
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TOTFREQ(jF) * P*(jF) we must include some files in the

assignment to JF with MLEN(i) > Min(MLEN(i)). This will

result in an AML(jF) > MIN(MLEN(i)). Thus, the service rate

based on the assumption of minimum AML is said to be

Hunrealizable" for the given set of files. The actual

service rate will be slower and the P*(jF) is likely to be

less.

We can achieve a realizable service rate for jF in a

relatively simple way. First, we sort the files in

increasing order of MLEN, and sort the devices in decreasing

order of service rate (using the overall average message

length to compute service rates). We then deal out the

files to the devices in order, until a device j has

TOTFREQ(j) = P*(j), splitting the file if necessary. From

this assignment we compute new services rates and P*'s and

repeat the process until it converges. We then use

AML(j) = AML(JF) for all j, and we are thus guaranteed that

no actual assignment can realize any shorter AML and hence

any faster MU's.

One shortcoming of this method is that we were unable

to prove convergence for this process. However, in all

cases investigated the process always converged and

converged fairly rapidly (5 or fewer iterations). Despite

this shortcoming, we justify the use of this method by the

superior bound it computes. If, however, a case occurs that

does not converge, we can always take a fall-back position

by assuming that AML(j) - MIN(MLEN(i)).

,!.
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We now give a pidgin ALGOL representation of the

algorithm.

Comment: Upper Bound Algorithm;

Sort files by MLEN in increasing order;

Sort devices by MU in decreasing order

(using overall AML);

UNTIL no change in AML's DO

BEGIN

Compute P*'s;

Assign files to devices in order until

TOTFREQ(j) = P*(j) (split if necessary);

Recompute AML's based on assignment;

END;

For j := 2 to NDEVS DO

AML(j) AML(1);

The final step of assigning all devices the shortest,

and possibly (for the slower devices) unrealizable, message

length insures that no realizable assignment will have any

faster service rates. Thus we have a bound on utilization

as a function of both branching probabilities and service

rates.

While the above algorithm indeed provides an upper

o bound, case studies show that this may be a very high upper

bound. This motivates us to suggest a slight modification

to the previous algorithm to produce an 'approximate" upper

*; 1
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bound. To do this we simply eliminate the final step of

making all AML's - AML(JF). We are now using realizable

service rates given that we are allowed to split files and

ignore capacity constraints.

This approximate upper bound has been seen empirically

to be an exact upper bound in cases where the service rates

are "sufficiently" different, i. e., MU(1) > MU(2) >s ...

>s MU(NDEVS), where >s denotes "sufficiently greater than".

While we cannot guarantee this bound to be an upper bound,

case studies indicate that it appears to be a more realistic

upper bound than the guaranteed bound. Obvicusly, when all

message lengths are the same, the approximate upper bound

and the guaranteed upper bound will be equal to the exact

upper bound.

As a final bounding measure, we point out that we

derived another kind of upper bound in Section 3.3.4 when we

4 solved the linear programming problem, Match-BP's. This

provides a bound on utilization for a given (not necessarily

optimal) set of service rates assuming assignment
* independence. Since assignment independence of service

Ii

rates is not usually true, this answer is only guaranteed to

bound the solution if all average message lengths are the

same. This solution recognizes physical capacity

constraints, but allows physical file splitting. The

measures of the heuristic's potential optimality loss

against this bound were pointed out in Section 3.3.6. The

I-
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use of this bound in practical situations may prove to be of

some value so we include it here.

3.4.2.C. Some Empirical Results

Here we present the results of 12 different experiments

that cover a broad range of cases. We do not attempt to

attach statistical significance to the findings, but we do

believe the results offer insight into the problem. The

experiments were factored as follows:

1. Two levels of DMP were used: 4 and 10. These

were chosen to provide a low and high value. The DMP

significantly affects the distribution of the P*'s.

2. Two different ratios of average mean latency time

to average transfer time were used (Avg. MLT/ Avg.

TT). For one choice the ratio was approximately 2, and

for the other choice the Avg. MLT is 0. These levels

were chosen to test the validity of ignoring the

assignment dependence of the service rates. Obviously,

as Avg. MLT becomes >> Avg. TT, this is a more

accurate assumption. Thus, we are testing both the

worst case (MLT=0) and a mid-range case.

3. Three different levels of device capacity activity

were chosen:

a. Device constraints very significant;

b. Device constraints moderately significant;

c. Device constraints not significant.

& .. .. .... .. .
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Since our methodology is designed to recognize capacity

constraints, these influences bear testing.

The constant factors in the experiments were the

topology, the CPU burst rate, and the Avg. MU/LAMBDA ratio.

The network topology was fixed at three I/O devices. The

mean CPU burst rate, LAMBDA, was held at .001. Finally, the

ratio of Avg. MU/LAMBDA was held at approximately .2. This

was to insure an I/O bound situation.

To assist in identifying the properties of each

experiment, we identify each experiment with a three

character code. These codes are given in Figure 3.8. The

actual data used is summarized in Figures 3.9 through 3.12.

The results of the experiments are summarized in Table 3.2.

Character ., Capacity constraint code.
V means capacity constraints very significant
M means capacity constraints moderately significant
N means capacity constraints not significant

Character 2, DMP code.
F means DMP = 4
T means DMP = 10

Character 3, Avg. MLT/ Avg. TT ratio
0 means Avg. MLT = 0
2 means ratio = 2

Fig. 3.8. Experiment naming convention.

(P
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Character code 1 = V, Capacity constraints
very significant

DEVICE CAPACITY:
1 2300.00
2 5400.00
3 7800.00

FILE FREQ MSG. LEN LENGTH
1 0.23 120.00 1500.00
2 0.12 110.00 1400.00
3 0.10 100.00 1300.00
4 0.09 90.00 900.00
5 0.08 80.00 700.00
6 0.08 70.00 500.00
7 0.07 60.00 300.00
8 0.06 50.00 250.00
9 0.05 40.00 200.00

10 0.05 30.00 150.00
11 0.04 20.00 100.00
12 0.03 10.00 50.00

Fig. 3.9. File and capacity data for code V.

Character 1 code M, capacity constraints
moderately signficant

DEVICE CAPACITY
1 2300.00
2 5400.00
3 7800.00

FILE FREQ MSG. LEN LENGTH
1 0.23 120.00 1200.00
2 0.12 110.00 1100.00
3 0.10 100.00 1000.00
4 0.09 90.00 900.00
5 0.08 80.00 700.00
6 0.08 70.00 500.00
7 0.07 60.00 300.00
8 0.06 50.00 250.00
9 0.05 40.00 200.00

10 0.05 30.00 150.00
11 0.04 20.00 100.00
12 0.03 10.00 50.00

Fig. 3.10. File and capacity data for code M.
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Character 1 code = N, capacity constraints
not significant.

DEVICE CAPACITY

1 4200.00
2 7000.00
3 7800.00

FILE FREQ MSG. LEN LENGTH
1 0.23 120.00 1200.00
2 0.12 110.00 1100.00
3 0.10 100.00 1000.00
4 0.09 90.00 900.00
5 0.08 80.00 700.00
6 0.08 70.00 500.00
7 0.07 60.00 300.00
8 0.06 50.00 250.00
9 0.05 40.00 200.00

10 0.05 30.00 150.00
11 0.04 20.00 100.00
12 0.03 10.00 50.00

Fig. 3.11. File and capacity data for code N.

Character 3 code = 0

DEVICE MLT: TT/W:
1 0.00 28.00
2 0.00 50.00
3 0.00 100.00

Character 3 code = 2

DEVICE MLT: TT/W:
1 1900.00 5.00
2 2850.00 10.00
3 5700.00 20.00

Fig. 3.12. Avg. MLT/ Avg. TT data.

*<
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Abbreviations:
ID: Experiment identification code
GUB: Guaranteed upper bound
AUB: Approximate upper bound
IND: Industrial algorithm
SS: Split storage algorithm
SA: Integral storage, split access algorithm.

Table entries are CPU utilizations.

ID GUB AUB IND SS SA

VFO .5535 .5057 .3594 .3283 .3999

VF2 .5448 .5256 .3078 .4506 .4577

VT0 .7524 .6487 .4155 .4008 .5257

VT2 .7133 .6777 .3958 .6058 .6176

MF0 .5812 .5228 .4345 .3943 .4569

MF2 .5448 .5256 .4196 .4893 .4885

MTO .7524 .6487 .6096 .5262 .5978

MT2 .7133 .6777 .5042 .6708 .6695

NFO .5535 .5057 .5106 .5021 .5065

NF2 .5448 .5256 .5264 .5254 .5261

NT0 .7524 .6487 .5986 .5712 .5712

NT2 .7133 .6777 .6825 .6727 .6727

TABLE 3.2. Experimental results.

While we recognize that this is a small sample on which

to base conclusions, nonetheless, we believe that it is

worthwhile to point out some trends. Throughout the

following discussion, the numerical values given are CPU

utilization figures. For example, if we say method A is

_ _ _ _
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superior to method B by .1146, we mean that the CPU

utilization obtained using method A minus the CPU

utilization obtained using method B equals 11.46%.

First, we consider the upper bounds. The approximate

upper bound seemed to do a reasonable job. It bounded all

the solutions except cases NFO, NF2, and NT2, and in these

cases it was only very slightly exceeded (average = .002).

The average difference between the AUB and the GUB was about

5%, supporting the premise that the GUB may be unrealizable

and somewhat high for many cases. We now consider the

performance of the SA algorithm detailed in this work.

Compared against the simple industrial algorithm, the

SA algorithm demonstrated better performance. It is

instructive to note that the SA algorithm was superior (by

over 11%) in cases where the storage constraints were

relatively active. However, in the cases where storage

constraints were relatively inactive, the industrial

algorithm was as good or better (usually within 1%). This

would suggest that while the SA algorithm is better for a

, 1 :wider range of cases, the industrial algorithm might have

significant practical value in cases where storage

capacities are not a problem.

Interesting results are obtained when we compare the SA

algorithm to the SS algorithm. Recall that the SS answers'4
bound the SA answers when service rates are assignment

independent. This is not the case in these experiments
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since the MLEN's are all different. Surprisingly, the SA

algorithm outperformed the SS algorithm in most of these

tests (average of about 4% better). This demonstrates that

the loss of goal 3 optimality (detailed in Section 3.3.6)

may not be a critical factor when we have a significant

variation in the average message lengths.

In our final utilization comparisons, we compare the SA

algorithm results to the upper bounds. Compared to the GUB

results, the SA results are about 9% lower. This is not bad

but not astoundingly good. If we accept the premise that

the GUB results are usually too high, perhaps the AUB is a

better yardstick. In this case the SA algorithm compares

quite favorably, being within about 4 1/2% lower on the

average. Practitioners would consider this to be a good

result.

A secondary measure of effectiveness of the SA

algorithm is the total storage required. The IND and SS

algorithms, of course, require only the lower bound amount

of storage since they do not replicate files. For code V

experiments this lower bound is 7350 words and for code M or

N experiments the value is 6450. The upper bounds are 10350

and 8850 for V and M/N respectively. The results for the

individual experiments are given in Table 3.3. The "%

4Extra" column is computed as

(Total storage - lower bound)/(Upper bound - lower bound).

A1
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This indicates how close an answer is to the worst case. We

see that when a replicated assignment results, the average

extra storage is approximately 68% of the worst case. We

believe that this high value is due to the fact that file

length is proportionate to access frequency for these

experiments. Thus, the more likely variables to be split

are also the ones with the greatest lengths. A different

relation between FREQ and LEN would probably result in less

storage required.

ID Total Storage % Extra

VF0 7350 0
VF2 7350 0
VTO 7350 0
VT2 7350 0
MFO 6450 0
MF2 7450 42%
MT0 6450 0
MT2 7450 42%
NFO 7650 50%
NF2 8550 87%
NTO 8750 96%
NT2 8650 92%

TABLE 3.3. Storage require by SA assignments.

At this point it is appropriate to make some general

statements regarding the use of the SA algorithm. It is

apparent that we need to compare the IND and SA algorithms

in terms of accuracy versus execution time, complexity, and

size of the algorithms. Obviously, the SA algorithm is

bigger, more complex, and requires more execution time than

I
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the IND algorithm. In terms of accuracy, the SA algorithm

is better considering all cases, but when storage

constraints are not active, the IND algorithm seems to

perform about as well.

To try to summarize the trade-offs, we will construct

what appear to be the ideal scenarios for the use of these

algorithms. We must recognize that for conditions that do

not match these ideals, there is no clear cut answer as to

which to use.

The IND algorithm is short and simple. It's use would

be appropriate in a situation where storage constraints were

not a significant problem. It would be more attractive in

an environment where the access profiles changed frequently

and it would be desirable to execute the file assignment

algorithm frequently.

The SA algorithm is somewhat lengthy and complex. It

seems to perform best when storage constraints are a

significant consideration. It would be appropriate to use

in an environment where access profiles changed

infrequently, and new file assignments were not needed very

often, say every new work shift.

In conclusion, we submit that although the number of

experiments is relatively small, they were carefully chosen,

4 and the results are encouraging. We tested our algorithm

under conditions that lie outside its basic assumptions, and

it proved to be reasonably robust and was found to yield

-,Mo
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good answers. While it is dangerous to generalize based on

a small sample, this study gives some evidence that the

method could be considered useful.

3.5. Chapter summary

In this chapter we dealt with the file assignment

problem assuming that the files were read-only files. This

allowed us to replicate files without incurring any

performance degradation due to multiple-copy updates. The

requirement for file replication was justified on a system

performance basis and was implemented with the concept of

integral storage with split access.

We presented an exact formulation for the problem as a

linear integer goal programming problem. Since this type of

problem is generally costly to solve, we introduced a

heuristic solution technique. We were able to bound the

storage required by the technique and to present empirical

evidence to sugggest that it obtains reasonably good

answers.

The basic ideas introduced in this Chapter will be

extended in Chapter 4 to include read-write files. In that

case, we will be forced to consider the possibility that

' multiple-copy updates may indeed degrade performance.

i,.



CHAPTER IV

MODELS FOR READ-WRITE FILES

4.1. Introduction

In the previous chapter, we used the simplifying

assumption that the files were read-only files. This is a

common simplification in the literature, but it is obviously

not completely realistic. In this chapter we further

generalize the model to account for read-write files.

Initially, we introduce the basic concepts. The main ideas

include update overhead and assignment dependent access

frequencies. After this, we explore several models. First,

we investigate read-write files in the non-replicated case.

Next, we allow replication and develop a model (and

variations) that attempts to reduce update overhead. Then,

we formulate a model that recognizes the basic

inseparability of the P*-matching and overhead minimization

goals. Finally, we examine the accuracy of using the

simpler read-only model solution technique of Chapter III to

approximate the read-write model solution.

4.2. The impact of adding update messages

4 Before proceeding we need to extablish some basic

terminology. We will use the terms "read" and "query"

interchangeably. Likewise, "write" and "update" will be

] 94
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considered equivalent. Finally, "access" to a file may

represent either a read(query) or a write(update).

The addition of update messages to the read-only model

complicates the model. This is most obvious when we

consider file assignments that allow replication of files.

When we deal with read-only files, the proliferation of file

copies primarily impacts on the total storage used by the

system. A query message goes only to a single file copy and

only modest overhead is incurred in the directory look up

process. However, when we are dealing with read-write

files, an update message may, in the worst case, have to be

sent to all copies of a replicated file each time an update

occurs. This is because of data consistency requirements.

While we recognize that there may be clever schemes

devised to reduce the impact of updates to multiple copies,

we will assume that 4n update message always goes to all

copies. This worst case assumption provides an upper bound

for any updating scheme and frees the analysis from any

associated assumptions.

The differences between the read-only and read-write

models may manifest themselves in at least two ways. First,

we may treat multiple update messages as a redistribution of

the file access frequencies. Second, we may treat extra

update traffic as overhead that degrades performance. We

will address these ideas in the following two sections.

*t
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4.2.1. Redistribution of file access frequencies

First, recall that we assume an update goes to all

copies. Based on this assumption, we may show that file

access frequency is not constant, as in the read-only case,

but is a function of the file assignment. Define Q1FREQ(i)

as the estimated or empirically determined query frequency

for a copy of file i in an assignment with no file

replication. Likewise, define UlFREQ(i) as the update

frequency for a copy of file i in an assignment with no file

replication. Since these are normalized values,
NFILES

(QlFREQ(i) + UlFREQ(i) ) = 1.
i=l

We then define QnFREQ(i) and UnFREQ(i) as the query and

update frequencies, respectively, for any copy of file i for

an assignment allowing file replications. We then present

the following equations:

(4.1) QnFREQ(i) = QlFREQ(i)/DENOM

(4.2) UnFREQ(i) = UlFREQ(i)/DENOM

where
NFILES NFILES NDEVS

(4.3) DENOM= QlFREQ(i)+ 7 1 ASMT(i,j)*UlFREQ(i)
i=l i=l j=l

and as before

ASMT(i,j) = 1 if a copy of file i is on device j,

0 otherwise.

DENOM represents all queries and updates for all files.
NDEVS
, ASMT(i,j) equals the number of copies of file i and
"=1

is included in DENOM to reflect the fact that an update goes

to all copies of a replicated file. DENOM normalizes the

frequencies such that
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NFILES NDEVS
Y (UnFREQ(i) * ASMT(i,j) + QnFREQ(i) ) 1.

i=l j=1
Also note that these functions are piecewise linear since

ASMT(i,j) is a (0,1) variable.

File Update frequency Query frequency

A .6 0.0
B .4 0.0

ASSIGNMENT 1 ASSIGNMENT 2 ASSIGNMENT 3 ASSIGNMENT 4

Device Device Device Device
1 2 1 2 1 2 1 2

Files A B A,B B A A,B A,B A,B
Totfreq .6 .4 .71 .29 .37 .63 .5 .5

Fig. 4.1. Effects of assignment on access frequency.

Consider the example of Figure 4.1, in which we have

two devices and two write-only files with the given single

copy update frequencies. Define the total frequency

assigned to the devices as
NFILES

Totfreq(j) ASMT(i,j)*(UnFREQ(i)+QnFREQ(i)),
i=l

and compare assignments 1 and 2. Notice that the

replication of file B causes a redistribution of file

accesses. This is because in Assignment 2, every update to

file B now generates two messages.

We now demonstrate the computation of some of the

Totfreq values of Figure 4.1. In Assignment 1, there is no

file replication, therefore, DENOM = 1.0, and thus,

- I
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UnFREQ(A) = UlFREQ(A) = Totfreq(l), and

UnFREQ(B) = U1FREQ(B) = Totfreq(2).

This results from the fact that no files are replicated.

In Assignment 2, however,

DENOM = (0 + 0) + 1*.6 + 0*.6 + 1*.4 + 1*.4 = 1.4,

UnFREQ(A) = .6/1.4 = .42,

UnFREQ(B) = .4/1.4 = .29,

Totfreq(l) = UnFREQ(A) + UnFREQ(B) = .71, and

Totfreq(2) = UnFREQ(B) = .29.

The computations for Assignments 3 and 4 are similar.

This redistribution of access frequencies is only one

side effect of updates to replicated files. In particular

note that unlike the read-only model, we may not always be

able to match the P*(j)'s exactly even if we ignore storage

constraints. Consider Figure 4.1 again. If P*(l) = .52 and

P*(2) = .48, Assignment 4 yields the closest possible match.

A This is because split file access, which is possible for

queries, is not possible for updates, because a single

update message must go to all copies. A disturbing point

about choosing Assignment 4 is that, intuitively, we would

expect some performance degradation due to the increased
V traffic caused by multiple update messages. We address the

problem of representing this increased overhead in the next

section.

6 k-
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4.2.2. Update Overhead Traffic

We assume that file accesses are the dominant activity

in our model. So for a given degree of multiprogramming

(DMP), we may compute the average number of jobs

accessessing a given copy of a file, i, as DMP*FREQ(i),

where FREQ(i) UnFREQ(i) + QnFREQ(i). If we consider

update to more than one copy of a file as unnecessary

overhead, then define DMP' to be "useful" DMP, or the

average number of jobs not involved in extra update.

Define UTFREQ(i) to be the total update frequency for

all copies of i. We can see that
NDEVS

UTFREQ(i) = UnFREQ(i) * I ASMT(i,j)
j=l

also

UnFREQ(i) * DMP = the average number of jobs updating a

single copy of i in a given assignment;

UTFREQ(i) * DMP = the average number of jobs updating all

copies of i in the same assignment.

Then (UTFREQ(i)-UnFREQ(i)) * Di!P = average number of update

overhead jobs for file i.

Then define
NFILES

OHEAD = (UTFREQ(i) - UnFREQ(i)) * DMP, the average
i=l

number of update overhead jobs in the system.

We then see that DMP' - DMP - OHEAD.

4This result has important implications with regard to

performance because CPU utilization is a non-decreasing

function of DMP [DOWD77]. Therefore, if any overhead is
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incurred, there will be a decrease in the "useful" CPU

throughput.

4.3. Solution Methodology for a Non-replicated, read-write

FAP

In this section we solve for the case of read-write

files with no replication. This is an important model to

solve because this is compatable with the file storage

system for most standard operating systems. First, we will

derive simplified expressions for QnFREQ(i) and UnFREQ(i).

We then provide an outline of an algorithm to obtain an

exact solution and give some of its more important details.

4.3.1. Simplification of Access Frequency Expressions

Given that we do not allow replicated files, we may

significantly simplify the piece-wise linear expressions for

QnFREQ(i) and UnFREQ(i). Non-replication of files means

that the number of copies of file i = 1 for all i. Then,
NDEVS

Y ASMT(i,j) = 1, i = 1,...,NFILES.
j=l

We can see that DENOM now reduces to unity:
NFILES NFILES NDEVS

DENOM= QlFREQ(i) + UlFREQ(i) * ASMT(i,j)
i~l i=l j=l

NFILES
= (QlFREQ(i) + UIFREQ(i)) 1.

i=l

Thus we have

QnFREQ(i) = QlFREQ(i) , and

UnFREQ(i) = UlFREQ(i)

I

~-ww 1
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Happily, we are left with expressions for QnFREQ(i) and

UnFREQ(i) that are independent of the file assignment.

4.3.2. Algorithm Outline

The high level structure of the algorithm is given

below. The major steps are then described in more detail.

Note that this is the same basic structure as for the

read-only model in Chapter III.

(1) Read Input;

(2) Compute Service Rates;

(3) Solve BPP;

(4) Assign Files;

4.3.2.A. Read Input

The input data is given below in Figure 4.2. Note that

except for the subdivision of access frequencies and message

lengths, this is the same as for the read-only model.

4.3.2.B. Compute Service Rates

As in the read-only case, service rates are computed

based on a frequency weighted average message length. In

this case we have both query and update frequencies and

message lengths. Specifically we may compute the average

message length as
NFILES

AML = N QlFREQ(i)*QLEN(i)+UlFREQ(i)*ULEN(i).~i=
We then compute the service rate, MU(j), for device j as

MU(j) = 1 / (MLT(j) + TT(j) * AML ).

t -. f i
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NFILES : Number of files
QiFREQ(i): Query frequency for a single copy of file i.
UIFREQ(i): Update frequency for a single copy of file i.
LEN(i) Length (in words) of file i.
QLEN(i) Average length of query message for file i.
ULEN(i) : Average length of update message for file i.

NDEVS : Number of storage devices.
CAP(j) : Capacity (in words) of device j.
MLT(j) Mean latency time of device j.
TT(j) Transfer time per word for device j.

LAMBDA CPU speed.

DMP Degree of multiprogramming.

The limits for i and j are:
i = 1,... ,NFILES, and j = 1,... ,NDEVS.

Fig. 4.2. Read-write model input data.

4.3.2.C Solve BPP

This procedure is exactly the same as in the read-only

model. Recall that Solve-BPP computes the set of branching

probabilities, P*(j)'s, that maximize CPU utilization using

non-linear programming. As stated before, the answer

obtained is a global optimum.

4.3.2.D. Assign Files

This procedure solves the integer programming problem

given in Figure 4.3. Here, we may define FREQ(i) =

QIFREQ(i) + UlFREQ(i) since the values for QnFREQ(i) and

UnFREQ(i) are constant. We now have a formulation that is

essentially the same model proposed in (Fost77] for

read-only files. This is because the expressions for

QnFREQ(i) and UnFREQ(i) were only assignment dependent if

t lA v'



103

the number of file c-oies is not fixed. The objective is to

minimize the sum of the differences between the assigned

frequencies and the optimal branching probabilities.

Constraint 1 insures that the device capacities are not

exceeded. Constraint 2 insures that all files are assigned

once. Constraint 3 establishes that the assignment

variables are 0,1 variables. Note that except for the

integer variables, this formulation is essentially the same

as the Match-BP's model of Figure 3.4.

NDEVS NFILES
Minimize: ABS( ASMT(i,j) * FREQ(i) - P*(j)

j=l i=.
Subject to:

NFILES
(1) ASMT(i,j) * LEN(i) <= CAP(j) j=l,...,NDEVS

i=l

NDEVS
(2) Y ASMT(i,j) = 1 i=l,... ,NFILES

j=l
(3) ASMT(i,j) = (0,I) i=l,...,NFILES, j=l,...,NDEVS

Fig. 4.3. File assignment formulation.

4.3.3. Non-replicated FAP Example

We present a computer run of an example in Figure 4.4

I to illustrate the model presented in this section. As in

Chapter III, the file assignment matrix represents the

allocation of the file (rows) to the devices (columns). A

"1" represents that file i is assigned to device j.

j 'i

I . •'5 .. , s
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INPUT

DMP = 0.400000E+01
LAMBDA = 0.100000E-02

NFILES = 10
NO Q1FREQ UIFREQ QLENGTH ULENGTH LENGTH
1 0.15 0.14 75.00 75.00 100.00
2 0.09 0.06 25.00 25.00 100.00
3 0.10 0.04 75.00 75.00 100.00
4 0.04 0.03 75.00 75.00 100.00
5 0.05 0.00 25.00 0.00 100.00
6 0.04 0.00 25.00 0.00 100.00
7 0.02 0.02 25.00 25.00 100.00
8 0.04 0.00 25.00 0.00 100.00
9 0.04 0.04 25.00 25.00 100.00

10 0.06 0.04 25.00 25.00 100.00

NDEVS = 3
NO: MLT: TT/W: CAPACITY:
1 400.00 5.00 400.00
2 500.00 10.00 400.00
3 25500.00 10.00 1000.00

AVERAGE MESSAGE LENGTH = 50.00

SERVICE RATES:
MU = 0.153846E-02 0.100000E-02 0.384615E-04

OPTIMAL BRANCHING PROBABILITIES:
P*= 0.688281E+00 0.311719E+00 0.OOOOOOE+00

AN OPTIMAL FILE ASSIGNMENT:
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 1 0
0 1 0
1 0 0

CPU UTILIZATION = 0.458534E+00

DEC 1099 (KL10) CPU TIME = 0:13.9 MIN:SEC

Fig. 4.4. Read-write non-replicated FAP example.



105

4.3.4. Comments on running time

The methodology just presented has obvious

computational shortcomings. For large problems, the use of

mixed integer programming techniques may well prove to be

intractable. This difficulty also applies to the similar

read-only technique in [Fost77]. Tractable heuristics are

needed to solve large problems.

Based on the results in Chapter III, the industrial

algorithm may be a good candidate. It provides integral

answers and seems to be reasonably accurate if storage

constraints are not overly active. Other bin packing

techniques that can be applicable to this problem are given

in [Fost76]. Yet another possibility is to solve the

corresponding linear programming problem (i. e., drop

contraint 3 in Figure 4.3) and round the answer. This is

jI similar to the method used in [Chand76] and [Jone79a].

4.4. Models to minimize update overhead for replicated
read-write file assignments

In this section we present our first models for

read-write files with replication. In these models we use a

goal programming formulation that is very similar to the one

for the read-only model. However, it additionally includes

the objective of minimizing update overhead. With this

formulation, we present several possibilities for the

arrangement of the achievement function. We do not propose

.,.,--
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any solution techniques in this section, but defer this to

Section 4.6.

Since we know that update overhead degrades

performance, we wish to minimize its effect. The expression

for update overhead is given by
NFILES NDEVS
1 ( Y ASMT(i,j) - 1) * UnFREQ(i) * DMP
i=1 j=1

Unfortunately, this is a nonlinear expression. However,

note that minimizing the linear expression
NFILES NDEVS

1 ASMT(i,j) * UlFREQ(i)
i=l j=1

will also minimize update overhead. We can then add the

following objective to the read-write formulation:
NFILES NDEVS

(h): Y Y ASMT(i,j) * UlFREQ(i) + n(6)i - p(6)i = 0
i=l j=l

for all i.

We must also change the P* matching objective (d) to

account for the query and updite frequencies. The

expression we wish to minimize is
NFILES

(ASMTFR(i,j)*QnFREQ(i)+ASMT(i,j)*UnFREQ(i)) - P*(j)

for all j. Unfortunately, we were unable to derive a simple

linear expression that represents this nonlinear expression.

In general, we can convert this problem to a (0,1) linear

programming problem by greatly expanding the size of the

problem [Chu73]. However, since we do not propose to obtain

an exact solution to this computationally difficult problem,

such a problem transformation would only serve to confuse

the formulation. We choose to leave the problem in the

present form for clarity.

,'"p ,
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This gives us the objectives i n Figure 4.5 for our

read-write goal programming formulation.

Objectives:

NDEVS
(a): I ASMTFR(i,j) + n(l)i - p(l)i = 1 for all i

j~l

(b): ASMTFR(i,j) + n(2)ij - p(2)ij = ASMT(i,j) for all i
for all j

NFILES
(c): I ASMT(i,j) * LEN(i) + n(3)j - p(3)j =CAP(j)

i=1 for all j

NFILES
(d): I; (ASMTFR(i,j)*QnFREQ(i) + ASMT(i,j)*EUnFREQ(i) -

i=1 P*(j) =0

for all j
NFILES

(e): 7, ASMT(i,j) *LEN(i) +n(5)j - p(5)j 0
i=1 for all j

(f): ASMT(i,j) =(0,1) for all i, j

4(g): ASMTFR(i,j) >= 0 for all i, j

NFILES NDEVS
(h): Y, I ASMT(i,j) *UlFREQ(i) + n(6)i - p(6)i = 0

i=l )=1 for all i.

Fig. 4.5. Goal programming objectives for read-write models.

To the achievement function we add the objective

Ip(6)i ,

in order to minimize the expression. We are now faced with

several choices for the ordering of the objectives within

the achievement function. We will consider three cases.
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CASE 1

Achievement priorities:

(1) assign all files;

(2) stay within device storage capacities;

(3) meet the optimal branching probabilities;

(4) minimize update overhead;

(5) minimize total storage.

The achievement function becomes:

NFILES NFILES NDEVS
Min a=([ Z (n(l)i + p(l)i) + Y Y (p(2)ij) ],

i=]. i=1 j=l
NDEVS

Y , (3)j],
j=l

NDEVS
Y n(4)j + p(4)j ],
j=l

NFILES
[ p(6)i ],

NDEVS
[ (5)j I

* j=1

If the problem is formulated this way, it may not be

possible to reduce storage to the proven levels of Chapter

III. Consider Figure 4.1 again. If P*(l) = .5 and P*(2)

.5, the priority 3 level forces replication of both files.

The lower priority goal to minimize overhead cannot change

this without changing goal 3 optimality and total storage

• ibecomes > NFILES + NDEVS - 1. This is not a totally

satisfying result. Furthermore the overhead incurred by

giving P* matching priority over minmizing overhead might

* ', I



I1

109

result in an actual decrease in CPU utilization.

CASE 2

Achievement priorities:

(1) assign all files;

(2) stay within device storage capacities;

(3) meet the optimal branching probabilities;

(4) minimize total storage.

(5) minimize update overhead;

The difference between Case 2 and Case 1 is that the

last two priorities are interchanged. Thus, the achievement

function becomes:

NFILES NFILES NDEVS
Min a=([ Z (n(l)i + p(1)i) + Y Y (p(2)ij) ],

i=l j=l
NDEVS

Y, p(3)j],
j=l

NDEVS
Y, n(4)j + p(4)j ],
j=l

NDEVS
, p( 5 )j 1,

j=l

NF,[LES
i~;dl p(6)i ]

The same objections that apply to Case 1 apply here.Y
Since the ultimate objective in all our models is optimum

CPU throughput, we should prefer Case 1 over Case 2.
.4

'. , I
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CASE 3

Achievement priorities

(1) assign all files;

(2) stay within device storage capacities;

(3) minimize update overhead;

(4) meet the optimal branching probabilities;

(5) minimize total storage.

Here we have given overhead minimization priority over P*

matching and the achievement function becomes:

NFILES NFILES NDEVS
Min a=([ Y (n(l)i + p(l)i) + Y Y (p(2)ij) ],

i=l i=l j=l
NDEVS

X p(3)jl
j=l

NFILES
[ p(6)i ],

i=l

NDEVS
[ n(4)j + p(4)j 3,
j=l

NDEVS
Y, p(5)j ]j=l

This formulation will result in an answer that will

only replicate files that have UlFREQ(i) = 0 (read-only

files). In a manner similar to Case 1, a disadvantage is

that the loss of CPU utilization by perhaps not matching the

P*'s exactly may be more than if a small amount of overhead
4

is incurred. However, an advantage is that the storage used

will be within the bounds proven for the read only model.

______

-S.



To see this, recall that only the files that had split

access become involved in the storage minimization process.

In this model the only files that may have split access are

the read only files (UlFREQ(i) = 0). Therefore, this model

reduces to the read only model when it comes to cyclic

reassignment. For further insight we can demonstrate that

this model has the property that QnFREQ(i) = QlFREQ(i), and

UnFREQ(i) = UlFREQ(i) for all i. To see this, consider the

equations for QnFREQ(i) and UnFREQ(i):

QnFREQ(i) = QIFREQ(i)/DENOM, and

UnFREQ(i) = U1FREQ(i)/DENOM, where
NFILES NFILES NDEVS

DENOM= QlFREQ(i) + Y Y ASMT(i,j) * UIFREQ(i).
i=l i=l j=l

Since all files are assigned at least once,
NDEVSI ASMT~i,j) >= 1.
j=l

We also know that the only files that are replicated are

those with UIFREQ(i) = 0, therefore if
NDEVS
Y ASMT(i,j) > 1, then UlFREQ(i) = 0.
j=l NFILES NDEVS NFILES

Hence, Y Y ASMT(i,j) * UlFREQ(i) = . UlFREQ(i).
i=l j=l i=l

By definition

NFILES NFILES
QIFREQ(i) + UIFREQ(i) 1,i~l i=

therefore,

QnFREQ(i) = QIFREQ(i) and UnFREQ(i) = UlFREQ(i) for all i.

This tells us that

FREQ(i) = QIFREQ(i) + UlFREQ(i)

is assignment independent. This is the property that allows

the cyclic reassignment of files in the read only model.

-t- ,-
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If we can obtain P* matching and don't have to split

read-write files, then we can have all the accuracy of the

solution for the read-only model and require no more storage

than previously proven. If a specific application has an

adequate supply (in terms of access frequency) of read-only

files, then this formulation has to be viewed as the best of

the three cases presented.

4.5. Weighted objective function model

One objection to the formulations of the previous

section stemmed from the fact that neither P* matching nor

overhead minimization truly preempted one another. This is

due to the fact that they both are contributors to optimum

CPU throughput. Since the two objectives are not

preemptive, perhaps a weighted objective function is

appropriate.

We present the following achievement function to be

used in conjunction with the objectives of Figure 4.5:

NFILES NFILES NDEVS
Min a=([ (n(l)i + p(l)i) + Y Y (p(2)ij) ],

i-= i=l j=1
NDEVS

Y p(3)j],
j=l

NDEVS NFILES
Y Wl * (n(4)j + p(4)j) + W2 * ( p(6)i) ],
j=1 i=1

NFILES
* p(5)iJ)~i=l

Here Wl is the weighting factor to be applied to the 1*

matching goal, and W2 is the weighting factor to be applied

macig ol
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to the overhead minimization goal. The values of W1 and W2

should be a function of several things which might include

DMP, NFILES, NDEVS, MU's, LAMBDA, and the total update

frequencies. The analysis in Section 4.6 should provide

insight into possible choices for the weights. We do,

however, note that the results of Section 4.6 indicate that

P*-matching seems to be a most critical factor in

determining CPU utilization.

We choose not to go into a detailed analysis of

possible weights here because of the computational

difficulty of obtaining an exact answer. We intend to solve

the problem heuristically, and our approach will not utilize

these weights. The approach we take, discussed in the next

section, is to use the read-only solution already developed

as a heuristic approximation to the read-write problem.

4.6. Read-only solution applied to the read-write model

In this section we evaluate the use of the read-only

solution as an approximation to the read-write model. Dowdy

[Dowd78] considered the read-only model of Chapter III to be

a way to solve the read-write problem. The read-only model

may be considered an approximation to the read-write model

because of the storage minimization process. Storage

minimization contributes to the reduction of update overhead

by reducing the total number of replicated files. In fact,

we saw in Section 4.3 that in the limiting case (i. e., no

S I
- ---
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replication) , the two models are equivalent. In view of

this insight and the fact that we have a tractable heuristic

for the read-only case, it seems worthwhile to analyze how

well the read-only solution approximates the read-write

solution.

To convert a read-write problem to a read-only problem

we perform the following calculations.

MLEN(i) = (QlFREQ(i)*QLEN(i) + UlFREQ(i)*ULEN(i)) /

(QlFREQ(i) + UlFREQ(i)) for all i.

FREQ(i) = QlFREQ(i) + UlFREQ(i) for all i.

If we are to use the approximation intellegently, we

must have some notion of the errors that may be introduced.

We must account for two types of er:ors. The first is the

error introduced by ignoring update overhead. The second is

the error introduced by assuming assignment independent

access frequencies. We will first deal with these errors in

the worst case and then address some more likely cases for

the errors.

4.6.1. Worst case errors

4.6.1.A. Update overhead error

In section 4.2.2 we introduced the concept of update

overhead. If we use the read-only model to approximate the

read-write model, we are ignoring any overhead that may be

incurred. Here we will derive some bounds on the error. It

will be seen that the worst case bounds are not very useful.

I
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Therefore, we will provide graphs showing the amount of

error introduced for some more likely cases that might be

encountered.

The read-only model produces a solution that guarantees

at most NDEVS-l extra copies of files. Let the most

frequently updated file be file i Then the worst case for

update overhead occurs when we have NDEVS-l extra copies of

i U . Thus, in the worst case

OHEAD = ( NDEVS - 1 ) * UnFREQ(iu) * DMP.

Which we can expand to get

OHEAD = ((NDEVS-) * UlFREQ(iu) * DMP ) /

1 + (NDEVS-I) * UlFREQ(iU) )

We note that NDEVS-I may be as small as 0, in which

case the lower bound on overhead is 0. NDEVS may also

approach infinity, and in this case overhead approaches DMP

(i. e., all activity is overhead activity). This limit is

not terribly useful or interesting for practical situations.

Now let us consider what happens if we hold NDEVS to a

"reasonable" finite value. For a lower bound, UlFREQ(iu)

can be as small as 0. In this case OHEAD = 0, and we have

reduced the model to the read-only case. For an upper

bound, UlFPEQ(iU) can be as large as 1. In this case we can

compute overhead as

OHEAD = (NDEVS-1)*DMP / (I+NDEVS-I)

= DMP - (DMP/NDEVS).

,I
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This case, too, is not terribly likely. From a practical

standpoint, it is more useful to consider empirical values

in a more likely range of values for UIFREQ(iU) and NDEVS.

In Figure 4.6, we plot DMP'/DMP to get worst case

values for the percentage of error introduced. Each curve

is labeled with the number of I/O devices corresponding to

the curve. As an example of the use of the Figure, we may

see that for a system with six I/O devices, if the largest

value of UlFREQ(i) = .05, then in the worst case, useful DMP

is approximately 80% of the full DMP. Keep in mind that the

worst case is realized only when file iU is replicated the

maximum number of times. We see that when either NDEVS or

UlFREQ(iU) is relatively small, the accuracy is reasonable.

However, the DMP'/DMP error figures are not the final word.

The ultimate issue is how this impacts on CPU utilization.

To assess the impact of DMP loss on CPU utilization, we

conducted 6 experiments. The constant factors were a

topology of three I/O devices, and a fixed CPU rate, LAMBDA

= .001. Variable factors were as follows:

1. Two relations among the MU's were used:

MU(l) = MU(2) = MU(3), and

MU(l) = 2*MU(2) = 4*MU(3).

2. Three ratios of average MU/LAMBDA were used:

Avg. MU/LAMBDA - .1,

Avg. MU/LAMBDA = .3, and

Avg. MU/LAMBDA = .5.
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Fig. 4.6. Worst case DMP'/DMP.
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For each experiment 11 levels of DMP were used from DMP=2 to

DMP=12. This made a total of 66 different trials. CPU

utilization was computed using the given MU's, the optimal

branching probabilities, and assuming no storage

constraints. The results of these experiments can be seen

in Figures 4.7 through 4.12 where we have plotted a family

of curves of DMP'/DMP vs UTIL'/UTIL, where UTIL' is computed

using DMP'. For readability, only the even values of DMP

are plotted. The number at the end of each curve

corresponds to the DMP used to compute that curve. DMP'/DMP

values are plotted from 1.0 (no DMP overhead) to 0.4 (60%

DMP overhead loss). The range was chosen because 0.4

represents an extreme case. Beyond this value utilization

loss is too great to be of practical interest. Table 4.1

contains the optimal utilization figures for each experiment

using the full value of DMP.

DMP

MU'S Avg. MU/LAM 2 4 6 8 10 12

Equal .1 .142 .195 .222 .238 .248 .256

Equal .3 .369 .527 .614 .666 .708 .736

Equal .5 .529 .744 .854 .915 .951 .972

Unequal .1 .202 .247 .273 .288 .297 .306

Unequal .3 .498 .641 .725 .781 .819 .847

Unequal .5 .671 .846 .928 .967 .985 .994

TABLE 4.1. Optimal utilization values for case studies.

'I
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Upon examining the curves, we find that they are quite

similar. One general trend that can be noted is that the

higher the DMP, the less sensitive utilization is to DMP

loss. This is consistent with other studies of CPU

utilization vs DMP, e. g., [Lips77]. The trend is that as

DMP goes up, the curves tend to flatten.

Another noteworthy trend is that the cases with unequal

I/O service rates (Figures 4.10, 4.11, and 4.12) are

slightly less sensitive to DMP loss than the cases with

equal I/O service rates (Figures 4.7, 4.8, and 4.9). This

is probably because in the inequality case the faster I/O

devices have P* values that are larger than the normalized

ratios of the service rates. This means that on the

average, the faster devices have more customers queued in

front of them and may be said to have a higher "local" DMP.

Thus it follows that the faster devices that dominate the

system are less sensitive to a DMP decrease. This is due to

the previously mentioned decreasing slope of the utilization

curve for higher DMP values.

A significant factor to be noted from these experiments

is that these cases are fairly robust with respect to

utilization loss for the range considered. In fact, in all

cases, the DMP'/DMP ratio is significantly less than the

worst case UTIL'/UTIL ratio. This is encouraging if we

intend to use the read-only model to approximate the

read-write model.

- ".. . .. .. I. I . . . II ..
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Fig. 4.7. Utilization loss due to overhead.
Experiment with MU's equal, Avg MU/LAMBDA = .1.
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* Fig. 4.8. Utilization loss due to overhead.
Experiment with MU's equal, Avg MU/LAMBDA =.3.



122

D

0 0. 8 00.4 0.2 0.0

DMP '/DMP I/DE.NOM

-I

Fig. 4.9. Utilization loss due to overhead.
Experiment with MU's equal, Avg MU/LAMBDA = .5.
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Fig. 4.10. Utilization loss due to overhead.
Experiment with MU's unequal, Avg Mu/LAMBDA =.1.
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Fig. 4.11. Utilization loss due to overhead.
Experiment with MU's unequal, Avg MU/LAMBDA = .3.
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Fig. 4.12. Utilization loss due to overhead.
Experiment with MU's unequal, Avg MU/LAMBDA =.5.



126

4.6.1.B. Access Frequency Error

In Section 4.2 we established that file access

frequencies are assignment dependent. If we use the

read-only model to approximate the read-write model, we

ignore this fact. Therefore, we introduce the possiblity

that our solution does not actually minimize the differences

between the P*'s and the assigned frequencies (TOTFREQ's).

Here we will derive some bounds on the error. As in tie

case of DMP error, we will see that the worst case bounds

are not very useful. Thus, we will again provide graphs

showing the worst error that is introduced for some more

likely cases.

Again, recall that the read-only model furnishes a

solution with at most NDEVS-l extra file copies. As before,

the worst case error for access frequency computation occurs

when we have NDEVS-l extra copies of file i . We can see

this by refering to equations 4.1, 4.2, and 4.3. Note that

DENOM determines the difference between the single copy

frequency and any multiple copy frequency. DENOM is

maximized when the largest value of UlFREQ(i) (i. e.,

UIFREQ(iu)) is replicated the maximum number of times (NDEVS

times).

If we wish to compute the percentage of error,

UnFREQ(i)/UlFREQ(i) or QnFREQ(i)/QIFREQ(i), we must compute

the worst case value of DENOM. For convenience we recall

equation 4.3,
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NFILES NFILES NDEVS
DENOM= QlFREQ(i) + ASMT(i,j) * UIFREQ(i).

i~l i=l j=l

With NDEVS copies of iU we have

NFILES
I ASMT(i,j) = 1 for i i i

and
NFILES
iZ ASMT(iuj) NDEVS.

NFILES
Since (QlFREQ(i) + UlFREQ(i)) = 1

i=l

we may give the worst case DENOM value as

1 + (NDEVS-1) * U1FREQ(iu).

Thus we have

QnFREQ(i) = QIFREQ(i)/DENOM', and

UnFREQ(i) = UIFREQ(i)/DENOM'

where

DENOM' = 1 + (NDEVS-I) * UlFREQ(iu)

If we wish to compute QnFREQ(i)/QIFREQ(i) or

UnFREQ(i)/UIFREQ(i) for this worst case we can see that

QnFREQ(i)/QlFREQ(i) = (QlFREQ(i)/(I+(NDEVS-I)*UIFREQ(iu)) /

QlFREQ(i)

I / (I+(NDEVS-I)*UlFREQ(iu)).

The computation for UnFREQ(i)/UlFREQ(i) is, of course,

exactly the same. Note that all this expression equals

1/DENOM'.

The above value turns out to be equal to DMP'/DMP for

the worst case. This result is derived as follows.

-4i
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DMP'/DMP = (DMP-OHEAD)/DMP

= DMP - ((NDEVS-I)*U1FRZQ(iu) * DMP /

1 + (NDEVS-l) * UlFREQ(iu) ) / DMP

= l-(NDEVS-1)*UlFREQ(iU

= (I+(NDEVS-I)*UlFREQ(iU)- (NDEVS-1)*UlFREQ(iU)) /

(1+ (NDEVS-I)*UlFREQ(iU))

= 1/( 1 + (NDEVS-1) * UIFREQ(iu)

Thus we may use Figure 4.6 to obtain either the

DMP'/DMP worst case error, the UnFREQ(i)/U1FREQ(i) worst

case error, or the QnFREQ(i)/QIFREQ(i) worst case error. We

also note that the limits that apply to overhead obviously

apply here.

While the frequency errors may be of some interest,

again we are ultimately interested in how this affects the

CPU utilization. CPU utilization is not affected by the

redistribution of individual frequencies but rather by the

TOTFREQ's assigned to the devices. We may easily derive a

lower bound on the problem given UlFREQ(iU) = 0. In this

case we have no updates and the model reduces to the

read-only case and the answer is exact. Given that file iU

is replicated NDEVS times we may construct dn upper bound on

the redistribution of the TOTFREQ's. Let ASMTFR(iu'j)

approach 0 for all devices but one, say J, and for J, let

ASMTFR(iUJ) approach 1. It is important that ASMTFR(iU'j)

does not equal 0 for any device so that each device j

I
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contains a copy of i . Likewise, let P*(J) approach 1,

obviously P*(j) approaches 0 for all other j J.

Furthermore, let UlFREQ(iU) approach 1. Obviously, all

other UlFREQ(i) and all QlFREQ(i) approach 0. Thus, for the

limiting case we approach

UnFREQ(iU) = l/(I+(NDEVS-I)*l) = l/NDEVS.

Since all devices carry a copy of iu we approach

TOTFREQ(j) = 1/NDEVS for all j,

in the limiting case.

Again we note that the values for the extreme cases are

not as useful as some more likely cases. We conducted the

same experiments as we did while assessing the effect of DMP

loss on utilization. This time we assume no DMP loss in

order to independently assess the impact of TOTFREQ

redistribution on utilization. For any givei

redistribution, the worst case will result if the access

error (TOTFREQ(j)-TOTFREQ(j)/DENOM) is shifted from the

faster devices to the slowest device. Note that it is

entirely possible that the net effect of access

redistribution may be considerably less than this. In fact

there may be no net redistribution, and the only utilization

loss factor is the overhead. However, for these

experiments, we assume worst case redistribution. The

results are summarized in Figures 4.13-4.18, where we have

again plotted UTIL'/UTIL vs 1/DENOM' (the access error). We

have used the same range and scale for ease of comparison,

-a,-
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and, again, the numbers at the ends of the curves are DMP

values. The optimal utilization values remain the same and

may be read from Table 4.1.

One general trend to notice is that the lower the DMP,

the less sensitive the utilization is to access shifting.

This is the reverse of the DMP situation shown in Figures

4.7 - 4.12. With a small number of customers, the

utilization is low to begin with (see Table 4.1). A

redistribution factor applied to a small number of customers

is naturally less significant than the same redistribution

factor applied to a larger number of customers.

Next, note that utilization is less sensitive to access

redistribution in the cases where the MU's are equal than in

the cases where they are unequal. Since all service rates

are the same in the uniform case, shifting more access to

the "slowest" device has little impact over a large range of

cases. However, when the service rates are unequal by a

large enough amount, as in the nonuniform case, the system

is fairly sensitive to frequency redistribution. Here

UTIL'/UTIL drops off more rapidly than 1/DENOM'. Recall

that this was not the case for the DMP loss effect.

4.6.1.C. Combined error effects

Here we show the results of the same basic experiments,

but this time we include both of the error generating

factors, overhead and redistribution. The results are

plotted in Figures 4.19-4.24.

1I
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Fig. 4.13. Utilization loss due to access redistribution
Experiment with MU's equal, Avg MU/LAMBDA..
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Fig. 4.14. Utilization loss due to access redistribution
Experiment with MU's equal, Avg MU/LAMBDA =.3.
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Fig. 4.15. Utilization loss due to access redistribution
Experiment with MU's equal, Avg MU/LAMBDA =.5.
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Fig. 4.16. Utilization loss due to access redistribution
Experim'ent with MU's unequal, Avg MU/LAMBDA =.1.
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Fig. 4.17. Utilization loss due to access redistribution
Experiment with MU's unequal, Avg MU/LAMBDA = .3.
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Fig. 4.18. Utilization loss due to access redistribution
Experiment with MU's unequal, Avg MU/LAMBDA .5.
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Fig. 4.19. Utilization loss due to both error factors.
Experiment with MU's equal, Avg MU/LAMBDA .1.
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Fig. 4.20. Utilization loss due to both error factors.
Experiment with MU's equal, Avg MU/LAMBDA .3.
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Fig. 4.21. Utilization loss due to both error factors.
Experiment with MU's equal, Avg MU/LAMBDA =.5.
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Fig. 4.22. Utilization loss due to both error factors.
Experiment with MUt S unequal, Avg Mu/LAMBDA = .1.
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Fig. 4.23. Utilization loss due to both error factors.
Experiment with MU's unequal, Avg MU/LAMBDA =.3.
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Fig. 4.24. Utilization loss due to both error factors.
Experiment with MU's equal, Avg MU/LAMBDA =.5.
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We note that for the case where the MU's are equal,

UTIL'/UTIL decreases less rapidly than I/DENOM'. For values

of I/DENOM as small as 0.8, we may obtain a worst case

utilization decrease of 10-15%. This is encouraging.

However, for the case where the MU's are unequal,

utilization drops of more rapidly. It is obvious that the

relative values of the MU's is a critical factor in

assessing the worst case accuracy of the heuristic.

Another interesting trend is that the results tend to

be independent of the DMP values. This is indicated by the

tight clustering of the curves. If this holds in general,

this may help simplify future heuristics.

Since these results are computed on worst case

assumptions, it may be possible to obtain reasonable answers

to the read-write problem by solving the equivalent

read-only problem. The cases presented here provide both

encouraging and discouraging results. It is obvious that

P*-matching is one critical factor that becomes more

critical as the values of the MU's differ. Before we accept

or condemn this method, we should consider how the method

seems to perform compared to worst case conditions.

Therefore, we apply this heuristic to the cases studied in

Chapter III. We discuss these results in the next section.

af
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4.6.2. Case studies

The 12 experiments that were conducted in Chapter III

were reformulated as read-write problems using the file data

in Figure 4.25. Note that we simply divided FREQ(i) equally

between QIFREQ(i) and UlFREQ(i) for all i. All QLEN(i) =

ULEN(i) = MLEN(i), so the data reduces to the same read-only

models.

Some comments are appropriate regarding the severity of

these test cases. Note that the relation of the service

rates is approximately such that MU(l) = 1.6*MU(2) =

3.2kMU(3). This approaches the situation of the previous

section that was shown to be the most sensitive to frequency

redistribution. Also note that the value of UlFREQ(iU) =

.115. From Figure 4.6 we see that the worst case 1/DENOM

value for 3 I/O devices is about 0.81. Since the average MU

to LAMBDA ratio is about 0.2, these cases are somewhat

similar to the cases illustrated in Figures 4.22 and 4.23.

These cases show worst case utilization to be in the

vicinity of 60% of optimal. It sLould now be apparent that

there is ample room for the heuristic to go wrong and that

the "deck" is not stacked in it's favor.

The results of these experiments are summarized in

Table 4.2 where we have reproduced much of Table 3.2. Note

that for 5 cases, the read-only answers were exactly the

same as the read-write answers. In these cases the storage

constraints became active and there were no replicated

e-a-
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files. In the other 7 cases, the average ratio of

read-write utilization to read-only utilization was

approximately .92. Including all 12 cases the average ratio

was approximately .95. This would seem to indicate that the

actual utilization loss does not really approach the worst

case loss at all. Another appropriate comparison is compare

the read-write results against the single copy algorithms.

NFILES = 12

NO QIFREQ UIFREQ QLENGTH ULENGTH

1 0.115 0.115 120.000 120.000

2 0.060 0.060 110.000 110.000

3 0.050 0.050 100.000 100.000

4 0.045 0.045 90.000 90.000

5 0.040 0.040 80.000 80.000

6 0.040 0.040 70.000 70.000

7 0.035 0.035 60.000 60.000

8 0.030 0.030 50.000 50.000

9 0.025 0.025 40.000 40.000

10 0.025 0.025 30.000 30.000

11 0.020 0.020 20.000 20.000

12 0.015 0.015 10.00 10.000

Fig. 4.25. Read-write equivalent for Figs. 3.9-3.11.
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Abbreviations:
ID: Experiment identification code
RW: Read-write heuristic
l/D: Value of I/DENOM
IND: Industrial algorithm
SS: Split storage algorithm
SA: Integral storage, split access algorithm.

Table entries are CPU utilizations.

ID RW l/D IND SS SA

VFO .3999 1 .3594 .3283 .3999

VF2 .4577 1 .3078 .4506 .4577

VTO .5257 1 .4155 .4008 .5257

VT2 .5888 .9434 .3958 .6058 .6176

MFO .4569 1 .4345 .3943 .4569

MF2 .4662 .9524 .4196 .4893 .4885

MTO .5978 1 .6096 .5262 .5978

MT2 .6368 .9434 .5042 .6708 .6695

NFO .4557 .8975 .5106 .5021 .5065

NF2 .4689 .8602 .5264 .5254 .5261

NTO .4868 .8517 .5986 .5712 .5712

NT2 .6233 .8586 .6825 .6727 .6727

TABLE 4.2. Performance of read-write heuristic.

In the cases where the read-only answer equals the

read-write answer, the RW utilization figures compare very

favorably against the IND and SS figures. In the cases

where the storage constraints are somewhat active (cases

VT2, MF2, MT2) , the multiple copy read-write answers also

- -
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compare very favorably to the industrial assignments, and

are only slightly less than the split storage assignments.

Finally, in the cases where the storage constraints are not

active, the read-write utilization figures are consistently

lower than those of the other methods. We should also note

that these least accurate answers also coincided with the

largest I/DENOM values. However, these values were above

the worst case I/DENOM of 1/1.23 = .813.

The most important point to notice is that failing to assign

files so as to match the P*'s is potentially much more

critical than incurring some DMP overhead loss. We

approximate QnFREQ(i) and UnFREQ(i) by QlFREQ(i) and

UIFREQ(i) respectively. It is likely that better estimators

for these values will yield better results. In summary, we

note that there is evidence that the read-only model can

produce some reasonable approximations to the read-write

model. However, we must be cautious about a result and

examine how closely the assignment approaches the worst case

situation. In these cases the accuracy is only fair. In

defense of the heuristic we must note that to compute an

exact solution to the actual problem would be prohibitively

costly (if not impossible) for all but very small problems.

This is nothing new and typifies the standard trade-off

between cost and accuracy that is frequently encountered in

many engineering situations.
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4.7. Chapter summary

In this chapter we extended the model of Chapter III to

include read-write files. We developed a method to

formulate read-write files by introducing assignment

dependent access frequencies. We also introduced a way to

represent the overhead associated with multiple copy

updates. We presented a model to solve for read-write files

when no replication is allowed. We also presented several

formulations of the problem allowing file replication. To

solve these models, we proposed the heuristic use of the

read-only model. Experimental evaluation of this method

indicates that we can expect fair to good results when

compared against single copy assignment algorithms. The

results can probably be improved with better approximations

for the QnFREQ(i) and UnFREQ(i) variables.

f O



CHAPTER V

CONCLUSION

5.1. Summary of Results

This work extended previous FAP research in two major

areas. Using a performance optimization approach (measured

by CPU throughput), we presented a method to obtain a file

assignment allowing replicated copies of read-only files.

We then extended the method to account for read-write files

in both the replicated and non-replicated cases.

In the read-only model discussion, we presented the

concept of replicating files and splitting access to the

files as a method to improve CPU utilization. The problem

was formulated as a mixed integer linear goal programming

problem. We proved that we could obtain alternate optimal

solutions that required no more than a proven amount of

storage. The problem was then solved heuristically with a

method that was shown to take polynomial time in the worst

case except for the solution of a linear programming

problem. Case studies were used to provide evidence that

the heuristic can be very accurate.

The basic ideas were then extended to allow read-write

files. This extension led to the concepts of "useful" DMP,

to represent the additional overhead, and the assignment

149
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dependence of query and update frequencies. We demonstrated

that the case without replication of files reduced to the

read-only problem. We then presented several formulations

for the case allowing replication. We used the read-only

solution technique to heuristically solve for the read-write

problem. Worst case bounds were established for the

approximation. Additionally, we bounded the accuracy for

some less severe cases. Finally, case studies were

presented to give evidence that the heuristic could be

useful in many instances.

5.2. Future Research

The ideas presented in this work are by no means the

final words on the subject. Many extensions are suggested

by challenging some of the basic assumptions. For example,

the assumption of exponentially distributed service times is

standard, but not usually true. Some models could be

developed that are independent of this assumption.

Likewise, there are many different queue disciplines other

than first-come-first-served. Another assumption that could

be changed is that utilization is the correct performance
I,

measure. Maximum utilization appears reasonable in the

context of this work, but a case can be made that response

time may be a more appropriate metric in many other

situations.

i .
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While we have provided a basis for formulating the

read-write problem, we have obviously not developed the

ultimate solution technique. Consider if we choose to use

response time as our performance measure. Then perhaps more

file copies will be necessary, and we know that the accuracy

of our heuristic would be more subject to question. One

thing to pursue in this light would be to obtain good

estimators for UnFREQ(i) and QnFREQ(i).

One obvious extension is to consider a topology other

than the star topology. With the recent emphasis on

computer networks, it would be useful to study many

topologies such as rings or trees. Ultimately, we would

like to be able to model general topologies.

Finally, there is an obvious need for validation of

this model and others like it. Analytic models are created

far more often than they are tested and evaluated on actual

systems. Since improved performance on real systems is the

true goal, it is critical to validate models such as the

ones presented here to be able to assess their ultimate

usefulness.

File assignment techniques have proved their usefulness

in the past. Given the current emphasis on computer

networking, there is every indication that improved

techniques are needed more than ever. The file assignment

problem is a rich problem with many important unanswered

questions. We believe that this is a fruitful area for

f p
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research that needs much attention and will receive much

attention in the future.

I,

.4t

f



APPENDIX A.

COMPARISON OF FILE ASSIGNMENT MODELS

The following table is taken from [Dowd78]. It is a

useful summary of many of the critical features of the 13

FAP formulations surveyed in [Dowd78].

Model
Features considered a b c d e f g h i j k 1 m

Multiple files x x x x x x x x x x
File copies x x x x x x
Query & update traffic x x x x x x
Storage costs x x x x x x
Linear objective function x x x x x
Queuing delays x x x x x x x x
Throughput or time measure x x x x x x x x x x
Solution bounds x x x x x x x x
Capacity x x x x x x
Dynamic routing x x
File-program dependence x
Integral file assignment x x x x x x x x x
Fil -node dependence x x
General topologies x x x x x
Optimal file assignment x x x x x x
Tractable heuristic x x x x x x
File node availability x x

Model Reference Model Reference
I a [Case72] h [Hugh73]

b [Chan761 i [Buze74a]
c [Morg77] j [Fost76]

(Rama70 k [Fost77]
e [Aror73] 1 [Jone78]
f {Chu73] m fDowd77]
g [Mahm76J
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APPENDIX B.

COMPUTATION OF THE NORMALIZATION 'ONSTANT, G

Gordon and Newell [Gord67] derived an exoression for

the steady state distribution for the number of customers at

any service facility (node) in a general queuing network.

For the central server model, let node 0 represent the CPU.

Then, let Pr (c (0) ,c (1) ,. . . c (NDEVS) ) represent the steady

state probability of c(j) customers being at the j-th node,

and note that

NDEVS
Y c(j) = DMP.
j=0

For the central server model, Gordon and Newell's result

becomes

NDEVS()
Pr(c(O),c(l),...,c(NDEVS)) = (1 / G(DMP)) * x(j)c' j )

j=0
where

x(l) 1,

x(j) = LAMBDA * P(j) / MU(j), j=,...,NDEVS,

and where

LAMBDA is the CPU burst rate,

MU(j) is the service rate of I/O device j, and

P(j) is the branching probability from the CPU to

device j.
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G(DMP) is a normalization constant to insure that the

steady state probabilities sum to one. Dowdy [Dowd77]

demonstrated that G(DMP) may be computed for real values of

DMP using a method that is computationally dependent only on

NDEVS. By his method:

NDEVS [xci) (DMP+l) - 1 X(j) (NDEVS-l)G (DMP) = *I... ..j=l X(j -1 NDEVS
G(DMl (x(j)[- x(k))

CPU utilization is then computed as

UTILIZATION = G(DMP - 1) / G(DMP).

I

i .......
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