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ABSTRACT

A definition of convexity of digital solids is introduced.
Then it is proved that a digital solid is convex if and only
if it has the chordal triangle property. Other geometric
properties which characterize convex digital regions are
shown to be only necessary, but not sufficient, conditions
for a digital solid to be convex. An efficient algorithm

is presented that determines whether or not a digital solid
is convex.
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1. Introduction

Discrete geometry has applications in image processing,
pattern recognition and other areas. Before an image of an
object is processed by a computer, it 1s digitized to yield a
finite subset of digital points called a digital image. Then,
various types of operations such as template matching and geo-
metric property measurement are performed on sets of digital
points.

Convexity 1is an important and useful geometric property.
Since digital image processing has been restricted almost en-
tirely to 2-dimensional images, digital convexity has been
studied only tor digital regions, that is, 8-connected [10]
finite subsets of digital points in the plane. Sklansky in
{13] defined a digital region to be convex 1f and only if there
is a convex region wnose image (under digitization) 1s the digi-
tal region.  He then showed that a digital region 1s convex 1if
and only 1f 1ts minimum-perimeter polygon 1is convex [13,14]. A
digital region R 1s said to have the line property if every
dijital point on the line scgment between any two points of R
1s a point of R, In [7] Minsky and Papert defined a digital
region to be convex 1f and only i1f it has the line property.
However, no useful results regarding convex digital regions have

been derived from this definition. lLet d be two points of R

109y
and R' the union of all cells (grid squares) whosce centers are

points ot R. Then P(R;dl,d )} denotes tne area bounded by the
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line segment dld2 and the boundary of R'. R is said to have
the area property if for any two points dl,d2 of R, every dig-

ital point of P(R;dl'dz) is a point of R. In (2], a digital

region is defined to be convex if and only if it has the area

property. Moreover, it is shown in [2,4] that the above three

definitions are equivalent, the definition of Sklansky having
been slightly modified.
# . In [11] Rosenfeld introduced the chord property to charac-

terize digital straight lines. The chord property and the area f

property turned out to be equivalent [5]. Furthermore, it was

shown in [3,4] that a digital region is convex if and only if
any two points of the region may be connected by a digital
straight line segment in the region.

These results lead us to believe that convexity of digital
regions is now well defined and understood. Because of the
recent growing interest in 3-dimensional image processing
(1,6,9,16], it seems essential to develop a theory of 3-dimen-
sional discrete geometry.

In this paper we introduce a definition of convexity of
digital solids, which is an extension of that of Sklansky. Then
we show that a digital solid is convex if and only if it has
the chordal triangle property. However, this characterization

of convexity does not lend itself to development of an efficient

algorithm to recognize convex digital solids. Thus, convexity

of digital solids is further characterized in terms of semi-
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digital points on the surface of the convex hull of the
digital solid. With this characterization, an efficient
algorithm is developed to determine whether or not a given
digital solid is convex.

The geometric properties that characterize convex digital
regions are either well defined in or easily extendable to the
3-dimensional case. It will be shown that the chordal triangle
property, which is an extension of the chord property, is the
only one that is useful for characterizing the convexity of
digital solids.

In the next section, we introduce a few relevant defini-
tions, notation and terminology. Section 3 introduces a defi-
nition of convexity of digital solids and discusses its proper-
ties. An efficient algorithm for recognizing convex digital
solids 1s presented in Section 4. The next section is con-
cerned with geometric properties that characterize convex digi-

tal regions and solids.




2. Definitions

Consider the set of all lattice points in 3-dimensional
Euclidean space. A lattic point d = (h,k,m) is called a digi-
tal point. To each digital point d is associated a unit cube
whose center is the digital point and faces are parallel to
the coordinate planes. The cube associated with digital point
d is denoted by c and is called a cell. Digital point d' is
a 6-, 18-, or 26-neighbor of digital point d if c¢' shares with
¢ a face, an edge or a corner point, respectively.

Let R be a set of digital points. Then R denotes its com-
plement, th >+ is, the set of all digital points that are not
in R. We denote by R' the set of all cells that are associated
with the points in R. The set of points cf 3-dimensional Eucli-
dean space in R' is denoted by s(R), and its boundary surface
by 3s(R). For any two points x and y, xy denotes the line seg-
ment between the two.

A chain is a finite sequence of digital points such that
every element of the sequence except the first is a 6-neighbor
of its predecessor. A set R of digital points is said to be
6-connected if for any two points d,d' of R, there is a chain
from d to d' in R.

Digital solids

A digital solid S is a finite set of digital points which

is 6-connected. A digital solid S is said to be simple if

- WREN el e v
R SN




o — i Y e — : U ' aed .v-j

l,d2 of § such that dld2 is

parallel to a coordinate axis and therc is a point of S on

there exists no pair of points d

dldz' We denote by H(S) the convex hull of S, that is, H(S)
is the smallest convex polyhedron that contains S. Note that
the vertices of H(S) are points of §.

bigital image

A digital solid S is the digital image of a solid g, denoted
s=I(q), if
(1) gs=s(S), and
(1i) 1f ¢ is an element of S', then cofq#ﬁ, where c© is

the interior of c.

Half-cell expansion [15]

Let S be a digital solid and Q the set of all corner points
of the cells of S8'. Then Q is a digital solid, the points of
0 being considered as digital points, and we denote Q by E(S),
the half-cell expansion of S.
Digital convexity

A digital solid S is said to be digitally convex (or simply
"convex") if 1t 1s simple and tihere 1is a convex solid q such that
E{(s)=I1(q), that is, the half-ce¢ll expansion of S is the image
of the convex solid g.
Chordal trianglc property

Let w={(x,y,2z) and w'=(x',y',2z') be two points in 3-dimensional

kuclidean space. The two points are said to be near each other
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if max{|x-x'|,|y-y'|,|z-2'|[}<l. Note that no two digital

points are near each other.

Let S be a digital solid. A point w is said to be near

S if there is a point of S which w is near. Let dl,d2 and
d3 be points of S, which are not necessarily distinct. The
triangle, possibly a degenerate one, whose vertices are dl,

d, and d

5 37 is called a chordal triangle of S. A chordal tri-
angle T is said to lie near S if every point of T is near S.
A digital solid S is said to have the chordal triangle property

if every chordal triangle of S lies near it.
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3. Digital convexity and the chordal triangle property

The main result of this section is that the chordal triangle
property is a necessary and sufficient condition for a digital
solid to be convex. First we show that a digital solid S has
the chordal triangle property if and only if every point of
H(S), the convex hull of S, is near S. Next it is shown that
every point of H(S) is near S if and only if S is digitally
convex. The main result then follows immediately.

Lemma 1l: A digital solid S has the chordal triangle property

if and only if every point of H(S) is near 3.

Proof: sSuppose that every point of H(S) is near 5, and let T
be a chordal triangle of S. Since T is a subset of H(S), ecvery
point of T is near S and T lies near S. Therefore, S has the
chordal triangle property.

Now suppose that there are points of H(S) which are not
near S, and let w be such a point. If w is on a face of H(S),
then obviously w is a point of a chordal triangle. Hence, S
does not have the chordal triangle property. Assume that w is
an interior point of H(S). We further assume that w is not a
digital point. (It turns out that the case where w is a digital
point is taken care of when we consider the case where w is not
a digital point.) Let c be the cell of which w is a point. Then
the digital point d which is the center of c is not a point of

S, since otherwise w is near S. There are two cases to consider.




Case 1: The digital point d is not a point of H(S).
Let u be the point at which dw intersects a face of H(S).

We claim that u also is not near S. If so, u is a point on a

face of H(S) and not near S. Thus, S does not have the chordal
triangle property. It remains to prove our claim. If d=(h,k,m),
then w=(h+Ax, k+dy, m+Az), where |Ax|[=1/2, [Ay|sl/2 and |Az|sl/2.
wWitnout loss of generality assume that 0sAx,Ay,Az=1/2. Then

the point u is such that u=(h+Ax',k+Ay',m+Az') and 0=Ax'=AX,

0=Ay'=Ay and 0sAz'sAz. (See Figure 1.) Suppose u is near S. L

\\\.\\\H(5>

Figure 1.
Then there is a point dl in 8 which is near u. If dl=(h+6x,k+6y,
f ’ m+s ), tnen \t=l if At>0 and §,.=0 if At=0 for all t=x, y and z.
p Thus w 1s also near dl’ which is a contradiction. This proves
! our claim.
Case 2: The digital point d is a point of H(S).

Obviously, d is not near S (if it were, it would have to be

e gt

in S, making w near S). As mentioned above, this also takes

care of the case where w 1is a digital point (so that w=d4).
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consider the scet X of all digital points of H(S) that lie on

the linc (x which passes through d and is parallel to the
x-axis. If X contains points of S on both sides of d, let u

and v be the nearest points of S on each side of d. The line
segment uv is a degenerate chordal triangle of S and it does

not lie near S. Therefore, S does not have the chordal triangle
property. Suppose that X does not contain any point of S on

one side of d. Let u be the point at which ZX intersects a

face of H(S) and there is no point of S on du. We claim that

u 1s not near S and thus § does not have the chordal triangle
property. Now we prove our claim. If u is a digital point,
then obviously it is not near S. So assume that u is not a
digital point. If d=(h,k,m), then u=(h+x,k,m) because u is

a point on ZX. Also x is not an integer, since u is not a digi-
tal point. The only digital points near u are d'=(h+(xj,k,m)
and d"=(h+ix],k,m), where |x] is the largest integer not

greater than x and [x1 the smallest integer not less than x.
Neither d' nor d" is a point of 8 and u is not near S. So

our claim is proved. This completes the proof of this

lemma.lL

We need a few lemmas before we derive a result on the rela-

tionship between the convex hull and convexity of a digital solid.

Lemma 2: Let S be a digital solid. If ¢ is a cell of E(S),
then cl{H(S)#8.

Proof: 1f ¢ is a cell of E(S), at least one corner point of c,

say e, 1s a point of S. Then e«citi(S). L.




Lemma 3: Let S be a digital solid. If every point of H(S) is
near S, then § is simple.
Proof: Suppose every point of H(S) is near §. Then every

digital point of H(S) is a point of S. Consider any pair of

points dl,dz of § such that dld2 is parallel to a coordinate
axis. Since H(S) is convex, dld2 is a subset of H(S). There-
fore, every digyital point on dld2 is a point of S and S is

simple by definition. L

Lemma 4: Let S be a digital solid. If every point at H(S) is
near S, then H(S) 1s a subset of the set of interior points of
s(L(S)). Therefore, there exists a positive number ¢ such that
dist(u,v)ze for any point u of H(S) and any point v of 4s(E(S)).

Proof: Let w be a point of 9s{(E(S)) and ¢ be a cell of E(S)

to which w belongs. 1If w is a corner point of ¢, then it 1is
not near S. If w is on an edge of ¢, neither end point of the
edgye 1s a point of S; hence w is not near S. If w is on a face

of ¢, no corner point of the face is a point of $, and again w

is not necar 3. Therefore, H(S) and 3s(E(S)) do not meet or

intersect. Since every point of S is an interior point of s (E(S)),

the vertices of h(S) are interior points of s(kE(S)). Thus, H(S)
is a subset of the set of interior points of s(E(S)).
Since 9S(E(S)) and H(S) are both compact sets and do not

have any point in common, min dist(u,v)=e>0. L

uelH(S),veds (E(8))
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Lemma 5: Let S be a digital solid. If g is a convex solid such

O, where qo is the interior of (.

that E(S)<I(yg), then H(S)<g
Proof: Let v be a vertex of H(S). Then there are eight cells
of E(S) of which v is a corner point. Since H(S) 1s convex,

there is one cell among the eight, say ¢, such that co(m(S)=¢.

Therefore, s(E(S))£I(H(S)). Since obviously H(S)&g, H(S) must

be a proper subset of g. Suppose r=5qldH{(S), the intersection
of the boundary surfaces of g and H(S), is not empty. Since ¢
is convex, r contains a vertex of H(S), say v, and there is a

plane p such that v is on p and g lies in one side of p. Then
there is a cell of E(S), call it ¢, such that v i1s a corner
point of ¢ and ¢ lies on the opposite side of p from gq. Thus,
cofq=ﬂ and E(S)#%I(y), which is a contradiction. Therefore, r
is empty and H(S)&qo. L.

Lemma 6: A digital solid S is convex if and only if every
point of H(S) 1is near S.

Proof: Suppose that every point of 1I(S) is near S. Let g be
2 convex polyhedron obtained from 11($) by parallel translation
nf all 1ts taces outward by a distance &. By Lemma 4, there
exlists a positive number &, which depends on ¢ in the lemma,
such that g is a subset of s(E(S)). If ¢ 1s a cell of E(S),
clH(S)#@ by Lemma 2 and thus c°»q¢g since ¢ 1is an expansion of
H(S). Hence, E(S)=I1(q). Also by Lemma 3, S is simple. There-

for, S is digitally convex.




Now suppose that there are points of H(S) which are not
near S. Since every interior point of s(E(S)) is near S,

H(S) contains a point w which is either a point of 93s(E(S)) or of

s(E(S)). Thus, w is a point of a cell c¢ which is not a cell of
E(S). Suppose there exists a convex solid q whose image is
E{(S). Since E(S)<1(y), H(S)S;qO by Lemma 5. Thus w must be an

interior point of g and co(q#ﬂ. Then ccI(g) but ¢ is not a
cell of E(S), which is a contradiction. Therefore, S is not
digitally convex because there is no convex solid whose image
is E(S). L

The main result of this section follows immediately from
Lemmas 1 and 6:
Theorem 7: A digital solid is convex if and only if it has

the chordal triangle property.




4. Algorithm for recognition of convex digital solids

In the previous section we showed that the chordal triangle
property 1is a simple geometric property that characterizes
convex digital solids. However, it does not lend itself to
development of an efficient algorithm to determine whether or
not a digital solid is convex. The reason is that there are
infinitely many points on a chordal triangle and the number of
chordal triangles is O(n3), where n is the number of points in
S. 1n the sequel, it will be shown that only finitely many
points on the surface of H(S) need be examined to recognize
the convexity of a digital solid.

Let p be a polygon on a plane in 3-dimensional Euclidean
space. A point w={x,y,2) of p is said to be a semi-digital
point if at least two of its coordinates are integers or it is
on an edge of p and one of its coordinates is an integer. Note
that the number of semi-digital points on p is approximately
equal to its area.

Our alyorithm is based on the result stated in the following
theorem.

Theorem 8: A simple digital solid S is convex if and only if

every semi-digital point on the faces of H(S) is near S.
Proof: "Only 1if” is a special case of Lemma 6. Conversely,

suppose that the simple digital solid § is not convex. By

Lemma 6, there are points ot H(S) which are not near S; let
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w=(x,y,z) be such a point. There are two cases to consider.
Case 1l: w=(X,y,z) is a digital point, i.e., x,y,z are all
integers.

Let Kx be the ray from w parallel to the x-axis; then ZX
contains no point of S because S is simple. Let u be the
point at which ZX intersects a face of H{S). Then u is not
near S and u=(x',y,2z) is a semi-digital point.

Case 2: w=(X,y,z) is not a digital point.

Let ¢ be the cell of which w is a point. Then d, the

center of ¢, 1s not a point of S, since otherwise w is near S.

If d is a point of H(S), then Case 1 applies to it, and there

1s a semi-digital point on a face of H(S). Thus, assume that d
is not a point of H(S). Let u be the point at which dw inter-
sects a face of H(S) (see Figure 1.). Then u is not near S.

(Reter to the proof of Lemma 1 for the reason.) Let d=(h,k,m).
Then u=(h+ix,k+dy,m+Az), where |Ax|sl/2,|Ay]s1l/2 and |bAz]|sl/2.
{1) u is on an edge of H(S).

As we move u along the edge in either direction, Ax,Ay and
Az change their values continuously and monotonically. Let us

move u until one of Ax,Ay and Az attains a value of 0, 1, or -1

for the first time. This always occurs because the endpoints of

the edge are digyital points. The resulting u is a semi-digital
point. It is easy to see that u is not near S.
(b) u is not on an edge of H(S).

Take a coordinate plane which is not parallel to the face,

say the xy-plane. Consider the line exy of intersection

- - ENCE S, i TR, W
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of the tace and the plane which 15 parallel 1o tne xy-planc
and contains the point u. As the point u 15 moved alonyg (xy'
the values of Ax and My change wnile that of 2z 1s kept con-

stant. We rove u until either 1t reaches an od.. ot the fuace
or one of Ax and 'y attains a value ot 0, 1, o1 -1 ‘¢r the

first time. 1t u reaches an edye Hirst, thoen we have Coase Z2ia),
which has alrcady been treated. Now assume without Loss o
generality that x attains a value ot 0, 1, or -1 first., Then

the x-coordinate of u 1s an integer. Conside:r tne iine o -

intersection of the face and the plane whicn 1s varaclel 40 tne

yz-plane and contains u. (If tne yz-plance wore paralle! too e
tace, then 'y would have attained a value ot 0O, 1, o1y - 1100,
since x would have stayed constant. [n this case - wWodid e

consldered Instead.)  Move tne pornt u alono ol until eirther at

s

reaches an edgye ot the tace or the value ot 'y or 4 becoine: o,
l, or -1 for the first time, 1f u reaches an edge tirst, then

it is a semi-digital point. 1f .y or iz attains a value ot U,

1 or -2 first, then again u is a scmi-digital polint, since two

of 1ts coordinates arc integers. 1t can ecasily be shown that u
is not near S. L

Corollary 9: A digital solid S is convex if and only 1if it is
simple and every semi-digital point on the surface of H(S) is
near S.

We are now ready to present an algorithm to determine whether

not a given digital solid is convex. In fact, Corollary 9




conclsely describes the algorithm. The algorithm first checks
it 5 1s or 1s not simple. 1If S is not simple, then the algo-
vithm outputs that S 1s not convex and halts. Otherwise it
examines every semi-digital point on the surface of H(S) to
see whether any one ot them is not near S. 1f such a point 1s
tound, tine alyorithm halts after 1t outputs that S is not con-
vex. it all semi-digital points are near S, then S is convex.
Below tne algoritnm is presented formally.

Algorithm 3D-CONVEXITY (S)

1. 1f 5 1s not simple then output (False); stop.

2. Construct the convex hull H(S) of S.
j. 1t a semi-digital polint which is not near S is found
on the surface of H(S) then output (False); stop.

4. ovutput (True); stop.

The correctness ot the algorithm is immediate from Corollary

9. However, determination of its computational complexity re-
iqulires a detalled description of each step and the data struc-
tures usced 1n the algorithm. For simplicity we assume that a
digital! solid 8§ 1s a subset of the set of n3 digital points in
tne cube whose edge 1s of length n. S is represented by a run
length code [12) such that RC(i,j) is a finite sequence of run
legnths of U's, digital points of S with coordinates (i,j,z),
and 1's, digital points of S with coordinates (i,j,z). Thus,

RC(1,1)=W ) represents the (i,j)th row as

AR SR
1307 13¥ (1Jrij

composed ot a run of 0's of length cijO followed by a run of 1's

of lengyth (i and so on.

jl




(L) 1s 5 sample?
I1f a row has morce than one run ot 1l's, then S 1s obviously
not simple. Consider the set of rows in a planc parallel to the

yz-plane, that is, the set of rows (i,j) for all 3, l=j=n, and

a fixed 1, lsi1sn., Suppose that tijog(i,j+l,0 and {ikO>Li,k+l,0
for some laj<kan. Then 8§ is not simple. Alscu, Lf cij0+£ij]>
Ci,3+1,0 %, 3+1,1 @9 Yot k1™t k+1, 078y ke, 1 then S is not

simple. Tihe set of rows 1n a plane parallel to the xz-plane can
be checked similarly. It 1s easy to sce that 5 1is simple other-
wise. The above observations lead to algoritim SIMPLE ior step
1 of alyorithm 30-CONVEXITY.
Algorithm SIMPLE(S)
I.1. For each i and eacn j, l=i,j=n,
check RC(1i,]) to sce if there is more than one
run of 1's; if so, output (lalse); stop.
1.2. For each i, l=sian,

check 1if (ijO increases and then decreases or

(ij0+t1jl decreases and then increases as j increases

from 1 to n; if so0, output (False); stop.
1.3. For each j, lsj=n,

check 1if £ij0 increases and then decreases or

tij0*t

from 1 to n; if so, output (False); stop.

ijl

Each step runs in O(nz) time and requires a constant work

space.

decreases and then increases as 1 increases
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{2) Construction of H(S)

A point of 5 is a corner point if three of its 6-neighbors
are points of S and they are mutually 18-neighbors. Only a corner
point of S may be a vertex of H(S), and the convex hull of the
set of corner points of S is also the convex hull of S. Obviously,
only the first and the last digital points of each row can be
corner points. Hence, there are at most O(n2) corner points
in S because there are n2 rows. Let CP(S) denote the set of
corner points of S.

An algorithm to build the convex hull of a set of points is
given in [8]. We denote the algorithm by HULL. 1Its input is a
set of points R and its output 1s the convex hull H(R)=(Fl,..., K
where each face Fi of H(R) 1s represented by a sequence of 1its
vertices.

Algorithm CONVEXHULL (S,H(S) ,k)

2.1. Obtain CP(S), the set of corner points of S, by checking
the tirst and last points of S in each row (i,j), where
1>i,3=n,

2.2. Call HULL(CP(S),H(S)) to construct H(S)=(Fl,...,Fk).

2.3. Return.

Step 2.1 requires O(n2) cormputing time and work space. Step

2.2 runs in O(nzlog n) time and needs O(nz) work space to store

F ),

iEam
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(3) Is every semi-digltal point near 8?2

Siunce the number of semi-digital polnts is approximately
cagual to the area of the surface of H(3) and H(S) is convex,
there are O(nz) semi~digital points. Given a face of H(S)
represented by a sequence of 1ts vertices, each semi-digital
point may be located 1n constant computing time. If a semi-
drgrtal point 1s a Jdigital point, then 1t 1s near S if and only
1t 1t 1s a point of S. [f a semi~-digital polnt has wwo integer
coordinates, then two digital points must be checked. For in-
stance, 1t 4 semi-digital point 1s w=(h+. . x,Kk,n), 0«'x<l, then
1t 15 near 5 it citiner (h,k,m) or (h+l,k,m) 1s a point ot S.
It a semi-digital point w has only one 1nteger coordinate, then
tour digital points must be checnod to see 1f w 1S near 5.
Thus, we have tne tollowing algoritnm tor step 3 of algorithm
ID-CONVEXTTY.

Algorithm NLAR(S,H(S) k)

.‘:
$.1. For cach faCL-l'l of H(s8), lsi1ask,
for cach scemi-digital point w on Fl
R check 1f w 1s near 8; 1f not, output (False):
1
stop.

|
'y 3.2. Return.

Obviously algoritnm NEAR Las running time of O(nz) and needs

constant wolrk space.




a digital solid is convex, runs in O(nzlog n) time and requires

O(n2) work space.
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5. Convex digital regions and solids

We restate formal definitions of the geometric properties

that are used to define convexity of digital regions.

Line property

A digyital region R i1s said to have the line property if there

is no triplet (dl’d2’d3) of collinear digital points such that

d) and d3 are points of R and d, is a point of R.

2
Area property

Let 3s(R) denote the boundary of the set of points of cells
whose centers are the points of R. R 1s saild to have the area

property if there are no two points d of R such that the
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bounded area whose boundaries consist of nonempty segments of

a;a; and ds (R) contains a digital point of R.

Chord property

A digital region R is said to have the chord property if

for each point w=(x,y) on d,d,, where d

14, 1
points of R, there is a point d=(h,k) of R such that

and d, are any two
“~

max{x-h},|y-k|}<1.

All three properties above are equivalent in that a digital
region is convex if and only if 1! has any one of them. There
are Euclidean geometric properties of which the line property
and the area property may be considered digital equivalents,
but this 1is not the case for the chord property. It is obvious

that the line and chord properties are well defined in 3-dimen-

sional discrete geometry. It 1s immediate that the chordal




triangle property is an extension of the chord property, but
there is no natural extension of the line property. In [2]
it was shown that a digital region R has the area property
if and only if the convex hull of R contains no point of R.
Thus, the volume property which is defined below may be con-
sidered as an extension of the area property.

Volume property

A digital solid S is said to have the volume property if
H(S) contains no point of §.

In Section 3, we proved that a digital solid is convex if

and only if it has the chordal triangle property. In the sequel,
we show that every other property mentioned here is a necessary
but not a sufficient condition for a digital solid to be convex.
Theorem 1ll: Each one of the line, chord, and volume properties
is a necessary but not a sufficient condition for a digital solid
to be convex.
Proof: Suppose that a digital solid S does not have either the
line property or the chord property, then trivially S does not
have the chordal triangle property. Hence, S is not convex by
Theorem 7. Now suppose that S does not satisfy the volume pro-
perty. Then not every point of H(S) is near S and S is not con-
vex by Lemma 6.

To see that these conditions are not sufficient, consider

the polyhedron g which is formed by the three coordinate planes




and two planes whose equations are x/3+y/3=1 and x/3+y/6+2z/2=1,
respectively. Let S, be the digital solid that consists of all

digital points of g except the point d=(1,1,1). (See Figure 2.)

Figure 2. A digital solid which 1s not convex but has
both the line property and thc chord property.

Then ¢ 1s “(Sl)’ the convex hull of S Since 1t 1s not a point

1
of § but 1s a digital polint, d is a point o! H(Sl) which 1s not

4 near Sl' Thus, Sl 1s not convex. Note that every point of H(S

g except d 1s near Sl‘ It is easy to see that there are no two

1!

points dl'dZ of S such that d is on d,d, Theretore, S, has both
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the line property and the chord property.

2

I)
4
i Next let S, be the digital solid {(0,0,0),(0,0,1),(0,0,2),
? (0,:1,2),(1,1,2),(1,0,0) 1. (See Figure 3.) Then the point w=

(l,1/2,1) is a point of H(Sz) and not near $,, so S, 1s not convex.

2

-

Since H(Sz) contains no point of §2, 52 has the volume property...
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Figure 3. A digital sclid which is not convex but has i
the volume property. 4
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6. Conclusion

A definition of convexity of digital solids was introduced.
It is a 3-dimensional extension of the modified definition of
Sklansky [3,13]. Just as convexity of digital regions is charac-
terized by the chord property, convexity of digital solids is
characterized by the chordal triangle property, which is a 3-
dimensional extension of the chord property. The main guestion
concerning convexity of digital solids is under what conditions
a digital solid is the digitization of a convex solid. The
definition presented in this paper and the characterization cof
convexity by the chordal triangle property seem to provide a
satisfactory answer to the question.

There are other geometric properties that are used o
characterize convexity of digital regions. Somewhat surprisingly,
they or their 3-dimensional extensions turn out to be only neces-
sary conditions. It would be interesting to determine the
class of digital solids that each of these properties charac-
terizes.

If, given a digital solid, a sequential algorithm must con-
struct its convex hull to determine its convexity, the time com~-
plexity obtained here cannot be improved. For, O(k log k) is the
optimal time complexity for any sequential algorithm to construct
the convex hull of k points. Thus, to develop a faster algorithm,

convexity of digital solids must be characterized by a simpler

geometric property.
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