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ABSTRACT

A definition of convexity of digital solids is introduced.
Then it is proved that a digital solid is convex if and only
if it has the chordal triangle property. Other geometric
properties which characterize convex digital regions are
shown to be only necessary, but not sufficient, conditions
for a digital solid to be convex. An efficient algorithm
is presented that determines whether or not a digital solid
is convex.
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1. Introduction

Discrete geometry has applications in image processing,

pattern recognition and other areas. Before an image of an

object is processed by a computer, it is digitized to yield a

finite subset of digital points called a digital image. Then,

various types of operations such as template matching and geo-

metric property measurement are perforined on sets of digital

points.

Convexity is an important and useful geometric property.

Since digital image processing has been restricted almost en-

tirely to 2-dimensional images, digital convexity has been

studied only tor digital regions, tnat is, 8-connected [10]

finite subsets of digital points in the plane. Sklansky in

1131 defined a digital region to be convex if and only if there

is a convex region whose image (under digitization) is the digi-

tal reg(jion. tic Lnen showed that a digital region is convex if

* and only if its minimum-perimeter polygon is convex [13,14]. A

digit Ll region R is said to have the line property if every

d! it&L' point on the Line sgment between any two points of R

LS a :,)int of R. [n [7] Minsky and Papert defined a digital

re(j olL to be convex if and only if it has the line property.Iv

However, no useful results regarding convex digital regions have

been derived from this definition. Let d1 ,cd2 be two points of R

and R' the union of all cells (grid squares) whose centers are

points Of R. Then P (R;d I,d 2 ) denotes toe area bounded by the
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line segment d 1d2 and the boundary of R'. R is said to have

the area property if for any two points dl,d 2 of R, every dig-

ital point of P(R;dlfd 2 ) is a point of R. In (2], a digital

region is defined to be convex if and only if it has the area

property. Moreover, it is shown in [2,41 that the above three

definitions are equivalent, the definition of Sklansky having

been slightly modified.

In [11] Rosenfeld introduced the chord property to charac-

terize digital straight lines. The chord property and the area

property turned out to be equivalent [5]. Furthermore, it was

shown in [3,4] that a digital region is convex if and only if

any two points of the region may be connected by a digital

straight line segment in the region.

These results lead us to believe that convexity of digital

regions is now well defined and understood. Because of the

recent growing interest in 3-dimensional image processing

[1,6,9,16], it seems essential to develop a theory of 3-dimen-

sional discrete geometry.

In this paper we introduce a definition of convexity of

digital solids, which is an extension of that of Sklansky. Then

we show that a digital solid is convex if and only if it has

the cnordal triangle property. However, this characterization

of convexity does not lend itself to development of an efficient

algorithm to recognize convex digital solids. Thus, convexity

of digital solids is further characterized in terms of semi-
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digital points on the surface of the convex hull of the

digital solid. With this characterization, an efficient

algorithm is developed to determine whether or not a given

digital solid is convex.

The geometric properties that characterize convex digital

regions are either well defined in or easily extendable to the

3-dimensional case. It will be shown that the chordal triangle

property, which is an extension of the chord property, is the

only one that is useful for characterizing the convexity of

digital solids.

In the next section, we introduce a few relevant defini-

tions, notation and terminology. Section 3 introduces a defi-

nition of convexity of digital solids and discusses its proper-

ties. An efficient algorithm for recognizing convex digital

solids is presented in Section 4. The next section is con-

cerned with geometric properties that characterize convex digi-

tal regions and solids.
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2. Definitions

Consider the set of all lattice points in 3-dimensional

Euclidean space. A lattic point d (h,k,m) is called a digi-

tal point. To each digital point d is associated a unit cube

whose center is the digital point and faces are parallel to

the coordinate planes. The cube associated with digital point

d is denoted by c and is called a cell. Digital point d' is

a 6-, 18-, or 26-neighbor of digital point d if c' shares with

c a face, an edge or a corner point, respectively.

Let R be a set of digital points. Then R denotes its com-

plement, that is, the set of all digital points that are not

in R. We denote by R' the set of all cells that are associated

with the points in R. The set of points cf 3-dimensional Eucli-

dean space in R' is denoted by s(R), and its boundary surface

by as(R). For any two points x and y, xy denotes the line seg-

ment between the two.

A chain is a finite sequence of digital points such that

every element of the sequence except the first is a 6-neighbor

of its predecessor. A set R of digital points is said to be

b-connected if for any two points d,d' of R, there is a chain

from d to d' in R.

Digital solids

A digital solid S is a finite set of digital points which

is b-connected. A digital solid S is said to be simple if

J.



there Qxist-s no pair of points d(1 ,d of S such that d d is
1 2

parallel to a coordinate axis and there is a point of S on

d d 2 . We denote by H(S) the convex hull of S, that is, H(S)

is the smallest convex polyhedron that contains S. Note that

the vertices of H(S) are points of S.

Digital image

A digital solid S is the digital image of a solid q, denoted

S=I(q), if

(i) q -s(S), and

(ii) if c is an element of S', then c °qi0, where co is

the interior of c.

Half-cell expansion [151

Let S be a digital solid and Q the set of all corner points

of the cells of S'. Then Q is a digital solid, the points of

0 being considered as digital points, and we denote Q by E(S),

'4 the half-cell expansion of S.

Diital convexity

A digital solid S is said to be digitally convex (or simply

"convex") if it is simple and there is a convex solid q such that

E(S)=l(q), that is, the half-cell expansion of S is the image

of the convex solid q.

Chordal tria nle property

Let w:(x,y,z) and w'=(x',y',z') be two points in 3-dimensional

d luclidean space. The two points are said to be near each other

Kb
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if max{x-x',y-y'l,Iz-z'I}<l. Note that no two digital

points are near each other.

Let S be a digital solid. A point w is said to be near

S if there is a point of S which w is near. Let dl1 d2 and

d3 be points of S, which are not necessarily distinct. The

triangle, possibly a degenerate one, whose vertices are di,

d2 and d 3, is called a chordal triangle of S. A chordal tri-

angle T is said to lie near S if every point of T is near S.

A digital solid S is said to have the chordal triangle property

if every chordal triangle of S lies near it.



3. Digital convexity and the chordal triangle property

The main result of this section is that the chordal triangle

property is a necessary and sufficient condition for a digital

solid to be convex. First we show that a digital solid S has

the chordal triangle property if and only if every point of

H(S), the convex hull of S, is near S. Next it is shown that

every point of H(S) is near S if and only if S is digitally

convex. The main result then follows immediately.

Lemma 1: A digital solid S has the chordal triangle property

if and only if every point of H(S) is near 3.

Proof: Suppose tnat every point of h(S) is near S, and let T

be a chordal triangle of S. Since T is a subset of H(S), every

point of T is near S and T lies near S. Therefore, S has the

chordal triangle property.

Now suppose that there are points of H(S) which are not

near S, ana let w be such a point. If w is on a face of H(S),

then obviously w is a point of a chordal triangle. Hence, S

does not have the chordal triangle property. Assume that w is

* an interior point of H(S). We further assume that w is not a
*1

digital point. (It turns out that the case where w is a digital

point is taken care of when we consider the case where w is not

a digital point.) Let c be the cell of which w is a point. Then

the digital point d which is the center of c is not a point of

S, since otherwise w is near S. There are two cases to consider.
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Case 1: The digital point d is not a point of H(S).

Let u be the point at which dw intersects a face of H(S).

We claim that u also is not near S. If so, u is a point on a

face of H(S) and not near S. Thus, S does not have the chordal

triangle property. It remains to prove our claim. If d=(h,k,m),

then w=(h+Ax, k+Ay, m+Az), where lAxlsl/2, IAylsl/2 and jAzIi/2.

Witiout loss of generality assume that 0sAx,Ay,Az-.i/2. Then

the point u is such that u=(h+Ax',k+Ay',m+Az') and 0 -Ax'lAx,

0%.Ay'%Ay and 0,Az'-tAz. (See Figure 1.) Suppose u is near S.

\j

Figure 1.

Then there is a point d in S which is near u. If d =(h+(Sxk+,Sy,

m+. z ) , tnen t=1 if At>O and 6t=O if At=O for all t=x, y and z.

Thus w is also near dl, which is a contradiction. This proves

our claim.

Case 2: The digital point d is a point of H(S).

Obviously, d is not near S (if it were, it would have to be

in S, making w near S). As mentioned above, this also takes

care of the caso where w is a dig3tal point (so that w=d)

* 4q



Consider the set X of all digital points of Hl(S) that lie on

the line Z' which passes through d and is parallel to thex

x-axis. If X contains points of S on both sides of d, let u

and v be the nearest points of S on each side of d. The line

segment uv is a degenerate chordal triangle of S and it does

not lie near S. Therefore, S does not have the chordal triangle

property. Suppose that X does not contain any point of S on

one side of d. Let u be the point at which t intersects ax

face of H(S) and there is no point of S on du. We claim that

u is not near S and thus S does not have the chordal trianqle

property. Now we prove our claim. If u is a digital point,

then obviously it is not near S. So assume that u is not a

digital point. If d=(h,k,m), then u=(h+x,k,m) because u is

a point on 1 . Also x is not an integer, since u is not a digi-x

tal point. The only digital points near u are d':(h+txi,k,m)

and d"=(h+[xl,k,m), where Lx] is the largest integer not

greater than x and rxi the smallest integer not less than x.

Neither d' nor d" is a point of S and u is not near S. So

K "our claim is proved. This completes the proof of this

lemma. L

We need a few lemmas before we derive a result on the rela-

tionship between the convex hull and convexity of a digital solid.

Lemma 2: Let S be a digital solid. If c is a cell of E(S),

4 then c1,H(S)A0.

Proof: If c is a cell of E(S), at least one corner point of c,

say e, is a point of S. Then e~c-i I(S).

". .,



Lemma 3: Let S be a digital solid. If every point of H(S) is

near S, then S is simple.

Proof: Suppose every point of H(S) is near S. Then every

digital point of H(S) is a point of S. Consider any pair of

points dl,d 2 of S such that d1 d2 is parallel to a coordinate

axis. Since H(S) is convex, d 1 d 2 is a subset of H(S). There-

fore, every digital point on d1d 2 is a point of S and S is

simple by definition. L

Lemma 4: Let S be a digital solid. If every point at H(S) is

near S, then H(S) is a subset of the set of interior points of

s(E(S)). Therefore, there exists a positive number such that

dist(u,v) : for any point u of H(S) and any point v of as(E(S)).

Proof: Let w be a point of js(E(S)) and c be a cell of E(S)

to which w belongs. If w is a corner point of c, then it is

not near S. If w is on an edge of c, neither end point of the

edge is a point of S; hence w is not near S. If w is on a face

of c, no corner point of the face is a point of S, and again w

is not near S. Therefore, H(S) and s(E(S)) do not meet or

intersect. Since every point of S is an interior point of s(E(S)),

the vertices of h(S) are interior points of s(E(S)). Thus, H(S)

is a subset of the set of interior points of s(E(S)).

Since ds(E(S)) and H(S) are both compact sets and do not

have any point in common, min u1(S) v 5 (E(S))dist(uv)=E>O. L,

' u } (s) v~s E (S)
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Lemma 5: Let S be a digital solid. If q is a convex solid such

0 0
that E(S)sI(q), then H(S) .q , where q is the interior of q.

Proof: Let v be a vertex of H(S). Then there are eight cells

of E(S) of which v is a corner point. Since H(S) is convex,

there is one cell among the eight, say c, such that c0 f(S)=0.

Therefore, s(E(S))Y-I(H(S)). Since obviously H(S) q, H(S) must

be a proper subset of q. Suppose r=3qI3H(S), the intersection

of the boundary surfaces of q and H(S), is not empty. Since q

is convex, r contains a vertex of h(S), say v, and there is a

plane p such that v is on p and q lies in one side of p. Then

there is a cell of E(S), call it c, such that v is a corner

point of c and c lies on the opposite side of p from q. Thus,

00

c Fq=0 and B(S) I(q), which is a contradiction. Therefore, r

is empty and H(S) q°  L

Le2mma 6: A digital solid S is convex if and only if every

point of H(S) is near S.

Proof: Suppose that every point of H(S) is near S. Let q be

a convex polyhedron obtaincd from l(S) by parallel translation

f "f all its faces outward by a distnce . By Lemma 4, there

exists a positive number 1,, which depends on L in the lemma,

such that q is a subset of s(E(S)). If c is a cell of E(S),

cf'H(S)70 by Lemma 2 and thus c 0 isj$ since q is an expansion of

H(S). Hence, E(S)=I(q). Also by Lemma 3, S is simple. There-

for, S is digitally convex.

. o -- _ . . 4,



Now suppose that there are points of H(S) which are not

near S. Since every interior point of s(E(S)) is near S,

IH(S) contains a point w which is either a point of s(E(S)) or of

s(E(S)). Thus, w is a point of a cell c which is not a cell of

E(S). Suppose there exists a convex solid q whose image is

(S). Since E(S)s.I(q), H(S) q by Lemma 5. Thus w must be an

interior point of q and c0 fq . Then ctI(q) but c is not a

cell of [(S), which is a contradiction. Therefore, S is not

digitally convex because there is no convex solid whose image

is E(S). L

The main result of this section follows immediately from

Lemmas I and 6:

Theorem 7: A digital solid is convex if and only if it has

the chordal triangle property.

.4
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4. Algorithm for recognition of convex digital solids

in the previous section we showed that the chordal triangle

property is a simple geometric property that characterizes

convex digital solids. However, it does not lend itself to

development of an efficient algorithm to determine whether or

not a digital solid is convex. The reason is that there are

infinitely many points on a chordal triangle and the number of

chordal triangles is O(n 3 ) , where n is the number of points in

S. in the sequel, it will be shown that only finitely many

points on the surface of H(S) need be examined to recognize

the convexity of a digital solid.

Let p be a polygon on a plane in 3-dimensional Euclidean

space. A point w=(x,y,z) of p is said to be a semi-digital

point if at least two of its coordinates are integers or it is

on an edge of p and one of its coordinates is an integer. Note

that the number of semi-digital points on p is approximately

equal to its area.

Our algorithm is based on the result stated in the following

theorem.

Theorem 8: A simple digital solid S is convex if and only if

every semi-digital point on the faces of H(S) is near S.

Proof: "Only if" is a special case of Lemma 6. Conversely,

suppose that the simple digital solid S is not convex. By

Lemma 6, there are points of i(S) which are not near S; let

K:



w=(x,y,z) be such a point. There are two cases to consider.

Case I: w=(x,y,z) is a digital point, i.e., x,y,z are all

integers.

Let Cx be the ray from w parallel to the x-axis; then Zx

contains no point of S because S is simple. Let u be the

point at which Z intersects a face of H(S). Then u is not
x

near S and u=(x',y,z) is a semi-digital point.

Case 2: w=(x,y,z) is not a digital point.

Let c be the cell of which w is a point. Then d, the

center of c, is not a point of S, since otherwise w is near S.

if d is a point of H(S), then Case 1 applies to it, and there

is a semi-digital point on a face of H(S). Thus, assume that d

is not a point of I(S). Let u be the point at which dw inter-

sects a face of H(S) (see Figure 1.). Then u is not near S.

(Refer to the proof of Lemma I for the reason.) Let d=(h,k,m).

Then u=(nfix,k+ y,m+Az), where jAxjl-/2,jAyI I/2 and IAzli/2.

* (.) u is on an edge of H(S).

As we move u along the edge in either direction, Ax,Ay and

%z chancre their values continuously and monotonically. Let us

move u until one of Ax,Ay and Az attains a value of 0, 1, or -1

for the first time. This always occurs because the endpoints of

the edge are digital points. The resulting u is a semi-digital

4point. It is easy to see that u is not near S.

(b) u is not on an edge of H(S).

Take a coordinate plane which is not parallel to the face,

say the xy-plane. Consider the line exy of intersection
dx

ms..J



of the lace and the plane which I:; partl I)l t tte xy-iant

and contains the point u. As the pont u is ihovtd a (L i Xxy'

tiiu vaLues of \x and .,y change wnile that of z is Kept con-

stant. We Pove u until either it reaches C 01 t tle face

or one of .x and Xy attains a valket ,1 0, 1, ,k: -1 : tnht

first time. It u reaches a1 t 1c I rst , ti~ile wte ha' , ' ' . £ ,i)

which has already been treated. Now assume without 1,.;s o:

generality that 'x attains a value ol. 0, 1, or -1 tI -st.

t ie x-coordinatu of u is an intejor. Con.IdL: 1, i.,

intersection of ttie face and the p ane wIILcI, LS :x .[ le t i,

yz-plane ali,1 contains U. (If thie! .'1-Pi1n 2 WO! parK , , I

l:c(, tneull 'y would have attaied a v 1uc A I, Le-

since ',x would have stayed constint. III thl case ( X .7 i ,1 1e

7 zc<}n_;ideru'd IInStLli'I ) 1 V<}v t 11 t l 'PI},}lit Ll 11 I I. ,11 '. t 1 1 ' 1 h ] it It

reaches an edje ot the tace (}F t110 vAI L IO ot ' Or , C! ,:

I, or -l for the first time. If l reac1uCs a1n edQ irst, ttien

it is a semi-digital point. it *.y or .,z attains a value of 0,

1 or -I first, then again u is a scmi-digjital point, since two

of its coordinates are integers. It can easily be shown that u

is not near S. L

Corollary 9: A digital solid S is convex if and only if it is

simple and every semi-digital point on the surface of H(S) is

near S.

We are now ready to present an alqorithm to determine whether

or not a given digital solid is convex. In fact, Corollary 9



concisely describes the algorithm. The algorithm first checks

it S is or is not simple. If S is not simple, then the algo-

tithm outputs that S is not convex and halts. Otherwise it

exa1nnns every senii-diqital point on the surface of H(S) to

.,eu wn Liwi iny one ot them is not near S. If such a point is

founrid, tiie -ilqorithm halts after it outputs that S is not con-

vex. it all semi-diqital points are near S, then S is convex.

below tiie i,1j,)ritnm is presented formally.

AljoLi-_thm 3D-CUNVLXITY(S)

I. If S is not simple then output (False); stop.

2. Construct the convex hull H(S) of S.

i. It a semi-digital point which is not near S is found

un the surface of Il(S) then output (False); stop.

4. output (True); stop.

TIh2 correctness ot the algorithm is immediate from Corollary

I3. Hiowevcr, determination of its computational complexity re-

quires a detdiled description of each step and the data struc-

turit;. us_ d in th(2 ilgorithm. For simplicity we assume that a

'a 3
diiit ii solid S is a subset of the set of n digital points in

, tno Lube wnosu edge is o1 length n. S is represented by a run

lenqth code [121 such that RC(i,j) is a finite sequence of run

lkLjntns of U's, digital points of S with coordinates (i,j,z),

., and l's, digital points of S with coordinates (i,j,z). Thus,

* RC(i, 1)z(4 ( , i j represents the (i,j)th row as

composed of d run of O's of length tijO followed by a run of l's

of lenqth V iji and so on.
i Noma
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it A row has more than one run of l's, then S is obviously

not simple. Consider the set of rows in a plane parallel to the

yz-plane, that is, the set of rows (i,j) for all j, lj.n, and

a fixed i, li3n. Suppose that f ijOi dj+lO , d ikO> i,k+l,O

for some lj,-kn. Then S is not simple. Also, if e ij0+ zijl

fi,j+l,+ t'i,j+l,l and e ikO +eikl i,k+l,O+ ki,k+l,1' then S is not

simple. The set of rows in a plane parallel to the xz-plane can

be checked similarly. It is easy to see that S is simple other-

wise. The above observations lead to aljoritlim SIMPLE for step

1 of algjorithlm 3D-CONVEXITY.

Alprithm SIMPLE(S)

I.i. For each i and eacn j, li,jn,

check RtC(i,j) to see if there is more than one

run of l's; if so, output (False); stop.

:4 1.2. For each i, l1.i~.n,

check if ti increases and then decreases or
ijo

tiio0+* ' 1l decreases and then increases as j increases

from 1 to n; if so, output (False); stop.

1. 3. For each j, lajsn,

check if t 0 increases and then decreases or
ijo

,ijo+ijl decreases and then increases as i increases

from 1 to n; if so, output (False); stop.

2
Each step runs in O(n 2 ) time and requires a constant work

space.-l
arm,_-



(2) Construction of H(S)

A point of S is a corner point if three of its 6-neighbors

are points of S and they are mutually 18-neighbors. Only a corner

point of S may be a vertex of H(S), and the convex hull of the

set of corner points of S is also the convex hull of S. Obviously,

only the first and the last digital points of each row can be

corner points. Hence, there are at most 0(n 2 ) corner points

in S because there are n rows. Let CP(S) denote the set of

corner points of S.

An algorithm to build the convex hull of a set of points is

given in [8]. We denote the algorithm by HULL. Its input is a

set of points R and its output is the convex hull H(R)=(F I , ..., Fk),

where each face F. of 11(R) is represented by a sequence of its1

vertices.

A lo)rithm CONVEXHULL(S,H(S) ,k)

2.1. Obtain CP(S), the set of corner points of S, by checking

the first and last points of S in each row (i,j), where

I i, j £fn.

2.2. Call HULL(CP(S),H(S)) to construct H(S)=(FI,...,F

2.3. Return.

Step 2.1 requires O(n 2 ) computing time and work space. Step

2.2 runs in 0(n2 log n) time and needs O(n ) work space to store

H (S).

4.



3) Is every semi-digital point near S?

Si ti' e the number of seni-di~jita! points is approximately

tJual to the area of the surface )t H(S) and li(S) is convex,

2there are O(n ) semi-diital points. Given a face of H(S)

lepresented by a sequence ot its vrtlcus, each semi-digital

pint may be located in constant coput in,: time. I f a semi -

dig jtal point is a digital point, the.n it is near S if and only

it it is a point of S. If a sem-digital point has Lwo integer

c)ordinates, then two digital points must be checked. For in-

stance, it a semi-digital point is w- (h+.x,kn, 0 ',x-l, then

it is near ") it uitner (h,k,m) or (h41,k,m) is a point ot S.

I i setin-di i tal point w tts onl y n)i ifte(ler coordinatte, then

lour digital points must be chcr.,d to) O _ if w is near b.

''lhus, we have til, tollowin(i algloi iti wr 1)r ste) 3 of alogorithm

II)-C( )NVEX ITY.

AlIjrithni N.AR(,11(S) k)

3. . 1 -or etch fact, i' of i(S) , -%t i k,

for t2ach 11-t i t t p)llt o' F11 1

'.heck if w I:; nt..u ,;; if not, output (False);

stop.

1.2. Return.

obviousl' algoritnm NEAR hias runnin(g time of O(n ) and needs

c)nl tint Wo)Ik space.

ABodom.-_
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Trheoremr 10: Algorithm 3D-CONVEXITY determines whether or not

a digital solid is convex, runs in O(n 2log n) time and requires

On work space.



I

5. Convex digital regions and solids

We restate formal definitions of the geometric properties

that are used to define convexity of digital regions.

Line p ope ty

A diJital region R is said to have the line property if there

is no triplet (dl,d 2 1d 3 ) of collinear digital points such that

d I and d 3 are points of R and d2 is a point of R.

Area property

Let 3s(R) denote the boundary of the set of points of cells

whose centers are the points of R. R is said to have the area

property if there are no two points dl1 d2 of R such that the

bounded area whose boundaries consist of nonempty segments of

dld and (s (R) contains a digital point of R.
1 2

Chord property

A digital region R is said to have the chord property if

for each point w=(x,y) on d d where d I and d2 are any two
1 2'

'A 4 points of R, there is a point d=(h,k) of R such that

maxt x-hj, y-kj1-i.

All three properties above are equivalent in that a digital

region is convex if and only if it has any one of them. There

are Euclidean geometric properties of which the line property

and the area property may be considered digital equivalents,

but this is not the case for the chord property. It is obvious

that the line and chord properties are well defined in 3-dimen-

sional discrete geometry. It is inmmediate that the chordal

0. 6 1
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triangle property is an extension of the chord property, but

there is no natural extension of the line property. In [2]

it was shown that a digital region R has the area property

if and only if the convex hull of R contains no point of R4

Thus, the volume property which is defined below may be con-

sidered as an extension of the area property.

Volume property

A digital solid S is said to have the volume property if

H(S) contains no point of S.

In Section 3, we proved that a digital solid is convex if

and only if it has the chordal triangle property. In the sequel,

we show that every other property mentioned here is a necessary

but not a sufficient condition for a digital solid to be convex.

Theorem 11: Each one of the line, chord, and volume properties

is a necessary but not a sufficient condition for a digital solid

to be convex.

Proof: Suppose that a digital solid S does not have either the

line property or the chord property, then trivially S does not

have the chordal triangle property. Hence, S is not convex by

Theorem 7. Now suppose that S does not satisfy the volume pro-

perty. Then not every point of H(S) is near S and S is not con-

vex by Lemma 6.

* .To see that these conditions are not sufficient, consider

the polyhedron q which is formed by the three coordinate planes



and two planes whose equations are x/3+y/3l and x/31y/6+z/2=l,

respectively. Let S1 be the digital solid that consists of all

digital points of q except the point d=(l,l,l). (See Figure 2.)

z

(3, 0,) 4"0,7

x

Figure 2. A digital solid which is not convex but has
both the line property and the chord property.

Then (3 is H(S 1), the convex hull of S Since it is not a point

of S but is a digital point, d is a point o N (SI) whJc]h is not

A near SI . Thus, S is not convex. Note that evei-y point of i(SI)

except d is near SI . It is easy to see that there are no two

points dld 2 of S such that d is on d-d 2 . Therefore, S 1 has both

the line property and the chord property.

Next let S2 be the digital solid { (0,0,0), (0,0,1), (0,0,2),

(0,l,2),(1,l,2),(l,0,0) . (See Figure 3.) Then the point w=

(1,1/2,1) is a point of H(S 2 ) and not near S2, so S2 is not convex.

Since H(S2) contains no point of S2 ' S2 has the volume property.Lc

$° _

,L _ " "



S - S -

(04 ,z)

/ (1, 1,2)
/

(oo,,) I
I

/ W=(ls/24)
/

I

(0,0,0) Y
(,,oo)

x
Figure 3. A digital solid which is not convex but has

the volume property.
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0. Conc lusi on

A definition of convexity of digital solids was introduced.

It is a 3-dimensional extension of the modified definition of

Sklansky [3,13]. Just as convexity of digital regions is charac-

terized by the chord property, convexity of digital solids is

characterized by the chordal triangle property, which is a 3-

dimensional extension of the chord property. The main question

concerning convexity of digital solids is under what conditions

a digital solid is the digitization of a convex solid. The

definition presented in this paper and the characterization of

convexity by the chordal triangle property seem to provide a

satisfactory answer to the question.

There are other geometric properties that are used o

characterize convexity of digital regions. Somewhat surprisingly,

they or their 3-dimensional extensions turn out to be only neces-

sary conditions. It would be interesting to determine the

class of digital solids that each of these properties charac-

terizes.

If, given a digital solid, a sequential algorithm must con-

struct its convex hull to determine its convexity, the time com-

plexity obtained here cannot be improved. For, O(k log k) is the

optimal time complexity for any sequential algorithm to construct

the convex hull of k points. Thus, to develop a faster algorithm,

convexity of digital solids must be characterized by a simpler

geometric property.

A.-
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