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A GQueue with Poisson arriwvzals

exponential servers. When a server
serve a croup oI customers of sice zt mest b . He is not ,
<or=a<cr=b},
! :

'—
The ac=ual size of each croup served S=pends on the numrber of !

allowed to process a ¢greoup of size l=2ss than a ,

The Jueue is studied as a Markov process. In the stable
case, the stationary precbability vector of this process has
a simple, réadily computable form. Using this fcrm, the
stacionary waiting time distribution, wnich is analytically
intractable, may be expressed in an alcorichmically useful
Sorm.

Several guestions, related te the optimal design of such
a service system, may be algorithmically iavesticazed.
This model serves to illusctrate the advantaces of the algoriczh-
mic approach. The design criteria are not analyticélly

tractable in general.f:;

KEY WORDS

Multi-server queues, group service, optimal design of

Gueues, computational proktability.
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1. 1Introduction -

The purpose of this er is to show the advanitaces cf

'3

a

'

the alcorithmic approach in scudying the optimal desian problems
for a simple, but useful gueueing model. Customers arrive

at a fixed location accoréding to a Poisson orocess ol rats

~# .« There are N servers, who process customers in groups.
"m2n a Iree server is at the fixed locaticn and finds i a > 1

customers there, he removes min (i,b) customers.

arameter b denotes the maximum allowable size of a
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croup to be served and satisfies b > a . If there are fawer
than a customers present, all free servers remain at :the

location until a customers are present. One server +hen
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Services are thought of ags the removal of groups of
customers to a diiferent location. The times between =he
Zepartures and subsequent returns of a server are assumed to
have an exponential distribution of parameter u . All

sarvice times are mutually independent of each other and also

the interarrival times of customers.

(0]
th

There are a number of practical situvations, which motivated
the s+tudy of this gueueing model. The most familiar is a
ta»1 stand served by a fleet of N taxis. The customers
arrive at the stand and are removed in groups of at least a

and at most b . The guantity 1/u 1is then the mean travel

o m——

zime of a taxi on a single trip. j!




- st — _m
2
In a situation of greater interest, the- N servers are
locomotives which remove wagon lcads of ore from a mine head
to other locations. The parameter ) 1s now the rate at
which wagon loads of ore (customers) become available at
4 the station. The parameters a ané b are respectively the
' minimum and maximum alliowable nurbers of wagons per train. k

-

One may also viaw the N servers as medical evacua:ion

(2]
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helicopters removinc casualties moa hosp
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mora ramote facility. The significance of each of the five
caramsters of the model is then acain evident.
The design problems are clear. It is desirable to
; choose N sufficiently large that few customers will be
waiting for service, vet not so large that servers stand
an incordinate amount of fime waizing icly for custcmers. In

sually fixed by techno-

£

aprlications, the parameter b is

logical constraints. When b 1is large, it may be advisable

to éhoose the parameter a considerably smaller than b , in

: order to expedite service. It is clearly of interest to be

1]

l able to assess the influence of the choice of a on the

} behavior of the service system. OQur sclution procedure is

é g such that it can handle problems with fairly large values of
N and b , say on the order of =wenty and two hundred

N respectively.

This gueueing model may be dsnoted by the symbols

M/M(a,b)/N . It is not essential that service times be
. viewed as travel times. There may be N servers who rsmain

i fixed, but serve customers accordiing to the rule specified

v v admne— - . - —— e




3 R

by the threshold valuves a anéd b . Our results will chen
orovide the stationary distribution of the number of waiting
customers and not of the usual gueue length. Thare are a
number of particular cases which were previously treated.
For N =1, the model is discussed for general s=arvice time

atch size, in Nsuts [1,2°.

42

istributions, deszendent on the

d
A general procadure to analyze the gqueue GI/PH(a,b)/1 is

éescribed in Chapter ¢ of [ odel 1is also an

(12
g
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instance of a double-ended queue. It adds to the literature
on such gueu=s, but avoids the discouragingly formal treat-
ment, which hithertec has burdened their discussion.

The gueue is studied as a Markov process on the state

-

scace E 1(i,3), T <1 <N, C<3i<a-1;¥ ik >C> The

W
N
-

“

in the szace (i,3), I < L <N, 0 < 35 < &a=-1,

- —— — — —

Preocass L

n

whenaver thers are I Irea serwers and only I customers.
The state k > 0 , corresponds to the case where all servers
are occupied and k customers are waiting. It is convenient
to order the states (i,3) in lexicographic order with i 1in
descending order. The states k > 0 , are listed thereafter.
The structure of the generztor Q of the Markov process
is important to the anzlysis of the model. It is displayed
for N =4 ,a=3, and b =6 . The ceneral structure of

Q 1is readily apparent from this particular case.

It is important to note that all columns labeled k > 1 ,

contain the same elements i.e. = 2 - Nu on the diagonal,




"y -y

]

ny -y -

"y ox-

Hy

Y Wy oy

ny

Hy

Wy

Y -y -

6

ity

y

"Wy

ity

"y

"y

1y

...\

"g

(LSt

v e v

"

"y

— —— > i o=

TP —

( [ (TN

P




e e e —y

immediately abcve and Nu in the row laZeled rk+b.
| The upper left hand submatrix of dimensicns (N+l)a »x Na

itas the Zorm

(@}
Y}

TS c-uI E
" )
} | i
' ! 2ul C-2ul E '
l ; . ,
H

C-(N-1)ul

32
[ e

{ ' (N=-1);

0 Nul

t

l where the matrice C and E are.sguare natrices of order
|

; a , given bv

o)
"
t1
i
o

1]

gy P E———

3 The column, labelsecd 0, has the elements =->-Nu on the

th

|
)
| o diagonal, > 1immediately above and the entry Nu 1in the

. ‘ rows labeled a, a+l, ..., D .
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2 ~he Stationarv Probabilityv Vecior -

O foilow immediately Irom the structure of the matrix Q .
Thaoram 1.
~ra Markov Drocess with ganerator N is pesitive rescurrent
if and only if the equation
4 . . - o+l
(.l.) A= r * NL); + Nu ¢ = C,
: has a root in the interval (0,1). This is the casa if and
5 only if
’ (2) 3o< Nbu .
} . s . . ‘ . 8
, The root I 1S ITnen unlgue, It is egual tc the expactec
: number of visits to the state k+l1 Dbetween successive visits
)
-4 to the state k , for any of the states x > 0 .
{ i The vector X , which is the unigue solution to the
i ! -
| system X0 =0 ,xe =1, is written in the partitioned form
} “ - -
) " r . . :
‘ .} (R v oo 0 Xy s AO roXqo ...] , where ij », 1 < 3j <N, are
§
v a-vectors. We have that
,:“
'i.’ i
‘ 3 %, = x,. & for 1 > 0 .
\ () i 0 Q ’ L by
; - mhe vectors X. , 1 < Jj < N , and the guantity % are obtained

by solving the system of linear eguaticns

—

g P - S IR a TP o

et uitethciitcisbivustts re— e 5 i o




.
-t e =

Kot e~ ek

A BV N s - - o e

_j.;.l
for 2 < j < N .
(4} x, E + x, [C-(N-1juI] + s Nu(l, £, £° (27 = g
VT bt E SaT L)Ll e R e A [ N Yo
. - . .a ~1 b-a+l, -

. LA = LA+ No o= Nuf o {1l-Z (1-2 ). oM. = 0

1,a-1 ~ N L S } \ /- C ’

3 -1

) x.e + xo(l—;) =1 .

35170

This svstem has a (unigue) positive solution.

he nodified gecmetric form of the vector x and the

aguilibrium condition (2) follow Zrom results in C. B. Winsten

-4

742, also discussed in greater generality in M. F. Neuts [3].
By substitution of (3) into the first ©Na+l steady-state
sguations and into the normalizing eguation, we obtain the
eguations (4). It 1is readily verified that the coefficient
matrix of the first Ne+l 1linear ecuations in (4) is an
irreducible generator. The solution vector 1is therefore
cdetermined up to a multiplicative constant and all its components
have the same sign. Trat vector is now uniguely determined

by the normalizing ecguation.

A Fm ST
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Corollary 1.

The stationary marcinal density ‘p.! of the number of
3

i waiting customers is givan by
!

I
! o. = ! X + X, ., for 0 < j < a-1,
i bl ot VI 3 - - :

- \'=l 4
= x. , for 3 > a .
3 i

The stationaryv prcbability r.

4]
o
[o}]
cr
o

sgrvers are

3
o
firee is given by
-y =1
ry = X (1-3) 7, for 3 =20
-
= x.2 , for 1 < 3j < ¥,
-

The case N=1 may be solved explicitlv in terms of

: £ . Elementary manipulations lead to
)
3 .
; X.. = % x 1-¢0* , for 0 < j < a-1
; 13 A 0 1 - ¢ = = _ ’
" "
) where
-1
! coo= (1 l-l+ua 53 l-ia1
"o“‘i)L X" % 1-% ¥
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For a=l1 , we obtain = -, X0 = -7, ¥ o= 01 -~ Iy,
which zorresponds to the familiar M/ M/l gusue. ARl1 ccmmenits

on computaticnal aspects in the sa2guel will be res=rvad feor

E the case N>2. The case N=1 1g trivial,
i
3. The Waltfinc Time Digtributions
In this section, we consider =he probability WL ) ,
a<3i<b, x >0, that a cuszomer arrivinc to the stationary
cusue at time t=0 , enters service before or at time x andéd
is sa2rved as part of a group of size 3 . Service is accordéing

%)
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t-come, first~-served discipline. The analvtic

zxprassions for the mass-IZuncticns W, {(+} are excesdincly

ccmrlicatad.  We sha serirasz, zThelr alcorichmic
!
i Sharacterization is straig
' To this end, we sinmple absorziion time
oroblem in a Markov process wit 2b states. The states of
. : L. * * x
this process are denoted by 1,2,...,b5 ard 1, 2, ..., b .
The states a , ..., b are absorbing. The rows of the

*
generator, which correspond to the labels a , ..., b , are

A ther=fore identically cero. The rows with labels 1, 2, ..., b,
: | * * . . _
A 1, ..., fa=1) are displaved below, again for the
§ ) . . s
"1 regresentative case a=3 , b=6 . We shall consider the
. probakilities @ij*(x) that absorpticn occurs in the state !
( l* r * *\ “ . - .
j =« ta, ...,b ; Dbefcre fime x , given that the Droccess 1is
‘ 2 . . . .- , * *
] star<aed in <hs state I ¢ Y1, ..., kE, 1 , ..., {la=1) . mra

. . relation of these probzbilities tc the mass-functicns W. {-)

will scon be clear.
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If we partition the (a+b-1l) » (2b) ar*av in=o a
sguare matrix D of order [(a+k-l) and a mactrix D
of dimensions (atb-1) x {(zZ-a+1) , <hen it is readily s=en

that the matrix f{x) = {f, . ,{x}): is given byv

(3) f(x) = f exp(Du)D du =

Suppcse now that the arriving cus=zomer Zinds Ekw+r , v > 1,

0 <r < b-1, custcmers ah2ad of him in the gusue. The Iirst
bv customers will be removed in v batches of size b .

The remaining r customers and th2 arriving customer will

2 servad together in a batch of size 1t with max ‘a,r+li<k<b.

e 31zZ2 0OI TAhARAT JZancn wi

B

whe arrive during the service of the \ Dbatches and

arriving during the wait Zor a free serxver . Thea Iollcwing

lemma is useful in the sequel.

Lemma 1

The probability that the arriving customer £finds at least

b customers in the queue, that 211 groups of size b ahead

u

of him are served no later than time x and that at the
beginning of the service of the last such group, there are

3 »1 <3 <b, customers in the gueue who will be served in

the same group as the arriving customer, is given by




-,

.
PP

. bl .
5
-1 . j-r-1
4= _b+r - .b -u (Au)’ .
G.(x) = xo, I expl=Nu{l-2")u’e (ru) N.du
3 r=0 /0 {(3-r=1)!
(86) for 1 <3 < bk-1.
b-1 rx & . -1
= by . by o~ =ty (hu
Guix) = . %53 ©oexpL-Nu/l-77)ul poe Y =
= r=0 -0 K=b-r T

Proof

By the law of total probability, we see <hat for
1 < 3 < b-1, the probability, described in the statement

of the lemma, is given bv

= 3=1 X . -1 ;- Sl

T e x_ covtr I o~Nuu (Nuw) 5 --u {hu - du

L Z 5 oy T— N o= Ty & .
21 »2p 0 1o (=1) (3=-r-1):

This readily reduces to the stated expression. The proof
for J=b , is similar. We emphasize that the arriving
customer is now included in the count &escribed by the index
3 .

We can now describe the mass-functions wj(-) for

a < j < b . The function W) contains an extra term,

given by
N  a-2 X a-j-2
c - X
Va(x) = ? Xl a-1 + ) z Xi . ( e Au —2?13—)—:2—)?- A du
i=1 1 i=1 j=0 *J o J=el:

for % > 0 . This term corresponds to the case where the

arriving customer finds cne or more free servers.

’
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He may then have tc wait until a suiiicient murher ol

18

additional customers arrive to initiate service of a croup

oI size a .

The states {1, ..., b* o0f the absorbing Markov z=rocess
. ’ F 4 = - ’
which was definad above, ccrrespond o thz sizuaztion wiare

all complete groups of size bk , who are ahead cof the arriving

§ -

custcmer, have been served:; all addizional arri-a
inzludad in the next group have been counted InzTo nhs Inlzx

j , but there is no free server vet. The correspondinc state

3 has the same significance, except that there is also a

Iy

ra2e server present. It is now clear that absorption into

* *
cne of the states {a , ..., b} sicgnals the start of the

service of a group of the corresponding size. This grouz
inclides the arriving customer.

o} e s . | . c

3¢ e  , we denote the row vector (L, ¢, ..., 0 of

dimension b-a+l . The vector & of dimension a+k-l1 1is

b-1
S ’

Sefined by xo(l, Er eees 0, ..., 0) and G(x)

= [Gl(x), ..oy Gb(x), 0, ..., 0. The row vector E(x) of

dimension b-a+l has the components wa(x), ey wb(x) .

The vector W(x) 1is given by

X - X ~
v (x) e + 8 J exp(Du)D du + J G(u) exp(D(x-u)lD du
0 0

(7)) W(x)

a
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ceempla (7)) is immadiate Irom the mscrsiizraction ol

+

orption times. The first term corresnnnds to

(7]
1
<
L
A}
[+
1=
!
&
n

2 ~352 wr-2re the arrising customer Iinds one or more froe

ivriving tuscomer finds 3, 0 < 2 L, cus:omers ant nc
‘raz zerver in the system.

Tn =he .ast =erm, the arriving custcmer finds 5 > b
suszomers ahead of him.

analvzed as a Iirst passage time in the srecedinc dicussion.

Fach of the terms in Formula (7) may be computed by
the numerical solution of fairly simple systems of differential
2geations. In order to =2valuate V_{(x} , we rewrite the

defining excression as

DI E s ()
A¥4 (x) = E ’)‘ .. = A X : —5_ X du
N iz 550 *F 0 350 7 x (a-2-37!
=1 - xo(l-;)'l - 1 exp (\x) e, for x 20 .
- il :( o
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eva.uated

e
N
&IIor 1 nas <he comporents a. = , %.. , for
- J ;o 13
-4
~2 . The matmrix ! o0f order a-1 1is the same
=rix C , Is7inad in S=c-lon 1. Cleariv Va(x)
- [
- 2. M) e , where z.(x) = zai{x). ’ ior
=3 = =¢ 0
-z 0=,
—U —
“i2vy to evzl.ate rthe sacond term, we wri:te
. - -._ - . P . ! \ - .\"l
. = :N2 (2w du = D 2xp‘Dm; - I T .
cizar that z,{x) sactisfies =he sysrtem of
ial ecguations
)
2.x) = z.(x)D - -
-2 —;‘!'D & for x» > 0C ,
o= 0 . Trz g2~ond Term in Fovrezla (70 Ls shen
Z, X, D
we iln-roduce the ector-valued function
x
= Giulaexp. Dix~ull du , Tor x - 0 .
0
lring both sides by exp(-2x) and differentiating,
at the vector z.(x) satisfies the syvs:zem of

1al eguaticns

gzﬁx;D ’ for x > 0 ,

+ G{x}

0) 0 . The comporents of -he vector Gix) are

(6).

by numerical integration in the exprecssions
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Zorollary 2 :
B e e )
The veztor Wix) iz civen bv

- N SN - SR 5 . -1
(8) Hiw) o= 1 = xyf1-%) 7. e"- 2 2 70 - Gi=D 7D,

~

where =he components of tha vactor S{») are explicitly

[A]
E
[
w
!
te

(W}
o
AN ]
-

Q
o
8
il
Ie%
”
o
"RA}
"‘
]
I8}

?roof
i
: 3y letting x tend to infini:y in Fcrmula (7). The
fcr ths componsnts of 3 o= frilcw from 6}

1Y)
a
e
'y
1)
n
n
}l
(6]
3
w

]

Dy routine integrations and summacions in vhich we racall
1

- 5b):-l= I, by virtue oI (1l).

Xy > (1 - ¢) ’

(1 - 237, we readily verify that W(=)e =1 .

-1
By noting that D "De = e ,
:P)

IO

(=)e

e = (1 -

(BY

-———ea, = b

Corollary 1 cives us the probability density of the
size of the group in which a customer arriving to the
s-ationary gqueue will be served. It is given by the components

cf the vector W(«=) .
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Ths means of thes mzss-funccions W, i1 , a < 3

L

mar be comguted from Formula (7). Cenoting Laclace-

* * ) el * -1
W o(s} =V (s)e® + ~isz-D: ID + G (s)reI-D) ~
so zhat
' ) )
> * ~ . i
. N [»] . - -~ F'l L= *
n s' =V, !s'e” - Z(sI-D} ‘D - G :s)(sI-D) “D +G
It folizws that
] ) )
* * [o) .. L =D~ -
; (10) W= -W (0) = —va (0)e” + ":+G(=» D "D+~ 5 (0.D "D
| < 2
! Clearly
|
! .o z=2
CEEIRY \vt (O) - - - fa J l\
Ry = ! =T L. L “I-lixgy s
a C 431 320 L2
! .
i . — *
' sc that it suffices to evaluate G (0) .
, From (6), we obtain rcutinely that for 1 < 5 <
h * N J—l b - P —1‘ j-r
1 \ . i
12) G.olsy = 22 7 %43 o 5
! A - ' -
=0 _s+A+Nu(1-¢7)]

aea > —
\
o

—J-r
X+Nu(l—éb)'
Ls+x+Nu(l-5b)_

'A
&
u
o
I
4
w

0]
l
8
“
L

—
T

L]

AZ _ § .

1 s+ig

- -

N
)
; 1
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A sirilar calculation vields .
{ -1 YT - ~1 7
. oL L B0 T NI
23 G sl = = Xg S . R 1+ =T — T, -
3 - T s =
- r=l is+>I 7] | s+{1~E)AS ~ |
I now r=adily follcws that
1)
* No -b+3+1 i-1) S
-G, (0 = = x4 ] lif—~¢ , for 1 < j < b=l ,
14
' — —
* Nu 2b+l -2, oy o+l .
-G, {0 = = M,% 1-2) "b . 2 + {1-8) —=— .
b ! 2 Tt s

The conditional mean walting time, given that the arriving

. . . . . . ~ -1
=i:scomer is served in a croup of size j is given by wj wj ,

‘zr a < i < 2 . The unconditicnal mean waiting time is given
1 —_ — 1
“ =y o * \ N Y | *
»3) “e = -V, (0 - 2 v G(=) D e -G (0Oe .
Remark

From zhe formulas (12) and (13), we obtain the following

aiternate excressions for the Gj(x) .

. b1 _ .
G, (x) = == xolb*‘ L E A 1, x} for 1 <3Jj < b-1,
) r=1
(16}
G, (x)= N 02D ® (g7t ')*{;(x)+ = £, (¢t -g), 0
b° 0> r;I r S ' % ; l"; 1 AG , .

Thes= expressions are betzer suited for numerical computation

~-an those civen in Formula (€).
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From Formula (6), we obtain bv & routin® surmation that

b X
- - T~ E a _ = ’ -y { " -b -
17 LG, {x)=Nu xO;D(;—;D)\l—;) 1 expl-Nu(l-Z7)ul du ,
A=] B JO
so that
] 1 1
* o) by - -y =1
(18) =67 (e = = %Pt Tha-n T
- R

I£, on the other hand, we adé the expressions in (14;, we

=

obtain after some calculations that

|
'
o2
+
N

*
(19) . -G (Q)e =

Y818

>

The expressions in (18) and (19) ares egual, since by virtue

of Ecuation (1), we have
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This provides us with an accuracy check orn the lengthy
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calculations involved in finding the expr

mean waiting time.

4. Algorithmic Aspects

The eguilibrium condition (2) readily defines the smallest
value of Nb for which the queue is stable. Eguation (1)

is rewritten as

(20) £=1‘p+P€ ’

where p = Nu(A+Nu)-l , and is solve
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Defining the matrices M(j) , 1 < j < N , by

M(3) = J(N-j)uI-C] ’
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<he first N ecuations in (4) mav be rewritten as
XeT FXyey M{N) ,
) - = TN ae=aT Y ey - ol F < -
(22) hj _{N-3 L\uhj_l §j+l T oM(3)., for 2< j <N,
- ~a=l
L, = ~XON (1, 2, «oe, & Yo % E. M(1) .
-4 - -
We rerformed Gauss-Seifel iteration in the eguations (22),
computed the naxt value of Xg from the penultimate ecuation
in (4) and renornmalized zach solution vector by the last
equation in (4). Any non-zero, nonnegative initial veccor
:iw’ ceer Xyo XO] mav be chosen tc start the iterative
soluzion.
The special form of *he matzrices ¢ and E may ze
usad to economize on storage andé computational eifort. Only
the first component of each vector x. I differs from zero

and

(N=j)uI-C , 1 < j < N, are of

=3

it requires only one multiplication.

the
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where vy, = ! {~/8) » for 0 < v < a-l1 . It is hence not

neca2ssary =0 store the N matrices M{j) . The computation
of the stationary vrobability vector of the matrix Q 1is

soth stakle and very fask.

ut2d Irom the Iormulas

'

The vecior Wix) 1is easilv com
{(8) and (9. 1In view of the special Zorm of the matrix D ,

N - -1 . . :
the vector =~72 + G(=): D is obtained with very little

FS

As was discussed in Section 3, the vector W(x) of

mass-functions is computed by the numerical integration of

P
(1)

svstems of linzar differential ecuations with constant

n

imp

cefficients. This may be accomplished by any one of a number

Q

of classical methods., The special structure of the coefficient
matrices is exploited to reduce computation time. The approach
to the easily computed vector W(«) provides us with an
accuracy check on the numerical integration procedure. For
examples in which the parameter a 1is large or in which the
s2eue is nearly critical, the evaluation of W(x) , x > 0 ,

reguires fairly substantial computation times. In all other

cases, the approach to Ww(=) is verv rapid.
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