
7 AD-A090 538 DELAWARE UNI V NEEARKWIAPPLIEDSMATHEMAT ICS INST F/A 12/1

MULTI..SERVER Q UEUE ITH THRESHOLDS FOR THE ACCEPTANCE OF CUST--ETC(U)

JUN 80 M F NEUTS, 8 NADARAJAN AFOSR-77-3236

UNC-LASSIFIED TR-590 AFOSR-TR80-0969 N

molEEEEEEE



.SRTR. 80-0969

00

DTILC

APPLI ED
MATHEMATICS INSTITUTE

University of Delaware
Newark, Delaware

Approved for Publia release:
distribution unlimited,

- -
.

'-4. - V



T..Lf'FOZ IS FOR ...=. 4l.r -.PTINCE

OF ;*'?STOMERS NTO SERVICEc

by

Marcel F.
T1ni;%-rsity o f--ae

and
R./Nadara an

Department of Mathematical Department of M:athenatics
Sciences and Statistics

University of Delaware -!nnamalai University
Newark, DE 19711 Annamaiainaaar
U.S.A. i n dia .

Applied Mathematics Institute
Technical Report No. 59B

June 198

] / , 1... .

This research was supported in part by the National
Science Foundation under Grant No. ENG-7908351 and the
Air Force Office of Scientific Research under Grant No.
AFOSR-77-3236.i

AIR FORCE OQi'li:" OF SC!NT[FIC RESEA ,.' (ASC)
NT ."r ' r, T0 TO 'DC

S. " - ' . r 'c:k ~r vitei,9 nnd iS

/ i. Distributtct, is u.11-1ited.

A. D. BLOSE
-- L ..' ' / TechniCal llifo ma'ti l On fi er " - P"



ABSTRACT -

A cu ue with Poisson arrivals served bv N i-entica.

exponential servers. W-ihen a server becomes free, he can

serve a croup of customers of size a mcst b He is not

allowed to process a aroup of size less than a , I

The ac-tual size of each crouD served iezends on the numLber of

waiting customers.

The cueue is studied as a Markov orocess. In the stable

case, the stationary probability vector of this process has

a simple, readily computable form. Usina tnis form, the

stationary waiting time distribution, which is analytically

intractable, may be expressed in an aicor..... callv useful

form.

Several questions, related to th;e optimal desian of such

a service system, may be alorithmically inves-icated.

This model serves to illuszrate the advantages of the aicorith-

mic approach. The design criteria are not analytically

tractable in general.

I

KEY 'ORDS

Multi-server queues, group service, optimal design of

;queues, computational probability.
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1. Introduction

The ournose of this zaer is to show tne advantaces cf

ihe algorithmic approach in szudying the optimal design problems

for a simple, but useful queueing model. Customers arrive

at a fixed location accordina to a Poisson process o: rate

There are N servers, who process customers in groaps.

.n=en a free server is at the fixed location and finds i a > 1

customers there, he removes min (i,b) customers.

The parameter b denotes the maximum allowable size of a

group to be served and satisfies b > a If there are fewer

than a customers present, all free servers rermain at the

location until a customers are present. One server then

Iies with a zroup of a customers.

Services are thought of as the removal of groups of

LzUStomers to a different location. The times between the

departures and subsequent returns of a server are assumed to

have an exponential distribution of parameter iu All

service times are mutually independent of each other and also

of the interarrival times of customers.

There are a number of practical situations, which motivated

the study of this queueing model. The most familiar is a

txi stand served by a fleet of N taxis. The customers

arrive at the stand and are removed in groups of at least a

and at most b The quantity I/ . is then the mean travel

me o- aaxi on a single trip.
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In a situation of greater int-erest, the- N servers are

locomotives which remove waaon loads of ore from a mine head

to other locations. The parameter ) is now the rate at

which wagon loads of ore (customers) become available at

the station. The Darameters a and b are reszectivelv the

minimum and maximum allowable nurbers of wagons per train.

One ma. also view the N servers as medical evacuation

helicopters removing casualties from a field hosoizal to a

more remote facility. The significance of each of the five

parameters of the model is then a7ain evident.

The design problems are clear. It is desirable to

choose N sufficiently large that few customers will be

waiting for service, vet not so larce that servers snend

an inordinate amount of time wai-:ng id1y for custzSmers. In

applications, the parameter b is usually fixed by techno-

logical constraints. When b is large, it may be advisable

to choose the parameter a considerably smaller than b , in

order to expedite service. It is clearly of interest to be

able to assess the influence of the choice of a on the

behavior of the service system. Our solution procedure is

such that it can handle problems with fairly large values of

N and b , say on the order of twenty and two hundred

respectively.

This queueing model may be denoted by the symbols

M/M(a,b)/N It is not essential that service times be

viewed as travel times. There may be N servers who remain

fixed, but serve customers according to the rule specified

i.



by the threshold values a and b Our results will then

provide the stationary distribution of the number of waiting

customers and not of the usual queue length. There are a

number of particular cases which were previously treated.

:or N = 1 , the model is discussed for general service time

distributions, dependent on the batzh size, in .=uts 1,2'.

A general procedure to analyze the queue GI/PH(a,b)/l is

described in Chapter 4 of E33. The present model is also an

instance of a double-ended queue. it adds to the literature

on such queues, but avoids the discouragingly formal treat-

ment, which hitherto has burdened their discussion.

The queue is studied as a Markov process on the state

space E Ii,j), 1 < i < N , C < j < a-lA U {k > C'. The

process is in m te staze (i,j), I i < N , 0 < < F--

whenever there are free ser.ers and only j customers.

The state k > 0 , corresponds to the case where all servers

are occupied and k customers are waitina. It is convenient

to order the states (i,j) in lexicographic order with i in
descending order. The states k > 0 , are listed thereafter.

I The structure of the generator Q of the Markov process
is important to the analysis of the model. It is displayed

for N = 4 , a = 3 , and b = 6 The general structure of

* Q is readily apparent from this particular case.

It is important to note that all columns labeled k > 1

contain the same elements i.e. - - N-P on the diagonal,

,
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i.ediately above and N, in the row labeled ;-b.

The upper left hand submatrix of dimensions (!+l)a x Na

has the form

C E

T.C-E E

(N-I i C- (N-1) JiI

0 N I

w"ere the matrices C and E are.square matrices of order

-X -; 0a , ien'%

; E

The column, labeled 0, has the elements -)-Np on the

diagonal, i.amediately above and the entry Nu in the

rows labeled a, a+l, ... , b



2. The Stationary Probability Vector

The condition for stability of the qeue and the particular

form of the stationary probability vector x of the generator

Q :o-ow from -he szructure of the matrix Q

oieuorem 1

-he Markov process with cenera-_- Q is ncsitnve recurrent

if and only if the equation

_b+!

(i) - { N )+ + NC - 0,

has a root in the interval (0,I). This is the case if and

only if

(2) < .b -

The root i is then unique. It is equal tc he expected

number of visits to the state k+l between successive visits

to the state k , for any of the states k > 0

The vector x , which is the unique solution to the

system XQ = 0 ,x e 1 , is written in the partitioned form

Si N  , .. 1. , I, , , ... ] , where x. , 1 < j < N , are

a-vectors. We have that

(3) x 0  for i > 0

The vectors x, 1 < j < N , and the auantity x0  are obtained

by solving the systeir of linear equaticns

&OW
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x.NC +- Z-NI=_1

x + X.- - + (N-j+l)ux.

for 2 < j < N

4 ), x2, E +- x! FC-('x-1uj: + 0-l 2, a ., : )=_

x. * - A . - N i- -1 - -

N -2

,xe + x0(l-$) = 1

This system has a (unique) positive solution.

.2r oo f

!i The modified geoz.etr ic form of the vector x and the

equilibriumi condition <2) follow from results in C. B. Winsten

:4:, also discussed in greater generality in M4. F. Neuts E3].

By substitution of (3) into the first Na+l steady-state

~equations and into the normalizing equation, we obtain the

; equations (4) . It is readily verified that the coefficient

* matrix of the first N a+l linear ecuations in (4) is an

irreducible generator. The solution vector is therefore

determined up to a multiplicative constant and all its components

have the same sign. That vector is now uniquely determined

by the normalizing equation.

*(
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CoroJlarv 1.

The stationary marcinal density -3, o- he n,.ber of
-J

waiting customers is given by

N_

-x. , 0 < j < a-I

= x , ror 7 > a

The stationary prcbability r. that j servers are

free is given by

rj=x 0 (I-a) for j =0

for 1<j <N.

The case N=1 may be solved explicitly in terms of

* Elementary manipulations lead to

x1j - 'x0 f- or 0 < < a-i

where

•'x 0 = (i- ) K + 'a uz 1 a]-

Ia
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For a=i , we obtain - x = ,

which :orresoonds to the familiar MM/I queue A! comments

on comoutational aspects in the secuel will be reserved for

the case N>2. The case N=l is trivial.

3. The Waitina Time Distributions

_n t iS section, -..e consider the x- c-celit i,.

a < j < b , x > 0 , that a custome arrivtnc to the stationary

cucue at time t=0 , enters service before or a- time x and

is served as part of a group of size j S ,ervice is according

to the first-come, first-served discipline. The analytic

%xzressions for t-he mass-functions W( are e'xceedincl,

c:m:!izated. We shall show that, in C*t-, he crinlic

aracterization Is s-raIc:morwa

To tnis end, we first consider a simole absorption tme

problem in a Iarkov process with 2b states. The states of

this process are denoted by 1,2,...,b and 1 , 2 , ... , b

The states a , ... b are absorbing. The rows of the

generator, which correspond to the labels a , ... , b , are

-nerefore identically zero. The rows with labels 1, 2, ... , b

1, (a-!) are displayed below, acain for the

renresentative case a=3 , b=6 .We shall consider the

probabilities ¢ij* (x) that absorption occurs in the state

j {a , ... ,b before time x , given that the process is

started in the stae . ., . .a. ,t•. a The

relation of these probabilities to the mass-functions W. (.)
]

wil! soon be clear.

.1
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if we oartition the (a-b-1) ( (2b) arrav into a

scuare matrix D of order (a+b-1) and a matrix

of dimensions (a-b-1) x (b-a-1) , then it is readily seen
that the matrix I (x) = _ .xaiven by

(X -1

(5) -'(x) = expoDu)D du = exp(Dx)-1D D'0

for x > 0.

Suooose now that the arriving cus-omer finds b -r 1

0 < r < b-i , customers ahead of h-m in the cueue. The first

by customers will be removed in batches of size b

The remaining r customers and the arriving customer will

be served together in a batch oc size with max 'a,r-l)',<k<b.

size of tha za-cn wi!J deCZen on the 0.:zer of c

who arrive during the service of the 'D atches and o: t.cse

arriving during the wait for a free seryer The following

lemma is useful in the sequel.

Lemma 1

The probability that the arriving customer finds at least

b customers in the queue, that all groups of size b ahead

of him are served no later than time x and that at the

beginning of the service of the last such group, there are

j , 1 < j < b , customers in the queue who will be served in

the same group as the arriving customer, is given by

- - I - .- ] :: -
' '

+ ++ + +. .



-1 -X -

_b~r" , _b ;, lu)j-r-l

G (x) = x exp[-Nu',.-; )ue uudu
r=O0 )0 (J

(6) for 1 < j < b-I

b_-i ,b-x - ' K -

Gh(x) = b x0 - xbGex) -0 el-- )u" e-u (duu
r=0 -0 "=Z-r

Proof

By the law of total probability, %%-e see that for

1 < j < b-1 , the probability, described in the statement

of the le=ma, is given by

-=1 X~ ~ 0 b eu ", -, --
_bv; r e T. N,' -auu '

v ! r=0 )0 ,•( - - ) -

This readily reduces to the stated expression. The proof

for j=b , is similar. We emphasize that the arriving

customer is now included in the count described by the index

We can now describe the mass-functions W.() for
3J

a < j < b The function WC.) contains an extra term,

given by

Nx a-j-2
Va Cx) = x. ____x e _ dial ila-I I e (a-j-2)! X du

' i=l 3=0 ' 0

for x > 0 This term corresponds to the case where the

arriving customer finds one or more free servers.

V _ _
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He may then have to wait until a suffcent numte 0:

additional customers arrive to initiate service of a croup

of size a

The states fl, ... , b t of the absorbing "arkov rocess,

,hizh was defined above, corresz-d to the

all complete arouos of size b , who are ahead of the a-rivinc

customer, have been served; all additional ar-ri -ls ::D .,e

inziuded in the next group have been counted in-o t:he ndax

j , but there is no free server vet. The corresDondinc state

j has the same significance, except that there is also a

Zree server present. It is now clear that absorotion into

one of the states {a , .... b } signals the start of the

service of a group of the corresponding size. This aroun

'n _eces the arriving customer.

By e 0  we denote the row vector (i, C, ... , O) of

dimension b-a+l The vector e of dimension a+b-l is
(1, -b-1i

defined by x 0 (i, 0, ... , 0) and G(x)

= EG1 (X), ... , Gb(x), 0, ... 0 0 The row vector W(x) of

dimension b-a+l has the components W (x) . Wb(X)Sa 'b "

Theorem 2

The vector W(x) is given by

(7) W(x) = VaX) e e exp(Du)D du + J G(u) exp[D(x-u)]D du

"or x > 0.

ii
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Fm-rmula t7 is it'rediate =ro' the 7c-S rerato n. 0:

s, veral absorption times. The first term corresponds to

.. ase ;. _re the arri-'inc ::stomer finds one or more -re

. adds on!v tc Wa

seconA term correspcn.s to the 7,se ,'ne- e -e

-:~.:na :.f:nmer :inds , 0 , c<:-3rs an-, :-.c

-r-_a server in the system.

It- -e :ast te-m, the arriving custcmer finis j b

z,,s:o~mers ahead of him. The waiting time in that case is

analyzed as a first passage time in the ::-recejinq lic,:ssion.

Each of the terms in Formula (7) may be computed by

the numerical solution of Zairlv simple s%,stems of differential

eqauations. in order to evaluate Va(X) , we rewrite the

*defining ex_ession as

N a-i a-2 -u (u) a - 2 - j

(X___ae 
X du

= 0 ) . . e (a-2-j) "

a i=0 j---0 e -o x > 0

S1- x0(I- ) "- z exp ('.x) e , for x ' 0

II -

# _ _



I,"

Th ve~zor i has the csmoonents a. Xi. for

-.- ..e Mar. ix ' of order a-I is the same

as . a-1 C , ]e7ined in Section 1. ClearLY V a(x)
-- '

z,'I>- e ,;~.here (X) = z, 'X for

z 0'W

-u

_n -'-er to . ae ,he second term, we write

= • _ 5:,: (Du.; du = : e '.: x" ""

s. now c73ar a (X ) saisf:ies the s\'s,:m of
I: fr no tcl Ie qa r -_i D I s _
z:: erential ecuattins

I

-z-tx'D- _-or x > O

0 se-n :e-. :.n Fc7--a i is then

"en by Z, x; D

"xe:t w.e In~rc~c'e th_ vectzr-vaied f'=ncti

x
x ,-xz_D - du ,. 0

-" 0

, 5.ultp1,in9 both. s'des by exo(-Dx) and differentiating,

•we iee that the vector z2(x) satisfies the sys-em of

'::. erential equations

7"z(x) = z2'.xD G(x) , for x >0
f

wi-h z (0) = 0 The components of the vector G(x) are
-2

eva>;iated by numerical integration in the expressions (6).

I ' - _... ..



Coro larv" 2

_he veztor W! is ivrn by

0

where -he comoonents of the vector G i are exnlicitlv

-:en by

x 0  or 1 < < b-I

(9)
:4 2b -i

Gb() = b X0 b -1

Proof

B., .etting x tend to infinity n Formu;la (7). The

ax.ressions for t'e re nen-s of fc-Ii:w fr= '6'

by routine integrat'ions and summations in " ,e recall
that rA + Ni.<l - -= ' , by virtue of (I).

Remark

i - _

By noting that D -De e , G(-)e = x0 b( -

e (1 - b)(1 - -I we readily verify that W(-)e = 2

Corollary 1 gives us the probability density of the

size of the group in which a customer arriving to the

stationary queue will be served. It is given by the components

of the vector W(-)

*1



eans --h ~~-f~:is W. ,a i b

:n-: be 'zomuted f:ro Forr~ 7j o mo u a -nccl l--e-Stie.tes

w-arns-orms by the addition of asterisks, (7) readily y.'elds

1. * ' . 10 -7-W (s' = s)e +- -G (s s- Da, -

s V a S''e <S!-D', G CS) (sI-D) * +G (S'

foI-ws that

W'0' w (0) _V (0~e + _&G- D -D00a -

Clearlv

-V '0) a-j-l'N.

a- - Ij i

;= -=

tl-.3 itsu f'ias to vauat G (0



As-ir;:1ar ca':..ulation vielcds

_ 2b713 G~ 's N sE +

n .ow reazil fo-Cllcws th atr

(0 N~ :bij+l j(--.
-~.(P=-~ 0 1 , or 1< < <b-,

i* L :2b+1 2
b 2 2p

7he con-_;iionai nean waitina tine, givLen that the arriving

czstomer is served in a group of size j is given by .W

rJ J
~r a j --.e unzonditional maan waitina time is given

.) ;e-V (G) '-(D e - G (0)e.

-kemrark

From :'he for ruas (12) and (13) , we obzain the following

al~tern~ate extression~s for the G.(x

G.(x) x E (X;- ), fr -0 rX' ro 1 < b

GE (\:~) - X

Thesax expressions are better s-_ited for nunerical computation

j zr-.an those given in 7ortula (E).

L



"C

-rom Formula (6), we obtain by a routins surrzation that

b 
' VL- X

b , b -- b d ,i7 x) =N - x0 (I- ex_)- -N- : )u du

so that

-* 1 0b -I -1
{18) -G (0)e = N-~~ 0

If, on the other hand, we add the expressions in (14;-, we

obtain after some calculations that

* Nu _b+2 -3
(19) -G (0)e = -- X0 ; (l- E) (l-)

The expressions in (18) and (19) are equal, since by virtue

of Equation (1) , we have

_, ---%
, , - -, / -'.

This provides us with an accuracy check on the lengthy

calculations involved in finding the expressions for the

mean waiting time.

S I 4. Algorithmic Aspects

The equilibrium condition (2) readilY defines the smallest

value of Nb for which the queue is stable. Equation (1)

j is rewritten as

(20) p= 1 - p + b+1

where p Ni(+Nw) , and is solved e.g. by Newton's method.

Defining the matrices M(j) , 1 < j < N , by

-.
*, (21) M(j) = -(N-j)uI-C] ,

; '( :



2C

the first N ecuations in I4) may be rewriten as

(22) x= , ,-lu + X M(j), or 2< j <N
-J

S :x 0 N (1, : . .... 2 El M(l)

.e performed Gauss-Seidel iteration in the equat ions (22)

computed the nexz value of x0 from the penultimate ecuation

in (4) and renormalized each solution vector by the last

equation in (4). Any non-zero, nonnegative initial vector

N .... Ix, x0o may be chosen to start the iterative

solution.

The special form of the ma-rces and E 7ay be

used to economize on storage and =opua7iona! effort. Onlv

the first component of each vector x. E differs from zero

and it requires only one multiplication. The matrices

(N-j)uaI-C , 1 < j < N , are of the form

- 6

5 -

*.



2 1

here z X 5 > 0 The mat-ices M(j) are therefore upper

trianaular and of the fcrm

" 0 1 "a-l

'0 " ... Ya-2

70 ))

a-= Z ,/6 , for 0 < v < a-I It is hence not

necessary to store the N matrices MI(j) The comoutation

of the stationary crobability vector of the matrix Q is

isth stable and ver': fast.

The vector W, is easily cor-!aed fr-m the c--ulas

k8) and (9). in view of the szecial form of the matrix D

the vector - + G()- D is obtained with very little

effort.

As was discussed in Section 3, the vector W(x) of

mass-functions is computed by the numerical integration of

simple systems of linear differential equations with constant

coefficients. This may be accomplished by any one of a number

of classical methods. The special structure of the coefficient

matrices is exploited to reduce computation time. The approach

to the easily computed vector W(-) provides us with an

accuracy check on the numerical integration procedure. For

examples in which the parameter a is large or in w ich the

7ieue is nearly critical, the evaluation of W(x) , x _ 0

recuires fairly substantial computation times. In all other

cases, the approach to W(-) is very rapid.
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The queue is studied as a Markov process. In the stable case, the stationary
probability vector of this process has a simple, readily computable form. Usin

this form, the stationary waiting time distribution, which is analytically

intractable, may be expressed in an algorithmically useful form. (OVER)
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20. Abstract cont.
Seve-aL questions, rcl-ated to tIe optimal design of such a service system,

nmiy bc algorithmically investigated. 'Ihis model serves to illustrate the

advantages of the algorithmic approach. The design criteria are not analy-

tically tractable in general.
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