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A COMPREHENSIVE ANALYTICAL MODEL OF

ROTORCRAFT AERODYNAMICS AND DYNAMICS

Part I: Analysis Development

Wayne Johnson

Ames Research Center
and

Aeromechanics Laboratory
AVRADCOM Research and Technology Laboratories

SUMMARY

The development of a comprehensive analytical model of rotorcraft

aerodynamics and dynamics is presented. This analysis is designed to calcu-

late rotor performance, loads, and noise; helicopter vibration and gust

response; flight dynamics and handling qualities; and system aeroelastic

stability. The analysis is a combination of structural, inertial, and aero-

dynamic models that is applicable to a wide range of problems and a wide

class of vehicles. The analysis is intended for use in the design, testing,

and evaluation of rotors and rotorcraft, and to be a basis for further

development of rotary wing theories. The analysis is implemented in a

digital computer program.

1. INTRODUCTION

For the design, testing, and evaluation of rotors and rotorcraft, a

reliable and efficient analysis of the aircraft aerodynamics and dynamics

is required. It is necessary tc predict and explain the rotor performance,

loads, and noise; helicopter vibration and gust response; flight dynamics

and handling qualities; and system aeroelastic stability. Such capability

is also required as a basis for further development of rotary wing theory.

This report presents the development of a comprehensive analytical model of

rotorcraft aerodynamics and dynamics.



The analysis developed here is a consistent combination of structural,

inertial, and aerodynamic models, applicable to a wide range of problems and

a wide class of vehicles. Typically rotary wing analyses have been developed

or verifie' for only a particular type of helicopter or a particular techni-

cal problem, that reflects the specific interests of the originating organi-

zation. 're present model is applicable to articulated, hingeless, gimballed,

and teetering rotors with an arbitrary number of blades. The rotor degrees

of freedom included are blade flap/lag bending, rigid pitch and elastic

torsionl, and optionally gimbal or teeter motion. This analysis is applicable

to general two-rotor aircraft, including single main-rotor and tandem heli-

copter configurations and side-by-side or tilting proprotor aircraft con-

figurations (fig. 1). The case of a rotor or helicopter in a wind tunnel is

also covered. The aircraft degrees of freedom included are the six rigid

body motions, elastic airframe motions, and the rotor/engine speed perturba-

-ions. The trim operating conditions considered include level flight, steady

climb or descent, and steady turns. The analysis of the rotor includes non-

lino'ar inertial and aerodynamic models, applicable to large blade pitch

an. (s ard high inflow ratio. The rotor aerodynamic model is based on two-

dimensional steady airfoil characteristics with corrections for three-

dimensional and unsteady flow effects, including a dynamic stall model. A

detailed wake model for the rotor nonuniform inflow calculation is developed,

with a lifting surface theory correction for vortex-induced loads. Available

prescribed and free-wake-geometry models are used. The aeroelastic stability

analysis derives linearized equations consistent with the nonlinear rotor

model.

The solution of the equations of motion is separated into two parts,

based on the different time scales involved in rotorcraft dynamics. The

first part is the solution for the rotor motion and the airframe vibration.

This motion is periodic, with fundamental frequency Q for the rotor and NQ

for the airframe (Q is the rotor rotational speed and N is the number of

blades). The periodic motion is calculated by a harmonic analysis method.

The second part is the solution for the steady state or slowly varying air-

frame motion (consisting of the aircrE.t rigid body and rotor speed perturba-

tions, and the static elastic deflection of the airframe and drive train).

-2-
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The assumption that the aircraft motion is quasi-static (compared to the rotor

speed) allows the periodic rotor solution to be used for transient motions of

the helicopter as well as for the trim calculations. Most importantly, by

taking adv .age of the frequency separation of the rotor and aircraft motions,

an economical calculation procedure is realized.

The first computation task is the trim analysis, in which the control

position and aircraft orientation are determined for the specified operating

condition. The periodic blade motion is calculated, and then the rotor per-,

formance, loads, and noise can be evaluated. The rotor model in the trim

solution can use uniform inflow, nonuniform inflow with a rigid wake geometry,

or nonuniform inflow with a free wake geometry. The aeroelastic stability,

flight dynamics, and transient analyses begin from the trim solution. The

aeroelastic stability analysis sets up a set of linear differential equations

describing the motion of the rotor and aircraft; the eigenvalues of these

equations define the system stability. The flight dynamics analysis calcu-

.tes the rotor and airframe stability derivatives, and sets up linear differ-

eti;l equations for the aircraft rigid body motions; the poles, zeros, and

eigenvectors of these equations define the aircraft flying qualities. The

transient analysis numerically integrates the rigid body equations of motion

for a prescribed control or gust input.

In this analysis all quantities will be dimensionless, based on the air

density p , the rotor radius R , and the rotor rotational speed S.

2. ROTOR MODEL

2.1 Structural Analysis

The rotor structural analysis consists of an engineering beam theory

model for the coupled flap/lag bendin3 and torsion of a rotor blade with large

pitch and twist. A high aspect ratio (of the structural elements) is assumed,

so the beam model is applicable. The objective is to relate the bending

moments at the section, and the 6orsion moment, to the blade deflection and

elastic torsion at that section. The analysis follows the work of reference 1.

-4-
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2.1.1 Geometry.- The basic assumptions are that an elastic axis exists,

and the undeformed elastic axis is a straight line; and that the blade has a

high aspect ratio (of the structural elements) so engineering beam theory

applies. Figure 2 shows the geometry of the undeformed blade. The span

variable r is measured from the center of rotation along the straight

elastic axis. The section coordinates x and z are the principal axes of the

section, with origin at the elastic axis. Then by definition, f(-:z)dA = 0.

Really this integral is over the tension carrying elements, i.e., a modulus

weighted integral: fxzE dA= 0. This remark holds for all the section

integrals in the structural analysis. The tension center (modulus weighted

centroid) is on the x axis, at a distance xC aft of the elastic axis:

fx dA= xcA aYi fz dA= 0. Again, these are modulus weighted integrals.

If E is uniform over the section, then xC  is the area centroid; and if the

section mass distribution is the same as the E distribution, then the ten-

=*,'n center coincides with the section center of gravity.

The angle of the major principal axis (the x axis) with respect to

-he hub plane is 6. The exisrence of the elastic axis means that twist about

the elastic axis occurs without bending. In general, the elastic torsion

deflection will be included in 0. The blade pitch bearing is at the radial

station rFA. The blade pitch is described by root pitch e0 (rigid pitch

about the feathering axis, including that due to the elastic distortion of

the control system), built-in twist 6tw, and elastic torsion about the

elastic axis 0 e . So 0 = 0° + 0tw + 0 e, where 0(p) is the root pitch,

6(rA) = 6°; W(r) is the built-in twist, 0. (rFA) = 0: nnd e(r,1.) s thc
FA p'' w FA -e

elastic torsion, e e(rFA,') = 0. There is shear stress in the blade due to 0e

only. It is assumed that 0e is small, but 0 and 8tw are allowed to be

large angles.

The unit vectors in the rotating hub plane axis system are and

B'T
kB (fig. 2). The unit vectors for the principal axes of the section (X, r, z)

are , , and k; these are for no bending, but include the elastic torsion in

the pitch angle 0. So the principal unit vectors are rotated by 0 from the

hub plane:

-6-
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2.1.2 Descripti"On cf the bending. - Now the engineering beam theory

assumption is introduced: plane sections perpendicular to the elastic axis

remain so after the bending of the blade. Figure 3 shows the geometry of the

deformed section. The deformation of the blade is described by (-) deflection

of the elastic axis, x , r , and z0; (b) rotation of the section due to bend-

ing, by &x and z; and (c) twist aDout the elastic axis by 6 e, whtch is

implicit in i and . The quantities xo ) r0, z0, , , and are assumed

to be small.

The unit vectors of the unbent cross section are T, J, k. The unit

vectors of the deformed cross section are 7's , -s, and kxs, where xsnd

k are the principal axes of the section, and 3x is tangent to the
xs xs
deformed elastic axis. It follows that

L y, 4-

Now by definition, /ds where r = x0 + ad3xs 'is hr r o 0 \ r3+z

s is the arc length along the deformed elastic axis. Hence to first order

V

Y- * 4- -7-



sx0 i + ro j + z k

UNDEFORMED

DEFORMED
ELASTIC AXIS

Figure 3. Geometry of the deformed blade.
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It follows the rotation of the section is

or

The undeflected position of the blade element is r = xi + rj+ and

the deflected position is

YCe 4- -2 4- C + 4 e ±

The first t-arm in the deflected position is the radial station; the

next three terms are the deflection of the elastic axis; the next term is the

rotation of the section; and the final two terms are the location of the point

on the cross section. For now the elastic extension r0  will be neglected.

The strain analysis is simplified since then to first order, s = r; r0  gives

a uniform strain over the section, which may be reintroduced later,

2.1.3 Analysis of strain.- The fundamental metric tensor gmn of the

undistorted blade is defined by:

e -9-



Where ds is the differential length in the material, and x are general

curvilinear coordinates. Similarly, the metric tensor G of the deformedmn

blade is

Then the strain tensor ymn is defined by the differential length increment

For engineering beam theory, only the axial components of the strain and

stress are required. For a full exposition of the analysis of strain, the

reader is directed to reference 2.

The metric of the undeformed blade (no bending, and no torsion so

6' = 'w ) is obtained from the undistorted position vector r= xe + rr+ zt,

giving

The metric of the deformed blade, including bending and torsion, is similarly

obtained from the position vector r (x + x + (r + xz - Zx)W+ (z + Z :
0 -0
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Then the axial component of the strain tensor is

- Gk-re C4 t
-- ' -4 e- \i(

The linear strain (for small xo0 z 0' e x' and q) ) is

'K -4 -a,4 N V. 4 -7-L

The strain due to the blade tension, cT, is a constant such that tne

tension is given by the integral over the blade section:

Substituting for or and using the results fzdA = 0, fxdA = xcA, and
2 2 rrf(x + z2)dA = Ip = kp2 A (where k is the modulus weighted radius of gyra-

tion about the elastic axis), gives
-11-
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In this expression, the strain due to the blade extension r has been

included. It follows that the strain may be written as

2.1.4 Section moments.- To find the moments on the section, the second

engineering beam theory assumption is introduced: that all stresses except

arr are negligible. The axial stress is given by a = EErr" The direction

of o is
rr

A _ A

The moment on the deformed cross section (fig. 4) is M = Mxxs + MrJxs

+ MZ k x. The moment about the elastic axis due to the elemented force a rrdA

on the cross section is

Integrating over the blade section, there follows the result for the total

moments due to bending and elastic torsion:

-12-
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Figure 4. Bending and torsion moments on
the blade section.
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To Mr has been added the torsion moment GJO', due to shear stresses pro-r educed by elastic torsion. These moments are about the elastic axis. For
bending it is more convenient to work with moments about the tension center

at xc

-,r

Substituting for a and integrating, the moments arerr

( q% I -+

-14-
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where

- / (-"7 A

The integrals are all over the tension carrying elements (i.e., modulus

weighted). The tension T acts at the tension center at xc; hence the bend-

ing moments about the elastic axis may be obtained from those about the tension

center by (MZ)EA = Mz + xcT and (Mx)EA = MX .

2.1.5 Vector formulation.- Define the section bending moment vector

2), and the flap/lag deflection w as follows:

(2().

(2) is not quite the moment on the section, because MX and Mz are really

the I and components of the moment). The derivatives of arL

-15-
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Then the result for the bending and torsion moments can be written as follows:

1 It

This is the result sought, the relation between the structural moments and

deflections of the rotor blade.

Writing the bending stiffness dyadic as E1 = El It + Elxkk, and for

the purposes of this paragraph neglecting the EIXp and EIZP coupling terms,

gives
•E -.- Ez3 .w I

,,,4r = . .- kl- "" ok

In this form the result appears as a simple extension of the engineering beam

theory result for uncoupled bending and torsion (the 8' = 0 case). The
tw

vector form allows a simultaneous treatment of the coupled inplane and out-of-

plane bending of the blade, with considerable simplification of the equations

as a consequence.

This relation between the moments and deflections is a linearized result.

Thus the vectors ]and k appearing in El and in w. are based on the trim

pitch angle 0 80 + 8tw. The net torsion modulus is

-16-
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where T = 2 i! pmdp is the centrifugal tension in the blade. For ther

elastic torsion stiffness characteristic of rotor blades, the GJ term

usually dominates. The kp2T tcrm is only important near the root for blades

which are very soft torsionally. The 0,w2 El term is only important for
tw PP

very soft, highly twisted blades.

2.2 Inertia Analysis

This section derives the inertia forces of a helicopter rotor blade.

The blade motion considered includes coupled flap/lag bending (including the

rigid modes if the blade is articulated), rigid pitch and elastic torsion,

gimbal pitch and roll (which are uipped from the model fer articulated and

hingeless rotors) or teeter motion (for two-bladed rotors only), and the

rotational speed perturbation. The geometric model of the blade and hub

includes precone, droop, and sweep; pitch bearing radial offset; feathering

axis droop and sweep; and torque offset and gimbal undersling.

2.2.1 Rotor geometry.- Consider an N-bladed rotor, rotating at speed

Q (fig. 5). The m-th blade (m = 1 to N) is at the azimuth location m =

+ mtp, where # = 2 TIN and p = t is the dimensionless time variable.

Because for steady flight the blade motion is periodic, it is only necessary

to calculate the motion and forces of one of the blades. For this reference

blade we choose that identified by m = N. The S coordinate system ([, ts,

kS) is a nonrotating, inertial reference drame (fig. 5). The S system

coordinates are the rotor shaft axes when there is nu hub motion. When the

shaft moves however, due to the motion of the helicopter or the wind tunnel

support, the S system remains fixed in space. The B system (71- ..X -B ) is a

coordinate frame rotating with the m-th blade. The acceleration, angular

velocity, and angular acceleration of the hub, and the forces and moments

exerted by the rotor on the hub are defined in the nonrotating frame (the S

system). Figure 6(a) shows the definition of the linear and angular motion of

-17-
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Zh' z

Yh, ay

(a) SHAFT MOTION

T,-Q

Y, M y

H, Mx

(b) HUB REACTIONS

Figure 6. Notation and sign conventions for the linear

and angular shaft motion, and the forces and

moments actii, on the rotor hub.
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the rotor hub, and figure 6(b) shows the definition of the rotor forces and

moments acting on the hub. The rotor blade equations of motion will be

derived in the rotating frame.

Figurt 7 shows the blade hub and root geometry considered. The origin

of the B .nd S system is the location of the gimbal (or teeter hinge). For

articulatca or hingeless rotors, where there is no gimbal, this is simply the

point where the shaft motion and hub forces are evaluated. The hub of the

rotor is a distance zFA below the gimbal (gimbal undersling, which is not

shown in fi-,. 7). The torque offset XFA is positive in the t direction.

The azi-:.uth m is measured to the feathering axis line (its projection In

the hol. plane), so the feathering axis is parallel to theB axis, and offsetB
XFA from the center of rotation. The precone angle 6FAl, gives the orienta-

tion of the blade elastic axis inboard of the pitch bearing with respect to

the hub plane; 6FAl is positive upward, and is assumed to be a small angle.

ihe pitch bearing is offset radially from the center of rotation by rFA. The

Jd pitch rotation of the blade about the feathering axis occurs at rFA.

droop angle 6FA2 and sweep angle 6FA3 occur at rFA, just outboard of

t', nitch bearing; 6FA2 and 
6FA3 give the orientation of the elastic axis of

the blade outboard of the pitch bearing, with respect to the precone. Both

6FA2 and 
6FA3 are assumed to be small angles; 

6FA2 is positive downward, and

6FA3 is positive aft. Feathering axis droop 6FA4 ane sweep 
6FA5 define the

orientation of the feathering axis with respect to the precone; 6FA4 is

positive downward, 6FA5 is positive aft, and both are small angles. If

5FA 4 = 
6FA5 = 0, then the feathering axis orientation is just given by the

precone; it 6FA4 = 6FA 2 and 
6FA5 = 

6FA3 then the orientation is the same as

the outboard elastic axis.

From the root to the pitch bearing (at r = rFA), the undistorted elastic

axis is a straight line at the precone angle to the hub plane. The blade out-

board of the pitch bearing has a straight undistorted elastic axis, with small

droop and sweep angles. The feathering axis also has small droop and sweep

with respect to the precone. The entire blade is flexible in bending. The

portion of the blade outboard of the pitch bearing is flexible in torsion as

'tl. The rotation of the blade about the pitch bearing takes place about the

-20-
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local direction of the feathering axis. Incorporation of bending flexibility

of the blade inboard of the pitch bearing allows consideration of an articu-

lated rotor with the feathering axis inboard or outboard of the hinges, or a

cantilev-r blade with or without flexibility inboard of the pitch bearing.

Figure 8 shows the undeformed geometry of the blade. The description

of the blade for the inertial analySis parallels that for the structural

analysis (see fig. 2 and section 2.1.1). It is assumed that an elastic axis

exists, and that the undeformed elastic axis is a straight line; and that the

blade has a high aspect ratio. Here x I is the locus of the section center

of gravity, xA is the locus of the section aerodynamic center, and xC  is

the locus of the section tension center. The distances xl, xA, and xC  are

positive aft, measured from the elastic axis; in general they are a function

of r. The corresponding z displacements are neglected.

The T, , and k coordinate system is the elastic axis/principal axis

system of the section. The direction of the elastic axis is j; 1 and are

the direction of the local principal. axes of the section. The spanwise

variable is r, measured from the center of rotation. This variable is

dimensionless, so r = 1 at the blade tip. The section coordinates x and z

are iniass principal axes, with origin at the elastic axis. It is assumed that

the direction of the mass principal axes and the modulus principal axes is the

same. The center of gravity is at z = 0 and x = xI . The section mass,

center of gravity position, and section polar moment of inertia (about. the

elastic axis) are by definition then as follows:

f dm = m

fz dm = 0

fxz dm = 0

fx dh xI m

f(x 2 + z 2) dm 1 6

where the integrals are over the blade cross section.

-23-
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The droop and sweep of the blade elastic axis are defined with respect

to the hub plane axes, so it follows that unless the feathering axis is

parallel to the outboard elastic axis, these angles vary with the pitch of the

blade. Let 6FA2 and 6FA3 be the droop and sweep of the blade when the

pitch angle at 75% radius is zero. Then the following relation can be obtained

from the root geometry:

~-7-

where 075 is the blade pitch at 75% radius.

2.2.2 Rotor motion.- The rotor blade motion is described by the follow-

ing degrees of freedom:

(a) Gimbal pitch and roll motion of the rotor disk (omitted for

articulated and hingeless rotors), or teeter motion of the blade

(for two-bladed rotors only).

(b) Rotor speed perturbation.

(c) Rigid pitch motion about the feathering axis and torsion about the

elastic axis.

(d) Bending deflection of the elastic axis, including rigid flap and

lag motion of the blade is articulated.

Figure 9(a) shows the gimbal motion and rotor speed perturbation in the non-

rotating frame. The gimbal degrees of freedom are GC and aGS' respectively

-25-
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(a) NONROTATING FRAME
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(b) ROTATING FRAME

Figure 9. Notation and sign conventions for the gimbal
motion and the rotor speed perturbation.
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pitch and roll of the rotor disk. The rotor rotational speed perturbation is

is s Figure 9(b) shows the gimbal motion in the rotating frame. The

degrees of freedom are $G and 6G' given by

GW 0, give by

The blade pitch 0 is defined with respect to the hub plane, so only the

blade inboard of the pitch bearing sees the pitch rotation due to 0G. For

two-bladed rotors, the teetering degree of freedom T may be included. The

teetering motion is defined in the rotating frame, hence $= G T (-l)m and
0G = 0 for this case.

Figure 3 showed the geometry of the deformed blade. The blade deforma-

tion is described by twist e about the elastic axis, bending deflection x

and z of the elastic axis; and rotations of -he section by 4x and 4z due

to the bending (see section 2.1.2).

The blade pitch angle e is measured from the hub plane to the section

major principal axis (the x axis). The undeformed pitch angle consists of

the collective pitch eColl plus the built-in twist tw. We define eoll

as the pitch at rFA1 so tw (rFA) = 0. The rotation by 0coll is not

present inboard of the pitch bearing, but there can be pitch if the local

principdl axes with respect to the hub plane, which is included in 0tw for

r < rFA. The pitch of the deformed blade i5 composed of the root pitch 0 0()

(the blade angle at the pitch bearing, r = rFA, due to control commands,

control system flexibility, and kinematic coupling); the built-in twist 0 tw();

and torsion about the elastic axis e e(rM)(where e(rFA',) = 0, and only

ee  produces shear stress in the blade). Thus the blade pitch is
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IC
The commanded root pitch angle is defined as 6 Coll + 6 . Here Ccol con cl
is the trim value of the collective pitch, which may be large but is steady in

time; and 0 is the perturbation control input (including the cyclic con-gon
trol requii d to trim the rotor), which is time dependent but is assumed to be

a small angle. The blade root kitch commanded by the control system is 6c

while 60 is the actual root pitch. The difference (00 - c) is the rigid

pitch motion due to control system flexibility or kinematic coupling in the

control system. Hence, the blade pitch may be written as

The pitch angle may now be separated into trim and perturbation terms,

0 = 0 + 0, where the trim term ism

and the p-.rturbation is

The trim pitch d is a large, steady angle; the perturbation pitch 0m

is small angle since all the components are small. The pitch at the blade

root (r = rFA) is then

-28-
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For the rigid pitch motion the notation p is used:

(This notation is consistent with that for the modal expansion of the elastic

torsion e, as described below.) Note that p is the total rigid pitch

motion of the blade, including the control angle 0con*

2.2.3 Coordinate frames.- The rotating hub plane coordinate frame is

obtained from the nonrotating hub plane frame by rotating about the z - axis:

._B

The blade coordinate frame is obtained by rotating by the angle

OG + 6 FA1 - 6FA2  about the x-axis, by the angle 's - 6FA3 about the z-axis,

and by the angle 0 about the y-axis:

Ofe e t

I~ -F,% - 3  Lit 4++4

-~ ~ ~-~ '4 4- ~-* L-

The cross section principal axes for the deformed blade are then
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The vector its is tangent to the deformed elastic axis.

2.2.4 Blade acceleration.- The distance from the rotor hub to the

center of gravity of the blade section is:

-F 31  i (- A

44 A,~A -+ (WA3, -f- 4 ~

+ °~~ I . c-Y~ e-.'.') -'e-o - .,

R4-) + 4FA33  - ' )T9(-

4- Oko-e + zJ ' . ,--
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where

for elastic torsion (k > 1) and

~r

4- lrfA 4.) k

for rigid pitch. Then the velocity of the blade section, relative to the

rotating frame is

4 - i-Z4jtb

Neglecting the squares of velocities, the r,-celeration relative to the rotat-

ing frame is

C_.

co
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For the blade Coriolis acceleration the radia! velocity component V r is

required, including the effect of the change in the radial position of the

section due to bending:

then

-~ ~~4 (Li% a *(~li Li

-4A 3

The acceleratio.n of the blade is required with respect to an inertial

frame, spcifically the S system. The B coordinate frame rotates at a con-

stant aeigular velocity S, = tkB with respect to the S frame. The shaft
motion is composed of lineer and angular displacement of tite origin of the

S frame. The acceleration, ongular velocity, and angular acceleration of the

S system have the following components in the nonrotating, inertial frame:



It is assumed that ao, W, and(J are all small quantities.
0 0 0

The acceleration (a) and velocity (") of the blade relative to the

B frame have been derived above. Now the acceleration of a blade2 point in

inertial space will be derived, in terms of the motion of the shaft, the rota-

tion of the rotor, and the blade motion in the B frame. From the result for

the acceleration in the rotating coordinate frame (tbe S frame, rotating at

rate 1 ), there follows:

.. 4..~-
+ ~- 4- 2  +w~)%r 4~( Y - L30 X

where a and v are the acceleration and velocity relative to the
r,s r,s

S frame. The B system rotates at angular velocity Q = QB with respect to
B

the S frame. Hence with Q constant and no angular or linear acceleration of

the B frame with respect to the S frame, there fol1ows:

C> *S r -r- xC +-

where a and v are the acceleration and velocity relative to the B frame.

Thus:

+2- ,.> + 2 .. C. -,- r SL --
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To first order in the velocity and angular velocity, this becomes finally:

4- C -4- -4- '

or in dyadic operator fDrm, with Q = lkB

e ix terms in a are respectively the acceleration of the origin, the

Ciriolis acceleration due to the angular velocity of the origin, he angular

acceleration of the origin, the relative acceleranion in the rotating flame,

the relative Coriolis a :eleration, and the centrifugal acceleration.

For the blade bending and tox~ion equations, the following components of

the acceleration will be required:

-o.-.~ ~ SZ --z r r 4- •- ;

I-34-

-34-



-

4-'

For the hub moment the angular acceleration is required:

Z- LC rIIK
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and for the hub force we can use

sz C4~g C-K a)
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The approximation r = rJA has been used in all cases to evaluate the hub

motion terms.

2.2.5 Aerodynwni, forces.- The aerodynamic forces acting on the blade

section at the elastic axis are Fz, Fx, and Fr (see fig. 11 in section 2.4).

These are the components of the aerodynamic lift and drag forces in the hub

plane axis system (the B frame). F is in the hub plane, positive in the drag

direction; Fz is normal to the hub plane, positive upward; and Fr is the

radial force, positive outward. There are also radial components of Fx and

F z due to the tilt of the section by blade bending; here Fr  is just the

radial drag force. Thus the aerodynamic force acting on the section at the

deformed elastic axis is:

. LA -- V S+ ' -- 4

I 6

where

The section aerodynamic moment about the elastic axis is M , positive nose

upward (so Maero Ma xs) . These section aerodynamic loads are integrated
over the blade span to obtain the total forces and moments.

2.2.6 Force and moment equilibrium.- The equations of motion for

elastic bending, torsion, and rigid pitch of the blade are obtained from

equilibrium of inertial, aerodynamic, and elastic moments on the portion of

the blade outboard of r:

-3?-



Where ME is the structural moment on the inboard face of the deformed cross

section (so -M is the external force on the outboard face); MA is the

total aerodynamic moment on the blade surface outboard of r; and MI is the

total inert'al moment of the blade outboard of r. The structural moment ME

is obtained from the engineering beam theory for bending and torsion (section

2.1.5), from the control system flexibility for rigid pitch, or from the hub

spring for gimbal or teeter motion. Alternatively, ME may be viewed as the

force or moment on the hub due to the rotor (so -ME is the force on the

rotor). M is the inertial moment of the blade outboard of r, about the

point r0(r), obtained by integrating the acceleration times the blade density

(din dp) over the volume of the blade:

For bending of the blade, engineering beam theory gives

- ,., .., ...ME - M-- -4- LL VlX J~

Therefore the operator (.ixs + ) is applied to M and MA  also. For

bending, moments about the tension center (x = xC) are required. Then the
2-&(2)2

desired partial differential equation for bending is obtainnd from 2 M / r.

The ordinary differential equation for the k-th bending mode of one blade is
I.A -4

obtained by operating with fonk" (...)dr, where "Ik is the flap/lag bending

mode shape (see section 2.2.15). For elastic torsion, engineering beam theory

gives Mr = jxs " ME. So this same operator is applied to M, and MA. For

torsion, momeU, L about the section elastic axis (x = 0) at r are required;

also, elastic torsion involves only the blade outboard of rFA. The desired

partial differe-ntial equation for torsion is then obtained from M r/3r. The

ordinary differential equation for the k-th torsion mode is obtained by

operating with ff E (...)dr, where E is the elastic torsion mode shape
ok

(see section 2.2.15). The equation of motion for the rigid pitch degree of

freedom p is obtained from equilibrium of moments about the feathering axis,

MEA eFA " M(rFA)" There M is the moment about the feathering axis (x 
0)
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at r = rFA, and eFA is the direction of the feathering axis, including
perturbations due to blade bending:

eAA = fA 4-(.Ct4Z ) 4-A AS-

The elastic restraint from the control system flexibil..- gives the restoring

moment about the feathering axis, completing the desirc. equation of motion.

The total rotor force and moment on the hub (at the gimbal point) are

obtained from a sum over the N blades of Fm) and (M) the force and

moment due to the m-th blade:

Since -F and -M are the forces on the blade, from force and moment

equilibrium of the entire blade it follows that

hA - ,, - M. _
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The hub force and moment are required in the nonrotating hub plane frame (the

S system), with components defined as follows:

= - Y Y - 4-T1

M - MA -4- M~ -QN

(see fig. 6).

The equations of motion for the gimbal degrees of freedom $GC and aGS

are obtained from equilibrium of moments about the gimbal, H M and

My = is • M, where M is the total moment (from all N blades) about the

gimbal point, in the nonrotating frame. The equation of motion for the teeter

,e.ree of freedom 0 T is obtained from equilibrium of the moments about the

ee- 'r hinge from both blades, in the rotating frame. The equation of motion

for the rotor speed perturbation s is obtained from equilibrium of the

shaft torque moments, Q = -M M. The drive train couples the torque

perturbations of both the rotors, hence this degree of freedom is best con-

sidered with the other motions of the helicopter body.

2.2.7 Bending equation.- The equation of motion for blade bending is

obtained from

where M is the moment about the tension center (x = x ) at r, and
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Considering first the blade outboard of r FA' the inertia moment is

I

so

"9 -AY0

Finally:

" .AA-
1-i-

- ±

-i- IL ~ ~ yviL%~



The last term in this result will be neglected since it is order (/R) 2

smaller than the first term. Including the case r < rFA' which only intro-
duces an effect of the droop and sweep, the result is

~~~~~~ '*A~.-+ [ ~%

where 6 (r) is the delta function (an impulse at r = 0). Operating with

o k ... )dr and integrating the second and third terms by parts gives:

+ AO~i ~9"IVk
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Finally, the torsion terms are introduced; the inertia and centrifugal forces
directly due to the blade bending motion are extracted; and the fourth term
above is again integrated by parts. Thus the inertia force is:

-(LY

-A

-.--

Te scua oet(ro eto .. )i

s i. Y-T-W

-4 -Cp JL-43-



The aerodynamic moment about the tension center (x = x ) at r, due to the
blade loading at the elastic axis at station p is

MA

so

~MA

2.2.8 Elastic torsion equation.- The equation of motion for elastic

torsion is obtained from

where M is thc moment abouL Lhe elastic axis at r, and

The inertial moment is

-44 r C1



so

OprtigwihfraFAk(...)dr and changing the order of the p and r

integrations ini the second term gives

-45-
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where ((

-= -. --. )

Finally, introducing the torsion terms by expanding the unit vectors, the

inertia force is:

CPAA

+

Where I. f (x2 + z 2)dm is the section pitch moment of inertia, about the

elastic axis. In the centrifugal acceleration we have neglected a number of

terms due to the blade torsion motion which are the same order as the pro-

peller moment, btt which-are nomally uch Smallef Lhan the structural moment.
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With the centrifugal tension T Q2 2f 1mdp, the structural momentr

(from section 2.1.5) is:

CfA

-- rFA
'A &jh £

Finally, the aerodynamic moment about the elastic axis at r is

-O ++

so

MC,

4" -



Hence

where

2.2.9 Rigid pitch equation.- The equation of motion for rigid pitch is
obtained from MFAI + MFAE - MFAA, where

- & . A-1 1MFA f-A E £-+( Ze+ )t 't + A CAf "
Af

-rid M is the moment about the feath&ring axis at r rFA* The inertia
moment is

~ S'

So ..

'A rf
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where

Introducing the torsion terms by expanding the unit vectors, the inertia force is

The aerodynamic moment about the feathering axis at r FA is

I %%I

So I ,.--'
Il~x

where
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The aerodynamic and inertial moments about the feathering axis are

reacted by moments due to the deformation of the control system. The restor-

ing mqoment acting on the blade, about the feathering axis, is -Yco . It iscon

given by the product of the elastic deformation in the control system, and the

control system stiffness K :

where t1e rigid pitch pr consists of the kinematic coupling and the blade

commanded pitch angle:

4.

The first two terms are the lateral and longitudinal cyclic pitch control

inputs; the next terms are feedback from the governor, and kinematic coupling

due to the rotor mast bending. The term -Kpiqi is the kinematic pitch/

bending coupling due to the control system and blade root geometry, where q

is the i-th bending degree of freedom (introduced below). Similarly, KPG is

the pitch/flap coupling for the gimbal or teeter motion. For the rigid flap

iluLion of the blade, this coupling is usually expressed in terms of a delta-

three (6 3) angle, such that F = tan 3' Finally, the *s term is the

pitch change due to the rotor azimuth perturbation with a fixed swashplate.

For rigid control system (K0 very large) the rigid pitch equation of motion

reduces to Po = Pr*

Including control system damping in the restoring moment gives

-50
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where C is the viscous damping coefficient. For consistency with the

elastic torsion equations, the control system stiffness can be written in

terms of the nonrotating natural frequency of the blade rigid pitch motion, w 0

and the damping coefficient in terms of a structural damping coefficient gs:

Then the structural pitch moment is

2.2.10 Root force.-The net force of the m-th blade acting on the hub is
F = FA - FI. The inertial force is

and the aerodynamic force is

The components of the total hub force in the nonrotating frame are
N

2.2.11 Root moment.- The net moment of the m-th blade acting on the

rotor hub is
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The inertial moment is

MM - 0 - K , Vt.-6

and the aerodynamic moment is

The components of the total hub moment in the nonrotating frame are

Note that the (torsion) component of the root moment in the rotating

frane is neglected compared to the 'B (fl-,) and k (lag) components.

The flapwise root moment in the rotating frame gives the pitch and roll

moments on the gimbal:

- -. -

The inertial moment is
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and the aerodynamic moment is

2.2.12 Gimbal equation.- The equations of motion for the gimbal degrees

of freedom are obtained from the pitch and roll components of the total rotor

hub force. Allowing for a gimbal spring and damper in the nonrotating frame

reacting the rotor moments, the equations of motion are

-%~ 4- C. ( - j- k C., ( )s - C-1)

The gimbal hub spring and damper constants can be written

-, 2- %)

R2j

Where I = r2m dr and 1, is a characteristic inertia of the blade, and

v G is the rotating natural frequency of the gimbal flap motion. To allow

for different longitudinal and lateral hub spring rates, vGC and vGS can be

used for the 0GC and aGS equations.

2.2.13 Teeter equation.- The equation of motion for the teeter degree

of freedom of a two-bladed rotor is obtained from equilibrium of flap moments

about the teeter hinge. Allowing for a teeter spring ai.d damper in the

rotating frame, the equation of motion is
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CT and KT  are the damper and spring constants about the teeter hinge. In

terms of the natural frequency and damping coefficient, we may write

C-,- = - z C-

= 2r=:oS-Za( , 1"

where I = fr 2mdr.
o 0

The teetering moment MT is the root flapwise moment from the two

blades:

where again - "

L4 'MA Z_

2.2.14 ModaZ equations.- Consider the equilibrium of the elastic,

inertial, and centrifugal bending moments. From the results of section 2.2.7

these terms give the following homogeneous equation for bending of the~blade:

E. X Z=t- e - E:=,, '" X ~ 'o. "3

(ii
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This equation may be solved by the method of separation of variables. Writing

it becomes

This is the modal equation for coupled flap/lag bending of the rotating blade.

It is an ordinary diffarential equation for the mode shape n(r); this mode

may be interpreted as the free vibration of the rotating beam at natural

frequency v.

This modal equation, with the appropriate boundary conditions for a

cantilever or hinged blade, is a proper Sturm-Liouville eigenvalue problem.

It follows that there exists a series of eigensolutions rk (r) of this equa-

tion, with corresponding eigenvalues V 2. The eigensolutiosr modes are

orthogonal with weighting function m; so if i # k,

These modes form a complete series, so it is possible to expand the rotor

blade bending as a series in the modes:

The bending modes are normalized to unit amplitude (dimensionless) at the tip:

i (l)i = 1.

Consider the homogeneous equation for the elastic torsion motion of the

nonrotating blade, i.e., the balance of structural and inertial torsion

moments. The results of section 2.2.8 give
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The equation for the torsion motion of a rotating blade, including centrifugal

forces and some additional structural torsion moments could be used instead.

For the torsional stiffness typical of rotor blades these terms have little

effect howe er, and the nonrotating torsion modes are an accurate representa-

tion of the blade motion. Solving this equation by separation of variables,
I(A t

we write 0 = (r)e ,soe

This equation is a proper Sturm-Liouville eigenvalue problem, from which

it follows that there exists a series of eigensolutions k(r), and corres-

ponding eigenvalues 2 = (k The modes are orthogonal with weighting

function Y so if i # k

T e modes form a complete set, so the elastic torsion of the blade may be

expanded as a series in the modes:

L-t

These modes are the free vibration shape of the nonrotating blade in torsion,

at natural frequency w k The torsion modes are normalized to anity at the

tip, Ck (1) = 1.

2.2.15 Modal expansion.- The bending and torsion motion of the blade is

expanded as series in the normal modes. By this means the partial differ-

ential equations for the motion (in r and t) are converted to ordiuary

differential equations (in time only) for the degrees of freedom.

For the bending we write:
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where r, are the rotating, coupled flap/lag bending modes defined above.

These modes are orthogonal and satisfy the modal equation given above. The

variables qi are the degrees of freedom for the bending motion of the blade.

For the blade elastic torsion we write

where i are the nonrotating elastic torsion modes. These modes are

orthogonal, and satisfy the modal equation given above. The variables

Pi (i > 1) are the degrees of freedom for the elastic torsion motion of the

blade. The degree of freedom for rigid pitch motion is po = 60 = (0 0 _ c)

+ 0co n . For rigid rotation about the feathering axis, the mode shape is

simply C = 1. Thus the total blade pitch perturbation is expanded as the

series:

The total blade pitch 6(mean and perturbation) is then:

The partial differential equation for bending of the blade is obtained

f:om 2M2)/9r2 . The ordinary differential equatio for the k-th bn-"i-

mode (the q equation) is then obtained by operating with (i n ... )drk ~ok
(which has already been done in section 2.2.7). The modal equation is used

to introduce the bending mode natural frequency into the equation, replacing

the structural and centrifugal stiffness terms, and the orthogonality of the

bending modes decouples the inertial and spring terms as follows:
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where

The partial differential equation for torsion of the blade is obtained

from 3M r/dr. The ordinary differential equation for the k-th torsion mode
(the Pk equation) is then obtained by operating with rFA k( ...)dr (whichhas already been done in section 2.2.8). The modal equation is used to
replace the structural stiffness term with the torsion mode natural frequency,
and the orthogonality of the modes decouples the inertial and spring terms as
follows:

-58-



%

" ~ - .... ScA A .. ..- .. ... -

'CA~
A. I

whe re

2.2.16 Lag danpe2,.- Arti'culated rotors usually have a lag damper, which

has an important influence On the bladc loads. etherefor a lag damping term

is added to the blade bending equation of motion as follows:

, ". - 5-

+ '~-5-+ +i



where glag C /Ib 0 and C is the lag damping coefficient (Ib is a char-

acteristic inertia of the blade, used to normalize the inertial constants as

described in the next section). The quantity kB * nk'(e) is the slope of

the k-th bending mode in the lagwise direction, just outboard of the lag hinge.

The manner in which the lag damping enters the equation of motion is obtained

by a Galerkin or Rayleigh-Ritz analysis. The lag damper results in a bending

moment at the lag hinge. Thus it is necessary to evaluate moments at the

bled. root by integrating along the span, which has in fact been our practice.

Note that structural damping has also been included in the bending

equation, modelled as equivalent viscous damping. The structural damping

coefficient gs (equal to twice the equivalent damping ratio) in general is

different for each degree of freedom. Structural damping is included in the

torsion equations in a similar manner.

Consider also a nonlinear lag damper, for which the lag moment opposing

the motion is proportionUl to 2 at lo. lag velocity (hydraulic damping)

and constant at MLD for lag velocity above D (friction damping):

-r £yVI

where

Hence the term

is added to the right-hand side of the bending equation. Here linear damping

is included on the left-hand side still, but only to improve the convergence

of the solution; so the C term must be subtracted from Mlag.
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2.2.17 Gravi tationaZ forces.- The acceleration due to gravity is

kk., where g is the gravitational constant, kE  is the vertical

vector, and RSF is the coordinate transformation matrix between the rotor

shaft axes (S frame) and the aircraft body axes (F frame, see section 4.1.2).

In terms of the aircraft trim pitch and roll angles, the vertical vector is

(see section 4.1). The gravitational forces acting on the rotor blades may
-A -4

be accounted for by substituting - -9 for a 0 , the hub linear acceleration.

Thus the components of g in the S frame are subtracted from the components

of the hub acceleration in the nonrotating shaft axes:

Ckm,= i,-e + V"-S-+ zu

2.2.18 Equations of motion.- The rotor blade equations of motion are

now obtained by substituting for the expansion of the bending and torsion

motion as series in the modes of free vibration. Names are given to all the

inertial constants. Also, the equations of motion, hub forces and moments,

and inertia constants are normalized at this point in the analysis, using the

characteristic blade inertia Ib ) and the blade Lock number y = pacR 4/1b is

introduced. (A good choice for this characteristic inertia is b = fR r2mdr.)

The inertia constants are divided by Ib, with this normalization denoted by
asuperscript "*". The blade equations of motion are divided by I b . The

hub forces and moments are divided by NIb, so they appear in rotor coeffici-

ent form. The equations of motion for blade coupled flap/lag bending and for

blade rigid pitch/elastic torsion are thus:
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The inertia constants are defined in section 2.2.19.

In rotor coefficient form, the rotor hub force and moment are

I -iI rkh,

- + C-41

6N

N A

-63-



or

I~-4 cjwxj

So the blade root force and moment are resolved in the nonrotating frame, and
1 N

-"ieri filtered by th~e hub operatDr N E1 - The harmonics of the forces in
the nonrotating frame can be related directly to the harmonics of the rotating
forces; the solution of the support equations of motion requires however thp

hub forces and moment in the time domain.
The components of the blade root force and moment in the rotating frame

are as follows:

-Z C( (C g -N
U _ _- -, 

4- -4
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The inertia constants arc defined in section 2.2.19.

Note that the total hub forces due to the rotor linear acceleration are
simply

where is the normalized mass of a blade. Since the rotor mass is included
in the aircraft mass, these hub linear acceleration terms shonld be omitted
when Cfx, C fr, and Cfz are evaluated for the aircraft equations of motion.
These terms should be retained however when evaluating the actual blade root
forces.

Similarly, since the rotor weight is included in the aircraft weight,
the .rrcpon dng gravlLajuonal force terms are omitted.

Dividing by (l/2)NIb, the gimbal equations of motion are

2C-*

-4- C4-

- -~ ~ 0- .5 %
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where

Dividing by NIb, the teetering equation of motion is

where

The equation of motion for the rotor speed perturbation s is obtained
from equilibrium of the rotor torque. The speed perturbations of the two
rotors are coupled by the helicopter transmission, so the equation of motion
for 's is best derived with the body equations.

Finally, the aerodynamic forces required for the blade equations of
motion and the rotor hub reactions are as follows:

I-A I , ° A
CK-

4M 
-- 

fA rI
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2.2.39 Inertial constants.- The normalized inertial constants required
for the blade equations of motions and the hub reactions given above are
defined as follows:
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We have used the relation

for elastic torsion (k > 1), and

- -.

- 4- ((ZiA4 L 3

-4-

for rigie pitch, (k 0); or for k > 0

.2K ~ jV -~~K~~) A-~AY~+



where

Also then,

for the aerodynamic coefficients.

The blade inertial and structural properties (m, x, X0, El, I0, GJ, etc.)

will be defined at a series of radial stations, ri, witn linear variation

between.

The blade bending and torsion mode shapes will be evaluated at M + 1

equidistant radial stations: r = 0, Ar, ...MAr where Ar = lI/M. The

inertial coefficients are then calculated by numerical integration (using the

trapezoidal rule) over these radial stations.

A concentrated mass at the blade tip (r 1) will be allowed, with a

corresponding center of gravity offset. This tip mass contributes an' equiva-

lent distributed mass, as follows:

2.

- - S



where Ar is the segment length for numeral integration. Alternatively,

the tip mass can be included in the distributed mass directly (to avoid

difficulties with the (x C - x I)m terms evaluated at r 1)

The total mass of the blade can be specified, so

Alternatively, a point mass can be added at r =0 to account for the weight

of the hub.

2.2.20 Aerodynamic spring and damping.- To improve the conveigence of

the solution for the blade motion, spring and damping forces should be included

on the left-hand-side of the equations of motion. The required perturbation

aerodynamic forces are:

L Ly~

L.

IIV
EL

These terms will be added to both sides of the equations of motion, so they

need not be exact values of the damping and spring foces, but only close

enough to achieve good convergence (see section 5.1). The damping terms are

needed tO avoid unrealistic resonant amplification of the harmonics near the

natural frequency, and the spring terms help obtain the correct phase of the
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response quickly. Following the aeroelastic analysis (section 6.1.4), the
following expressions are used for the aerodynamic coefficients.

r"lL
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where

2.3 Blade Bending and Torsion Modes

2.3.1 Coupled bending modes of a rotating blade.- Equilibrium of the
elastic, inertial, and centrifugal bending moments on the blade gives the
differential equation for thz, coupled flap/lag bending of the rotating Llade
(see section 2.2.14). For free vibration - the homogeneous equation with

harmonic motion at the natural frequency v - we obtain the modal equation

for bending of the blade:

"it -8177



Here 7(r) z x-k is the bending deflection (mode shape),

+ F +- c aj

is the bending stiffness dyadic k = kB is the rotor rotational speed, and
v is the natural frequency of the mode. The bounidary conditions are as

follows:

(a) at the tip (r = R): EIl" = (Fn")' -0

(b) and at the ront (r = e): n. = 7' = 0 for a cantilever blade;
=0 and EI-" = K ' for an articulated blade.

The root boundary condition is applied at the offset r = e to allow for
hinge offset of an articulated rotor, or a very stiff hub of a hingeless rotor.
Different offsets can be used for the out-of-plane and inplane motion
(ef and e ). With the hinge springs at an angle S from the hub plane, the

hinge spring dyadic is

-~ ~ ( V-ft + LA )

where KF is the flap spring and KL is the lag spring constant.

It is useful to be able to use for the pitch angle of the structural
principal axes the effective angle 6 = (R8. The param ter R is zero for

eno structural coupling of the inplane and out-of-plane blade motion; and
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.R= I for complete coupling. For the hinge spring Ditch angle Os' an input

value can be used; or R675 can be used; or more generally Os = O 75 + eso.

This differential equation is an eigenvalue problem for the mode shapes

n and the natural frequencies v. The equation and boundary conditions

constitute a proper Sturm-Liouville problem. It follows that a series of

eigensolutions or modes " (r) exists with corresponding natural frequencies

vi; and that the modes are orthogonal with weight m. Hence if i # k,

The frequencies satisfy the energy balance relation:

The modal equation will be solved by a modified Galerkin method follow-

ing reference 3. This approach works better for large radial variations in

the bending stiffness than does the Rayleigh-Ritz method in standard form.

..i .. ~h dfferential equation as

S- ( ;M o

with boundary conditions M = 0 at r 1 , and n 0 and M = at

r = e. The deflection and moment are expanded as finite series in the func-

tions fi and gi
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It is required that each of the functions fi and gi satisfy the boundary

conditions; then the sum automatically does. Since a finite series is

required for numerical calculations, this will be an approximate solution.
-A -

For best numerical accuracy the functions f and gi must be chosen so that

the lower frequency modes can be well represented by the truncated series.

Substituting these series into the differential. equations and operating with

gives

Integrating by parts and applying the boundary conditions gives

I\ -A I .- a + I

- Q- 4
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So te first equation becomes

Hence the problem reduces to a set ot algebraic equations for c = Lc i and

d = [d)

JA-

or

For simplicity the functions used for the moment expansion are gi= f "
Then the coefficients of the matrices are
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" fi" T -A "
(Note that using gi E1 f would give C C A so d c, and this

solution would reduce to the standard Galerkin form.)

The eigenvalues of the matrix B- (CA-1CT + D) are the natural frequencies

V of the coupled bending vibration of the blade; and the corresponding

eigenvectors c give the mode shape As a final step, the modes are

normalized to unity at the tip: (1. This modified Calerkin approach

equivalently replaces the Rayleigh energy expression for the natural frequency

(given above) by

Al4 ? 'I

The blade nonrotating modes and frequencies can be obtained using

A convenient set of functions for f. are the bending mode shapes of

a nonrotating, uniform beam. Such functions will satisfy the required boundary

conditions, and furthermore are orthogonal (necessary for good numerical con-

ditioning of the Galerkin solution). Let wn be the series of eigensolutions
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of the differential equation d 4w/dx4 = a w with appropriate boundary condi-

tions. Using these functions for both out-of-plane and inplane deflections

gives -A

where x = (r - e)/(l - e).

For a uniform hiised blade, the nonrotating mode shapes are:

~4AO~ -% a-.)( * -&-A --

where a is the solution of

The first mode (a = 0) is w = x. For a uniform cantilever blade. the non-

-oai' mod Sh 0 (arc

2-.. o -- Cr"c~ otAC

2- -?
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where a is the solution of

The values of a for the lowest modes are given in the table below.

Mode Hinged Cantilever

1 0 1.875104069

2 3.926602313 4.694091134

3 7.068582747 7.854757439

4 10.21017612 10.99554074

5 13.35176878 14.137.6839

6 16.49336143 17.27875953

7 19.63495409 20.42035225

8 22.77654674 23.56194490

9 25.91813940 26.70353756

10 29.05973205 29.84513021

The centrifugal force is required for the bending mode calculation.

With the seccion mass defined at radial stations ri (i 1 to M) the centrifu.-

gal force is

Ar~ ) QV y C-

where r_1_ r < r I . Then for linear variation of the section mass between

the stations r ,, the integrals can be evaluated as follows:
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where

2.3.2 Articulated Blade Modes.- For an articulated blade the modal

differential equation need not be solvs d if the higher bending modes are not

required. Rigid flap and lag motion about the hinges gives the two lowest

frequency modes:

;~L A

Note that separate hinge offsets may be used for flap and lag motion. The

natural frequencies are obtained directly from the energy relation, as

follows:
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2.3.3 Torsion modes of a nonrotarjng blade.- Equilibrium of the elastic
and inertial torsion moments (see section 2.2.14) gives the mo~del equation

with the boundary conditions ~' 0 at the tip (r - R) and =0 at the
root (r = rFA). The modes are orthogonal with weight I1, so if i #k

FAA
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These are the nonrotating torsion modes, so 'ie solution is independent of

the rotor speed or collective pitch.

The equation is solved by the modified Galerkin method, as described in

detail above for the bending modes. Write the differential equation as

Expand the torsion deflection and torsion moment as series:

where the functions f and g satisfy the boundary conditions on > and T.

Substitute these series in the equations, operate with

integrate by parts and use the boundary conditions
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to obtain
i It

Hence the problem reduces to a set of algebraic equations for c [c and

< -A -

or

For simplicity, the functions used for the torsion moment at g f' Then

the coefficients of the matrices are

--
)

I $

(Note using gi = GJf would give the standard Galerkin result.)
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The eigenvalues of the matrix B-I(C A -1C T) give the natural frequencies

of the torsion vibration, and the corresponding rigenvectors for c give the

modes. Finally, tne torsion modes are normalized to unity at the tip,

?O) = 1.

A ccnvenient set of functions to use for fi is the cIution for the

torsion modes of a uniform beam:

These functions satisfy the boundary conditions, and will often be close to

the true mode shapes.

2.3.4 Kinematic pitch/bending coupling.- The kinematic pitch/bending

coupling Ki, and the pitch/gimbal coupling KG have a significant role in

the rotor dynamic behavior. The definition of hi is the rigid pitch motion

due to a unit deflection of the i-th bending mode: KP = -d 0/dq . For an

articulated rotor, the first "bending" modes are rigid lag and flap motion

about the hinges. The pitch/flap coupling is often defined in terms of the

dlta-three angle: K = tan S3" It is possible to simply input these

kinematic coupling parameters to the dynamics analysis, if values are available

from either measurements or some other analysis. It is also desirable to be

able to calculate the coupling from a model of the blade root geometry.

Figure 10 is a schematic of the blade root and control system geometry

conl c, sho t^'"- he ,- position of the feather bearing, pitch horn, and

pitch link for no bending deflection of the blade. The radial locations of

the feather bearing and pitch link are rPB and rPH respectively; the length

of the pitch horn is xPH. The orientation of the pitch horn and pitch link

are given by the angles PH + 075 aud PL" Control input produces a vertical

motion of the bottom of the pitch link, and hence a feathering motion of the

blade about the pitch axis. Bending motion of the blade, with either struc-

tural flexibility or an actual hinge inboard of the pitch bearing, produces

an inplane or out-of-plane deflection of the pitch bearing. With the bottom

of the pitch link fixed in space, a pitch change of the blade results.
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Figure 10. Schematic of blade root and control system

geometry for calculating the kinematic

pitch/bending coupling.
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The vertical and inplane displacements of the pitch horn (the end at r PH)
due to bending of the blade in the i-th mode are:

The kinematic pitch/bending coupling is derived from the geometric constraint

that the lengths of the pitch horn and pitch link are fixed. The result is:

L: 4 .+((

Similarly, for a gimballed (or teetering) rotor the pitch/flap coupling is:

/ " -4- ",r 4-4-

2.3.5 Blade pitch definition.- Outboard of rFA, the trim pitch angle

is given by the collective and twist angles, while inboard of rFA it is

given by just the twist angle:
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(see section 2.2.2). It is convenient to use the collective pitch value at

75% radius, e 75. Then

which requires tw(T = .75) = 0 (but no change to 0tw for r < r FA). For

a rotor without a pitch bearing, it is more appropriate to maintain continuity

of 0 by adding a linear term inboard of rFA:

-4- ej. - )> A

For the structural and inerti~l analysis the pitch angle is multiplied by the

structural coupling parameter R.

The twist distribution tw(r) is required at the radial stations for

which the inertial and structural properties are defined; and at the radial

stations at which the aerodynamic forces are calculated. The aerodynamic

twist definition can include the zero lift axis pitch 0ZL (see section 2.4.1).

Frequently, a linear twist distribution is used, for which
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2.4 Aerodynamic Analysis

In this section tne aerodynamic forces and moments on the rotor blade

are derived. The general case of a rotor in high or low inflow, axial or

nonaxial flight is considered, including the effects of reverse flow and

large angles. Lifting line theory (i.e., strip theory or blade element theory)

is used to calculate the section loading from the airfoil two-dimensional

aerodynamic characteristics, with corrections for yawed and three-dimensional

flow effects are required. The unsteady aerodynamic lift and moment are

obtained from thin airfoil theory, and a dynamic stall model accounts for the

unsteady aerodynamic phenomena at large angles of attack.

2.4.1 Section aerodynamic forces.- A hub plate reference frame is used

for the aerodynamic forces. All forces and velocities are .-esolved in the hub

plane (i.e., the B coordinate system). The hub plane reference frame is fi :ed

with respect to the shaft, hence it is tilted and displaced by the shaft

motion. Figure 11 illustrates the forces and velocities of the blade section

aerodynamics. The blade pitch angle is 6, measured from the reference plana.

The velocity of the air as seen by the moving blAde has components UT, ,

and uR , resolved with respect to the reference Erame; U = (u4 + u 2)1/2 is
uRT p _

Lhe rbulLanL air velocity in the plane of the section; and @ tan- iup/uT

is the induced angle. The section angle of attack is

C:, = 49 4-9:L - k
where 0ZL is the pitch of the aerodynamic zero-lift axis of the section

relative to the structural/inertial principal axis at pitch angle 0 (6ZL may

vary along the span, and should not therefore be included in the definition

of the section aerodynamic coefficients as a function of a; 0ZL can however

be included in the aerodynamic twist distribution, if 0tw is defined

separately for the irzertial/structural pitch and for the aerodynamic pitch).
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Figuxre 11. Rotor blade section aerodynamics.
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The velocity uT is in the hub plane, positive in the blade drag direction;

UR is in the hub plane, positive radially outward along the blade; and up

is normal to the hub plane, positive down through the rotor disk. The aero-

dynamic forces and moment on the section, at the elastic axis, are defined

as follows: L and D are the aerodynami.c lift and drag forces on the section,

respectively normal and parallel to the resultant velocity U; Fz and Fx are

the components of the total aerodynamic force on the section resolved with

respect to the hub plane, normal to and in the plane of the rotor; F is ther

radial drag force on ttie blade, positive outward (the same direction as

pc- itive uR); and Ma is the section aerodynamic moment about the elastic

axis, positive nose up. The radial forces due to the tilt of Fz and Fx  are

considered separately, .enee F consists only of the radial drag forces.
r

The section lift and drag are

where U is the resultant velocity at the section, p is the air density,

and c is the chord of the blade. (The air density can be dropped since all

quantities are actually dimensionless, based on p, S, and R.) The section

lift and drag coefficients, ck and cd, are functions of the section angle of

attact d a lcli number:

where MIP is the tip Mach number (the :.otor tip speed SIF divided by the

speed of sound). L is the unsteady aerodynamic lift force. The radialus

drag force is
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This radial drag force is based on the assumption that the viscous drag force

on the section has the same sweep angle as the loc.al section velocity. The

moment about the elastic axis is

- LAL -t M\AC_. MIL c- c-Al  C Cv,, -4- M LA

where XA  is the distance the aerodynamic center is behind the elastic axis,

Cm is the section moment about the aerodynamic center (positive nose up),

and M is the unsteady aerodynamic moment.

The components of the section aerodynamic forces relative to the hub

plane axes are then

L L

Substituting for L and D, and dividing by a, the two-dimensional lift-curve

slope, and by c, the mean section chord (which enter the Lock number Y
mg

also), we obtain:
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The net rotor forces required are obtained by integration of these section
forces over the span of the blade:

(N -5

cs ~k IV kC-,
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where

To numerically integrate the aerodynamic loads over the blade span,

define K radial segments by the boundaries

C-6 > - )C- )'' kC-rIn) 'rk) - ,) 'Y

where rK = 1. For the k-th segment, the airloads are calculated at the

center:

Then the spanwise integration is approximated by a summation over all segments:

where

In summary, the rotor blade aerodynamic forces are evaluated as follows.

First the section velocity components and pitch angle are evaluated, and then

the angle of attack and Mach number. Next the section aerodynamic coefficients
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are obtained (see section 2,4.4), and from them the section force components

and moment. Finally, the section forces are integrated over the rotor radius

to obtain the required gener..ized forces.

2.4,.2 Blade "elocity.- The air velocity seen by the blade section is

due to the rotor rotation, the helicopter forward speed, the rotor and shart

motion, and the wake induced velocity. The rotor is rotating at speed Q.

The velocity of the air as seen by the rotor disk has the following dimension-

less components in the shaft axis system: px% positive aft; py , positive from

the right; and Vz' positive down through the disk:

Often the lateral velocity component Iy = s • is assumed to be
zero in the rotor aerodynamic analysis, and indeed it is small for most !light

conditions. An exception is the case of sideward flight. An alternative to
._& -A

including py is to rotate the shaft axes until " s -* = 0, but that would
y i

iniply a redefinition of the rotor zero azimuth position for every flight state.

Such a redefinition of 4P is not desirable since it changes the vaiues of

parameters such as the control system phasing, and even changes the definition

of the harmonics of the rotor motion. Hence it is preferable zo directly

include the effects of the lateral velocity in the analysis.

The rotor wake-induced velocity is Xi = v,/QR, normal to the rotor disk

and positive downward. A simple model may be used, such as a uniform or

linear variation over the disk, or calculated nonuniform induced velocities

may be used. For the latter case, all three components of the wake induced

velocity (in shaft axes) 7ill be considered:

The rotor advance ratio p and inflow ratio X as conventionally

defined are here

-103-



>L 4#- ,U

These are the dimensionless inplane and normal components of the total velocity

seen by the rotor disk. The hub plane angle of attack and yaw angle are then

Here V is the helicopter velocity, with angle of attack aHP relative to

the hub plane (aHP is positive for forward tilt of the rotor disk). The

advance ratio p is zero for hover and axial flow, and p > 0 for helicopter

forward flight.

The aerodynamic gust velocity has components u * vG, and wG in the

shaft axis system, normalized by dividing by the tip speed SR. The longi-

tudinal gust vG is positive from the front, the lateral gust vG is posi-

tive from the right, and the vertical gust wG  is positive upward

(V ~ UI - v~t + w relative to the rotor). This gust velocity isgust G s GCs GCs
evaluated at azimuth angle p and radial station r on the rotor disk
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(at r = r5= r(cos -s + sin relative to the hub). The quasisteady

si SpC'
shaft motioi! and the gust velocity at the rotor hub will be included in the
advance ratio component px' y, and pz (see section 4.1.2).

The blade and shaft motion have been defined in the inertial analysis
(section 2.2). The resulting velocity components in the rotor shaft axes are

thus:

LA 4 4 r -\>-.)4

4- (,mL -4 LC)&k

- (1A4) 
-

A& ~ e~

-15
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and the pitch angle is

e -o

In body axes, the trim velocity vector is fixed with the reference frame, and

would therefore tilt with it. With inertial axes however, a tilt of the rotor

by the shaft motion results in a small changr; in the directions of the com-

ponents of V as seen in the reference frame. All the pc terms in the

expressions above for uT, UTp, and uR result from such tilt of the inertial

,xes relative to the trim velocity vector. The aircraft body yaw, pitch, and

roll will be defined as body axis motion however. Hence the body Euler angles

are not to be included in the evaluation of a, a y, and az for the blade

velocities.

2.4.3 Induced veZocity.- For the case of uniform inflow, the rotor wake-

induced velocity is obtained from the momentum theory result

=+

2 2 2
where X = i + X and 2 P + y 2 Empirical correction factors Kh and

i x yh
K f are included for the effects of non,,niform inflow, tip losses, swirl,

blockage, etc., in hover and forward flight. An iterative solution of this

equation for Xi is necessary:
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with

--- 17 VrI i - i4.

to start the solution" 3 or 4 iterations are usually sufficient. For the

vortex ring and turbulent wake states this momentum theory result is not

applicable. Thus if

the following expression is used instead:

where

The wake-induced velocity is reduced when the rotor disk is in the

proximity of the ground plane. The effect of the ground will be accounted

for using the following approximate expression from reference 4 for the ratio

of the induced velocities in and out of ground effect:
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where z is the height of the rotor hub above ground level, normalized by

the rotor radius; and e is the angle between the ground and the rotor wake

(e = 0 for hover and £ approaches 900 in forward flight), which accounts

for the effect of forward speed. Note that ground effect is essentially

negligible for altitudes greater than the rotor diameter (z > 2) or at forward

speeds p > 2(CT/2) ./2 This expression compares well with test results,

down to an altitude of about one-half rotor radius (see reference 4). The

rotor wake-induced velocity in ground effect is thus

Let hAGL  be the height of the helicopter center of gravity above ground

Level; and (xR, YR' ZR) be the components of the rotor hub position relative

to the center of gravity, in a body axis system (the F frame, see section

4.1.5). Then the altitude of the rotor hub above ground level is

-A _ -) 
'

The vertical () is defined relative to the body axes by the trim pitch and

roll Euler angles (0FT and FT' see section 4.1.1). The angle between the

rotor wake and the vertical is

-7O8-
L ., 2.. . ."=..-__ __,, , ._, _ < -- ,.- ...-.-.- --o~-.... ..



where RSF is the transformation matrix between the shaft and body axis
coordinate frames.

As a first approximation to the rotor nonuniform induced velocity dis-

tribution, a linear variation over the disk is considered:

where X. is the mean value of the induced velocity, calculated as described

above. Typically K is positive, roughly 1 at high speed; and K isx y
smaller in msgnitude and negative. Both K and K must be zero in hover.x y

Based on references 5 to 7 we will use

with typically fx = 1.5 and f = 1.0. There will also be an inflow variationx y
due to any net aerodynamic moment on the rotor disk, The differential form

of momentum theory gives

including an empirical factor fL.
m

With twin-rotor aircraft it is also necessary to account for the rotor-

rotor aerodynamic interference in the wake-induced inflow velocities. The

induced velocity at each rotor will be expressed as a lin"ar combination of

the isolated rotor induced velocity. Let X and X be the trim induced

velocity of the two *solated rotors, calculated as above. Then the trim

inflow ratios are
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Here KI 12 and K 21  are the rotor-rotor aerodynamic interference factors.

Separate values are used for the interference factors in hover and forward

flight, with a linear variation from V = 0.05 to 0.10.

In summary, the isolated rotor mean iaduced velocity is calculated from

the advance ratio and thrust,

where f 1 out of: crnd effect .Tj-1..J ing Lhe oo-oo itreecGE.. ,,LU n rotor-rotor interference

and the linearly varying induced velocity components, the inflow ratios are

then

% z CM% -co 4
N+ .
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fcr rotor #1 and rotor #12.

2.4.4 Section aerodynwnic characteristics.- The section aerodynamic

characteristics required are the static lift, drag, and moment coefficients as

a function of angle of attack and Mach number: cZ(a, M), cd(c(, M), and

c (a, M). Most often rotor loads analyses use two-dimensional airfoil testm
data in tabular form. The aerodynamic description of the blade also requires
0ZL' the zero lift angle of the section relative to the structural/inertial

principal axis at pitch angle 0; and xA, the distance the aerodynamic center

(in normal flow) is behind the elastic axis. The strict definition of 0ZL

is actually the pitch of the axis corresponding to a = 0 in the airfoil data

used. Similarly the strict definition of xA is simply the location of the

Axi.s about ...hich th.c momn. data cm are given. it is convenient to use the

zero lift axis and the aerodynamic center, but the most important considera-

tion is that the definitions of 6ZI and xA be consistent with the zero angle

of attack and moment axis definitions in the airfoil data used.

The angle of attack a is defined in the range -180 to 180, with the

same sense as 0. The lift, drag, and moment as a function of angle of attack

are defined as in two-dimensional airfoil tests, where a is varied by pitch-

ing the airfoil; and the lift is always positive vertically; the drag is posi-

tive in the direction of the free stream; and the moment is positive nose up.

For the rotor blade in reverse flow then (uT < 0), a positive pitch 0 or
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positive (down) normal velocity up gives an angle of attack near -180; which

gives positive c Zand Cd; which are down lift L and forward acting drag D.

The section momei.t is given about a fixed axis of the section. In reverse

flow the aerodynamic center shifts to near the three-quarter chord (from near

the quarter chord in normal flow) so it is expected that the cm data will
cm

show a nose up moment contribution of aM =-L or Ac c in reverse flow

(see fig. 12).

The steady, two-dimensional airfoil data (CX. cd, and c as a function of

a, M, and r) will be used in tables of the following form, The data will be

defined at a finite set of angle of attack points. To facilitate interpola-

tion, these points will consist of several groups, with the same au'gle of

attack increment within each group. Then the set of angle of attack points

can be specified by the a at the boundaries between the groups, and the

indices of these points: Na a nl to anNa, and n, to nNa (for Na-' groups).

The organization will be similar for the variation with Mach number. For the

radial variation, the blade will be divided into segments with the same

section, defined by the r at the boundaries: Nr, and r1  to rNr+I for

N segments. Hence the daca set for the lift coefficient has the form
r

N , nk (k=l to Na) ,  '. k (k= -l to Na )

Nm, nk (k-- 1 to Nm), Mk (k= to N.)

N1 , r k (k= 1 to Nr+l)

c (i for i -- Or-)nanNm - (jM-l)nNa -- J1, o.

(((Ja = I to nNa) , Jm-- to %~)t Jr3= 1 tN r )

and similarly for the drag and moment coefficient data sets.

The data will be linearly interpolated over angle of attack and Mach

number. The boundary point definitions determine the values of a and M

for all points in the data set. Consider the angle of attack variation, The

boundary point definition of ani for i = 1 to Na implies that the angles

of attack for points between the boundaries ani and ani+ are
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Figure 12. Sketch of section aerodynamic characteristics.
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for J = 0 to (n i+- n ) Hence given a, we search for i such that

It follows immediately that

where

([a] means the greatest integer in a; i.e., integer arithmetic). With a

function c defined at a and at a linear interpolation then gives

= ~-4- c. C

where

and
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If a < a,, set 'a = 1 and aj+ 1 = 0; if a > anna , set J. nNa -1 and

aj+1 = 1. Similarly, for a given Mach number M search for k such that

then calculate

If M < Ml, set jm l and mj+ l =; if M > KnNrr, seL Jm nNm -l and

m.+. = 1. The appropriate radial station is determined by searching for

such that

The aerodynamic coefficient is evaluated at the four corners, and then the

interpolated value is

+. C. z
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2.4.5 Tip flow corrections.- Three dimensional flow Effects at the blade

tips significantly alter the wing loading. Principally it is necessary to

correct the blade element theory section loading calculation for the lift

reduction and compressibility relief near the tip. The standard tip loss

correction assumes that the blade has drag but no lift outboard of radial

station r = B. HenLe for a radial segment extending from ri to ri+ , the

lift coefficient is multiplied by the factor

The moment and drag coefficients are not altered. For the tip loss factor

B = .97 can be used, or

Alternativaly, the tip losses can be accounted for by multiplying the blade

element theory lift by the Prandtl function:

An effective tip loss factor can be evaluated from t Is function:

A",

hence
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The three dimensional flow at the blade tip increases the critical Mach

number of the tip sectilns, compared to the two dinwtasional flow character-

istics. This compressible tip relief may be akcounted for by reducing the

effective section Mach nmber by the factor

The factor fM must be specified at each blade station, for the lift, drag,

and moment.

Swept and tapered tip planforms are defined in the present analysis by

the blade chord, aerodynamic ccnter, pitch angle and zero lift angle, and

center of gravity distributions (c, XA, 0 and *ZL' and x1). Any sweep of the

blade elastic axis at the tip is neglected however. The tip planform should

also be considered in choosing the tip loss factor and compressible tip relief

factors for the rotor blade.

2.4.6 Ycaed flow correction.- Yawed flow over the blade section may be

accounted for using the equivalence assumption for swept wings: that the

yawed section drag coefficient is given by two-dimensional airfoil character-

istics, and the normal section lift coefficient is not influenced by yawed

flow below stall. Since the wing viewed in a frame moving spanwise at a

velozity V sin A (where V is the wing velocity, yawed at angle A) is

equivalent to an unyawea wing with free stream velocity V c36 A, except for

chdiges in the boundary layer, there should then be no effect of spanwisE

flow on the loading below stall. Accounting for the effective dynamic pres-

sure and angle of attack of the yawed section relative to the normal section

leads to

C 4\C k 1-A-

c'. -4 C-417-



for the section aerodynamic coefficients in terms of two-dimfnsional airfoil

characteristics. These results are largely verified by the experimental data

for yawed wings. The section yaw angle is given by

IJ 4 L p 4- L

In reverse flow ( lcO > 90 0) the angle of attack correction is

=/ L Iod7 o) Q-6 .A. -I

for the drag, and

for the lift and moment.

2.4.7 Dynamic stall model.- Dynamic stalJ is characterized by a delay

in the occurrence of separated flow due to the blade motion, and high transient

loads induced by a vortex shed from the leading edge when stall does occur.

These features are modelled by the following procedure adapted from reference 8.

McCrnskey (reference 9), and Beddoes (reference 10) have found that the dynamic

stall delay correlates fairly well in terms of the normalized time constant

T= At V/c. Their results for lift and moment stall are

McCroskey '-. . Z-? . '-.

Beddoes S-4 A- o.6 Z-45 .
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or approximately TL = 4.8 and TM = 2.7 (a constant T D is also required

for the drag stall delay). Hence the section lift will be evdiuated at the

delayed angle of attack

= - - a 

where APL = PAtL = TLC/I PTI (radians). A maximum value of the angle increment

(a - ad) should be specified in order to avoid difficulties at small values

of uT. Thus

b~

is used. The lift coefficient below stall should not be affected by the

dynamic stall model, rather the stall delay should extend the linear range

above the static stall angle of attack. Hence the corrected lift coefficient

takes the form

Including the yawed flow correction this becomes

Here Ac. is the lift increment due to the loading edge vortex used at

dynamic stall, which is discussed below. Similarly a delayed angle of attack

is calculated for the drag and moment from appropriate time constants TD and

TM, and the corrected section aerodynamic coefficients are
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e-. z c<. c-. -A- c,

including the yawed flow correction. In reverse flow (90 - a < 0) the

lift coefficient correcticn should be

c~. J -A.

and for the drag and moment coefficients

A-

When the blade section angle of attack reaches the dynamic stall angle

a ds' a leading edge vortex is shed. As this vortex passes aft over the air-

foil upper surface it induces large transient loads. The experimental data
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of reference 11 show that the peak incremental aerodynamic coefficients depend

on the pitch rate at the instant of stall, & c/V, approximately as follows:

V-*.&* CA C/P >' -C>

- c.<=/V < -Z

- (33-3 c -/V

ri ~with A~d 2.0 and ACmd s = -.65. In the present model of the dynamic stall

loads it is assumed that the incremental coefficients due to the shed vortex

( Ac ,m, and Acd) rise linearly to the above peak values in the small

azimuth iucrement Alds (typicaily 100 to 150), and then fall linearly to

..~ ~ ....e~ .th e -_ ,="ds" agaiu. Hence the model involves impulsive lift and
nose down moment increases when dynamic stall occurs, which produce the blade

motion and loads characteristic of rotor stall. After these transient loads

decay the blade section is assumed to be in deep stall, and dynamic stall is

not allowed to occur again until the flow has reattached. Flow reattachment

takes place when the angle of attack drops below the angle ci . Generally
re

a dynamic stall angle about three degrees above the static stall angle gives

good result. Different values of cds A~ds' and ci can be used for the

lift, drag, and moment characteristic if necessary to adequately model the

dynamic stall of an airfoil. The calculation of the vortex induced lift in

dynamic stall is outlined in figure 13. The drag and moment are calculated

-121-



SAE=STATE =- 100

STTE0?

NO YES

AA k ma L~~*[GN(ax SI- (a 90-a

f~N OFn STAT " 2 - STATE

Figure 1.Otieocalcltino dnmc tl

vo t x in u e lif co f ic e t

>-122

----O YES----



in a similar fashion, except that the drag is not multiplied by sign of

(a (90 - I a I)); and 1/2 AcZ is added to the moment in reverse flow.

As an alternative dynamic stall model, consider that developed in

references 12 to 14. They introduce an effective angle of attack of the form

where TL is a function of Mach number and the airfoil section obtained frin

oscillating airfoil tests. This angle adyn  can be used in place of ad in

the expression for cZ given above, with Ac. = 0. Similar corrected angles

of attack are calculated for the moment and drag coefficients, using appropri-

ate factors TM and TD . For an NACA 0012 airfoil, reference 14 givcs

(in radians).

A no-stall model can be implemented by using for ad the smaller of the

actual angle of attack a and a maximum angle of attack a in the linearmax
range (say 100):

The incremental coefficients (Ac9, Acm, and Acd) should be set to zero as

well.

In summary, the following procedure is used to calculate the section

aerodynamic coefficients. First the Mach number correction for tip flow is

applied: Meff fMM. The section coefficients c , cd, and c are calculated

from a, &, A, and Meff: first the yawed/delayed effective angle of attack is

calculated; then c Z2D, Cd2D and cm2D for aeff and 14ef f are obtained from

two-dimensional steady airfoil tables; c£2D at a = 0 or 1800 is also required;
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finally the section coefficients are evaluated. Next the dynamic stall vortex

loads Act, Acd, and Ac are evaluated from a and a. Finally the
m

tip loss correction is applied to the lift coefficient.

The aeroelastic analysis (see section 6.1.4) requires the derivatives of

the section coefficients with respect to angle of attack and Mach number.

These derivatives are evaluated by applying the above procedure with small

increments in a and M (not Meff). For the purpose of evaluating these

derivatives, a, A, and the dynamic stall vortex loads are held constant.

2.4.8 Unsteady lift and moment.- The thin airfoil theory result for the

unsteady aerodynamic lift and moment about the pitch axis for the rotary wing

is

k - 1+= 2-/~ -C:~, C ~ \ '
.4

where xA e is the distance between the aerodynamic center and the elastic

axis,

normal flow

- " reverse flow

(here xAC must in fact be the position of the aerodynamic center); and in

the double sign the upper one As for normal flow and the lower one for

reverse flow, _ sign (V). Here w =- uT sin e - U cos e is the upwash

velocity normal to the blade surface (with no order c terms); B = dw/dx is

the gradient of the upwash along the chord, as due to a pitch rate; and

V uT cos + up sin 8.
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In this result the order c lift and order c moment termas have been
neglected. The virtual mass terms (aerodynaic forces due to the section
pitch and heave acceleration) can also be neglected. The sign changes in
reverse flow have been accounted for in this result. Radial flow effects are
included in the slender body pressure terms (from the radial derivative w')
and in the contributions to the upwash w. The time derivative w includes
terms due to the time varying free stream. Corrections for real flow effects
on the lift-curve slope and aerodynamic center have been included (thin
airfoil theory gives a = 2n and the aerodynamic center at the quarter chord).

For stalled flow, these unsteady aerodynamic forces can be set to zero
(L M = 0). The unsteady forces at high angle of attack are accountedus us

for in the dynamic stall model for c,, Cd, and c .d' m

Finally, the velocities required for these unsteady aerodynamic forces

are aa follows:

v LA C - d e --I- LA ,

B ) -4- (IC 4- ' ?,..-e - Xi')'-+

and from w = uT sin O -. UP cos 6, u. z + uRz' + up., and uT = UTo + x + URx,

there follows

1;4 4- LAtV VW \4 4 . MQ ~Lp C4.d

4 -1 (2)-
4--4- e>
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4- LA,#. + ' + 4". "z', "* I s4 'K 4 Lk~A+ *+.4,)

-* 4 4 A 4- L4A~ 4-%Z

- ZL,-A. (- -*4- 4 e.& - ~ (ocaZ>

Z LA-

with uR 1 ix cos v - y sin p, and using

-126-



2.4.9 Circulation.- The blade bound circulation is required for the

wake induced velocity calculation:

Z LA;

Thin airfoil theory gives for the unsteady circulation (below stall)

F'LAS - C ~~
M C-

(see section 2.4.8).

2.5 Environment

The aerodynamic environment of the helicopter is defined by the speed of

sound cs, and the air density ratio to sea level standard p/p . (The blade

Lock number is calculated using Po.) One approach is to input values of cs

and p/po . Alternatively these parameters can be calculated from the altitude

h for a standard day; or from the pressure altitude and temperature T.

For a constant temperature lapse rate, the density ratio and speed of

sound are obtained from tae following expressions.

_ -. standard day

('" &/r given temperature
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For the case of temperature and altitude specified, the density altitude is

Alternatively, the air density and temperature can be specified directly.

Then the equivalent altitude can be obtained from

- )T

The required constants are given in the table below.

Constants English units SI units

dimension h ft m

dimension T 0F C

g/&R 5.256115

(g/UR-l)-i  0.234956

TO/ 145442 ft 44330.8 m

T 518.67 0R 288.150K

T 459.67 0R 273.15 0K

CSo 1116.45 ft/sec 340.294 m/sec

g 32.17405 ft/sec2  9.80665 m/sec2

PO .002378 slug/ft 3  1.225 kg/m3

(g/ R)-  0,190255
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2.6 Normalization Parameters

It has been the practice here to deal with dimensionless quantities

based on the air density, rotor speed, and rotor radius (p, Q, and R).

In addition, the equations of motion, the inertial coefficients, and che

aerodynamic forces have been normalized using the following parameters:

Ib 9 a characteristic moment of inertia of the blade; cm, the blade mean chord;

and a, the blade two-dimensional lift-curve slope. The values of these

parameters have no influence on the numerical problem and its dimension?!

solution; they only affect the values of normalized, dimensionless quantities.

It is convenient to use the blade Lock number y and the rotor solidity a

as primary parameters. Then Ib and cm  are obtained from

m

N

For this purpose, the lift curve slope is set to a value of a = 5.7.

The Lock number will be defined for standard sea-level conditions (y );

then y = yo(p/p).
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3. ROTOR WAKE AALYSIS

3.1 Nonuniform Wake-Induced Velocity

3.1.1 Rotor vortex wake.- Conservation of vorticity on a three-

dimensional wing requires that the bound circulation is trailed into the

wake from the blade tip and root. Radial variation of the bound circulation

produces trailed vorticty in the wake, parallel to the local free stream

direction at the instant it leaves the blade. Azimuthal variation of the

bound circulation will produce shed vorticity, oriented radially in the wake.

The strength of the trailed and shed vorticity is determined by the radial

and azimuthal derivatives of the bound circulation at the time the wake

element left the blade. The lift and circulation are concentrated at the tip

of the rotating wing, due to the larger dynamic pressure there. Consequently

the trailed vorticity strength is high at the outer edge of the rotor wake,

and the vortex sheet quickly rolls up into a concentrated tip vortex. The

tormation of this tip vortex is influenced by the blade tip geometry. With

,uare tips, much of the roll up has occurred by the time the vortex leaves

,he trailing edge. The rolled up tip vortex quickly attains a strength nearly

equal to the maximum bound circulation of the blade. The tip vortex has a

small core radius, cleperding on the blade geometry and loading. The vorticity

in the tip vortex is distributed over a small but finite region, called the

vortex core, due to th. viscosity of the fluid. The vortex core radius is

defined at the maxlmu. :aiigential velocity. The vortex core is an important

factor -.- the wake lndu. d v .luci.,.y, since it limits the maximum velocity

induced near a tip rortex. Only a limited amount of data on the vortex core

radius is available, pa:ticularly for rotary wings. There is an inboard

vortex sheet of trailed vortLzity in the wake, wit- opposite sign as the tip

vortex. Since the gradient of the bound circulation ib low on the inboard

portion of the blade, the root vortex is generally much weaker and more

diffuse than the tip vortex.

The trailed and sned vorticity of the rotor wake is created in the flow

field as the blades rotate, and then convected with the local velocity of the

fluid. This local velocity consists of the free stream velocity, and the

wake self-induced velocity. The wake is transported downward, normal to the
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disk plane, by a combination of the mean wake i.,duc -A velocity and the free

stream velocity. The wahe is transported aft of the rotor disk by the inplane

component of the free stream velocity. The self-induced velocity of the wake

also produces substantial distortion of the vortdx filaments as they ai=

convected with the local flow. Thus thp wake geometry basically consists of

distorted interlocking helices, oe behind each blade, skewed aft in forward

tlight.

The stroag concentrated tip vortices trdiled in helices from each blade

are the dominant feature of the rotor wake. Due to its rotation, a rotor

blade encounters the tip vortex from the preceding blade in both hover and

forward flight. These tip vortiLts produce a highly nonuniform flow field

through which the blades must pass. in hover the tip vortex is convected

downward only slightly until after it encounters the next Llade. The vortex

produces a large variation in the tip loading on the following blade there-

fore, with a substantial inflaence on the rotor hover performance. In for-

ward flight the rotor wake is convected downstream, so the tip vnrtices are

swept past the entire rotor disk instead of remaining in the tip region. The

close vortex/blade encounters occur primarily on the sides of the disk, where

the blades sweep over the vortices. The resulting large azimuthal variation

in the induced velocity produces a large higher harmonic content of the blade

loading. Nonuniform inflow is thus an important factor In the vibration,

loads, and noise of the rotor in forward flight. In a tandem helicopter,

the rear rotor also encounters the wake of the front rotor.

For close vortex/blade encounters, the induced loading varies rapidly

along the blade span. Lifting line theory does not give an accurate prediu-

tion of such loading. Thus lifting surface heory is required to accurately

estimate the vortex-induced loads on a rotary wing. The most economical

approach is to use lifting line theory with a correction factor for close

vortex/blade encounters, based on a lifting suriace solution for an infinite

aspect-ratio, nonrotating wing encountering a straight, infinite, constant-

strength free vortex. In the present analysis this correction will be

incorpurated as a factor reducing the induced velocity as required to obtain

the correct lading by lifting line theory. Note however that with this

approach the actual blade angle of attack at vortex/blade interactions will
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be larger than calculated for the lifting line theory loading solution.

Direct application of lifting surface theory to the rotary wing is usually

impractical with current computation techniques and machines. An examination

of measured rotor airloads indicates that the vortex induced loading is

generally high when the blade first encounters a vortex, but decreases as the

blade sweeps over the vortex. There is evidently some phenomenon limiting

the loads (see reference 15 to 17). Local flow separation due to the high

vortex-induced radial pressure gradients on the blade appears at present to

be the most likely explanation for the reduction in loading after the initial

encounter. Bursting of the vortex core induced by the blade is also a possi-

bility. Another possibility is that the vortex interacts with the trailed

wake it induces behind the blade, with the effect of diffusing the circulation

in the vortex. Note that the latter two phenomena, involving a change in the

vortex itself, will also influence the loading if the vortex encounters yet

another blade cf the rotor. Following reference 16, the phenomenon limiting

vortex induced loads after the initial encounter will be modelled by increas-

ing the core radius of a segment after it encounters the blade, with upstream

propagation along the vortex to produce the loads reduction. An increase in

core si ;e is a convenient means to reduce the influence of the vortex; the

exact physical explanation for this phenomenon is at present speculative.

A possible model for the tip vortex viscous core is solid body rotation,

which implies that all the vorticity is concentrated within the core radius

r c (defined at the point of maximum tangential velocity). Measured vortex

velocity distributions qhow that the maximum tangential velocity is much less

than P/2v r , implying that a substantial fraction of the vorticity is out-

side the core radius. Reference 16 suggests using a circulation distribution

based on measured velocity distributions of vortices from nonrotating wings;

the corresponding vorticity distribution is
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where r is the distance from the vortex line. In this case half the

vorticity is outside the core radius. Along a line at right angles to the

vortex and a distance h above it (as in a blade/vortex intersection), this

vorticity distribution produces a downwash with peak value

a distance Jh 2 + r2 either side of the intersection; compared to wN c max

= r/4Rh at a distance h from the intersection for a vortex with no core.

(Note that as far as the downwash velocity is concerned, this core effect is

equivalent to moving the vortex away from the blade, to an effective distance

h= h2  r such a simple interpretation will be useful in the lifting
e c
surface correction.) The peak tangential velocity with this vorticity

distribution is r/47T r c, half the value obtained with all the vortlcity

concentrated within the core radius.

The rotor wake induced velocity is calculated by integrating the

Biot-Savart law over the vortex elements in the rotor wake. The wake

strength is determined by the radial and azimuthal variation of the bound

circulation. For the wake geometry a simple assumed model, experimental

measurements, or a calculated geometry can be used. With the helical geometry

of the rotary wing wake, it is not possible to analytically evaluate the

induced velocity, even if the self-induced distortion of the wake is neglected.

A direct numerical integration of the Biot-Savart law is not satisfactory

either, because the large variations in the induced velocity at close vortex/

blade encounters requires a small integration step size for accurate results.

It is most accurate and most efficient to calculate the rotor nonuniform

inflow with the wake modelled using a set of discrete vortex elements. For

each vortex element in the wake the induced velocity at a point in the flow

-133-



field is evaluated by an analytical expression, and the total induced velocity

is obtained by trimming contributions from all elements. The tip vortex is

well represented by a connected series of straight-line vortex segments. The

inboard trailed and shed vorticity can be modelled using rectangular vortex

sheets, or a lattice of discrete straight-line vortex segments (with a large

effective core to limit the induced velocity close to individual line seg-

ments). A large core vortex line element might in some cases be a better

model than a sheet foi the inboard trailing vorticity, if the inboard wake

has partially rolled up to form a root vortex. The inboard wake is less

important to the nonuniform inflow calculation than the tip vortices, so a

more approximate model may be used. The approxinations involved in modelling

the rotor waKe using a set of discrete vortex elements include replacing the

curvilinear geometry by a series of straight-line or planar segments; a

simplified distribution of vorticity over the individual wake clements

(lineat variation, or even constant strength); and perhaps physical approxi-

mations such as the use of line elements to represent the inboard vortex

sheet. The development of a practical model involves a balance between the

accu-acy and efficiency resulting from such approximations.

3.1.2 Wake modeZ.- The blade bound circulation will be calculated at

discrete points on the rotor disk radially and azimuthally. Assuming a

l.inear variation of the oound circulation between these known points results

in a wake model consisting of vortex sheet panels (see rig. 14). Assume that

the blade bound circulation r(r, ) is given at the radial stations

]'4 (i = 1 to N) and at 'he azim,, thl 0t
4 i5-j = jA (j = i to J,

A 27r/J). Let 4 be the age of vortex elements in the wake ( k = kAp,

k = 0 to -). The strength of the trailed and shed vorticity of a wake element

is determined by the bound circulation of the blade at the time the vorticity

was created. Consider a wake panel of age 4 = 4k to 4k+l' arising from ths

blade betw._en radial stations ri and ri+I (fig. 15). The strength of the

vorticity in this panel is determined by the bound circulation at the time

it was created, which is known at the four corners. The bound circulation

corresponding to the panel leading edge is that at time p - 4k' where ' is

the current blade position (dimensionless time) and 4)k k# is the age

of the panel at the leading edge. The bound circulation corresponding to the
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Figure 14. Wake model with bound circulation calculated

at discrete points on rotor disk.
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Figur'e 15. Vortex wake panel.
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panel trailing edge is that at - k+l' A earlier than the leading edge.

The difference between the bound circulation at ri and r i+ defines the

trailed vorticity strength 6, which is constant radially along the panel

assuming a linear variation of the bound circulation from ri to r i+l* When

the bound circulation varies azimuthally however the trailed vorticity

strength 6 is different at the panel leading and trailing edges; a linear

variation of 6 in the direction of the trailed vorticity will be used.

Similarly, the difference between the bound circulation at P - 4k and

- k+l defines the shed vorticity strength y, which is constant azimuth-

ally along the panel (for a linear azimuthal variation of the bound circula-

tion) but varies linearly from the left to the right panel edges.

A vortex sheet panel in the wake may be economically approximated by

shed and trailed line vortices located in the middle of the panel, with a

large core to avoid the induced velocity singularity near a vortex line. A

voitex lattice model of the rotor wake is produced by collapsing all the

wake panels to such finite strength line segments. Since the line segments

are in the center of the sheets, the points at which the induced velocity

and bound circulation are evaluated lie at the midpoints of the vortex

lattice grid, both radially and azimuthally. Positioning the collocation

points midway between the trailed vortex elements (radially) is a standard

practice of wing theory utilizing the vortex lattice wake model, in order to

avoid the singularities at the lines; positioning the collocation poInts mid-

way azimuthally is required to correctly obtain the unsteady aerodynamic

effects of the shed wake (see ref. 18). Simply collapsing the slei and

trailed vorticity in the wake panels to lines, the strength of rhe line seg-

ments will vary along their length as dascribed above. The shed and --ailed

line segments will cross in the middle of the panel. As a further ai.paxima-

tion, a stepped (piecewise constant) variation of strength can be use

instead of the linear variation, with the jump in strength occuring at the

center of the segment where it crosses the other vortex line. Such a vortex

lattice wake model with constant strength line segments corresponds to a

dtepped distribution of the blade bound circulation, azimuthally and radially

(with the jumps occuring midway between the points where the circulation is

evaluated.)
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The rotor vortex wake quickly rolls up at the outer edge to form a

concentrated tip vortex. Because of the dominant role of the tip vortex in

the wake flow field, it is important to model these rolled up tip vortices in

the induced velocity calculation. The lesser role of the inboard wake vortic-

ity also allows a more approximate model to be used for it. Let r max() be

the radial maximum of the blade bound circulation. It is assumed that in the

far wake, where the rollup process is complete, that all of the bound circula-

tion r is concentrated in the tip vortex. The tip vortex will bemax

modelled by a vortex line segment with a small but finite core radius. When

r varies azimuthally, the tip vortex strength varies along its length.max
Furthermore, the inboard portion of the wake will be modelled by a single

sheet panel, with trailed and shed vorticity as described above. This far

wake model may be viewed as corresponding to the circulation distribution

sketched in figure 16. The linear variation from r = 0 at the root to

r = r at the tip defines the single inboard sheet, and the sharp dropmax
from r to zero at the tip defines the tip vortex line. (This circula-

tion distribution should not be associated with the actual bound circulation

at the rotor blade. Rather it is an approximation for the vorticity distribu-

tion in the far wake, which is determined by the rollup process. Since an

analysis of the rollup is not attempted here, the actual vorticity distribu-

tion over the inboard sheet is not known. An approximation involving constant

strength dete.mined by the known maximum bound circulation is appropriate

therefore.) This far wake model is computationally efficient, since it

depends only on the maximum bound circulation rmax .

The rollup process may not be complete by the time the tip vortex

encounters the following blade. The induced loads will be significantly

lower if the tip vortex has strength less than the maximum bound circulation.

Therefore the tip vortex rollup must be included in the wake model. Figure 16

sketches the radial circulation distribution assumed, which produces the

model for the rolling up wake. The circulation goes from zero at the root

to rmax  at radial station rRU; to fRU rmax at the tip, Thus there is a

line tip vortex of strength fRU Fmax' and two inboard wake panels. The

rollup process will take place over the wake from = 0 to = RU* The

position of the maximum circulation and the rollup fraction will vary linearly
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Figure 16. Equivalent circulation distribution for models

of far wake, rolling up wake, and near wace.
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from rRU and fRU at =0 to r = I and f = l at = RIV An analysis
of the rollup process is not part of the present work, so the parameters

RU' rRUP and fRU will be prescribed inputs to the calculation procedure.

Note that tne velocity induced by the rolling up wake will also depend only

on the single bound circulation value rmax

Just behind the reference blade, where the induced velocity is being

calculated, it is the detailed radial and azimuthal variation of the wake

vorticity which is important, not the rollup process (except for the influence

of the rollup on the tip loads). Hence for the near wake of the reference

blade the full vortex panel representation is retained. The corresponding

radial distribution of the circulation is also sketched in figure 16 for the

near wake; in this case it is the actual blade bound circulation distribution.

The tip vortex rollup is often partially complete at the blade trailing edge,

so a line vortex at the tip is included, with strength equal to a fraction

fNW of the calculated bound circulation at the most outboard radial station.

-he complete model of the rotor wake is shown in figure 17.

The very first panels of the near wake require special consideration.

In order to correctly calculate the unsteady aerodynamic effects, the shed

wake is stopped a quarter chord behind the bound vortex (ref. 19). The

singularity near the side edges of the trailed vortex sheets presents a

difficulty in calculating the induced velocity at a point due to the immedi-

ately adjacent panels. Thus if the induced velocity is to be calculated near

a junction between two panels, they should be replaced by one panel with th

collocation point well away from the edges of the single panel. This diffi-

culty can be also avoided by using line vortex elements for the trailed

vorticity in the near wake, or by moving the panel side edge away from the

collocation point. Finally, the front edges of the individual panels should

all be aligned with the bound vortex.

When calculating the induced velocity at points off the rotor blade, as

at another rotor or for the airframe aerodynamics, the near wake model need

not be r,ed. Often calculating the induced velocity away from the rotor will

require a consideration of more wake spirals than are needed for points on the

rotor disk.
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For computing the ainduced velocity, the tip vortices will be represented

by a connected series . straight vorte,. line segments, with a small viscous

core radius. Normally a linear variation of the strength along each segment

will be used; a piecewise constant variation corresponding to a stepped bound

circulation distribution is also possible. The inboard wake panels will be

represented by planar, rectrngular vortex sheets, with shed and trailed

vorticity varying linearly along its length. For computational economy, the

vortex sheets can be replaced by line segments in the middle of the sheets,

with a large core radius (which in this case does not have physical signifi-

cance, rather a viscous core is a convenient means for eliminating the

singularity near a line used to represent a sheet element; unlecs the :inboard

trailed vorticity does rollup to form a diffuse root vortex). If the induced

velocity is to be calculated near the side edge of a vortex sheet element, it

can be replaced by a line element in order to avoid the edge velocity singu-

larity.

3.1.3 Geometry.- A nonrotating tip path plane coordinate frame with

origin at the rotor hub will be used for the induced velocity calculation.

The solution process will iterate between the induced velocity calculation,

and the harmonic blade motion and helicopter trim solution (using uniform

inflow to start the cycle). Thus the hub plane orientation (S system) will

be updated based on a new induced velocity estimate. In contrast, the tip

path plane orientation is well defined by the helicopter or rotor trim, hence

is less sensitive to changes in the induced velocity estimate. Also. the

rotor wake geometry is simplest when defined relative to the tip path plane.

The tip path plane tilt relative to the hub plane is given by the first

harmonics of the tip deflection zTIP = G + Eq "  i( 1):

-. ,
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The rotation matrix

will transform position and velocity vectors from the shaft aces (S system)

to the tip path plane axes (T system).

The induced velocity is required at the radial statioa,; r along the

rotor blade. The radial stations at which r.he induced velocity and bound

circulation are evaluated will each be a subset of the blade loading radial

stacions, but the two sets need not be identical. From section 2.2.4, the

postion vector of the rotor blade is

V6 LS t
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Transforming to the tip path plane (neglecting second order terms) gives

then

+" + (r~) 3 -'s - A -- ~ f cvr

The iTducee velocity is to be evaluated at the points r b(r) along the

rotor blade. It is useful in the computation of rb to have the option to

suppress the inplane deflection, to suppress all harmonics except the mean,

or to linearly interpolate .-*he geometry between the root and th#. tip.

The wake indu,:ed velocity is also required at points in the flow field

If the rotor disk:

a. at the wing/body, horizontal tail, awd vertical tail for the rotor/

airframe aerodynamic interferenze;

b. at the other rotor hL for rotor/rotor aerodynamic interference;

c. at an arbitrary point in the flow field;

d. and at the reference blade of the other rotor. Lor detailed rotor/

rotor aerodynamic interference.

For the first two, only the mean value of the induced velocity will be used

in the present analysis. The induced velocity distribLtion over the disk of

thii other rotor can be used in the present analysis only if the two rotcrs

have the same rotational speed (see section 5.1.11); so for the single main

rotor and tail rotor configuration the rotor/rotor interference can be

accounted for only in terms of the induced velocity at the rotor hub. The

position vector of the wing/body is
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W" '.Le r R and rWB are the position of the rotor hub and the wing/body center

of action, in the body axes (F system). The vectors for the horizontal tail,

vertical tail, and other rotor hub are similar. For the induced velocity of

rotor #2, these vectors must be multiplied by R I/R . For the induced

velocity at the disk of rotor #2 due to the wake of rotor #1, the position

vector is

211= ( SF-- -g, -4-"/I+ -# (I 5 > --- ~ >

where A 21 is the azimuth angle of the reference blade of ro'.or #2 when

= 0 for rotor #1 (see section 5.1.5) and

The position vector for the induced velocity at the disk of rotor #1 due to

the wake of rotor #2 is

+e 'A

If the rotor rotates clockwise it is necessary to change the sign of the s
component of R (between the R. and R rotation matrices).

r (btwee the andSF

The geometry of the tip ,ortex behind the reference blade will be defined

by the vector 4(, 4), where ip is the present azimuth angle of the blade
w

and 4 is the age of the vortex element. The wake geometry is required at
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the discrete azimuth positions k A = P and wake ages k kA , where k

ranges from 1 to J (one revolution of the blade, with AL = 2T/J) and k

ranges from zero to the specified number of wake spirals ior the induced

velocity calculation. The tip vortex geometry behind the other blades of

the rotor can be obtained for r at the appropriate azimuth angle. Thew

tip vortex elements are created at the blade tip (r at radial station

r = 1), convected with the free stream velocity A, and distorted by the

self-induced velocity in the wake. The rotation of the wing together with

convection by the free stream velocity produces the basic helical geometry

of the rotor wake. As at the rotor disk, the induced velocity throughout

the wake is highly nonuniform. The actual position of the wake elements,

determined by the integral of the local convection velocity, is thus highly

distorted from the basic helical form. The resulting wake geometry is

where D(p, ) is the distortion due to the wake self-induced velocity (note

D( , 0) = 0) and the free stream convection velocity is

relative to the tip path plane.

Similarly the geometry of the inboard wake sheet will be defined at the

root and tip edges, trailing from the blade position rb  at radial stations

r = rROOT and r = 1 respectively. The distortion D will be different for

the tip vortex and the inboard sheet. Because of the dominant role of the

tip vortices, the most important information in the wake geometry is the tip
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vortex position, and a less accurate definition of the inboard sheet geometry

is often acceptable.

The induced velocity calculation may require the wake geometry beyond the

point where the stored distortion ends. For this portion of the wake rigid

geometry will be used. Consider the distortion D( , ) when the age 1 is

greater than the age of the last element in the known distortion, last

A . The wake geometry will be extrapolated from ' last to , using

only vertical convection due to the mean induced velocity:

Note that the azimuth angle of the blade at the time the wake element was

created, p - 4, has been held constant.

For the self-induced distortion of the rotor wake geometry, the following

models are considered:

a. rigid or prescribed wake, with contraction and two-stage convection;

b. and a calculated free wake geometry (section 3.2).

In the rigid wake geometry it is assumed that all elements in the wake are

convected downward by the mean induced velocity at the rotor disk, giving

relative to the tip path plane, where

Note that this distortion is independent of the azimuth angle 41. The con-

vection velocity X. is the mean induced velocity at the rotor disk, includ-

ing ground effect and rotor/rotor interference in general. This model can be

generalized to a two-stage convection:
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~Z -

with

determined by the constants f and f2  To improve convergence,

A = 1/2 (Xi + Aold) should be used in place of Xi. Including contraction

of the wake gives for the distortion

where the radial displacement (also independent of p) is

-t,3 4
"I w

(ri = 1 for the tip vortex and the outside edge of the inboard sheet, and

ri = rROOT for the inside edge.) Hence the rigid wake geometry is determined

by the parameters fl, f2 $ K 3' and K 4, which may be different for the tip

vortex and inboard sheet. Alternatively, the constants K and K 2 can be

specified, instead of f1 and f2 "

Landgrebe (ref. 20) developed a prescribed wake geometry model for a

hovering z:tor from experimental model rotor flow visualization data. The

model consists of contraction and two-stage convection as defined above, with

the constants as follows:
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a. tip vortex

b. sheet tip edge

c. sheet root edge

k C>---. 0 C JEi

d. radial contraction

ks = S + 271 C

where e is here the blade linear twist rate in degrees. Kocurek andtw

Tangler (ref. 21) revised the tip vortex geometry based on experimental data

for low aspect-ratio two-bladed rotors, obtaining

' = 4..0 J-'r
cr



with

~7 7-9 Otw,.

2.3

I -c

In reference 22 it was found that the prediction of measured rotor hover

performance was improved when the wake geometry was prescribed based on the

blade maximum bound circulation rather than CT  as above. Hence

IT

can be used in place of CT; in general rmax must be averaged over P as

well. These prescribed wake models were developed for a hovering rotor. To

apply them in more general f]ight conditions we can use

C".. ( \ 1N-

with i  the mean induced velocity including ground effect and rotor/rotor

interference (the blade loading C T/a is retained.)

The wake geometry arrays will be organized as follows. The rigid or

prescribed wake geometry is defined by Dz and D rat kA , k = to KRWG

(independent of i). So the structure of the array is

D(k), for k = 1. to KRWG

for D and Dr, for the tip vortex and the two inboard sheet edgec. The

convection rate K2  is also required, for extrapolation of the geometry
-4t

beyond K=WG A. The free wake geometry is defined by D(, ). The first
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subscript in the array wil] be the age % A for k 1 to 'FRG; the

second subscript will be the blade azimuth angle I = 9.. 1 to J. So

the structure of the array is

(n), n - 1)KFWG + k for ((k I KFWG), . = 1 to J)

The free wake geometry will be used for the tip vortex only (see section 3.2).

In the near wake and the rolling up wake, the position of a panel corner

at an arbitrary radial station p is required (rROOT : p S 1). Linear

interpolation between the root and tip edges of the inboard sheet gives

C1-'

The geometry of the near wake panels should include the increment

to account for the blade bending (the variation with wake age is neglected).

The first panels of the neai wake are aligned with the bound vortex. Let
-4 -
r and r3 be the position vectors of the right and left front corners of a

near wake panel, obtained from the wake geometry at 4 0. Let r2 and r4

be the position vectors of the right and left rear corners, obtained from the

wake geometry at 4 A . Then a rectangular panel aligned with the bound

vortex is obtained if r2 and r4  are replaced by rI + Ar and r3 + Ar

respectively where

- - - 3
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For the shed vorticity in these first panels, the front corners are also

moved aft by a quarter chord, which is accomplished by adding

to r1 and r3 , with Ar given above. The blade chord at the induced velocity

radial station will be used; and the shed wake panel will be omitted entirely

if c/4 > jA6".

That portion of the first tip vortex segment extending from the bound

vortex to the trailing edge (a length 3c/4) should be perpendicular to the

bound vortex. Let r1 and r2 be the position vectors of the vortex segment

end points, at the blade tip and at the first donstream point respectively.~.1
Let r3 be the position vector of the first blade point inboard of the tip.

Then thiq line vortex segment will be replaced by two segments extending from

ri to

4-

and from there to r2, where

S= > q ) - ,' ' q ,"

- , ' -J .4 5 .j -.,

and c is the tip chord. Constant strength will be assumed for the portion

from the bound vortex to the trailing edge.

3.1.4 Induced velocity calculation.- The blade bound circulation is

calculated at discrete points on the rotor disk: r j = (ri' i ). The solu-

tion is periodic, so the azimuthal points cover one revolution of the blade:

J= jA for j = 1 to J (Aq' = 27r/J). The radial stations r. (i = 1 to M)

will be a subset of the aerodynamic loading radial stations. Except for the
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near wake, the vorticity strength in the present wake model actually depends

only on the maximum circulation r., defined as the value of rij with maxi-

mum magnitude over all radial stations r. at a given azimuth 41 j (the
computation will allow the use of the maximum over the radial stations out-

board of station rGmax).

Summing the contributions from all vortex elements in the wake gives

the induced velocity as the product of the blade bound circulation and

influence coefficients:

The second term is due to the near wake (extending from 4 0 to K N KA

behind the reference blade at azimuth angle 4 = 6A). A set of influence

coefficients is obtained for each point in the flow field at which the

induced velocity is calculated: at points distributed radially and azimuthally

over the rotor disk, and at points off the rotor di-k (see section 3.1.3).

The influence coefficient arrays will be organized as follows. Consider

C. the first subscript is the index due the azimuth angle of the boundJ

circulation ( j = 1 to J). The second subscript is the index over all the

field points r at a given azimuth angle (k = 1 to MR). The third subscript

is the index over the azimuth angle of the field points (k = 1 to J). So the

structure of the array is

tn), n (~1j *MR *J + (k -1) *J + j

for (((j = I to J), k = 1 to IR), X= I to J)

The field points at a given azimuth angle consist of the induced velocity

points along the rotor blade span; perhaps the induced velocity points along

the blade of the other rotor, or at the hub of the other rotor; and perhaps

the points at the wing/body, horizontal tail, vertical tail, or an arbitrary

field point. The organization of the array for the near wake influence coef-

ficients C.. (tr is similar, except there is an additional subscript which
1J
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is the index over the circulation radial stations (i = I to M), and the index

over the azimuth angle of the bound circulation covers only the near wake

(j . , to k):

CM(n), n = ) ( )* (R*(KNW+j)* M + (k- N)*(KW+ 1)M

+ 0j + KIV)*M + j

for ((((i I to M), j = .- KW to ), k 1 to M1,),

1 to J)

Also, for the near wake the field points at a given azimuth station consist

of only the induced velocity points along the rotor blade span (no points off

the rot')r disk).

Te calculation of the influence coefficients proceeds as follows. The

outermost loop involves the dimensionless time , which is also the azimuth

angle of the reference blade. The solution is periodic so the induced velocity

is evaluated for 4 = 0 to 2n (at the discrete points p = kft, k = 1 to J,
&P = 2w/J). For a given i, the position vectors at which the induced

velocity is required can be evaluated: at the radial stations along the

reference blade; at the wing/body, horizontal tail, vertical tail, other

rotor hub, or an arbitrary point; and at the radial stations along the

reference blade of the other rotor.

Next there is a loop over all the blades of the rotor (m = 0 to N-l;

m0 is thL Leference blade). The azimuth angle of the m-th blade is

m 4 + m 2w/N = (X + mJ/N)AL. Finally there is a loop over the wake age

SkA (k = 0 to the maximum extent of the far wake, which may be different

when calculating the velocity at points on or off the rotor disk).

The blade specification plus the wake age determines the vortex panel

being considered, extending from to + A4 behind the m-th blade. Given

im and p, the position vectors of this wake panel can be evaluated: the

end points of the tip vortex line segment, and the four corners of the

inboard. sheet (at the side edges, as described in section 3.1.3). The wako

strength at the panel leading edge is determined by the bound circulation

at m -M ' and the strength at the trailing edge by the bound circulation
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at '4 - - These azimuth angles define to which influence coefficients

the induced velocity of this panel contributes.

The wake age determines whether the panel considered is part of the near

wake, the rolling up wake, or the far wake models (as described in section

3.1.2). The near wake model is only used behind the reference blade (m = 0).

The near way is not used in calculating the velocity at points off the rotor

disk.

The far wake model consists of a tip vortex line segment and a single

inboard wake panel. The line segment has strength r max . The sheet is due to

a circulation distribution linear from zero at the inside edge to r atmax

the outside edge. The indvced velocity expressions for a line segment and a

rectangular vortex sheet then give the contributions to the influence coef-

ficients.

The rolling up wake model consists of a tip vortex line segment of

strength frmax , where

and an inboard wake sheet divided into two panels at radial station

Linear interpolation between the side edges gives the wake geometry at p.

The circulation corresponding to these panels goes from zero at the inside

edge, to rm at p, to fim at the outside edge. The induced velocitymax max
expressions for these vortex elements then give the contributions to the

influence coefficients.

The near wake model consists of a tip vortex line segment of strength

fNW r j (where rMj is the bound circulation at the most outboard radial

station); and separate inboard wake panels between the bound circulation

radial stations. Linear interpolation between the side edges gives the wake

geometry at ri (i = I to M). An increment accounting for the blade bending

must also be added to the position vectors in the near wake. The circulation
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corresponding to these panels goes from zero at the inside edge, to rij at

r , to fM r at the outside edge. The induced velocity expressions for

these vortex elements then give the contributions to the influence coefficients.

The inboard wake panels in the near wake directly behind the blade

= 0 to Ap) require special consideration (see section 3.1.2). First, the

position vectors at the rear corners of each element are adjusted so the

front edge of the rectangular vortex sheet is exactly aligned with the bound

vortex. When evaluating the induced velocity near the junction of two trail-

ing vorticity sheets, they can be replaced by a single sheet. Thp leading

edges of the shed vorticity sheets must be moved a quarter chord behind the

bound vortex. However, if line segments rather than rectangular vortex sheets

are used for the trailing or shed wake, the above modifications are not

required.

Finally, the contribution of the bound vortex of each blade is calculated.

The bound vortex is a straight line 2gment extending from the root to the

tip of the blade at azimuth angle tm , with strength varying from zero at the

root to rm at the tip. The contribution of the bound vortex of themax
reference blade to the induced velocity at the reference blade is not

included.

By this procedure the influence coefficients are calculated for a given

wake geometry. Then from a circulation estimate at some stage in the blade

motion and helicopter trim solution, the induced velocity v can be evaluated.

The..... .................. ty radial station, in the rip path

plane coordinate frame. The aerodynamic analysis requires the induced velocity

at the loads radial stations, in the hub plane coordinate frame

( x I j is - k ). Transforming to the S system gives

-5
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using the current values of the tip path plane tilt angles (B and B ). TheC
induced velocity is then calculated at the loads radial stations by linear

interpolation.

The induced velocity for the rotor/airframe aerodynamic interference (at

the wing/body, horizontal tail, vertical tail, or an arbitrary point) is

required in the body axis system (the F frame):

For the induced velocity from rotor #2, a factor SR2/SR 1  is required as

well. The iniduced velocity for the rotor/rotor interference (at the hub or

over the disk) is required in the shaft axis system of the other rotor. The

interference velocity at rotor #2 due to the loading of rotor #1 is then

and at rotor #11 due to rotor 112

%

These coordinate rotations normally should not be incli.ded in the influence

coefficients because the updated values of thie tip path plane tilt angles are

to be used in the matrix RTS (although tile rotation of the induced velocity

by the small angles ac and should not be important). The factor QR /SR 2

can be incorporated in the influence coefficients however. For a clockwise
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rotating rotor, the sign of the iI component of the induced velocity must

be changed (between the RS and RSF rotation matrices).

The interference induced velocity due to rotor #1 is calculated at

rotor #2 for the azimuth angles ' = ZA + Al21 (k = I to J), When A'P2 1 0 0

it will be necessary to linearly interpolate the velocity to the azimuth

angles '= kb' (k = i to J). Similarly, the induced velocity due to rotor #2

at rotor #i must be ±nterpolated from ' = M.v - A 2 1 to ' = kAP. The

velocity moved off the rotor disk by rotor #2 is also calculated for

1P - AP - 21' and must be interpolated to 'P k=p.

3.1.5 Ground effect.- Ground effect can be included in the nonuniform

induced velocity calculation by introducing an image element for every

vortex element in the rotor wake. The image element position is obtained

by reflecting the actual wake element position about the ground plane, and

changing the sign of the vorticity. Let ZAGL be the distance the rotor

hub is above the ground (see section 2.4.3). The position of the image element

is required in the tip path plane axes relative to the hub. First the posi-

tion vector of the actual element is rotated to earth axes; then the origin

is shifted to the ground, the sign of the kE component is changed, and the

origin is shifted back to the hub; finally the vector is rotated back to the

t.p pach plane axes:

.._ --%e

where

The induced velocity of the vortex element is calculated, and subtracted from

the induced velocity contribution of the actual element. The actual element

is below the ground plane if

, 5 >\
)L - IC



(This can occur if the wake geometry does not allow for ground effect.) In

thi,, cac- the induced velocity contributions of both the actual element and

its image are set to zero.

3.1.6 Hover or vertical .flight (axisymetrfc geometry).- The nonuniform

inflow alculation can be simplified in hcver due to the axisymmetry of the

wake geemetry. Por the hover case the influence coefficients will be the

same for the induced velocity at all azimuth angles, except for an azimuthi

shift and axis rotation:

0 
1 -

Evea in hover the rotor may have a net pitch or roll moment if the center of

gravity is offset from the shaft (with offset hinges or a hingeless rotor).

Hence in general the hover case will noc involve induced velocity and boi'nd

circulation independent of azimuth angle. These considerations apply to the

general vertical :light case as well.

An accurate calculation of the induced velocity of a rotor in axial

flight usually requires consideration of the wake very far from the rotor

disk. The detailed wake model described above is required only close to the

disk however. Very far from tne disk a more approximate and more efficient

model will be used, obtained by spreading the vorticity vertically over the

distance h between successive sheets, as sketched in figure 18. The axial

convection velocity in the fai wake is taken from the prescribed wake model:

v + -A v,

giving for thi spiral axial spacing
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Figure 18. Far wake model for hover or vertical flight.
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The tip vortex elements are spread vertically to form a vortex sheet with

axial and spiral components. There is a corresponding axial root vortex from

the inboard trailing vorticity. The shed vorcicity is spread vertically to

form a vortex sheet. This wake model extends L turns (an axial distance Lh)

beyond the last spiral of the detailed wake model from each blade.

The influence coefficients of this very far wake model are calculated as

follows. For a panel in the last spiral in the wake, the geometry is

specified by the location of the ends of the tip vortex line segment, and the

corners of the inboard panel. The wake strength is determined by the bound

circulation corresponding to the panel leading and trailing edges:

k4

The geometry of the sheet vorticity on the wake boundary is obtained from

the position of the tip vortex segment, rk and r k+l vectors to the segment

ends). The vectors to the sheet vector are then

C-;r L= 'Q't -

--L

The induced velocity of the tip axial vorticity is given by the trailed sheet

vorticity solution with
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(see section 3.1.8). The induced velocity of the tip spiral vorticity is
given by the shed sheet vorticity solution with

LV

Let r. and r be the position vectors of the inboard wake panel (the insideand outside edges respectively, at k + Ai/2). Then the vectors to the

inboard shed vortex sheet are:

-- L7

.14t -4-
- C-. -

-- k

and the induced velocity is given by the shed shee .... ICY .. h

L C

(see section 3.1.8). Finally, the vectors to the ends of the root axial

vortex are
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and the induced velocity is given by the line vortex solution with

(see section 3.1.7).

3.1.7 Finite length vortex line element.- Consider a straight vortex

line segment of length s, as shown in figure 19. The vortex segment has

linearly varying circulation, between r and r2 at the end points (r I is

the circulition at 4 and r2 is the circulation at 4 + A). The induced

velocity is required at the point P, defined by the position vectors r1 and

r2  from the ends of the segment. The vectors r1 and r2  can be in any con-

venient coordinate frame; the components of the induced velocity will be

obtained in the same coordinate frame. The Biot-Savart law gives the induced

velocity due to this line segment:

where r is the vector from the element d on the segment, to the point

and r = i (. The coordiaate a is measured along the vortex segment, from

s1 to s2 :

S

r S -

where s is the length of the segment:

-163-



I'2

Figure 19. Finite length vortex line element.
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-.---
Write r = r - ce, where r is the minimum distance from the vortex linem m

(including its extension beyond the end points of the segment) to the point
A

P, and e is the unit vector in the direction of the vortex:

Cz "I CI___six

SS

A r

The vectors r and e are perpendicular, andm

(? , - r

The vortex strength %aries linearly along the segment:

It follows that

-,. c-c ," S" .'' -

S2 1.5--"%

- 4 
4-

Irt

X.t f (
.........
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for the induc,.d velocity of the vortex line segment with linearly varying

circulation.

Consider alsL' the induced velocity of a line vortex segment with a

stepped circulation distribution. The distance from the midpoint of the

segment to the point P is

3 ?

and the midpoint is located at

The line segment has constant strength r from s1 to s3, and constant

strength 3 from s to s2. Applying the above result (with F = 0) to

both values of the line segment gives
-4 -. : -. : -3

4 /4'rr

C - A I' L

- - ---., - -.

The influence of the vortex core is accounted for by multiplying the

induced velocity of the line segment by the factor

for concentrated vorticity (solid body rotation) or by
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for distributed vorticity (from ref. 16). The core radius r is the loca-

tion of the maximum tangential velocity.

In references 23 and 24 a lifting surface theory solution was developed

for the vortex induced loads on an infinite aspect-ratio, nonrotating wing

encountering a straight, infinite vortex at an angle A with the wing

(fig. 20). The vortex lies in a plane parallel to the wing, a distance h

below it, arid is convected past the wing by the free stream. The distortion

of tle vortex line by interaction with the wing is not considered. In linear

lifting surface theory, the blade and wake are represented by a planar distri-

bution of vorticity. This model problem was solved for the case of a sinus-

oidal induced velocity distribution, with wave fronts parallel to the vortex

line. An approximate solution was obtained by fitting analytical expressions

to the numerical solution for sinusoidal loading. The vortex induced velocity

distribution can be obtained by a suitable combination of sinusoidal waves of

various wavelengths, and the same super-position gives the vortex induced

loading from the sinusoidal loading solution. The approximate solution is

not valid for extremely small wavelengths, but the range of validity is

sufficient to handle the cases arising in rotary wing applications. For tle

velocity induced along the wing span by a vortex of strength r:

(where r and h are here dividpd by the wingccMichordI the apprximaLe

lifting surface solution (from ref. 23) for the section lift is:

_ g,.( + AS, . .AZ + (5 ]C]2

-167-



AV

STRAIGHT INFINITE
FREE VORTEX

r~

Figure 20. Lifting surface theory solution for vortex-induced
loads.



For the incompressible case, the coefficients in this expression are functions

of the vortex angle A:

b = 5.12 + 1.88 (A/900 )0

b 1 = -cosA

1

I

a = .544 (-cosA) + .07 sin2A
0

a1 = -.434 - 1.09 (1-sinA)9  + .607 (1-sinA)2 46

a2 = .0084 + .0069 (-cosA)

c o = 5.9

c = 1.683 + .27 (1-sinA)'9  - .154 (1-sinA)2 "

cI = 1.417 + .366 (1-sinA).84 - .392 (l-sinA)2 0

S2 = .91 + .93 (1-sinA)
I 0 - 1.025 (1-sinA)

1 .4 5

(A is in the range 9U to 1800; the solution for A from 0 to 900 is

obtained by symmetry considerations). The corresponding lifting line theory

solution for the vortex induced loading is

- zr r &.-A -

-qrAA. ) cj.A) +LcQ
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where a, = -.662, cI = 1.296, and co = n/2. This lifting surface solution

will be used in the present analysis in the following manner. For each line

segment it will be determined whether it is close enough to the blade for

lifting surface effects to be important (it is more economical to apply such

a test than to always use the correction). If so, the induced velocity con-

tribution of the line segment as calculated above, will be multiplied by the

ratio Ls/L Z.

The parameters required tc apply this lifting surface correction for
vortex induced loads are h, rsin A, and A. From the minimum distance r

m

between the point P and the vortex segment (in the tip path plane coordinate

frame), and including the influence of the viscous core on the induced

velocity, the vortex/blade separation is

•--b ..

Let i* = (r1 - r2)/s be the unit vector along the vortex segment; and

j* r cosP + jTsin the unit vector along the blade. Then the intersection

angle is

40

1- o

C

Finally, the distance from the vortex line is

.- 4
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The lifting surface correction will be used if the distance from the segment

midpoint is less than a specified distance d

4- < 4.11<

Typically d . should be around 10c (see ref. 24).

The use of a larger viscous core radius after a bl-qd/vortex interaction

will be allowed, to model such affects as vortex li.duced stall or core burst-

ing, which limit the induced loads (see !!ction 3.1.1). Let inter(q,) be

the age of the tip vortex segwueL which first intersects the following blade,

with the generating 5l1ade at azimuth angle '. Then a larger core radius rb

will be uszd if the line segment age is greater than b (y). The transition

at 4'b occurs initially a fixed increment 4b after the intersection at

'inter' and then propagates up the tip vortex at a rate Vb = 4/a:

(only j = 1 to J need be tested if Vb < 1, and 4'b = 0 for all ' if

> ). The initial, small tip vortex core radius r is used if <k . : <

the large core radius rb is used if k > b; and if 4k < < k+1 the

core radius is obtained by linear iiterpolation between rc and rb. The

initial, small core radius r is always used for the near wake.
c

The wake age 4inter at the first blade/vortex intersection can be

determined by examining the projection of the tip vortex wake geometry

r (4, 4) on the disk plane. Consider a line segment extending from ri at
w1
k to r2 at 

4k+l' and the m-th blade at azimuth angle 4m =  + m2n/N. The

vortex segment line is defined by
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with c 0 at ri and a = 1 at r2; while the blade line is defined by

with p = 0 at the hub and p 1 at the tip. The intersection of these

two lines is obtained by equating the and 3t components of r and
-A.4 vortex

rblade:

s T 4- V Z-L- lLre d

which gives

C,- - G

L- "1 -)r L' "

(There is no intersection if the denominator is zero). The vertical separa-

tion of the vortex and rotor blade io

A blade/vortex intersection is defined to occur if 0 < ainter < 1 and

0.2 < p inter < 1.0; and if IhI < dbv as well. The intersections will be

identified by examining each line segment in the tip vortex behind the blade

at p, beginning with the wake age 6 k = L*" The segment will be tested

against the blade index m such that the magnitude of

2 T
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is minimised. If an intersection occurs, then

If an intersection does not occur, the next line segment is tested.

3.1.8 Rec-&czguia2, vortex sheet.- Consider a planar rectangular vortex

.shept element, as shown in figure 21. The induced velocity is required at an

arbitrary point P in the flow field, defined by vectors from the four

corers. The strength of the sheet is defined by the circulation values at

the four corners (r and r3 at 4 k' r2 and r4 at 4 k+l;, r1 and r 2 at the out-

side edge, 1'3 and r4 at the inside edge). This vortex element s approxi-

mated by a planar, rectangular sheet with sides s and t (fig. 21). The

point P is defined by a vector r from the center of the sheet. The
0

orientaton of. the sh.et is defined by orthogonal unit vectors e and et
-% A

parallel to the sides of the s teet, and the normal unit vector en  e x e

- z

es = F(,r, -c - -,

A A
The vorticity strength is 6 in "he et direction and y in the es

direction, varying linearly along the length of the vortex filaments. The

minimum distance from P to the sheet or its extension is r:

r- e~ A

The vector r is perpendicular to the plane of the sheet and iitersects itm

at a point M. A coordinatp system (c, "r) will be used on the sheet plane,

with or'gin at M so the center of the sheet is at
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At

= -S0  = - c -"

The edges of the rectangle are then given by a s ± s/2 and T = t ± t/2.0 0

The distance from a point on the sheet to P is

r -C - '

The linearly varying vorticity of the sheet is

= * .- 4 - C

or in terms of the circulation at the corners:

-(3

S

r,. .\

Note that conservation of vorticity gives y/aa = -B5/@t or Ys - '

t.

The Biot-Savart law gives the induced velocity of this vortex sheet:

C~ -

- o t - -.
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where

IL ?E C

C'ra -- ( + .$ 53 "i' -'r3

-- -

.

C-4

C3.



.tzoE s0-

(-- - -4 -- '3"

Finally, the induced velocity in terms of the circulatiorn at the four corners

is:

Av r- _- ( ^ ^ 5 1 L

E - t, . = -4-~ C"' =-2 -k,

-$29(5, [-e."'~X -( + +z 3  2M

where the first two terms are due to the trailed vorticity, and the last two

terms are due to the shed vorticity. This may ba written as

4 r3) 1 -.1 7. 1 -f-- (r A

L -, 1 -:
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where AA

r.T = , = , :,e Z 3 e 4

4-"~

ST - S -t t.

There is a logarithmic singularity in the velocity induced at the vortex

sheet side edges (the ye 2 and &eI 3  terms in AMV. This singularity

will be avoided by replacing the trailed or shed sheet vorticity by a line

segment with a large core radius. Hence if

2V

then the point P is near a side edge of the trailed vorticity; if

+

then it is near a side edge of the shed vorticity; and if

r < 4,s

for any corner, the point P is near the side edges of both the shed and

trailed vorticity.

An economical approximation is to replace the vortex sheet by a line

segment, with either a linear or a stepped circulation distribution, and a

large core size to eliminate the large induced velocity near the line. The
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strength and position of the liue segments are determiaed from thie circula-

tion and position of the four cornerE of the sheet:: for the triiled vorticity

22

and for the shed vorticity

Note that with line segments it is not necessary to approximtoe -he sae-

geometry by a planar rectangle. The core radius can be specified arbitrarily;

or . = s/2 can be used for the trailed vorticity and rc = t/2 for che

shed vorticity.

3.2 Free Wake Geometry

A method was developed in reference 16 for calculating the free wake

geometry of a single rotor in steady state flight out of ground effect, which

will be adapted for use i. the present analysis. The wake model for the

free wake cal.ulation consists of line segments for the tip vortices; and
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rectangular sheets or line segments for the inboard shed and trailed wake

(similar to the far wake model used here for the induced velocity calculation;

see section 3.1.2). The near wake or rolling up wake as described above are

not considered.

Only the distorted geometry of the zip vortices is calculated in the

analysis of reference 16. The rigid or prescribed wake geometry is thus

still used for the inboard vorticity. The distortion of the tip vortex

geometry from the basic helix is defined in reference 16 as a vector D (G, 6),S

giving the displacement of the wake element with current age 6 which was

created when the blade was at azimuth angle y. A tip path plane coordinate

frame is used, with the x axis to the right (the advancing side), the y axis

aft, and the z axis down. The procedure for calculating the wake geometry

consists basically of integrating the induced velocity at each wake element.

The outer loop in the calculation is an iteration on the wake age 6. The

induced velocity q(') are calculated at all wake elements for a given age

6, and all azimuth angles p. Then the increment in the distortion as the

wake age increases by Al is:

An efficient calculation of the wake geometry requires many variations in

this basic procedure. Reference 16 adapted the near-wake and far-wake scheme

for reducing the computation. The first time the induced velocity is evaluated

at a point in the wake, the contributions from all wake elements must be

found. For subsequent evaluations of the induced velocity at that point,

only the induced velocity, due to the nearby wake elements are recalculated.

The other major consideration for minimizing the computation is the matter

of updating the induced velocity calculation. At a given point in the wake

geometry calculation, there is a boundary in the wake between the distorted

geometry and tha initial, rigid geometry. The distortion has been calculated



between the rotor disk and the boundary; downstream of the boundary the wake

is undistorted. Ns time increases by Aq, the entire wake is convected

downstream, and the rotor blades move forward by Aq), adding new trailed and

shed vorticity at the beginning of the wake. If there were no distortion of

the wake during the time At, then the induced velocity at a given wake

element would not change except for the contributions from the newly created

wake vorticity just behind the blade. Thus the normal calculation procedure

consists of calculating the induced velocity at the boundary, by just adding

at each step the contribution from the new wake directly behind the blade.

Of course, the wake does distort as it is convected and as the estimate of

the distortion improves, thus it is necessary to update the calculation of

the induced velocity in the wake. In boundary updating, the induced velocity

is calculated at the boundary still, by summing the contributions from all

elements in the wake. In general updating, the induced velocity is recalcu-

lated at all points in the wake upstream of the boundary. Boundary updating

is typically done eve'cy 90* on the front and rear portions of the helices,

and every 450 along the sides where the distortion is greater. General

updating is typically done every 1800. General updating can not be done

often if the amount of computation is to be kept low, but it does improve

the accuracy and convergence. Numerous techniques for secondary improvements

in the efficiency and accuracy were also included. The distorted wake

geometry is required for m revolutions, where m decreases with forward

speed. A single iteration of the free wake analysis consists of calculating

the distortion D (,j,, ) f 'P = 0 to nd - C to 2 U. suaLly Lwu

iterations are sufficient to obtain the converged solution for the wake

geometry.

The present analysis requires the wake geometry in the form of D(p, 4)

where P is the current azimuth angle of the blade and 4 is the wake age

(p + 6 and 6 respectively in the notation of ref. 16). The present analysis

uses a tip path plane coordinate system with x aft, y to the right, and z

upward. Hence
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is the distortion as used in section 3.1.3. The rotor velocity components

Px and Pz are required r, lative to the tip path plane. The hub motion

and gust velocity at the hub can be included in these velocity components.

Ground effect and rotor/rotor interference can be accounted for by using

an effective normal velocity:

/ AA 4- (

where fGE is the ground effect factor defined in section 2.4.3, and Xin t

is the interference induced velocity. The total uniform induced velocity

- ?Lt -+ "N L -+ c -

is required to define the wake geometry at the start of the calculation.
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4. AIRCRAFT MODEL

4.1 AircrafL Configuration Definition

A general two rotor aircraft is considered, with rigid body and elastic

motion of the airframe. Aerodynamic forces on the wing/body, horizontal tail,

and vertical tail are modelled, including aerodynamic control surfaces. The

drive train connecting the rotors is modelled, with engine dynamics and a

rotor speed governor. The case of a rotor or helicopter on a flexible support

in a wind tunnel is included in the model.

4.1.1 Aircraft orientation: flight path and trim Euler angles.- The air-

craft flight path is specified by the velocity magnitude V, and the orienta-

tion of the velocity veztor with respect to earth axes (fig. 22). The veloc-

ity vector bas a yaw angle FP (positive to the right), and a pitch angle

aFP (positive upward). Thus the climb and side velocities of the aircraft are

Vclimb = Vsin eFP and Vside = Vsin FP coseFp" The aircraft attitude with

respect to earth axes is specified by the trim Euler angles, first pitch 0 FT

(positive nose up), then roll 4 FT (positive to the right). Airplane conven-

tion is followed here for the coordinate systems -- x positive forward, v

positive to the right, and z positive downward (see reference 25). Between

the earth axes (E system) and the velocity axes (V system) there are the rota-

tions $ FP and 0FP. Between the earth axes and the body axes (F system) there

are the rotations eFT and FT* Thus the rotation matrix between the V system

al-d the 'i iYst=u is:'

+ Fr. -

PT -T CEWFP

+ C4IPT-rQ.F? VP +PrC Q+ r- T Z4,SOF( SwaFP

- 18FT S+, FT Sa*+ ~ Sf;:.t Cepe:.

C0PC; S4,-- #Ci5FTQ,r.raF ~r



~~OFp.-

kE (VERTICAL)

Figure 22. Earth axes and aircraft flight path definition.
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Thv. trim calculation deternines the Euler angles 0 FT and FT (and perhaps the

fliglt path climb angle 8FP also).

The velocity of the aircraft is V = V V, so the components in the body

axes are:

The acceleration due to gravity is g gkE  or in body axes

4.1.2 Rotor position and orientation.- The rotor hub position is cneci-

fled in the body axes relative to the aircraft center of gravity position,

h (x + A + + The rotor orientation is defined by the rotation

matrix between the shaft axes (S system) and the aircraft body axes (F system).
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171

The position and orientation of the rotors relative to the body axes are fixed

geometric parameters. The aircraft velocity is V= -x S + +y t, z4 V

so the shaft axes componants of the velocity seen by the rotor are

The hub plane angl4: of attack and yaw angle may then be obtained from

and the advancing tip Mach number from

MAT 1z

The sign of the lateral velocity Vy must be changed for a clockwise rotating

rotor; and for rotor #2 the velocity components must be multiplied by 2R 1IR2.

The quasistatic hub motion and the gust velocity at the rotor hub will be

included in the advance ratio components:
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For a helicopter main rotor, the orientation with respect to the body

axes wil) be specified by a shaft angle of attach 0 R (positive for rearward

tilt), and a roll angle 4'R (positive to the right). Thus:

4- ";,&S C-+ 0

The orientation of a tail rotor will be specified by a cant angle R

(positive upward), and a shaft angle of attack e R (positive rearward). The

tail rotor thrust is to the right for a counterclockwise rotating main rotor,

and to the left for clockwise rotation. Thus the definition of the tail rotor

shaft axes depends on the main rotor rotation direction. Let %r have themr
value +1 for a counterclockwise rotating main rotor, and Q = -1 for amr
clockwise rotation. Then the rotatii.n matrix for the tail rotor is:

0 S+

The nacelle and rotor of a tilting proprotor aircraft can be tilted by

an angle a , where a = 0 for axial flow (airplane configuration), and

a = 900 for edgewise flow (helicopter configuration). The rotor orientation

is also described by a cant angle R (positive inward in helicopter mode,

zero in airplane mode), and a pitch angle 0 R (positive nose upward) which is

the angle of attack of the shaft with respect to the body axes when a = 0.P
Thus the rotation matrix is:

sF - Ce-+ !4-
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The rotor hub location rhub  for the tilting proprotor aircraft is defined
by the pivot location rpivot and the mast height h, so

4.1.3 Wind tunnel case.- For the case of a rotor or rotorcraft in a

wind tunnel, the forces and moments on the body are reacted by the model sup-

port system, so trim of the body forces is no longer a concern. The flight

path and trim Euler angles can be set to zero (6FT =FT 0 6FP = 'FP = 0), so

the wind, earth, and body axes coincide (RFv = I). The wind axes and body

axes are therefore the tunnel axes system, with the x-axis directed upstream,

the y-axis to the right, and the z-axis vertically downward. The rotor

orientation is specified by the matrix RSF as above. To accommodate the case

of a wind tunnel with a turntable, the RSF matrices can be post-multiplied

by the matrix

L SajW i44 eC-

where 'T is the turntable yaw angle, positive to the right, and eT is the

test module pitch angle, positive rearward.

4.1.4 Gust veocity.- The aerodynamic gust velocity will be defined

relative to the velocity axes, with longitudinal component uG  positive rear-

ward, lateral component vG positive from the right, and vertical component

w positive upward (V - v - W k The components in the body
Ggust G V G V - Gv) copne

axes are then
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The components in the rotor shaft axes are

For a clockwise rotating rotor, the sign of v is changed; for rotor #2 the

gust velocities must be multiplied by OR 1 IR 2 , Hence define

including also the factor RI /R 2 an the sign change for a clockwise

rotating rotor as appropriate.

4.1 .5 Air-Cr-ft dcription.- The aircraft geometrical description con-

sists of the location of rotor #i, rotor #2, and wing/body, the horizontal

tail, and the vertical Eail relative to the center of gravity. The orienta-

tion and position of tha aircraft components will be defined in a body axis

system (the F framc) with origin at an arbitrary reference point, as in

figure 23. Given the dimensional positions relative to the reference point,

for example

center of gravity: FSCG, WLCG, BLCG

rotor #1: FSRI, WLRI, BLRl
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Figure 23. Definition of aircraft geometry.
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Then the coordinates of the location of rotor #1 re~ative to the center of

gravity (in the F frame) are

x = (FSCG - FSRl)/R

y = (BLRl - BLCG)/R

z = (WLCG - WLRl)/R

and similarly for the rotor #2, wing/body, horizontal tail, and vertical tail.

The mode shapes of the airframe elastic motion are described by the six

components of linear and angular hub motion, in the F frame: k and Yk at rhub

(for each rotor). Assuming that the generalized coordinate qk has dimensions

of m or ft, it follows that the generalized mass N. has dimensions of kg

or slug; that the hui linear motion 9k is dimensionless; and that the hub

angular motion yk has dimensions rad/m or rad/ft. These elastic vibration

modes can be arbitrarily scaled; if k and yk are multiplied by a factor S,

then .N should be multiplied by S2 and the solution for qk will be

divided by S.

For the case of a wind tunnel with a turntable, the geometry will be

defined for zero yaw angle, relative to a reference point at the center of

the rotation. Then

where RTF is defined in section 4.1.3.

4.1.6 Pilot's controls.- The control variables included in the rotor-

craft model are collective and cyclic pitch of the two rotors, and the air-

craft controls, which consist of engine throttle 6t, wing flaperon angle 6f,

wing aileron angle 6a, elevator angle 6, and rudder angle 6r . The control

vector is thus
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The pilot's controls consist of collective stick 6 (positive upward),0
lateral cyclic stick 6 c (positive to the right), longitudinal cyclic stick

6s (positive forward), pedal 6 p (positive yaw right), and the throttle 6t

Ss p

For the purpose of trimming the helicopter, a linear relation between the

pilot's control inputs and the rotor and aircraft control variables is assumed:

-1- -~ -. 1 -4V -- VO

where v0  is the control input with all sticks centered (" = 0), and TCFE

is a transformation matrix defined by the control system geometry.

The control transformation matrices for the single main-rotor and tail-

rotor, che tandem main rotor, and the side-by-side main-rotor configurations

are given below. The K's are gain factors in the control system, and the

Ap's are swashplate azimuth lead angles. The main rotor, front rotor, or

right rotor is assumed to be rotor #1; and the tail rotor, rear rotor, or left

rotor is rotor #2. The parameter I here takes the value +1 for counter-

clockwise rotation of the rotor, and SI = -1 for clockwise rotation.
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4.2 Aircraft Analysis

The aircraft motion consists of the six rigid body degrees of freedom

and the elastic free vibration modes. A body axis coordinate frame with origin

at the aircraft center of gravity (the F system) is used for the description

of the motion. Airplane practice is followed for these axes -- x is forward,

y is to the right, and z is downward (ref. 25). The coordinate frame used

is not a principal axis system however; moreover, the airplane practice of

aligning the x-axis with the trim velocity is not followed, since for rotor-

craft it is necessary to consider the hovering case (V = 0).

The parameters )f rotor #1 are used in making quantities dimensionless

and in normalizing the aircraft equations of motion. It is assumed that
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rotor #i is the main-rotor of a single main rotor and tail rotor helicopter;

the front rotor cf a tandem rotor helicopter; or the right rotor of a side-by-

side rotor helicopter. With the hub forces in rotor coefficient form it is

convenient to normalize the equations by dividing by the characteristic inertia

( N Ib)l"

4.2.1 Degrees of freedom.- The linear and angular rigid body motion of

the aircraft is defined in the body axes (F system). The linear degrees of

freedom are xF (positive forward), YF (positive to the right), and zF

(positive downward). These variables are dimensionless based on the rotor

radius R; thus the velocity perturbations are normalized using the rotor tip

speed QR rather than the forward speed V as is airplane p.zactice. The

angular degrees of frepdom are the Euler angles IPF (yaw to the right), 0 F

(pitch nose up), and 4 F (roll right). Then the linear and angular velocity

perturbations are

where

For the elastic motion of the aircraft in flight, the displacementu

and rotation 6 at an arbitrary point r are expanded in a series of the

orthogonal free vibration modes:

IsI
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The first six degrees of freedom are the rigid body motions: qSl...qS6  are

respectively F' aF' PF' F, yF, and F . The generalized coordinates qSK

for K _ 7 are the elastic modes of the aircraft. Orthogonality implies that

the elastic vibration modes produce no net displacement of the aircraft center

of gravity, or rotation of the principal axes.

For the rigid body motions the mode shapes are simply

since

4.2.2 Hub motion.- The rotor equations of motion require the six com-

ponents of the hub linear and angular motion in the shaft axis system:

%X 'RS'F *,A -7

V..7

or
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The matrix RSF transforms the motion from body to shaft axes. The moment

arm of the rotor hub about the aircraft center of gravity is in body axes,

rhu = x3F + yt + .k
rhub F F

The total velocity of a point is the sum of the trim and perturbation

velocities, u = V + "q i k' in body axes. The rotor equations require the

velocity components at the hub in an inertial frame however (the S system),

and the Euler angle rotations between the body and inertial. axes introduce

perturbations of the trim velocity V. So the perturbation velocity becomes
1 -1 -4 -&
U=CF x V 4 Eqs k k where in the S system

These contributions to the hub velocities (; h) cancel the terms in

the blade velocity due to the Euler angle rotation of the inertial axes rela-

tive to the trim velocity (the p a terms in uT, UP, and uR). Thus the

evaluation of the hub rotation (ax, a y, a z) for the aerodynamic analysis should

not include the body Euler angle contributions, as discussed in section 2.4.2.

• . . -1 .. -A
Finally, the rotor hub acceleration is u = WF X V + Eqsk k' where the

first term is the inertial acceleration due to the rotation of the trim

velocity vector by the body axes angular velocity This additional contribu-

tion of the Euler ang~e velocity to the hub linear acceleration, in the shaft

axes system, is 1

which can be written L = E x S with
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For rotor #2 the linear hub displacement (xh, Yh' zh) must be multiplied

by R I/R2  to account for the differences in normalization, c being based

on rotor #1 parameters while a is based on rotor #2 parameters in this case .

For a clockwise rotating rotor it is necessary to change the signs of Yh' x'

and aL . These conversions will be included in the definition of c and 2, byZ

a. multiplying rows 1, 2, and 3 by R1/R 2

b. changing the signs of rows 2, 4, and 6

as appropriate. In addition, the derivatives of the hub motion of rotor #2

must be corrected for the different time base, by multiplying the velocities
22

by S1 /Q2 and the acceleration by Ql/..2
.

-4

(See section 5.1.5 for the time scale correction in the case of harmonic body

motion.)

4.2.3 Pitch/mast-bending coupling.- Flexibility between the rotor swash-

plate and hub will produce a blade pitch change due to elastic motion of the

airframe. This coupling between the rotor pitch and mast bending is accounted

for by introducing kinemaic feedback of the following form;

4.2.4 Equations of motion.- Following the usual steps of airplane flight

dynamirs analysis (see ref. 25), the linearized rigid body equations of motion

are obtained by equating the angular and linear acceleration to the net moments
-:4 -A

and forces on the aircraft: IW EM and MZi + x V) = ZF. In terms of the
FF F

body axis degrees of freedom, including the gravitational forces, the equations

are:
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M**

where

I.A ., r SipA- TOj

Here M is the aircraft mass, including the rotors, and i ".s the moment of

inertia matrix:

ix -Ixy -Ixz

xy y yz

xz yz z

(Ixy y z = 0 if lateral symmetry is assumed). These equations are dimension-

less, and have been normalized by dividing by the characteristic inertia

( Nlb)I . Thus M* = M/( NIb /R2 ) and I* = I/( NIb). Note that the gravitational

constant g is also dimensionless, based on the acceleration S2R; and

M*g = Y2 Cw /a, where W Mg is the gross weight.
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For the elastic degrees of freedom, since orthogonal free vibration modes

are used the equations of motion are simply

where M. is the generalized mass including the rotors (in normalized form
* b2
Mk = M/( NIb/R ) wk is the natural frequency of the mode, and gs is the

structural damping coefficient.

The generalized forces Qk are due to the hub reactions of the two

rotors, and the aerodynamic forces on the aircraft. Since the rotor mass is

included in the aircraft inertia, the hub linear acceleration terms should

not be included in the evaluation of the hub forces for these equations of

motion. The aircraft aerodynamic forces are considered in section 4.2.6.

Similarly, the rotor gravitational forces are not included in the rotor

hub forces, since the rotor weight is included in the aircraft gross weight.

4.2.5 Hub forces.- The aircraft generalized force due to the rotor hub

reactions i.s

Normalizing Qk by dividing by NI., gives then /

.J.

I -00-
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or Q = c TF, with c defined above for the hub motion.

For rotor #2 it is also necessary to account for the differences in

normalization, Q and c being based on rotor #1 parameters while F is based

on rotor #2 parameters. Thus the force coefficients of rotor #2 must be

multiplied by

and the moment coefficients by

For a clockwise rotating rotor it is also necessary to change the signs of

Cy, CQ, and CMx. Uting c corrected for rotor #2 normalization and the rotor

rotation direction as required for the hub motion, it is then only necessary

to multiply the matrix by

T
to obtain c for rotor #2.

4.2.6 Aircraft aerodynamic forces.- The aircraft aerodynamic forces

considered are those acting on the wing/body (WB), horizontal tail (HT), and

vertical tail (VT). The genteralized forces for the aircraft rigid body

degrees of freedom, due to the aerodynamic forces and moments, are as follows.

-201-



- t~Ai 4

3

rw+ X

\-S §" (coos L/; + i 4 1 vA--

I!,T,. Ft,,. ,,to otbj - i v

Here L, D, and Y are respectively the aerodynamic lift, drag, and side

forces; Mx , My, ani Mz are the roll, pitch, and yaw moments on the wing/body;

and q is the dynamic pressure. The horizontal tail cant angles is HT

(positive to left), and the vertical tail cant angle is 4VT (positive to

right). The moment arms of theaerodynzaic cc..cr of action about the ail-

craft center of gravity are in the body axes, r = x + yt + z . The factor

2Y/oa results from normalizing the equations by dividing by NIb. The

parameter A is the rotor disk area.

The aircraft aerodynamic analysis thus requires the wing/body lift,

drag, and pitch moment (L/q, D/q, and M /q) as a function of angle of attackY

a and of the flaperon deflection 6f; and wing/body side force, roll moment,

and yaw moment (Y/q, My/q, Mz/q) as a futiction of sideslip angle a and

aileron deflection 6a the horizontal tail lift and drag ( LT/q, D HT/q) as

a function of angle of attack a HT and elevator deflection 6 C ; and the verti-

cal tail lift and drag (LVT/q, DVT/q) as a function of angle of attack a VT
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and rudder deflection 6 These force and moment characteristics have
r

dimensions of length-squared and length-cubed respectively.

The aircraft aerodynamic forces depend on the air velocity seen by the

components and on the aircraft control positions The air velocity consists

of the trim aircraft velocity, the perturbation li.near and angular rigLd body

contributions, the gust velocity and the rotor-induc3d aerodynamic interference

velocity. In body axes (the F system) the total velocity is thus

which must be evaluated at the wing/body, at the horizontal tail, and at the

vertical tail. The angular velocity of the aircraft is

The rate of change o! angle of attack is also required (i = 'F/Vx). The air-

craft controls consist of flaperon, elevator, aileron, and rudder (6f9 )ep 6a-

r•

The aerodynamic interference velocity due to each rotor iq required.
-A

With a nonuniform induced velocity calculation, X is the mean value of the

wake velocity calculated at the position of the fixed aerodynamic surface

(see section 3.1). The complete time history of the velocity, required to

evaluate the mean, can be useful information itself.

As a simple model for the aerodynamic interference, the rotor-induced

velocities at the wing/body, horizontal tail, and vertical tail can be

obtained :s a linear combination of the mean induced velocity at the two

rotors:
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assiuming that the induced velocity is normal to the disk plane (-k5 direction).

The K factors account for the maximum fraction of the aerodynamic surface

which is affected by the wake, and the fraction of the fully developed wake

velocity which is achieved. Typical values would be K = 1.5 to 1.8 (or zero

for no iiiterference). The C multiplicative factors account for the decrease

in the wake induced velocity away from the wake surface, using the following

expression:

C - V-'Ov (t 0 4-)

where k is the perpendicular distance from the aerodynamic surface to the

nearest wake boundary (Z < 0 if the surface is inside the rotor wake cylinder).

Consider the geometry sketched in figure 24. The aerodynamic surface is lo-

cated at (r - r ) relative to the rotor hub. The unit vector along the wake
center-line is

and we write

(times R I/R for rotor #2). Now the unit vector in the ebr -r & plane,

perpendicular to e is

At -03
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So the distance from P to the wake center-line is

F je. x r-.f

A point on the edge of the rotor disk is a unit vector perpendicular to ks;

the point also in the e/r - F& plane (perpendicular to e x (r - r )) is then
R R

The distance of the wake edge to the wake center-line is thus

-' - I -, #-

So the distance from P to the wake boundary is

-Q +
-2o6-
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and

From the velocity components at the wing/body, the angle of attack and

sideslip angle are:

LA

LA

and the dynamic pressure is

The aircraft aerodynamic interference at the tail will be accounted for by an

angle of attack change e and a sideslip angle a (positive when decreasing

a and a at the tail) so the net velocity components are

Then the horizontal tail angle of attack and dynamic pressure are

LA+ :w -4-CV

LA V + V+
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and similarly for the vertical tail

V -t Tf,+- CAI*

where 4HT and VT are the tail surface cant angles. The time-varying non-

uniform inflow will increase the mean dynamic pressure in the wake:

where a2  is the mean-square wake velocity perturbation, at the wing/body or

tail as appropriate:

2. 2.%>: - -%

For best results, experimental data should be used for the aircraft aero-

dynamic characteristics, including the airframe interference effects. As a

simple model, the followig expressions can be used for the wing/body:

L L L.w --

4 .
IL

. -%4 k-

04 9_ C+ _
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(YP Ir' and Nzr are often negligible); and for the horizontal and vertical

tails

-4-4-

To account for stall, a = sign a * min (jal, amax) is used in the wing/body

lift and pitch moment, and in the tail forces. Here iWB' iT, and IVT are

the zero lift angles relative to the reference body axis system; and 6F is

a wing flap angle.

The wing/tail interference is evaluated from

The area f can be estimated from the wing area, span, and chord (Sw, 9w' CW)

and the horizontal tail length (kHT) by

2 7C

(from ref. 26). A lag in the wake velocity at the tail is also included:

(ref. 25). The wing-induced velocity could be obtained from the first order

differential equation
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The usual approac). for a:.rplane flight dynamics analysis is to write this

equation as

Using T = £HT/V for the time lag gives the above result. From reference 25,

the sideslip interference angle is approximately

",4
- IV

where zVT is the vertical tail position (positive upward).

In summary, the aircraft aerodynamic forces are calculated as follows.

The aerodynamic environment is defined by the helicopter trim velocity,

perturbation linear and angular velocity, gust velocity, rotor-induced inter-

Irc velocity, and the ailLLdfL cuutLLOs. The coral velocity components

are calculated at the wing/body, horizontal tail, and vertical tail; from

these the angle of attack and dynamic pressure are calculated. Then the aero-

dynamic forces and moments on the aircraft are calculated. Finally, the

generalized aerodynamic forces are evaluated.

4.2.7 Aircraft aer:dynwnics - high frequency.- The aerodynamic model

described in the preceding sections deals with the steady forces on the air-

craft, and the stability derivatives for the rigid body motions involved in

flight dynamics. Such a model would not be appropriate however for the high

frequencies of rotor-induced vibration, for either rigid body or elastic
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motions of the airframe. An accurate analytical evaluation of the generalized

forces at high frequencies would require a sophisticated model of the wing/

body and tail aerodynamics, including the effects of the rotor wake-induced

flow field, for the normal modes of elastic vibration of the airframe. Such

an analysis is not attempted in the present investigation.

The only generalized aerodynamic forces considered for the airframe

elastic modes are the direct damping and control forces. In dimensional form,

the equations of motion are then

where F 1k and Fqk are constants (with dimensions of length-squared and

length-squared per radian respectively) that depend only on the airframe

characteristics; Fqkqk is the damping force divided by pV:

and Fqk6 is the control force derivative divided by pV2

\.

The dimensionless form, normalized by dividing by NIb, is then
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4.3 Transmission and Engine Analysis

The rotor rotational speed degree of freedom can be an important factor

in the helicopter dynamics, and the rotor torqu. perturbations can produce

significant drive train loads. A model is required which accounts for the

coupling of the two rotors through the flexible drive-train, and for the

engine damping and inertia. The drive train dynamics will be described by the

rotor speed, the interconnect shaft torsion, and the engine shaft torsion

degrees of freedom. The equations of motion are derived from the balance of

rotor and engine torques (in the nonrotating frame). A model for a governor

with throttle or collective feedback of the rotor speed error is also con-

sidered.

4.3.1 Engine model.-The engine model ircludes the inertia, damping, and

control torques:

The engine speed is 0E, a- QE is the torque on the engine. The engine

rotary inertia is IE* Q is the engine speed damping coefficient, i.e., the

torque per unit speed change at constant throttle setting:

TheZ 49.tbl =. cc 'A i

The vari 1 1 . .. Vhc engine throLLIt cuntrol position. Q, is the torque

applied due to a throttle change at constant speed:

1 ) t W i s ti'. e t I R

Thus Qt and Q can be obtained from data on the engine power as a function

of throttle position and engine speed.
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The engine damping may be related to the engine trim operating condition

by

where K is a constant depending on the engine type. This approximation is

applicable to a wide variety of engines. The constant takes the value K = 1

for a turboshaft engine (ref. 27) or for a series DC electric motor (ref. 28).

It ta'es a value K = 1/(l - n) for an induction electric motor or an armature

controlled shunt DC electric motor (ref. 28; n is the motor efficiency). For

a field controlled shunt DC motor, the only damping is mechanical and the

damping of the load. so K = 0 (ref. 28). For a synchronous electric motor

there is a spring on the rotational speed due to the motor, so the above model

is not applicable (ref. 28). Generally, the inertia of the engine or motor is

more of a factor in the dynamics than the damping.

The normalized engine damping and throttle coefficients are:

where rE is the ratio of the engine speed to the rotor speed. When the
i throttle controL is only involved in the governor, the paranieters required

for Q is not really aPE/t, but rather just over all loop gain of the

governor -- the torque perturbation due to a rotor speed error.

The transmission losses may be viewed as -d viscous damping source, with

a coefficient equal to
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where n is the transmissio-i efficiency. This loss can be included in the
2*

engine damping coefficient r E %, by increasing the factor K by AK = 1 -

In the equations for interconnect shaft torsion and engine shaft torsion,

structural damping can be included as well.

4.3.2 Equationj of rnotion.- Figure 25 is a schematic of the transmission!

engine inodei considered for asymmetric drive train configurations, such as for

a single main and tail rotor helicopter. The two rotors are connected by a

shaft, and the engine is geared to one rotor (rotor #1 in fig. 25). The tor-

sional flexibility of the drive train is represented by the rotor shaft springs

KMI and KM2' the interconnect shaft spring KI, and the engine shaft spring K.

The transmission gear ratios are rE (the ratio of the engine speed to rotor #1

speed), and r11 and r12 (the ratio of the interconnect shaft speed to the

rotor speeds). Thus r 1/r 12 = Q12/S is the ratio of the trim rotational

speeds of rotor #2 and rotor #1.

The degrees of freedom are the rotational speed perturbatfons of the two

rotors G sl and s2 ) , and the engine speed perturbation Pe' The engine shaft

azimuth perturbation e is defined relative to rotor #1 rotation, so the

total engine speed perturbation with respect to space is r (psI + , e). With

the rotation of the two rotors coupled by the drive system, it is more appro-

priate to use the following degrees of freedom:

~71

Here is the differential azimuth perturbation between the two rotors. The

degrees of freedom I and t e therefore involve elastic torsion in the drive

train. The degrees of fre3dom s is the rotational speed perturbation of

the drive s'stem as a whole: both rot.,rs, the engine, and the transmission.

The differential equation of motion for the rotor speed dymanics are

obtained from equilibrium of the torques on the two rotors and the engine.

The resulting equations for and are as follows:
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Figure 25. Schematic of rotorcraft transmission and

engine dynamics model (asymmetric configuration)
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where 'P1 ', $and = (rul/r12) 's + I; and with the engine by rotor #1

as in figure 25, the constants are:

r=~

- ~4 ~.. (t . KMr..M4
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The spring constants are normalized by dividing by (NEb ),; and I*
IE/(NIb)l. When evaluating the derivatives of s2 for use in the analysis

of rotor '2, it is necessary to account for the difference in time scales:

In these equations the gear ratio r l/r12 between the two rotors is a posi-

tive number, regardless of the rotor direction of rotation. Therefore here

the sign of CQ is not changed for a clockwise rotating rotor.

With the engine by rotor #2, the constants in the equations of motion are:

~~VIM

- M

Figure 26 sketches a symmetric drive train configuration, as might be

used for a side-by-side main rotor helicopter. The two rotors are connected

by a cross-shaft, and there are two engines, one geared to each rotor. The

degrees of freedomi of this _ystem are symmetric and antisymmetric rotor speed

perturbations, and symmetric and antisymmetric engine speed perturbations.

Dropping the antisymmetric engine speed perturbation and antisymmetric throttle

input, the system has three degrees of freedom as for the asymmetric configura-

tions above. Let
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Figure 26. Schematic of rotorcraft transmission and
engine dynamics model (symmetric configuration).
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again, where here r /r 1. The constants in the equations of motion ari:
11 12

MT-M

M F- . 2.-

Here the engine inertia IE  is for both engines, as are the damping and

throttle coefficients (Q and Qt) . The result:'.ng symmetric and antisymmetric

drive train motions can then be obtained frum

NI) =

as required.
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With just one rotor (as in a wind tunnel), the equations of motion for

the rotor aud engine speed perturbations reduce to:

+ re. vS (rrs-ts~x-t- c s -+ 4P,>

r -, E~ US 4+ 9t -4-

where here

rCE

Hence Lhe equati ns for the asymmetric drive train configuration can be used,

dropping the * I degree of freedom and the rotor #2 torque.

The case of a rotorcraft in autorotation can be treated with this model

by drop2ing the engine speed degree of freedom (ie ), dropping the engine terms

from the 's and 41 equations (helicop.ers usually have an over-running clutch

to disconnect the rotors from the engine at zero torque), and dropping the

throttle governor control input (0 t). The engine out case (engine and rotors

still connected) requires dropping the engine damping term 'or reducing it to

just the transmission losses contribution) and dropping the throttle governor

control input. The case of constant rotor speed is modelled by dropping the

rotor and engine speed degrees of freedom and equations from the system.
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4.3.3 Rotor speed governor.- When the rotor rotational speea perturbation

is included in the dynamics analysis, it is usually necessary to also include

the rotor speed governor for a consistent calculation of the rotor and aircraft

behavior. The governor model considered is integral and proportional feedback

of the rotor speed to the throttle, and to the collective pitch of rotors #1

and #2. The governor dynamics are represented by a second order lag. The

control equations are thus:

%%

-'t r~ 4 -1

Note that e = s is the rotor speed error, and 's is the integral of the

error. The integral gains are dimensionless (with e and 's both in radians

or both In degrees), and the proportional gains have units of seconds (K/KI

is the lead ir the integral control). When the throttle control is only used

for this governor model, Jt is only necessary that the product of dP E/a t

and the governor gains be correct:

(P= RRQ = 'EQE)' or in terms of the dimensionless parameters

-22 1 I- ,.
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The time constants in the governor equations can be alternatively described

in terms of frequency and damping ratio:*r-IL

5. SOLUTION FOR THE ROTORCRAFT MOTION

The solu:ion of the equations of motion will be divided into two parts,

based on the frequency content of the motion. The first part is the solution

for the rotor motion and the airframe vibration. This motion is periodic

with fundamental frequency Q for the rotor, and NQ for che airframe, hence

it is high frequency motion. The second part is the solution for the steady

state or slowly varying airframe motion, consisting of :he aircraft rigid body

and rotor speed perturbations. The assumption that this airframe motion

occurs slowly relative to the rotor speed allows the solution of the equations

of motion to be separated into these two parts.

5.1 Rotor Motion rnd Airframe Vibration
The eqiations of motion for the roLur and aircraft will be solved for the

periodic motion by a harmonic analysis method, which obtains directly the

harmonics of a Fourier series representation of the motion. After a con-

verged solution for the blade motion and airfrome vibration i ,obtained, the

rotor performance is evaluated, including the mean aerodynamic h±ub reactions

(in particular the rotor thrust and power). The hub motion includes the

static or quasistatic contributions from the aircraft rigid body motion.

The helicopter state is determined by the control positions; the flight

path angles and trim Euler angles (or test module pitch and yaw for the wind

tunnel case); the quasisteady linear and angular velocity perturbations of

the airframe; the -uasisteady rotor speed perturbation; and the aerodynamic
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gust velocities. The rotor motion and airframe vibration are calculated for

this state. Then the generalized forces acting on the rotor and airframe can

be evaluated, as well as the various performance parameters of the aircraft.

5.1.1 Fourier series representation.- For the case of steady state

flight, all the rotor blades execute the same periodic motion. It follows

that the blade motion in the rotating frame can be written as a Fourier series:

U401 (
E - V% 4%

\=

%A~

where m = i + mAp is the azimuLh angle of the m-th blade (Ap 2n/N,

m = 1 to N), and p = Qt is the dimensionless time variable. The complex and

real Fourier cocfficiants are related by ~ ~c-i )/2 and
n nc ns

8n = (nc - ie ns)/2 for v 1. The complex representation is most convenient

for solving the equations of motion, while the real representation is best for
interpreting the motion. The notation 8(k) is used for the harmonics of the

n
k-th bending mode. With the modes orderEd according to natural frequency,

(1) is usually the fundamental lag mode and a n the fundamental flap mode.n n tefnaetlfa oe

Similarly 0(k ) are the harmonics of the k-th torsion mode, with 8(0 )  rigia
n n

pitch and the remaining modes elastic motion of the blade. The Fourier

representation of the gimbal or teeter motion is discussed in the next section.

The degrees of freedom in the nonrotating frame are the aircraft rigid

body and elastic motion, and the rotor speed perturbations. These degrees
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of freedom are excited by the net rotor hub reactions, obtained by summing the

root forces and moments from all N blades. Ideally, the rotor hub acts as a

filter, transmitting to the nonrotating frame only those harmonics at multiplc.

of N/rev. The vibratory motion in zhe nonrotating fra:i is then also periodi-,

with fundamental frequency NQ, and can be written as a Fourier series:

for the body motion, and

for the rotor azimuth perturbation (similarly for and e ). The static or

mean terms are obtained from the low frequency solution of the airframe

equation.

5.1.2 Gimbal and veeter motion.- The rotor gimbal motion (if present)

is in the nonrotating frame, but it is most convenient to solve an equation in

the rotating frame for the gimbal motion, along with the other rotor blade

equations. From section 2.2.18, the gimbal equations of motion are given by

equilibrium of the net longitudinal and lateral moments on the rotor hub:

L-Z 4C..004- -- C( 5

j~"Y ZZ_ ~ (c

where C is the flap moment at the blade root. All harmonics of the longi-
mx

tudinal and lateral hub moments cancel within the hub, except those at multi-

ples of N/rev. The pN harmonics of the gimbal equations of motion are:
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where (C mx) is the n-th complex harmonic of Cmx

The flap motion in the rotating frame due to the gimbal tilt is

N; = GCCOS + a GSsinP. Only the pN harmonics of 8GC and $GS are

excited, hence only the pN 1 1 harmonics of 8G:

so
SO+

for p 0 0, and

CS S)-~ -~.-225-



Note that with the restriction that only the pN = 1 harmonics of 6 exist,

this is equIvalent to the relation

Substituting for the harmonics of a8G and GS in terms of the harmonics of

8 'the gimbal equations of motion give:

orF
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which we note are just the pN ± 1 harmonics of the equation

(except.for the effects of unsymmetric gimbal springs or dampers, and the

fact that the damping is in the nonrotating fr-me).

The equation for the teeter motion of a two-bladed rotor is

2.

All the even harmouics of the root flap moments cancel within the rotor hub.

The summation operator only transmits the odd harmonics to produce teeter

motion. Hence the solution for the teeter motion can be obtJined by snlving

the equation

CVwI% * A

for the odd harmonics (i.e., for the pN ± 1 harmonics, just as for the
:= gtmba! motion).

Thus the gimbal or teeter motion can be obtained by solving the rigid

flapping equation in the rotating frame:

-4-

for just the pN ± 1 harmonics of T Then the harmonics of the gimbal

motion are
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from which the gimbal motion can be evaluated

and so

The harmonics of the teetering motion are

for the odd harmonics, from which

5.1.3 Rigid pitch motion.- In the limit of infinite control stiffness,

the equation o. motion for the blade rigid pitch degree of freedom reduces to

Ah = 0 (see section 2.2.9), with the solution
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Write the total root pitch motion p as the sum of pr and the motion due

to elastic distortion of the control system: po = Pr + Pd" Substituting for

PO, the rotor equations of motion will be solved for the harmonics of d"

The case of infinite control system stiffness then requires only that the

equations for Pd be dropped from the solution procedure. Writing

P r =  + Pd introduces terms due to pr' ,r' and Pr in the equations of

motion.

Allowance will be made for different stiffnesses in the collective and

cyclic control systems by using different natural frequencies for the collec-

tive motion (D() ), cyclic motion ((d) ), and the reactionless motion (D(d),
0 1 nn 2). Given the collective, cyclic, and reactionless control stiffnesses,

the Jimensionless natural frequencies are obtained from

7-o

('FA

or the natural frequcncs can be specified directly.

The control system damping will be specified for the collective motion,

the cyclic motion, and for the rotating frame motion. The total damping is

then CeColl + Cerot for the collective mode, Ce cyc + Ce rot for the cyclic

modes, and Corot for the reactionless modes (n L 2).

5.1.4 Harmonic analysis solution.- A harmonic analysis method will be

used to integrate the differential equations of motion, solving directly for

the harmonics of the motion. Consider equations of the form

-229-



where a is the degree of freedom, K and M ire the appropriate stiffness

and mass, and g is the forcing function (usually nonlinear). To avoid the

singularity of the resonant response at harmonics near the natural frequency,

it is necessary to include the damping terms on the left-hand-side of this

equation. Thus the term C is added to both sides, giving

where C is the damping coefficient. For good convergence the damping co-

efficient used should be close to the actual damping of the particular degree

of freedom, including structural, mechanical, and aerodynamic damping sources.

The damping estimate does not have to be exact however, since it is added to

both sides of the equation. In fact the actual damping in the forcing function

g will often be time varying and even nonlinear, so the viscous damping

coefficient has to be an approximation. The sole function of this damping

term is to avoid divergence of the solution near resonance, and the value of

C has no influence on the final converged solution.

Now the function F is evaluated at J points around the rotor azimuth:

where j = JA* (j = 1 to J and AL = 2w/J). Then the harmonics of a complex

Fourier series representation of F are

where
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With K n=1 these harmonics would give a Fourier interpolation representation

of F(p). While it matches the function exactly at the known points F()

(or with least squared-error if the number of harmonics used is less than

(J-l)/2), the Fourier interpolation gives a poor representation elsewhere,

with large excursions due to the higher harmonics. In particular, poor

estimates of the derivatives of the function F are obtained. With the above

values for K (which reduce the magnitude of the higher harmonics), and an

infinite number of harmonics (n = -- to -), a linear interpolation between

the known points F(*.) is obtained. By truncating the Fourier series

(n = -L to L) the representation of F is smoothed, the corners of the

linear interpolation being rounded off. Usually L = J/3 is satisfactory,

that is the number of azimuth stations should be about 3 times the maximum

harmonic of interest. The azimuth step thus should be p = 2r/J--' 120/nmax
degrees. Then the solution of the equation of motion for the harmonics of a

is obtained from the harmonics of F by

2

where H = K - + Cin.
n

The iterative solution, required because the nonlinear forcing function

F depends on a and B, proceeds as follows. At a given azimuth Yj, the

blade motion is calculated using the current estimates of the harmonics:

L

v:L

The forcing function F is evaluated next. The estimates of the flapping

harmonics are then updated to account for the difference between the current

value of F and that found in the last revolution:
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After adding A8n  to the flap harmonics 8n' the azimuth angle is incremented

to p The calculation proceeds around the azimuth in this fashion until

the solution converges. The test for convergence Is performed once each

revolution. Requiring that the root-mean-squared change in the blade motion

from one revolution to the next be below a specified tolerance, the criterion

is (Arms < e for all degrees of freedom, where

- L A 4..

and

This test is applied to all degrees of freedom, for both the rotor and the

airframe.

In the present problem, the system of equations and degrees of freedom

can be separated into two sets: the rotor motion, consisting of flap/lag

bending, rigid pitch/elastic torsion, and gimbal or teeter flapping; and the

aircraft rigid body and eic motion, -ith the a-ngi-nalransmission as an

independent subset. The coupling between these sets is accounted for in the

nonlinear forcing functions. As long as the coupling is weak, it is possible

to solve the two sets of equations separately, in parallel. Within each of

these subsystems, it is necessary to solve all the equations simultaneously,

including in particular the inerzial coupling on the left-hand side. Thus a

vector equation must be solved for each harmonic of the motion. The solution

proceeds as follows. At a given azimuth station, the blade motion and hub

motion are evaluated using the current estimates of the harmonics. Then the

generalized forces are evaluated, and the rotor equations are solved to update

the harmonics of the blade motion. Next the rotor hub reactions are evaluated

(for which the updated blade motion harmonics can be used), and the aircraft
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equations solved to update the harmonics of the body motion. The azimuth

angle is then incremented, and the calculation repeated until a converged

solution is obtained.

5.1.5 Motion evaluation.- To begin the solution at a new azimuth station,

the deflection, velocity, and acceleration of each degree of freedom must be

evaluated from the harmonics. For the rotor blade bending:

,-4- a +

Similarly for the blade pitch/torsion, pk' Pk' and are obtained from the

harmonics 0). Note that for rotor #2 these time derivatives are based on
n

S12" For the gimbal/teeter motion, recall from section above

and similarly for G and G"

Recalling that only the pN harmonics are excited in the nonrotating

frame, the rigid body and elastic airframe motion of the aircraft is

SC. ,4-

%i%
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where q sl qs6 are the six rigid body degrees of freedom, and qsk for

k 7 are the airframe elastic modes. The steady state or slowly varying

rigid body motion contributes the static velocity terms (hsk)static (k < 6;

this motion is static compared to the high frequency rotor motion and airframe

vibration). The static elastic airframe deflection gives (qsk)static (k 7).

The rotor hub motion is then

where c is given in section 4.2.2. Recall that in the evaluation of

ay, and a z (for the aerodynamic analysis) the contributions of the rigid body

Euler angles OF' 0F and F (qsl to qs 3) are not included; also the linear

hub displacements (Xh, Yh, and zh) are not used in the rotor analysis.

Hence a is evaluated due to the elastic airframe modes only (qsk' k > 7).

The velocity and acceleration of the hub are

For rotor #2, & and & are multiplied by 21'I2 and (Q1/,2)2 respecti ily.

Also for rotor #2, the aircraft motion harmonics are at n = pN S2/ 1

(relative to the time scale of the nonrotating frame, Q 1). We can write the

hub velocity as follows therefore:
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- }?

Hence by evaluating the hub motion as a sum of harmonics at n = pN, with the

azimuth angle of rotor #2, the time scale will be automatically accounted for.

Similarly for the acceleration

A factor of Q1/S2 is still required in the second term of U, to account

for the scaling of the aircraft velocity in c.

The acceleration due to gravity, considered as an equivalent linear

acceleration, is

For rotor #2, he factor (2R)1/(12R)2  is also required.

The rotor shaft angular motion perturbation is evaluated from
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From section 4.3.2, the angular motion perturbations of the two rotors are

then obtained from

"'=' N s + =

As for the airframe motion, the time scales of the velocity and acceleration

perturbations for rotor #2 are accounted for without additional factors of

The solution for the helicopter trim er transient motion (section 5.3)

supplies the static motion of the airframe rigid body degrees of freedom
(isk for k = 1 to 6) and of the rotational speed degree of freedom ( ).

The solution for the static elastic deflection of the airframe and drive train

(qsk for k k 7, $1, and 'e) is given in section 5.1.10.

The dimensionless time variable is *, the azimuth angle of rotor #1.

The azimuth angle of rotor #2 is

Q.here A 21 is the angle when t 0 at rotor #1. Hence the analysis of

rotor #2 must account for this phase difference of the two rotors, by evaluat-

ing the blade motion, the airloads, and the hub reactions of rotor #2 at

' + "'2I . The phase of the time variable for the airframe motion is the same

as that for rotor #1. Note that if #2/!i 1 1 the rotors do not maintain a

fixed azimuthal phase difference. For that case the rotors will effectively

be analyzed separately however, so A*21 ' 0 can be used.
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Hence the harmonics of the rotor hub motion are obtained from the har-

monics of the aircraft degrees of freedom by the following exp-essions:

C)
CJ

for n a nonzero multiple of N; and the "static" components are

-- E -I- ['+i

for the displacement (an and astatc ) the summation is over the elastic air-

frame modes only; also, only the angular displacement components are required

(ci 0 y , ai ). For rotor .42, a factor of (Q R) /(Q2 R)2  is required in the

gravity term, (iskstatie is multiplied by 91/R,. and the matrix c is

multiplied by Ri/a2. Also, for rotor f2 the harmonics are multiplied by

since for the azimuth angle of rotor #2 equal to 4, the hub motion at

4 - A 2 1  is required (only if 01 = R2) " The harmonics of the rotor azimuth

perturbation are obtained from the harmonics of the drive train degrees of

freedom by the following expressions:
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or

for n a nonzero multiple of N; and the "static" components are

( 'S Q-hc C- K

- .-

For rotor #2, (s)static has been multiplied by QI/Q2; also for rotor #2

the harmonics are multiplied by

The blade rigid pitch motion pr requires the pitch increment due to the

governor and due to the rotor mast bending. The harmonics of the governor

pitch increment are obtained by summing the contributions from the two rotors;

and for rotor #2 multiplying by
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The pitch increment due to mas: bending is

No kal

- 4 tY -
-'

010~LCt W1m ',W

Swhere , (k) is zero except when n is a nonzero multiple of N, and the con-

ventione m i"= (q tai s used here. For rotor 2, the harmonics ati

in this calculation.

5.1.6 oor eq, ton.- The differential equations of motion for the

rotor degrees of fzreedom are given 
in section 2.2.18. For the n-dh harmonic,

nthese equations .ake the form
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(L)L

where -(d) is the n-.th harmonic of pd, and B., is only present for the
n

n = pN ± 1 harmonics for gimballed or teetering rotors. From the equations

of section 2.2.18, the transfer functions matri H and the forcing functionn

F are as follows.
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+ Va

+--4: 3 A16flr -e- 4316

0V4-W~4
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where

Y% - V, : = +

Note that estimates of the aerodynamic spring and damping forces have been
added to both sides of the equations. In the matrix H these terms must be
multiplied by ((/nir)sin(nirjj)) , to be consistent with the Fourier analysis
of the forcing function F (see section 5.1.4).
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The solution for the blade motion requires the inverse of H for eachn

harmonic. One approach is to invert H every azimuth step. A more

efficient approach is to invert Hn  once and store the result. It will still

be necessary to update H- I occasionally however, because it depends on then
bending solution (q i terms). The blade motion harmonics should be completely

recalculated whenever H-1 is updated.
n

Hence at each azimuth step the forcing functicn F is evaluated.

Then the blade motion harmonics are updated by adding the following increment:

VLt

t Y%

(CA

5.1.7 Hub reactions.- The generalized aircraft forces due to the rotor

hub reactions are Q = c TF, where c is given in section above and
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From the results of section above, the required hub reactions are as ollows.

2C% _ (Ir&±~

LkJ (2 'Zi --Y '0%"

" ' "'-- "=" ,-. • -- ")

+ 2 . . L_

Z~~\ -4

II

L. C,, % -_ N

C

N3~

- h , '' [ -;I -"- ,-
- 5-L

CC
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where

-N ' N -m '-

I

These hub reactions are harmonically analyzed in the evaluation of the

vibratory airframe motion. The effect of the summation over all N blades

then is to suppress the harmonics not at multiples of N/rev. An equivalent

approach therefore is to omit the summation operator and only evaluate the

pN/rev harmonics. Hence the aerodynamic forces are only evaluated for one

blade at azimuth angle p.

The mean hub reactions, required in the solution for the steady state

or slowly varying aircraft motion (section 5.3), are obtained by averaging

the above results over one period. Note that only the aerodynamic terms

contribute to the mean values of the hub forces and torque.

The hub forces due to the linear acceleration of the rotor mass

have not been included here, since the airframe inertias include the rotor

mass. For the static elastic airframe deflection, evaluated from the
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mean hub reactions, the "static" hub acceleration must be included:

which consists of the gravitational force, and the centrifugal force due to

the angular velocity of the body axes.

To solve the equations of motion for the engine and drive train, the

rotor torque is required in the following form:

+1x V. a - t C

- -I-

(see section 5.1.9).

5.1.8 Aircraft equations.- The differential equations of motion for the

aircraft degrees of freedom are given in section 4.2.4. For the n-th harmonics

of the rigid body motion, these equations take the form
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The forcing function is due to the rotor hub reactions

From the equations of section 4.2.4, the transfer matrix H is as follows.n

- Fi

For the n-th harmonics of the aircraft elastic motion, the equation of motion

is
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where Qk is the generalized force due to the rotor hub reactions (k 2 7).

The only aircraft aerodynamic forces included in the higb frequency respon-e

are the damping coefficients of the elastic modes (see section 4.2.7).

Only the harmonics of N/rev are excited in the nonrotating frame. The

aircraft response to each of the two rotors is evaluated separately. For the

response to the rotor #1 hub reactions, the harmonics at n = NI, 2Nl, 3N1 ,

etc., are required. The time scale of the aircraft equations is the rotational

speed of rotor #I, so the harmonics of motion due to rotor #2 are at

n = (S2 2/ A)n . For the response to rotor #2 hub reactions the harmonics at

n = ( 2/ 1)N2, (f12 /l1)2N2, (Q2/Ql)3N2 , etc., are required. The equations of

the airframe motion are not solved here for the static response (n = 0). The

hub reactions of rotor #2 are evaluated as a function of its azimuth angle,

2; to obtain the response of the airframe these hub reactions must be used

at ' = 2 - A 21"

The hub reactions are evaluated at azimuth stationi3 as the rotorJ

equations are being solved. Then the airframe vibration motion is obtained

from

r riple N;

are the harmonics of the rotor hub reaction. The motion (k) is evaluated
n

for excitation from rotor #l ard for excitation from rotor #2. For rotor #2

the harmonics must be multiplied by

I
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since for the airframe motion at +, the hub reactions at P + A21 are

required (only if S1 = Q 2)"

5.1.9 Transmission and engine equations.- The differential equations of

motion for the rotor and engine speed perturbations are given in section 4.3.2.

The equations for the n-th harmonics are

'*.

C eer,

with the forcing function and transfer function matrix as follows.

A,,,, --- 1 1%
with

7c4>, Cb27\- Iz-
L0

with
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+ +k

0e a 0 C

4.~~C 62AiZ. C)~~e~Q 0

LQ**

F C>

F: ->

00

where
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The torque CQ is defined in section 5.1.7. In summing over all N blades,

all the harmonics of the torque cancel except those at N/rev. Hence the

drive train equations ate only solved for the n = N, 2N, 3N, etc., harmonics.

The rotor torque (y ZQ/oa) is evaluated at the azimuth stations j

as the rotor equations are being solved. Then the transmission vibratory

motion is obtained from

for n a nonzero multiple of N; where

are the harmonics of the torque. For rotor #2 the harmonics are multiplied by

The transmission motion is evaluated for excitation from rotor #1 and for

excitation from rotor #2.
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5.1.10 Static elastic deflection.- The equations of motion for the static

elastic deflection of the airframe and drive train are

44C

(from sections 4.2.4 and 4.3.2). Here Qk is the mean generalized force

due to the two rotors, and CQ is the mean rotor torque.

Hence the solution for the static elastic airframe motion (k > 7) is

T T
where ck is the k-th row of c ; and

~ ~* -2MtC'-

is the mean hub reaction including the rotor mass inertial reaction. The

static elastic drive train motion is



-I ( a

where

-141-

and yCQ/aa is the mean torque.

5.1.11 -o..rotor aircraft.- In the present model, the two rotors of a

helicopter can influei.ce each other through excitation of vibratory airframe

motion. The analysis proceeds as follows (see fig. 27). The rotor analysis

calculates tre hub reactions of each of the two rotors. From these hub re-

actions, the aircraft equations of motion are solved for the harmonics of the

airframe rigid body and clastic motion. Then the hub motion can be evaluated

at each rotor, due to the forces of each rotor. The motion at each hub due to

the two rotors is summed. Then the rotor .uations are solved for the rotor

motion a)d for the hub :eactions again.

It is useful t, be able to suppress the feedback of the nonrotating frame

vibration to either or both rotors. The coupling can be suppressed by

omitting the summation of the two hub motion components at one or both hubs

(the dotted line _n !1. 27). The entire vibratory hub motion can be suppressed

by setting it to zero at one or both hubs (the static or low frequency hub

motion and the acceleration due to gravity should be retained however).

Suppressi.g the entire vibratory hub motion is equivalent to dropping the
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Figure 27. Outline of dynamic interaction of the two rotors.
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aircraft degrees of freedom as far as the rotor analysis is concerned, but it

still may be useful to evaluate the aircraft vibration due to the hub reactions.

It should also be possible in a similar fashion to suppress the hub motion

due to the static elastic deflection of the airframe and drive train.

The procedure described above is based on the assumption that the entire

system is periodic, which in fact is true only if both rotors have the same

rotational speed (Q 2/21 = 1). When the two rotors do not turn at the same

speed, the motion in the nonrotating frame is not periodic even in steady

flight. The most important example is the single main-rotor and the tail-rotor

configuration. In order to analyze a periodic system still, it is necessary

to neglect the mutual interference of the two rotors. The analysis proceeds

as described above, except that the hub motion of one rotor due to the vibratory

airframe motion produced by the other rotor is always suppressed (the dotted

line in fig. 27). Effectively the helicopter is then being analyzed as two

single rotor systems, except for the coupling through the aircraft "static"

motion (steady state of slowly varying, including the airframe static elastic

deflection).

5.1.12 Circulation convergence.- The blade motion will be calculated

for a given induced velocity distribution over the rotor disk, uniform or

nonuniform. When the converged solution for the blade motion is obtained,

the rotor loading (CT or bound circulation) is re-evaluated. Then the induced

velocity estimate can be updated, and the blade mocion solution repeated.

This procedure continues until the root-mean-squared change in the bound

circulation from one iteration to the next is less than a specified tolerance

level:

where F is the maximum bound circulation and the summation is over the

azimuth. When uniform inflow is used, the criterion is
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To improve the convergence of the iterative calculation of the rotor

loading and wake induced velocity, a lag is introduced in the thrust coefficient

and used to calculate Xi:

CT- C'."

where CTold is the thrust used to calculate X i in the last iteration, and

CTnew is the thrust calculated using that value of X'i. The factor f should

have a value equal to the thrust lift deficiency function

I

(see section 6.1.5). Similarly, for a nonunfo-r inf low caiculaLion a lag is

introduced in the blade bound circulation used to evaluate the induced velocity.

5.1.13 Calculation procedure.- In summary, the calculation of the rotor

motion and airframe vibration proceeds as follows. The input quantities are

the linear and angular velocity perturbations of the rigid body motion; the

rotational speed perturbation; the collective and cyclic pitch control angles

of the two rotors; the aircraft aerodynamic control positions; and the gust

velocity components at the two rotors. The output quantities are the general-

ized forces due to the mean hub reactions of the two rotors; and the converged

solution for the blade motion and aircraft vibration.
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The outermost loop is an iteration on the rotor induced velocity and

bound circulation evaluation. The next loop is an iteration on the rotor and

aircraft motion calculation.

One cycle of the blade and aircraft motion calculation consists of the

following steps. First the transfer matrices H- 1 are evaluated. Then there
n

are a number of cycles of successive evaluation of the rotor and airframe

motion by the following procedure. First the hub motion harmonics are evalu-

ated. Next there is an azimuth loop for the rotor. At each azimuth step the

rotor blade motion harmonics and the aerodynawic hub reactions are updated.

Next the total hub r' actions are evaluated; the aircraft vibration and drive

train vibration harmonics are updated from the hub reactions; and the static

elastic deflection is evaluated.

Within the azimuth loop of Lie rotor motion calculation there are the

following steps. First the hub motion and blade motion are evaluated from

the harmonics., Then there is an integration over the radial station. Within

the radial station loop the blade section pitch, velocity, angl?-of-attack,

and Mach number are evaluated; the lift, drag, and moment coefficients are

evaluated; and the section aerodynamic forces are evaluated. The generalized

aerodynamic forces of the blade modes are evaluated by integrating the section

forces over the blade radius, and then the blade motion harmonics are updated.

The aerodynamic hub forces and moments are also updated.

After each cycle of the blade motion calculation, the convergence is

tested by comparing the blade and airframe motion harmonics with the values

at the beginuing of the cycle.

Finally, after the converged blade motion is obtained, the induced

velocity and circulation convergence is tested by comparing the rotor bound

circulation with the values at the beginning of the iteration.

5.2 Rotor Performance, Loads, and Noise

Once the solution for the periodic motion of the helicopter has been

obtained, the performance, loads, and noise of the rotor can be evaluated.

The rotor loads of interest include the tension and shear fLrces, bending

moments, and torsion moment at various blade radial stations; the control
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loads; the blade root forces and moments; and the net rotor hub reactions.

The rotor-induced vibration can be evaluated at various points in the aircraft.

From the rotor aerodynamic loading the rotational noise can be calculated. The

rotor loads at radial station r will be calculated by integrating the aero-

dynamic and inertial forces acting on the blade outboard of r.

-.2.1 Rotor performance.- To evaluate the rotor performance, the mean

rotor hub reactions are required:

-4-- IA 4

U--

C'C_

CftA If -a

where the summation operator averages the forces and moments over the azimuth.

These quantities are directly available from the rotor analysis (see section

5.1.7), where they are used also to calculate the generalized forces acting

on the aircraft.

The rotor performance is determined in particular by the thrust and torque.

The power delivered to the rotor through the shaft is P = QQ. The propulsive

force is the component of the net rotor force in the direction of the aircraft

velocity:
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"and then the rotor lift, normal to the aircraft velocity, is

L - ,,'r" H + ¥ -

So L and X are the wind axis ccmponents of the net aerodynamic force of the

rotor.

The hub reactions relative to the tip-path plane are obtained by multiply-
ing the force vector by the rotation matrix

where 6e and as are the tip-path plane tilt angles. Also of interest are
the magnitude of the net force of the rotor, and its tilt angles relative to
the reference plane: e tan - I (H/T) and 4 tan- (Y/T).

It is useful to split the rotor power according to the type of energy
loss. The induced, interference, profile, parasite, and climb power losses

are obtained as follows.

-g6- ~~O- (ze L, C
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The induced and interference power losses are obtained by integrating the in-

flow velocities over the rotor disk.

The ideal power loss, consisting of the par "site, climb, and minimum

induced losses, is defined as follows:

where

Then the nonideal power loss, consisting of the profile and excess induced

losses, is defined as

C+ - C4 %A-

A measure of the rotor efficiency is the figure of merit, defined for hover as

This will be generalized for axial and forward flight to
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The ratios CPi/C T and C Pint/CT  may be considered equivalent induced velocities.

A measure of the excess induced losses is the ratio

--
+ 

.

and the profile losses can be expressed in terms of an equivalent section drag

coefficient:

In forward flight, the rotor drag is defined by

-I- V. + -S.

V

or in terms of an, equivalent drag area A' = D r/ Amesreo2.eroo

efficiency in forard flight is the rotor lft to drag ratio, L/D r . Similarly

the total drag is defined as

and the total lift to drag ratio is L/DtotaI*
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The section power loading can be split into components in a similar

fashion:

-- -

C-

____ 4- LA~ JL U-

5.2.2 Section force.- The total tension and shear forces on the blade.-4 ..% ..-A
section at radial station r are F(r) = F A - F1 , where

(see section 2.2,10; here a includes the gravitational acceleration). Hence
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Substituting for a from section 2.2.4, the inertial term becomes

+- 4A '4- PA

-4- 2

r -_ 5
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or

C 4I -+ 6'- c., "e v

+

I-e

The components of the tension and shear forces in the local blade axes are
obtained by multiplying Fshear  by the rotation matrix Rxs
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-A -. k

where

The force is multiplied by RB to obtain the components in the section

principal axes, where

0

The integrals of the aerodynamic forces will be evaluated as follows:

- . + L &T.C! S6.
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+ C

L .--.,

where I is the maximum index (over i 1 to M) such that
rI - Ar I < r (I = 1 if r- Ar > r); and hi = Ari for i I + 1 to M,
except

The inertia constants are evaluated by tra :.'oidal integration over the blade
properties defined at r (j - 1) Ar ( . to M + 1, Ar =/M):

M ri-~

+ ...

where I is the index (i = 2 to M + 1) such that r 1- S r < rl; and

hi =Ar, except
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Cr .. :2..

Simila: iy

with I as defined above; and hi  Ar, except

('r- - C. M 4.,-"z

YA~t ci - C--t

2-

5.2,3 Section bending moment.- The bending moment on the blade section
at radial station r is
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AA MA

"~~~L i ^i- l -=A.i Hii llll l

__M - -

where (2) z+ M k = (ix s + kkxs)M. As in section 2.2.7, the aero-

dynamic and inertial momuents are as follows.

CI C'

0-C-0

+ IA

Substituting for the acceleration from section 2.2.4, the ,-ertial moment

becomes:
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-271-



Iva-1+ 4 )S r., +

-i- 'Lit + 2-;cn)gt+-- .

+ ........

or

L

+ T-

+~
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+ -( -,-,)o

The components of the beading moment in 'he principal axes of the section are
then obtained by

The integrals are evaluated as described in section 5.2.2.

5.2.4 Section torsion moment.- The torsion moment on the blade section
at radial Etation r is

A *Me MA
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-~~ (x-~- -4

where Mr = • M + i + 0 k)') - M. As in section 2.2.8, the aero-

dynamic and inertial moments are as follows.

'A C-A 'NO

%¢

Sc.S,

q SIC
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Then substituting for the acceleration from section 2.2.4 gives for the

inertial term:

+ + L9
+ IL

L
+4 (((%.k rrAt > 9A

L ~ A

- 1* - 3 ( fA,4A

+
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where

or

L I
+" 5 " Zt La k

4I- :40c( +2\~~J(

The integrals are evaluated as described in section 5.2.2.
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5.2.5 Control load.- The control load at the blade root is given by the

moment about the feathering axis:

Ax -MPA MF.

where MFA = eFA * M. From section 2.2.9, the equation of motion for rigid

pitch is

Hence the control load can be evaluated from

-~--sf 4-E

M P.

* -vb-I.

4(S +~'t+ ( -. o + (--" b Le N& - ,*

The inertial constants are defined in section 2.2.19.
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5.2.6 Root forces and moments.- Fcilowing section 2.2.18, the forces
and moments at the blade root are

-- -4 4- Z kSL

.7. CCg

Substituting for the acceleration from section 2.2.4 gives the components of
the blade root force and moment in the rotating frame:

-.I -- MS

-4 2S~.
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+~ Ao
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The inertial constants are defined in section 2.2.19. Here the gravitational
forces is included in the linear acceleration terms, and the root reaction
forces due to the blade mass and weight are retained.

To be consistent with the Fourier analysis used in the equations of
motion, the aerodynamic forces must be operated on as follows. Let F be
the aerodynamic force evaluated at 'j = JA# (j = I to J, # = 2ia/J). The
function F is harmonically analyzed as in section 2.1.4, and then the
function is re-evaluated (at k kap) using those harmonics:

PV0
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where

This operation is applied to the aerodynamic load used to evaluate the section

force, the section bending moment, the section torsion moment, the control

load, and the root forces and moments.

5.2.7 Hub reactions.- Following section 2.2.18, the total force and

moment acting on the rotor hub, resolved in the nonrotating frame (the S system)

are

The hub reactions are obtained from the root forces and moments by resolving

the rotating components into the nonrotating frame and summing over all the

blades: ± .

-2 8

-281-



Applying the summation operator gives directly the hub reactions in the time

domaia, over a period 2w/N. AJternatively, the rotating frame forces and

moments can be harmonically analyzed, and then the harmonics of the rotor hub

reactions obtained from the harmonics of the root forces and moments, by

c((c-L . _ . .,') -(C" _1 4(-,

Nc, -'- (& X, - ,5... - ((C ,,,

2-

Only harmonics at multiples of N/rev are transmitted by the hub to the non-

rotating frame. It is useful however to evaluate all harmonics of the root

forces and moments in the nonrotating frame, according to the above relations,

since a real rotor will not accomplish this filtering exactly.

5.2.8 Vibration.- Following the evaluation of the hub motion in the

section 4.2.2, the linear acceleration in the aircraft at an arbitrary point

r is

(inertial acceleration in the F coordinate frame). The harmonics of the

vibration are thus
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Dividing by the dimensionless acceleration due to gravity (g/2 R) gives the

vibration in g's.

5.2.9 Fatigue damage assessment.- The fatigue damage due to the blade

bending loads, torsion loads, and control loads is determined principally by

the mean and 1/2 peak-to-peak values. An improved estimate of the fatigue

damage can be obtained by using Miner's rule, with the method of reference 29

for counting the loading cycles.

The counting method applied to periodic loading consists of the following

steps. First all the relative minima and maxima in one revolution are

identified. The absolute maximum an& absolute minimum give one loading cycle:

The absolute maximum and absolute minimum are discarded then, leaving a set

of L peaks.

Consider the first group of K peaks (K = 3 or 4 usually, unless there

is a lot of high frequency vaziation in the loading). The 1/2 peak-to-peak

value within this subset of K peaks gives the amplitude of one loading cycle:
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Consider the next group of K peaks, using the last peak of the previous
group as the first peak of this group, to identify the loading cycle amplitude
S2 . The counting procedure continues in this fashion, taking K peaks at a
time to identify loading cycles.

Each group uses K-1 new peaks to obtain one loading cycle, so in K-1
revolutions of L peaks each, L cycles will be identified. This means that
each loading cycle identified occurs I/(K-l) times per revolution. For
periodic data, it is equivalent to consider the L groups of K peaks,
starting at each of the peaks in the set over one revolution.

Then for one revolution of the rotor, there has been identified the load-

ing cycle

occurring one time per rev; and the loading cycles

each occurring 1/(K-1) times per rev.

Miner's rule for the damage fraction is

N

where n is the number of applied cycles at level S, and N is the allowable
number of cycles at level S. The S-N curve will be approximated by

C-
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where SE is the endurance limit; and C and M are constants depending on

the material. Hence

W.

Using the loading cycles amplitude and frequency determined above, gives the

damage fraction

for one revolution.

The damage fraction is required for an analysis of an actual rotor design,

but for more general investigations a parameter emphasizing the applied load-

ing would be useful. Often in fact the loading will be below the endurance

limit of the specific design considered, but still an assessment of the in-

fluence of the loading waveform and amplitude on the relative fatigue damage

is required. Such an assessment can be obtained by considering the damage

fraction obtained from Miner's rule for small endurance limit. In that case,

the damage is proportional to

- M

A more useful representative of the fatigue characteristic of the rotor load-

ing is

which is the equivalent 1/2 peak-to-peak loading amplitude which would alone

give the same damage number as the actual loading.

-285-



5.2.10 Rotational noise.- The rotational noise due to the blade aero-

dynamic loads and thickness will be calculated using the following equations

for the far field harmonics of the sound pressure disturbance. Consider a

rotor moving through the air with velocity components

Using a tip-path plane coordinate frame, these velocity components are

An observer position relative to the hub, moving with the rotor, is defined

by the components x, Yo'0  aLd z (positive aft, to the right, and upward);

or in terms of a range S0 , an elevation angle 0 (positive above the tip-

path plane), and an azimuth angle * 0 (defined as for the rotor azimuth):

Write the blade section forces as

-2(Y
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where FzTPP, FxTPP, and FrTPP are the section aeorodynamic forces; and 9ZZ

Zx' and Z r are chordwide loading distribution functions. The section forces
relative to the tip-path plane are obtained from the forces relative to thc

shaft axes as follows:

This loading can be written as Fourier series:

The blade thickness distribution is written as

where A is the section area, and a(x) is a chordwise distribution func-xs
tion. The velocity normal to the section, VT = Or + Vxsin t, can also be

expanded as a Fourier series
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where 110 W 1, V1 = (Vy - iVx)/(2Sr), and V-I = (Vy + iV )I(20r).

The sound pressure at the observor has a periodic component, which is

the rotor rotational noise:

for t = 0 to 2ff/NQ. Then the harmonics of the far field rotational noise due

to the rotor blade lift, drag, and thickness are:

=.-.

4 -y-
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where the argument of the Bessel function JmN -n is

and -

AVC-

4j. -4. -4 t
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r Ma

the sound pressure harmonics can be presented in dB:

for a single sided spectrum (Pref 00002 N/m2). The overall sound pressure

level is

The time history is also of interest for rotational noise.

The chordwise distribution functions for lift and thickness give
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A simple and generally conservative approximation is impulsive lift and thick-

ness, for which k. = a = 1. Thin airfoil type loadingn n

I

gives ,_"
_ . ",

where x is the midchord distance from the spanwise axis of the blade. For
m 2

NACA 4- and 5-digit airfoil series, As = .685TC where 1 is the thickness

to chord ratio. For these airfoils

where

tc-,,, - -n', V
4- U4 3x~

A rectangular loading distribution gives

which might be appropriate for the drag.
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5.3 Steady State or Slowly Varying Aircraft Motion

The linearized equations of motion for the rotorcr;-ft rigid body degrees

of freedom are

f rom seLi o 4 .<4 H,-k re

-LIT

Nk. Cft At OF~4

-= air

from section 4.2.4. He~re

9 = first 3 elements of 6th row of c

-A T
f -first 3 elemerts of 6th column of c

with the matrices c and cT  defined in section 4.2. The terms involving

I01 and I * account for the rotational moments of inertia of the two rotors.
01 02

The rotor mass is included in the aircraft gross weight and monieuts of inertia.

Note that M*g = y2cw/aa. Hence if these equations are divided by 2y/a (rotor

#i parameters), they will be in the form of rotor coefficient to solidity

ratio, with the components in the body axes (F system). When the rotor sneed

perturbation is included, the equations of motion become
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(see section 4.3.2). The inertia matrix is as follows:

+ 2 4- 4-

7, . w-, -{. * -- s
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where I includes the rotational momerts of inertia of the two rotors:

- tZ~~*~;L I ( 7 2_ 4- a -- r 7

The solution for the generalized forces due to the airframe aerodynamics is

described in section 4.2.6. The solution for the generalized forces due to

the two rotors is described in section 4.2.5.

In the trim analysis, these equations are solved for the case of steady

state flight. The controls are adjusted until the desired operating condition

is achieved.

In the transient analysis, these equations are numerically integrated in

time. A non-equilibrium flight path is produced by a prescribed control or

gust input.

In the flight dynamics analysis, the stability derivatives in a linear

expansion of the rotor and airframe aerodynamic generalized forces are obtained

by prescribed perturbations of the body motion and controls.

5.3.1 Trim analysis.- The helicopter trim calculation determines the

control positions and aircraft orientation for the specified flight condition.

For steady state flight the perturbation rigid body motion is zero, so the

net force and mowmnt on the aircraft must be zero. Thus the rigid body

equations of motion give six equations to be solved for the six trim variables,

consisting of the four pilot's controls (S0, 6c, 6s, and 6 p) and the two trim

Euler angles (OFT and *FT) . The controls are adjusted until equilibrium

flight is achieved for the specified flight condition. For level flight

(eFP = 0) or a specified climb velocity, it is assumed that the engine can

supply whatever power is required to maintain the rotor rotational speed.

Alternatively, the aircraft power available can be specified (such as for

power-off descent). Then there is an additional trim variable (the flight

path angle OFP) and an additional equation to be solved (the power required

equals the power available).
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The helicopter can also be trimmed in a steady turn by prescribing the

turn rate PF. A coordinated turn is obtained if zero sideslip ( FP = 0) is

specified. In forward flight tYi resultant bank angle should be

where n is the normal load factor.

Hence the trim analysis solves the equations of motion for a specified

steady flight speed and rotor speed (and possible a specified turn rate).

Setting the perturbation rigid body motion and rotational speed to zero gives

the following equations:

-~- -- Q-'

-4-~

___

The contributions to the force and moment are from the hub reactions of the

two rotors, the airframe aerodynamics, the acceleration due to the turn rate,

and the aircraft weight.

The piiot;s controls are collective stick 6 lateral cyclic stick C)

longitudinal cyclic stick 6 , pedal 6p, and throttle 6 The controls

of the two rotors and aircraft are related to the pilot's controls by

-295-



where v is the control input with all sticks centered (see section 4.1.6).0

The throttle control variables (6t and t ) are not used for the trim analysis.

For some rotorcraft configurations the pilot's collective stick (6 0) does

not control the rotor collective pitch, rotor trim being handled by a rotor

speed governor using collective pitch feedback. In such a case the static

component of the blade pitch governor, (A6govrstatic for either or both

rotors, can be used as the trim variaole in place of 6 . Hence A0 is0 __ govr

addqd to the rotor collective pitch 5 obtained from Vp and v
75 p o

The table below summarizes the options considered for the trim analysis.

For each case there are a number of trim variables, which are adjusted to

achieve the target values of an equal number of trimmed quantities. In the

free flight cases, the helicopter is trimmed to force and moment equilibrium.

In the wind tunnel cases rotor #I is trimmed to a prescribed operating condi-

tion. The trim option and the degrees of freedom representing the aircraft

can be specified independently; hence it is possible to use a free flight trim

option with an analysis of a helicopter in a wind tunnel. The options called

wind tunnel cases are however more typical of wind tunnel test configurations,

particularly with only one rotor rather than the complete aircraft. The trim

variables consist of the four pilot's controls, aircraft orientation parameters,

and wind tunnel orientation parameters. The aircraft orientation parameters

consist of the trim Euler angles, flight path angles, and turn rate; they are

used only for the free flight cases. The wind tunnel orientation parameters

consist of the test module yaw and pitch angles.

The free flight cases include the following options. In tne level flight

case the pilots controls and the aircraft Euler angles are used to trim the

six components of the net force and moment on the aircraft to zero. In the

climb or descent case, the flight path angle is used in addition to trim the

power required to a specified value. (In vertical flight 0 FP = ±90* however,

so the parameter which would have to be varied to achieve the specified power
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Helicopter Trim Options

trim variables

Free Flight Cases
No trim 

Z Z
F,M T T T T T T
F, M T T T T T T
-.a .%

F M, C T T T T T T T
F, M, C /- T T T T T T T
Fx , F z , y T T T
Fx Fz M, C/- T T T T

Wind Tunnel Cases
No trim Z Z Z Z Z
CT/v T

T
Cp/w** T

3T T
CV,,' (?0, 08 T T T

CL/w-, CX/V-, Cy/0" T T T
CL/a-, CX/ ", Cy/0- T T T
CL/-' CX/9"' Oct (s T T T T

(Ic T
CTV-, 3c T T I
CL/ , CX/- T TT

CL/w- , CX/,- ' c T •T

T T # T

T = trim variable

Z zero

aircraft velocity and rotor
rotational speed fixed
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requirements is the helicopter vertical speed.) Optionally the sideslip angle

,"FP can replace the roll angle *FT as a trim variable. A useful alternative

is to trim the longitudinal variables only. The net vertical and horizontal

forces and pitch moment are trimmed to zero using collective and longitudinal

cyclic stick controls and aircraft pitch attitude. This longitudinal trim is

exact for the case of a laterally symmetric aircraft in a symmetric flight

condition. It is also a useful approximation which may converge better than

a full six degree of freedom trim analysis; and when neglecting the tail rotor

in the analysis.

The wind tunnel cases include the following options. The rotor thrust or

power can be trimmed with collective pitch. The rotor tip-path plane tilt can

be trimmed with lateral and longitudinal cyclic pitch. The tip-path plane is

defined as the first harmonics of the tip deflection ztip:

The rotor lift and drag (in wind axes) and the side force can be trimmed using

collective and cyclic control. Either the drag coefficient to solidity ratio

CX/a can be specified, or the equivalent drag area X/q (so CX/O = (X/q)

(V/QR) 2/Ab). As an alternative, the shaft angle of attack can be used in

place of longitudinal cyclic or collective pitch as a control variable. It is

also possible to trim only the longitudinal varizblt±s.

The trim iteration can also be omitted. in this case the helicopter or

rotor performance is evaluated for a specified control setting.

In the free flight cases, the criterion for convergence of the trim

iteration is that the net force and moment be less than a certain tolerance

level as specified by the parameter e:

+r-Y. + (Cfi J
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z <

and

when the power is trimmed as well. For the wind tunnel cases, the following

criterion is used:

uhere f = CT/O, Cp/o, CL/, CX/O, or C,/a as appropriate (with fmin = .01,

.001, .01, .001, or .001 respectively). The criterion for the flapping is

(with C and $s in radians).

The trim problem is to find the values of the control variables (v) such

that the target values of certain trim quantities (0) are achieved. The

complex, nonlinear equations involved require an iterative solution procedure.

A first order expansion of A(v) gives

-~--I

or
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The partial derivative matrix required is

The factor F : 1 is included to avoid overshoot oscillations in the trim

iteration by reducing the step size.

The matrix D is constructed as follows. First M is calculated

using the initial values of V. Then each control vi is decreased by the

increment Avi, and Mnew is calculated; then the i-th column of D is

given by

and the control is restored Lu its initial value. Finally the matrix D is

inverted, and all elements multiplied by the factor F. The partial derivative

matrix can be recalculated occasionally as the iteration proceeds, to improve

the convergence. Generally a step size of about A = 1 degree is satisfactory

for all control variables.

5.3.2 Transient analysis.- The helicopter transient analysis involves

numerically integrating the equations of motion for the rigid body and rotor

speed degrees of freedom. A non-equilibrium flight path is produced by a

prescribed control or gust input as a function of time. The assumptions of

this analysis are that the aircraft motion is slow compared to the rotor

speed, and that the perturbed rigid body motion is small. The assumption of
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quasistatic body motion allows the periodic rotor motion solution to be used

with the transient analysis. The small motion assumption arises because it

was assumed that the perturbation rotor hub motion is small; it is consistent

therefore to integrate the linearized equations for the rigid body motion.

The degrees of freedom considered are the six linear and angular rigid

body motions (xF, Yr' ZF' JF' OF' 'F) and the rotor speed perturbation (is).

The input parameters are the aircraft controls (6o, 6 6 , 6 ) and aero-

dynamic gusts. Optionally any of these degrees of freedom can be held constant.

The transient analysis with all seven degrees of freedom fixed produces the

rotor response to control and gust inputs. The equations to be integrated are:

'4

4-

where AQ is the rotor and aerodynamic generalized force, less the trim

value; and AC is the rotor torque, less the trim value. The initial

conditions are zero (except for tF when the helicopter is trimmed in a

steady turn).
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The transient rotor speed perturbatons will produce throttle and rotor

collective pitch increments due to the governor:

and

for rotor #1 and rotor #2. The rotor azimuth perturbation * s will also

produce cyclic pitch increments due to the trim swash-plate tilt:

K WS

For rotor #2 these cyclic pitch increments must be multiplied by 92/QlV An

autopilot is also included, since the transient rigid body motions can be

divergent in some flight conditions:

,6. V, ( C -+e~

Hence the pilot's control positions consist of the trim setting, the transient

term, and the autopilot term; and the individual control positions are obtained

from

with the governor contributions added to the elements of v as required.
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The transient calculation begins with the trim solution, at time t = 0.

The pilot's controls or gust input are specified as a function of t. The

equations of motion above are in the form

A fourth order Runge-Kutta method will be used to numerically integrate these

equations from time t to time t n+ = tn + h:

%A k,

Note that it is necessary to solve for the periodic rotor motion four times

per integration step.

5.3.3 F'light dyn~nics analysis.- The flight dynamics analysis here con-

sists of a calculation of the helicopter stability derivatives and an analysis

of the resulting linear differential equations. As for the transient analysis

it is assumed that the body motion will be slow (compared to the rotor rota-

tional speed), so the quasistatic rotor solution can be used. The assumption

that the perturbation body motion has small magnitude is here consistent with

the stability derivative representation of the rotor.

The equations of motion are the same as considered for the transient

analysis (section 5.3.2). Here the rotor hub forces and the aircraft aero-

dynamic forces are expanded in terms of the stability derivatives. By making

successive perturbations to the inputs for the rotor and aircraft analysis,

the generalized forces can be expanded as follows:

- 4-303-
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The coefficients of Lhe matrices are the aircraft stability derivatives.

There are contributions from each rotor, and from the wing/body, horizontal

tail, and vertical tail. The airframe terms include the effects of the rotor-

induced interference velocities. The result for ACQ is similar (rotor

contributions only). The gust velocity here is uniform throughout space.

The rotor speed governor, defined by the following control laws

(A~vr~1  -Ke 1 4- Y4 ''

will be directly included in the stability derivatives. It is also necessary

to account for the cyclic pitch perturbations due to the rotor azimuth

perturbation:
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For rotor #2 these cyclic pitch increments must be multiplied by "2/l'.

The result is a set of linear differential equations of the form

describing the flight dynam-ics of the aircraft. The state vector x consists

of the rigid body and rotor speed degrees of freedom:

The control and gust vectors are defined as follows

7r

CO,

E ve
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(the gust components are in wind axes). Optionally any of the degrees of

freedom can be omitted from the analysis. Using these equations the helicopter

flying qualities can be examined, in terms of the eigenvalues and eigenvectors.

The transfer function (pole-zero set or frequency response) or the tiansient

response to a prescribed control or gust input can also be obtained. The

transient response can be calculated by numerically integrating the equations

.-A i -AJ A) A a~rve -+-A' Be.

in a manner similar to the transient analysis (see section 5.3.2). In this

case only a gust that is uniform throughout space can be considered.

The stability derivatives are obtained in body axes (the F system) rela-

tive to the aircraft center of gravity. There are contributions from each of

the rotors, and the aircraft aerodynamic components (wing/body, horizontal

tail, and vertical tail). The following notation is used for the stability

derivatives.

Equation Notation Variable Subscript

roll moment I L p
x

pitch moment I M q
y

yaw moment I N r
z F

longitudinal force M*X XF u

lateral force M*Y YF v

vertical force M*Z F w

torque Q

The aircraft inertias are introduced so that the coefficient of the highest

time derivative in an equation is unity. The derivatives are defined with

positive signs on the right-hand side of the equation of motion.
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Application of tiis procedure to the wind tunnel case will give the wind

or shaft axis derivatives of a single rotor alone.

5.3.4 Transient gust and control.- Transient gust and control inputs are

required when the equations of motion are integrated for the transient or

flight dyna.ics analysis. The pilot's control increment 0 is required at
p

time t. A simple form is

where v is a constant vector and C is a scaler function of time. Morepo

generally, the control input can be a function of the aircraft motion as well.

The gust velocity (u (in wind axes) is required at theThe ~ ~ ~ gsveoiyg-(G vG wG )

time t, at the location of both rotors and the airframe aerodynamic components.

Consider a convected gust field, defined by a function G(Xg y, Zg ). The

gust coordinates have origin at the center of gravity when t = 0. The air-

craft velocity is V , in the x (wind axis) direction. The gust field has

velocity V in the negative xg direction; the gust is coming from azimuth

angle 0g relative to the aircraft (see fig. 28). Hence given the position

r (in wind axes), the location in the gust field is

The position vector for the wind/body is

-3 07.
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with in the F frafie, relative to the aircraft center of gravity: the

position vectors for the horizontal tail, vertical tail, and r'jtor hub are

obtained in a similar manner. The positions on the rotor disk are

(neglecting the tilt of the tip-path plane relative to the hub; the sign ot

the Ss component is changed .for a clockwise rotating rotor). A one-

dimensional convected gust field is defined by

Note that the gust is convected at the rate V relative to the aircraft ifg

Va is not nised, and a- a rate Vg relative to the fixed frame if Va is

used. With V =% 0 the gust field is stationary (relative to the aircraftg

or the earth if V is not or is used).

Alternatively, a uniform gust field can be used, which is a function of

time only. A simple form is

where g is a constant vector and G is a scaler function of time.
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Figure 28. Convected gust description.
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5.3.5 Calculation procedure.- The solution for the rotorcraft aero-

dynamics and dynamics proceeds as follows. The job begins with data input and

initial calculations. Next the trim solution is obtained. Then the aero-

elastic stability analysis, flight dynamics analysis, or transient analysis is

performed as required. An old job can be restarted in any of these four tasks

(trim, flutter, flight dynamics, or transient).

In the trim analysis the controls are iterated until the required operat-

ing state is achieved. Since the nonuniform inflow influence coefficients

depend on the rotor thrust (through the wake geometry) it is necessary to

iterate between the influence coefficient calculation and the trimmed motion

and forces calculation (unless the rotor thrust is specified as part of the

definition of the required operating state). The trim analysis is performed

first for uniform in'flow, then for nonuniform inflow with a prescribed wake,

and finally for nonuniform inflow with a free wake geometry. After obtaining

the trim solution, the aircraft performance and loads can be calculated (this

is the trim restart entry point for an old job).

In the transient analysis, the rigid body equations of motion are numeri-

cally integrated. At each time step there is an iteration between the non-

uniform inflow influence coefficient calculation, and the calculation of the

rotor and airframe motion and forces.

In the flight dynamics analysis, the stability derivatives are calculated

and the matrices are constructed that describe the linear differential equa-

tions of motion, At each motio.. control incremenL in the stability deriva-

tive calculation there Is an iteration between the influence coefficient

calculation and the calculation of the motion and forces. Finally the system

of linear differential equations is analyzed (optionally including a numerical

integration as for the transient analysis).

In the flutter analysis the matrices are constructed Lhat describe the

linear differential equations of motion, and the constant coefficient or

periodic coefficient equations are analyzed. Optionally the equstions are

reduced to just the aircraft rigid body degrees of freedom by assuming quasi-

static response of the other degrees of freedom, and the equations are

analyz.C as for the flight dynamics task.

-310-



6. AEROELASTIC STABILITY

The objective of the aeroelastic analysis is to derive a set of linear

differential equations describing the perturbed motion of the helicopter from

the trim flight condition. The stability of the system is defined by the

eigenvalues of these equations.

6.1 Rotor Model

The differential equations cf motion for the rotor blade have been

deirved in section 2.2.18. Here it is necessary to linearize the inertial

and aerodynamic forces in these equations.

6.1.1 Rotor degrees of freedom.- The rotor blade motion is described by

coupled flap/lag bending, rigid pitch and elastic torsion, and optionally the

gimbal pitch and roll motion (or teeter motion for the two-bladed rotor case).

The blade degrees of freedom are written as the sum of trim terms and pertur-

bation terms. The trim solution is described in section 5.1; the perturbation

motions are the degrees of freedom for the aeroelastic analysis. In particu-

lar, the generalized coordinate of the i-th blade bending mode is written

or for the bending deflection

After substituting for q,, the delta notation indicating the perturbed

motion can be omitted.

The rotor equations of motion have been obtained in the rotating frame,

with degrees of freedom describing the motion of each blade separately. In

fact, however, the rotor responds as a whole to excitation from the nonrotat-

ing frame -- shaft motion, aerodynamic gubs, or control iDputs. It is

desirable to work with degrees of freedom that reflect this behavior. Such a
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representation of the rotor motion simplifies both the analysis and the under-

standing of the behavior.

The appropriate transformation to obtain the degrees of freedom and

equations of motion in the nonrotating frame is of the Fourier type. There

are many similarities between this coordinate change and Fourier series,

discrete Fourier transforms, and Fourier interpolation; the ccamon factor is

the periodic nature of the system. A Fourier series representation of the

blade motion is appropriate for dealing with the steady-state solution

(section 5.1.1). Here we are considering the general dynamic behavior,

including transient motions; hence the Fourier coordinate transformation is

required. This coordinate transformation has been widely used in the clas-

sical literature, although often with only a heuristic basis. For example,

it has been used in ground resonance analyses to represent the rotor lag

motion (ref. 30) and in helicopter stability and control analyses for the

rotor flap motion (ref. 31). More recently, there have been applications of

the Fourier coordinate transformation with a sounder mathematical basis

(e.g., ref. 32).

Consider a rotor with N blades equally spaced around the azimuth, at

m= P + mAp (where # = 2ir/N and the blade index m ranges from i to N).

Hence ' = At is the dimensionless time variable. Let q(m) be the degree

of freedom in the rotating frame for the m-th blade, m = 1 to N. The Fourier

coordinate transformation is a linear transform of the degrees of freedom

from the rotating to the nonrotating frame. Thus the following new degrees

of freedom are introduced.
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Here 0 is a collective mode, 81C and 0!S are cyclic modes, and 0N/2 is

the reactionless mode. For example, for the rotor flap motion, 0 is the

coning degree of freedom, while $1C and a are the tip-path plane tilt

degrees of freedom. The inverse transformation is

which gives the motion of the individual blades again. The summation over

n goes from 1 to (N-l)/2 for N odd and from 1 to (N-2)/2 for N even.

The N/2 degree of freedom appears in the transformation only if N is

even. The corresponding transformation for the velocity and acceleration are

*

4- -4-

Note that transformation to the nonrotating frame introduces Coriolis and

centrifugal terms.

The variables o  nc, 0 ns , and $.N/2 are degrees of freedom, that is,

functions of time, just as the variables q(m) are. These degrees of free-

dom describe the rotor motion as a whole, in the nonrotating frame, while
q(m) describes the motion of an individual blade in the rotating frame. Thus

we have a linear, reversible transformation between the N degrees of free-
q(m)

dom q in the rotating frame (m - 1, ... , N) and the N degrees of

freedom (c 1nc , 8ns N2) in the nonrotating frame. Compare this
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coordinate transformation with a Fourier series representation of the steady-
(MN)

state solution. In that case, q z is a periodic function of m , so the

motions of all the blades are identicial. It follows that the motion in the

rotating frame may be represented by a Fourier series, the coefficients of

which are steady in time but infinite in number. Thus there are similarities

between the Fourier coordinate transformation and the Fourier series, but

they are by no means identical.

This coordinate transform must be accompanied by a conversion of the

equations of motion for q(m) from the rotating to the nonrotating frame.

This conversion is accomplished by operating on the equations of motion with

the following summation operations:

N

The result is equations for the , 0an, a ns , and 0N12 degrees of freedom,

respectively. Note that these are the same operations as are involved in

transforming the degrees of freedom from the rotating to the nonrotating

frame. Since the operators are linear, constants may be factored out. Thus

with constant coefficients in the equations of motion, the operators act only

on the degrees of freedom. By making use of the definition of the degrees

of freedom in the nonrotating frame, and the corresponding results for the

time derivatives, the conversion of the equations of motion is then straight-

forward. Complexities arise when it is necessary to consider periodic coef

ficients, such as due to the aerodyiumics of the rotor in nonaxial flow.

The total force and moment on the hub ha-e been obtained by summing the

contributions from the individual blades. The result iti operators exactly of

the form above, for obtaining the total hub reaction in the nonrotating frame

from the root reaction of the individual blades in the rotating frame. The

origin of the summation operation is clear, and the sin*m or cos m  factors
in m

arise when the rotating forces are recolved into the nonrotating frame. In

fact, the equation conversion operators in general may be viewed as simply

resolving the moments on the individual blades into the nonrotating frame.
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The Fourier coordinate transformation is often associated in rotor

dynamics with the generalized Floquet analysis. The latter is a stability

analysis for linear differential equations with periodic coefficients.

Indeed, there is a fundamental link between these topics because both are

associated with the rotation of the system. They are, however, truly separate

subjects -- either can be required in the rotor analysis without the other.

For example, a rotor in axial flow on a flexibla support (or with some other

relation to the nonrotating frame) requires the Fourier coordinate transforma-

tion to represent the blade motion, but is then a constant coefficient

system. Alternatively, for the shaft-fixed dynamics of a rotor in forwavi

flight, a single-blade representation in the rotating frame is appropriate,

but there are periodic coefficients due to the forward flight aerodynamics

which require the Floquet analysis to determine the system stability.

For the present investigation, the degrees of freedom to be transformed

to the nonrotating frame are blade bending, blade pitch, and gimbal motion.

The nomenclature for the corresponding degrees of freedom in the rotatiDg

and nonrotating frames are as follows:

rotating nonrotating

(1) ( 0( 0) -* :)

torsion P. 9&a ) c; /2

gimbal 5cb a ( 'c. ( ' $

The notation O(i) is used for the i-th bending mode in the nonrotating

frame. With the modes ordered according to frequency, 0() is thus usually

the fundamental lag mode, and 0(2) the fundamental flap mode. Similarly,

6M is the i-th torsion mode, with 0 ( 0 ) rigid pitch and the remaining

modes elastic torsion. The collective and cyclic modes (0, 1C, 1S) are

particularly important because of their fundamental role in the coupled

motion of the rotor and the nonrotating system. When the transformation of
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the equations and degrees of freedom is accomplished, for axial flow there

is a complete decoupling of the variables into the following sets:

(a) the collective and cyclic (0, 1C, 1S) rotor degrees of freedom

together with the gimbal tilt and rotor speed degrees of freedom

and the rotor shaft motion

(b) the 2C, 2S, ..., nc, ns, and N!2 rotor degrees of freedom (as

present)

Thus the rotor motion in the first set is coupled with the fixed system,

while the second set consists of purely internal rotor motion. Nonaxial

flow couples to some extent, all the rotor degrees of freedom and the fixed

system variables, primarily due to the aerodynamic terms; stil ibove

separation of the degrees of freedom remains a dominant feature of the rotor

dynamic behavior.

For a two-bladed rotor, the blade bending degrees of freedom are coning

and teetering type modest

z

NOV% (z). - z 5C

The pitch/torsion degrees of freedom 90 and 61 are similarly defined.

The teetering degree of fred-cAm 'I 4o also i..Aed for the "-^

rotor (in place of the gimbal degrees of freedom). The teetering motion is

defined in the rotating frame, hence

The special characteristics of the two-bladed rotor dynamics are reflected

in the appearance of the teetering-type degrees of freedom (01, 01, and

rather than the cyclic motions (IC and 1S) as for N > 3. The coning and
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teetering equations of motion are obtained by applying to the rotating frame

equations the following operators:

6.1.2 Rotor equations and hub reactions.- The equations of motion for
the coupled flap/lag bending and for elastic torsion/rigid pitch motion of
the blade in the rotating frame (section 2.2.18) are linearized for the

aeroelastic analysis. The result is:

-4

bV.

+ * e

*A,
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Se -- ! ka ;a 1

-Il

where

- '&~.. 4 j I- (a., -, ..

.1= .-

The inertia constants are defined in section 6.1.3. Only linear lag damping

has been considered here, and for convenience the lag damper term is included

in the coefficient Iqki±* Irtroducing the Fourier coordinate transformation

for the blade degrees of freedom, the rotor hub forces and moments derived in

section 2.2.18 become:
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The equations of motion for gimbal tilt and roll, or for the teeter motion
of a two-bladed rotor, are obtained from

a ~ - + k

or

where

4- Q -

(section 2.2.18). Also, for a two-bladed rotor, the hub reactions take a ,
somewhat different form:

~4 b :z+

• 
-320.
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z Cy

The aerodynamic forces required are

CAOSJ
-r-

-32 2"
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and

6.1.3 inertiaZ constcrts.- The inertial constants for these linearized

equations of motion are obtained from the constants defined in section

2.2.19 as follows:

-.
4--
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6.1.4 Aerodynamic forces.- The blade section forces and pitrh moment as

derived in section 2.4.1 are:

4M C-

Fach component of the velocity seen by the blade has a trim term and a smoli

perturbation term, so we write

tA~ T

It fol",ws that the perturbation of angle of attack, resultant velocity, and

Mach number are:

c%59 - (IA-r&At -V S /
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C M-l L

and the perturbations of the aerodynamic coefficients are

with similar results for c and c d. The perturbations of the section aero-

dynamic forces may then be obtained by carrying out the differential operation

on the epxressions for Fz, Fx Fr' and Ma, using the above results to express

the perturbations in terms of 6e, 6uT, 6Up, and 6uR. The coefficients of

the perturbation quantities are evaluated at the trim state. The results for

the perturbation forces are:

e( LA

_-- -, 4--.- M _ . p

CZA L.L

Lk CR4 llC^ L
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LL~ A~ Eiz LAMN1J C

SL- (N)C su

The blade trim velocity components are defined ip section 2.4.2. The

perturbation velozity components are due to the blade degrees of freedom, the

shaft motion, and the aerodynamic gust velocity:

-tA 4- + V(. o )

-A +

-- -4. 4-1 4

-32 7 . - , ., ,),
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iLel. .hyj -' +'4

The gust velocity components are here assumed to be uniform throughout space.

Perturbation inflow components Xu? ,x, and Xy have bepJi included in 6up

(see section 6.1.5). Recall that the body Euler angle contributions are not

included in the evaluation of x , ay, and cz here. The perturbation quanti-

ties required for the unsteady pitch moment are

.- 4-.IA L 8-4
LL

14

(see section 2.4.8). The derivatives of the blada section aerodynamic coeffi-

cients with respect to angle of attack and Mach number are obtained from

steady, two-dimensional airfoil characteristics with corrections for tip flow,

yawed flow, and dynamic stall effects, as described in sections 2.4.4 and

2.4.7.



Combining the expansion for the section forces and moment in terms of
the velocity perturbations, and the velocity in terms of the motion of the

rotor and shaft, the perturbation aerodynamic blade forces expanded linearly
in the degrees of freedom are obtained. Giving names to the aerodynamic
coefficients at this point in the analysis, the results for the required
aerodynamic forces on the rotating blade are as follows. The aerodynamic
force for flap/lag bending is:I

, &

' - CWiXI- W-C

4--

The radial force is

--



The aerodynamic force for blade torsion and pitch is:

I Finally, the aerodynamic hub forces and moments are similar to the result

for the blade b0ending, but with the following changes in the integrands and

notat ion:

_ Intgrand Coefficient Notation

-- Flap moment rF M
z

Torque rF Q
x

Blade drag force F H
xThrust F T "s

z
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Combining the results for the expansion of the aerodynamic forces and the

expensiois of the velocities, the aerodynamic coefficients can be evaluated.

The aerodynamic coefficients are constant for axial flow, but for nonaxial

flow they are periodic functions of p . The coefficients for flap/lag bend-
m

ing are;

I..'

-331-~- Y{m1r

Moq. r _'

JNA~~~~L - -(&r~
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The aerodynamic coefficients for the flap moment are

PA

-4- LA&

The aerodynamic coefficients for the other hub forces and moments follow the

pattern of Lie flap moment, with the following changes in the notation and

integrands:

Integrand Coefficient

Flap moment rF Mz

Torque rF Q
x

Blade drag force F H
x

Thrust F Tz
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The radial force coefficients are

I A

S0 (I~T~.;

A.,.

L4 K1 y,4

I;: sb
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where

eFr. - ~ + ~ T- S-A gx+ Z;2

-~ SA 3 + t(..i-+ Y

and Fr and Fare si.Ll±arly defirned. Finally, the aerodynamic coeffi-

cients for the blade pitch and torsion are

K..r IF"

-S 1C 
C

c pA -i ~r

Y-

-~~~~C SP 2. A i& f
S . C.,

CPA M'k

&A.-33&A



tAAV.

+ S~i jAa C4AW- ~

+- AA~ -2

-~ +

s I

where

FA~ 16C'

I -> -335-



6.1.5 Inflow dynann.a.- The aerodynamic forces on the rotor result in

- d- J auu iniflou velocities at the disk, for both the trim and transient

loadings. The wake-induced velocity perturbations can be a significant

factor in the rotor aeroelastic behavior; an extreme case is the influence

of the shed wake on rotor blade flutter. The rotor inflow dynaaics should

therefore be included in the aeroelastic analysis. However, the relationship

between the inflow perturbations and the transient loading is likely more

complex even than for the steady prob.em (nonuniform wake-induced inflow

calculation), and models for the perturbation inflow dynamics are still under

development. L, the present analysis, an elementary representation of the

inflow dynamics is used. The basic assumption is that the rotor total

forces vary slowly enough (compared to the wake response) that the classical

actuator disk results are applicable to the perturbation as well as the trim

velocities.

A contribution to the velocity normal to the rotor disk of the following

form has been included in 6up:

where X is the inflow perturbation component uniform over the diisk, while

the X and X components vary linearly over the disk. The inflow dynamicsx y
model must relate these inflow components to the transient aerodynamic

iorces on the rotcr, specifically to the thrust, pitch moment, and roll

moment; and to the transient rotor velocity perturbations tSp 6y1 and 6-

Following reference 33 we use:

IL)
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where

and

c",, _4 ... -------- _-

,). + 4A,--

Here we have included linear velocity perturbations due to the tirust, con-

sistent with the trim inflow model of section 2.4.3, which gives expressions

for the constants Kx and K y. These relations for the inflow perturbations

imply the following lift deficiency functions:

for moments

for thrust

forward flight

Sqr4 -moments in hover

-thrust in hover

-33?-



(see ref. 33). A time lag in the inflow response to loading changes wi.l

also be included:

( L

using TT K T SX/6T and TM KM 6X/6M, with the constants KT = .85 and

KM = .11 (refs. 34 to 36). These relations give a dimensional time lag of

T - .22/46 in hover, and in forward flight TT = .42/in and TM = .22/pP.

The effect of the ground on the inflow dynamics is to add a perturbation

due to changes in the rotor height above the ground:

As for the trim inflow analysis, the result of reference 4 for the ratio of

the induced velocity in and out of ground effect is used:

V1

which gives

A _
- '2'- -

Expressions for cose and z are derived in section 2.4.3. Since 6X/6z > 0,

ground effect introduces a positive spring to the rotorcraft flight dynamics.

A decrease in the rotor height above the ground produces a decrease in the

induced velocity, hence a rotor thrust increase that acts as a spring against

the vertical height change.

For the side-by-side helicopter configuration, the antisymmetric dynamics

exhibit an unstable roll oscillation due to interaction of the rotor wake
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and ground. Such behavior can be included in the ground effect model derived

here by using a negative value for 6X/6z (a negative roll spring), which must

be obtained from experimental data. In this case the inflow perturbations

of the two rotors are related to the symmetric and antisymmetric height

perturbations:

where 6z and 6z2 are the height perturbations at the two rotor hubs. A

form applicable in general is

A" ..,..

including the factor R1 /R2  since the hub motion is normalized using R1.

Finally, the rotor/rotor interference is included in the inflow dynamics

model, using the same interference factors K1 2 and K2 1  as for the trim

induced velocity model (see section 2.4.3).

In summary, the differential equations for the inflow perturbations

X and X are:
x y
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for rotor #1 and for rotor #2. The coupled equations for the uniform inflow

perturbations of the two rotors are:

Iif r 2C

a - c .-" ,

The velocity perturbations 6S1, 6py , and 6pz are required for

Vy z t-6W2

2C- _ __ __
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In shaft axes, the shaft motion and gusts give

The rotor height perturbation 6z  is obtained from the vertical component

of the displacement at the rotor hub:

expressing the hub motin in terms of airframe degrees of freedom. For the

rigid body degrees of freedom the mode shapes are:

(section 4.2.1). Hence

.4-
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Note that a spring is introduced into the zF equation (if cosOFTcos FT 0 0),

and also possibly into the yF and xF equations.

The time lag is often not an important factor, so a quasistatic model

for the inflow dynamics is generally sufficient. Dropping the time lag terms,

the equations for Xu, Xx', and X reduce to linear algebraic equations.Y
Hence in the quasistatic case the inflow perturbations do not increase the

order of the system. The wake influence reduces to an algebraic substitution

relation, which if incorporated analytically would lead to lift deficiency

functions; with large-order systems, it is more practical to accomplish the

substitution numerically.

6.1.6 Rotor equations of motion.- The linear differential equations of

motion for the rotor model can be constructed now. The equations of motion are

in the nonrotating frame, that is the Fourier coordinate transformation has

been applied to the bending and torsion degrees of freedom of the blade. For

now only a three-bladed rotor is considered; the equations are extended to an

arbitrary number of blades below. The equations of motion for the rotor, and

the hub reactions, take the following form:

zli + 0IO+ -- q oe+ Zu +CZ4- ziV:;4- oL

The coefficient matrices are constructed from the results of section 6.1.2.

Here the matrices only include the structural and inertial terms; M andaero
F are the aerodynamic forces. The vectors of the rotor degrees of
aero

freedom (xR), shaft motion (a), rotor blade pitch input (vR), aerodynamic

gust (g,, in shaft axes), and the hub forces and moments (F) are defined as:

(.N w- (k) )-
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Note that in the rotor degrees of freedom xR, the notation 0 (k) and e (k)

is intended to cover as many bending and torsion modes as the analysis

requires. Also, the degrees of freedom used for the inflow dynamics model

are A A , and A defined by A = X (in order that the highest order

derivatives wil be A, in the acceleration matrix). The inertial matrices

are defined in section 6.4.1.

The aerodynamic terms M and F are required to complete theaero aero
differential equations of the rotor model. They are obtained by summing

over all N blades the aerodynamic forces in the rotating frame (section 6.1.4)

and introducing the Fourier coordinate transformation for the blade bending

and torsion degrees of freedom as required. The result for the required

aerodynamic forces is

~AO - + C ++ C O(

For the case of a rotor operating in axial flow (v = 0) the aerodynamic

coefficients for the blade forces in the rotating frame are constants,

independent of the blade azimuth angle m. The coefficients are also then

entirely independent of the blade index (m); hence the summation over the

N blades operates only on the system degrees of freedom, not on the aero-

dynamic coefficients themselves .(which factor out of the summation). The

resulting coefficient matrices, which are constant for axial flow, are

defined in section 6.4.2.

For the case of a rotor operatinq 4.n nonaxial flow (v > 0) the aerodyn,,Lmic

coefficients of the rotating blade foi 4s are periodic ftnctions of

because of the periodically varying aerodynamics of the edgewise moving rotor.
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It follows that the rotor in nonaxial flight is described by a system of

differential equations with periodic coefficients. It is possible to express

the aerodynamic coefficient of the rotating blade forces as Fourier series,

and then to obtain the coefficients of the nonrotating equations in terms

of these harmonics. However, the simplest approach for numerical work with

large-order systems is to leave the coefficients of the nonrotating equations

in terms of the summation over the N blades of the rotor. The summation

is easily performed numerically, and it is found that this form is also

appropriate for a constant coefficient approximation to the system. For

nonaxial flow, the coefficient matrices are periodic functions of the blade

azimuth angle %m = + mAP, #P 2w/N. The period is # = (2/3)v = 1200

for the N = 3 case considered here. The coefficient matrices for nonaxial

flow are defined in section 6.4.3.

The rotor equations as constructed here are not entirely complete.

First, the rotor aerodynamic thrust and hub moments:

+C. -4-

where

Art V %/ 4~

have been put in place for the X , X , and X equations. Because of they
rotor/rotor interference and ground effect, it is appropriate to finish the

construction of these equations at a later stage (section 6.3,1).
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Secondly, we have substituted in the equation of motion for rigid pitch:

I. 4

However, the rotor pitch control e herL still includes the governor and

mast bending terms, as well as external control inputs.

Thirdly, the rotor torque yC Q/aa has been put in place as the equa-

tions of motion for the rotat ,al sp-.;d perturbation 's" The drive train

couples the rotational speed perturbations of the two rotors, so it is

necessary to construct these equations at a later stage (section 6.3.1).

Consider now the case of a rotor with four or more blades. Each rotat-

ing degree of freedom of the blade (bending or torsion motion) must result in

N degrees of freedom for the rotor as a whole. Thus increasing the number

of blades adds degrees of freedom and equations of motion to the rotor de-

scription. In axial flow these additional degrees of freedom do not couple

with the collective and cyclic degrees of freedom of the rotor. Hence the

equations given above remain valid for rotors with N > 3 also, and we need

be concerned here only with the equations of motion for the additional degrees

of freedom. These additional degrees of freedom are not coupled inertially

with the shaft or gimbal motion. The additional equations of motion for

bending and torsion of a rotor blade with four or more blades are then:

with the vectors of the degrees of freedom and blade pitch control here

defined as follows:

\C [3-A C. W

The inertial coefficient matrices are given in section 6.1.4.
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The aerodynamic forces are required to complete the equations of

motion. In axial flow the aerodynamic forces still do not couple the addi-

tional degrees of freedom for N ? 4 with the shaft or gimbal motion. Hence

the aerodynamic forces for axial flow take the form

-~"' --I-I~4  h'. .4,

with the coefficient matrices defined in section 6.1.5.

The aerodynamic forces in nonaxial flow (v > 0) couple all degrees of

freedom of the rotor with each other and with the shaft and gimbal motion.

Then not only are additional degrees of freedom and equations of motion

involved if N > 3, but the number of blades also influences the equations

and the hub reactions given above. Rather than directly presenting the aero-

dynamic matrices for the general case of three cv more blades in nonaxial

flow, the analysis is extended by means of an observed pattern in the coeffi-

cients. In the nonaxial flow equations (section 6.4.3), note the repeated

occurrence of the following submatrices:

I - , S, 0 o -, -'

- S8zc. = S, ac, :act
0 2St 2C - 2

(using the notation Sn = sin ni and C n  cos nip ). These matrices are a

direct result of the introduction of the Fourier coordinate transformation

(columns) and the application of the summation operators to obtain the non-

rotating equations (rows). The matrix DP arises from application of the
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Fourier transformation to the time derivatives (ii or pi). In the BG and A

matrices, only some columns of 1 and DP appear, while in the C matrices

only some rows appear. The extension to an arbitrary number of blades

(N 2 3) is then simply

I

Rotors with three or more blades may be analyzed within the same

general framework, but the two-bladed rotor is a special case. The rotor

with N > 3 has axi-symmetric inertial and structural properties and hence

the nonrotating frame equations have constant coefficients in axial flow.

I-347
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In contrast, the lack of axi-symmetry with two blades leads to periodic

coefficient differential equations, even in the inertial terms and in axial

flow. Only in special cases are the dynamics of a two-bladed rotor described

by constant coefficient equations. The equations of motion again take the

form

A +Ah + C' -Z

10"%0 A, .

with now for N - 2 the rotor degrees of freedom and pitch input defined as

follows:

The inertial coefficient matrices are defined in section 6.4.6. Note that

there are periodic coefficients in the matrices coupling the rotor and shaft

motion (X, C, b).

Th6 required aerodyanmic forces for the two-bladed rotor case again take

the form

+ C431) itA+q + bG as

The aerodynamic coefficient matrices are defined in section 6.4.7.

An independent blade analysis is useful for problems not involving the

shaft motion or other excitation from the nonrotating frame. The only rotor

blade degrees of freedom involved are the bending and torsion motion. The

shaft motion, gimbal motion, and the rotor speed perturbation are d-'opped
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from the system. Only a single blade need be analyzed, in the rotating irame.

The equations of motion for the bending and torsion modes are then:

L

L L
4- t1.tv - $bF 1

6M

or

with xR =(qkPk)T and vR con. These equations can also be obtained by

dropping all deereeR of freedom excpt the c ecte modec from the analys's

above; a separate construction for the independent blade case is more effi-

cient however.

6.1.7 Constant coefficient approximation.- The rotor dynamiss in nor.-

axial flow are described by a set of linear differential equations with

periodic coefficients. A constant coefficient approximation for nonaxial flw

is desirable (if it is demonstrated to be accurate enough) because the calcu-

lation required to analyze the dynamic behavior is reduced considerably

compared to that for the periodic coefficient equations, and because the

powerful techniques for analyzing time-invariant linear differential equations

are then applicable. However, such a model is only an approximation to the
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correct aeroelastic behavior. The accuracy of the approximation must be

determined by comparison with the correct periodic coefficient solutions.

Tb constant coefficient approximation derived here uses the mean values of

the periodic coefficients of the differential equations in the nonrotating

frame.

To find the mean value of the coefficients, the operator

is applied to the periodic aerodynr.,mic coefficients (given in section b.4.3),

resulting in terms of the following form for the N = 3 case:

_2. ts' 4'

II
M(4/ AA

ZIT/ 41.

Here Mnc dnd Mn s  are the harmonics of a Fourier series representation of

the rotating blade aerodynamic coefficient M:

A 4- ' 'c. S kW.--Ms ^P1

In the present case, these harmonics must be evaluated numericaily. The

aerodynamic coefficient M is calculated at J points, equally spaced around

the azimuth. Then the harmonics are calculated using the Fourier interpola-

tion formulas:
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3
PA ~ ~ ~ -- -A (Yc~csP

where i= JA4 j(2r/J) (j = 1, ... , J). The number of harmonics required

is n = N-I for N odd and n = N-2 for N even (N is the number of blades).

Good accuracy from the Fourier interpolation requires at least that J = 6n.

Using these Fourier interpolation expressions, the required harmonics are

M I
M4A 1C.

7 '3  . 1 2 C

iML~2 ir.4

It follows then that the constant coefficient approximation is obtained

from the periodic coefficient expression ' y the simple transformation:

The summation over N blades (m = 1, ..., N; A* = 27r/N) for a periodic

'ioefficient is replaced by a summation over the rotor azimuth (j = 1, ... , J;

Aip = 21/J) for the constant coefficient approximation, This is quite con-

venient since the same procedure may be used tc evaluate the coefficients for

the two cases, with simply a cl ange in the azimuth increment. The periodic
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coefficients must be evaluated throughout the period of p = 0 to 2n/N; the

constant cnefficient approximation (mean values only) is evaluated only once.

With the substitution (1/N) Z - (l/J) Z, the results given in sectionm j
6.4.3 for the periodic coefficient matrices are directly applicable to the

constant coefficient approximation as well.

For the case of a rotor witb four or more blades, the constanat coeffi-

cient approximation involves the transformation of higher order harmonics:

, 1 I

S,, ("'5

So the periodic coefficient results are still applicable to the constant

coefficient approximation if the summation over the N blades is replaced

by a summation around the rotor azimuth.

This transformation is also applicable to the case of a two-bladed

rotor, but the constant coefficient approximation is not as useful or as

accurate for N = 2 as for N a 3. With three or more blades, the source

of the periodic coefficients is nonaxial flow, hence the periodicity is order

P or smaller. At low advance ratio then, the constant coefficieait approxi-

mation may be expected to be a good representation of the correct dynamics.

rhe two-bladed rotor has also periodic coefficients due to the inherent lack

of axi-symmetry of the rotor. This periodicity is large even for axial flow,

and neglecting it in the constant coefficient approximation may be a poor

representation of the dynamics. In particular, it is not possible to use the

constant coefficient approximation as formulated here 'or the flight dynamics

-352-



analysis of a two-bladed rotor helicopter, since this averaging eliminates

the coupling between the rotor and the shaft motion.

6.2 Aircraft Model

6.2.1 Aircraft degrees of freedom.- The aircraft motion is described

by the rigid body and elastic airframe degrees of freedom:

as defined in section 4.2.1. The aircraft controls consist of flaperon,

elevator, aileron, and rudder deflections:

The rotor hub motion is obtained from

where c is defined in section 4.2.2, including the sign changes for a

clockwise rotating rotor and scaling for rotor #2. Recall that the Euler

angles do not contribute to ax, ay, and a however. In addition there is a

linear acceleration due to the rotation of the velocity vector in body axes

by the Euler angular velocities, written

(see section 4.2.2).

The feedback of the airframe elastic motion to the rotor cyclic pitch is

as defined in section 4.2.3.
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6.2.2 Aircraft equations of motion.- The linearized equations of motion

for the aircraft rigid body and elastic motion are:

-W*"  o o

+~ [G31 C> :>=

(see section 4.2.4). The generalized forces due to the rotor hub reactions

are

T

where c is defined in section 4.2.5, including the sign changes for a

clockwise rotating rotor and the scaling for rotor #2.

The generalized forces due to the aircraft aerodynamics can be linearized

by succesively perturbing Lite ilpuLs to Lhe analysis described in section

4.2.6. Hence fo? the rigid body degrees of freedom we obtain:

3 ] -) j
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(The coefficients of the matrices are the aircraft stability derivatives, due

to the wing/body, horizontal tail, and vertical tail.) A gust velocity

uniform throughout space is considered; hence the gust velocity components

are the same at the wing/body and tail. The mean inflow perturbations

influence the airframe through the rotor-induced aerodynamic interference,

which is modelled as described in section 4.2.6. So the interference

velocities at the wing and tail are obtained from

H I I C. F) VX VZ

From section 4.2.7, the generalized forces for the airframe elastic degrees

of freedom (k > 7) are:

Z= - *6A - I

\1U4K Vw 4 1 i

Hence the aeroelastic motion of the helicopter airframe is described by a set

of linear, constant coefficient differential equations of the form

+ Y lo cv + 66 + 6X
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where x is the vector of aircraft degrees of freedom, v is the vector of
s s

aircraft control variables, g is the vector of gust velocity components

(in wind axes), and F and F2 are the hub reactions of the two rotors.

6.2.3 Drive train equations of motion.- A model for the transmission

and engine dynamics was derived in section 4.3.2. The degrees of freedom

involved are the rotational speed perturbations of the two rotors (sl and 's2)

and the engine speed perturbation (degree of freedom e , defined relative to

the rotation of rotor #l). With the coupling of the rotors by the drive

train, it is more appropriate to use the degrees of freedom defined by

or

where rl/r 12 = Q2 / is the ratic of the trim rotational speeds of the two

rotors. So ts is the rotational speed perturbation of the rotors and drive

train as a whole, while *I represents differential rotation of the two

rotors. The degrees of freedom * I and 'e therefore involve elastic deflec-

tion of the drive train. The engine model introduces the throttle control

variable 6t . The linearized equations of motion for the drive train are

then:

S-- N
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4 Li

The constants appearing in these equations are defined in section 4.3.2 for

several drive train configurations.

For the autorotation case the *e degree of freedom is dropped, and the

Q, Qt and 'E engine terms in the s and I equations are omitted. For

the engine out case, with the engine and rotors still connected, the engine

terms QQ and Qt are omitted. The case of constant rotor speed is treated

by dropping the s and i I degrees of freedom from the system.

The rotor speed governor, consisting of is and s feedback to the

engine throttle and to the collective pitch of each rotor, is described by

the following equations:

'rze 4,Dt 4- 'e 46 4- &q- kk~ =Ci4-t

tA + +c1 + ~

, c + 4-2 P+j 4- ~ t hke '- + .

(see section 4.3.3). Fui the tilting proprotor configuration, the variable

s is replaced by the symmetric variable *sym = s + 1/2 VP"

6.3 Coupled Rotor and Aircraft

6.3.1 Coupled equatio"s of motion.- The equations of motion have been

derived for the two rotors and the aircraft body. The rotor equations of

motion take the form

k2t-357- +A. x + A At& + Abe V +
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II~C l0uL i-l4llz - i Ii I II I3 .

(see section 6.1.6). The rotor degrees of freedom vector xR consists of

flap/lag bending, rigid pitch and elastir. torsion, gimbal or teeter motion,

rotational speed, and inflow perturbations. The rotor control vector vR

conststs of the blade pitch control. The gust vector in shaft axes is

related to the gust vector in velocity axes by

(section 4.1.4). The hub motion is related to the aircraft degrees of

freedom by

(section 4.2.2; only the 3 x 3 submatrix in the upper left corner of c is

nonzero). For rotor #2 it is necessary to change the time scale to the

rotational speed of rotor #1.

So the maL.Aces Al, Ait C1, and C are multiplied by (91/Q2); and the

matrices A2, A2 ' C2' C2 are multiplied by (Q /Q2)

The aircraft equations of motion take the form

-S-fXS 4- + b~ XSlo-- 6. c -4-

4- e * .

-358-



(see section 6.2.2). The vector x consists of the aircraft rigid body

and elastic airframe degrees of freedom. The vector v consists of thes

aircraft controls.

The equations for the rotor and aircraft can now be combined to con-

struct the set of linear differential equations that describes the dynamics

of the complete system. These equations take the following form:

The state vector x, control vectors v and Vp, and the gust vector g are

defined as:

7-r
vt= L *" 'k ? A41A14A5

The vector of the degrees of freedom for the entire system x) consists of the

degrees of freedom of the two rotors and the aircraft. The rotational speed

degrees of freedom of the two rotors are replaced by the coupled degrees of

freedom 's and and the engine speed degree of freedom e is added. The

governor dynamics introduce the degrees of freedom At , e govrl' Aegovr2.

The vector of control variables for the entire system (v) consists of the

blade pitch of the two rotors, the aircraft controls, and the engine throttle.

The vector of the pilot's controls (v p) is related to th individual control

inputs by the linear transformation
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NJ - -¢ v

where TCFE  is defined in section 4.1.6. The aerodynamic gust vector (g)

is in velocity axes.

The coupled equations of motion are obtained by substituting the hub

motion into the rotor equations and hub reactions, and then the hub reactions

into the body equations of motion. The resulting coefficient matrices for the

coupled system are:

Alit,

A 1 it I

n 2 JSp -I

A.....t,

Alit ,* + o,.,C~
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Recall that the Euler angle contributions are not to be included in ax,

CL, and a . Hence in constructing A it is necessary to skip the angulary zo

hub motion (ax9 a y, a z) columns of Ao and CO for the Euler angle k F'$

SF) columns of c (and A ) when evaluating X c and 0 c.

The rotor mass will be included in the helicopter gross weight. Hence in

constructing A2 it is necessary to skip the linear hub motion (xh , Yh' zh)

columns of C2 for the rigid body (.,F" F'F' XF) YF' ZF ) columns of c

(and A2) when evaluating C2c. Also the rotor mass is included in the

generalized mass of the airframe free vibration modes; so the linear hub

motion columns of C 2 will be skipped for all the body degrees of freedom

columns of c when evaluating C~c . This approach is also required for the

C C2c term in A1. Since the term involving E is the linear hub accelera-

tion due to Euler angle velocities, which has already been included in a1

if the gross weight includes the rotor mass, it follows that the entire

cTc 2  term is to be dropped.

The construction of the coupled equations of motion is still incomplete.

The matrices defined above basically account for the coupling of the rotors

and aircraft through the rotor hubs. It remains to account for the coupling

which occurs through other paths.
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Frequently the rotor is modelled as having a rigid control system. This
uption requires some restructuring of the equations of motion, since the
retor equations have been derived assuming that the blade rigid pitch
degrees of freedom are present in the model and that the blade pitch control
inputs enter through these degrees of freedom. In the limit of infinite
control system stiffness, the solution of the rigid pitch equation of motion

reduces to

or in the nonrotating frame

C 1

for N > 3; and
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for N - 2. The blade rigid pitch motion in this limit consists of the

commanded control input, feedback of the bending and gimbal motion due to the

kinematic coupling, and a pitch change due to the azimuth perturbation with

a fixed swashplate. Substituting for p0, the pitch/bending, pitch/gimbal,

and pitch/azimuth coupling requires operations on the columns of A0 , as

defLied by the above equations. Next the rotor terms in the control matrix

B are reconstructed from the rigid pitch columns of A since the blade0

pitch motion becomes a control variable rather than a degree of freedom. Then

the equations of motion for the rigid pitch degrees of freedom are dropped

from the system.

So far the aerodynamic hub forces have been put in place for the X ,

Xx and X equations of the two rotors; c - cx5  has been substituted for

the hub motion; and the-time scale for rotor #2 has been changed to QI"

Completion of the equations of motion for the inflow dynamics requires the

following steps.

a. Multiply the thrust by (aa/2y)AX/DT and the moments by (aa/2y)9X/TM.

b. Add K X times the X equation to the X equation, and K timesXu x y

the X equation to the X equation.u y

c. Construct the ground effect terms (body motion contributions to

-(a/9zLz) in the Xul and X u2 equations.

d. Account for the coupling of the Xul and Xu2 equations due to rotor/

rotor interference.

e. Construct the diagonal terms: 1 in A and T -m DX/TM or K T 3/DT

in A2 (times (1/S2) and (SI/P2) for rotor #2).

f. Construct the aerodynamic interference terms

in the aircraft equations.

So far the torque has been put in place for the rotational speed equations

of the two rotors; a cx has been substituted for the hub motion; and the
.



time scale for rotor #2 has been changed to Q1. Completion of the equations

of motion for the drive train dynamics requires the following stLps.

a. Transform the sl and s2 columns of the matrices according to

to convert from ' sl and ' s2 degrees of freedom to is and

degrees of freedom.

b. Combine CQI and CQ2 as required ior the 's and I equations.

c. Construct the equation of motion for e and complete construction

of the s and I equation by adding inertial, damping, and spring

terms. Construct throttle control terms in is and p e equations.

d. Construct the governor equations, and the governor degree of freedom

terms in the other equations of motion.

It is still necessary to account for the mast bending and governor feed-

back terms in the pitch control co n . The pitch/mast bending coupling is

(for each rotor)

for N > 3, and

for N = 2.

For a two-bladed rotor the pitch control degrees of freedom are 90 and

0lV It is also useful to consider conventional cyclic coLtrol, which gives
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The Oec aad Gls columns of the control matrix can be constructed from the
6 column according to this equation.

Next, the pilot's control matrix is constructed from the individual

control matrix by the linear transformation Bp = BTcFE .

Finally, the unused equations of motion and degrees of freedom are

eliminated from the model by deleting the appropriate rows and columns from

the coefficient matrices. Note that a number of the degrees of freedom are

first order (no spring teims): all the inflow perturbation variables, the

rigid body degrees of freedom VF' XF' yF' and ZF (except possibly in ground

effect), and perhaps the rotational speed degree of freedom (in axial flow

with no integral governor).

6.3.2 Quasistatic approximation.- It is frequently possible to reduce

the order of the system of equations describing the rotorcraft dynamics by

consideiing a quasistatic approximation for certain of the degrees of freedom.

Assume that the equations of iotion have been reordered so that the quasiscatic

variables (x0) appear last in the state vector:

The quasistatic approximation consists of neglecting the acceleration ar-d

velocity terms of zhe quasistatic variables. Thus the equations of motion

take the form:

614- W! at 191o9K1 " 01 X4(,o X. A. X.kk

The quasistatic variables now are not described by differential equations but

rather by linear algebraic equations. The solution for x0  then is simply
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Substituting for x0 in the x1  equations of motior gives then the reduced-

order equations for the quasistatic approximation:

-1 NCO , i-A (A AtI
+L A. A, (Av,* A- JO/ *\ ]

In the present analysis, the quasistatic approximation can be applied to

the inflow dynanics of either or both rotors, to the rigid pitch/elastic

torsion degrees of freedom of either or both rotors, to all the degrees of

freedom for either or both rotors, or even to al. the degrees of freedom

except the rigid-body moLions of the aircraft.

The quasistatic approximation retains the low-frequency dynamics of the

eliminated degrees of treedom. Whether that is a satisfactory representation

of the elastic behavior must be established by comparison with the results of

the higher order model.

The quasistatic approximation as implemented here does not give the low

frequency response when applied to a two-bladed rotor. The source of this
((k) *(k)difficulty is the fact that the teetering equations of motion (a I)" 0j k)

T ) are really still in the rotating frame, so the response of tne teetering

modes to low frequency inputs from the nunrotating frame is not at low

frequency !zsv, but 'rather at fremu.'ucL' arsund 2/rev.

6.3.3 Symetric aircraft.- With lateral symmetry of both the aircraft

and flight state, the symmetric and antisymmetric motions are completely

decoupled. Hence it is poatible to analyze the dynamics by considering two

sets of equations, each of hall the order as the whole system. This case is

applicable to side-by--side or tilting proprotor aircraft configuration in a

trim flight condition with no sideward velocity or turn rate.

The equations of motion must be restructured in terms of symmetric and

antisymmetric dagrees of freedom. The motions of the right and left sides of

the aircraft are given by respectively the sum and difference of the symmetric

and antisymmetric degrees of freedom:
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These conversions apply to the rotor bending, torsion, gimbal, and inflow

degrees of freedom, and to the rotor pitch control variables. The columns

of the coefficient matrices are recons cucted according to these definitions

of the symmetric and antisymmetric degrees of freedom. The symmetric and

antisymmetric equations of motion are obtained by operating on the rows of

the matrices as follows:

Finally, the symmetric and antisymmetric drive train motions are obtained

from

(from section 4.3.3); the columns of the matrices are r.econstructed according

to these equations. Now the symmetric and antisymmetric degrees of freedom

are completely decoupled, and may be analyzed separately. The state vector,

control vectors, and gust vector for the symmetric system are:
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- L'c 1AC, W

The state vector, control vectors, and gust vector for the antisymmetric

system are:

Note that it is necessary to designate symmetric and antisymmetric elastic

airframe vibration modes.

6.6 Matrices of Rotor Equations of Motion

6.4.1 Inertial matrices for rotor equations.- The inertial matrices

for the rotor equations of motion in the nonrotating frame are given below.

For clarity, the superscript * denoting the normalization of the Inertial

coefficients has been omitted.
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6.4.2 Aerodynamnic matrices for rotor equations in axial flow.- The

aerodynamic matrices for the rotor equations of motion in axial flow are

given below.

- YM -yM -yM

-yM -41* -yM

qk~ k l

A -M - -,( Y Y
k~ -M k i M-yMjPk 

P -YM~

-IM.Q YY Y

YQ4

-2yT ;i-2yT* -2y~

-yM -Ymi -YM~

-YM* -YM~ -YM~
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6.4.3 Aerodynamic matrices for rotor equation in nonaxial flow.- The

aerodynamic matrices for the rotor equations of motion in notiaxial flow are

given below. Note that each matrix is a summation over all the blades, that

is, m = 1, ... , N. The notation C = ios,>m and S = sin m  is used in these

matrices.
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6.4.4 Inertial matrices for rotor with four or more blades.- The

inertial matrices for the equations of motion vf a rotor with four or more

blades are given below.

I lqk  -Sqkj

I -S

qk kqk i

I -S

A 2  
=

I

-k +IIk

Pkpi

L I I-S S~ Pki+IP
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i k +2n1.

2nS -nIP I gw
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6.4.5 Aerodynamic matrices for rotor with fou, or more blades in axial
flow.- The aerodynamic matrices for the equations of motion of a rotor with

fur or more blades in axial flow are given below.

t-y yk .
-=M q

ik~

-1= - 1 .k

Pk q i -YPkpi

-yi i p kYi i k i

L -yM -nyY 
YkqP

q kq i  -ylq kq i -y q k')i

yM • -yM -yMq

-YMqkq, YMqkPi

Ao -*yH -nyM .y -nyM

Pk q M Pkq  -YMPkPi Pkpi

nyM . M nyM • -yM
Pki y~kq k~i Pk~i

-YM 
-yM

Pkql 
ki
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6.4.6 Inertial matrices for two-bladed rotor.- The ine-tial matrices

for the two-bladed rotor equations of motion are given below. The notation

C cos m and S sin m  is used, where mi + m.
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6.4.7 Aerodynamic matrices for two-bladed rotor.- The aerodynamic

matrices for the two-bladed rotor equations of motion are given below. The

notation C cos m and S sinipm  i used, where iJ =  + mv.
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7. LINEAR SYSTEM ANALYSIS

The flight dynamics and aeroelastic stability analyses (sections 5.3.3

and 6) result in a set of linear differential equations describing the air-

craft motion, of the form

A2 -4- A, + A,

where x is the vector of degrees of freedom and v is the vector of control

and gust inputs. The coefficient matrices (A2, A,, A0 , and B0 ) are either

constant or periodic in time. The analysis of these linear equations

proceeds as follows (see reference 37).

7.1 State Variable Form

It is convenient to transform the equations to a standard first order

form. Let MX be the number of degrees of freedom and MV the number of

controls (dimensions of x and v). Assume that MXI of the degrees of

freedom are first order, that is have a zero column in the spring matrix A0 .

Reorder the degrees of freedom so these first states occur last in the

vector x

where x2  are the MX-MXl second order degrees of freedom ara xI  are the

MXl first order degrees of freedom. Then

where A0  has dimensions MX * (MX-MXl). The equation of motion can now

be written in the form
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where

- I 'A - '
z 

2

with the state vector

There are MX2 = 2*MX-MXl states; the top MX states are the velocities of

the degrees of freeLom, and the bottom MX-MXl states are the displacements

of the second order degrees of freedom.

7.2 Constant Coefficient System

7.2.1 Eigen-cnalysie.- Th-e transient solution of x Ax is

%hA -c

where Xi and ui are the eigenvalues and eigenvectors of the matrix A, and

qi(0) are constants determined by the initial conditions. A is the diagonal

matrix of eigenvalues, and M is the model matrix with the eigenvec---s as

columns. The system is unstable if Re Xi > 0 for any mode.

The frequency of a mode is w = jIm X1, and the natural frequency is

w =II. The frequency in Hz is obtained by multiplying by Q/2%. Then

period is then 1 = 1/w sec, with w the frequency in Hz. The damping ratio

is = -Rey/xi (fraction of critical damping). The time constant is
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-I/(RReX) sec. The time to half-amplitude is then T1/2 .693r (or time

to double-amplitude for unstable modes).

7.2.2 Static response.- The static response, obtained by setting

x 0 in x Ax + By, is

7.2.3 Frequency response.- The frequency response, obtained by setting

x = x0 eit and v = voeit in x = Ax + B, is

where

1 - - A 'W 9A4 A'4 .

The frequency response can also be obtained from the poles and zeros by

where p are the poles (eigenvalues of A) and z are the zeros.

7.2.4 Zeros.- In Laplace form the equation c = Ax + Bv becomes

X =- (A-s)- 9v

By Cramer's rule then

where A* = (A-s) with the i-th column replaced by the 4-th column of B.

The poles are defined by det(A-s) = 0, hence are the eigenvalues of the

matrix A, as above. The zeros are defined by det(A*) = 0. In A* the

diagonal elements are all of the form (akk-S), except for the i-th column.
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By expanding the determinant of A* it is possible to reduce it to a form

with (ak.-s) for all the diagonal elements:

- 4a A'-"" = K , .* ( A,--s )

Then the zeros are the eigenvalues of the matrix A1. We have then

4& rA-s5 'r 5

and the static response is k2  k k I z/1p.

7.2.5 Transient response.- The general solution of Ax + Bv is

-E -&/ -t"

Consider the case with zero initial conditions at t = 0 and control with

time variation of the form v = v 0(r) (f = 0 for t < 0). Then

M jt -J)j Mt R

where F {F i} is a diagonal matrix depending on the eigenvalues and on the

input function f. The cases considered are

a. step response, f = 1

b. impulse response, f = (t)

2ITt
c. cosine impul.t, f = 1/2(1-cos---), 0 < t < T

2nt
d. sine doublet, f = sin-, 0 < t < T

T

e. square impulse, f 1, 0 < t < T
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"T

f. square doublet, f = 1 for 0 < t < 1, f -1 for - < t < T
2' 2

The function Fi(t) is readily evaluated for these and other inputs.

7.2.6 RMIS gust response.- Consider the RS gust response of the

system x = Ax + Bg. Here the only input considered is the vector of gust

components g. The gust is model as a Markov process:

where w is stationary white gaussian noise, with zero mean and correlation

For an RMS gust ve'ocity of ac, we have QG 2 /G. In forward flight

the correlation time is obtained from TG = L/2V, where L is the gust

correlation length and V is the aircraft velocity. The RMS acceleration

can be obtained by including accelerometers in the model:

rC6 & -+' ':k = C, -4-, 0, Y,, = (c. A --C,)$ + C

where i is the accelerometer lag. For the acceleration of a particulara

state xi we have

eY

so the row of C has a 1 in the x column, with the rest of the elements

and the entire row of C equal zero. For body axis acceleration at the

point r we have

where the summation is over the rigid body and elastic modes (see section

4.2.2). The matrix C is here zero except for the rigid body and elastic

airframe acceleration elements, and the matrix C is zero except for the

Euler angle velocity elements.
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The aircraft, gust model, and accelevometers are thus described by the

set of equations

_
0 ta

or

-4 -

The correlation matrix

7 = F( -

is then the solution of the equations

The solution is .~~/% * r, -.-- r,,-

where M is the model matrix of F, and IG  is the diagonal matrix with I

for the gust columns and zero elsewhere. Note that only the diagonal elements

of the correlation matrix Z are of interest normally. Let

-3M

-430-



Then with the summation k extending only over the gust columns of
-I

is the RMS gust response of the I-th state.

7.3 Periodic Coefficient System

Consider the system of equations x Ax + By, where A is periodic

with period T, A(t + T) = A(t). The transient solution can be written

L

as for the constant coefficient system, but here the modes ui  are periodic

functions of time. The eigenvalues Xi are obtained as follows.

The state transition matrix is calculated by integrating =A

over one period, t = 0 to T, with initial conditions 4(0) = I. Let

C = (T), and let X and v be the eigenvalues and eigenvectors of the

matrix C. Then the system roots are

(the principal part - a multiple of 2n/T can be added to the frequency)

and the mode shapes can be obtained from

The system is unstable if ReX > 0 (or IxcI > 1) for any mode.

It is necessary to integrate the equations p = f(t, ) = A(t)

numerically fiom t = 0 to t = T. Two methods are considered. The first

method is a modified trapezoidal rule:
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-~~~~~A. (&4.)C+~Aii4E

-- 4 (1+t 2

+,-f-+ 0 A,, ,,,,., ,,) (k+ A%%&) )y

where 4n w 4(tn) nnn+ 4(tn+l ) and h = tn+l -t . The second me;zhod is

the fourth order Runge-Kutta method:

-= A4A+, (1+, -4- . k.')
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