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h COMPREHENZIVE ANALTTICAL MODEL COF
ROTORCRAFT AERODYNAMICS AND DYNAMICS

Part I: Aralysis Development

Wayne Johnson

Ames Researcn Center
and
Aeromechanics Laboratory
AVRADCOM Research and Technology Laboratories

SUMMARY

The development of a comprehensive analytical model of rotorcraft
aerodynamics and dynamics is presented. This analysis is designed to calcu-
late rotor performance, loads, and noise; helicopter vibration and gust
response; flight dynamics and handling qualities; and system aeroelastic
stability. The analysis is a combination of structural, inertial, and aero-
dynanic models that is applicable to a wide xange of problems and a wide
class of vehicles, The analysis is intended for use in the design, testing,
and evaluation of rotors and rotorcraft, and t» be a basis for further
development of rotary wing theories, The analysis is implemented in a
digital computer program.

1. INTRODUCTION

For the design, testing, and evaluation of rotors and rotorcraft, a
reliable and efficient analysis oi the aircraft aerodynamics and dynamzcs
is required. It is necessary tc predict and explain the rotor performance,
loads, and noise; helicopter vibration and gust response; flight dynamics
and handling qualities; and system aeroelastic stability. Such capability
is also required as a hasis for further development of rotary wing theory.
This report presents the development of a comprehensive analytical model of
rotorcraft aerodynamics and dynamics.




The analysis developed here is a consistent combination of structural,
inertial, and aerodynamic models, applicable to a wide range of problems and
a wide class of vehicles., Typically rotary wing analyses have been developed
or verifie’ for orly a particular type of helicopter or a particular techni-
cal problem, that reflacts the specific interests of the originating organi~
zation. The present mode’ is applicable to articulated, hingeless, gimballed,
and teetering rotors with an arbitrary number of blades. The rotor degrees
of freedom included are blade flap/lag bending, rigid pitch and elastic
rtorsion, and optionally gimbal or teeter motion. This analysis is applicable
to gereral two-rotor aircraft, including single main-rotor and tandem heli-
copter configurations and side-by-side or tilting proprotor aircraft con-
figurations (fig. 1). The case of a rotor or helicopter in a wind tunnel is
also covered. The aircraft degrees of freedom included are the six rigid
body motions, elastic airframe motions, and the rotor/engine speed perturba-
~jons. The trim operating conditions considered include level flight, steady
climb or descent, and steady turns. The analysis of the rotor includes non-
linear inertial and aerodynamic models, applicable to large blade pitch
an, ¢s ard high inflow ratio. The rotor aerodynamic model is based on two-
dimensional steady airfoil characteristics with corrections for three-
dimensional and unsteady flow effects, including a dynamic stall model. A
detailed wake model for the rotor nonuniform inflow calculation is developed,
with a lifting surface theory correction for vortex—-induced loads. Available
prescribed and free-wake-geometry models are used. The aeroelastic stability

analysis derives linearized equations consistent with the nonlinear rotor

model.

The solution of the equations of motion is separated into two parts,
based on the different time scales involved in rotorcraft dynamics. The
first part is the solution for the rotor motion and the airframe vibration.
This motion is periodic, with fundamental frequency £ for the roter and NQ
for the airframe (R is the rotor rotational speed and N is the number of i
blades). The periodic motion is calculated by a harmonic analysis method.
The second part is the solution for the steady state or slowly varying air-
frame motion (consisting of the aircre®t rigid body and rotor speed perturba-

tions, and the static elastic deflection of the airframe and drive train).
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The assumption that the aircraft motion is quasi-static (compared to the rotor
speed) allows the periodic rotor solution to be used for transient motions of
the helicopter as well as for the trim calculations. Most importantly, by

taking adve .age of the frequency separation of the rotor and aircraft motions,

an economical calculation procadure is realized.

The first cowmputation task is the trim analysis, in which the control
position and aircraft orientation are determined for the specified operating
condition. The periodic blade motion 1s calculated, and then the rotor per-
formance, lonads, and noise can be evaluated. The rotor model in the trim
solution can use uniform inflow, nonuniform inflow with a rigid wake geometry,
or nonuniform inflow with a free wake geometry. The aercelastic stability,
flight dynamics, and transient analyses begin from the trim solution. The
aeroelastic stability analysis sets up a set ¢f linear differential equations
describing the motion of the rotor and aircraft; the eigenvalues of these
equations define the system stability. The flight 4dynamics analysis calcu-
. tes the rotor and airframe stabiiity derivatives, and sets up linear differ-
eatii 1 equations for the aircraft rigid body motions; the poles, zeros, and
eigenvectors of these equations define the aivcraft flying qualities., The

transient analysis numerically integrates the rigid body equations of motion
for a preseribed control or gust input,

In this analysis all quantities will be dimensionless, based on the air

density p , the rotor radius R , and the rotor rotational speed 2.
2, ROTOR MODEL

2.1 Structural Analysis

The rotor structural analysis comnsists of an engineering beam theory
model for the coupled flap/lag bendinz and torsion of a rotor blade with large
pitch and twist. A high aspect ratio (of the structural elements) is assuned,
s¢ the beam model is applicable. The objective is to relate the bending
moments at the section, and the .orsion moment, to the blade deflection and

elastic torsion at that section, The analysis follows the work of reference 1.
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Figure 2, Geometry of the undeformed blade.
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2.1.1 Geometry.- The basic assumptions are that an elastic axis exists,
and tue undeformed elastic axis is a straight line; and that the blade has a
high aspect ratio (of the structural elements) so engineering beam theory
applies. Figure 2 shows the geometry of the undeformed blade. The span
variable r is measured from the center of rotation along the straight
elastic axis. The section coordinates x and z are the principal axes of the
section, with origin at the elastic axis. Then by definition, f(=z)dA = 0.
Really this integral is over the tension carrying elements, i.e., a modulus
weighted integral: [SxzE dA = 0, This remark holds for all the section
integrals in the structural analysis. The tension center (modulus weighted
centroid) is on the x axis, at a distance Xo aft of the elastic axis:
/x dA = xCA ard Sz dA = 0. Again, these are modulus weighted integrals.
If E 4is uniform over che section, then xC is the area centroid; and if the
section mass distribution is the same as the E distribution, then the ten-

s'en center coincides with the section center of gravity.

The angle of the major principal axis (the x axis) with respect to
<he hub plane is 6. The existence of the elastic axis means that twist about
the elastic axis occurs without bending. In general, the elastic torsion
deflection will be included in 8. The blade pitch bearing is at the radial
station 29 The blade pitch is described by root pitch 8° (rigid pitch
about the feathering axis, including that due to the elastic distortion of
the control system), built-in twist etw, and elastic torsion about the
elastic axis ee. So 6 =0° + etw + ee, where - 9°(¢) is the root pitch,
8(rp,) = 075 6, (r) is the built-in twist, 8_ (r ) = 0; and 0 (r,¢) is the
elastic torsion, ee(rFA,w) = (), There is shear stress in the blade due to 6

only. It is assumed that ee is small, but 6% and etw are allowed to be
large angles.

The unit vectors in the rotating hub plane axis system are T%, 3}, and
ﬁ% (fig. 2). The unit vectors for the principal axes of the section (%, r, z)
>
are T, 3, and k; these are for no bending, but include the elastic torsion in

the pitch angle 6. So the principal unit vectors are rotated by & from the
hub plane:

P T MR- T 1 N L [,

e e—— - = - - o hp—




T = T}sc&sb‘-‘kg&g
3 =2
= (Y
22 3
¥ = g swO +kgewd

2.1.2 Description cf the bending.- Now the engineering beam theory
assumption is introduced: plane sections perpendicular to the elastic axis

remain so after the bending of the blade. Figure 3 shows the geometry of the

deformed section. The deformation of the blade is described by (3) deflection
of the elastic axis, X s T and z. (b) rotation of the section due to bend-
ing, by ¢x and ¢z; and (c) twist about the elastic axis by ee, which is

implicit in Efand'Et The quantities X)s Tos 2 wx’ ¢z, and ee are acsumerd
to be small,

_; .
The unit vectors of the unbent cross section are T, §§ k. The unit
. — —_ - —
ifctors of the deformed cross section are Tigr Jxg? and kxs’ where N and
kxs are the principal axes of the section, and 3;s is tangent to the

deformed elastic axis. 1t follows that

—axs = -t -+ +%j

3 3 - et + dk

*

”ixs = .ﬁ = +*-3>

S

.
Now by definition, 'j;s = d '%/ds, where T = xof+ (r + ro)f+ zok and

s is the arc length along the deformed elastic axis. Hence to first order

Try = T + (x.i—a—-z(ﬁ\'

T 4+ (Xl +ze")T + (2o -x.B'}ﬁ

[l
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Figure 3. Geometry of the deformed blade.
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It follows the rotation of the section is

It

! {
__4>% Xo =+ €O

I

t 4
‘bx %o ham xbe

or

dt + Pk = (2T —xX

The undeflected position of the blade element is T = x+ r’f+ 21?, and

the deflected position is

« = (f-r'\“o)f + %Xt +%°Y -+ x’i“ -+ %ﬁ,s

3 x4+ 2R+ (%4, —-%h\j-**f”’“zﬁ

|

The first tarm in the deflected position is the radial station; the
next three terms are the deflection of the elastic axis; the next term is the
rotation of the section; and the final two terms are the location of the point
on the cross section. For now the elastic extension r, will be neglected.
The strain analysis is simplified since then to first order, s = r; r, gives

a uniform strain over the section, which may be reintroduced later,

2.1.3 Analysis of strain.- The fundamental metric tensor 8o of the
undistorted blade is defined by:

(g;\a = AT, &F
S > ;
- (Fow) (e

= %o In,, Wx,,

N pii 4 o W P R TR Y




o g

Where ds 1is the differential length in the material, and x

are general
curvilinear coordinates. Similarly, the metric tensor Gmn of the deformed
blade is

(3SY = .37
(

i

0
]
1
3
X

Then the strain tensor Yon is defined by the differential length increment

2 T I Wy, = (ASDT — (oY

me = '%'z_ (C’w« —}“"‘“w

For engineering beam theory, only the axial components of the strain and

stress are required. For a full exposition of the analysis of strain, the

reader is directed to reference 2.

The metric of the undeformed blade (no bending, and no torsion so

8' = G’tw) is obtained from the undistorted position vector T = xT + ri+ zﬁ,
giving
dc . V¢ ' 2, 2t)

The metric of the deformed blade, including bending and torsion, is similarly

A
obtained from the position vector '?'= (x + XOYf + (r + x¢z - z¢x)3s+-(z + zo)k:

-10-
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= (\+ x-&é-%#i)z

\‘L
4+ (x) + 8’ (z+ 2N

4+ (2 — &' (vax))Y

Then the axial component of the strain tensor is

arc = (Qn - %'PX

I

1
2
3 {(l—&-%‘t’}‘_ TV LN G G R e T 0

1e

! 2 1z
—o 2" 4+ (% —e(x+x N — 9 x* ]

The linear strain (for small X 2 ee’ ¢x’ and @z) is

} ! 1 2
Ve B € = 2, —2 b A+ O, (Xno+22Y)

+ an, (2%5 —xzl + o (x4 7))

The strain due to the blade tension, Eps is a constant such that tne

tension is given by the integral over the blade section:

-—r:—.%EérrJA':—: € SEQA

Substituting for érr and using the results [fzdA =0, fxdA = x

CA’ and
Fx2 + 2hda = 1, = k%A (where
P~k kp

is the mndulus weighted radius of gyra-
tion about the elastic axis), gives

-11-
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-1 ! 2 ! ' \ \k?. |
€r = EaA T Palot O XoXe = O T R +0,, B Kp +

In this expression, the strain due to the blade extension r

has been
included.

It follows that the strain may be written as
1 ! ) }

+ ol 2y (17 kp )

2.1.4 Section moments.- To find the moments on the section, the second

engineering beam theory assumption is introduced: that all stresses except
or are negligible. The axial stress is given by o r Eer

T
of o is
Ix

n Y
A __ 2t X4
= 3¢ C

The direction

o

The moment on the deformed cross section (fig. 4) is M =M ™

-
1 + M
e X TXs rIxs
+M k .
Z XS

The moment about the elastic axis due to the elemented force or da
on the cross section is

d

2l
i

(X—exg +?-tx$3 X q;}.é) JA

i

E-":!"axs + Xﬁxs + ei‘,, (xF+2%) jxs ] e JA

Integrating over the blade section, there follows the result for the total
moments due to bending and elastic torsion:

-12-
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Figure 4, Bending and torsion moments on
the blade section.
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To Mr has been added the torsion moment GJeé

» due to shear stresses pro-
duced by elastic torsion.

These moments are about the elastic axis., For

bending it is more convenient to work with moments about the tension center

at XC:

/V\.x == —_— <’ : 0;1-t§f\

Mz = % (% —%e) T AY

Substituting for O arnd integrating, the moments are

! ]
My = ET,, (b + 'ds) — ol o

-
-~

ELl g,

| ]
Mg = ETg (da —o'dy) o O e'e ELyp

2 z ! / 2
Me = (GT 4+ T +euET,) 0, + 6, T

+ 9-:»: (EXye (ng"a.d’x\" E-Izr(*i" ’9"”?)-}
-1l

MPaata—o i -t e




where

Loz =~ \ E{z A;\

11:‘ " = S (X‘J*EBZ AF\

e =  (ur+2™A = e A
Typ = § 00 =% (W23 A

Tap = g%(x’w%‘)-\A

Tep ( (xr 4+ 2t — KE T A

The integrals are all cover the tension carrying elements (i.e., modulus
weighted). The tension T acts at the tension center at X5 hence the bend-
ing moments about the elastic axis may be obtained from those about the tension
center by (M =M +x
nter by (Mg, =¥,

CT and (Mx)EA = Mx‘

2.1.5 Vector formulaiion.- Define the section bending moment vector
-—
ME(2>’ and the flap/lag deflection W as follows:

- (D)

AW\E — /v\x~ﬂ —F—fV\;;iz
{:? = qs.ji *")4é:iz

and
(ME( ) is not quite the moment on the section, because Mx and Mz are really

——d
the Ti and Exs components of the moment). The derivatives of w are
S

ol
(2oT ——x57~3 = (%f: ~¥°e'\’3 — (x.', +'&°e' \)i

-15-
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Then the result for the bending and torsion moments can be written as follows:

- (2)

ME = (EI %i-a-e 1 EIXﬁﬁ\' (%o-e ""'X\;E)”

1
4 Di,0¢ (BT R —ETopt D

4 i
fu\(. = ( i gt \(:"T"—+~69;‘° EZ]:IQ;f)Gg;, - Eafaa\::‘1::

This is the result scught, the relation between the structurazl moments and

deflections of the rotor blade.

e b
Writing the bending stiffness dyadic as EI = Ezzz'ir+ EL_kk, and for
the purposes of this paragraph neglecting the EIXP and EIZP coupling terms,
gives (2
—~— (2 N/
£ = ET w

{ z !
Me = G'IS'C%‘S S, - kg v Oy,

In this form the result appears as a simple extension of the engineering beam
theory result for uncoupled bending and torsion (the e;w = 0 case)., The
vector form allows a simultaneous treatment of the coupled inplane and out-of-

plane bending of the blade, with considerable simplification of the equations

as a consequence.

This relation between the moments and deflections is a linearized result,
-
Thus the vectors T and k appearing in EI and in ’d‘ are based on the trim
pitch angle 6 = 8% + etw. The net torsion modulus is

~16-
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where T = 92 f; pmdp 1s the centrifugal tension in the blade. For the
elastic torsion stiffness characteristic of rotor blades, the GJ term
usually dominates. The kPZT torm is only important near the root for blades
which are very soft torsionally. The eéwz EIPP term is only important for
very soft, highly twisted blades.

2,2 TInertia Analysisg

This section derives the inertia forces of a helicopter rotor blade.
The blade motion considered includes coupled flap/lag bending (including the
rigid modes if the blade is articulated), rigld pitch and elastic torsion,
gimbal pitch and roll (which are a:>pped from the model fer articulated and
hingeless rotors) or teeter motion (for two-bladed rotors only), and the
rotational speed perturbation. The geometric model of the blade and hub
includes precone, droop, and sweep; pitch bearing radial offset; Ieathering

axis droop and sweep; and torque offset and gimbal undersling.

2.2.1 Rotor geometry.- Consider an N-bladed rotor, rotating at speed
Q (fig. 5). The m-th blade {m = 1 to N) is at the azimuth location wm =
+ miy, where Ay = 27/N and § = Qt is the dimensionless time variable.
Because for steady flight the blade motion is periodic, it is only necessary
to calculate the motion and forces of one 0% the blades. For this reference
blade we choose that identified by m = N, The S coordinate system (I%, fﬁ,
—
kS) is a nonrotating, inertial reference drawe (fig. 5). The S system
coordinates are the rotor shaft axes when there is nu hub motion. When the
shaft moves however, due to the motion of the helicopter or the wind tunnel
support, the S system remains fixed in space. The P system (E;, 3;,'ﬁ;) is a
coordinate frame rotating with the m-th blade. The acceleration, angular
velocity, and angular acceleration of the hub, and the forces and moments
exerted by the rotor on the hub are defined in the nonrotating frame (the S

system). Figure 6(a) shows the definition of the linear and angular motion of

-17-
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the rotor hub, and figure 6(b) shows the definition of the rotor forces and
moments acting on the hub. The rotor blade equations of motion will be

derived in the rotating frame.

Figure 7 shows the blade hub anrd root geometry considered. The origin
of the B and S system is the location of the gimbal (or teeter hinge). For
articulatea or hingeless rotors, where there is no gimbal, this is simply the
point where the shaft motion and hub forces are evaluated. The hub of the
rotor is a distance Zpa below the gimbal (gimbal undersling, which is not
shown in fiz. 7). The torque offset Xpa is positive in the Jf% direction.
The aczimuth Qm is measured to the feathering axis line (its projection in
the hut plane), so the feathering axis is parallel to the j; axis, and offset
Xoa from the center of rotation. The precone angle GFAI’ gives the orienta-
tion of the blade elastic axis inboard of the pitch bearing with respect to
the hub plane; GFAl’ is positive upward, and is assumed to be a small angle.

the pitch bearing is offset radially from the center of rotation by r The

1id pitch rotation of the blade about the feathering axis occurs at FﬁpA.

~ droop angle 5FA2 and sweep angle 5FA3 occur at 2% just outboard of
the pitch beatving; GFAZ and 6FA3 give the orientation of the elastic axis of
the blade outboard of the pitch bearing, with respect to the precone. Both
S¥A, and GFA3 are assumed to be small angles; 5FA2 is positive downward, and
GFAB is positive aft. Feathering axis droop 5FA4 and sweep GFAS define the
orientation of the feathering axis with respect to the precone; GFA4 is
positive downward, GFAs is positive aft, and bcth are small angles. If
'SFA4 = 5FA5 = 0, then the feathering axis orientation is just given by the
precone; it &py, = Sra, and GFAS = GFA3 then the orientation is the same as
the outboard elastic axis.

From the root to the pitch bearing (at r = the undistorted elastic

Tpal >
axis is a straight line at the precone angle to the hub plane. The blade out-
board of the pitch bearing has a straight undistorted elastic axis, with small
drcop and sweep angles. The feathering axis also has small droop and sweep
with respect to the precone. The entire blade is flexible in bending. The
portion of the blade outboard of the pitch bearing is flexible in torsion as

,211. The rotation of the blade about the pitch bearing takes place about the

-20-
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Concluded.,
-22.

b) top view
Figure 7,




/
/

local direction of the feathering axis. Incorporation of bending flexibility

of the blade inboard of the pitch bearing allows consideration of an articu-
lated rotor with the feathering axis inboard or outboard of the hinges, or a
cantilever blade with or without flexibility inboard of the pitch bearing.

Figure 8 shows the undeformed geometry of the blade. The description

of the blade for the inertial analysis parallels that for the structural
analysis (see fig. 2 and section 2,1.1), It is assumed that an elastic axis
exists, and that the undeformed elastic axis 1s a straight line; and that the
blade has a high aspect ratio. Here Xp is the locus of the section center
of gravity, X, is the locus of the section aerodynamic center, and Xs is
X1 XA’ and XC are
positive aft, measured from the elastic axis; in general they are a function

the locus of the section tension center. The distances

of r. The corresponding =z displacements are neglected.

The TS 3§ andi? coordinate system is the elastic axis/principal axis
system of the section. The direction of the elastic axis is 'ﬁﬁ T and ?? are
the direction of the local principal axes of the section. The spanwise
variable is 1, measured from the center of rotation. This variable is
dimensionless, so r = 1 at the blade tip. The section coordinates x and z
are mass principal axes, with origin at the elastic axis. It is assumed that
the direction of the mass principal axes and the modulus principal axes 1is the
same. The center of gravity is at z = 0 and x = X The section mass,
center of gravity position, and section polar moment of inertia (about the

elastic axis) are by definition then as follows:

S dm=m
Jz dm =0
[xz dm = 0

fx dn = Xp m

f(x2 + 22) dm = [

where the Integrals are over the blade cross section.
-23-




Figure 8.

K ON\UT
N

ELASTIC
N AXIS
TN\

AN

LOCUS OF
TENSION
CENTER

Geometry of the undeformed blade.

-2l

e e



The droop and sweep of the blade elastic axis are defined with respect

to the hub plane axes, so it follows that unless the feathering axis is
parallel to the outboard elastic axis, these angles vary with the pitch of the
blade. Let GFAZ* and 5FA3* be the droop and sweep of the blade when the

pitch angle at 75% radius is zero. Then the following relation can be obtained

from the root geometry:

*
den, = BFAq, + (8FA, — Sea, ) <os O

% .
-+ ( XFA3 - ésFA,;)SF‘M ST

é\‘-f\_; = 8FA; - (S;};z ~— é‘:,\b S Oug

e
+ (deng — Seag ) == 9as

where 675 is the blade pitch at 75% radius.

2.2.2 Rotor motion,- The rotor blade motion is described by the follow-

ing degrees of freedom:

(a) Gimbal pitch and roll motion of the rotor disk (omitted for
articulated and hingeless rotors), or teeter motion of the blade

(for two-bladed rotors only).
(b) Rotor speed perturbation.

(¢) Rigid pitch motion about the feathering axis and torsion about the

elastic axis.

(d) Bending deflection of the elastic axis, including rigid flap and

lag motion of the blade is articulated.

Figure 9(a) shows the gimbal motion and rotor speed perturbation in the non-

rotating frame. The gimbal degrees of freedom are BGC and BGS’ respectively

-25-

e e e




(a) NONROTATING FRAME

ip

(b) ROTATING FRAME

Figure 9. Notation and sign conventions for the gimbal

motion and the rotor speed perturbation.




pitch and roll of the rotor disk. The rotor rotational speed perturbation is

is ws. Figure 9(b) shows the gimbal motion in the rotating frame. The

degrees of freedom are BG and GG’ given by

(;63 = (ZC’C; cu-<>*?¢“ -+ (?c,s ﬁv“ﬁ49“«

eC:r = “—'@QC SN, -+ @GSWWM

The blade pitch 6 is defined with respect to the hub plane, so only the
blade inboard of the pitch bearing sees the pitch rotation due to GG. For
two-bladed rotors, the teetering degree of freedom BT may be included. The
teetering motion is defined in the rotating frame, hence BG = BT (-1)m and

6G = 0 for this case,

Figure 3 showed the geometry of the deformed blade. The blade deforma-
tion is described by twist 6 about the elastic axis, bending deflection xo
and zg of the elastic axis; and rotations of the section by ¢x and ¢z due
to the bending (see section 2,1.2).

The blade pitch angle 8 is measured from the hub plane to the section
major principal axis (the x axis). The undeformed pitch angle consists of
the collective pitch 8 plus the built-in twist 6_ . We define 6

coll tw c

oll
as the pitch at Tpao SO etw(rFA) = 0. The rotation by 6

coll is not

present inboard of the pitch bearing, but there can be pitch if the local
principal axes with respect to the hub plane, which is included in etw for
r < Trae The pitch of the deformed blade i5 composed of the root pitch e°(w)
(the blade angle at the pitch bearing, r = Tpao due to control commands,
control system flexibility,. and kinematic coupling); the built-in twist etw(: ;
and torsion about the elastic axis ee(r,w)(where Oe(rFA,w) = 0, and only

ee produces shear stress in the blade). Thus the blade pitch is

S = & +6,, + O

-27-




The commanded root pitch angle is defined as 8¢ = o + 8 . Here 6
coll con coll

is the trim value of the collective pitch, which may be large but is steady in

time; and e:on is the perturbation control input (ivcluding the cyclic con-
trol requir d to trim the rotor), which is time dependent but is assumed to be
a small angle. The blade root ,.itch commanded by the control system is a°,
while 6° is the actual root pitch. The difference (8° - 6% is the rigid
pitch motion due to control system flexibility or kinematic coupling in the

conctrol system. Hence, the blade pitch may be written as

D = (®yn + Ow) + (8% —&°) 4+ o +Oe

The pitch angle may now be separated into trim and perturbation terms,
8 = em + 5, where the trim term is

Owm = €5¢...~\\ + O

and the p=:rturbation is

A

e = <§;° - GB°~> + Ocom + Se

The trim pitch dm is a large, steady angle; the perturbation pitch 8
is small angle since all the components are small, The pitch at the blade

root (r = rFA) is then

(-]

B(h) = & = oy + (=D + 8

~D

Ew + B

-28-




For the rigid pitch motion the notaticn P, is used:

AV O

P = =) = (e°— 55‘-\) + Beow

(This notation is consistent with that for the modal expansion of the elastic
torsion ee, as described below.) Note that P, is the total rigid pitch

motion of the blade, including the control angle ocon'

2.2.3 Ccordinate frames.- The rotating hub plane coordinate frame is

obtained from the nonrotating hub plane frame by rotating about the z - axis:

) =
= Sw”"m ‘tS - cog N2, a;
-

ye coe N, Ty T Swmiv, .355
=
—is =k

The blade coordinate frame is obtained by rotating by the angle

BG + GFAl - GFAZ about the x-axis, by the angle ws - 5FA3 about the z-axis,
and by the angle 6 about the y-axis:

I

‘E cos® iig ~— SannEB.iig

+ 38 L (o +S6a,~ Sgp, D50 + (% — Seag) ooed |

3= m -y —SeadT  + (B br, —SeadEg
SO Th + @ I
S S S TR O I (¥g-ba Y

=L
I

The cross section principal axes for the deformed blade are then

<y A ——————" S e




. —

A\'\\S = T -L-\b%"g

)l

R = T — e bk = 3+ (DK
Yo = B —$3

The vector 314 is tangent to the deformed elastic axis,

2.2.4 Blade acceleration,- The distance from the rotor hub to the
center of gravity cf the blade section is:

.

+‘i‘ [— Tea — (c—r?h &Fﬁz -+ "( @6 +&$A\3 ]
+3e Lo+ za e — 2w 7]
+ (KR4 2R 4 wo v
-8 x:X 4+ g:ﬂ De (2T --xi}u (r.&\ézx
'ﬁ”zso [. (ah;e'-ﬁ*;ii‘> — (QN:E-—§*612.)\c?A
— (z.;e—-x.'iﬁ')m GEUN
~ (Coea, ~ Sng\'fa -+ “FA; “SFAS\”-?GX“(‘D‘]

= 'ﬁe L —%ea — (e=Cea) Sﬂg — N -'294\963
+.§-¢ [,- Zea — (O~ 'i;\\&(:A.L ~- r(@c,-#- &A,ﬁ]
+ 3 Lo+ 2000 — %al¥s |

+ (% + ZoRD) 4 y,.T

bo —
- é'b \/‘k v
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where

' ]
R, = 39k - gm Y (a2~ xR (r-gda%

for elastic torsion (k > 1) and

-
X. = — (%Q.e. -— Ko "—\I»::r.i\)
!
+ (22 -x¥) lr‘=A + (2 =) \m (=)

- (Cong —seaadTo + (38 ~Seae) B (=)

for rigid pitch. Then the velocity of the blade section, relative to the
rotating frame is

Se= (7)), = T h b T o
+j,g (2a Re — Xea'bs )
-+ (Xo—z -~ :Za-ii
bo o
— E’Q Ky

Neglecting the squares of velocities, the zirceleration relative to the rotat-
ing frame is

2= (A%, = —Te (R + 2080) + ke s
-+ ge ( Tra é’.ﬁ — “Gl\':{’s3
+ (% =z Y
— & X

k=zo
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For the blade Coriolis acceleration the radial velocity component j*"éz is
required, including the effect of the change in the radial position of the

section due to bending:
& S 1 ¢ ! D
AP = ~3—g 2 gv [_(%;e + %o.i “““ﬂ;f) o (’Ps "‘S'FA-D(“

+(@6+$ﬂ,-&ﬂ\;\fe 12 -LD)

then

- /e /
"5.-‘3‘. = — go (%o‘-t -7\°'a ) . (?.—;B w‘/so‘i —\1'23 "l\g
— @R *ERY (Chga =S50 T — 00, Te )

’—-<?6' ‘;—':EFA -+ r'&ﬁ“l'" <r"c?A>>$fAz_
+ T (2 %R = %z® D]

— N [‘Am — (—CaD bty
+‘ig' (%o'e "‘yo-i S— 3‘1.2)1

The acceleration of the blade is required with respect to an inertial
frame, specifically the S system. The B coordinate frame rotates at a con-
stant =agular velocity ‘3 = QE; with respect to the § frame. The shaft
motion is composed of linexr and angular displacement of tuie origin of the
S frame. The acceleration, sngular velocity, and angular acceleration of the

5 system have the following cowponents in the nonrotating, inertial frame:

-’32~
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%l e + a b

L = C;/gb-i; ~+ cg{f} '2;5 -t ‘5/i§-j2;

Uy Ty + Ay ’gs + olg %s

g;
I

P
It is assumed that '5:), b.\o, and («Jo are all small quantities.

The acceleration (5:) and velocity (#;) of the blade relative to the

B frame have been derived above. Now the acceleration of a blado point in

inertial space will be derived, in terms of the motion of the shaft, the rota-

tion of the rotor, and the blade motien in the B frame. From the result for

the acceleration in the rotating coordinate frame {the 8 frame, rotating at
-—d
rate ¢¢°), there follows:

.}

_ = - = - - DD -—> A
AR = Qo O\r)s -+ Zw‘,x\'.-).; -{-wo*(“o”\-*-‘%*"

Y -
where a and v
r, ’ -
S frame. The B system rotates at angular velocity = QE; with respect to
the € frame. Hence with

are the acceleration and velocity relative to the

constant and no angular or linear acceleration of
the B frame with respect to the S frame, there follows:

- D = 5 2 ~a)
s = Se -+ 2. ST xT +s~cx(.5?c.xr3
- - - DS
Nrs = Ve 4 SUxE
-3 —
where a. and v, are the acceleration and velocity relative to the B frame.
Thus:
Y Y -~ R ) S RN
2 = G + Q¢ + 25TV, 4 Sex (=T

=2 D DD Flo T
+25, 07 4+ 2D, x (2n®) + B % (Vo XED 496 XC
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To first order in the velocity and angular velocity, this becomes finally:

AY D
2 = o

¢ ix terms in & are respectively the acceleration of the origin, tne
Cariolis acceleration due to the angular velocity of the origin, the angular
acceleration of the origin, the relative accelerarzion in the rotating fiame,

the relative Coriolis a selevation, and the centrifugal acceleration,

For the blade bending and torzion equations, the f>llowing components of
the acceleration will be required:

sl

- 2 5 7 >
== —-S5T°¢ — 25¢ ( “i*ﬁs -4—-.515 - ( Q£aj?-—7‘oji > Q)

»—5.

+ §j; coeP i CXM Fwy o EZ-JSZ-V'é;Qg
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&xi = (sz;si-—‘ﬁﬁy -+ r*ﬂfg -+ r(&,'ae ~+ %;A%)g&
S\
— ?__ ('}X\XQH

-+ S?..ztg LTe- (%t +2R+31D ~%rn —Cea$8A3 )

+ Sehar (R + %, — Y6z )

L
St & ’5"‘32: 113

k=9
-+ 2 Rf& 'S 34;\*
+ 252 [Gon-Sea 0 = Seafe ] (M AT (220K
+ T 3:\,\ —-TZ.G (‘Z&&MV --:5)k°""\93

+252c Ta (ke oo + Xy s

+ (T (e — By ooV P X3

For the hub moment the angular acceleration is required:
. oD “
Taa = 2% T -+ r2Bcla o+ r(%;ﬁ-x;a)
L1 W At
4rZpale By — & (‘Sxix\/"ﬂ
K=O
+520 (=2 + e, — (rred iy + 66
)Y - P ]
e (RiI+TR 4, T)) — & .tr\)w. h]

w=e
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+ 252(c%e +€z-(%:i~—xi)°3 [T (% + (= S0

+To (= 2o + Chea, — (o o) S )
H 2T %R — R )

+ 2 52¢ g 3%

+T e —Ra© (Y iy »—%w‘!’w
4 2502 Ta (S comy 4 &SS—\ZA’*\’\
 c® (T [ 3y 5 — By o 40y &3

and for the hub force we can use

B om= T, —l—-(‘é‘c.‘fe + (v 42X
— 22,‘5‘4 ( =N, —+’€g° (22— N
—52* [T (kT rz® +x2D + Je <
+7Te (**GA ""'(V—V?DS"“‘S - vw’?\]

+1>g (Q&Wﬁ'—\%vw'\’v +-€g%‘\»
+ 3 (Faoms® 4 Gusmy)
+ 2 Sta (‘ﬁg ( oy can¥ +5¢bswq’\ —'33&;_3
+ (ﬁ(&u&«W—%wWB ~—Taz)
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The approximation rj% has been used in all cases to evaluate the hub

motion terms.

2.2.5 Aerodynamiz forces.- The aerodynamic forces acting on the blade

section at the elastic axis are Fz, Fx’ and Fr (see fig. 11 in section 2.4).

These are the components of the aerodynamic 1ift and drag forces in the hub
plane axis system (the B frame), Fx

is in the hub plane, positive in the drag
direction; FZ

is normal to the hub plane, positive upward; and Fr is the
radial force, positive outward.

There are also radial components of Fx and
F
z

due to the tilt of the section by blade bending; here Fr is just the
radial drag force. Thus the aerodynamic force acting on the section at the
deformed elastic axis is:

= -
s = T2
~

I
ﬂ
b
'y

wheare

G o= R = Falpe + foa—Seny 4T (2l )

-— E:x ( - kf; —+ ng\; ‘*’-fui‘ ()k;f -+-45$j2 T;' \>

EI The section aerodynamic moment about the elastic axis is Ma’ positive nose
-t Y
upward (so Maero = Ma3x°)’ These section aerodynamic loads are integrated

over the blade span to obtain the total forces and moments.

2.2.6 Force and moment equilibrium.- The equations of motion for
elactic bending, torsion, and rigid pitch of the blade are obtained from

equilibrium of inertial, aerodynamic, and elastic moments on the portion of
the blade outboard of r:

Y D -

-37-
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Where ME is the structural moment on the inboard face of the defcrmed cross

section (so -ME is the external force on the outboard face); MA is the
total aerodynamic moment on the blade surface outboard of r; and MI is the
total inert al moment of the blade outboard of r. The structural moment ME

is obtained from the engineerinz beam theory for bending and torsion (section
2.1.5), from the control system flexibility for rigid pitch, or from the hub
spring for gimbal or teeter motion, Alternatively, ME may be viewed as the
force or moment on the hub due to the rotor (so -ME is the force on the
rotor). MI is the inertial moment of the blade outboard of 1r, about the
point ?:(r), obtained by integrating the acceleration times the blade density
(dm dp) over the volume of the blade:

My = %\c\ . FR =T xa dw 3y

(oo

For bending of the blade, engineering beam theory gives

= ()

-

od - -3 -d
Therefore the operator Cixxs +-ﬁkks) is applied to MI and MA also., For

bending, moments about the tension center (x = xc) are required. Then the
desired partial differential equation for bending is obtainud from azﬁ(z)/azr.
The ordinary differential equation for the k~th bending mode of cne blade is
obtained by operating with f;;ﬂ<° (...)dr, where 'ﬁL is the flap/lag bending

mode shape (see section 2.2.15). For elastic torsion, engineering beam theory
S

MA'
torsion, momu. Ly about the section elastic axis (x = 0) at r are required;

Y
gives Mr ='T;S . ME. So this same operator is applied to 'ﬁ; and For

also, elastic torsion involves only the blade outboard of ToA® The desired
partial differuntial equation for to;gion is then obtained from 8Mr/3r. The
ordinary differential equation for the k-th torsion mode is obtained by
operating with f: Ek(...)dr, where Ek is the elastic torsion mode shape

(see section 2.2.15). The equation of motion for the rigid pitch degree of
freedom P, is obtained from equilibrium of moments about the feathering axis,

A

MFA =ep, Fﬂr?A). There ﬁ’ is the moment about the feathering axis (x = 0)

-38-




at r = rp,, and era is the direction of the feathering axis, including
perturbations due to blade bending:

/
L R O . Rl [ Vi 7 RE Y S

The elastic restraint from the control system flexibil.<: gives the restoring
moment about the feathering axis, completing the desirc equation of motion.
The total rotor force and moment on the hub (at the gimbal point) are
- -
obtained from a sum over the N blades of F(m) and H(T) the force and

moment due to the m—th blade:

-

N O
F = 2 ¢

w =\

N
) — — ()
fV\_ = b M

wA == )

Spm) = (m)

Since and -M

are the foices on the blade, from force and moment
equilibrium of the entivre blade it fol

= (w)

S
- R FA -—FI
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The hub force and moment are required in the nonrotating hkub plane frame (the
S system), with components defined as follows:

if = \—\'Es —} kf’“é;g -+--T-12;

-

M = i; - ngé - é;{iz

(see fig. 6).

The equations of motion for the gimbal degrees of freedom B,.. and B

GC _,
are obtalned from equilibrxum of moments about the gimbal, M I; . M and

My = JS . M where M is the total moment (from all N blades) about the

gimbal point, in the nonrotating frame. The equation of motion for the teeter

is obtained from equilibrium of the moments about the
*ee* 'r hinge from both blades, in the rotating frame,

Jdegree of freedom BT

The equation of motion

is obtained from equilibrium of the

i §
shaft torque moments, Q = —MZ ='ﬁ; * M., The drive train couples the torque

perturbations of both the rotors, hence this degree of freedom is best con-

for the rotor speed perturbation ¢

sidered with the other motions of the helicopter body.

2.2.7 Bending equation,-

The equation of motion for blade bending is
obtained from

(z\ z..‘(a \ L2
RN R | it
,‘ a(z' LY ° ot

Y
where M iz the moment about the tension center (x = x ) at r, and
- (2)

M= 'L‘tus-{iﬁxs>fa = ("C'ﬁ-;.\?.e IV&*—%‘E)SB
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Considering first the blade outboard of rFA’ the inertia moment is
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The last term in this result will be neglected since it is order (c/R)2
smaller than the first term.

Including the case r < p

FA’ which only intro-
duces an effect of the droop and sweep,

the result is
31' - (&)

see 2 = 3B+ [ e OR R W
+[ /2 xR xR ¢ ( Qwvlg T
— §(r=cp0) Coea, B +%+ﬂ7®8 'sa“éf’

where & (r) is the delta function (an impulse at r = 0). Operating with
I“ .
oM (...)dr

and integrating the second and third terms by parts gives
-‘-(e)

9. T T e = S, T (3% v e
-+ S; 1%;;' [,(“Kc-“5‘z:§§2':;:a "‘tx' L

e - [ (RT—x "ﬁ.-x[?ﬂ -a “‘431 L
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Finally, the torsion terms are introduced; the inertia and centrifugal forces

directly due to the blade bending motion are extracted; and the fourth term
above is again integrated by parts.
z-)(r.‘)
d°M

\
)k SEE b =

3¢t

Thus the inertia force is:

e (2R =X R Y mde — 52 S»»Jg(zj—x nB]-Lr
— e m s (%bi~x.‘ﬁ3w¢r

+ 6T (397 — @wRY — SR T (x2+ TR i
+ (¥ G 33 ),

— § R DX 33 e — r_vl,L g-g ™ vl v
~_2378 (T =% R -2 i'w S (Wss)-ﬁ:e %'ﬁ—x‘?)%
.._\(y, (\P‘ r+f3(%&—x NA) )wzér

+ s2t ° X -ft % Su

Nx \cg“")-g 7,‘ “w fdc
“‘Tx(ch\ (Huz(—e +£FA3ft\

- f;zy'[\(u T EB (% -‘t:?}\w;i]
+ ST g' ?{i S (x.-.-\x:bfwlf + 7,28 gma.—

+ Se° S =, P "TQ §

The structural moment (from section 2.1.5) is
2} S0y
go'h Ml =
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The aerodynamic moment about the tension center (x = xc) at r, due to the

blade loading at the elastic axis at station p 1is

\ N S
M = S (—‘3\5“ =T leve O Fase 4

i
= S(_ (—%-“)<F%'eﬁ - x%) é—s
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2.2.8 Elastic torsion equation.- The equation of motion for elastic
torsion is obtained from
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ie the moment sboul the elastic axis at r, and
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Operating with ngAgk(°'°)dr and changing the order of the p and r

integrations in the second term gives
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where

ix = 3ok - %:FA L (i;t~xi3“ ("-—&) LQ)

Finally, introducing the torsion terms by expanding the unit vectors, th
inertia force 1is:

\ \
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Where Ie = f (x2 + zz)dm

is the section pitch moment of inertia, abo:
elastic axis.

ut the
In the centrifugal acceleration we have neglected a number of

terms due to the blade torsion motion which are the same order as the pro-

peller moment, but which are ncrmally mu maller ihan the structural moment,




With the centrifugal tension T = 92 fl pmdp, the structural moment
(from section 2.1.5) is:
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Finally, the aerodynamic moment about the elastic axis at r 1is
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2.2.9 Rigid pitch equation.- The equation of motion for rigid pitch is
obtained from MFAI + Mpy, = MFAA, where

Mea = QFA = { ?FA + (2 -**'t‘-o'?.3 3 éﬂqtg + &Agfg-j\. /\7‘\

nd M is the moment about the feathering axis at r = Tra® The inertia

moment is
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where
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The aerodynamic moment about the feathering axis at r is
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Introducing the torsion terms by expanding the unit vectors, the inertia force is
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The aerodynamic and inertial moments about the feathering axis are

reacted by moments due to the deformation of the control system., The restor-
ing moment acting on the blade, about the feathering axis, is —Mco . It is

given by the product of the elastic deformation in the control system, and the

control system stiffness Ke:

fv\cavi = yLe; ( Pa — Pr\)

where the rigid pitch P, consists of the kinematic coupling and the blade
commanded pitch angle:

?c — O cae N, [T N P +2\9?« -+ b@ﬁ

~ % k?; Ul k"(-. (&" + Bygema W, -Bu&»«%b LPS

¢

The first two terms are the lateral and longitudinal cyclic pitch concrol
inputs; the next terms are feedback from the governor, and kinematic coupling
due to the rotor mast bending. The term -Kpiqi is the kinematic pitch/
bending coupling due to the control system and blade root geometry, where 9y
is the i-th bending degree of freedom (introduced below). Similarly, KpG is
the pitch/flap coupling for the gimbal or teeter motion., For the rigid flap
moiion of the blade, this coupling is usually expressed in terms of a delta-
three (63) angle, such that KP = tan 63. Finally, the ws term is the
pitch change due to the rotor azimuth perturbation with a fixed swashplate.

For rigid control system (Ke very large) the rigid pitch equation of motion

d = L]
reduces to p_ =P

Including control system damping in the restoring moment gives

MC&“ == ke (’eo ""'Pr) -3 C_e( .?o-—-é("}
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where Ce is the viscous damping coefficient.

For consistency with the
elastic torsion equations, the control system stiffness can be written in

¢
terms of the nonrotating natural frequency of the blade rigid pitch motion, w

z\‘:r:k..r"
¥(i! = W, Sr@ﬁ 5]

and the damping coefficient in terms of a structural damping coefficient 8y

1
Co = HsWe S>QFATI:;3 e

Then the structural pitch moment is

Mea, = (3\(»“:94—"3 (“§(P°—Pc3+‘5s“°(l;°‘§f\ )

2.2.10 Root jorce.-The net force of the m-th blade acting on the hub is
3™ 3 _F

A FI' The inertial force is
A )
X 2
and the aerodynamic force is

E%N = st CFeTa '*'ciéwae -+ e; :;ﬁti> 8

The components of the total hub force in the nonrotating frame are
i

= £ P L owg eV 4R
G: - vzl - S -+ j;?s + L

2.2.11 Root moment,- The net moment of the m-th blade acting on the
rotor hub is

5 - LN
AA(yK) = My — My
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The inertial moment is

—~> \'

— -
MI = %O C wa WQ.;

and the aerodynamic moment is
™

My = g; (F%—EG ———C,'YZB;SCAX‘

The components of the total hub moment in the nonrotating frame are

-~ o D ()

M = M = Mx-ts + MZ_SS -Q-Y:S

Note that the JB (tersion) component of the root moment in the rotating
frame is neglected compared to the ’f’ (f1.:) and kB (lag) components.

The flapwise root moment in the rotating frame gives the pitch and roll
moments on the gimbal:

‘A(*QB g VQ)

i
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§'€
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The inertial moment is

2 Ty = T FaDemar |




and the aerodynamic moment is

\
Te Fa = G, Facic

2.2.12 Gimbal equation.- The equations of motion for the gimbal degrees

of freedom are obtained from the patch and roll components of the total rotor

hub force. Allowing for a gimbal spring and damper in the nonrotating frame

reacting the rotor moment:s, the equations of motion are
C

_._M,—*C-C:(;c:s "*‘kc,(ses = O

The gimbal hub spring and damper constants can be written

Ke = %15.57_1(9: -—l>
PR
<:c. = %% j:b S?: Ck:

Where I0 = fErznldr and I, is a characteristic inertia of the blade, and
Vs is the rotating natural frequency of the gimbal flap motion. To allow
for different longitudinal and lateral hub spring rates, Vec and Vg ©an be

used for the BGC and BGS equations,

2.2.13 Tzeter equation.- The equation of motion for the teeter degree

of freedom of a two-bladed rotor is obtained from equilibrium of flap moments

about the teeter hinge. Allowiag for a teeter spring and damper in the

rotating frame, the equation of motion is

=53~




—2Mg + Cofr +K Ry =D

CT and KT are the damper and spring constants about the teeter hinge.

terms of the natural frequency and damping coefficient, we may write

A
(A
k;,r = 2 =g '3712 <'QT - fﬁ)

where 1 = erzmdr.
(o] [¢]

The teetering moment MT is the root flapwise moment from the two

blades:

2 = (W)
2Mr = v§%=l &N %M (

where again

2|
]

)
s
— - \
T My = (R

2.2.14 Modal equations.- Consider the equilibrium of the elastic,

823'735 -('7?:* A D wde

In

inertial, and centrifugal bending moments. ¥From the results of section 2,2.7

these terms give the following homogeneous equation for bending of the.blade:

((ETaa24+ETHRRD (2~ 2"

— S L Ggmq @t —xd Y 3 - 2 e (2@ —x2)

v (T -’%Ji3" =0
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This equation may be solved by the method of separation of variables. Writing

Wt
Rat—%D = UDe

it becomes

" = D 29 _
Ex Y — s [ (8= A 'Y - BeReqItY =0

This is the modal equation for coupled flap/lag bending of the rotating blade.
It is an ordinary diffezrential equation for the mode shape '#(r); this mode

may be interpreted as the free vibration of the rotating beam at natural
frequency v.

This modal equation, with the appropriate boundary conditions for a
cantilever or hinged blade, is a proper Sturm-Liouville eigenvalue problem.
It follows that there exists a series of eigensolutions 'ﬁk(r) of this equa-
tion, with corresponding eigenvalues vkz. The eigensolutious or modes are

orthogonal with weighting function m; sc if i # k,

|
S =D
S\) \1; . VZK wdes =0

These modes form a complete series, so it is possible to exXpand the rotor

blade bending as a series in the modes:

=1

%g’L’-——XJPL = clr-\&}’v?;CP\

The bending modes are normalized to unit amplitude (dimensionless) at the tip:
Y
ma| = 1.

Consider the homogeneous equation for the elastic torsion motion of the
nonrotating blade, i.e., the balance of structural and inertial torsion

moments. The results of section 2.2.8 give

— (T ety + Ty &, = O




The equation for the torsion motion of a rotating blade, including centrifugal

forces and some additional structural torsion moments could be used instead.
For the torsional stiffness typical of rotor blades these terms have little
effect howe er, and the nonrotating torsion modes are an accurate representa-

tion of the blade motion. Solving this equation by separation of variables,

we write Be = E(r)eimc, S0

(& g')’ -+ =a Wt i =

This equation is a proper Sturm-Liouville eigenvalue problem, from which
it follows that there exists a series of eigensolutions Ek(r), and corres-

ponding eigenvalues (oi(k = 1...@). The modes are orthogonal with weighting
function Ie, so if i #k

\
\rFA ix%; LTedc =0

The modes ferm a complete set, so the elastic torsion of the blade may be

expanded as a series in the modes:

o
& = £, MEOHE

These modes are the free vibration shape of the nonrotatin

o
at natural frequency Wy The torsion modes are normalized to unity at the
tip, Ek(l) = 1.

2.2.15 Modal expansion.- The bending and torsion motion of the blade is
expanded as series in the normal modes. By this means the partial differ-
ential equations for the motion (in r and t) are converted to ordinary

differential equations (in time only) for the degrees of freedom.

For the bending we write:

(Zo-e — ‘/\Qi} = E 3{‘\(1'\ \'nf" ( (‘)
=)
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where 7ﬁ are the rotating, coupled flap/lag bending modes defined above.

These modes are orthogonal and satisfy the modal equation given above. The

variables q; are the degrees of freedom for the bending motion of the blade.

For the blade elastic torsion we write

s 2
ee’ = Z P‘.('t\-)‘-'((‘s

L=\

where gi are the nonrotating elastic torsion modes. These modes are
orthogonal, and satisfy the modal equation given above. The variables

Py (i > 1) are the degrees of freedom for the elastic torsion motion of the
blade. The degree of freedom for rigid pitch motion is P, = 0% = (9° - ec)
+ econ' For rigid rotation about the feathering axis, the mode shape is

simply Eo = 1. Thus the total blade pitch perturbation is expanded as the
series:

S = P 2, ()

" ™Mg

o

The total blade pitch 6(mean and perturbation) is then:

~ do

=0

The partial differential equation for bending of the blade is obtained
from azﬁ(Z)/arz. The ordinary differential equatie

for the k-th bending
mode (the 9 equation) is then obtained by operating with f;?ﬁ<° (...)ar
(which has already been done in section 2.2.7). The modal equation is used
to introduce the bending mode natural frequency into the equation, replacing
the structural and centrifugal stiffness terms, and the orthogonality of the

bending modes decouples the inertial and spring terms as follows:
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where

\
131 = %:a V‘\'Z' Al

The partial differential equation for torsion of the blade is obtained
from aMr/dr. The ordinary differential equation for the k-th torsion mode
(the Py equation) is then obtzined by operating with frFAgk( .)dr (which
has already been done in section 2. 2.8). The modal equation is used to
replace the structural stiffness term with the torsion mode natural frequency,

and the orthogonality of the modes decouples the inertial and spring terms as
follows:
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where \ T
Lo = Sc;i"" T ur

2.2.16 Lag damper.- Arti-ulated rotors usually have a lag damper, which

has an important influence on the blade loads. Therefore a lag damping term

is added to the blade pending equation of motion as follows:
A} - l \
gy (e + 3 + A
b _Jl( -a é,l 3 o . (GRS
-~ . Q) ~‘2 (Q_, +
+ Ty, & %"‘3@“ T VR




where glag = Ccllbn and CC is the lag damping coefficient (Ib is a char-
acteristic inertia of the blade, used to normalize the inertial constants as
described in the next section). The quantity 'E; . EL'(e) is the slope of

the k-th bending mode in the lagwise direction, just outboard of the lag hinge.
The manner in which the lag damping enters the equation of motion is obtained
by a Galerkin or Rayleigh~Ritz analysis. The lag damper results in a bending
moment at the lag hinge. Thus it 1s necessary to evaluate moments at the

blad. root by integrating along the span, which has in fact been our practice.

Note that structural damping has also been included in the bending
equation, modelled as equivalent viscous damping. The structural damping
coefficlent g, (equal to twice the equivalent damping ratio) in general is
different for each degree of freedom. Structural damping is included in the

torsion equations in a similar manner,

Consider also a nonlinear lag damper, for which the lag moment opposing
the motion is proportionzl to iz at low lag velocity (hydraulic damping)
and constant at MLD for lag velocity above &LD (friction damping):

My = s

Ry Tz e (S.‘}M 5O W‘:M<‘)(é/§us\zs

where
. b

= ¢ XA AORH

-
—

Hence the term

T, Yo *—{’k“’s ( B"")r’ - ”\9‘33

is added to the right-hand side of the bending equation. Here linear damping
is included on the left-hand side still, but only to improve the convergeunce

of the solution; so the Cét term must be subtracted from Mlag
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2.2.17 Gravitational forces.- The acceleration due to gravity is
- .EA b -t
8 = gkp = gRSFkE’ wh2re g 4is the gravitational constant, kE

vector, and RSF is the coordinate transformation matrix between the rotor

is the vertical

shaft axes (S frame) and the aircraft body axes (F frame, see section 4.1.2).

In terms of the aircraft trim pitch and roll angles, the vertical vector is

—

- -~
—QE = mé¥ey T 4RO mBer U '*"”“éf-r‘-"c}’ﬁﬁ

(see section 4.1). The gravitational forces acting on the rotor blades may
be accounted for by substituting ﬁ;J§ for 3;, the hub linear acceleration.
Thus the components of i? in the S frame are subtracted from the components

of the hub acceleration in the nonrotating shaft axes:
—

A — :;‘ﬂafs -t ;:»\—Ss - i“‘fs

2.2,18 Eyuations of motion.~ The rotor blade equations of motion are
now obtained by substituting for the expansion of the bending and torsion
motion as series in the modes of free vibration. Names are given to all the
inertial constants. Also, the equations of motion, hub forces and moments,
and inertila constants are normalized at this point in the analysis, using the
characteristic blade inertia Ib’ and the blade Lock number ¥y = pacR[*/Ib is

introduced. (A goocd choice for this characteristic inertia is I, = fg rzmdr.)

The inertia constants are divided by Ib’ with this normalizationbdenoted by
a superscript "*". The blade equations of motion are divided by Ib. The

hub forces and moments are divided by NIb’ so they appear in rotor coeffici-
ent form, The equations of motion for blade coupled flap/lag bending and for

blade rigid pitch/elastic torsion are thus:
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The inertia constants are defined in section 2.2.19.

In rotor coefficient fcrm, the rotor hub force and moment are
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50 the blade root force and moment are resolved in the nonrotating frame, and
ther. filtered by the hub operator %- i The harmonics of the forces in
the nonrotating frame can be related directly to the harmonics of the rotating
forces; the solution of the support equations of motion requires however the

hub forces and moment in the time domain,

The components of the blade root force and moment in the rotating frame
are as follows:
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The inertia constants arc defined in section 2.2.19.

Note that the total hub forces due to the rotor linear acceleration are

simply
B'C‘_:__: \ ~© "’*&
— J—‘ * --“
o P Eéf — M J§;:l AA\ﬂ :&*
= T
o a

*
where Mb is the normalized mass of a blade, Since the rotor mass is included

in the aircraft mass, these hub linear acceleration ter

ms should be omitted
when Cfx’ Cfr’ and sz

are evaluated for the aircraft equations of motion.

These terms should be retained however when evaluating the actual blade root
forces.

Similarly, since the rotor welght 1s included in the aircraft weight,

the corr
Dividing by (1/2)NIb, the gimbal equations of motion are

2G ¥ .,

2c + .
L G ""3"-6*(3:5‘-‘\3(345 =0
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Dividing by NIb, the teetering equation of motion is

A .
— ¥ LT T G, =} D¢ =o
where
2
Trmy - A -\ 93.“_3‘
¥ - 2 g;‘ =D 3 ca

The equation of motion for the rotor speed perturbation w is obtained
from equilibrium of the rotor torque. The speed perturbations of the two
rotors are coupled by the helicopter transmission, so the equation of motion

for @s is best derived with the body equations,

Finally, the aerodynamic forces required for the blade equations of

motion and the rotor hub reactions are as follows:

M%"‘W — S:?x <§%Q~§%n\&

| -
:Efw — g;}" FChale XA\ < f‘\‘\‘r
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2.2.19 TInertial constants.- The normalized inertial constants required

for the blade equations of motions and the hub reactions given above are
defined as follows:
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We have used the relation
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Also then,
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XA; = ?y_(‘"sb ((Suz_-év,«bfe +(JFA3 -S'FAD.%&)(("QA
_.._k
g,

for the aerodynamic coefficients.

The b.ade inertial and structural properties (m, Xps Xp» EI, Ie, GJ, etc.)
will be defined at a series of radial stations, ri, witn linear variation

between.

The blade bending and torsion mode shapes will be evaluated at M + 1
equidistant radial stations: r = 0, Ar, ...MAr where Ar = 1/M. The
inertial coefficients are then calculated by numerical integration (using the

trapezoidal rule) over these radial stations.

A concentrated mass at the blade tip (r = 1) will be allowed, with a
corresponding center of gravity offset. This tip mass contributes an  equiva-
lent distributed mass, as follows:

2.
Ac R

mt(‘B = \“"(5\ -+ M"U’?

= 1 s 2.
yzLCl) = Zcind { 2 (Dl + "I-WM\-:,., ' )

It

T 1D = Tl + %o My, 2B

o




where Ar is the segment length for numeral integration. Alternatively,

the tip mass can be included in the distributed mass directly (to avoid

difficulties with the (xC - xI)m terms evaluated at r = 1),

The total mass of the blade can be specified, so

T
* R —
[v\‘, = ;EE}Q NNEA 'l&a

Alternatively, a point mass can be added at r = 0 to account for the weight
of the hub.

2.2.20 Aerodynamic spring and damping.- To improve the convergence of
the solution for the blade motion, spring and damping forces should be included
on the left-hand-side cf the equations of motion. The required perturbation

aerodynamic forces are:

|
M

e = T M Tt Mg be + ZM ke

alpeas = 2 Mpg e b Mg e
T Mg B My
S 3 - — 5.
A&, = ¢ MY+ Mg e + My B
C«@ o
A \— = CS?é Yo —+ Qg AV v

These terms will be added to both sides of the equations of motion, so they
need not be exacr values of the damping and spring fo-.ces, but only close

enough to achieve good convergence (see sectior 5.1). The damping terms are
needed to avoid unrealistic resonant amplification of the harmonics near the

natural frequency, and the spring terms help obtain the correct phase of the
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Following the aeroelastic analysis (section 6.1 4), the

response quickly.
following expressions are used for the aerodynamic coefficients.
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where

oL
h = Cct-t-\t)z'

X = N+ M,

2.3 Blade Bending and Torsion Modes

2.3.1 Coupled bending modes of a rotating blade.- Equilibrium of the
elastic, inertial, and centrifugal bending moments on the blade gives the

differential equation for th: coupled flap/lag bending of the rotating bLlade

(se¢ section 2.2,14). For free vibration — the homogeneous equation with

harmonic motion at the natural frequency

for bending of the blade:

vV — we obtain the modal equation
An\A z /(R S\ = &S 2 2
CEIVl ) -2 (S‘_SWLS\\ 3 mST S 1 — ™ 1 Q
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Here n(r) = zoif-xok is the bending deflection (mode shape),

EXR = EXa?T + ExT, BT

I

< EE:I:;?EZ. CKDQFLE3 -3 EL:I;y$~ S;”‘?LEB~t>I:§7:G
+(ex 2 $Te + BT, LMZ'QBT&YQ

_;(EIM ~E‘I-‘z%\,§w9m8 (Tgta+fg_(}8\

- -
is the bending stiffness dyadic @ = QkB is the rotor rotational spead, and

v 1is the natural frequency of the mode. The bouniary conditions are as
follows:

(a) at the tip (r = R): EIR" - (Etﬁn)y =0

(b) and at the ront (r = e): '3 =} =0 for a cantilever blade;

7= 0 and EIR" = Ksﬁ' for an articulated blade.

The root boundary condition is applied at the offset r = e to allcw for
hinge offset of an articulated rotor, or a very stiff hub of a hingeless rotor.
Different offsets can be used for the out-of~plane and inplane wotion

(ef and eﬁ). With the hinge springs at an angle es from the hub plane, the
hinge spring dyadic is

Kg = (kg9 4 K 020 Ty Ty
+ (ke snRo, 4+ K wa?dg) Ta Fa
4 (R =K@ by cmed, (Ta¥y +FaT)

where KF is the flap spring and KL is the lag spring constant.

It is useful to be able to use for the pitch angle of the structural
principal axes the effective angle ee = ®0. The param:ter ® is zero for

no structural coupling of the inplane and out-of-plane blade motion; and

-R2-




AR =1 for complete coupling. For the hinge spring oitch angle 65, an input

value can be used; or 59875 can be used; or more generally B¢ =3W675 + 8

This differential equation is an eigenvalue problem for the mode shapes
n and the natural frequencies v. The equation and boundary conditions
constitute a proper Sturm-Liouville problem. It follows that a series of
eigensolutions or modes 'ﬁk(r) exists with corresponding natural frequencies

Y3 and that the modes are orthogonal with weight m. Hence if i # k,

i -\723:'-‘?)1*“4-(' = O

The frequencies satisfy the energy balance relation:

S 7 (kR +% (K'exq"+s &,Smx\r\ . (&l&r
<;Q"1?~aﬂ-L4"

h

The modal equation will be solved by a modified Galerkin method follow-
ing reference 3. This approach works better for large radial variations in
the bending stiffness than does the Rayleigh-Ritz method in standard form.

ifferential equation as

7Gf'l - ( ‘&r QS'“'5*5‘;i‘\>‘ — V~CY2Q'Y2&-:;f -—'An:?z'ii = O
1

Tlv s o
LRI S S Y

(9]

- ycf-e.u)M;‘O

. = o o
with boundary conditions M =M' =0 at r = 1, and n =0 and M = Kq ' at
r = e. The deflection and moment are expanded as finite series in the func-

. - d A
tions fi and g,
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It is required that each of the functions ?; and é; satisfy the boundary
conditions; then the sum automatically does. Since a finite series is
required for numerical calculations, this will be an approximate solution.
For best numerical accuracy the functions f: and'gl mnst be chosen sc that
the lower frequency modes can be well represented by the truncated series.

Substituting these series into the differential equations and operating with

%\&‘(;‘.(\.\\Ax' amd G, e (D A

gives
aWn

a7 S gkﬁx'
— 2 < S {(Sv%*t&g

!

\/—

-Sag “’"““ﬁ?ht%.iy*"‘\o S}xg -Slr

- 1
- Ex -1 A
e T - £a (3 @R W =

Integrating by parts and applying the boundary conditions gives
\! ~3 1 - 1 DSy =
(SR = TR R, + (o Ty -M Lr
b
B X
st R?
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so the

first equation becomes

sy gl [% %Lw\r + e (9\,_ QIQ! \\

+ &< SJ \cﬁwx%:‘gﬁx - V“‘Y&"ixfﬁ‘i\ —‘MVIJ 5

A

— O
~
Bence the problem reduces to a set ot algebraic equations for ¢ = Lci] and
C 9
d = [d,]
-
. Z -
cd + b2 —¥¥TRZ =o
I SN - ==
2 — A3 S
or
cNcCch + b —29 e = O
. — oy
For simplicity the functions used for the moment expansion are 8 = fi"'
Then the coefficients of the matrices are

S by (E5-N'5 e

.
\

) a0

E;ki = (SQ/ V“‘%v.‘SS; QL“
Vo D

S T %b S 5 e
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(Note that using 8 = E1 fi would give C =C = A so d = ¢, and this
solution would reduce to the standard Galerkir form.)

The eigenvalues of the matrix B_l(CA—ICT + D) are the natural frequencies

v2 of the coupled bending vibration of the blade; and the corresponding
eigenvectors < give the mode shape . As a final step, the modes are
normalized to unity at the tip: ('ﬁ(l)l = 1, This modified Galerkin approach
equivalently replaces the Rayleigh energy expression for the natural frequency

(given above) by

>} Y R JRY APt - -
oK) + | 27 " Mm-Mex A . .l
- + 2 Gp gmy -2 e

= — z
SQ vlzmdx’

The blade nonrotating modes and frequencies can be obtained using

Au = %‘%?: (%S‘ -‘?z" 'Lf*

i
x Y
fh
%
:,:(‘
c

Dy,

-
A convenient set of functions for fi are the bending mode shapes of
a nonrotating, uniform beam. Such functions will satisfy the required boundary
conditions, and furthermore are orthogonal (necessary for good numerical con-

ditioning of the Galerkin solution). Let v be the series of eigensolutions
~R6-




of the differential equation dbw/de =

4
a w with appropriate boundary condi~-

tions. Using these functions for both out~of-plane and inplane deflections
gives -
Y
g—'(f\ - w;(%\)L&
- .
(= w (ORg

3’303 = wWlOT
3;“(r3 = '“"2(’:;‘:3

ete.

where x = (r - e)/(1 - e).

For a uniform hirged blade, the nonrotating mode shapes are:

W = Sl o §in o ~+ Hmo Sl an
2 S Safo

where a 1is the solution of

EM&—-—"’MQ

(¢
h
.
o]
]
rt
g8
Q
e,
(1
~
>
]
o
N
M
1]
5
]

x. For a uniform cantilever blade. the non-

(moa + aslia ) (coethon = Cae ax)

2 S Sl
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where a 1is the solution of

The centrifugai force is required for the bending mode calculation,

With the sect:ion mass defined at radial stations r, (1 =1 to M) the centrifu-

gal force is

1

C anede

Coso cadlha

e M

where rrq 2

the stations

<r<r,..

I

—
—

—1

or the lowest modes are given in the table below.

Mode

O o O~ oy W

[
o

S
—

(z
)¢

Hinged
0

3.926602313

7.068582747
10.21017612
13,35176878
16.49336143
19.63495409
22.77654674
25.91813940
29.05973205

%w.\.
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Cantilever

1.875104069

4,694091134

7.854757439
10.99554074
14.137.6839
17.27875953
20.42035225
23.56194490
26.70353756
29.84513021

M 6

<«
~r ..
L= L

L the integrals can be evaluated as follows:

( [
\)"L-\ S

.

\l&)

Then for linear variation of the section mass between




2 3
- (—‘2 — ==, f.".-:‘}
= \3 2 ©

-+ 2 mi D;((‘),,\ Ssﬁ)g-u\‘X-* \mMS\VM)M_%

where
L S %3 T 3
Sop= (s = oy [ ¥ %~ F]

2.3.2 Articulated Blade Modes.- For an articulated blade the modal
differential equation need nct be solvad if the higher bending modes are not

required. Rigid flap and lag motion about the hinges gives the two lowest

frequency modes:

-

Ml

Vfuﬁ = - T_-z\f%

.

12

"

Ti%\a—t - (= I —eg

Note that separate hinge offsets may be used for flap and lag motion. The
natural frequencies are obtained directly from the energy relation, as

follows:
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2.3.3 Torsion modes of a nonrotacing blade.~ Equilibrium of the elastic

and inertial torsion moments (see section 2.2.14) gives the model equation

(C_.;j‘g'y — ':reb"}s = o

with the boundary conditions ?' = 0 at the tip (r = R) and ? = 0 at the

root (r = rFA). The modes are orthogonal with weight Ie, so if 1 # k

3

SG- 3;?xf75%a i =0

The frequenciec satisfy the relation

G 3% 3
z "FA 2
h\-_“__w_
3

g Ty A

)
I

A
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These are the nonrotating torsion modes, so .he solution is independent of

the rotor speed or collective pitch.

The equation is solved by the modified Galerkin method, as described in
detail above for the bending modes. Write the differential equation as

1! - :z::ewtz

ST\~

T = o
STRT

Expand the torsion deflection and torsion moment as series:
% = < < S{;((')

T = T

where the functions fi and gi satisfy the boundary conditions on 2 and T.

J
Substitute these series in the equations, operate with

\ \
S‘FAQK(\.J A awd &c& Ny (o) ae

integrate by parts and use the boundary conditions

/
g T o= §T \ -S\ § T

"FA " ‘eA

It

%\T‘Ar

oA
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to obtain
a | . [
S(FA g'y, 3“-'“' — Lt gl g‘-ﬂ;:'_'e(m%t & =0

\ 1 ) ! -t -
Sc‘n%'“g.‘ e — & Sq-,-,\%\'“ S‘L"’k"'\ z"&r ==

-
Hence the problem reduc2s to a set of algebraic equations for c¢ = [c ] and

d-[d]

)

<

- (LN
cT2 — A3

or

@‘A‘“'CT — T BBE\ = O

For simplicity, the funcriions used for the torsion moment at

t
gi fi' Then

the coefficients of the matrices are

i : -
A = Sr‘_.A g’k s:.'-at\ g’ ol

\
&k' = Sc‘:k T gSy.g'\ L

Ty = SS(?A ‘\'SS :LJ-

(Note using 8; = Gin' would give the standard Galerkin result,)
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The eigenvalues of the matrix B_l(c A_ICT) give the natural frequencies
of the torsion vibration, and the corresponding r~igenvectors for 3 give the

modes, Finally, tne torsion modes are normalized to unity at the tip,

() = 1.

A ccnvenient set of functions to use for fi is the c2lution for the
torsion medes 0f a uniform beam:

W, = SJ\.N\['K“"’%)T S..:YE_A ]

These functiuvas satisfy the boundary conditions, and will often be close to

the true mode shapes,

2.3.4 Kinematic pitch/bending coupling.~ The kinematic pitch/bending
coupling KPi and the pitch/gimbal coupling KPG have a significant role in
the rotor dynamic behavior, The definition of KPi is the rigid pitch motion
due to a unit deflection of the i-th bending mode: KPi = —d6/dqi. For an
articulated rotor, the first "bending' modes are rigid lag and flap motion
about.the hinges. The pitch/flap coupling is often defined in terms of the
dalta-three anglet Kp = tan 83. It is possibie to simply input these
kinematic coupling parameters to the dynamics analysis, if values are available
from either measurements or some other analysis. It is also desirable to be

able to calculate the coupling from a model of the blade root geometry.

Figure 10 is a schematic of the blade root and control system geometry
d, showing the position of the feather bearing, pitch horn, and
pitch link for no bending deflection of the blade., The radial locations of
the feather bearing and pitch link are r_ . and r respectively; the length

PB PH
of the pitch horn is Xpy* The orientation of the pitch horn and pitch link

are given by the angles ¢PH + 675 aund ¢PL' Control input produces a vertical

motion of the bottom of the pitch link, and hence a feathering motion of the
blade about the pitch axis. Bending motion of the blade, with either struc-
tural flexibility or an actual hinge inboard of the pitch bearing, produces
an inplane or out-of-plane deflection of the pitch bearing. With the bottom
of the pitch link fixed in space, a pitch change of the blade results.
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Figure 10, Schematic of blade root and control system
geometry for calculating the kinematic
pitch/bending coupling.
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The vertical and irnplane displacements of the pitch horn (the end at rPH)
due to bending of the blade in the i-th mode are:

AZ = 9L T (725., ("mB — :;f\' ("pg\ (g —-(\o“\)

Av o= —% R (7]:& (%) — ;\5' INECTEIN)!

The kinematic pitch/bending coupling is derived from the geometric constraint

that the lengths of the pitch horan and pitch link are fixed. The result is:

\(P — g‘:&"*?hﬁ + A 4?1_—‘283 . (‘? ™) -JT'.’ ((93\(('“—((;.@\)

— Moy <o C oy —+ Oqg —+ $pD

Similarly, for a gimballed (or teetering) rotor the pitch/flap coupling is:

— o/ Yon) <osbpy

<83 (doy - Oag + dpL)

[

K,

G

Pl "B
C e

J

ed—e..\\- Rnerv Raect iovﬁ'\&

cod C oy + 09y +dg )

2.3.5 Blade pitch definition.- Outboard of Toa the trim pitch angle
is given by the collective and twist angles, while inboard of r
given by just the twist angle:

FA it 1s
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et + O (M > Cea

I

2 Sipa €Y e< Cea

(see section 2.,2.2). It is convenient to use the collective pitch value at

75% radius, 675. Then

Bae + 4y (D > Ga

@
{]

e (D < Cea

which requires Btw(r = ,75) = 0 (but no change to Ot for r < rFA)' For

a4 rotor without a pitch bearing, it is more appropriate to maintain continuity
of 6 by adding a linear term inboard of «r

FA®
tA
o =
- (
o 2+ Oyvy () < Cen

For the structural and inertiul analysis the pitch angle is multiplied by the
structural coupling parameter (.

The twist distribution etw(r) is required at the radial stations for
which the inerttal and structural properties are defined; and at the radial

stations at which the aerodynamic forces are calculated. The aerodynamic

twist definition can include the zero 1lift axis pitch eZL (see section 2,.4.1).
Frequently, a linear twist distribution is used, for which

St = ©Og.. < C — :75>
o
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2.4 Aerodynamic Analysis

In this section tne aerodynamic forces and moments on the rotor blade
are derived. The general case of a rotor in high or low inflow, axial or
nonaxial flight is considered, including the effects of reverse flow and
large angles. Lifting line theory (i.e., strip theory or blade wlement theory)
is used to calculate the section loading from the airfoil two-dimensional
aercdynamic characteristics, with corrections for yawed and three-dimensinnal
flow effects are required. The unsteady aerodynamic lift and moment are
obtained from thin airfoil theory, and a dynamic stall model accounts for the

unsteady aerodynamic phenomena at large angles of attack.

2.4,1 Section aerodyncmic forces.- A hub plare reference frame is used
for the aerodynamic forces, All forces and velocities are .esolved in the hub
plane (l.e., the B coordinate system). The hub plane reference frame is fixed
with respect to the shaft, hence it is tilted and displaced by the shaft
motion. Figure 11 illustrates the forces and velocities of the blade section
aerodynamics. The blade pitch angle is 6, measured from the reference planc.
The velocity of the air as seen by the moving blide has compgnents Urp, up,
and Ups resolved with respect to the reference frame; U = (u; + u 2)1f2 is
the resultant air velocity in the plane of the section; and ¢ = tan * uP/uT

is the induced angle. The section angle of attack is
A = € + Oy — D

where eZL is the pitch of the aerodynamic zero-lift axis of the section
relative to the structural/inertial principal axis at pitch angie 6 (ezL may
vary along the span, and should not therefore be included in the definition

of the sectinn aerodynamic coefficients as a functlon of oj ® can however

ZL
be included in the aerodynamic twist distribution, if etw is defined

separately for the irertial/structural pitch and for the aerodynamic pitch).
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Figure 11. Rotor blade section aerodynamics,
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The velocity ur is in the hub plane, positive in the blade drag direction;
Up is in the hub plane, positive radially outward along the blade; and up
is normal to the hub plane, positive down through the rotor disk. The aero-
dynamic forces and moment on the section, at the elastic axis, are defined

as follows: L and D are the aerodynamic lift and drag forces on the section,
respectively normal and parallel to the resultant velocity U; Fz and Fx are
the components of the total aerodynamic force on the section resolved with
respect to the hub plane, normal to and in the plane of the rotor; F_ 1is the
radial drag force on the blade, positive outward (the same direction as
pesitive uR); and Ma is the section aerodynamic moment abcut the elastic
axis, positive nose up. The radial forces due to the tilt of Fz and F, are

considered separately, uence Fr consists only of the radial drag forces.

The section lift and drag are
2T
L= W ea + Lus

b = ’25“2‘-%

where U is the resultant velocity at the section, p 1is the air density,
and ¢ is the chord of the blade. (The air density can be dropped since all

quantities are actually dimensionless, based on p, @, and R.) The section

lift and drag coefficients, ¢y and cqr are functions of the section angle of

attack and Mach number:

-1
= S 4 O —d = o -+ 69%1.--Tbv~. L‘Plcﬂw—

A
M = Mos K

where MTIP is the tip Mach number (the :otor tip speed QR divided by the

| speed of sound). Lus is the unsteady aerodynamic 1lift force. The radial
drag force is
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This radial drag force is based on the assumpticn that the viscous drag force

on the section has the same sweep angle as the loual section velocity. The
momert about the elastic axis is

M, = —x b+ My + My

T A
== ._yA-_LLSl.A ccg + ’%_“SU\ ctem —+ Mus

where XA is the distance the aerodynamic center is behind the elastic axis,

Cn is the section moment about the aerodynamic center (positive nose up),

and Mus is the unsteady aerodynamic moment.

The components of the section aerodyramic forces relative to the hub
plare axes are then

I

Fa
by

Lessh — Dgmd = (Lot ._m\p\,/u

’ - ~ s
L 9\~Ai¥ + N Cu;4q; = (_L.la' + D :)/!

Substituting for L and D, and dividing by a, the two-dimensional 1if¢-curve

slope, and by cm, the mean section chord (which enter the Lock number ¥
L
also), we obtain:
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The net rotor forces required are obtrained by integration of these section
forces over the span of the blade:

Lo = ¢ % (Seg o BN ar
B (TR NV g Yj‘ (S Bty

\

(32 o B cae
S::ilnm - So ;7; v A
Q%Flm == So 5:_ e

l

N
?\,@
I

ﬁb"

40
%5
)
e

]
At
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where

E—"“Fr ~— F%(@G“"gﬂ."‘s’ﬁr_\ -—-;x ("%'*' SFAD
—Z % (60 —¢xf%>'ﬁ\£

To numerically integrate the aerodynamic loads over the blade span,
define K radial segments by the boundaries

ro )r')rt)s--) ( L 9 | 4

where Iy = 1. For the k-th segment, the airloads are calculated at the
center:

« = '%i ((]g + r--—\ i)

Then the spanwise integration is approximated by a summation over all segments:

K .
= (=)

12

-
O §0e

where
A, = (vk'-'°k~‘\)

In summary, the rotor blade aerodynamic forces are evaluated as follows.
First the section velocity components and pitch angle are evaluated, and then

the angle of attack and Mach number. Next the section aerodynamic coefficients
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are obtained (see section 2,4.4), and from them the section force components
and moment., Finally, the section forces are integrated over the rotor radius

to obtain the reauired gener..ized forces.

2.4.2 Blade »elocity.- The air velocity seen by the blade section is
due to the rotor rotation, the helicopter forward speed, the rotor and sha”t
motion, and the wake induced velocity. The rotor is rotating at speed Q.
The velocity of the air as seen by the rotor disk has the following dimension-
less components in the shaft axis system: Moo positive aft; uy, positive from

the right; and u,, positive down through the disk:

—

-
»= SCK-&’ = T =My "/“QT:

Often the lateral velocity component uy = njz . T? is assumed to be
zero in the rotor aerodynamic analysis, and indeed it is small for most rlight
conditions., An exception is the case of sideward flight. An altzrnative to

in¢luding uy 1s to rotate the shaft axes until 3; > Tf = 0, but that would

imply a redefinition of the rotor zero azimuth position for every flight state.

Such a redefinition of ¢ is not desirable since it changes the values of
parameters such as the control system phasing, and even changes the derXinition
of the harmonics of the rotor motion. Hence it is preferable :0 directly

include the effects of the lateral velocity in the analysis.

The rotor wake-induced velocity is Ai = vi/QR, normal to the rotor disk
and positive downward. A simple model may be used, such as a uniform ox
linear variation over the disk, or calculated nonuniform induced velocities
may be used, For the latter case, all three components of the wake induced

velocity (in shaft axes) 7sill be considered:

-—
ao == \'fsm\b -—-\—E\

The rotor advance ratio u and inflow ratio A as conventionally
defined are here
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po= A pE e py
N

= N+ g

Thesc are the dimensionless inplane and normal components of the total velocity

seen by the rotor disk. The hub plane angle of attack and yaw angle are then

T L2
Ipe+rs

]

e

h*‘ﬁ? = _IE;~:‘ :f;g?—

V ensalyp
//A STR
Vi -F\JSAkuel“t i T
> & SR M

Here V is the helicopter velocity, with angle of attack aHP relative to
the hub plane (aHP is positive for forward tilt of the rotor disk). The

advance ratio u is zero for hover and axial flow, and u > 0 for helicopter
forward flight.

The aerodynamic gust velocity has components ug * Vg and Vg in the
shaft axis system, normalized by dividing by the tip speed QR. The longi-
tudéinal gust Vg is positive from the front, the lateral gust Vg is posi-
tive from the right, and the vertical gust wg 1is pusitive upward
(v;ust = uéI; - véT; + wéE; relative to the rotor). This gust velocity is
evaluated at azimuth angle ¢ and radial station r on the rotor disk
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(at r =

rj% = r{cos wI; + sin wj:) relative to the hub). The quasisteady

shaft motiou and the gust velocity at the rotor hub will be included in the

advance ratio component ux, uy, and uz (see section 4.1.2).

The blade and shaft motion have been defined in the inertial analysis

(section 2.2). The resulting velocity components in the rotor shaft axes are

thus:

Nep = ¢ + ()Ax -F\x;\)ﬂﬂnqu -3 <¢43 -}-5%3§)=J~n\4)
(G AN = Gy 10D 8 (Sn,

—Fa- (2t
+ B (22 —x2 )

- (/;o/x -+ C}\. +Vc>Cbaq) ~+ (/».‘%c/\3 _.i,wu()égw
-+ (/“:~C4r°Nv ‘“/“1yéhﬂﬂk$><?*e *’S§‘> .L—.P'(éﬂa.qh\%;\>

UR = (My 420 wan¥ -—9-3-4-\33%&)» - %ea + G éy@,(:‘
R (2x®D — o By (2w Y

""(\\i.ﬁ'/k‘é\)(: gﬁﬁ\‘ “'%ﬂ?ﬁ;l_'+'g;e, 'F:Tii‘ (2 ‘-";ii\>v tS
-+ (( P N OV T (/*3+\33 caay ( 53
Ve (R

— (et + o +V6 Vol + (Pt = Sor, 4 U oo
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A+ ((prat g DeoaW — (pyy +)‘3)&~\P\[ A4, —%fa, + Ca
+Ta (Rt ~-% R ]
+ gy, —we —Mxoly -/«)db + (A pay — &3“*":’\

and the pitch angle is

) b
O = D o0 + By —+ .Z;‘o ("2:

In body axes, the trim velocity vector is fixed with the reference frame, and
would therefore tilt with it. With inertial axes however, a tilt of the rotor
by the shaft motion results in a small changs in the directions of the com-
ponents of u as seen in the reference frame., All the upa terms in the
expressions above for Ups Ups and up result from such tilt of the inertial
~xes relative to the trim velocity vector. The aircraft body yaw, pitch, and
roll will be defined as body axis motion however. Hence the body Euler angles

are not to be included in the evaluation of ax, ay, and az for the blade
velocities.

2.4.3 Induced velocity.- For the case of uniform inflow, the rotor wake-

induced velocity is obtained from the momentum theory result

Coq
o= V?/u‘gj /N,

where A =p + Ai and uz = uxz + uyz. Empirical correction factors Kh and
K¢ are included for the effects of nopimiform inflow, tip losses, swirl,

blockage, etc., in hover and ferward flight. An iterative solution of this
equation for Ai is necessary:
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with - Cr
\%L =

2 JV<3r/ﬁl¥é§?-'*:)azzfuﬁ?"

to start the solution; 3 or 4 iterations are usually sufficient. For the

vortex ring and turbulent wake states thils momentum theory result is not
applicable. Thus 1if

Zz
PEF (2 30 < 2.

the feollowing expression is used instead:

3713 g+ BAR M
Y.

where

S = Ver/z, |

The wake-induced velocity is reduced when the rotor disk is in the
preximity of the ground plane. The effect of the ground will be accounted
for using the following approximate expression from refewence 4 for the ratio

of the induced velocities in and out of ground effect:
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where 2z 1s the height of the rotor hub above ground level, normalized by

the rotor radius; and ¢ 1s the angle between the ground and the rotor wake

(e = 0 for hover and e approaches 90° in forward flight), which accounts

for the effect of forwanrd speed, Note that ground effect is essentially
negligible for altitudes greater than the rotor diameter (z > 2) or at forward
speeds u > 2(CT/2)1/2. This expression compares well with test results,

down to an altitude of about one-half rotor radius (see reference 4). The

rotor wake-induced velocity in ground effect is thus

2 v
(\LBIGE = () T::z \»<>‘bocs€

Let hAGL be the height of the helicopter center of gravity ahuve ground
level; and (xR, Y zR) be the components of the rotor hub position relative
to the center of gravity, in a body axis system (the F frame, see section

4,1.5). Then the altitude of the rotor hub above ground level is
- .
?—-:R"A&L"' (\"ﬂLF“"%aF*ag—i;)"‘tg
_ L
Tk L’Q"AGL - Rm#\ ('EKWGFTW%T
+»b‘m9¢1-i~u§;'r m%gwe{:-f)-\

The vertical (ﬁ;) is defined relative to the body axes by the trim pitch and

toll Euler angles (BFT and ¢FT’ see section 4.1.1)., The angle between the
rotor wake and the vertical is

cose = Cpots—puts = N B Yo /I pE AT w0

NS — 5 O Fr
= | N\ S
i —{ — CRAD(Cy P EY
B g 4 NE ({-‘\2 R“: "

(=12 RT VS T
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where RSF is the transformation matrix between the shaft and body axis

coordinate frames.

As a first appreximation to the rotor nonuniform induced velocity dis-~

tribution, a linear variation over the disk is considered:

AN = N (er canr ¥ + k‘3 (--5;..\\.])3

where Ai is the mean value of the induced velocity, calculated as described
above. Typically Ky is positive, roughly 1 at high speed; and Ky is
smaller in magnitude and negative. Both Ky and Ky nust be zero in hover,

Based on references 5 to 7 we will use

Ky mx
K, = L, — g 2
X J/.,z..,. > —+ )] PR’

Ky = TR E T T ool

with typically fx = 1.5 and fy = 3,0, There will also be an inflow variatiocn

due to any net aercdynamic moment on the rotor disk, The differential form

of momentum theory gives

g.\*." (.- ZCM‘.-&(-WKV -+ Z—CMx ~ ?.‘Mq’\J
AN =

»

\J/»‘/xz #%"/K;“

including an empirical factor fm.

With twin-rotor aircraft it is also necessary to account for the rotor-~
rotor aerodynamic interference in the wake-induced inflow velocities. The
induced velocity at each rotor will be expressed as a linnar combination of
the isolated rotor induced velocity. Let Ail and Ai2 be the trim induced

velocity of the two 'solated rotors, calculated as above. Then the trim

inflow ratios are
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Here Ky and Koy are the rotor-rotor aerodynamic interference factors,
Separate values are used for the interference factors in hover and forward

flight, with a linear vaviation from u = 0.05 to 0.10,

In summary, the isolated rotor mean iaduced velocity is calculated from

the advance ratio and thrust,

\L = S’GE \I%E (;l:sb C-r)

wvhere fGE = 1 out of ground effect, Including Lhe rotor-rotor interference
and the linearly varying induced velocity components, the inflow ratios are
then

(STRY,
CTRY,

-+ C\L; Ky ¢ enalV Xc.g ku)'“&m\p}

\>n = Ma \ -+ \\lg -+ R~|z

i

Gonl = ZComyy cera® 4+ Zln, Com®)
’ T/t L \L/W
s /k,‘ + ¥k,
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fer rotor #1 and rotor #2.

2.4.4 Section aerodynamic characteristics.- The section aerodynamic
characteristics required are the static 1ift, drag, and moment coefficients as
a function of angle of attack and Mach number: cz(a, M), cd(u, M), and
cm(a, M). Most often rotor loads analyses use two-dimensional airfoil test
data in tabular form. The aerodynamic description of the blade also requires
BZL’ the zero 1ift angle of the section relative to the structural/inertial

principal axis at pitch angle 6; and , the distance the aerodynamic center

X
(in normal flow) is behind the elastic gxis. The strict definition of BZL

is actually the pitch of the axis corresponding to o =0 in the airfoil data
used. Similarly the strict definition of xA is simply the location of the
axis about which the moment data cp are given, It is convenient to use the
zero lift axis and the aerodynamic center, but thc most important considera-
tion is that the definitions of 6ZL and X, be consistent with the zero angle
of attack and moment axis definitions in the airfoil data used.

The angle of attack a d1s defined in the range ~180 to 180, with the
same sense as 0. The 1ift, drag, and moment as a function of angle of attack
are defined as in two-dimensional airfoil tests, where o 1is varied by pitch-
ing the airfoil; and the 1ift is always positive vertically; the drag is posi-
tive in the direction of the free stream; and the moment is posit-ive nose up.

For the rotor blade in reverse flow then (uT < 0), a positive pitch © or
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positive (down) normal velocity up gives an angle of attack near -180; which
gives positive <, and eyl which are down lift L and forward acting drag D.
The section moment is given about a fixed axis of the section. In reverse
flow the aerodynamic center shifts to near the three-quarter chord (from near
the quarter chord in normal flow) so it is expected that the ¢ data will

show a nose up moment contribution of aM = gL or Acm = lc

2 ) in reverse flow
(see fig. 12).

The steady, two-dimensional airfoil data (cz. ¢4 and ¢, 3asa function of
a, M, and r) will be used in tables of the following form. The data will be
defined at a finite set of angle of attack points. To facilitate interpola-
tion, thesc points will consist of sewveral groups, with the same atgle of
attack increment within each group. Then the set of angle of attack points
can be specified by the a at the boundaries between the groups, and the
indices of these points: N, @, to ony.s and n, to an, (for Na—l groups).
The organization will be similar for the variation with Mach number. For the
radial variation, the blade will be divided into segments with the same
section, defined by the r at the boundaries: N., and r; to IN.4 for

Nr segments. Hence the daca set for the 1lift coefficient has the form

No» By (k=1to N)), o4y (k=1 to N)

N, o (k=1toly), M (k=1tol)

Np» Ty (k=1 to Nr-f-l)

°x(i) for 1 =(Jr-l)nNanNm + (g-Dny, + 3¢

(((Jg=1tomy), Jp=21tomy), j=1to N.)
and similarly for the drag and moment coefficient data sets.
The data will be linearly interpolated over angle of attack and Mach

number. The boundary point definitions determine the values of o and M

for all points in the data set, Consider the angle of attack variation, The

boundary point definition of @ g for 1 =1 to Na implies that the angles

of attack fer points between the boundaries @ 4 and Gny,q are

°’n;+) = oy + )
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Figure 12. Sketch of section aexrodynamic characteristics.
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for § =0 to (ni+1- n

). Hence given

{ a, we search for 1 suech that

O(“'b § = = Nied
it follows immediately that
O(a ® X =< NJ*"

where

d R-d“'
K = n; -
& L F [_ A X ]

= oy = (éu""“'\\&;{

Aot = Anjyr =

e

Ve — Wy

([a] means the greatest integer in aj; i,e,, integer arithmetic),

With a
function ¢ defined at a

3 and at aj+1, iinear interpolation then gives

c = a. <, -+

a 0& Q'a-lrl C;‘.""
vhere
al — ol
[~ S : _—9 —_— -_L‘ d—*u-\ —— -1_ sd —f 3} - H
3t o T i ) 50‘6’( ") (A‘ ")
et A~ Dy,
= = == |
and ;
&L . s
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o X S = . © = | —a.,
i~ Aot 3
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If a < @, set i =1 and aj_*_1 =0; 1f a > a“Na' set ja = ny; -1 and

aj+l = 1. Similarly, for a given Mach number M search for k such that

M, = M <

X M'e S|

then calculate
. M — M
éw = W, + “"]

A
AM = M“&w - M'\v.
et —
™. = M — M\\\g - M“K

™y = | — M

If M< Hl, set jm = 1 and n3+1 =0; if M > H"Nm’ sel jm =ny ~1 and

mj+” = 1, The appropriate radial station is determined by searching for jr
such that
g < < L

The aerodynamic coefficient is evaluated at the four corners, and then the

interpolated value is
c = Qéw'bc(.c)“);}“‘ﬂ)‘\ +Q‘aw-6*\¢(ét)éw*l)é"\

+°5*,W‘é e ( .&\ﬂ-‘) ‘A-m) Ar\ ‘\'Q‘bﬂ“'bﬂQ( }“+|) 3“‘-"‘) b"\
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2.4.5 Tip flow corrections.- Three dimensional flow effects at the blade
tips significantly alter the wing loading. Principally it is necessary to
correct the blade element theory section loading calculation for the 1lif:
reduction and compressibility relief near the tip. The standard tip loss
correction assumes that the blade has drag but no lift outboard of radial
station r = B. Henue for a radial segment extending from r, te LT the
lifr coefficient is multiplied by the factor

meO)MCﬁ. Bt \\

) Gar— "1

The moment and drag coefficients are not altered. For the tip loss factor
.97 can be used, or

2Cr
B = 1 — N

Alternatively, the tip losses can be accounted for by multiplying the blade
element theory 1lift by the Prandtl function:

. | f~'3ﬂ/2>o
Vo= A e

An effective tip loss factor can be evaluated from this function:

hence
o == S0—-8D

s 2,

O~/ O~

JNCAN

I

4‘1
1
ﬂlw ap
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The three dimensional flow at the blade tip increases the critical Mach

number of the tip sectins, compared to the two dimwmasional flow character-
istics. This compressible tip relief may be accounted for by reducing the

effective section Mach rumber by the factor

M .
= 5
™ R

The factor fM must be specified at each blade station, for the lift, drag,
and moment.,

Swept and tapered tip planforme are defined in the present analysis by
the blade chord, aerodynamic ccnter, pitch angle and zero lift angle, and
center of gravity distributions (c, Xy ©® and OZL’ and xI). Any sweep of the
blade elastic axis at the tip is neglected however. The tip planform should
also be considered in choosing the tip loss factor and compressible tip relief

factors for the votor blade.

2.4.6 Yawed flow correction.- Yawed flow over the blade section may be
accounted for using the equivalence assumption for swept wings: that the
yawed section drag coefficient is given by two-dimensional airfoil character-
istics, and the normal section lift coefficient is not influenced by yawed
flow below stall, Since the wing viewed in a frame moving spanwise at a
velo:ity V sin A (where V is the wing velocity, yawed at angle A) is
equivalent to an unyawed wing with free stream velocity V cos A, except for
changes in the boundary layer, there should then be no effect of spanwise
flow on the loading below stall. Accounting fur the effective dynamic pres-

sure and angle of attack of the yawed section relative to the normal section
leads to

cylAy = Cdn (ot cas A fove A

Co () = Congy (o end A
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for the section aerodynamic coefficlents in terms of two-dimensional airfoil

characteristics, These results are largely verified by the experimental data
for yawed wings. The section yaw angle is given by

1
wZ +uy
caa N = ~ ~ S
b\.‘.'f"u‘g 4-“&

In reverse flow ( \a\ > 90°) the angle of attack correction is

o/‘) [_ Clotl — 186 Dens-A 4+ 1307 ]eg“,}\\,(

for the drag, and

od. — r

y = L[ el — 186D cae® A 4+ 130° ] gagn O

for the lift and moment.

2.4.7 Dynamic stall model.- Dynamic stall is characterized by a delay
in the occurrence of separated flow due to the blade motion, and high transient

loads induced by a vortex shed from the leading edge when stall does occur,
’ These features are modelled by the following procedure adapted irom reference 8.
McCrnskey (refarence 9), and Beddoes (reference 10) have found that the dynamic

stall delay correlates fairly well in terms of the normalized time constant

T = At V/c. Their results for lift and moment stall are
.CL. 'CM
McCrockey 4.3 X o.¢ 2.8 & 0.2
Beddoes G4 * o.b 245 % o 5
:{ i
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or apprcximately o= 4.8 and Ty = 2.7 (a constant <t

for the drag stall delay). Hence the section 1lift will be evaiuated at the
delayed angle of attack

D is also required

<>(é = ci.(“P - £§+i_\) 222 K - 25}+1. =

where Ay = bt = TLc/IuT| (radians). A maximum value of the angle increment
(a0 - ad) should be specified in order to avoid difficulties at small wvalues

of uT. Thus

c><3 = ol — ‘ <‘.1:L. \:zf%; \ N ‘sc‘vnau; j} S(arkc;<

is used. The 1lift coefficient below stall should not be affected by the
dynemic stall model, rather the stall delay should extend the linear range

above the static stall angle of attack. Hence the corrected 1lift coefficient
takes the form

<o = i;ié <’<;QZ45(¥>€5\> - <;k2_e.(<>:;> + c;gzLefcsx **'AﬁxC;R

Including the yawed flow correction this becomes

\ o 2 1

Here Ac2 is the lift increment due to the loading edge vortex used at
dvnamic stall, which is discussed below. Similarly a delayed angle of attack
is calculated for the drag and moment from appropriate time constants T and

D
Tw, and the corrected section aerodynamic coefficients are
Iy

-119-

I T e e

il e
i T



Cé\:c;%—_/\_ S8 2a (g cma A Ac,

Cm = Sy, (o eea? ) + A

including the yawed flow correction. In reverse flow (90 - | a | < 0) the

1ift coefficient correcticn should be

< = LI A §<Cgu>q-(\dal ~130 Jomd A + “33]5“’&‘“‘}

e (13D gaq-m,? T X
Clegg) —138) S oy

— Ca,, (‘%0'\3 - Acg

and for the drag and moment coefficieats
< = “—J;—j\. c‘%([(\dd\"\BSB““J\'+‘%°°]$‘;X“°‘63

—- acy

G = Sz, ( [V =135 ) con A + \86’_-_\5453“0‘;3 + AC

When the blade section angle of attack reaches the dynamic stall angle

®4g? @ leading edge vortex is shed. As this vortex passes aft over the air-

foil upper surface it induces large transient loads. The experimental data
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of reference 11 show that the peak incremental aerodynamic coefficients depend

on the pitch rate at the instant of stall, « c/V, approximately as follows:

ACy, (2o &e/V) e [\ < 05
AC = .
= waon, cxc:/\d > .05
R3¢

o e /N <-02

ACu 0= | Ay, (33:3 &e/V = (61D c02< He/V< +O8
Acwé's é’C'/\/> O

gy, (20 &e/VD He /N < 05

£>C;gv‘.k -

ACa,, e /N >.05
with Acnds = 2,0 and Acmds = -,65. In the present model of the dynamic stall

loads it is assumed that the incremental coefficients due to the shed vortex
(Acz, Acm, and Acd) rise linearly to the above peak values in the small
azimuth increment Awds (typicaily 10° to 15°), and then fall linearly to
zeyy i the time Awds again. Hence the model involves impulsive lift and
nose down moment increases when dynamic stall occurs, which produce the blade
motion and loads characteristic of rotor stall. After these transient loads
decay the blade section is assumed to be in deep stall, and dynamic stall is
not allowed to occur again until the flow has reattached. Flow reattachment
takes place when the angle of attack drops below the angle are' Generally

a dynamic stall angle about three degrees above the static stall angle gives
good results, Different values of %’ Awds’ and are can be used for the
lift, drag, and moment characteristic if necessary to adequately model the
dynamic stall of an airfoil. The calculation of the vortex induced 1lift in

dynamic stall is outlined in figure 13. The drag and moment are calculated
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END OF Acg CALCULATION

Figure 13. Outline of calculation of dynamic stall

vortex-induced 1ift coefficient.
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in a similar fashion, except that the drag is not multiplied by sign of

(o (90 - I o |)); and 1/2 Acz is added to the moment in reverse flow.

As an alternative dynamic stall model, consider that developed in

references 12 to 14. They introduce an effective angle of attack of the form

—
4 = ol . < Se \ .
= — wun( T ,/_-- A
S LS 5 Aot N
where T is a function of Mach number and the airfoil section obtained fro~
oscillating airfoil tests, This angle adyn can be used in place of oy in
the expression for <, given above, with Ac9v = 0. Similar corrected angles
of attack are calculated fur the moment and drag coefficients, using appropri-

ate factors Ty and Tpe For an NACA 0012 airfoil, reference 14 gives

T = wWan (O’vvulm (it )2~\‘o'—- 2.3 M\\
Tm = TH = M(QBM. (\.\‘2_)\vﬁl—2~‘i?M\3

(in radians).

A no-stall model can be implemented by using for o, the smaller of the

d
actual angle of attack o and a maximum angle of attack o ax in the linear

range (say 10°):
(i Qletl oty s let] < 9°

>3 . .
| e (\etl 5 13 ~o<\m\s~'»6«ok et} > 37

The incremental coefficients (Acz, Acm, and Acd) should be set to zero as
well.

In summary, the following procedure is used to calculate the section
aerodynamic coefficients. First the Mach number correction for tip flow is
applied: .Meff = fMM‘ The section coefficients £ys Cgo and c, are calculated
from o, a, A, and Meff: first the yawed/delayed offective angle of attack is
calculated; then CQZD’ chD and ¢ for o and i are obtained from

m2D eff eff
two~dimensional steady airfoil tables; C2p at o = 0 or 180° is alsc required;
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finally the section coefficients are evaluated. Next the dynamic stall vortex
loads Acl’ Acd, and Acm are evaluated from a and a. Finally the
tip loss correction is applied to the 1lift coefficient.

The aeroelastic analysis (see section 6.1.4) requires the derivatives of
the section coefficients with respect to angie of attack and Mach number.
These derivatives are evaluated by applylng the above procedure with small
increments in & ard M (not Meff)' For the purpose of evaluating these

derivatives, &, A, and the dynamic stall vortex loads are heid constant.

2.4.8 Unsteady Llift and moment.- The thin airfoil theory result for the
unsteady aerodynamic lift and moment about the pitch axis for the rotary wing
is

L -+ < Fae ™ C(W+ ugw
L o= = 2vE (1423) = S(WHuew )

Q C-

z 2 v %
Mus = = %2-. Viz <\+4\%—'-'Bl * :;5'2. (W +ugW )(l-&-'-l é—"}

ac

where xp is the distance between the serodynamic center and the elastic

axis:

y ( YA normal flow
A

= <
re
\."(\’W:_ -+ %_"\ reverse flow

(here Xp0 must in fact be the position of the aerodynamic center); and in
the double sign the upper one s for normal flow and the lower one for
reverse flow, % = sign (V). Here w = Up sin 6 - u, cos 8 4is the upwash
velocity normal to the blade surface (with no order c¢ terms); B = dw/dx is
the gradient of the upwash along the chord, as due to a pitch rate; and

V= uT cos 0 + uP sin 6.
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. 2
In this result the order ¢ 1ift and order c¢° moment terws have been

neglected. The virtual mass terms (aerodynamic forces due to the section

pitch and heave acceleration) can also be neglected. The sign changes in

reverse flow have been accounted for in this result,

included in the slender body pressure terms (from the radial derivative w')

and in the contributions to the upwash w. The time derivative w includes

Radial flow effects are

terms due to the time varying free stream. Corrections for real flow effects

on the lift-curve slope and aerodynamic center have been included (thin

airfoil theory gives a = 27 and the aerodynamic center at the quarter chord).

For stalled flow, these unsteady aerodynamic forces can be set to zero

(Lus = Muﬁ = 0). The unsteady forces at high angle of attack are accounted

for in the dynamic stall model for «c

2 g and Cn’

Finally, the velocities required for these unsteady aerodynamic forces
are as follows:

V= hy ce® —’-—Mpfrwg

-«

S

o-]
1]

and from w =

there follows

\.AI-Q-M‘W

v {
+ Bo + TR-(2oT —%e®) —+ Wi ©

— =. LI - .‘+
u,. sin 8 . up cos 9, U, =z + upz 4 up, and Up = U, + X+ u

/

= Vé-&-&-‘-&we ._—(:\PC-«@

. 4 !
+~ Up (\/a’ -t u;we—u},wew

= \J(é-n.uge') 4+ (G + el smo

___(J.‘, -+ ugue./>c“€3
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= \1(9-4~U¢6\).+ 2UQ ¢ ©
4+ (X + 2u, v +tax + v XD s
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with up = ux cos Y - uy sin ¥, ard using

Y
2’ = @(:s -4-’_(33”(-'{:9"6 "'*Xo-E\

i

14
X = o2 + % 1B (m? xR

-126-




2.4.9 C(Circulation.- The blade bound circulation is required for the

wake induced velocity calculation:

r1 et %E A =Cq -} ‘:;S

Thin airfoil theory gives for the unsteady circulation (below stall)

¥ < *kB
us = z B(l—i—z—c—:&

ac

(see section 2.4.8).

2.5 Environment

The aerodynamic environment of the helicopter is defined by the speed of

, and the air density ratio to sea level standard p/po, (The blade

sound Cg
One approach is to input values of Cg

Lock number is calculated using pg,.)
and p/po. Alternatively these parameters can be calculated from the altitude

h for a standard day; or from the pressure altitude and temperature T.

For a constant temperature lapse rate, the density ratio and speed of

sound are obtained from tne following expressions.

T | A
To YA
T /T standard day
-,
‘T, +e/T, given temperature

b
I

. \o/3k ~
(TN (Y

(Z):
CSo 'T‘o

N
[V
I




For the case of temperature and altitude specified, the density altitude is

;\R~|'
R«éz%(i_’ <%;\%J B

Alternatively, the air density and temperature can be specified directly.
Then the equivalent altitude can be obtained from

mr .&”"*_7‘}7'
R“b = 3 (l"" go"\'a 3

The required constants are given in the table below.

Constants English unics S1 units
dimension h ft n
dimension T g °C
g/ ER 5.256115
(e/Er-1)7* 0.234956
To/€ 145442 ft 44330.8 m
T, 518.67 °R 288.15°K
T, 459.67 °R 273.15°K
cs, 1116.45 ft/sec 340,294 m/sec
2 32.17405 £t/sec? 9.80665 m/sec’
0, .002378 slug/ft> 1.225 kg/m>
(g/ER) T 0.160255

A
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2.6 Normalization Parameters

It has been the practice here to deal with dimensionless quantities
based on the air density, rotor speed, ;nd rotor radius (p, 2, and R).
In addition, the equations of motio;, the inertial coefficients, and che
aerodynamic forces have been normalized using the following parameters:
Ib’ a characteristic moment of inertia of the blade; cm, the blade mean chord;
and a, the blade two-dimensional lift-curve slope. The values of these
parameters have no influence on the numerical problem and its dimensionel
solution; they only affect the values of normalized, dimensionless quantities.
It is convenient to use the blade Lock number vy and the rotor solidity ¢

as primary parameters. Then Ib and c, are obtained from

4

Cwn
3

-
am N*’R

For this purpose, the lift curve slope is set to a value of a = 5.7.
The Lock number will be defined for standard sea-level conditions (Yo);
then y = YO(P/OO)-
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3. ROTOR WAKE ANALYSIS

3.1 Nonuniform Wake-Induced Velocity

3.1.1 Rotor vortex wake.- Conservation of vorticity on a three-
dimensional wing requires that the bound circulation is trailed into the
wake from the blade tip and root. Radial variation of the bound circvlation
produces trailed vortic’ty in the wake, parallel to the local free stream
direction at the instant 1t leaves the blade. Azimuthal variation of the
bound circulation will proguce shed vorticity, oriented radislly in the wake,
The strength of the trailed and shed vorticity is determined by the radial
and azimuthal derivatives of the bound circulation at the time the wake
element left the blade. The lift and circulation are concentrated at the tip
of the rotating wing, due to the larger dynamic pressure there, Consequently
the trailed vorticity strength is high at the outer edge of the rotor wake,
and the vortex sheet quickly rolls up into a concentrated tip vor%ex. The
tormation of this tip vortex is influenced by the blade tip geometry. With
»juare tips, nuch of the roll up has occurred by the time the vortex leaves
the trailing edge. The rolled up tip vortex quickly attains a strength nearly
equal to the maximum bound circulation of the blade., The tip vortex has a
small core radius, d2pending on the blade geometry and loading. The vorticity
in the tip vortex is distribuied over a small but finite region, called the
vortex core, due to the viscosity of the fluid. The vortex core radius is
defined at the maximw. tangential velocity. The vortex core is an important
£ hie wake indu.ed v:loci.y, since it limits the maximum velocity
induced near a tip vortex. Only a linited amount of data on the vortex core
radius is available, pa.ticularly for rotary wings. There is an inboard
vortex sheet of trajled vortizity in the wake, wit™ opposite sign as the tip
vortex. Since the gradient of the bound circulation is low on the inboard
portion of the blade, the root wortex is generally much weaker and more
diffuse than the tip vortex.

The trailed and sned vorticity of the rotor wake 1s created in the flow
field as the blades rotate, and then convacted with the local velocity of the
fluid. This local velocity congists of the free stream velocity, and the

wake self-induced velocity. The wake is transported downward, normal to the
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disk plane, by a combination of the mean wake l.duce? velocity and the free

stream velocity. The wale ls transported aft of the rotor disk by the inplane
component of the free stream velocity., Tbe self-induced velocity of i‘he wake
also produces substantial! distortion of the vortex filaments as they are
convected with the local flow. Thus the wake geometry basically consists of

distorted interlocking helices, ciie behind each blade, skewed aft in forward
tlight,

The

L4}

troug concentrated tip vortices trailed in helices from each blade
are the dominant feature of the rotor wake. Due to its rotation, a rotor
blade encounters the tip vortex from the preceding blade in both hover and
forward flight. These tip vorticcs produce a highly nonuniform flow field
through which the blades must pass. In hover the tip vortex is convected
downward only slightly until after it encounters the next tlade. The vortex
produces a large variation in the tip loading on the following blade there-
fore, with a substantial influence on the rotor hover performance, In for-
ward flight the rotor wake is convected downstream, so the tip vnrtices are
swept past the entire rotor disk instead of remaining in the tip region. The
close vortex/blade encounters occur primarily on the sides of the disk, where
the blades sweep over the vortices. The resulting large azimuthal variation
in the induced velocity produces a large higher harmonic content of the blade
loading. Nonuniform inflow is thus an important facior in the vibrafion,
loads, and noise of the rotor in forward flight. In a tandem helicopter,

the rz2ar rotor also encounters the wake of the front rotor.

For close vortex/blade enccunters, the induced loading varies rapidly
along the blade span. Lifting line theory does not give an accurate predic-~
tion of such loading. Thus lifting surface heory is required to accurately
estimate the vortex—-induced loads on a rotary wing. The most economical
approach is to use lifting line theory with a correction factor for close
vortex/blade encounters, based on a lifting suriace solution for an infinite
aspect-ratio, nonrotating wing encountering a straight, infinite, constant- ’
strength free vortex. In the present analysis this correction will be :
incorpurated as a factor reducing the induced velocity as required to obtain

the correct loading by lifting line theory. Note however that with this

approach the actual blade angle of attack at vortex/blade interactions will
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be larger than calculated for the lifting line theory loading solution.

Direct application of lifting surface theory to the rotary wing is usually
impractical with current computation techniques and machines. An examination
of measured rotor airloads indicates that the vortex induced loading is
generally high when the blade first encounters a vortex, but decreases as the
blade sweeps over the vortex. There is evidently some phenomenon limiting
the loads (see reference 15 to 17). Local flow separation due to the high
vortex-induced radial pressure gradients on the blade appeares at present to
be the most likely explanation for the reduction in loading after the initial
encounter. Bursting of the vortex core induced by the blade is also a possi-
bility. Another possibility is that the vortex interacts with the trailed
wake it induces behind the blade, with the effect of diffusing the circulat.lon
in the vortex. Note that the latter two phenomena, involving a rchange in the
vortex itself, will also influence the loading if the vortex encounters yet
another blade c¢f the rotor. Following reference 16, the phenomenon limiting
vortex induced loads after the initial encounter will be modelled by increas-
ing the core radius of a segment after it encounters the blade, with vpstream
propagation along the vortex to produce the loads reduction. An increase in
core size is a convenient means to reduce the influence of the vortex; the

exact pbysical explanation for this phenomenon is at present speculative.

A possible model for the tip vortex viscous core is solid body rotation,
which implies that all the vorticity is concentrated within the core radius
r, (defined at the point of maximum tangential velocity). Measured vortex
velocity aistributions show that the maximum tangential velocity is much less
than T/27 L Implying that a substantial fraction of the vorticity is out~

side the core radius. Reference 16 suggests using a circulation distribution

‘L
I

2z T
Ll o Y

¥ = T

based on measured velocity distributions of vortices from nonrotating wings;

the corresponding vorticity distribution is
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where r 1is the distance from the vortex line. In this case half the
vorticity is outside the core radius. Along a line at right angles to the
vortex and a distance h above it (as in a blade/vortex intersection), this

vorticity distribution produces a downwash with peak value

F .

ww = AWJL\?.*'GI

: (2 2
a distance \jh + r, either side of the intersection; compared to LA
I'/4wh at a distance h from the intersection for a vortex with no core.

(Note that as far as the downwash velocity is concerned, this core effect is
equivalent to moving the vortex away from the blade, to an effective distance
he = h2 + ri; such a simple interpretation will be useful in the lifting
surface correction.) The peak tangential velocity with this vorticity

distribution is T/4m L half the value obtained with all the vorticity
concentrated within the core radius.

The rotor wake induced velocity is calculated by integrating the
Biot-Savart law over the vortex elements in the rotor wake. The wake
strength is determined by the radial and azimuthal variation of the bound
circulation., For the wake geometry a simple assumed model, experimental
measurements, or a calculated geometry can be used. With the helical geometry
of the rotary wing wake, it is not possible to analytically evaluate the
induced velocity, even if the self-induced distortion of the wake is neglected.
A direct numerical integration of the Biot-Savart law is not satisfactory
either, because the large variations in the induced velocity at close vortex/
biade encounters requires a small integration step size for accurate results.
It is most accurate and most efficient to calculate the rotor nonuniform
inflow with the wake modelled using a set of discrete vortex elements. For

each vortex element in the wake the induced velocity at a point in the flow

-133~




field is evaluated by an analytical expression, and the total induced velocity

is obtained by trimming contributions from all elements. The tip vortex is
well represented by a connected series of straight-line vortex segments. The
inboard trailed and shed vorticity cen be modelled using rectangular vortex
sheets, or a lattice of discrete straight-line vortex segments (with a large
effactive core to limit the induced velocity close to individual line seg-
ments). A large core vortex line element might in some cases be a better
model than a sheet for the inboard trailing vorticity, if the inboard wake
has partially rolled up to form a root vortex. The inboard wake is less
important to the nonuniform inflow calculation than the tip vortices, so a
more approximate model may be used. The approximations involved in modelling
the rotor wuke using a set of discrete vortex elements include replacing the
curvilinear geometrv by a gseries of straight-line or planar segments; a
simplified distribution of vorticity over the individual wake clements
(lineatr variation, or even constant strength); and perhaps physical approxi-~
mations such as the use of line elements to represent the inboard vortex
sheet, The development of a practical mecdel involves a balance between the

accuracy and efficiency resulting from such approximations.

3.1.2 Wake model,- The blade bound circulation will be calculated at
discrete points on the rotor disk radialiy and azimuthally. Assuming a
linear variation of the pound circulation between these known points results
in a wake model consisting of vortex sheet panels (see rig. 14). Assume that
the blade bouund circulation TI(r, ¢) 1s glven at the radial stations
vy (1 =1 to M) and at the azimuthal staticas wj = jAy (3 =1rto J,

A¢ = 2w/J)., Let ¢ be the age of vortex elements in the wake (¢k = kay,

k = 0 to »). The strength of the trailed and shed vorticity of a wake element
is determined by the bound circulation of the blade at the time the vorticity
was created. Consider a wake panel of age ¢ = @k to ¢k+1’ arising from the=
blade between radial stations ry and Tis1 (fig. 15)., The strength of the
vorticity in this panel is determined by the bound circulation at the time

it was created, which is known at the four corners. The bound circulation
corresponding to the panel leading edge 1s that at time ¢ - ¢k, where ¢ 1is
the current blade position (dimensionless time) and ¢k = k&Y is the age

of the panel at the leading edge. The bound circulation corresponding to the
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Wake model with bound circvlation calculated

Figure 14,
at discrete points on rotor disk.
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Figure 15,

Vortex wake panel,
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panel trailing edge is that at vy = ¢k+1’ Ay earlier than the leading edge.

The difference between the bound circulation at ri and ri+l defines the

trailed vorticity strength 6, which is constant radially along the panel

assuming a linear variation of the bound circulation from ry to Tipge

the bound circulation varies azimuthally however the trailed vorticity

When

strength 6 dis different at the panel leading and trailing edges; a linear
variation of & in the direction of the trailed vorticity will be used.
Similarly, the difference between the bound circulation at ¢ - ¢k and

(VIS ¢k+l defines the shed vorticity strength vy, which is constant azimuth-
ally along the panel (for a linear azimuthal variation of the bound circula-

tion) but varies linearly from the left to the right panel edges.

A vortex sheet panel in the wake may be economically approximated by
shed and trailed line vortices located in the middle of the panel, with a
large core to avoid the induced velocity singularity near a vortex line. A
vortex lattice model of the rotor wake is produced by collapsing ail the
wake panels to such finite strength line segments. Since the line segments
are in the center of the sheets, the points at which the induced velocity
and bound circulation are evaluated lie at the midposints of the vortex
lattice grid, both radially and azimuthally. Positioning the collocation
points midway between the trailed vortex elements (radially) is a standard
practice of wing theory utilizing the vortex lattice wake model, in order to
avoid the singularities at the lines; positioning the collocation points mid-
way azimuthally is required to correctly obtain the unsteady aerodynamic
effects of the shed wake (see ref. 18). Simply collapsing the shed and
trailed vorticity in the wake panels to llnes, the strength of the line seg-
ments will vary along their length as dnscribed above. The shed and *-ailed
line segments will cross in the middle of the panel. As a further apy.oxima-
tion, a stepped (piecewise constant) variation of strength can be use.
instead of the linear variation, with the jump in scrength occuring at the
center of the segment where it crosses the other vortex line. Such a vortex
lattice wake model with constant strength line segments corresponds to &
stepped distribution of the blade bound circulation, azimuchally and radially

{with the jumps occuring midway between the points where the circulation is
evaluated.)
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The rotor vortex wake quickly rolls up at the outer edge to form a
concentrated tip vortex. Because of the dominant role of the tip vortex in
the wake flow field, it is important to model these rolled up tip vortices in
the induced velocity calculation. The lesser role of the inboard wake vortic-
ity also allows a more approximate model to bhe used for it. Let T _ (¢y) be
the radial maximum of the blade bound circulation. It is agssumed that in the
far wake, where the rollup process 1is complete, that all of the bound circula~-
tion Fmax is concentrated in the tip vortex. The tip vortex will be
modelled by a vortex line segment with a small but finite core radius. When
Fmax varies azimuthally, the tip vortex strength varies along its length.
Furthermore, the inboard portion of the wake will be modelled by a single
sheet panel, with trailed and shed vorticity as described above. This far
wake model may be viewed as corresponding to the circulation distribution
sketched in figure 16, The linear variation from T = 0 at the root to

T Fmax at the tip defines the single inboard sheet, and the sharp drop
from Fmax to zero at the tip defines the tip vortex line. {This circula-
tion distribution should not be associated with the actual bound circulation
at the rotor blade. Rather it is an approximation for the vorticity distribu-
tion in the far wake, which is determined by the rollup process. Since an
analysis of the rollup is not attempted here, the actual vorticity distribu-
tion over the inboard sheet is pot known. An approximation involving constant
strength determined by the known maximum bound circulation is anpropriate
therefore.) This far wake model is computationally efficient, since it

depends only on the maximum bound circulation rmax'

The rollup process may not be complete by the time the tip vortex
encounters the following blade. The induced loads will be significantly
lower if the tip vortex has strength less than the maximum bound circulation.
Therefore the tip vortex rollup must be included in the wake model. Figure 16
sketches the radial circulation distributisn assumed, which produces the
model for the rolling up wake. The circulation goes from zero at the root
to rmax at radial station rRU; to fRU rmax at the tip, Thus there 1is a
line tip vortex of strength fRU Pmax’ and two inboard wake panels. The
rollup proczss will take place over the wake from ¢ = 0 to ¢ = ¢RU' The

position of the maximum circulation and the rollup fraction will vary linearly
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Figure 16. Equivalent circulation distribution for models

of far wake, rolling up wake, and near wace.
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from Teu and fRU at ¢ =0 tor=1land f=1 at ¢ = ¢RD' An analysis
of the rollup process is not part of the present work, so the parameters
¢RU’ rRU’ and fRU will be prescribed inputs to the calculation procedure.
Note that tne velocity induced by the rolling up wake will also depend only

on the single bound circulation value rmax'

Just behind the reference blade, where the induced velocity is being
calculated, it is the detailed radial and azimuthal variation of the wake
vorticity which is important, not the rollup process (except for the influence
of the rollup on the tip loads). Hence for the near wake of the reference
blade the full vortex panel representation is retained. The corresponding
radial distribution of the circulation is also sketched in figure 16 for the
near wake; in this case it is the actual blade bound circulation distribution.
The tip vortex rollup is often partially complete at the blade trailing edge,
so a line vortex at the tip is included, with strength equal to a fraction
wa of the calculated bound circulation at the most outboard radial station,

_he complete model of the rotor wake is shown in figure 17.

The very first panels of the near wake require special consideration.
In order to correctly calculate the unsteady aerodynamic effects, the shed
weke is stopped a quarter chord behind the bound vortex (ref. 19). The
singularity near the side edges of the trailled vortex sheests presents a
difficulty in calculating the induced velocity at a point due to the immedi-
ately adjacent panels. Thus if the induced velocity is to be calculated near
a junction between two panels, they shotld be replaced by one panel with the
collocation point well away from the edges of the single panel. This diffi-
culty can be also avoided by using line vortex elements for the trailed
vorticity in the near wake, or by moving the panel side edge away from the
collocation point. Finally, the front edges of the individual panels should
all be aligned with the bound vortex.

When calculating the induced velocity at points off the rotor blade, as
at another rotor or for the alrframe aerodynamics, the near wake model need
not be 1sed. Often calculating the induced velocity away from the rotor will

require a consideration of more wake spirals than are needed for points on the

rotor disk,
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UP WAKE -

Figure 17. Sketch of wake model for nonuniform induced

velocity calculation.
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For computing the “nduced velocity, the tip vortices will be represented

by a connected series .. straight vorte.. line segments, with a small viscous

core radius. Normally a linear variation of the strength along each segment
will be used; a piecewise constant variation ccrresponding to a stepped bound
circulation distribution is also possible. The inboard wake panels will be
represented by planar, rectrngular vortex sheets, with shed and trailed
vorticity varying linearly along its length. For computational economy, the
vortex sheets can be replaced by line segments in the middle of the sheets,
with a large core radius (which in this case does not have physical signifi-
cance, rather a viscous core is a convenient means for eliminating the
singularity near a line used to represent a sheet element; unlescs the xnboard
trailed vorticity does rollup to form a diffuse root vortex). If the induced
velocity is to be calculated near the side edge of a vortex sheet element, it

can be replaced by a line element in order to avoid the edge velocity singu-
larity,

3.1.3 Ceometry.- A nonrotating tip path plane coordinate frame with
origin at the rotor hub will be used for the induced velocity calculation.
The solution process will iterate between the induced velocity calculation,
and the harmonic blade motjon and helicopter trim solution (using uniform
inflow to start the cycle). Thus the hub plane orientation (S system) will
be updated based on a new induced velocity estimate. In contrast, the tip
path plane orientation is well defined by the helicopter or rotor trim, hence
is less sensitive to changes in the induced velocity estimate. Also. the
rotor wake geometry is simplest when defined relative to the tip path plane.
The tip path plane tilt relative to the hub plane is given by the first
karmonics of the tip deflection Zprp = @G + Eqi 'T£~ ﬁ;(l):

Gc = (@lec ~+ .LE' (3,(:_’ ‘Bﬁ.ﬁbibs
@5 (@C’B'S + LZ‘@S: -eﬁ‘;‘)"O)

I
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The rotation matrix

Rrs = ” ‘ Gs
-8 =@ \

will transform position and velocity vectors from the shaft azes (S system)
to the tip path plane axes (T system).

The induced velocity is required at the radial statioas r, along the
rotor blade. The radial stations at which rhe induced velocity and bound
circulation are evaluated will each be a subset of the blade loading radial

stacions, but the two sets need not be identical. From section 2.2.4, the
postion vector of the rotor blade is

- }

%W

I

- \
g [—-x;,\ —+ (r—-rp,\\%\:,\.s - N — kg - (%;;‘E-—xéi\)}

-t :;3 - ]
T [~ 26 = =T Feap + ©(Betira)) + T - (22— %K)

I

£ Svatp -ES - e ‘3,5\) ‘:_"' ReA + (‘\- PRB §¢A3 __(-)PS

'_‘ﬁﬂ' <%o-e"7‘a‘ﬁ\1
-+ Cu")v T}‘ + SwalP 353 Ao

+ Ky [~zea — (P ) Seag = (B + b6, ) ¥ @t -]
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Transforming to the tip path plane (neglecting second order terms) gives
then

v = Tx % S [gp + (C-TR) deay — ' —Ta- (R —x )]+ Cms"}'}
+J~ i" oo™y .\.:\'LG‘A + (- G) &AJ‘” 1 -—-fg' (%a?: "‘Nﬁ)]_ ~}-c$‘.,\|)}

+-€\- {"‘-‘«"-A - (T =) %“z; ~+ c-((g,__-._Lg;M\) *ﬂ-(—ux"-x;‘i‘)

— (B 2o 4 35 5P }

Y

The iinducea velccity is to be evaluated at the points rb(rn) along the
rotor blade. It is useful in the computation of '?; to have the option to
suppress the inplane deflection, to suppress all harmonics except the mean,

or to linearly interpolate “he geometry between the root and tho tip.

The wake indured velocity !s alsc required at points in the flow field
£f the rotor digk:

a. at the wing/body, horizontal tail, aad vertical tail for the rotor/

airframe aerodynamic interference;

b. at the other rotor hu»r for rotor/rotor aerodynamic interference;
c. at an arbitrary point in the flow field;

d. and at the reference blade of the other rotor, icr detailed rotor/

rotor aerodynamic interference.

For the first two, only the mean value of the induced velocity will be used
in the present analysis. The induced velocity distribution over the disgk of
the other rotor can be used in the present analysis only if the cwo roters
have the same rotational speed (see section 5.1.11); so for the single main
rotor and tail rotor configuration the rotor/rotor interference can be
accounted for only in terms of the Inducea velocity at the rotor hub. The
position vector of the wing/body is

E21r9> FESF' <f"_:ﬁ;. -+ éi~n;f)

ity




KN SN
woere Tp and Ly are the nosition of the rotor hub and the wing/body center

of action, in the body axes (F system). The vectors for the horizontal tail,
vertical tail, and other rotor hub are similar. For the induced velocity of
rotor #2, these vectors must be multiplied by R1/Rz' For the induced

velocity at the disk of rotor #2 due to the wake of rotor #1, the position
vector is

= — \, = S
("2/‘ -— (21-525(; )fb‘\'vfﬁ'l ["’ (.g. -+ (‘g:,..

e -+ N ,
PN -
= Totar -+ ﬁZJ rbz< f',',\z )w ~+ b\yZi\

where Aw21 is the azimuth angle of the referance blade of rotor #2 when

P =0 for rotor #l {see section 5.1.5) and

r Eo oo
Ry = CE“E“\% AR

[+ o Y s coyro—

The position vector for the induced velocity at the disk of rotor #1 due to

the wake of rotor #2 is

= R,

et

Wz T ~é-_7._ Ciy Fge LY ) L-——rn-l- T

.

—
+ C:EL“SE:“SF codruc Ak lriﬁ (c.;"‘')"".--—b‘\upa;\.1

. |

‘-o‘\'w" + ZZ‘ gb N Cc‘“; ) LV — A\VZ“X
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1f the rotor rotates clockwise it is necessary to change the sign of the jz

- .
component of r (between the RTq and RSF

The geometry of the tip 'ortex behind the reference blade will be defined
by the vector '?; (¢, ¢), where y 1is the present azimuth angle of the blade

and ¢ is the age of the vortex element. The wake geometry is required at

rotation matrices).

~1hs5-




the discrete azimuth positions wz = Ay and wake ages

¢k = kAY, where &
ranges from 1 to J (one revolution of the blade, with AY = 27/J) and k
ranges from zero to the specified number of wake spirals for the induced
velocity calculation. The tip vortex geometry behind the other blades of
the rotor can be obtained for '?; at the appropriate azimuth angle. The
o
¥ = 1), convected with the free stream velocity }:, and distorted by the

tip vortex elements are created at the blade tip ( at radial station
self-induced velocity in the wake. The rotation of the wing together with
convection by the free stream velocity produces the basic helical geometry
of the rotor wake. As at the rotor disk, the induced velocity throughout
the wake is highly nonuniform. The actual position of the wake elements,
determined by the integral of the local convection velocity, is thus hignly

distorted from the basic helical form. The resulting wake geometry is
;3 (w 4;) - \> RN -~
w oy = V= 4w D)

-
where D(¥, ¢) is the distortion due to the wake self-induced velocity (note

-3
D(Y, 0) = 0) and the free stream convection velocity is

]

R [ [ pnbep
» = Ros \"‘/‘"r —My —Bs ke
He ~Mz — Bepx + Bs py

I

relative to the tip path plane.

Similarly the geometry of the inboard wake sheet will be defined at the

root and tip edges, trailing from the blade position '?L

¥ = Tpoor and r = 1 respectively. The distortion -ﬁr will be different for

at radial stations

the tip vortex and the inboard sheet. Because of the dominant role of the

tip vortices, the most important information in the wake geometry is the tip

-1l46-




vortex position, and a less accurate definition of the inboard sheet geometry
is often acceptable.

The induced velocity calculation may require the wake geometry beyond the
point where the stored distortion ends. For this portion of the wake rigid
geometry will be used. Consider the distortion ‘deu ¢) when the age ¢ is
greater than the age of the last element in the known distortion, ¢1ast
= chAw. The wake geometry will be extrapolated from ¢1ast to ¢, using

only vertical convection due to the mean induced velocity:

-B(\r) P = - -t 5 < wt ) — (‘b—%.n\\(zﬁ

Note that the azimuth angle of the blade at the time the wake element was

created, ¥ - ¢, has been held constant.

For the salf-induced distortion of the rotor wake geometry, the following
models are considered:

a. rigid or prescribed wake, with contraction and two-stage convection;
b. and a calculated free wake geometry (section 3.2).

In the rigid wake geometry it is assumed that all elements in the wake are

convected downward by the mean induced velocity at the rotor disk, giving
~3 Q
b = N
D
relative to the tip path plane, where

Note that this distortion is independent of the azimuth angle ¥. The con-
vection velocity Ai is the mean induced velocity at the rotor disk, includ-
ing ground effect and rotor/rotor interference in gemeral. This model can be

generalized to a two~stage convectioun:
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with
K, =
Kz = gz\‘-

determined by the constants fl and f2. To improve convergence,

A=1/2 (Ai + Xold) should be used in place of Ai’ Including contraction
of the wake gives for the distortion

D camo":‘-d?>
T = [ % swlv—g)
D2

where the radial displacement (also independent of V) is

be = - GBS aok e

(ri = 1 for the tip vortex and the outside edge of the inboard sheet, and

L. = TeooT for the inside edge.) Hence the rigid wake geometry is determined
by the parameters fl, f2, K3, and KA’ which may be different for the tip
vortex and inboard sheet. Alternatively, the constants K

specified, instead of fl and f2'

Landgrebe (ref. 20) developed a prescribed wake geometry model for a

1 and K2 can be

hovering -otor from experimental model rotor flow visualization data. The

model consists of contraction and two-stage convection as defined above, with
the constants as follows:
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a. tip vortex
K,
K,

.ZS(Cf)r —+ ol QWB

CV 4 ol ) Joe |

b. sheet tip edge

kK, = LI566 J Cor
¥Lz- = 9 J -

¢c. sheet root edge

K,
Kz

o

1

I

— (o025 e.f'.w ~+ -oﬁ‘iew\\/c.,.

d. radial contraction

¥1L+ = -~]$?

where 6 is here the blade linear twist rate in degrees. Kocurek and

Tangler (ref. 21) revised the tip vortex geometry based on experimental data
for low aspect-~ratio two-bladed rotors, obtaining

K, = B + ¢ (&/nN"Y"
i
K, = [or =N (=B "

Ky = 4.0 Iy

i
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with

B = .o007729 enn
C

= 23 — -20L B¢w
- -
™ = \'D —— -ZS e"O‘i' ™

w = 0.6 — 012 Oy

In reference 22 it was found that the prediction of measured rotor hover
performance was improved when the wake geometry was prescribed based on the

blade maximum bound circulation rather than CT as above. Hence

r"
N v

C =
Al ol s uad

can be used in place of CT; in general Fmax must be averaged over ¥ as
weli. These prescribed wake models were developed for a hovering rotor. To

apply them in more general flight conditions we can use

T2 \*
o= O

with Ai the mean induced velocity including ground effect and rotor/rotor
interference (the blade loading CT/G is retained.)

The wake geometry arrays will be organized as follows, The rigid or
prescribed wake geometry is defined by Dz and Dr at ¢ = kAP, k = 1 to KRWG
(independent of Y). So the structure of the array is

k), for k=1 to Kch

for Dz and Dr’ for the tip vortex and the two inboard sheet edges. The
convection rate K2 is also required, for extrapolation of the geometry

-
beyond ¢ = AY., The free wake geometry is defined by D(¢, ¢). The first
WG
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subscript in the array will be the age ¢ = %A¢ for k =1 to KFRG; the

second subscript will be the blade azimuth angle ¢

il

WP, 2 =1 toJ. So
the structure of the array is

B(n), n= (-1 +k for ((k=1toK =1 to J)

The free wake geometry will be used for the tip vortex only (see section 3.2).

In the near wake and the rolling up wake, the position of a panel corner

at an arbitrary radial station p 1s required (rROOT < p <1). Linear

interpolation between the root and tip edges of the inboard sheet gives
- ) —

2 o e -9+ Sy (37 ke

‘ - rﬁoﬂ"

The geometry of the near wake panels should include the increment

. §

-
T, —D) + T (U (=)
Ar = ?b (S)\y\ - Ty (Goor .\.‘PB O ‘33 + 7 (1 (% Cener

b — r}odﬂ'

to account for the blade bending (the variation with wake age is neglected).

The first paneles of the near wake are aligned with the bound vortex. Let
-
ry and r, be the posivion vectors of the right and left front corners of a
- -
near wake panel, obtained from the wake geometry at ¢ = 0, Let r, and ¥

2 4
be the position vectors of the right and left rear corners, obtained from the

wake geometry at ¢ = AY. Then a rectangular panel aligned with the bound
. - - -3 Y - -
vortex is obtained if r, and r, are replaced by r, + AT and r, + Ay

1 3
respectively where

A AW S D S 2
N CA-8) (7=6) ey 4T — 6 — 3
A =1 - . ( >

- =2
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For the shed vorticity in these first panels, the front corners are also
moved aft by a quarter chord, which is accomplished by adding
-
g c AT
lﬁx‘?s = — -
4 \av)

- - -
to r; and r3, with Ar given above. The blade chord at the induced velocity

radial station will be used; and the shed wake panel will be omitted entirely
if c/4 > |46,

That portion of the first tip vortex segment extending from the bound
vortex to the trailing edge (a length 3c/4) should be perpendicular to the
bound vortex. Let ?1 and ;; be the positicn vectors of the vortex segment
end points, at the blade tip and at the first downstream point respectively.
Let F; be the position vector of the first blade point inboard of the tip.

Then this line vortex segment will be replaced by two segments extending from
-

1‘1 to A
‘ > 3¢ A
Yoot aR)

-
and from there to r2, where

S Y - -
AP = (R TIR B x (F=FD
- - - -

= (=0 (H-R)-(5~-8)

and ¢ is the tip chord. Constant strength will be assumed for the portion
from the bound vortex to the trailing edge.

3.1.4 Induced veloeity calculation.- The blade bound circulation is

Yij = F(ri, wj). The solu-
tion is periodic, so the azimuthal points cover one revolution of the blade:
wj = jAy for j =1toJ (Ap = 2n/J). The radial stations r, (i=1to M
will be a subset of the aerodynamic loading radial stations. Except for the

calculated at discrete points on the rotor disk:
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near wake, the vorticity strength in the present wake model actually depends

only on the maximum circulation Tj' defined as the value of Ti. with maxi-
mum magnitude over all radial stations r, at a given azimuth wj (the

computation will allow the use of the maximum over the radial stations out-

board of station erax)'

Summing the contributions from all vortex elements in the wake gives

the induced velocity as the product of the blade bound circulation and

influence coefficients:

. — N X M N

3= ) 1= 2Ky 07 “

The second term is due to the near wake (extending from ¢ =0 to ¢ = KNwAw
behind the reference blade at azimuth angle Y = RA¢). A set of influence
coefficients is obtained for each point in the flow field at which the
induced velocity is calculated: at points distributed radially and azimuthally
over the rotor disk, and at points off the rotor disk (see section 3.1.3).
The influence coefficient arrays will be organized as follows. Consider
'fg(f3; the first subscript is the index due the azimuth angle of the bound
circulation ( j= 1 to J). The second subscript is the index over all the
field points ?? at a given azimuth angle (k = 1 to MR). The third subscript
is the index over the azimuth angle of the field points (£ = 1 to J). So the
structure of the array is

-
C(n), n=(N-1;*MR*J + (k-1)*J + j

for (((j =1t J), k=1t MR), =1 to J)

The field points at a given azimuth angle wg consist of the induced velocity
points along the rotor blade span; perhaps the induced velocity points along
the blade of the other rotor, or at the hub of the other rotor; and perhaps
the points at the wing/body, horizontal tail, vertical tail, or an arbitrary
field point. The organization of the array for the near wake influence coef-

-3
ficients Cij (?5 is similar, exc2pt there is an additional subscript which
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is the index over the circulation radial stations (i = 1 to M), and the index

over the azimuth angle of the bound circulation covers only the near wake

(j =2~ KNW to 2):

Ty (n)y 0= (X - 1) *HR* (K + 1) *H + (k- 1) * (K, +1) * N

CER RS SHLY I
for ((((1=1toM), j=R-Ky toR) k=1 toR),
=1 to J)

Also, for the near wake the field points at a given azimuth station coasist

of only the induced velccity points along the rotor blade span (no points off
the rotHr disk).

The calculation of the influence coefficients proceeds as follows. The
outermost loop involves the dimensionlecs time ¢, which is also the azimuth
angle of the reference blade. The solution is periodic sc¢ the induced velocity
is evaluated for ¢ = 0 to 27 (at the discrete points ¢ = 2y, £ =1 to J,

Ly = 2w/J). For a given Y, the position vectors at which the induced
velocity is required can be evaluated: at the radial stations along the
reference blade; at the wing/body, horizontal tail, vertical tail, other
rotor hub, or an arbitrary point; and at the radial stations along the

reference blade of the other rotor.

Next there is a loop over all the blades of the rotor (m = 0 to N-1;
m = 0 is the teference blade), The azimuth angle of the m-th blade is
wm = ¢ +m2m/N = (L + nJ/N)AY. Finally there is a loop over the wake age
¢ = kA (k = 0 to the maximum extent of the far wake, which may be different

when calculating the velocity at points on or off the rotor disk).

The blade specification plus the wake age determines the vortex panel
being considered, extending from ¢ to ¢ + Ay behind the m-th blade. Given
wm and ¢, the position vectors of this wake panel can be evaluated: the
end points of the tip vortex line segment, and the four corners of the
inboarl sheet (at the side edges, as described in section 3.1.3). The wake
strength at the panel leading edge is determined by the bound circulation

at wm - ¢, and the strength at the trailing edge by the bound circulation
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at wm - ¢ - 4y, These azimuth angles define to which influence coefficients

the induced velocity of this panel contributes.

The wake age determines whether the panel considered is part of the near
wake, the rolling up wake, or the far wake medels (as described in section
3.1.2). The near wake model is only used behind the reference blade (m = 0).

The near way is not used in calculating the velocity at points off the rotor
disk.

The far wake model consists of a tip vortex line segment and a single
inboard wake panel. The line segment has strength Fmax' The sheet is due to
a circulation distribution linear from zero at the inside edge to Fmax at
the outside edge. The indvced velocity <xpressions for a line segment and a

rectangular vortex sheet then give the contributions to the influence coef-

ficients.

The rolling up wake model consists of a tip vortex line segment of
strength meax, where

— 4
S‘ o %Ru = (1= g&u\ (4/4,“*5
and an inboard wake sheet divided into two panels at radial station

R = %u (V= %) (¢/<}>au\

Linear interpolation between the side edges gives the wake geometry at p.

The circulation corresponding to these panels goes from zero at the inside

edge, to T at p, to fT at the outside edge. The induced velocity
max max

expressions for these vortex elements then give the contributicns to the

influence coefficients,

The near wake model consists of a tip vortex line segment of strength
wa er (where FMj is the bound circulation at the most outboard radial
station); and separate inboard wake panels between the bound circulation
radial stations. Linear interpolation between the side edges gives the wake
geometry at r, (1 =1 to M). An increment accounting for the blade bending

must also be added to the position vectors in the near wake, The circulation
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corresponding to these panels goes from zero at the inside edge, to Pij at
L to wa er at the outside edge. The induced velocity expressions for

these vortex elements then give the contributions to the influence coefficients.

The inboard wake panels in the near wake directly behind the blade
(¢ = 0 to AY) require special consideration (see section 3.1.2). First, the
position vectors at the rear corners of each element are adjusted so the
front edge of the rectangular vortex sheet is exactly aligned with the bound
vortex. When evaluating the induced velocity near the junction of two trail-
ing vorticity sheets, they can be replaced by a single sheet, The leading
edges of the shed vorticity sheets must be moved a quarter chord behind the
bound vortex. However, 1f line segments rather than rectangular vortex sheets

are used for the trailing or shed wake, the above modifications are not
required.

Finally, the contribution of the bound vortex of each blade is calculated.
The bound vortex is a straight line . :gment extending from the root to the
tip of the blade at azimuth angle wm, with strength varying from zerc at the
root to rmax at the tip. The contribution of the bound vortex of the
reference blade to the induced velocity at the reference blade is not
included,

By this procedure the influence coefficients are calculated for a given
wake geometry. Then from a circulation estimate at some stage in the blade

motion and helicopter trim solution, the induced velocity V can be evaluated.

The vector T ig

tadial station, in the rip path
plane coordinate frame. The aerodynamic analysis requires the induced velocity
at the loads radial stations, in the hub plane coordinate frame

(RN -\
(A=A T - 3; - Ak ). Transforming to the S system gives
x's y's z's

S _

—_—
——-)\) - ﬁ.'_s v
. Y
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using the current values of the tip path plane tilt angles (Bc and BQ). The

induced velocity is then calculated at the loads radial stations by linear
interpolation.

The induced velocity for the rotor/airframe aerodynamic incerference (at
the wing/body, horizontal tail, vertical tail, or an arbitrary point) is

required in the body axis system (the F frame):

S o
K:% - (K-rs KSGB _\-}

For the jnduced velority from rotor #2, a factor QRZ/QRl is required as
well. The induced velocity for the rotor/rotor interference (at the hub or
over the disk) is reguired in the shaft axis system of the other rotor. The

interference velocity at rotor #2 due to the loading of rotor #1 is then

and at rotor {1 due to rotor #2

’ \7\,\ \, - -\?‘jz.

—nny _ ﬁz Cesamhr%: CR'\'SRSAVHM‘#Z
Sek,

__—>\% V /2

These coordinate rotations normally should not be inclided in the influence
coefficients because the updated values of the tip path plane tilt angles are
to be used in the matrix RTS (although tue rotation of the induced velocity
by the small angles Bc and Bs should not be important). The factor QRl/QR2

can be incorporated in the influence coefficients however. For a clockwise
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rotating rotor, the sign of the j: component of the induced velocity must
be changed (between the RTS and RSF rotation matrices).

The interference induced velocity duve to rotor #1 is calculated at
rotor #2 for the azimuth angles Y = 24y + szl (L =1 to J), When Ale £0
it will be necessary to linearly interpolate the velocity to the azimuth
angles Y = kY (k = 1 to J). Similarly, the induced velocity due to rotor {#2
at rotor ##1 must be interpolated from Y = LAY - szl to P = kAY. The
velocity moved off the rotor disk by rotor #2 is also calculated for
= /Y - Ale’ and must be interpolated to ¢ = kAy,

3.1.5 Ground effect.~ Ground effect can be included in the nonuniform
induced velocity calculation by intreducing an image element for everv
vortex element in the rotor wake. The image element position Is obtained
by reflecting the actual wake element position about the ground piane, and
changing the sign of the vorticity. Let ZGL be the distance the rotor
hub is above the ground (see section 2.4.3). The position of the image element
is required in the tip path plane axes relative to the hub., First the posi-
tion vector of the actual element is rotated to earth axes; then the origin
is shifted to the ground, the sign of the 'E; component is chenged, and the
origin is shifted back to the hub; finally the vector is rotated back to the
t.p pach plane axes:

D
'"\'M«ug. = R {%AGL ke 4+ (“f;'fe + J’ﬁ aﬁ -'\"G.-tiwé”?tm RTT,_
= Rg {_ZZAGLTza + (Tele + 3¢ "titb?\ﬁ—) ]

where

R'TE = R'Ts KSG EFE

The induced velocity of the vortex element is calculated, and subtracted from
the induced velocity contribution of the actual element. The actual element
is below the ground plane if

——
kg (R.’T\'E 7}\) > ZaeL
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(This can occur if the wake geometry does not allow for ground effect.) In

this« case the induced velocity contributions of both the actual element and
its image are set to zero.

3.1.6 Hover or vertical flight {axisymmetric geometry).- The nonuniform
inflow <calculation can be simplified in hever due to the axisymmetry of the
wake geometry. JFor the hover case the influence coefficients will be the
same for the induced velocity at all azimuth angles, except for an azimutn

shift and axis rotation:

(CosCH-AY) —Fmy—a¥) o

= =
C} (= 35%) = (P -BY)  caa(boa®) o | Syt (\P:A‘A

. © 3 i

Evea in hover the rotor may have a net pitch or roll moment if the center of
gravity is offset from tihe shaft (with offset hinges or a hingeless rotor).
Hence In general the hover case will noc¢ involve induced velocity and bound
circulation independent of azimuth angle., These considerations apply to the

gencral vertical [light case as well.,

An accurate calculation of the induced velocity of a roter in axial
flight usually requires consideration of the wake very far from the rotor
disk. The detailed wake model described above is required only close to the
disk however. Very far from tne disk a more approximate and more efficient
model will be used, obtained by spreading the vorticity vertically over the
distance h between successive sheets, as sketched in figure 18, The axial

convection velocity in the fai wake is taken from the prescribed wake model:

v = -—_i“/-:-‘-fp -+ <kz\*’.‘f Vot x

giving for th= sniral axial spacing

D= 2Zeev
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Figure 18. Far wake model for hover or vertical flight.
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The tip vortex elements are spread vertically to form a vortex sheet with

axial and spiral components. There is a corresponding axial root vortex from
the inboard trailing vorticity. The shed voruicity is spread vertically to
form a vortex sheet. This wake model extends L turns (an axial distance Lh)

beyond the last spiral of the detailed wake model from each blade.

The influence coefficients of this very far wake model are calculated as
follows. For a panel in the last spiral in the wake, the geometry is
specified by the location of the ends of the tip vortex line segment, and the
corners of the inboard panel. The wake strength is determined by the bound

circulation corresponding to the panel leading and trailing edges:

o= Ve G — b

Y;;+\ = Tl*tm- (“3w.”‘ 4’!.” 15}9\5

The geometry of the sheet vorticity on the wake boundary is obtained from

—

- -
the position of the tip vortex segment, Iy and rk+1 (vectors to the segment

ends). The vectors to the sheet vector are then

T o= % - 3RX
2, = & - Lax
';)3 = ?\k_“ — F;H‘ﬁ‘i—o-?%iﬁ
2 = 7 - LaX

The induced velocity of the tip axial vorticity is given by the trajled sheet

vorticity solution with

TR P
€~3 = Vg = = (;Lf\
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(see section 3.1.8).

The induced velocity of the tip spiral vorticity is

given by the shed sheet vorticity solution with

LV

» h
e

]
r
:

Let '?k and ?Z be the position vectors of the inboard wake panel (the inside

and outside edges respectively, at ¢k + AY/2). Then the vectors to the

inboard shed vortex sheet are:

-
LY
T o= 2 - e
2 -
“ = < - ‘...../QA“2
D -~ P -
S = A —RRTL 4R
3
JAN -
(“ adl ("'3 - L/Q\.ﬁ
and the induced velocity is given by the shed ghaet verticity with
n = L%
= Ll
5 o= LR
no= L rk-v-t

(see section 3.1,8), Finally, the vectors to the ends of the root axial

. vortex are
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2, = QB® — X
i —_—

-

'S = Cz — L,XA\Q

and the induced velocity iz given by the line vortex solution with

(see section 3.1.7).

3.1.7 PFinite length vortex line element,- Consider a straight vortex
line segment of length s, as shown in figure 19. The vortex segment has

linearly varying circulation, between Pl and FZ at the end points (I‘1 is

the cicculation at ¢ and Tz is the circulation at ¢ + AY). The induced

velocity is required at the point P, defined by the position vectors T. and

pry - . Y - . 1
r, from the ends of the segment. The vectors r; and r, can be in any con-

venient coordinate frame; the components of the induced velocity will be
obtained in the same coordinate frame. The Biot-Savart law gives the induced
velocity due to this line segment:

-
AN - 7 =3

- -
where r 1is the vector from the element do on the segment, to the

A
and r = ‘r L The coordinate o 1is measured along the vortex segment, from
Sy to Syt

- T
(‘-(‘ —.r‘
s, = 1 clz
S
z gl
— Cax q'rl —_ Q. S
S-z' - < ]

where 3 is the length of the segmeat:

- oS 2 .
T T 2
st = 1qa—q = 0 0 =260
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Figure 19. Finite length vortex line element,




= -3
r r

A . PR . .
m oe, where rm is the minimum distance from the vortex line

Write

(including its extension beyond the end points of the segment) to the point
A R

P, and e is the unit vector in the direction of the vortex:

- 2 =24 - 2 =2
.F) = ('" (rz —-(‘.-(‘.&) +rz <F\ ~'r‘\(~13

-3 -
C 52 — G S
-~ 122 b 3

s s

e 4 -%

]

<

- A
The vectors rm and e are perpendicular, and

2
Con S°

I

- z
T .

The vortex strength varies linearly along the segment:

L R+ Rle—sy | N6 56
- —— - S S
S
== i\ —+ T}
It follows that
-
A = Sr& (S Smr ol Qo

Ailz
s \5‘ (=F+a%)

—_ -
= S w e

L ot — T ‘\ \"’*Sz
Lis CeZ + 2%

S G ¢ <
— 1 R ~
= ' er <~3'-"--' ) — 2 % "-t\:\}
L S OE 2 v 5 t !
-~ -
= % Sposx o SN a}(-t — 1)
‘.r" 5( 2 o« IV 3 2 G
4wsck
[
r
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for the induc::d velocity of the vortex line segment with linearly varying
circulation,

Consider alsc the induced velocity of a line vortex segment with a
stepped circulation distribution. The distance from the midpoint of the
segment to the point P is

SN S A
A
C, 3 ((‘\—#Cz)

and the midpoint is located at
= 2 - 2 3
sz = 2 (s +$2d = FL (F—0%)

The line segment has constant strength Pl from Sy to 53, and constant

strength Pz from 84 to s,. Applying the above result (with Ps = Q) to
both values of the line segment gives

-3 TP S < e ?9
AV = Tix® r-;(.j_;'.\+ 3k - /51..513
4w (/2D i S aw (I TN 3

. .Y

A%y [r 3:_..&2 + g-:’_a.-a(\
b < T L o L 20

I

The influence of the vortex core is accounted for by multiplying the
induced velocity of the line segment by the factor

Y"‘.W(rﬂzh/rc.z J j‘. B

for concentrated vorticity (solid body rotation) or by
T

Cn .

Cor ‘*‘E?L
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for distributed vorticity (from ref. 16). The core radius r_ is the loca-

tion of the maximum tangential velocity.

In references 23 and 24 a lifting surface theory solution was developed
for the vortex induced loads on an infinite aspect-ratio, nonrotating wing
encountering a straight, infinite vortex at an angle A with the wing
(fig. 20). The vortex lies in a plane parallel to the wing, a distance h
below it, and is convected past tne wing by the free stream. The distortion
of the vortex line by interaction with the wing is not considered. In linear
lifting surface theory, the blade and wake are represented by a planar distri-
bution of vorticity. This model problem was solved for the case of a sinus-
oidal induced velocity distribution, with wave fronts parallel to the vortex
line. An approximate solution was obtained by fitting analytical expressions
to the numerical solution for sinusoidal loading. The vortex induced velocity
distribution can be obtained by a suitable combination of sinuscidal waves of
various wavelengtis, and the same super-position gives the vortex induced
loading from the sinusoidal loading solution. The approximate solution is
not valid for extremely small wavelengths, but the range of validity is
sufficient to handle the cases arising in rotary wing applicatiuns. For the

velocity induced along the wing span by a vortex of strength T:

T ——-c~$~A.J1_

W =

(wvhere r and h are here divided by the win he approximale

lifting surface solution (from ref. 23) for the section 1lift is:

ths = ‘g\v 7 §- cf.réﬁh‘~A-

AT 4 (U+C)?

/ Qo (= (AN 4+ (Ut Y -)-»%f)

— Qg

2
—Zav\

wasl

d %* ~(CQmA + R ) easdhy + (U +e) vz ]
S A (CSamA 4+ LD + (St CDE
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Figure 20, Lifting surface theory solution for vortex-
loads.
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For the incompressible case, the coefficients in this expression are functions

of the vortex angle A:

<’
il

5.12 + 1.88 (A/90°)

o
]

1 ~cosA

-
]

L 0
257 (A/90° - 1)

oo
1]

544 (-cosh) + .07 sin2Ah

[o]
a, = -.434 - 1.09 (1-sinh) *2% + .607 (-sinh)?+4®
- 1.8

a, = .0084 + .0069 (-cosh)

1
¢ =5.9

[o]
e, = 1.683 + .27 (1-stnn) 20 - 154 (1-sinp) 29
ey = 1.417 + .366 (1-sinp) *®* - .292 (1-sinn)?®
c, = 9L + .93 (1-sint) T'0 - 1.025 (l-sinn)>'%°

[y

(A 1is in the range YU® to 180°; the solution for A from 0 to 90° is
obtained by symmetry considerations). The corresponding lifting line theory

solution for the vortex induced loading is
(W.A—

Les = _’g\’ ) z

(comAD T+ (K +)

Jd — Cha AL
— ™ (er-hwz [(rwJA.‘\’- +(g+q)‘_] ?
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where a, = -.662, ¢, = 1.296, and co = /2, ‘This lifting surface solution
will be used in the present analysis in the following manner. For each line
segment it will be determined whether it is clogse enough to the blade for

lifting surface effects to be important (it is more economical to apply such
a test than to always use the correction). If s0, the induced velocity con-

tribution of the line segment as calculated above, will be multiplied by the
ratio LQS/ng.

The parameters required tc apply this lifting surface correction for
vortex induced loads are h, rsin A, and A. From the minimum distance 'F;
between the point P and the vortex segment (in the tip path plane coordinate
frame), and including the influence of the viscous core on the induced

velocity, the vortex/blade separation is

2. . o
o= 2R RE S

Y
Let 1i* = (f? - ?é)/s be the unit vector along the vortex segment; and

-t
* - I;cosw + f;sinw the unit vector along the blade. Then the intersection
angle is

<

A = 13 — s;»:‘./:_(.g*.-e*w?

S A = JI1— (154*.-84*‘$i1
cos N = — \':g’*-'ELak \

Finally, the distance from the vort(x line is

c b A = %’—J (i?'d“3t+ (j‘r’?{“‘;{ S“’J“ C.S‘*.?w\w(_s‘ﬁ‘e*)

-} Az-'us-o.l\_
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The lifting surface correction will be used if the distance from the segment

midpoint 1s less than a specified distance dls:

S
Oy = t\"s‘*‘cz‘ <A9$

Typically dls should be around 10c (see ref. 24).

The use of a larger viscous core vadius after a blade/vortex interaction
will be allowed, to model such affects as vortex Zuaduced stall or core burst-
ing, which limit the induced loads (see cection 3.1.1). Let ¢inter(w) be
the age of the tip wvortex segmeni which first intersects the following blade,
with the generating hlade at azimuth angle ¢. Then a larger core radius

b
will be uscd if the line segment age is greater than ¢b (V). The transition

at ¢
¢

p oceurs initially a fixed increment Afb after the intersectlon at

, and then propagates up the tip vortex at a rate V. = 3¢/3y:

inter b

cb (\PB _ ) ‘&\;ﬂ‘\q’ (Lp} ~+ AL}’\Q
o - P — AN 4 A — N AW

= v (b W3 4aby o (V) AV

".-.-O'C-bﬂ

(only j =1 toJ need be tested if Vb < 1, and ¢b = 0 for all ¢ if

Vb > 1). The initial, small tip vortex core radius r, is used if ¢k+l < ¢ 3

the large core radius r, is used if ¢k > ¢b; and if ¢k < ¢b < ¢k+l

core radius is obtained by linear interpolation between r, and I, The

the

initial, small core radius r, is always used for the near wake.

The wake age ¢inter

determined by examining the projection of the tip vortex wake geometry

ar the first blade/vortex intersection can be

?;(w, ¢) on the disk plane. Consider a line segment extending from ?1 at

¢k to r, at ¢k+1’ and the m-th blade at azimuth angle wm = ¢ + m27/N. The
vortex segment line is defined by

~~ - . - -
rwd’a.»,g = G+ v‘sz—-GB




-
with ¢ = 0 at r, and 0 = 1 at ?;; while the blade line is defined by

- }
Cuale = 5 (“ﬁ-r sV +-S'T W‘P‘Mw
with ¢ = 0 at the hub and p = 1 at the tip. The intersection of these
md
-Ero lines is obtained by equating the '3% and 3; components of T ortex and
"blade'

=2 D . .
-('—‘:.‘e.,. -+ r'(f'z-(.-r -(‘.'LT) = ‘&Q‘NPM

?\I'j'l' <+ °~(??-'-$T“'ﬁ°-g"> - _g&“‘kpw

which gives

Y 2
Grhr 5w, — € .-3... cao.
T, = == 3
CR =D Tr W, — Lr,-—l'z)'jw' et
P T I ~3 . Y
. "" Ly fz. )T owane f‘. :’T rz.L?
% = =

p— = ]
(6, ~ % 5-"\.1 Y, — (?In_-"z\fs;r oMy

(There is no intersection if the denominator is zero). The vertical separa-

tion of the vortex and rotor blade i

Z H A T
A blade/vortex intersection is defined to ocecur if 0 < ointer < 1 and
0.2 <p < 1,0; and if ‘h\ <d as well, The intersections will be
inter bv

identified by examining each line segment in the tip vortex behind the blade
at ¢, beginning with the wake age ¢k = 4p. The segment will be tested
against the blade index m such that the magnitude of

mg \wﬁ—‘tq;'g::‘__, % y 2w - l?w..u"g&:f,; \§
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is minimized. If an intersection occurs, then

P = Pr + T &P

If an intersection does not occur, the next line segment is tested.

3.1.8 Recrawigular vortexr sheet.- Consider a planar rectangular vortex
sheet element, as shown in figure 21. The induced velocity is required at an
arbitrary point P in the flow field, defined by vectors from the four
corners. The strength of the sheet is defined by the circulation values at
the four corners (Fl and F3 at ¢k, Fz and Fa at ¢k+1; Pl and F2 at the out-~
side edge, F3 and I“,i at the inside edge). This vortex element is approxi-
mated by a planar, rectangular shecet with sides s and t (fig. 21). The
point P is defined by a vector Y; from the center of the sheet. The
orientation of the‘shuet is defined by orthogonal unit vectors é; and 2;
parallel to the sides of the sieet, and the normal unit vector ah =8 x

"
.

A
e :

«

~ - -~ - -t

€¢ t = é ( o + % — - rg \

A ) S - -~

es S = ‘\z' ( r3 - C‘q -_— & - 2 3
.\ - - - KN

o = ﬁ (G -+ G + G + G, D

A A
The verticicy strength is & din “he e, direction and vy din the e

direction, varving linearly along the length of the vortex filaments. The

3 . ) . -.x
minimum distance from P to the sheet or its extension is rm:

Y — /,, ~ ~

I

— .
The vector ry ic perpendicular to the plane of the sheet and intersects it
at a point M, A coordinate system (¢, T) will be used on the sheet plane,

with or'.gin at M so the center of tlie sheet is at
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Figure 21,

Rectangular vortex sheet.
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> A

g = So = — g - Q‘S
- A
T o= 5 = — 'et

The edges of the rectangle are then given by o = s, * s/2 and T = to /2.

The distance from a point on the sheet to P 1is

S e A A
("“Cm"‘q—'es—"cc.t

The linearly varying vorticity of the sheet is

- A A o~ g
L = ¥e +8e, = (S +a ey + (&w“'t?’t\é\t

or in terms of the circulation at the corners:

- - (te-% -0 ty o
5 = f- r-(t.-%) G-l o +3) —

[3 « s t

—

= R+ (-iD A+ 5] + [ T-T-h-N )

S
Lot r=(5a= )

2N o
o+ g+ —9%

It

‘L r/~ -\ i\ . N\ ;.-a .
5t LT -0 3]+ (- D |+ T [R-F-G+G )«

Note that conservation of vorticity gives Ay/dc = -36/9T or Vg = —Gt.

The Biot-Savart law gives the induced velocity of this vortex sheet:

- -
- J_ % C % b Ry
DY = : e k

A+t /S, 45 N
A
= 3 It
4 ) 2z 32
ta-f Se-2 el o +x)
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where

Ty =

it

- 4).1.‘\: <’6w€t - SNEDI, -+ (._c-,..st 35 +‘rsw€,b:t:,z

+ X -8 8D Ty - (58D x, )

‘i’.-&‘% So'f-s-i
(52 e 3 = Wtzz |7
< L 9P of 'i:;,-—% So-i
= T ("’*é}')(*”"ti) + G Q,_{jéb,-‘il
$ -
— = Cf.-i--.,-)(‘t‘,-'*f,3 I e (s,,-é’)(ta-a-fg)
Q“*Pz. fwcj
*0"""'t Sa"‘%
= &x -'-c;-‘ Qd"é'c_ _— «Q«n(r-s-%‘ : ‘
- -~$
= R <"-"(9°*‘§‘.5>(‘h-1$a~-3—))
Cey — (5 +-:,5-_ YW ey ~ (S '-.‘i DY
"‘O*t So+$
(¢ k4
SS%J{A":, = (o) * \
""‘% 50--%

2 (C~ (to-l—'%\\ ( G~ (to :.%D\
R - (o +E NN
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Finally, the induced velocity in terms of the circulatior at the four corners

is:

r _F A A A A
A = = DD (38T~ T DTy AT
P/h o
(r -P N »
- A:'r 5:5[-(%-*%\3.9 T, + G T, —(t+E) e I3+&.I;X
(-, s s
] [+ (88T, —cn e =, -8 T, )
(=) o
Ai— ;_: [" (S %Bat I, “(So+%3e,fz+fm€t13+a“]:“]

where the first two terms are due to the trailed vorticity, and the last two

terms are due to the shed vorticity. Thie may ba written as

a9 = O o [ =R, + Ty ) (G -TO (S 4%, )

G2 [, +%, ] + (G =N D[, +%, ]
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where

A A A
o = T LEef T e Ty ek T8 3]
- ) € A t A
Vi, Ty 2 <5 v v 2 emj-.-g]
- ) A 4 -1
V¢, = 5+ [_S-Qt_It + So R I, -—f"”gtlg—l‘?« I-l.;-)
. ) _ g A .é,_,\ T~
R A LTI LN,

There is a logarithmic singularity in the velocity induced at the vortex
sheet side edges (the YmanIZ and 8man13 terms in K?). This singularity
will be avoided by replacing the trailed or shed sheet vorticity by a line

segment with a large core radius. Hence if

T (A 2 \
T + (Sox 2 ), amd Il < § + dy

then the point P 1s near a side edge of the trailed vorticity; if

T z
Cow + (v, * '%} < e a9 15| < -g- +c§v5
then it is near a side edge of the shed vorticity; and if

\Irl < é\.s

for any corner, the point P 18 near the side edges of both the shed and
trailed vorticity.

An economical approximation is to replace the vortex sheet by a line
segment, with either a linear or a stepped circulation distribution, and a

large core size to eliminate the large induced velocity near the line., The
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strength and positicn of the liu2 segments are determiued from the circula-

tion and position of the four cciners of the sheet: for the trailed vorticity

G, = -G

L P
f: 2 = Ve - T;
2
= ~ L (T +F
v = 2 ' 3)
A -
e = z E&+&D

and for the shed vorticity

rigkua, - G -0
Y:R;‘JL = r; _"13
Gae = T (R THD
F?Q;m4, == gi <HE; —- ?i t)

1S~

geometry by a planar rectangle. The core radius can be specified arbitrarily;
or r = 8/2 can be used for the trailed vorticity and r, = t/2 for che
shed vorticaty.

3.2 Free Wake Geometry

A method was developed in reference 1% for calculating the free wake
geometry of a single rotor in steady state flight out of ground effect, which
will be adapted for use i) the present analysis. The wake model for the

free wake calculation consists of line segments for the tip vortices; and
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rectangular sheets or line segments for the inbozrd shed and trailed wake

(similar to the far wake model used here for the induced velocity calculation;

see gection 3.1.2)., The near wake or rolling up wake as described above are
not considered.

Only the distorted geometry of the :ip vertices is calculated in the
analysis of reference 16. The rigid or prescribed wake geometry is thus
still used for the inboard vorticity. The distortion of the tip vortex
geometry from the basic helix is defined in reference 16 as a vector 'ﬁ;(w, 8,
giving the displacement of the wake element with current age ¢ waich was
created when the blade was at azimuth angle y. A tip path plane coordinate
frame is used, with the x axis to the right (the advancing side), the y axis
aft, and the 2z axis down. The procedure for calculating the wake geometry
consists basically of integrating the induced velocity at each wake element.
The outer loop in the calculation is an iteration on the wake age 6. The
induced velocity é(w) are calculated at all wake elements for a given age

8, and all azimuth angles . Then the increment in the distortion as the
wake age increases by Ay 1is:

Y

Dy ) = B, (¥, 1-a¥) + a¥ 3

An efficient calculation of the wake pyeometry requires many variations in

this basic procedure. Reference 16 adapted the near-wake and far-wake scheme
for reducing the computation. The first time the induced velocity is evaluated
at a point in the wake, the contributions frem all wake elements must be

found. For subsequent evaluations cf the induced velocity at that point,

only the induced velocity, due to the nearby wake elements are recalculated.
The other major consideration for minimizing the computation is the matter

of updating the induced velocity calculation. At a given point in the wake
geometry calculation, there is a boundary in the wake between the distorted
geometry and the initial, rigid geometry. The distortion has been calculated
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between the rotor disk and the boundary; downstream of the boundary the wake
is undistorted. As time increases by Ay, the entire wake is convected
downstream, and the rotor blades move forward by AY¢, adding new trailed and
shed vorticity at the beginning of the wake. If there were no distortion of
the wake during the time Ay, then the induced velocity at a given wake
element would not change except for the contributions from the newly created
wake vorticity just behind the blade. Thus the normal calculation procedure
consists of calculating the induced velocity at the boundary, by just adding
at each step the contribution from the new wake directly behind the blade.
Of course, the wake does distort as it is convected and as the estimate of
the distortion improves, thus it is necessary to update the calculation of
the induced velocity in the wake. In boundary updating, the induced velocity
is calculated at the boundary still, by summing the contributions from all
elements in the wake. In general updating, the induced velocity is recalcu-
lated at all points in the wake upstream of the boundary. Boundary updating
is typically done every 90° on the front and rear portions of the helices,
and every 45° along the sides where the distortion is greater. General
updating is typically done every 180°. Gencral updating can not be done
often if the amount of computation is to be kept low, but it does improve
the accuracy and convergence. Numerous techniques for secondary improvements
in the efficiency and accuracy were also included. The distorted wake
geometry is required for m revolutions, where m decreases with forward

speed. A single iteration of the free wake analysis consists of calculating
—~
the distortion D _(y, &) for ¥ =

=]

'S
-

Q

-— Y -
2r and ¢ 0 to

iterations are sufficient to obtain the converged solution for the wake

geometry.,

The present analysis requires the wake geometry in the form ofERw, $)
where ¢ is the current azimuth angle of the blade and ¢ 1is the wake age
(4 + § and § respectively in the notation of ref. 16). The present analysis
uses a tip path plane coordinate system with x aft, y to the right, and 2z

upward. Hence
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B ) = [T« + 3T —F. B 1 B (v b b

is the distortion as used in section 3.1.3. The rotor velocity components
L and w, are required r~lative to the tip path plane., The hub motion
and gust velocity at the hub can be included in these velocity components.
Ground effect and rotor/rotor interference can be accounted for by using

an effective normal velocity:

-
/N%z%g = Maopp -4-—(\-5;&‘\\;_‘ + Nour

where fGE
is the interference induced velocity. The total uniform induced velocity

is the ground effect factor defined in secticen 2.4.3, and Aint

is required to define the wake geometry at the start of the calculation.

-182-




4., AIRCRAFT MODEL

4.1 Aircrafi Configuration Definition

A general two rotor aircraft is considered, with rigid body and elastic
motion of the airframe. Aerodynamic forces on the wing/body, horizontal tail,
and vortical tail are modelled, including aerodynamic control surfaces. The
drive train connecting the rotors is modelled, with engine dynamics and a
rotor speed governor. The case of a rotor or helicopter on a flexible support

in a wind tunnel is included in the model.

4.1.1 Aireraft crientation: flight path and trim Euler angles.- The air-
craft flight path is specified by the velocity magnitude V, and the orienta-
tion of the velocity veztor with respect to earth axes (fig. 22). The veloc-
ity vector bhas a yaw angle Ypp (positive to the right), and a pitch angle
eFP (positive upward). Thus the climb and side velocities of the aircraft are
Vclimb = Vsin eFP and vside = Vsin Q?P cosBFP. The aircraft attitude with
respect to earth axes ig specified by the trim Euler angles, first pitch eFT
(positive nose up), then roll ¢FT (positive to the right). Airplane conven-
tion is followed here for the coordinate systems -- x positive forward, ¥
positive to the right, and 2z positive downward (see reference 25). Between
the earth axes (E system) and the velocity axes (V system) there are the rota-

tions wFP and OFP’ Between the earth axes and the body axes (F system) there

are the rotations OVT and ¢FT' Thus the rotation matrix between the V system

~— N A M
and the T system is:

i ~
Cory (orp Hee = Capr Step Capr Sapp Cyep |
+ Sog ¢ Seep -~ SerrCogp
R _ | 5%~ Sper Copp Qypp — Seer Sder Mver Sagr Sher Sope Svee
kv *'C4cfcbgysvcp +Cber Cyep *'Qécrsasvswep
~ UOT SprrSoep + Corr Spey Core
saFT C‘*FT ca@!‘c"l' &p "'Sa;,f QFT S’yce SBFTC‘#’FTQQFfC\PFP
=~ S4reCogp Swep — Seer e =S¢ Sape Sere
— ®prCThrr Sapp +@erCher Coep
L. et
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v kg (VERTICAL)

Figure 22, Earth axes and aircraft flight path definition.

-184-




The trim calculation determines the Euler angles OFT and & ot (and perhaps the

flight path climb angle eFP also).
o~
The velocity of the aircraft is V = VI;, so the components in the body
axes are:
\JX
~)
\hz _— \J LBF‘J LV
\J%

.\
The acceleration due to gravity is 7?'= ng or in body axes
-~ B
S ”i_ _
53 = i% E = C?T cosDeT $~“‘%’F‘r

- \ S0 D¢y S N

N

4.1.2 Rotor position and orientution.- The rotor hub position is sneci-

fied in the body axes relative to the aircraft center of gravity position,

~ - 'y I? . . . . .

r = (X7, + + zk . The rotor orientation is defined by the rotation
hub = *Tp ¥ Vp 7 hub y

matrix between the shaft axes (S system) and the aircraft boiy axes (F system).
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_g: = K g;

The position and orientation of the rotors relative to the body axes are fixed

: - o -t
geometric parameters. The aircraft velocity is V = pUNE + ung + pzks = VI;,
30 the shaft axes components of the velocity seen by the rotor are

—— M x \/
My = Ry Rey =
o

M2

The hub plane angli: of attack and yaw angle may then be obtained from
- J"‘;"“T‘
e = B P/ i Bl
N = T/
we /“1y /}*x
and the advancing tip Mach number from

/V\A1' = r“\1z1, V/—<: b+ J7;37f35;2§"f)’- ‘F',f*;

The sign of the lateral velocity uy must be changed for a clockwise rotating

rotor; and for rotor #2 the velocity components must be multiplied by QRl/QRz.
The quasistatic hub motion and the gust velocity at the rotor hub will be
included in the advance ratio components:

- \ N+ ug i‘l
A = RsF R(-‘v Ve ~+ K)e
,A‘E W6 ?2* Steahe
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For a helicopter main rotor, the orientation with respect to the body
axes wil) be specified by a shaft angle of attach OR (positive for rearward

tilt), and a roll angle ¢R (positive to the right). Thus:

—Ca o Se
EiSF = fb*.ga, CJ+ :L*CZB
—~Cp Sa S3 ~4 e

The orientation of a tail rotor will be specified by a cant angle ¢R
(positive upward), and a shaft angle of attack GR (positive rearward). The
tail rotor thrust is to the right for a counterclockwise rotating main rotor,
and to the left for clockwise rotation. Thus the definition of the tail rotor
shaft axes depends on the main rotor rotation direction. Let Qm have the
vaiue +1 for a counterclockwise rotating main rotor, and er = ~1 for a

clockwise rotation. Then the rotati.n matrix for the tail rotor is:

—cCe —j;iwu-CL* Se» Ei#'sib
ﬁSF = o ES+ SZM&PCbﬁ
~Ss Zar<$Co  —53Ce

The nacelle and rotor of a tilting proprotor aircraft can be tilted by
an angle ap, where ap = (0 for axial flow (airplane configuration), and
ap = 90° for edgewise flow (helicopter configuration). The rotor orientation
is also described by a cant angle ¢R (positive inward in helicopter mode,
zero in airplane mode), and a pitch angle BR (positive nose upward) which is
the angle of attack of the shaft with respect to the body axes when ap = 0,

Thus the rotation matrix is:

r;.C*,S"QQM—<;1SQ "S*~Sd Clbfig€i>- Calsa

Ree = |~ pS4 (1-Cod o= S SuSo 3+S3Ca bS(1~C)Se—SpSa®

(6 Cu+SE)00 -~ WSy ~Spdi-cad = (cheu+ 535~ 4Sule
L -
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-
X ub for the tilting proprotor aircraft is defined
and the mast height h, so

The rotor hub location
-
r

by the pivot location .
y P pivot

[ (4 cu + $3D Co — S5 Se
Rk = Tpiwor A ] — S =)

| — (Cffcu ""S;)Sa ~ CpSala

4.1.3 Wind tunnel case.~ For the case of a rotor or rotorcraft in a
wind tunnel, the forces and moments on the body are reacted by the model sup-
port system, so trim of the body forces is no longer a concern. The flight
patin and trim Euler angles can be set to zero (eFT = ¢FT = GFP = WFP = 0), so
the wind, earth, and bedy axes coincide (RFv = 1). The wind axes and body
axes are therefore the tunnel axes system, with the x-axis directed upstream,
the y-axis to the right, and the z-axis vertically downward. The rotor
orientation is specified by the matrix RSF as above.
of a wind tunnel with a turntable, the R

SF matrices can be post-multiplied
by the matrix

W Ca Sw ~Sa» ‘]
RFT = —'S\’ <ap (=)
L Salw Sasw Ce J

where wT is the turntable yaw angle, positive to the right, and ©
test module pitch angle, positive rearward.

T is the

4.1.4 Gust velocity.- The aerodynamic gust velocity will be defined

relative to the velocity axes, with longitudinal component ue positive rear-

ward, lateral component Ve positive from the right, and vertical component
y o > -t KN

W, Ppositive upward (Vgust = —UGI; - Vedy - kav). The components in the body

axes are then
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We
= Ry \ Ve
Ws

WG v

The components in the rotor shaft axes are

/ ‘.AG; ~— A,
— Vg = QSF RFV ~ Vo
—~We,

Wi S \V)

For a clockwise rotating rotor, the sign of v

gust velocities must be multiplied by QRl/QRz. Hence define

— 1\ o o
gc’ = o \ o ﬁSF RCV
o > -1

including also the factor QRl/QR2 ana the sign change for a clockwise

rotating rotor as appropriate.

4,1,5 Airoraft d 20#.~ The aircraft geometrical description con-

sists of the location of rotor #1, rotor #2, and wing/body, the horizontal
teil, and the vertical ctail relative to the center of gravity. The orienta-
tion and position of tha aircraft components will be defined in a body axis
system (the F frame) wath origin at an arbitrary reference point, as in

figure 23, Given the dimensional positions relative to tihe reference point,
for example

center of gravity: FSCG, WLCG, BLCG
rotor #1: FSR1, WLK1l, BLR1
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Figure 23, Definition of aircraft geometry.
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Then the coordinates of the location of rotor {1 tvelative to the center of

gravity (in the F frame) are

x = (FSCG - FSR1)/R
y = (BLR1 - BLCG)/R
z = (WLCG - WLR1)/R

and similarly for the rotor #2, wing/body, horizontal tail, and vertical tail.

The mode shapes of the airframe elastic motioun are described by the six
-t
components of linear and angular hub motion, in the F frame: Ek and ?L at E:ub

(for eacn rotor). Assuming that the generalized coordinate has dimensions

q
of m or ft, it follows that the generalized mass Mk has dimeﬁsions of kg

or slug: that the tur linear motion Ek is dimensionless; and that the hub
angular motion Yk has dimensions rad/m or rad/ft. These elastic vibration
modes can be arbitrarily scaled; if Ek and Yk are multiplied by a factor S,
then Mk should be multiplied by S2 and the solution for 9 will be

divided by S.

For the case of a wind tunnel with a turntable, the geometry will be
defined for zero yaw angle, relative to a reference point at the center of

the rotation. Then

% *
hX = ‘E'W‘F "
2 Z

$v==9=0

where RTF is defined in section 4.1.3.

4,1.6 Pilot's controls.- The control variables included in the rotor-
craft model are collective and cyclic pitch of the two rotors, and the air-
craft controls, which consist of engine throttle et, wing flaperon angle Gf,
wing aileron angle Ga, elevator angle 63, and rudder angle Gr. The control

vector is thus

-4
VT = [Coo ok 8i), (8 2, By fe b4 Se o |
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The pilot's controls consist of collective stick 60 (positive upward),
lateval cyclic stick Gc (positive to the right), longitudinal cycldic stick

Gs \positive forward), pedal Gp (positive yaw right), and the throttle Gt:

- T

Vo= [% S 8 6p S )

For the purpose of trimming the helicopter, a linear relation between the

pilot's control inputs and the rotor and aircraft control variables is assuwed:

= = -
Vo= Tepe o+ Vo

-
where v, is the control input with all sticks centered (3; = (), and TCFE

is a transformation matrix defined by the control system geometry.

The control transformation matrices for the single main-rotor and tail-
rotor, che tandem main rotor, and the side-by-side main-rotor configurations
are given below. The K's are gain faccors in the control system, and the
Ay's are swashplate azimuth lead angles., The main rotor, front rotor, or
right rotor is assumed to be rotor #1; and the tail rotor, rear rotor, or left
rotor is rotor #2. The parameter § here takes the value +1 for counter-

clockwise rotation of the rotor, and @ = -1 for clockwise rotation.
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4.2 Alrcraft Analysis

The aircraft motion consists of the six rigid body degrees of freedom

and the elastic free vibration modes. A body axis coordinate frame with ori

at the aircraft center of gravity (the F system) is used for the description
of the motion. Airplane practice is followed for these axes -- x is forward,
y 1is to the right, and 2z 1s downward (vef. 25). The coordinate frame vused
is not a principal axis system however; moreover, the airplane practice of
aligning the x-axis with the trim velocity is not followed, since for rotor-

craft it is necessary to consider the hovering case (V = 0).

The parameters »f rotor #1 are used in making quantities dimensionless

and in normalizing the aircraft equations of motion. It is assumed that

-19%.
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rotor #1 is the main-rotor of a single main rotor and tail rotor helicopter;
the frent rotor ¢f a tandem rotor helicopter; or the right rotor of a side-by-
side rotor helicopt2r. With the hub forces in rotor coefficient form it is
convenient to normalize the equations by dividing by the characteristic inertia
(%Nlb)l.

4.2.1 Degrees of freedom.- The linear and angular rigid body motion of
the aircraft is defined in the body axes (F system). The linear degrees of
freedom are Xg (positive forward), Yr {positive to the right), and z2p
(posirive downward). ‘These variables are dimensionless based on the rotor
radius R; thus the velocity perturbations are normalized using the rotor tip
speed QR rather than the forward speed V as is airplane practice. The
angular degrees of freedom are the Euler angles wP (vaw to the right), eF
(pitch nose up), and ¢F (roll right). Then the linear and angular velocity
perturbations are

D = YT + {'gfg“'*‘éFtr
'(:J)F = EC(‘-}G‘C‘F +éF'§F +\;)(-tF3

where _ . -
\ © —§wBer
Eb = © cos Py o Seva g e OSSO0y
D —fmber caodpy ey |

"4
For the elastic motion of the aircraft in flight, the displacement u
-~ -3 . ,
and rotation 6 at an arbitrary point r are expanded in a series of the

orthogonal free vibration modes:

o >
'G‘('F‘)t) = :é\ qsv.(ﬂ $,$5)
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The first six degrees of freedom are the rigid body motions: 9gp+--dgg 2re
respectively ¢F, SF, wF’ xF’ Yps and 2Zp- The generalized coordinates 95k
for K 2 7 are the elastic modes of the aircraft. Orthogonality implies that

the elastic vibration modes produce no net displacement of the aircraft center

of gravity, or rotation of the principal axes.

For the rigid body motions the mode shapes are simply

(337 = [ xR T 7
[ Ei oo iia t} =

-5 Y
7Y ol
-t -

3 =

it
&
o
Il
™~
o

4.2,2 Hub motion.- The rotor equations of motion require the six com-

ponents of the hub linear and angular motion in the shaft axis system:
o, Rse 1 Cfouad

2o — {1&2

ot 2 -
ot Ree 8y ()
Ola L.
or
-
Ree (‘%‘ORL Ree "'RSF?V" ]

-
Ree€e o e Rep ¥y o
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The matrix RSF transforms the motion from body to shaft axes. The moment

arm of the rotor hub about the aircraft center of gravity is in body axes,
T o= xT o+ yT + 2k
hub FoYp T 2

The total velocity of a point is the sum of the trim and perturbation

o, 3 - -
velocities, T=V+ quk Ek’ in body axes. The rotor equations require the
velocity components at the hub in an inertial frame however (the S system),
and the Euler angle rotations between the body and inertial axes introduce
I\

perturbations of the trim velocity .V. So the perturbation velocity becomes

<
-

S . =
u = ap x V4 quk Ek’ where in the S system
R My — pgia
e x Y = Mg x = pay Xa
Px Oy = My oty

These contributions to the hub velocities (ih, ih’ Eh) cancel the terms in

the blade velocity due to the Euler angle rotation of the inertial axes rela-
tive to the trim velocity (the upa terms in Ups Ups and uR). Thus the
evaluation of the hub rotation (ax, o, az) for the aerodynamic analysis should

y
not include the body Euler angle contributions, as discussed in section 2.4.2.

~
§k, where the
first term is the inertial acceleration due to the rotation of the trim

, - S S R
Finally, the rotor hub acceleration is u = wp X vV + Eqsk

velocity vector by the body axes angular velocity This additional contribu-
tion of the Euler ang’e velocity to the hub linear acceleration, in the shaft

axes system, is

183 '.I Y
f *x.\ . = <€
o - -
A\ Be \ = 0rxV = R (- n)Re | O
iﬁ. kvh
which can be written L& Xg with

[Rss( -V ORe <
[_ o
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For rotor #2 the linear hub displacement (xh, Y zh) must be multiplied
by Rl/RZ to account for the differences in normalization, c¢ being based
on rotor #)l parameters while a is based on rotor #2 parameters in this casec.
For a clockwise rotating rotor it is necessary to change the signs of Yh? %

and uz. These conversions will be included in the definition of ¢ and €, by

a. multiplying rows 1, 2, and 3 by Rl/R2
b. changing the signs of rows 2, 4, and 6

as appropriate. In addition, the derivatives of the hub motion of rotor #2
must be corrected for the different time base, by multiplying the velocities

. 2,.2.
by Ql/Q2 and the acceleration by Ql/"Z'

o = %31(C§5 + TR )

(See section 5.1.5 for the time scale correction in the case of harmonic body

motion.)

4.2.3 Piteh/mast-bending coupling.- Flexibility between the rotor swash-
plate and hub will produce a blade pitch change due to elastic motion of the
airframe., This coupling between the rotor pitch and mast bending is accounted
for by intreducing kinemaiic feedback of the following form:

Ce
BOuast = — & Gy (Kuey M 4 Ky st

bemd =9

4.2.4 Equations of motion.- Following the usual steps of airplane flight
dynamirs analysis' (see ref. 25), the linearized rigid body equations of motion
are obtained by equating the angular and linear acceleration to the net moments

. -h 0 i ~d
and forces on the aircraft: IG'l = IM and M(ﬁ; +'B} X VB = IF. In terms of the

F
body axis degrees of freedom, including the gravitational forces, the equations

are:
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\A‘: LX) . ((»‘ .
M*<v&; - M (TR | ¢ =

where

[ o Co¢y <;1

~Coprer  SepcSyer ©

\ Copr S‘h:'r SQF?QFT v

Here M is the aircraft mass, including the rotors, and I Zs the moment of
inertia matrix:

- 1
I -1 -1
X Xy Xz
1 = - I -1
Ry y ye
-1 -1 I
| Tx2 vz z

(Ixy = Iyz = (0 if lateral symmetry is assumed). These equations are dimension-

less, and have been normalized by dividing by the characteristic inertia ’
(%Nlb)l. Thus M* = M/(%Nlb/Rz) and I* = I/(%NIb). Note that the gravitational

. . . 2
constant g 1is also dimensionless, based on the acceleration Q'R; and

e

M*g = yZCw/ca> where W = Mg is the gross weight,

© -199-
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For the elastic degrees of freedom, since orthogonal free vibration modes

are used the equations of motion are simply
»* " *
. T

where Mk is the generalized mass including the rocors (in normalized form
*
Mk = Mk/(%NIb/RZ», W is the natural frequency of the mode, and g, 1is the

structural damping coefficient.

*
The generalized forces Qk are due to the hub reactions of the two
rotors, and the aerodynamic forces on the aircraft. Since the rotor mass is
included in the aircraft inertia, the hub linear acceleration terms should

not be included in the evaluation of the hub forces for these equations of

L. N r

motion. The aircraft aerodynamic forces are considered in secticn 45.2.06.

Similarly, the rotor gravitational forces are not included in the rotor

hub forces, since the rotor weight is included in the aircraft gross weight.

4.,2.5 Hub forces.~ The aircraft generalized force due to the rotor hub

reactions is

Normalizing Qk by dividing by NI, gives then }

Cad L} hd —

M = 2 3P 3! : - ~
{ Qk 2 - (..5' 'Y }Js~ " E.i'. -G.D’Y.K )s‘?k -Q’b/" ‘ i_(%.’
: y 26
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or Q= cTF, with ¢ defined above for the hub motion.

For rotor #2 it is also necessary to account for the differences in
normalization, Q and ¢ being based on rotor #l parameters while F is based
on rotor #2 parameters. Thus the force coefficients of rotor #2 must be

multiplied by

QNI kﬂz/RBZ
CNT, ST/R),

and the moment coefficients by
T

(N‘h'_\,fé. Bz

C NI ST,

For a clockwise rotating rotor it is also necessary to change the signs of
CY’ CQ, and CNx' Using ¢ corrected for rotor #2 normalization and the rotor
rotation direction as required for the hub motion, it is then only necessary

to multiply the matrix by

(N‘Ibn’.)z

C L W :(—1')\

to obtain cT for rotor #2.

4.2.6 Aircraft aerodynamic forces.- The aircraft aerodynamic forces
considered are those acting on the wing/body (WR), horizontal tail (HT), and
vertical tail (VT). The generalized forces for the aircraft rigid body

degrees of freedom, due to the aerodynamic forces and moments, are as follows.
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Here L, D, and Y are respectively the aerodynamic 1lift, drag, and side
forces; Mx’ My, ani Mz are the roll, pitch, and yaw moments on the wing/body;

and q 1is the dynamic pressure. The horizontal tail cant angles is ¢

(positive to left), and the vertical tail cant angle is ¢VT (positive zg
right), The moment arms of the aerodynamic centers of action about the alr-
craft center of gravity are in the body axes, ??= xi; +y ¥ + éﬂ;. The factor
2v/ca rtesults from normalizing the equations by dividing by %NIb. The

parameter A 1is the rotor disk area.

The aircraft aerodynamic analysis thus requires the wing/body 1lift,
drag, and pitch moment (L/q, D/q, and My/q) as a function of angle of attack
a and of the flaperon deflection Sf; and wing/body side force. roll moment,
and yaw moment (Y/q, M,/q, Mz/q) as a fuuction of sideslip angle £ and
aileron deflection Ga; the horizontal tail lift and drag (LHT/q’ DHT/q) as
a function of angle of attack «

HT
) cal tail lift and drag (LVT/q, Dy

and elevator deflection & ; and the verti-

/q) as a function of angle of attack &y
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and rudder deflection 6 - These force and moment characteristics have

dimensions of length-squared and length-cubed respectively.

The aircraft aerodynamic forces depend on the air velocity seen by the
components and on the aircraft control positiors The air velocity consists
of the trim aivcraft velocity, the perturbation linear and angular rigid body
contributions, the gust velocity and the rotor-inducad aerodynamic interference

velocity. In body axes (the F system) the total velocity is thus

“ v, * R er-' U N
(:V = (Vo |+ e | — (e Re 8¢ | + Revlve | — N\
Vi i Ye Wy

which must be evalvated at the wing/body, at the horizontal tail, and at the

vertical tail., The angular velocity of the aircraft is
Y be
% — ‘ig e
C We

The rate of change ¢! angle of attack is also required (& = E%/Vx). The air-
craft controls consist of flaperon, elevator, aileron, and rudder (Gf, Ge, Ga’
Gr).

The aerodynamic interference velccity due to each rotor is required,
With a nonuniform induced velocity calculation,ff is the mean value of the
wake velocity calculated at the position of the fixed aerodynamic surface
(see section 3.1). The complete time history of the velocity, required to

evaluate the nmean, can be useful information itself.,

As a simple model for the aerodynamic interierence, the rotor-induced
velocities at the wing/body, horizontal tail, and vertical tail can be
obtained os a linear combination of the mean induced velocity at the two

rotors:

= KGO R () kg G Y R (<R
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I §
assnming that the induced velocity is normal to the disk plane (—ks direction).

The K factors account for the maximum fraction of the aerodynamic surface
which is affected by the wake, and the fraction of the fully developed wake
velncity which is achieved. Typical values would be K = 1.5 to 1.8 (or zero
for no interference). The C multiplicative factors account for the decrease
in the wake induced velocity away from the wake surface, using the following

expression:

|
(:. - A <l’)l 4-52)

where £ 1is the perpendicular distance from the aerodynamic surface to the
nearest wake boundary (£ < 0 if the surface is inside the rotor wake cylinder).
Consider the geometry sketched in figure 24. The aerodynamic surface is lo-
cated at (E*- E;) relative to the rotor hub. The unit vector along the wake

center-line is

-
e =

~>
AT "”/"3-2?5 — > kls
\r,/"‘;" + e T ONE |

and we write

S )
Tx (F=T) = (SO R (TR "*‘4*‘3'5s+%ts

(times Rl/RZ for rotor #2). Now the unit vector in the ':75‘- ?; plane,

. -
perpendicular to e 1is

-
<2x(‘:’-—?‘>¢)§ % 2

| €x (2—%)|

3
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or roior/airframe aerodymamic interference.

_205_

T~




So the distance from P to the wake center-line is

~ D 5 o}
S = ('F?‘”~?%.‘3 -d = ‘ e x (€ —c¢) l

-
A point on the edge of the rotor disk is a unit vector perpendicular to ks;

the point also in the 2/t - 1':';{ plane (perpendicular to ? x ('f‘ - ?R))is then

3 - ¥y x (Tx (F=Ta))
\'{fs x (& » (?3-'(-";\5\

The distance of the wake edge to the wake center-line is thus

§ —é\ oo )& w (2 —T))

1L, x (€ (2= NI

1
|
o

Jp =

So the distance from P to the wake boundary is

le X!
”35 x(Tx (l!-\:‘g\)‘

= Rp —Rp = IGETS) (l -

z, . T T — -—126'15;‘
= v/>* + b + 2 (f ) ~J§:57:;E;54 i:)
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and
{

O
I

From the velocity components at the wing/body, the angle of attack and
sideslip angle are:

T |

- W
Jdwa = b T
™
“u

-1
@wg = -CQw«
and the dynamic pressure is

Rwa = % <“1+Vz"'wz>

The aircraft aerodvnamic interference at the tail will be accounted for by an
angle of attack change € and a sideslip angle o (positive when decreasing

a and B at the tail) so the net velocity components are

W4+ EW oV
V._C—u
w — €

Then the horizontal tail angle of attack and dynamic pressure are
i (vw—-ébf) Gk‘*%vr -*(V-—"QX‘Q“‘ba*-
o(H-‘- —_— LQM d
W4 €w TV

(((,\-pé_w-i-o‘v)l +(v-—d‘u3"+ (W~ ¢ u\q

I =

12
Np e

(bt + v 4w
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and similarly for the vertical tail

— — Ceoo (™) -} (w~éu\f\~\§>v‘r
e = — (v—aw) oo oy
A

e

W+ Ew — rv

(Mzﬂ-vt-’-—w")

he

where ¢HT and ¢VT are the tail surface cant angles. The time-varying non-
uniform inflow will increase the mean dynamic pressure in the wake:

3 = ‘\i_C\AL-'I—v"#—W‘)—%'{'f‘g’

where 02 is the mean-square wake velocity perturbation, at the wing/body or
tail as appropriate:

— —_2
2z 2
N = X n

For best results, experimental data should be used for the aircraft aero-
dynamic characteristics, including the airframe interference effects., As a

simple model, the followiug expressions can be used for the wing/body:

R & [ é:jéF -+ J::S& S
¢ . . l‘_/ jl
+ Eféf $¢ + Ef}& S
) 5
223 = -Q%:_ -+ tgfi (cpkoo -+ lwog.B - 1:§$F “ + Cﬁﬁk 89
%
Y At V¥ o
- e+ IV TTV
Moo Nmep oy VN £ g M £ 4 Deeg,
9 3 % v E %
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Mz _ t:)_i-%(;+\fﬁ'%+_3¢’\}+@}sé“
= % 3 % *
(YP’ Yr, and Nzr are often negligible); and for the horizontal and vertical
tails

l

b = e Cotut = Lur D

L;;" —_ -Eiﬁf (;>4v-r -t L\rw‘:> -

To account for stall, a = sign o * min (|af, amax) is used in the wing/body
. . . i1 g . .

lift and pitch moment, and in the tail forces. Here iWB’ Lyps and igr are

the zero lift angles relative to the reference body axis system; and GF is

a wing flap angle.

The wing/tail interference is evaluated from
(L/i3w8
Se

€

The area fé can be estimated from the wing area, span, and chord (Sw’ Xw, cw)
and the horizontal tail length (QHT) by

725 29
T ™~
%éi = 2.2 S;v, <.52,¢//f;\y j) <:52H1'/A¢~v 7

(from ref, 26). A lag ia the wake velocity at the tail is also included:
Q > <7Ld/ \> 9 .
20 vy C>4»8 = - ____j} w8 ¥y

.ZSGE = - (96{ v N ‘”&00
Xe

(ref. 25). The wing-induced velocity could be obtaired from the first order

differential equation
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The usual approac!. for a:rplane flight dynamics analysis is to write this

equation as

©

&
Sa e A

\ T

93 d¢ D¢ .
Cr—ee) Qe = 3, g = 35, Seq

é:

Using T = EHT/V for the time lag gives the abeve result. From reference 25,

the sideslip interference angle is approximately

-« \Y 3<r‘ X. T\ Ly
= e+ EEE <\'333’i@
@ A vy ? A\
~ Zya
vV
where Zyr is the vertical tail position (positive upward).

In summary, the aircraft aerodynamic forces are calculated as follows.
The aerodynamic environment is defined by the helicopter trim velocity,
perturbation linear and angular velocity, gust velocity, rotor-induced inter-
forence velocity, and the aliciall contruis, The tvotal velocity components
are calculated at the wing/body, horizontal tail, and vertical tail; from
these the angle of attack and dynamic pressure are calculated. Then the aero-
dynamic forces and moments on the aircraft are calculated. Finally, the

generalized aerodynamic forces are evaluated.

4.2.7 Aireraft aercdymamics — high frequency.- The aerodynamic model
described in the preceding sections deals with the steady forces on the air-
craft, and the stability derivatives for the rigid body motions involved in
flight dynamics. Such a model would not be appropriate however for the high

frequencies of rotor-induced vibration, for either rigid body or elastic
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motions of the airframe. An accurate analytical evaluation of the generali:zed
forces at high frequencies would vequire a sophisticated model of the wing/
body and tail aerodynamics, including the effects of the rotor wake-induced
flow field, for the normal modes of elastic vibration of the airframe. Such

an analysis i5 not attempted in the present investigation.

The only generalized aerodynamic forces considered for the airframe
elastic modes are the direct damping and control forces. In dimensional form,

the equations of motion are then

“ PY e
My (36, + J5ou %u‘*"’kTSQ = (Q%Bmﬁocs
- 3%
w3t fac R v e (2]

where Fqkdk and Fka are constants {(with dimensions of length~squared and
length-squared per radian respectively) that depend only on the airframe

characteristics; Fqqu is the damping force divided by k%pV:

T
DRy %fi\J

\":c\v:.a\\L = P} éks; /N

and FQké is the control force derivative divided by 3pv2:

am. /L .\

~ g ! ‘_'\'

W7 3%

The dimensionless form, normalized by divuiding by %NIb, is then

4 W * 2% . . ¥
M T + (MW Y% T A %’ F‘}t"\*B For + My Px
§
* 2% '
= (Q¥>m+°r; -4 Q"——_-OA ﬂ. [Ft‘*‘a <88:' ]
$¢
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4.3 Transmission and Engine Analysis

The rotor rotational speed degree of freedom can be an important factor
in the helicopter dynamics, and the rotcr torqu. perturbations can produce
significant drive train loads. A model is required which accounts for the
coupling of the two rotors through the flexible drive~train, and for the
engine damping and inertia. The drive train dynamics will be described by the
rotor speed, the intercecnnect shaft torsion, and the engine shaft torsion
degrees of freedom. The equations of motion are derived from the balance of
rotor and engine torques (in the nonrotating frame). A model for a governor
with throttle or collective feedback of the rotor speed error is also con-

sidered.

4.3.1 Engine model.-The engine model ircludes the inertia, damping, and

control torques:

T, Re = P — RS + Q5

The engine speed is QE’ ar? QE is the torque on the engine. The engine

rotary inertia is I QQ is the engine speed damping coefficient, i.e., the

E*
torque per unit speed change at constant throttle setting:

L

N = \
OSZE e.t = townstaut

The wvariable et is the engine throttle control position. Qr is the torque

applied due to a throttle change at constant speed:

(V) = ORe \ = _L. %if?
£ Ss, T % &y
€ R‘ = o sYaat &‘. = Comstany

Thus Qt and J. can be obtained from data on the engine power as a function

of throttle position and engine speed.

o e b




The engine damping may be related to the engine trim operating condition

oy
> E}SZE I2E e Szi-+v{_.

where ¥ 1is a constant depending on the engine type, This approximation is
applicable to a wide variety of engines. The constant takes the value «x =1
for a turboshaft engine (ref. 27) or for a series DC electric motor (ref. 28).
It tales a value x = 1/(1 - n) for an induction electric motor or an armature
controlled shunt DC electric motor (ref. 28; n is the motor efficiency). For
a field controlled shunt DC motor, the only damping is mechanical and the
damping of the load, so k = 0 (ref, 28). For a synchronous electric motor
there is a spring on the rotational speed due to the motor, so the above model
is not applicable (ref. 28). Generally, the inertia of the engine or motor is

more of a factor in the dynamics than the damping.

The normalized engine damping and throttle coefficients are:

2
CZQ* == (-e OSL g &t——\}—Qﬁ/&.& e ('EL KP& . = KPE
£S5 (T 52, COTY, ), (VT ) R (NIBR"‘)‘
CEQ:— = GO _ % A /30y _ af /361
E;°:5552}f). (T, ST, Ste X, ST,

where 3 is the ratio of the engine speed to the rotor speed. When the
throttle controi is only involved in the governor, the parameters required
for Qt is not really BPE/BGt, but rather just over all loop gain of the

governor —-- the torque perturbation due to a rotor speed error.,

The transmissior. losses may be viewed as « viscous damping scurce, with

a coefficient equal to

2@ _ (=%
>S¢ ~ ST™
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where n 1is the transmissioa efficiency. This loss can be included in the

. . 2 % . ,
engine damping coeffic.ent rp QQ, by increasing the factor x by 4k =1 - n,
In the equations for interconnect shaft torsion and engine shaft torsion,

structural damping can be included as well.

4.3.2 Fguations of motion.- Figure 25 is a schematic of the transmission/
engine moder considered for asymmetric drive train configurations, such as for
a single main and tail rotor helicopter., The two rotors are connected by a
shaft, and the engine is geared to one rotor (rotor #l in fig., 25). The tor-
sional flexibility of the drive train is represented by the rotor shaft springs
KM1 and KMZ’ the interconnect shaft spring KI, and the engine shaft spring KE.
The transmission gear ratios are Ty (the ratio of the engine speed to rotor #1
speed), and r.. and r

I1 12 (
rotor speeds). Thus r]‘_l/r,l,2 = QZ/Ql is the ratio of the trim rotational

the ratio of the interconnect shaft speed to the

speeds of rotor #2 and rotor #1.

The degrees of freedom are the rotational speed perturbations of the two
rotors (&sl and &sz), and the engine speed perturbation @e. The engine shaft
azimuth perturbation we is defined relative to rotor #1 rotation, so the
total engine speed perturbation with respect to space is rE(JJS1 + ¢e)‘ With
the rotation of the two rotors coupled by the Jdrive system, it is more appro-

priate to use the following degrees of freedom:

\Vg = \*i|

Mpom M, — e, /)W

Here ¢1 is the differential azimuth perturvation between the two rotors. The
degrees of freedom wI and we therefore involve elastic torsiorn in the drive
trzin. The degrees of freadom ¢ is the rotational speed perturbation of

r

s
the drive svstem as a whole: both rotors, the engine, and the transmission.

The differential equation of motion f»r the rotor speed dymanics are
obtained from equilibrium of the torques on the two rotors and the engine,

The resulting equations for ws’ VI’ and oe are as follows:
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Figure 25, Schematic of rotorcraft transmission and

engine dynamics model (asymmetric configuration)
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where ¢_, Vg and Yoo (x Il/rIZ) ¥, + ¥;5 and with the engine by rotor #1
as in figure 25, the constants are:

<
OO, /e Km, Fx, K

‘iﬂﬂlx =
KMB <KM; - sz"' K‘?-'.S
k - KML r;; kz
! Mr2 V‘M,, +<‘;’ Wy
T. .
K _ 1€ Kg KMM
NAME DV
' "e?'kg (\LM,_-P‘":’; K:‘.B“V' Kaam
Z
K, = e ke O, By foy K
T
& ¥e (g -+625 K2) + Kpamn
z Z
KMR =0
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-
IF/(NIb)l° When evaluating the derivatives of wsZ for use in the analysis

2
The spring constants are normalized by dividing by (Nlbfl)‘; and 1

of rotor #2, it is necessary to account for the difference in time scales:

¢ SZ\ C,;_\ - e
\V, = e - -+ W

In these equations the gear ratio rIl/r between the two rotors is a pesi-~

12
tive number, regardless of the rotor direction of rotation. Therefore here

the sign of CQ is not changed for a clockwise rotating rotor.

With the engine by rotor #2, the constants in the equations of motion are:

Cfg, /fz_z) KMZ (KM, -+ f:‘ K'.'l".3

KM’;;‘ —
KMI r;:‘ KI
(A
Cr,_,/rz,)z % Ke kMM
¥ME|

o kg (K, + 0, KD =+ (g /‘z.,_\{imm

(rx‘/rzl\) (ez ¥-€ kMz CKM‘ -’-rj;z; KI\
Fle (K + o %2) + (% 75 Kaam

¥Xme, =

Figure 26 sketches a symmetric drive train configuration, as might be
used for a side-by-side main rotor helicopter. The two rotors are connected
by a cross-shaft, and there are two engines, one geared to each rotor. The
degrees of freedom of this _ystem are symmetric and antisymmetric rotor speed
perturbations, and symmetric and antisymmetric engine speed perturbations.
Dropping the antisymmetric engine speed perturbation and antisymmetric throttle
input, the syst:m has three degrees of freedom as for the asymmetric configura-

tions above. Let
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Figure 26, Schematic of rotorcraft transmission and

engine dynamics model (symmetric configuration),
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again, where here rIl/r12 = 1, The constants in the equations of motion ara::

km:, = |
1 Km
krme = 2 KM""‘ZC.: Ko
k — kl“\ Zf‘i k—l‘.
MTI
K + 2% \<~];
g, = 2 S kekm
MR Km + ot ke
\ — Q;:‘kikm
Ko + G Ke

Here the engine inertia IE is for both engines, as are the damping and

throttle coefficients (QQ and Qt)° The resulting symmetric and antisymmetric

drive train motions can then be obtained froum

H'“y“ = Wi + VY.

\*Euu5£4 = — %t’\fﬁr;
N = e ""'éwx

as required.
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With just one rotor (as in a wind tunnel), the equations of motion for

the rotor and engine speed perturbations reduce to:

.-* A% ) A3} * s Y
BS_-—‘E + e Lo (We+We) 4 e @n (¥, + e

&
erQ\'_e'h +<K—;_Q%€_

2 e S hod N '* - i *
T (¥ +¥e ) 4+ qtas (W + %) + Xme, Me

n—

+* <P

s LT

where here z

T
¥Lh* -+ rk k:g

\(N\k‘.'| =

Hence the equatiins for the asymmetric drive train configuration can be used,

dropping the ¢I degree of freedom and the rotor #2 torque.

The case of a rotorcraft in autorotation can be treated with this model
by dropping the engine speed degree of freedom ($e), dropping the engine terms
from the ws and wI equations (helicop.ers usually have an over-running clutch
to disconnect the rotors from the engine at zero torque), and dropping the
throttle governor control input (et). The engine out case (engine and rotors
still connected) requires dropping the engine damping term 'or reducing it to
just the transmission losses contribution) and dropping the throttle governor
control input. The case of constant rotor speed is modelled by diopping the

rotor and engine speed degrees of freedom and equations from the system,
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4,3.3 Rotor speed governor.- When the rotor rotational speea perturbation
is included in the dynamics analysis, it is usually necessary to also include
the rotor speed goveruor for a consistent calculation of the rotor and aircraft
behavior. The governor model considered is integral and proportional feedback
of the rotor speed to the throttle, and to the coliective pitch of rotors #1
and #2, The governor dynamics are represented by a second order lag. The

control equations are thus:

A3

'czc A9, -+ T Aét + AB¢ == --kfc .:PS —-KT‘C\P$
"z DOowr, + Ty, ABM -+ ABGOV% == KP‘ \;)S +‘i('x;‘ “Ps

Tza A%"a"“z- + Ty, Aé%w-z -+ A&d""'l = Ko, \¥ + ¥z, ‘i}

Note that g = ¢s is the rotor speed error, and ¢s is the integral of the
error. The integral gains are dimensionless (with 6 and ws both in radians
or both in degrees), and the proportional gains have units of seconds (KP/KI
is the lead ir the integral control). When the throttle contrel is only used
for this govarnor model, it is only necessary that the product of dPE/aet

and the governor gains be correct:

.o 3
% 20, Ay,
o, M = - 2P
(A aet b [3

(p = QRQR = QEQE), or in terms of the dimensionless parameters
> Calea

—*—-—-———-——"

DV /S

- - |ra
bz, CGGL ) 2 — 2Salre
Te (0% >,

ke, (R@FD = —

!
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The time constants in the governor equations can be alternatively described

in terms of frequency and damping ratio:

-—— A‘

Te & L
c, = 2.0
Wn

5. SOLUTION FOR THE ROTORCRAFT MOTICN

The solution of the equations of motion will be divided into two parts,
based on the frequency content of the motion. The first part is the solution
for the rotor motion and the airframe vibration. This motion is periodic
with fundamental frequency § for the rotor, and NQ for che airframe, hence
it is high frequency motion. The second part is the solution for the steady
state or slowly varying airframe motion, consisting of the aircraft rigid body
and rotor speed perturbations. The assumption that this airframe metion
occurs slowly relative to the rotor speed allows the solution of the equations

of motion to be separated into these two parts.

5.1 Rotor Motion ¢nd Airframe Vibration

The equations of meotion £ e roivr and aircraft will be solved for the
periodic motion by a harmonic analysis method, which obtains directly the
harmonics of a Fourier series representation of the motion. After a con-
verged solution for the blade motion and airframe vibration is obtained, the
rotor performance is evaluated, including the mean aerodynamic Lub reactions
(in particular the rotor thrust and power). The hub motion includes the

static or quasistatic contributions from the aircraft rigid body motion.

The helicopter state is determined by the control positions; the flight
path angles and trim Euler angles (or test module pitch and yaw for the wind
tunnel case); the quesisteady linear and angular velocity perturbations of

the airframe; the juasisteady rotor speed perturbation; and the aerodynamic
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gust velocities. The rotor motion and airframe vibration are calculated for
this state. Then the generalized forces acting on the rotor and airframe can

be evaluated, as well as the various performance parameters of the alrcraft.

5.1.1 Fowrier series representation.- For the case of steady state
flight, all the rotor blades execute the same periodic motion. It follows

that the blade motion in the rotating frame can be written as a Fourier series:

we 60 S

= (sf.“ + f, ((5(“*: ceavM,, +\(? &%«m*\’m\
o, = “%_h ein &o.‘%a

- ai*\ + :Z:l (9:‘:\ R e BS? Sawl)

where wm = ¢ + mAy is the azimuih angle of the m-th blade (&Y = 2n/N,

m=1toN), and ¢ = Qt is the dimensionless time variable. The complex and

: icients are related by = {f__ - iﬁns)/z and
8 = (® - iens)/Z for n 2 1,
for solving the equations of motion, while the real representation is best for
g (K)
n

n nc
The complex representation is most convenient

P

interpreting the motion. The notation is used for the harmonics of the

k~th bending mode. With the modes ordered according to natural frequency,
g (1) (2)

n
are the harmonics of the k-th torsion mode, with 6

the fundamental flap mode.
(0)
n

is usually the fundamental lag mode and B8

Similarly e(i)

pitch and the remaining modes elastic motion of the blade. The Fourier

rigia

representation of the gimbal or teeter motion is discussed in the next sectionm.

The degrees of freedom in the nonrotating frame are the aircraft rigid

body and elastic motion, and the rotor speed perturbations. These degrees
»
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of freedom are excited by the net rotor hub reactions, obtained by summing the
root forces and moments from all N blades. Ideally, the rotor hub acts as a

filter, transmitting to the nonrotating frame only those harmonics at multiple

of N/rev. The vibratory motion in che nonrotating framc is then also periodi~,

with fundamental frequency N, and can be written as a Fourier series:

~ (W) Ll
5~ ¢

for the body motion, and
bo VONY

¥oo= (sc-i-ﬁo Ws‘)“ “

for the rotor azimuth perturbation (similarly for wI and we). The static or

mean terms are obtained from the low frequency solution of the airframe

equation.

5.1.2 Gimbal and veeter motion.- The rotor gimbal motion (if present)
is in the nonrotating frame, but it is most convenient to sclve an equation in
the rotating frame for the gimbal motion, along with the other rotor blade
equations. From section 2.2.18, the gimbal equations of motion are given by

equilibrium of the net longitudinal and lateral moments on the rotor hub:

N Co * . * , .
L £, 2% 32 4 Cac Poe + T, (oo ~DBec =0

A

-8 &
T S PR SN
-5 &, 2w, ¥ Cos Bos + T5 (Vs —Be¢ = O

where me is the flap moment at the blade root. All harmonics of the longi-
tudinal and lateral hub moments cancel within the hub, except those at multi-

ples of N/rev, The pN harmonics of the gimbal equations of motion are:
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B = BG

excited,

so
for p #

where (me)n is the n-th complex harmonic of C

— [_(6 CT:‘;‘X\,FN_‘ + (X —-3‘,,\%‘]

* 1
+ Coo g (@66\(3(\) +If(°<.c"‘\((5c,c\et\\ =

L{ (Ki:s\fh—l + <KCM>‘,N.H ]

T
4+ Cas LgN (RGesden + o (Vs =D {Bes)pn =0

X’

The flap motion in the rotating frame due to the gimbal tilt is

Ccosq; + BGSsinw. Only the pN harmonics of BGC and BGS are

hence only the pN * 1 harmonics of BG:

I

(@G->¢w4.\ % ‘: <(S‘“—3(3N - i ((SGJPN ]

(G‘G}?N»\ = ‘.;'_ E(@GC\@Q +.L (%QSXQN ]

T A R e
@ = —+ L @adpnmar = Redgnar |
0, and

(Be), = 2Re (Ba)y

(GG$>., = --2}\.« <@G\1
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Note that with the restriction that only the piN = 1 harmonics of BG exist,

this is equivalent to the relation

(=
2
Bae = Iy E=‘ s Ro
_ 2 o~ . (D
Ras = 3 § | N SV

Substituting for the harmonics of BGC and BPS in terms of the harmonics of

BG’ the gimbal equations of motion give:
- Canan Couy
-1 C:?\fN-\ +(% &"S‘m“ 1+ <Lsc, “(’N[(@een ~ (&x\?“,,.]
+I;*(3&,~13 [(@G\QN-I "'(&JQN-H ]:Q
Gy
-[(b’ v(m-l - (K Y1 3 + -(ss "QN [(éﬁ)eN..‘ ((3(,>9N+,_J

+ 5 (?64 » L (Y -1 T (GC‘)QN*-l.] =0

or

- ( CM*\ -+ (qj:; + Ca:‘ ‘\LAN (BA)AA\ =t

.
- ‘,N..,

Pl—-

T

+ 7 (4 Qe+ 06— h(@:’ph}n! +z(‘c;c‘¢&$3‘f“) (&, BN+
-

- (\6 S o1 + 7 ( ch*r. -'PQ:‘S- P L@N (’@G)en-i-l
, T
+ x5 (% (‘7:; + ‘76.9 --U(& (TN %(Qt—%;)(fh (65\)(*‘34
+T5 § (oo ~%5) (Rdpn .y, = O
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which we note are just the pN + 1 harmonics of the equation

(except, for the effects of unsymmetric gimbal springs or dampers, and the

fact that the damping is in the nonrotating fr-me).

The equation fpnr the teeter motion of a two-bladed rotor is

2 - Cm W . M, 2
._—é V“Z:l(-)S U;:‘;} 4+ Co @T’ ~+ T‘O(OT-—BﬁT ®)

]

All the even harmonics of the root flap moments cancel within the rotor hub.

The summation operator only transmits the odd harmonics to produce teeter

motion. Hence the solution for the teeter motion can be obtuined by solving

the equation

Cwa . b T
~—‘6—;—§ 4+ Cx By 4+ o (4 -1 f+ =0

for the odd harmonics (i.e., for the pN * 1 harmonics, just as for the
gimbal moticn).

Thus the gimbal or teeter motion can be obtained by solving the rigid
flapping equation in the rotating frame:

w* - . 2
X 4 G Be A4 e (D BRe =0

for just the pN z 1 harmonics of BG' Then the harmonics of the gimbal
motion are
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(Bedpn = (@t + (Bedopy
(664\9& ""L{ L(s"’)(’hﬂ — ((5":3@:-“ ]

from which the gimbal motion can be evaluated

() oY
@(,(, = P§~ - f\ %Qv‘-ﬁ@bb < Q

|

(3(’” - f’é:—-h Q(S“\)P‘Q e

and so

WP
Bo = Bonoost +Bus vl = MEN:M (§), ©

The harmonics of the teetering motion are

(GTB“ = ((563'«\

for the odd harmonics, from which

e W
(Stb = Q51' = Jé;i&i <~QSG:)v\ e

5.1.3 Rigid pitch motion.- In the limit of infinite control stiffness,
the equation of motion for the blade rigid pitch degree of freedom reduces to
Yrap = 0 (see section 2.2.9), with the solution
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Write the total root pitch motion P, as the sum of P, and the motion due

to elastic distortion of the control system: P, = P, + Py- Substituting for
Py the rotor equations of motion will be solved for the harmonics of Py-
The case of infinite control system stiffness then requires only that the
equations for Py be dropped from the solution procedure. Writing

P, = P, + P4 introduces terms due to Pys Ps and P, in the equations of
motion. )

Allowance will be made for different stiffnesses in the collective and
cyclic control systems by using different natural frequencies for the collec-
tive motion (0(2)), cyclic motion (O(i)), and the reactionless motion (O(:),

n 2 2). Given the collective, cyclic, and reactionless control stiffnesses,

the Jimensionless matural frequencies are obtained from

2 ke

be specified directly.

The control system damping will be specifiad for the collective motion,
the cyclic motion, and for the rotating frame motion. The total damping is
then Cecoll + Cerot for the collective mode, Cecyc + Cerot for the cyclic
modes, aud Cerot for the reactionless mecdes (n 2 2).

5.1.4 Harmonic analysis solution.- A harmonic analysis method will be
used to integrate the differential equations of motion, solving directly for

the harmonics of the motion. Consider equations of the form
Mn K ( °
& + @ - %é)@}w)
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where B 1s the degree of freedom, K and M .are the appropriate stiffness
and mass, and g 1is the forciug function (usually nonlinear). To avoid the
singularity of the resonant response at harmonics near the natural frequency,
it is necessary to include the damping terms on the left-hand-side of this
equation. Thus the term CB is added to both sides, giving

e - -

MBE+ @ + kf = 3+Cp = ¥

where C 1is the damping coefficient. For good convergence the damping co-
efficient used should be clos= to the actual damping of tlhe particular degree
of freedom, including structural, mechanical, and aercdynamic damping sources.

The damping estimate does not have to be exact however, since it Ls added to

both sides of the equation. In fact the actual damping in the forcing function

g will often be time varying and even nonlinear, so the viscous damping
coefficient has to be an approximation. The sole function of this damping
term is to avoid divergence of the solution near resonance, and the value of

C has no influence on the final converged solution.

Now the function F is evaluated at J points around the rotor azimuth:

F) = F(‘PQ = 3(\*’5>+— C.(é(’*’a‘)

where wj = jAp (J =1 to J and AY = 21/J). Then the harmonics of a complex
Fourier series representation of F are

X A
RO e My K
Fw = T Fa e ‘“
d
where —— S >
Kv\ = (\"R'\'\ St >
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With Kn = 1 these harmonics would give a Fourier interpolation representation

of F(y). While it matches the function exactly at the known points F(¢j)
(or with least squared-error if the number of harmonics used is less than
(J-1)/2), the Fourier interpolation gives a poor representation elsewhere,
with large excursions due to the higher harmonics. In particular, poor
estimates of the derivatives of the function F are obtained. With the above
values for Kn (which reduce the magnitude of the higher harmonics), and an
infinite number of harmonics (n = -« to «), a linear interpolation between
the known points F(wj) is obtained. By truncating the Fourier series

(n = -L to L) the representation of F is smoothed, the corners of the
linear interpolation being rounded off. Usually L = J/3 is satisfactory,
that i1s the number of azimuth stations should be about 3 times the maximum
harmonic of interest. The azimuth step thus should be Ay = ZHLI::IJO/nmax

degrees. Then the solution of the equation of motion for the harmonics of 8
is obtained from the harmonics of F by

-
G = W5

where Hn =K - an + Cin.

The iterative solution, rejuired because the nonlinear forcing function
F depends on B and é, proceeds as follows. At a given azimuth ¢j, the
blade motion is calculated using the current estimates of the harmonics:
L .
¥

c; = v?;;.(_ GRA !ba“

5 - s B i "

wz~ L

A

The forcing function Fj is evaluated next. The estimates of the flapping
harmonics are then updated to account fur the difference between the current

value of Fj and that found in the last revolution:
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) 3 e

After adding ABn to the flap harmonics Bn’ the azimath angle is incremented
to wj o1 The calculation proceeds around the azimuth in this fashion until
the solution converges. The test for convergence 7s performed once each
revolution. Requiring that the root~mean- squared change in the blade motion
from one revolution to the next be below a specified tolerance, the criterion

is (AB)rms < ¢ for all degrees of freedom, where
3 Tw 2
LRy = "i"?\' Sc> Capd™ 3%

and

ap = ( ~ Pasx

This test is applied to all degrees of freedom, for both the rotor and the
airframe.

In the present problem, the system of equations and degrees of freedom
can be separated into two sets: the rotor motion, consisting of flap/lag
bending, rigid pitch/elastic torsion, and gimbal or teeter flapping; and the
aircraft rigid body and 2lastic mot<on, transmission as an
independent subset. The coupling between these sets is accounted for in the
nonlinear forcing functions. As long as the coupling is weak, it is possible
to solve the two sets of equations separately, in parallel. Within each of
these subsystems, it is necessary to solve all the equations simultaneously,
including in particular the iner:ial coupling on the left-hand side. Thus a
vector equation must be solved for each harmonic of the motion. The solution
proceeds as fnllows. At a given azimuth station, the blade wotion and hub
motion are evaluated using the current estimates of the harmonics. Then the
generalized forces are evaluated, and the rotor equations are solved to update
the harmonics of the blade motion. Next the rotor hub reactions are evaluated

(for which the updated blade motion harmonics can be used), and the aircraft
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equations solved to update the harmonics of the body motion. The azimuth

angle is then incremented, and the calculation repeated until a converged

solution is obtained.

5.1.5 Motion evaluation.- To begin the solution at a new azimuth station,
the deflection, velocity, and acceleration of each degree of freedom must be

evaluated from the harmonics. For the rotor blade bending:

5o TRV ‘O W
1\‘_ = (,f:-:.\o @“ -3 — $o -+ “2; (6"_ wsn*l’+@“‘%\“p3
. v . (K W o ) (x) N
1‘ = “5:.“ w 6\.\ e _ “iz‘ n (-— &«- &V\\V\q)"" G“s u“\\P

It
M
™
sﬂ
(4
W
s
o®
I

©0 () (v
Eatt G coan? — Bag Sn'P)
Ns

Similarly for the blade pitch/torsion, P> ﬁk’ and ﬁk are obtained from the

harmonics O(ﬁ). Note that for rotor #2 these time derivatives are based on

9] For the gimbal/teeter motion, recall from section above

2°

@e = & (éG\w Qf‘mk\)

T e}):kl

and similarly for BG and §G.

Recalling that only the pN harmonics are excited in the nonrotating

frame, the rigid body and elastic airframe motion of the aircraft is

W e
R = “2-.-.:9» L + TBdssmine
- . ) WP -
B = “é;N n f?“ e +- C%)DE.-’-:-H;..
. 3 ‘\v\")
3{“‘- = “é;po Q_“t\ 4)(‘: e
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where Qgq +++ dgq are the six rigid body degrees of freedom, and 9oy for
k 2 7 are the airframe elastic modes. The steady state or slowly varying
static (k < 65
this motion is static compared to the high frequency rotor motion and airframe
(k 27).

rigid body motion contributes the static velocity terms (ask)

vibration). The static elastic airframe deflection gives (qsk)static

The rotor hub motion is then

o= [ W | = <333

where ¢ 1is given in section 4.2.2, Recall that in the evaluation of & s
ay, and o, (for the aerodynamic analysis) the contributions of the rigid body
Euler angles ¢F’ eF and wF (qsl to qu) are not included; also the linear
hub displacements (xh, Yh? and zh) are not used in the rotor analysis.

Hence o is evaluated due to the elastic airframe modes only (q k>7).

sk’
The velocity and acceleration of the hub are

For rotor #2, & and @ are multiplied by 91/92 and (QI/QZ)2 respecti: zly.
Also for rotor #2, the aircraft motion harmonics are at n = pN 92/91
(relative to the time scale of the nonrotating frame, Ql). We can write the

hub velocity as follows therefore:

~23h~
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RSN
s ™ ipn®asdy
Scof Zilevg b 3
C

§ 5 ips dpn T

Hence by evaluating the hub motion as a sum of harmonics at n = pN, with the

(fEk\%“~°t1*=z

Il

I

azimuth angle of rotor #2, the time scale will be automatically accounted for.

Similarly for the acceleration

(&Y  anW
(Sicroctrz — © {-— P RO K "}

(0 Iy N‘)
St — TotN e z
= c {f ¥ ‘i’eco e

A factor of 91/92 is still required in the second term of @&, to account

for the scaling of the aircraft velocity in c.

The acceleration due to gravity, considered as an equivalent linear

acceleration, is

%:'* R -
A<"8‘“X = % SFL‘.
2

For rotor #2, he factor (QZR)l/(QZR)2 is also required.

The rotor shaft angular motion perturbation is evaluated from

S
— N
\+g — »qg;%ha fw @
b . ‘w;‘“\’ *
W, = “§"W ', @ = ) s pmtm e
v o= T e
vs:.fM
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From section 4.3.2, the angular motion perturbations of the two rotors are
then obtained from

As for the airframe motion, the time scales of the velocity and acceleration
perturbtations for rotor #2 sre accounted for without additional factors of
2,/9,.

The sclution for the helicopter trim c¢r transient motion (section 5.3)
supplies the static motion of the airframe rigid body degrees of freedom
(ask for k = 1 to 6) and of the rotational speed degree of freedom (@S).
The solution for the static elastic deflection of the airframe and drive train

(qsk for k27, wI, and we) is given in section 5.1.10.

The dimensionless time variable is , the azimuth angle of rotor #1.
The azimuth angle of rotor #2 is

&
wz = SS;-gg Al + A\PZ\

where Aw21 is the angle when ¢ = 0 at rotor #1. Hence the analysis of
rotor #2 must account for this phase difference of the two rotors, by evaluat-
ing the blade motion, the airloads, and the hub reactions of rotor #2 at

v+ Ale. The phase of the time variable for the airframe motion is the same
as that for rotor #l1. Note that if 92/91 # 1 the rotors do not maintain a
fixed azimuthal phase difference. For that case the rotors will effectively

be analyzed separately however, so Ale = 0 can be used.

~236-




Hence the harmonics of the rotor hub motion are obtained from the har-

monics of the aircraft degrees of freedom by the following exp-essions:

w
oy = c{ &, 3
éQv‘ = nwc § i#éfs
“ (¥ R (x
o, = —wtc § ‘#g~ :§ 4~ w C {:‘k24 j}

for n a nonzero multiple of N; and the "static" components are

< { 3&}

< g :‘zﬂk §$+.+\¢.

-
oo _ o . —%&?ke
Asrate = < zgtsv-gg-\-..-h‘. + { ° ]

I

c{S+Q4ﬂ“ S¥ehe

I

= g4t

for the displacement (an and astatic) the summation is over the elastic air-
frame modes only; also, only the angular displacement components are required
(ax, oy uz). For rotor *2, a factor of (QZR)l/(QzR)2 is required in the
gravity term, (qsk)static is multiplied by 91/92, and the matrix c¢ is

multiplied by 91/92. Also, for rotor {2 the harmonics are multiplied by

— &N,
e,

since for the azimuth angle of rotor #2 equal to ¢, the hub motion at
Y - Ale is required (only if Ql = 92). The harmonics of the rotor azimuth

perturbation are obtained from the harmonics of the drive train degrees of

freedom by the following expressions:
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for n a nonzero multiple of N; and the "static" components are

(W, stahe = ©

—

Mg 135-&14-19 - CW-"BS-H-hg_.
Cx%s.\35¥.q1g, = (f‘v;‘) S et
(¥ Dgaete = (% Dgtatrc _

For rotor i#2, (ﬁ:s)Static has been multiplied by QI/QZ; also for rotor #2

the harmonics are multiplied by

e

The blade rigid pitch motion P, requires the pitch increment due to the

governor and due to the rotor mast bending. The harmonics of the governor

pitch increment are obtained by summing the contributions from the two rotors;
and for rotor #2 multiplying by

L.
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The pitch increment due to mas:t bending is

L0 vaaar _ -— k?‘! :-‘K (kok S 4 +hM$g SM’*PS
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_ £ 4>(° Kincy 41 Kasy Q}‘“"""J
k=7 2.

So the harmonics are obtained from the harmonics of the airframe elastic

motion by the f2llowing expression:

AQM = — Z "*’ * -
<: &au;j>n T B 2-

- E%; ‘bk\+4 2.

where ¢( ) is zero except when n 1s a nonzero multiple of N, and the con-

vention ¢\K)— (qsk)static is used here. For rotor #2, the harmonics ( )

are multiplied by
<

in this calculation.

i
5.1.6 Rotor equations.- The Jifferential equatioms of motion for the §

rotor degrees of freedom are given in section 2,2.18. For the n~th harmonic,
these equations take the form
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where

o4
n

of section 2.2.18, the transfer functions matrix

F are as follows.

s

- e
Loy
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is the n-th harmonic of Py and BG1 is only present for the
n =pN * 1 harmonics for gimballed or teetering rotors.

H
n

From the equations

and the forcing function
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Note that estimates of the aerodynamic spring and damping forces have been
o added to both sides of the equations. In the matrix Hn these terms must be
multiplied by ((J/nn)sin(nw/J))z, to be congistent with the Fourier analysis

FneD = PN
w-& sN= pR -1

Y e tar

75““&"9> = PN+ |
f8--skeé> y N = g)VQ-— |

of the forcing function F (see section 5.1.4).
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The solution for the blade motion requires the inverse of H

harmonic. One approach is to invert Hn every azimuth step.

for each
A more

It will still
occasionally however, because it depends on the

bending solution (qj terms). The blade motion harmonics should be completely
recalculated whenever sz is updated.

efficient approach is to invert H once and store the result.

be necessary to update d

Hence at each azimuth step wj the forcing functica F, i1is evaluated.

3

Then the blade motion harmonics are updated by adding the foilowing increment:

/ (sm

"

13)) — m‘?

ANIRY H(c

,\
&
I

5.1.7 Hub reactions.~ The generalized aircraft fcrces due to the rotor

hub reactions are Q = cTF, where ¢ 4is given in section above and

T v e i ]
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From the results of section above, the required hub reactions are as .ollows.
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These hub reactions are harmonically analyzed in the evaluation of the
vibratory airframe motion. The effect of the summation over all N blades
then is to suppress the harmonics not at multiples of N/rev. An equivalent
approach therefore is to omit the summation operator and only evaluate the

pN/rev harmonics. Hence the aercdynamic forces are only evaluated for one
blade at azimuth angle .

The mean hub reactions, required in the solution for the steady state
or slowly varying aircraft motion (section 5.3), are obtained by averaging
the above results over one period. Note that only the aerodynamic terms

contribute to the mean values of the hub forces and torque.

The hub forces due to the linear acceleration of the rotor mass
2 “
P& |\ = —2My v
—= - |3 \gﬁh

A1}

2Cx
¥ & W

have not been included here, since the ailrframe inertias include the rotor

mass. For the static elastic airframe deflection, evaluated from the

~247-




N

mean hub reactions, the "static" hub acceleration must be included:

AF = ““'ZMt :’lstq‘fu..

which consists of the gravitational force, and the centrifugal force due to
the angular velocity of the body axes.

To solve the equations of motion for the engine and drive train, the
rotor torque is required in the following form:

)’5—%: ",152 (K

(see section 5.1.9).

5.1.8 Aireraft equations.- The differential equations of motion for the
aircraft degrees of freedom are given in section 4.2.4. For the n-th harmonics

of the rigid body motion, these equations take the form
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The forcing function is due to the rotor hub reactions

{: = {Q.:}ruhrﬁ'-l + gQ: }mﬂr#z.

From the equations of section 4.2.4, the transfer matrix Hn is as follows.

B >
H -—EgI Rg' ﬂ‘ O
"=
‘-s 4— -
=M VO + G ~M™®

For the n-th harmonics of the aircraft elastic motion, the equation of motion

is

¥ * 2%
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*
where Qk is the generalized force due to the rotor hub reactions (k > 7).
The only aircraft aerodynamic forces included in the high frequency respon-e

are the damping coefficients of the elastic modes (see section 4.2.7).

Only the harmonics of N/rev are excited in the nonrotating frame. The
aircraft response to each of the two rotors is evaluated separately. For the
response to the rotor {1 hub reactions, the harmonics at n = Nl’ 2Nl, 3N1’
etc., are required. The time scale of the aircraft equations is the rotational
speed of rotor #l, so the harmonics of motion due to rotor #2 are at
n= (QZ/Ql)nz. For the response to rotor #2 hub reactions the harmonics at
n = (Qz/Ql)Nz, (92/91)2N2, (92/91)3N2, etc., are required. The equations of
the airframe motion are not solved here for the static response (n = 0). The
hub reactions of rotor #2 are evaluated as a function of its azimuth angle,
wz; to obtain the response of the airframe these hub reactions must be used

at ¢ = wz - szl.

The hub reactions are evaluated at azimuth stations wj as the rotor

equations are being solved. Then the airframe wvibration motion is obtained

from
S0 = W fe f = wl ot
for 1©n & nonzero multiple of N where L
= KoM
F« £ ¢ “t a

= éz\ .a )

are the harmonics of the rotor hub reaction. The motion ¢<ﬁ) is evaiuated
for excitation from rotor #1 and for excitation from rotor #2. For rotor #2

the harmonics must be multiplied by

AW,
A
e
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since for the airframe motion at ', the hub reactions at ¢ + Aw21 are
required (only if Q = QZ).

5.1.9 Transmission and engine equations.- The differential equations of

motion for the rotor and engine speed perturbations are given in section 4.3.2.

The equations for the n-th harmonics are

xx\« kPC. _— Q:;~

Sypey
W

with the forcing function and transfer function matrix as follows.

F = &, (X %\‘ + &, (?f:c.‘%\z

with ~ b
1 =%
[ C‘bl Csz = K'.\I' -g z
o o
° o
© o
L o o

with
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The torque EQ is defired in section 5.1.7. 1In summing over all N blades,

all the harmonics of the torque cancel except those at N/rev. Hence the

drive train equations aze only solved for the =n = N, 2N, 3N, etc., harmonics.

The rotor torque (Y 5Q/oa) is evaluated at the azimuth stations wj

as the rotor equations are being solved., Then the transmission vibratory

motion 1s obtained from

[
W Caa

He < (Y =2,

&£
|

for n a nonzero multiple of N; where
—w;
- /‘

(3/:_?),\ 3_\(3’ -—3—-—

-

are the harmonics of the torque. For rotor #2 the harmonics are multiplied by

o AP,
e

The transmission motion is evaluated for excitation from rotor #1 and for

excitation from rotor #2.
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5.1.10 Static elastic deflection.- The equations of motion for the static

elastic deflection of the airframe and drive train are

¥ 3
Se
Mt- w: *'SL =, (Qy_\ oy 1 ca A [FK $a ]

e
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Ea

*
(from sections 4.2.4 and 4.3.2). Here Qk is the mean generalized force

due to the two rotors, and C,. 1is the mean rotor torque.

Q

Hence the solution for the static elastic airframe motion (k > 7) is

?0 Totor 52D
(c“bﬁ-«—hc ‘_—*Mlco,,_ [(’c" 5"‘*‘"*' + (D2

Sg'

S
c'aAa' 1..8 Se -]

(3

where ci is the k-th row of cT; and

% ..
G:) = Eé; ?Ei G; — 2M, A Cratc_

is the mean hub reaction including the rotor mass inertial reaction. The

static elastic drive train motion is
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and YCQ/oa is the mean torque.

5.1.11 Two--rotor aireraft.~ In the present model, the two rotors of a
helicopter can influence each other through excitation of vibratory airframe
motion. The analysis proceeds as follows (see fig. 27). The rocor analysis
calculates trez hub reactions of each of the two rotors. From these hub re-
actions, the aircraft equations of motion are solved for the harmcnics of the
airframe rigid body and elastic wmotion. Then the hub motion can be evaluated
at each rotor, due to the forces of each rotor. The motion at each hub due to
the two rotors is summed. Then the rotor . ,uations are solved for the rotor

mot.ion a.d for the hub zeactions again.

It is useful t. be able to suppress the feedback of the nonrotating frame
vibration to either or both rotors. The coupling can be suppressed by
omitting the summation of the two hub motion components at ome or both hubs
(the dotted line !n fi;. 27). The entire vibratory hub motion can be suppressed
by setting it to zero at one or both hubs (the static or low frequency hub
notion and the acceleriation due to gravity should be retained however).

Suppressiig the ertire vibratory hub motion is equivalent to dropping the
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aircraft degrees of freedom as far as the rotor analysis is concerned, hut it

still may be useful to evaluate the aircraft vibration due to the hub reactions.

It should also be possible in a similar fashion to suppress the hub motion

due to the static elastic deflection of the airframe and drive train.

The procedure described above is based on the assumption that the entire
system is periodic, which in fact iz true only if both rotors have the same
rotational speed (inﬂl = 1), When the two rotors do not turn at the same
speed, the motion in the nonrotating frame is not periodic even in steady
flight. The most important example is the single main-rotor and the tail-rotor
configuration. In order to analyze a periodic system still, it is necessary
to neglect the mutual interference of the two rotors. The analysis proceeds
as described above, except that the hub motion of one rotor due to the vibratory
airframe motion produced by the other rotor is always suppressed (the dotted
line in fig. 27). Effectively Lhe helicopter is then being analyzed as two
single rotor systems, except for the coupling through the aircraft "static"

motion (steady state of slowly varying, including the airframe static elastic
deflection).

5.1.12 (irculation convergence.- The blade motion will be calculated
for a given induced velocity distribution over the rotor disk, uniform or
nonuniform. When the converged solution for the blade moticn is obtained,
the rotor loading (CT or bound circulation) is re-evaluated. Then the induced
velocity estimate can be updated, and the blade mocion solution repeated.
This procedure continues until the root-mean-squared change in the bound

as

circulation from one iteration to the next is less than a specified tolerance
level:

=~ 2 2o \ 2
— 32; (AT ) < (= = )

where T is the maximum bound circulation and the summation is over the

azimuth. When uniform inflow is used, the criterion is
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To improve the convergence of the iterative calculation of the rotor

loading and wake induced velocity, a lag is introduced in the thrust coefficient
and used to calculate Ai:

Cy = §; S ST (:l-§5> C:.t.m_zb

where CTold is the thrust used to calculate Ri in the last jiteration, and

CTnew is the thrust calculated using that value of Ai. The factor f should
have a value equal to the thrust 1lift deficiency function

c = Ta d»

(see section 6.1.5). Similarly, for = ncnuniform inflow calculaiion a lag is

introduced in the blade bound circulation used to evaluate the induced velocity.
5.1.13 Caleulation procedure.- In summary, the calculation of the rotor
motion and airframe vibration proceeds as follows. The input quantities are
the linear and angular velocity perturbations of the rigid body motion; the
rotational speed perturbation; the collective and cyclic pitch control angles
of the two rotors; the aircraft aerodynamic control positions; and the gust
velocity components at the two rotors. The output quantities are the general-

ized forces due to the mean hub reactions of the two rotors; and the converged

solution for the blade motion and aircraft vibration.
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The outermost loop is an iteration on the rotor induced velocity and

bound circulation evaluation. The next loop is an iteration on the rotor and

aircraft motion calculation.

One cycle of the blade and aircraft motion calculation consists of the
following steps. First the transfer matrices HZ} are evaluated. Then there
are a number of cycles of successivce evaluation of the rotor and airframe
motion by the following procedure. First the hub motion harmonics are evalu-
ated. Next there is an azimuth loop for the rotor. At each azimuth step the
rotor blade motion harmonics and the aerodynamic hub reactions are updated.
Next the total hub rr~actions are evaluated; the aircraft vibration and drive

train vibration harmonics are updated from the hub reactions; and the static

elastic deflection is evaluated.

Within the azimuth loop of tue rotor motion calculation there are the
following steps. First the hub motion and blade motion are evaluated from
the harmonics., Then there is an integration over the radial station. Within
the radial station loop the blade section pitch, velocity, angl>-of-attack,
and Mach number are evaluated; the lift, drag, and moment coefficients are
evaluated; and the section aerodynamic forces are evaluated. The generalized
aerodynamic forces of the blade modes are evaluated by integrating the section
forces over the blade radius, and then the blade motion harmonics are updated.

The aerodynamic hub forces and moments are also updated.

After each cycle of the blade motion calculation, the convergence is
tested by comparing the blade and airframe motion harmonics with the values

at the beginuing of the cycle.

Finally, after the converged blade motion is obtained, the induced
velocity and circulation convergence is tested by comparing the rotor bound

circulation with the values at the beginning of the iteration.

5.2 Rotor Performance, Loads, and Noise

Once the solution for the periodic motion of the helicopter has been
obtained, the performance, loads, and noise of the rotor can be evaluated.
The rotor loads of interest include the tension and shear f.rces, bending

moments, and torsion moment at various blade radial stations; the control
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loads; the blade root forces and moments; and the net votor hub reactions.

The rotor-induced vibration can be evaluated at various points in the aircraft.
From the rotor aerodynamic loading the rotational noise can be calculated. The
rotor loads at radial station r will be calculated by integrating the aero-

dynamic and inertial forces acting on the blade outboard of r.

5.2.1 Rotor performance.- To evaluate the rotor performance, the mean

rotor hub reactions are required:

<
(=¥ ] 5\»'{’) .;__.1. ~+ WW; 33_3 \
L
. St . J

% N - —uSWAr -+ S\nwb’_
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e
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where the summation operator averages the forces and moments over the azimuth.
These quantities are directly available from the rotor analysis (see section
5.1.7), where they are used also to calculate the generalized forces acting

on the aircraft.

The rotor performance is determined in particular by the thrust and torque.
The power delivered t.0 the rotor through the shaft is P = QQ. The propulsive
force is the component of the net rotor force in the direction of the aircraft

velocity:

e L TR —+pg T
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‘and then the rotor lift, normal to the airecraft velocity, is

A 3

L = J T2+ RT 4T —y?

So L and X are the wind axis ccmponents of the net aerodynemic force of the
rotor.

The hub reactions relative to the tip-path plane are obtained by multiply-
ing the force vector by the rotation matrix

| o <3c

R?S = °© ! Gs

where Sc and BS are the tip-path plane tilt angles. Also of interest are
the magnitude of the net force of the rotor, and its tilt angles relative to
the reference plane: @ = tan“1 (H/T) and ¢ = tan_l(Y/T).

It is useful to split the rotor power according to the type of energy

loss. The induced, interference, profile, parasite, and climb power losses
are obtained as follows.

p, = S\L-\C-r = S\Lv"a(g%)wl_r"
o = S‘xvﬁt dCr = _5 At oo (E;% })QL¢,
3
<p = \ICW/SA(SL&B
o +To. = ~VX/3A(REY = ~ O QW/SRD
= S F Sy A e
e = <T<:4’P -+ CLPQT> —~— <:4Q;
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o, + S+ ux = <p — (S 4 Cp D

< p, = <'CLP° + Cp, + <:9.L4:> — b, — NS e

The induced and interference power losses are obtained by integrating the in-
flow velocities over the rotor disk.

The ideal power loss, consisting of the par site, climb, and minimum
induced losses, is defined ac follows:

m—

Thpe) = Chbaad +r3) S — 0 &y ”+/"3<Y

where CT'

\ht,&-..-& 2fﬂ:+ﬂ'; -{-()\;w_*_/“!*)l.

Then the nonideal power loss, consisting of the profile and excess induced
losses, is defined as

= C(Cpy 4+ Cp, + C;Q,;up~> — Ndead <

A measure of the rotor efficiency is the figure of merit, defined for hover as
3/ 2
<y /‘12.

M =

This will be geuneralized for axial and forward flight to
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The ratios CPi/CT and CPint/CT may be considered equivalent induced velocities.

A measure of the excess induced losses is the ratio

e
M daal T

K =

and the profile losses can be expressed in terms of an equivalent section drag
coefficient:

<p.
LU, = 3 =
— <,

G = 2 =

In forward flight, the rotor drag is defined by

P., -+ i"‘ ‘\3{
be = £ A% = + Vo
AY) \/

or in terms of an equivalent drag area £ = Dr/%pvz. A measure of the rotor

efficiency in forward flight is the rotor 1lift to drag ratio, L/Dr' Similarly
the total drag is defined as

s

s

bhﬂ-_& - VY

and the total 1lift to drag ratio is L/Dtotal'
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The section power loading can be split into components in a similar
fashion:

el — e %_
-
AC_P./f — \AL %
aQr
<
ATy, fo — u.‘%_! +—uggg—° = %u(\fc‘.,.uqunﬁb%w
NPy

5.2.2 Seection force.- The total tension and shear fecrces on the blade

- § - A
section at radial station r are F(r) = FA - FI’ where

v

{
‘..1:.; Sréw‘é'%
—

- . ~ D
g = S CHT +Tc3s + Fo K )iy

.

!

(see section 2.2.10; here E? includes the gravitational acceleration).

Hence
Y
— __E____
F;*,,‘- = :xa,si?,'ﬁi

oy (Et+ FRo 2RO

-

\ v !
= v (B T 20y - LGy
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Substituting for a from section 2.2.4, the inertial term becomes
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The components of the tension and shear forces in the local blade axes are

~
F

obtained by multiplying shear

by the rotation matrix Rxs:
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4
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The force is multiplied by RB to obtain the components in the section

principal axes, where

cos D =] — SO
EB = ° ! °
S d O cas®d

The integrals of the aerodynamic forces will be evaluated as follows:

' Cx A4 TS - G+ 3aq
G, oy = 5

¢ iy E’“" Sr;—%b\‘: SA‘S
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where I is the maximum index (over 1 = 1 to M) such that
- = - 2 M = =
Ty %Ar1<r (I =11if r %Arl_r), and hi Ari for 1 = I + 1 to M,

except

. X
X M) Ty ~ AL < ¢
,Q, = ('l 3 > A(‘l L \-k x 2 x.

The inertia constants are evaluated by trar :--s;ldal integration over the blade

properties defined at r = (j - 1) Ar (§j ~ 1L to M + 1, o = 1/M):

Se5QY = STHPY + TG 4N

~ < CFy =2 E [Cc:-r\(r-f-msr-—f;\_‘_ an
- =S TFar *rx 2 ac 2
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i
M
XN
~
e
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5

where I dis the index (i = 2 to M + 1) such that rI-l Src< rI; and

L hi = Ar, except
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with I as defined above; and hi = Ar, except

L. =
= 2he
AF Cexm gt (c '~‘":.i'ﬁ’:.)
hpao = F 2ac
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5.2.3 Rection bending moment.- The bending moment on the blade section

at radial station r 1ig
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(D) - cAse e § .
where M ==bg{1?+-Mzk = (iixs + kkxs)M. As in section 2.2.7, the aero-

dynamic and inertial moments are as follows.
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Substituting for the acceleration from section 2.2.4, the ::ertial moment

becomes:

-270-




“ | -2
M:r. = .,Zﬂ” \((K"r\\(\zw\%
+ &5 (e [3(‘—(" = V) —‘Yﬂ‘ﬂe\ﬁ: (R~] ~3

+ 24| Gmmsad Se (I (FrRdmx
+ §:- [ (2% —%oF —¥2%)

—GaR-x3Y ), ] Kefimy
—F, (;1"-1’; T I Q‘ (R-Hmig
% (9 m-biﬁisggg (-
+F (L GRoxd v ) {3 ¢ (%_,\Még*
i ._vf.,’(g-aw} ;S
+((fe + 8% + ¥ Be) (, (4- - g
+ (84~ 0+ T{) Ty S (g-a {%cvgéﬂ\

4 (. .,L..
TR OT 98(1‘-;(, h,y.. \'[)\\\MR

+Z&Ps § (‘S"""\ [3(3&;514 YA
— (xga Cea &;Agjt‘ J W\A_S

NEET RN R
+ % v (xR -x )

—g (=t ~%JL ' }NA’S

F T N

-271-




2R SR 3N
—ZP S {T?auft (JSwB +yiu*xﬂ
+3 Pk (Yi-X Q} R
+ [T R =T (omy S D] (L (-

+ [ e (( Sy -s-Za(,‘J\&m‘{k-(o(j Zoo,\w"’>
+ By ] gc ‘%”3”\“%

(l
+ (g__ o) ,’:tc (“FA." Sﬂz)s +-‘\Lg (xxuse - %~ rFAS'FA;\j"‘LS

— Se gt
TN
M:g S > -

,‘_(-3:2".,?5:)('&‘ (EG")-(S(,)-PTZQ";“’S\ |
+"—tz\:§—€k (%G"' c,—i-Z(.Qc,)
+2’£\".~z> *

-272-




+ (S: = “Mf>('£’s%g, --ﬁg (

+ (=~ S (s, +2a, Yo
-(-i‘w.j-2&,) et P Wﬂig&e

>*
+ IV\\.AO

The components of the bending moment in the principal axes of the section are
then obtained by

My " cos® — S ® :] <:pqx
Mq > - [,$~‘<D A A\z

W\,/

The integrals are evaluated as described in section 5.2.2.

5.2.4 Section torsion moment.- The torsion moment on the blade section
at radial ctation 1 is

/&ﬂﬁk = _1!12_ — D] f!{Sﬁ — AAWEL
Yoo :x1a'gz} ac {5;;:
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W= T+ (Xo.’x. + zok)') * M. As in section 2.2.8, the aero-

dynamic and inertial moments are as follows.
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Then substituting for the acceleration from section 2.7.4 gives for the

inertial term:
. \
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The integrals are evaluated as described in section 5.2.2.
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5.2.5 Control load.- The control load at the blade root is given by the
moment about the feathering axis:
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where MFA = éFA « M. From section 2.2.9, the equation of motion for rigid
pitch is
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The inertizl constants are defined in section 2.2.19.
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5.2.6 Root forces and moments.- Fcilowing section 2.2.18, the forces

and moments at the blade root are

-
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Substituting for the acceleration from section 2.2.4 gives the components of

the blade root force and momen’: in the rotating frame:
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The inertial constants are defined in section 2.2.19. Here the gravitational

forces is included in the linear acceleration terms, and the root reaction

forces due to the blade mass and weight are retained.

To be consistent with the Fourier analysis used in the equations of
motion, the aerodynamic forces must be operated on as follows. Let Fj be
the aerodynamic force evaluated at Y, = 38 (3 =1 to J, 4p = 20/J). The
function F is harmonically analyzedJas in section 2.1.4, and then the

function is re-evaluated (at wk = kAY) using those hairmonics:
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This operation is applied to the aerodynamic load used to evaluate the section

force, the section bending moment, the section torsion moment, the control

load, and the root forces and moments.

5.2.7 Hub reactions.- Following section 2.2.18, the total force and

moment acting on the rotor hub, resolved in the nonrotating frame {the S system)

are
-
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The hub reactions are obtained from the root forces and moments by resolving

the rotating compcnents into the nonrotating frame and summing over all the

blades:
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Applying the summation operator givis directly the hub reactions in the time

domain, over a period 2w7/N. Alternatively, the rotating frame forces and

moments can be harmonically analyzed, and then the harmonics of the rotor hub

reactions obtained from the harmonics of the root forces and moments, by

Chy
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Only harmonics at multiples of N/rev are transmitted by the hub to the non-

rotating frame.

It is useful however to evaluate all harmonics of the root

forces and moments in the nonrotating frame, according to the above relations,

since a real rotor will not accomplish this filtering exactly.

5.2.8 Vibration.- Following the evaluatior of the hub motion in the

section 4,2.2, the linear acceleration in the aircraft at an arbitrary point

-
r is

= E(-"‘:;)EQ‘ pa "'?I"'J é%su}

[ v¢
+ E@ORT ( F)
e

(inertial acceleration in the F cuvordinate frame). The harmonics of the

vibration are thus
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Dividing by the dimensionless acceleration due to gravity (g/QZR) gives the
vibration in g's.

5.2.9 Fatigue damage assessment.- The fatigue damage due to the blade
bending loads, torsion loads, and control loads is determined principally by
the mean and 1/2 peak-to-peak values. An improved estimate of the fatigue

damage can be obtained by using Miner's rule, with the method of reference 29
for counting the lecading cycles.

The counting method applied to periodic loading consists of the following
steps. First all the relative minima and maxima in one revolution are

identified. The absolute maximum and absolute minimum give one loading cycle:

Se = Jz'(f’m*MB-r T prades o — ke

The absolute maximum and absolute minimum are discarded then, leaving a set
of L peaks.

Consider the first group of K peaks (K = 3 or 4 usually, unless there
is a lot of high frequency variation in the loading). The 1/2 peak-to-peak
valuc within this subset of K peaks gives the amplitude of one loading cycle:

Si = E (Pras =~ Pucn ) = F ok —h—pank
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Consider the next group of K peaks, using the last peak of the previous

group as the first peak of this group, to identify the loading cy

cle amplitude
S

9° The counting procedure continues in this fashion, taking K peaks at a
time to identify loading cycles.

Each group uses K-1 new peaks to obtain one loading cycle, so in K-1
revolutions of L peaks each, L cycles will be identified.
each ioading cycle identified occurs

This means that
1/(K~1) times per revolution. For
periodic data, it is equivalent to consider the L groups of K peaks,

starting at each of the peaks in the set over one revolution.

Then for one revolution of the rotor, there has been identified the load-
ing cycle

Ss = %é Prate — e o ‘lelujk.,

occurring one time per rev; and the loading cycles

SE&& S 2= )V e L.
each occurring 1/(K-1l) times per rev.

Miner's rule for the damage fraction is

A = z-‘i‘ﬁ

where n is the number of appiied cycles at level S, and N is the allowable

number of cycles at level S. The S-N curve will be approximated by

C

N = g —m
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where SE is the endurance limit; and C and M are constants depending on
the material. Hence

M
SF = i T (S-S

C Sg

Using the loading cycles amplitude and frequency determined above, gives the
damage fraction

M
D = C'J;": [(S«-S;\) + “—(J:‘!

T

(S5 )

\

for one revolution,

The damage fraction is required for an analysis of an actual rotor design,

but for more general investigations a parameter emphasizing the applied load-
ing would be useful. Often in fact the loading will be below the endurance
limit of the specific design considered, but still an assessment of the in-
fluence of the loading waveform and amplitude on the relative fatigue damage
is required. Such an assessment can be obtained by considering the damage
fraction obtained from Miner's rule for small endurance limit. In that case,
the damage is proportional to

L
M M ‘ M
b= EwST = SO+ B

A more useful representative of the fatigue characteristic of the rotor load-
ing is
-

Sey = (™

which is the equivalent 1/2 peak-to-peak loading amplitude which would alone

give the same damage number as the actual loading.
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5.2.10 Rotational noise.- The rotational noise due to the blade aero-
dynamic loads and thickness will be calculated using the following equations
for the far field harmonics of the sound pressure disturbance. Consider a

rotor moving through the air with velocity components

Ny )\[5 )\!‘e\ = (M, M‘)) M3) <

Using a tip-path plane coordinate frame, these velocity components are

Ny = (»« — Beppd S2R
\’5 = (py + B Mz R

\)% = ,//AA% -"‘@c,/An*(SQ/A‘)SLK

An observer position relative to the hub, moving with the rotor, is defined
by the components X s Yoo and 2, (positive aft, to the right, and upward);
or in terms of a range So’ an elevation angle 60 (positive above the tip-

path plane), and an azimuth angle ¢o (defined as for the rotor azimuth):

xo Ss meo w\‘)g

I

®

\3 — Se WQQ S-'MVQ

2, = Se SO,

Write the blade section forces as
AP = Corpp Ae |

P x Faver R ()
Abe F%,,p Qe (O

I
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where FzTPP’ FxTPP’ and FrTPP are the section aevodynamic forces; and 22,

lx, and Qr are chordwide loading distribution functions. The section forces

relative to the tip-path plane are obtained from the forces relative fo the
shaft axes as follows:

E‘l_wr = Fz - IF: ((S.-,cos"\’-i- Bs GM'“P\ +E‘ ((SS ws‘i’.-ﬁcq;.‘?)
F,m = b — & (peeesy—Qe SvaP )

f = T o Cp (Becos® G5 b D

™

This lcading can be written as Fourier series:

: iwS2t
Gii = 4éf? ;§E~\ <(:3 e

Fer = & Fa (O &

“= - bdo
, WSt
F = g Fﬁl\ (C‘X e
Crep N -

The blade thickness distribution is written as

£ = A a0

where A.xs is the section area, and a(x) is a chordwise distribution func-
tion. The velocity normal to the section, VT = Qr + szin fit, can also be
expanded as a Fouriler series
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i
V_‘_ = .S?.(' E: V“(“B e

n= -\

\\\Szft'

1 = = - =
where ,o 1, Vl (Vy iVx)/(ZQr), and V_l (Vy + iVx)/(ZQr).

The sound pressure at the observor has a periodic component, which is
the rotor rotational noise:

- St

for t =0 to 2n/NQ. Then the harmonics of the far field rotational noise due

to the rotor blade 1lift, drag, and thickness are:

A Swte Sz L= (e~ T
= - — 2
PM Aray (1= Mease )T e

nw==}

(1- -:--v':'k)5 i: Axﬁ “nu-m\lx:xmn.“ Af]

iwAhJFSZ.ﬁkdar e
Awegr (\=Meos§¢)

po (=D (R-T)
s (¢ S

wr—bo

s Fa oo A |

S

-288-

B P e it




—

Lem N E — N.Q.W; /cs bo ._i,(mN»vs\(H_- E)
+ e b2 {: 3
Avvog (1~Meos S VX - b
R -
=2 § R 222 Tugoon W |
_ wNES ewdr - R/ = [.Cz(m-w) % -X)
A cg G (1=Meeg §HT ws~do

TN R T

where the argument of the Bessel function JmN—n is
wa b S2c cs O¢
‘ < | — Meos §
N)c- = LRM
Ko =-— M*q
v =

-‘;;' (So — My xO""Mt)"y +M3'Za>

Y (E+we + 22 Y+ (Mx¥.-M3~y -/‘\ﬁc}l

IA-N
It
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@z: |\ — /V\: -—M.;' ~M;

__C—Q‘ ‘Bc

L
| — M<eass b = §;¢> J[(’au-.hﬂ’ld:~)z."* (‘3"‘F'ﬁ4fy$3\st

O:<I~Mr-o$§r31—':l S: /0.?

o3 (1 =Moot &) = Se

S~ O¢ s +Mz¢‘°
s (1 —Moos S D — $7'
[+

The sound pressure harmonics can be presented in dB:

21w\

YA

for a single sided spectrum (Pref =

.00002 N/mz). The overall sound pressure
level is

PMS e Z \Pmlz

1
OsfL = I© &“%(FA%S = ‘ng)mgn (sf;_k

The time history is also of interest for rotational noise.

The chordwise distribution functions for 1ift and thickness give
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R

A, = S“’ 2 Q,'h';w‘/r Qx

Xge,
—iwx/c

Gw = S\‘" aly) e d v

Y oe,

A simple and generally conservative approximation is impulsive 1lift and thick-
ness, for which ln =a = 1. Thin airfoil type loading

,ﬂ (*:5 = ‘JE:_ - ;

T Ty
gives

..__.'w\:‘;?-" ne R
Jn = € [=(Z)++ T (&)

where X is the midchord distance from the spanwise axis of the blade. For

NACA 4~ and 5-digit airfoil series, A _ = .685Tc2 where 1 1is the thickness

xS
to chord ratio. For these airfolls
L] C
. ‘“ .‘- ‘ —-\“?}
—_nt \ & ":3% Co. é,;
oy = < .
where
tc

oc =} = 4.5 [.zm\l';" — 1Zbo} — .35l ?”'
<
42843 33 - .\ols‘{;‘]

A rectangular loading distribution gives

—_— it/ 2C Y
Ra = & can ™ 2

which might be appropriate for the drag.
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5.3 Steady State or Slowly Varying Aircraft Motion

The linearized equations of motion for the rotorcrazft rigid body degrees
of freedom are

de \*

-+ I * 2 =
[EQI*EQ— + 2T gl B;r + 2 X2 \ gz :] (i’:‘

- -
= St o+ Rt A+ Rt
covee 8| Corver py s
SR\ PR LGN
M7 () — M (TR (3
tF A
—
-
—— —4- 3 - "‘!"" Q o
R, T Y, TR

from section 4.2.4. Hire

7§T = first 3 elements of 6th row of ¢
b
f = first 3 elemerts of 6th column of el
with the matrices ¢ and cT defined in section 4,2, The terms involving

131 and I;Z account for the rotational moments of inertia of the two rotors.
The rotor mass is included in the aircraft gross weight and nomeuts of inertia.
Note that M#g = YZCW/oa. Hence if these equations are divided by 2y/a (rotor
#1 parameters), they will be in the form of rotor coefficient to solidity
ratio, with the components in the body axec (F system). When the rotor speed

perturbation is inciuded, the equations of motion become
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I r"'x‘ W -+ QM

—_— - -d
Cri-otiin |

- <{5 Ca . <-°°3ﬁb$z?j>‘ (
o ! N ::.,.R‘);
S

<[\ €\ ¢F
—+ | MF (VR (%F\ +M*3.t£ - G (;«;»

_rﬁ QR NPS -+ rEQt Bt. . o (K

(see section 4.3,2).

-

‘Hﬂ:vv\

The inertia matrix is as follows: -
T °* * 3
Rc. gb o 2:'.%\ ga
T
o 5% SZ(
+2‘I.| g u -+ 2 z _11’ gl
- :g; \! __\?
4-cszo1_yfi!) ¥2\2
o M* o
* ar *
o 25‘ O _
-+ (Nx:.,.&?)z I;u;-r;.
(wx, SV,

-293-




*
where IR includes the rotational momerts of inertia of the two rotors:

Cxy
. Cz \2
".'I.g*: 3—1\. (g 3¢ + Tay + (rz,,\ 3"«5:.3
e (o, S v
= cé’ :cg" -+ o=, 1+ = * Teq

(N:;, Y)Y,

The solution for the generalized forces due to the airframe aerodynamics is

described in section 4.2.6. The solution for the generalized forces due to
the two rotors is described in section 4.2.5.

In the trim analysis, these equations are solved for the case of steady

state flight. The controls are adjusted until the desired operating condition
is achieved.

In the transient analysis, these equations are numerically integrated in

time. A non-equilibrium flight path is produced by a prescribed control or
gust input.

In the flight dynamics analysis, the stability derivatives in a linear
expansion of the rotor and airframe aerodynamic generalized forces ars obtained

by prescribed perturbations of the body motion and controls.

5.3.1 DTrim analysis.- The helicopter trim calculation determines the
control positions and aircraft orientation for the specified flight condition.
For steady state flight the perturbation rigid body motion is zere, so th

, he

net force and mom.nt on the alrcraft must be zero. Thus the rigid body
equations of motion give six equations to be solved for the six trim variables,
consisting of the four pilot's controls (60, 6c’ 63, and Gp) and the two trim
Euler angles (eFT and ¢FT). The controls are adjusted until equilibrium
flight is achieved for the specified flight condition. For level flight

(eFP = 0) or a specified climb velocity, it is assumed that the engine can
supply whatever power is required to maintain the rotor rotational sreed.
Alternatively, the aircraft power available can be spacified (such as for
power-off descent). Then there is an additional trim variable (the flight

path angle eFP) and an additional equation to be solved (the power required
equals the power available).
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The helicopter can also be trimmed in a steady turn by prescribing the

turn rate @F. A coordinated turn is obtained if zero sideslip (wFP = 0) is

specified. In forward flight t'.» resultant bank angle should be

T tbey = Jwror = eV

where n 1is the normal load factor.

Hence the trim analysis solves the equations of motion for a specified
steady flight speed and rotor speed (and possible a specified turn rate).

Setting the perturbation rigid body motion and rotational speed to zero gives
the following equations:

2 ( Besrax + Bomaat + Rooema? Y=o
23 foAuc k) Codar 3 2

T ke + 3 (VoRke e

a =D - -~

toter ) eYSr R &:cuu; > =0
(99.) L (s, &3 . (3
o = (§nzy ST, o e Ry T pm:
owa i Lo\

The contributions ‘to the force and moment sre from the hub reactions of the

two rotors, the airframe aerodynamics, the acceleration due to the turn rate,
and the ajrcraft weight.

The pilot's controls are collective stick 60, lateral cyclic stick Gc,
longitudinal cyclic stick Gs, pedal Gp, and throttle Gt. The controls

of the two rotors and aircraft are related to the pilot's contrcls by

L i et T SIS AR T T

e -
M T e s e 57 Ao St
- o oo et re——




e

V¥ o= Vere % * Ve

g}
vhere v, is the control input with all sticks centered (see section 4.1.6).

The throttle control variables (Gt and et) are not used for the trim analysis.

For some rotorcraft configurations the pilot's collective stick (60) does
not control the rotor collective pitch, rotor trim being handled bv a rotor
speed governor using collective pitch feedback. 1In such a case the static
component of the blade pitch governor, (Aegovr)static for either or both
rotors, can be used as the trim variavle in place of 60. Hence A9 is

added to the rotor collective pitch 675 obtained from ¥ and'gg. son

‘ The table below summarizes the options considered for the trim analysis.
For each case there are a number of trim variables, which are adjusted to
achieve the target values of an equal number of trimmed quantities. 1In the
free flight cases, the helicopter is trimmed to force and moment equilibrium.
In the wind tunnel cases rotor ¥1 is trimmed to a prescribed operating condi-
tion. The trim option and the degrees of freedom representing the aircraft
can be specified independently; hence it is possible to use a free flight trim
option with an analysis of a helicopter in a wind tumnel. The options called
wind tunnel cases are however more typical of wind tunnel test configuratioms,
particularly with only one rotor rather than the complete aircraft. The trim
variables consist of the four pilot's controls, aircraft orientation parameters,
and wind tunnel orientation parameters. The aircraft orientation parameters
censist of the trim Euler angles, flight path angles, and turn rate; they are
used only for the free flight cases. The wind tunnel orientation parameters
consist of the test module yaw and pitch angles.

The free flight cases include the following options. In the level flight
case the pilots controls and the aircraft Euler angles are used to trim the
six components of the net force and moment on the aircraft to zero. 1In the
climb or descent case, the flight path angle is used in addition to trim the
power required to a specified value, (In vertical flight eF = +90° however,

P v
so the parameter which would have to be varied to achieve the specified power :
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Helicopter Trim Options

trim variables

bo & & Bp By Wop 8 ¥r 8
Free Flight Cases
No trim y/ z
L Y 3
F, M T T T T T T
-l -l
F, M T T T T T T
-h
F, M, cP/v- T T T T T T T
b  ad
Fy ¥, /e T T T T T T T
Fer Fpu M T T T
Fyr Fyr Moy Cpfer T T T T vy

Wind Tunnel Cases
No trim 2 2 2 z2 9

CT/" T
CT/b- T
CPﬁr T
(sc' GE

CT/b-’ @%’ gs

C /o Cy/o, Cy/o
Cfa, Cy /o, Cyfe~

Lo T B o B
H 3 3 3 43
~3

T
C/mr Gl B B, T T
O T
CT/'-’ BE T T
Cr /o=y Cyfam T T
cL/.~ , cx/a- T T
C /e O/, @, T T Y Y v v oy iy '

T = trim variable
Z2 = gzero

aircraft velocity and rotor .
rotational speed fixed -

Lo .

X -297- ;




requirements is the helicopter vertical speed.) Optionally the sideslip angle
wFP can replace the roll angle ¢FT as a trim variable. A useful alternative
is to trim the longitudinal variables only. The net vertical and horizontal
forces and pitch moment are trimmed to zero using collective and longitudinal
cyclic stick controls and aircraft pitch attitude. This longitudinal trim is
exact for the case of a laterally symmetric aircraft in a symmetric £light
condition. It is also a useful approximation which may converge better than

a full six degree of freedom trim analysis; and when neglecting the tail rotor
in the analysis.

The wind tunnel cases include the following options. The rotor thrust or
power can be trimmed with collective pitch. The rotor tip-path plane tilt can
be trimmed with lateral and longitudinal cyclic pitch. The tip-path plane is
defined as the first harmonics of the tip deflection ztip:

e = fo + & ‘7—)8'7\1(‘3

The rotor 1lift and drag (in wind axes) and the side force can be trimmed using
collective and cyclic control. Either the drag coefficient to solidity ratio
Cx/o can be specified, or the equivalent drag area X/q (so Cx/o = (X/q)%
(V/QR)Z/Ab). As an alternative, the shaft angle of attack can be used in
place of longitudinal cyclic or collective pitch as a control variable., It is
also possible to trim only the longitudinal varicbles.

The trim iteration can also be omitted. In this case the helicopter or

rotor performance is evaluated for a specified control setting.

In the free flight cases, the criterion for convergence of the trim
iteration is that the net force and moment be less than 2 certain tolerance

level as specified by the parameter ¢€:

d
[CoRiD? + (Coy I +(CeyleY ]2
Sl

<€
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My (o = M c-z Ma /o~ Zz
[ Comnted® +(c 3o+ (Cmg/e)? ] <

OB Cw/q"

<

and

| cpfe — (P Danrg | < €

WA <'<?:*/°:>ﬁ1\Aag5¥' ) - o5l .j>

when the power is trimmed as well. For the wind tunnel cases, the following
criterion is used:

VS — Svanger |

< €
N TR e

= / =
vhere f = C/o, CP/o, CL/o, Cx/o, or CY/o as appropriate (with £ in .01,

.001, .01, .001, or .00l respectively). The criterion for the flapping is
| e — (GCB?wuvx l < €
s — ((3534».\.‘,4 } < ¢

(with Bc and BS in radians).

The trim problem is to find the values of the control variables (%D such
that the target values of certain trim quantities db are achileved. The
complex, nonlinear equations involved requive an iterative solution preocedure.
A first order expansion of ﬂ(x‘r‘) gives

o S Mgy
Mingr = M = M, + 35 (Vo ")
or
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Vo = VY -+ t:> | <'IV\#q4uS¢x - 7;:,z\j>‘::

The partial derivative matrix required is

E-Lu g [ M 3 [ RO - ]

=39 av: Avg

The factor F 2 1 is included to avoid overshoot oscillations in the trim
iteration by reducing the step size.

- -
The matrix D 1 is constructed as follows. First Mold is calculated
using the initial values of 7. Then each control vy is decreased by the

——l
increment Avi, and Mnew is calculated; then the i-th column of D 1is
given by

-J X
(: M e ’:73ch2;;i> //'45~Vi

nd th 0

and the control is restored Lo its initvial value. Finally the matrix D is
inverted, and all elements multiplied by the factor F. The partial derivative
matrix can be recalculated occasionally as the iteration proceeds, to improve

the coavergence. Generally a step size of about A = 1 degree is satisfactory
for all control variables.

5.3.2 ZTrangient analysis.- The helicopter transient analysis involves
numerically integrating the equations of motion for the rigid body and rotor
speed degrees of freedom. A non-equilibrium flight path is produced by a
prescribed control or gust input as a function of time. The assumptions of
this analysis are that the aircraft motion is slow compared to the rotor

speed, and that cthe perturbed rigid body motion is small. The assumption of
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quasistatic body motion allows the periodic rotor motion solutior to be used

with the transient analysis. The small motion assumption arises because it
was assumed that the perturbation rotor hub motion is small; it is consistent

therefore to integrate the linearized equations for the rigid body motion.

The degrees of freedom considered are the six linear and angular rigid

body motions (xF, Yps Zpo ¢F’ OF, wF) and the rotor speed perturbation (@s).
The input parameters are the.aircraft controls (60, Gc, Gs’ 6p, 6t) and aero-
dynamic gusts. Optionally any of these degrees of freedom can be held constant.
The transient analysis with all seven degrees of freedom fixed produces the

rotor response to control and gust inputs. The equations to be integrated are:

‘bF ** ASV&MQAJ
oF
—_— P J
| We - 4£S€DJgor=A._

Xe

v Ca ('“714-31}')1 <@
%‘F —_— A(‘ —~a ) —_— (sz§‘>| A(G 0"&31
Yo :

o |

4 (. /4»-\ _ $e
MV Dkek& G <$};

. ¥
7T VR ; O O }

\

i
where AQ is the rotor and aerodynamic generalized force, less the trim
value; and ACQ is the rotor torque, less the trim value, The initial

conditions are zero (except for &F when the helicopter is trimmed in a

steady turn).

-301~

e e e e et reEm A e VT e



The transient rotor speed perturbacions will produce throttle and rotor

collective pitch increments due to the governor:

A0y = - Re 't —¥xo W

and

(AES,N( rade, CL\eaovr PR KPH.JS + kY

for rotor ##1 and rotor #2. The rotor azimuth perturbation Yo will also

produce cyclic pitch increments due to the trim swash-plate tilt:
ASc LS FY
= g .
Aals - ©c Trvana

For rotor #2 these cyclic pitch increments must be multiplied by 92/91. An
autopilot is also included, since the transient rigid body motions can be
divergent in some flight conditions:

Ah, = K¢ ( eS¢ ~+ Op)

Hence the pilot's control positions consist of the trim setting, the transient

term, and the autopilot term; and the individual control positions are obtained

from

S = < -2 3 A
vV = lcpe (VP.‘-‘-.'.._" Phemsoint ¥ Vlaumght ) H W

-
with the governor contributions added to the elements of v as required.
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The transient calculation begins with the trim solution, at time t = 0.

The pilot's controls or gust input are specified as a function of t. The

equations of motion above are in the form

L3

N %('k>\3)\\3>

A fourth order Runge-Kutta method will be used to numerically integrate these

equations from time t_ to time t = t_+ h:
n n+1l n

K, =< ‘%(*?n > vy %?“‘> . ] .

Ko fg(t“-o-%),)‘gv\-* %%ﬂ*%k\)%*zk13

k3 = §(‘t.»,+“£2.> e -&&_%n-l—gk. )‘.‘x\“"‘—},\lz\

Ky, = §(tw+Ay \3.,-0'&-‘%.\4-25&3 5 g+ kg)

4
bv‘l-’-\ = ‘3"‘"”?‘%"\ -+ % (k|+kz+ k33 o D(/?/sgB
%n"'l = %‘A -+ %; (k| + Zkg-’- ZK3 + k‘*)

Note that it is necessary to solve for the periodic rotor motion four times

per integration step.

5.3.3 Flight dynamics analysis.- The flight dynamics analysis here con-
sists of a calculation of the helicopter stability derivatives and an analysis
of the resulting linear differential equations. As for the transient analysis
it is assumed that the body motion will be slow (compared to the rotor rota-
tional speed), so the quasistatic rotor solution can be used. The assumption
that the perturbation bocy motion has small magnitude is here consistent with

the stability derjvative representation of the rotor.

The equations of motion are the same as considered for the transient
analysis (section 5.3.2). Here the rotor hub forces and the aircraft aero-
dynamic forces are expanded in terms of the stability derivatives., By making
succegsive perturbations to the inputs for the rotor and aircraft amalysis,

the generalized forcee can be expanded as follows:
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The coefficients of ihe matrices are the ailrcraft stability derivatives.

There are contribucions from each rotor, and from the wing/body, horizontal
tail, and vertical tail. The airframe terms include the effects of the rotor-
induced interference velocities. The result for AC, is similar (rotor

Q

contributions only). The gust velocity here is uniform throughout space.

The rotor speed governor, defined by the following control laws

A9 ¢ - tlpg, kPk '-'K::C_‘Pg

(AezovCB. = KP. ";’5 . KI' Y

(Ae?“’}z —_— K(’t \i"s + KI?_\P‘

will be directly included in the stability derivatives. It is also necessary

to account for the cyclic pitch perturbations due to the rotor azimuth

perturbation:
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For rotor #2 these cyclic pitch increments must be multiplied by 92/91.

The result is a set of linear differential equations of the form
A3 )
]

describing the flight dynamfcs of the aircraft. The state vector x consists
of the rigid body and rotor speed degrees of freedom:

o= [& o % % oy oz W)

The control and gust vectors are defined as follows
T

- N\ - N ~ ¢ r ¢ 1
v 4 eac é's}‘ﬁh‘, ﬂ'l (9, agg B.g)n#*z d& ee 6. &fa(._]

I
e
Lol

(
i
=3
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(the gust components are in wind axes). Optionally any of the degrees of
freedom can be omitted from the analysis. Using these equatioas the helicopter
flying qualities can be examined, in terms of the eigenvalues and eigenvectors.
The transfer function (pole-zero set or frequency response) or the transient
response to a prescribed control or gust input can also be obtained. The

transient response can be calculated by numerically integrating the equations

W -~

%= A AR S AL A+ A Beve A7 By

in a manner similar to the transient anulysis (see section 5.3.2). 1In this

case only a gust that is uniform throughout space can be considered.

The stability derivatives are obtained in body axes (the F system) rela-
tive to the aircraft center of gravity. There are contributions from each of
the rotors, and the aircraft aerodynamic components (wing/body, horizontal

tail, and vertical tail). The following notation is used for the stability
derivatives.

Equation Notation Variable Subscript

* .

roll moment IxL ¢F P
* .

pitch moment IyM = q
* .

yaw moment IzN wF r

longitudinal force M*X iF u

lateral force MxY iF v

vertical force M*Z éF w
I* .

torque RQ ws Q

The aircraft inertias are introduced so that the coefficient of the highest
time derivative in an equation is unity. The derivatives are defined with

positive signs on the right-hand side of the equation of motion.
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Application of tuls procedure to the wind tunnel case will give the wind

or shaft axis derivatives of a single rotor alone.

5.3.4 Transient gust and control.- Transient gust and control inputs are
required when the equations of motion are integrated for the transient or
flight dynauics analysis. The pilot's control increment Ke; is required at
time t. A simple form is

-
where vpo is a constant vector and C 1is a scaler fuaction of time. More

generally, the control input can be a function of the aircraft motion as well,

The gust velocity §?= (uG Vo wG)T (in wind axes) is required at the

time t, at the location of both rotors and the airframe aerodynamic components.

Consider a convected gust field, defined by a function G(xg, yg, zg). The
gust coordinates have origin at the center of gravity when t = 0. The air-
craft velocity is Va, in the x (wind axis) direction. The gust field has
velocity Vg in the negative xg direction; the gust is coming from azimuth
angle wg relative to the aircraft (see fig. 28). Hence given the position
r (in wind axes), the location in the gust field is

;33 — ~—-¥.&yJY3 — :5c~$\ga -—-\\%. ih~5%a Yo /
) 2

The position vector for the wind/body is

—_
;e = EZ;?\, QELOG»
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— .
with TuB in the F frame, relative to the aircraft center of gravity; the

position vectors for the horizontal tail, vertical tail, and rotor hub are

obtained in a similar manner. The positions on the rotor disk are

2 = Fh (B + B (cos® By o comp ) )

(neglecting the tilt of the tip-path plane relative to the hub; the sign ot

the 3; component is changed .for a clockwise rotating rotor). A one-
dimensional convected gust field is defined by

--A ‘-A

35 = qsp <3r<:)K%\\

Note that the gust is convected at the rate V_ relative to the aircraft if

relative to the fixed frame if Va is

g = 0 the gust field is stationary (relative to the aircraft
or the earth if Va is not or is used).

Va is not used, and at a rate V
used. With V

Alternatively, a uniform gust field can be used, which is a function of
time only. A simple form is

—g}z 3. G (1)

where 84 is a constant vector and G 1s a scaler function of time.
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Figure 28, Convected gust description.
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5.3.5 Calculation procedure.- The soluticn for the rotorcraft aero-
dynamics and dynamice proceeds as follows. The job bezins with data input and
initial calculatlions, Next the trim solution is obtained. Then the aero-
elastic stability analysis, flight dynamics analysis, or transient analysis is

performed as required. An old job can be restarted in any of these four tasks
(trim, flutter, flight dynamics, or transient).

In the trim analysis the controls are iterated until the required operat-
ing state is achieved. Since the nonuniform inflow influence coefficients
depend on the rotor thrust (through the wake geometry) it is necessary to
iterate between the influence coefficient calculation and the trimmed motion
and forces calculation (unless the rotor thrust is specified as part of the
definition of the required operating state). The trim analysis is performed
first for uniform inflow, then for nonuniform inflow with a prescribed wake,
and finally for nonuniform inflow with a free wake geometry. After obtaining

the trim solution, the aircraft performance and loads can be calculated (this

is the trim restart entry point for an old job).

In the transient analysis, the rigid body equations of motion are numeri-
cally integrated. At each time step there is an iteration between the non-
uniform inflow influence coefficient calculation, and the calculation of the

rotor and airframe motion and forces.

In the flight dynamics analysis, the stability derivatives are calculated

and the matrices are constructed that describe the linear differential equa-
tions of motion, At each meoti

ch cn or comitrol incremeni in the stability deriva-
tive calculation there is an iteration between the influence coefficient
calculation and the calculation of the motion and forces. Finally the system
of linear differential equations 1is analyzed (optionally including a numerical

integration as for the transient analysis).

In the flutte:r analysis the matrices are constructed that describe the
linear differential equations of motion, and the constant coefficient or
periodic coefficient equations sre analyred. Optionally the equstions are
reduced to just the aircraft rigid body degrees of freedom by assuming quasi-
static response of the other degrees of freedom, and the equationu are
analyze as for the flight dynamics task.
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6. AEROELASTIC STABILITY

The objective of the aeroelastic analysis is to derive a set of linear
differential equations describing the perturbed motion of the helicopter from
the trim flight condition. The stability of the system is defined by the
eigenvalues of these equations.

6.1 Rotor Model

The differential equations cf motion for the rotor blade have been
deirved in section 2,2,18., Here it is necessary to linearize the inertial
and aerodynamic forces in these equations,

€.1.1 Rotor degrees of freedom.- The rotor blade motion is described by
coupled flap/lag bending, rigid pitch and elastic torsion, and optionally the
gimbal pitch and roll motion (or teeter motion for the two-bladed rotor case).
The blade degrees of freedom are written as the sum of trim terms and pertur-
bation terms. The trim solution is described in section 5.1; the perturbation
motions are the degrees of freedom for the aeroelastic analysis. In particu-
lar, the generalized coordinate of the i-th blade bending mode is written

Fv T Vi —+ O
or for the bending deflection

-

o =N\ VPSR
(B ~—RKok ) = (>

SO
. : Ce o

After substituting for dys the delta notation indicating the perturbed
motion can be omitted.

The rotor equations of motion have been obtained in the rotating frame,
with degrees of freedom describing the motion of each blade separately. In
fact, howaver, the rotor responds as a whole to excitation from the nonrotat-
ing frame ~- shaft motion, aercdynamic gusts, or control inputs. It is

desirable to work with degrees of freedom that reflect this behavior. Such a
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representation of the rotor motion simplifies both the analysis and the under-
standing of the behavior.

The appropriate trangformation to obtain the degrees of freedom and
equations of motion in the nonrotating frame is of the Fourier type. There
are many similarities between this coordirate change and Fourier series,
discrete Fourier transforms, and Fourler interpolation; the ccimon factor is
the periodic nature of the system. A Fourier series representation of the
blade motion is appropriate for dealing with the steady-state solution
(section 5.1.1). Here we are considering the general dynamic behavior,
including transient motions; hence the Fourier coordinate transformation is
required, This coordinate transformation has been widely used in the clas-
sical literature, although often with only a heuristic basis. For example,
it has been used in ground resonance analyses to represent. the rotor lag
motion (ref. 30) and in helicopter stability and control analyses for the
rotor flap motion (ref. 31). More recently, there have been applications of
the Fourler coordinate transformation with a sounder mathematical basis
(e.g., ref. 32).

Consider a rotor with N blades equally spaced around the azimuth, at
wm =y + mAy (where Ay = 27/N and the blade index m ranges from 1 to N).
Hence ¢ = At 41s the dimensionless time variable, Let q(m) be the degree
of freedom in the rotating frame for the m-th blade, m = 1 to N, The Fourier
coordinate transformation is a linear transform of the degrees of freedom

from the rotating to the nonrotating frame. Thus the following new degrees

of freedom are introduced:

,w
s
®
I
Z‘N
Mz
25
1)
b
S
$
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SN/Q. N :r =13

wa = |

Here Bo is a collective mode, BlC and 815 are cyclic modes, and BN/Z is
the reactionless mode. For example, for the rotor flap motion, 80 is the
coning legree of freedom, while 81C and BlS are the tip-path plane tilt

degrees of freedom, The inverse transformation is

() : S\
I = B> + s“‘:( @..c_casv"\)w -+ @v\s %‘“‘V\wv\-\> + 6@”3 D

which gives the motion of the individual blades again. The summation over
n goes from 1 to (N-1)/2 for N odd and from 1 to (N-2)/2 for N even.
The 8N/2 degree of freedom appears in the transformation only if N 1is

even, The corresponding transformation for the velocity and acceleration are

£ = br £ L mh )
~- <'@nn5 —-V\@%ac.f) 8”“”“*V§“ :] —+ @hohl (L‘VSVN

g ‘G‘c - g\:[ (gy\(, +2“(§V\S b Gv\:.}ws V’-Ww
- (s — Zr e = B S P T Bz D

Note that transformation to the nonrotating frame introduces Coriolis and
centrifugal terms.

The variables , and BN/Z are degrees of freedom, that is,

Bo’ 8nc’ an (m)
functions of time, just as the variables ¢ are. These degrees of free-

dom describe the rotor motion as a whole, in the nonrotating frame, while

q(m) describes the motion of an individual blade in the rotating frame. Thus

we have a linear, reversible transformation between the N degrees of free-
(m)

dom gq in the rotating frame (m = 1, ..., N) and the N degrees of

freedom (Bo’ Bnc’ an, BN/Z) in the nonrotating frame. Compare this
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coordinate transformation with a Fourier series representation of the steady-

\
state solution. In that case, q(m’ 1s a periodic function of wm, so the

motions of all the blades are identicial. It follows that the motion in the

rotating frame may be represented by a Fourier series, the coefficilents of

which are steady in time but infinite in number. Thus there are similarities

between the Fourier coordinate transformation and the Fourier series, but
they are by no means identical,

This coordinate transform must be accompanied by a conversion of the

A}
equations of motion for q(m’ from the rotating to the nonrotating frame.

This conversion is accomplished by operating on the equations of motion with
the following summation operations:

2
SEED FEC I R s g, Le e

The result is equations for the Bo, Bnc’ an, and BN/Z degrees of freedom,
respectively., Note that these are the same operations as are involved in

transforming the degrees of freedom from the rotating to the nonrotating
frame. Since the operators are linear, comstants may be factored out. Thus
with constant coefficients in the equations of motion, the operators act only
on the degrees of freedom, By making use of the definition of the degrees

of freedom in the nonrotating frame, and the corresronding results for the

time derivatives, the conversion of the equations of motion is then straight-
forward. Complexities arise when it is necessary to consider periodic ccef

ficients, such as due to the aerodynimics of the rotor in nonaxial flow.

The total force and moment on the hub have been obtained by summing the

contributions from the individual blades. The result iu operators exactly of

the form above, for obtaining the tetal hub reaction in the nonrotating frame
from the root reaction of the individual blades in the rotating frame, The
origin of the summation operation 1is clear, and the sinwm or coslpm factors
arise when the rotating forces are recolved into the nonrotating frame, In
fact, the equation conversion operators in general may be viewed as simply

resolving the moments on the individual biades into the nonrotating frame.
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The Fourler coordinate transformation is often associated in rotor
dynamics with the generalized Floquet analysis. The latter is a stability
analysis for linear differential equations with periodic coefficients.

Indeed, there is a fundamental link between these topics because both are
associated with the rotation of the system. They are, however, truly separate
subjects —- either can be required in the rotor analysis without the other.
For example, a rotor in axial flow on a flexible support (or with some other
relation to the nonrotating frame) requires the Fourier coordinate transforma-
tion to represent the blade motion, but is then a constant coefficient

system. Alternatively, for the shaft-fixed dynamics of a rotor in forward
flight, a single-blade representation in the rotating frame is appropriate,
but there are periodic coefficients due to the forward flight aerodynamics
which require the Floquet analysis to determine the system stability.

For the present investigation, the degrees of freedcm to be transformed
to the nonrotating frame are blade bending, blade pitch, and gimbal motion.
The nomenclature for the corresponding degrees of freedom in the rotating
and nonrotating frames are as follows:

rotating nonrotatlng
(> (IS N € B &P
bendng Fi Ge Bue Raus (3&1;
(o) G EROINEE
torsion e S, Ove Ons Ownp
gimbal Bs O Bec. PBas

The notation B(i) is used for the i-th bending mode in the nonrotating
frame., With the modes ordered according to frequency, B(l) is thus usually
the fundamental lag mode, and 8(2) the fundamental flap mode. Similerly,
e(i) is the i-th torsion mode, with 9(0) rigid pitch and the remaining
modes elastic torsion. The collective and cyclic modes (0, 1C, 1S) are
particularly important because of their fundamental role in the coupled

motion of the rotor and the nonrotating system. When the transformation of
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the equations and degrees of freedom is accomplished, for axial flow there

is a complete decoupling of the variables into the following sets:

(a) the collective and cyclic (0, 1C, 1S) rotor degrees of freedom
together with the gimbal tilt and rotor speed degrees of freedom

and the rotor shaft motiom

(b) the 2C, 2S5, ..., nc, ns, and /2 rotor degrees of freedom (as
present)

Thus the rotor motion in the first set is coupled with the fixed system,
vhile the second set consists of purely internal rotor motion. Nonaxial
flow couples  to some extent, all the rotor degrees of freedom and the fixed
system variables, primarily due to the aerodynamic terms; stil - 1bove

geparation of the degrees of freedom remains a dominant feature of the rotor

dynamic behavior.

For a two-bladed rotor, the blade bending degrees of freedom are coning
and teetering type modes:

2
&y

2

4. < )

i

i

N ;:=4 q(“~
2 )
t & ‘}( =Yy =

w =

The teataring

rotor (in place of the gimbal degrees of freedom). The teetering motion is
defined in the rotating frame, hence

e = @~ (-y"

The speclal characteristics of the two~bladed rotor dynamics are reflected
in the appearance of the teetering-type degrees of freedom (Bl, 61, and BT),
rather than the cyclic motions (1C and 1S) as for N > 3. The coning and
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teetering equations of motion are obtained by applying to the rotating frame
equations the following operators:

SE6GD T FTT oy

6.1.2 Rotor equations and hub reactions.- The equations of motion for
the coupled flap/lag bending and for elastic torsion/rigid pitch motion of
the blade in the rotating frame (section 2.2,18) are linearized for the

aeroelastic analysis. The result is:

% X .
9« (ﬂ-k" Bsqy.‘;; +°: '\*l) + 2 ?I?\ii i‘

- “
. b *
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M > " Yo ) “ .
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where

e

Pe e —+ VB¢ S S —+ A iﬁ:ﬁE

-— E:E(};qx; —-'\:thﬁ;q, -f-(}?,gaBSQﬂg -E%£S~n¥t:>k§;

The inertia constants are defined in section 6.1.3. Only linear lag damping

has been conaidered here, and for convenience the lag damper term is included

*
in the coefficient qu&i’ Introducing the Fourier coordinate transformation

for the blade degrees of freedom, the rotor hub forces and moments derived in
section 2.2,18 become:
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The equations of motion for gimbal tilt and roll, or for the teeter motion
of a two-bladed rotor, are obtained from

3 .
r{= ¥ s X - ~
n—“M‘& - ‘.:x::"cz,,c, Cac + Lo (Vc,c_ '3?6& =0
Z—CM'&

* .
—= + TSV Gos Res ¥ (3%, ~DRes =0

3

or

,__zc-—_—a-"‘-' + I3 Co 6—,.+:c,°(~7.1-|\§.,=
where

Cm A é- ~ oy

o= Z F.. & ==

= ¥ &\

— T (ot + 23y S ~ (3 —23) s W)
— Iu* (‘@'-r —+ @TS

[ (;\ ‘l\l
— 2 3:;".;,( 1\“ ((g' ‘*‘@s{ 3

S w () )
+ Espp (57 +90)

I (D)

- 2 'S%.-'I:;;“-bc 8,

(section 2,2,18),

Also, for a two-bladed rotor, the hub reactions take a
somewhat differeant form:

l (1]
¥ .y (2 - 2My R,

s 0y - (;) . ('l
+ Eg:'fg (Zsww (31.” +ies™ 8, -2£v-‘~9)§s)\
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The aerodynamic forces required are
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6.1.3 Inertial constants.- The inertial constants for these linearized
equations of motion are obtained from the constants defined in section
2.2.19 as follows:
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6.1.4 Aerodynanic forces.- The blade gection forces and pitrh moment as

derived in section 2.4.1 are:

e _ Sa <s \ <
&';:, - U(MT'&;-_M?&'B%
=, < <
_S_’_ﬁ_ = U\("‘Pu ‘ThT'—zZBQ.\
o o
A A QB.S_
L= U —
Mo — (—x, (<2 s . My &
anrv——, < —
- < <T A = 2 - onc S

Fach component of the velocity seen by the blade has a trim term and a small

perturbation term, so we write
& = & 4+ Se
Ur =y ur + Sur
“up  =h up + due
ue =  WR + Sug

It foll.wa that the perturbation of angle of attack, resultant velocity, and

Mach number are:

Sk = B —— (urSup —up Surd U

SW = (uxSur + g S )L
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and the perturbations of the aerodynamic coefficients are

Sk;! = i;j: Sot 1+ %;ﬁﬂ. M = <R, St + Cx,“ S4A«

with similar results for Cn and 4 The perturbations of the section aero-

dynamic forces may then be obtained by carrying out the differential operation

on the epxressions for Fz. Fx’ Fr’ and Ma, using the above results to express

the perturbations in terms of &6, GuT, GuP, and du The coefficients of

the perturbation quantities are evaluated at the trim state.
the perturbation forces are:

The results for
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The blade trim velocity components are defined ir section 2.4.,2. The
perturbation velozity components are due to the blade degrees of freedom, the

shaft motion, ard the aerodynamic gust velocity:
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The gust velocity components are here assumed to be uniform throughout space.
Perturbation inflow components Au’ Ax’ and Ay have beea included in GuP
(see section 6.1.3). Recall that the body Euler angle contributions are not
included in the evaluation of ax, ay, and az here. The perturbation quanti-

ties required for the unsteady pitch moment are
- I ’Q/
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(see section 2,4.8). The derivatives of the bladz section aerodynamic coeffi-
cients with respect to angle ¢f attack and Mach number are obtained from
steady, two-dimensional airfoil characteristics with corrections for tip flow,
yawed flow, and dynamic gtall effects, as described in sections 2.4.4 and
2.4.7,
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Combining the expansion for the section forces and moment in terms of
the velocity perturbations, and the velocity in terms of the motion of the
rotor and shaft, the perturbation aerodynamic blade forces expanded linearly
in the degrees of freedom are obtained. Giving names to the aerodynamic
coefficients at this point in the analysis, the results for the required
aerodynamic forces on the rotating blade are as follows. The aerodynamic
force for flap/lag bending is:
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The aerodynamic force for blade torsion and pitch is:
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Finally, the aerodynamic hub forces and moments are similar to the result

for the blade tending, but with the following changes in the integrands and

notation:

Integrand Coefficient Notation
Flap moment er M
Torque rFx Q
Blade drag force Fx H
Thrust F T




Combining the results for the expansion of the aerodynamic foices and the

expensions of the velocities, the aerodynamic coefficients can be evaluated.
The aerodynamic coefficients are constant for axial flow, but for nonaxial
flow they are periodic functions of ¢ . The voefficients for flap/lag bend-

m
ing arve:
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The aerodynamic coefficients for the flap moment are
i
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The aerodynamic coefficients for the other hub forces and moments follow the

pattern of Lhe fiap moment, with the following changes in the notation and
integrands:
Integrand Coefficient
Flap moment er M
Torque rFx Q
Blade drag force Fx H ;
;
Thrust F, T ;
g
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The radial force coefficients are
E(‘ = SQ F‘“‘r anl

E.
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and Frp and Fre are gimilarly defired. Finally, the aerodynamic coeffi-
cients for the blade pitch and torsion are
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6.1.5 Inflow dynamcs.- The aerodynamic forces on the rotor result in
wake-induced inflow velocities at the disk, for both the trim and transient
loadings. The wake-induced wvelosity perturbaticas can be a significant
factor in the rotor aeroelastic behavior; an extreme case is the influence
of the shed wake on rotur blade flutter. The rotor inflow dynanics should
therefore be included in the aeroelastic analysis. However, the relationszhip
between the inflow perturbations and the transient loading is likely mcre
complex even than for the steady problem (nonuniform wake-induced inflow
calculation), and models for the perturbation inflow dynamics are still under
development. I:. the present analysis, an elementary representation of the
inflow dynamics is used. The basic assumption is that the rotor total
forces vary slowly enough (compared tc the wake response) that the classical
actuator disk results are applicable to the perturbation as well as the trim
velocities.

A contribution to the velocity normal to the rotor disk of the follcwing

form has been included in GuP:

é}v\p = S + Dy ceas¥., 4 \arﬁw‘\{w

where Au is the inflow perturbation component uniform over the disk, wnile
the Ax and Ay components vary iinearly over the disk., The inflow dynamics
model must relate these inflow components to the transient aerodynamic
torces on the rotcr, specifically to the thrust, pitch moment, and roll

8y and .
Yy, z

(=
et

3

H

moment; and to the transient rotoxr velocity perturbaticns 6yx

Following reference 33 we use:

~ -~ N
N \ g—)‘:,. © o <
> — EYN PYY
o M 3R ° Sy
3 D, »
L iy DM c"'\*
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Here we have included linear velocity perturbations due to the thtrust, con-

sistent with the trim inflow model of section 2.4.3, which gives expressions
for the constants Kx and Ky. These relations for the inflow perturbations

inmply the following 1lift deficiency functioms:

™ |
\+ ca O\ for moments

C—‘-’-J‘ Vo M

- n——-'_" 1
B3N for thrust

|
f. forward flight

moments in hover

— thrust in hover
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(see ref. 33). A time lag in the inflow response to loading changes will
also be included:

- o
{ ’t'f\“ Xh C-‘r

9 e
U
rd
o5
0
3
%

M
\'cM

using T, = K, 8\/8T and Ty = Ky SA/8M, with the constants Ko = .85 and
Ky = .11 (refs. 34 to 36). These relations give a dimensional time lag of

T = ,22/2Q in hover, and in forward flight Ty = 42/uQ and Ty = .22/ 8.

The effect of the ground on the inflow dynamics is to add a perturbation
due to changes in the rotor height above the ground:

)
Sx—s-_'zgi

As for the trim inflow analysis, the result of reference 4 for the ratio of

the induced velocity in and out of ground effect is used:

l
I

——

— (=€ N2
= (55

Voo - |
v

which gives

BN Wi eoste

———

5z 323

Expressions for cose and z are derived in section 2.4.3. Since 6A/éz > 0,
ground effect introduces a positive spring to the rotorcraft flight dynamics.
A decrease in the rotor height above the ground produces a decrease in the

induced velocity, hence a rotor thrust increase that acts as a spring against
the vertical height change.

For the side-by-side hellcopter configuration, the antisymmetric dynamics
exhibit an unstable roll oscillation due to interaction of the rotor wake
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and ground. Such behavior can be inciuded in the ground effect model derived

here by using a negative value for &A/8z (a negative roll spring), which must
be obtained from experimental data. In this case the inflow perturbations
of the two rotors are related to the symmetric and antisymmetric height

perturbations:

a\ )Y
S)\‘ == ﬁs 5%; -+ 3'2‘- S%A

= (aes &A 2 $2, + -L(é\ Q;‘A\ 52,

— 33X b
é»‘2 T % g"‘Z‘S - wg%A é&;\
PN N 9N _ _.
- i- ((5_55 - 5«'&3 82, (ai‘s 3 S%z

where le and 6z2 are the height perturbations at the two rotor hubs. A

form applicable in general is

D)
:g\; = é'} S%. -+ 5‘:"2.1 S%z

32,
_ N R RN R.
SN, = 5%, B sz, -+ 32, Sz,

including the factor /R, since the hub motion is normalized using R,.
2 1

Finally, the rotor/rotor interference is included in the inflow dynamics
model, using the same interference factors K12 and K21 as for the trim

induced velocity model (see section 2.4.3).

In summary, the differential equations for the inflow perturbations

A and X are:
X y
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for rotor #1 and for rotor #2, The coupled equations for the uniform inflow

perturbations of the two rotors are:
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The velocity perturbations Gux, Guy, and Guz are required for

2Cy ple (3 2%rleaYrriv [ M
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In shaft axes, the shaft motion and gusts give

&/‘g

I

— ¥ + Wy
é/“‘a' = W v
Spe T T —we

The rotor height perturbation Gz is obtained from the vertical component

of the displacement at the rotor hub:

Se = e (w + g+ 2B
= "—‘ie : ( %: %v(?M\g\"*\

.

expressing the hub motion in terms of airframe degrees of freedom. For the

rigid body degrees of freedom the mode shapes are:

[-{: “‘?u } = [ Fandke = ]
(section 4.2.1). Hence
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Note that a spring is introduced into the 2p equation (if coseFTcos¢FT #0),

and also possibly into the Yp and Xp equations.

The time lag is often not an important factor, so a quasistatic model
for the inflow dynamics is generally sufficient. Dropping the time lag terms,
the equations for Au’ Ax’ and Ay reduce to linear algebraic equationms.

Hence in the quasistatic case the inflow perturbations do not increase the
order of the system. The wake influence reduces to an algebraic substitution
relation, which if incorporated analytically would lead to lift deficiency

functions; with large-order systems, it is more practical to accomplish the
substitution numerically,

6.1.6 Rotor equations of motion.- The linear differential equations of

motien for the rotor model can be constructed now. The equations of motion are

in the nonrotating frame, that is the Fourier coordinate transformation has
been applied to the bending and torsion degrees of freedom of the blade. For
now only a three-bladed rotor is considered; the equations are extended to an
arbitrary number of blades below. The equations of motion for the rotor, and
the hub reactions, take the following form:

Ad¥p + Ake + Axg +A % +A& == Bvy +Maase

. ®e - ® A2 e ~
F= Gy + G xg +C°Xg+czu+t.c'><+Fm
The coefficient matrices are constructed from the results of section 6.1.2.

Here the matrices only include the structural and inertisl terms; Maero and

Faero are the aerodynamic forces. The vectors of the yotor degrees of
freedom (xR), shaft motion (a), rotor blade pitch input (VR), aerodynamic

gust (gs, in shaft axes), and the hub forces and moments (F) are defined as:
(t\ (ES ﬂo \xx (xb i} -
W= [& 8 b oo & R Bes % . A4y ]
TR Caan COmn . o
Np = [eo O, ]

.2}5; = [:l4<5 Ve Wg f:lﬂT-
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2y x2Cr  2Cr  2Cm 2G 2@ 1
F=[5-- T= == ¥=2Z ¥ =
Note that in the rotor degrees of freedom Xpo the notation B(k) and e(k)
1s intended to cover as many bending and torsion modes as the analysis
requires. Also, the degrees of freedom used for the inflow dynamics model
are Au, Ax’ and Ay defined by A= (in order that the highest order

derivatives wil be K, in the acceleration matrix). The inertial matrices
are defined in section 6.4.1,

The aerodynamic terms Maero and Faero are required to complete the
differential equations of the rotor model. They are obtained by summing

over all N blades the aerodynamic forces in the rotating frame (section 6.1.4)
and introducing the Fourier coordinate transformation for the blade bending

and torsion degrees of freedom as required. The result for the required
aerodynamic forces is

. N A%
~Mase = A¥p + Ao ¥p +;\\& +he ot — gé}s

F —— ] ~r P a4
aao = kg +Go¥p &+ Cox +bﬁc§5

For the case of a rotor operating in axial flow (p = 0) the aerodynamic
coefficients for the blade forces in the rotating frame are constants,
independent of the blade azimuth angle wm. The coefficients are also then
entirely independent of the blade index (m); hence the summation over the
N blades operates only on the system degrees of freedom, not on the aero-~
dynamic coefficients themselves.(which factor out of the summation). The

resulting coefficient matrices, which are constant for axial flow, are
defined in section 6.4.2. '
}
For the case of a rotor operatine in nonaxial flow (p > 0) the aerodynﬁmic
coefficients of the rotating blade foi e¢s are periodic frnctions of ¢m

because of the periodically varying aerodynamics of the edgewise moving rotor.
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It follows that the rotor in nonaxial flight 1g described by a system of

differential equations with periodic coefficients. It is possible to express
the aerodynamic coefficient of the rotating blade forces as Fourier series,
and then to obtain the coefficients of the nonrotating equations in terms

of these harmonics. However, the simplest approach for numerical work with
large-order systems is to leave the coefficients of the nonrotating equations
in terms of the summation over the N hlades of the rotor. The summation

is easily performed numerically, and it is found that this form is alsc
appropriate for a constant coefficient approximation to the system. For
nonaxial flow, the coefficient matrices are periodic functions of the blade
azimuth angle wm = ¢ + mAY, AY = 2n/N. The period is A4p = (2/3)7 = 120°
for the N = 3 case considered here. The coefficient matrices for nonaxial
flow are defined in section 6.4.3.

The rotor equations as constructed here are not entirely complete.

First, the rotor aerodynamic thrust and hub moments:

RN X .
o a ES;;S:JQQF ("7hu-FUu;>
+ {3 (% +va) + ‘\k‘;: (Z—e) ]

}\ _ C'ESEZCZr"7QT)4-r¢u.

P

p)
DM T MRE + W/ Ry

have been put in place for the Au’ Ax, and Ay equations., Because of the
rotor/rotor interference and ground effect, it is appropriate to finish the

construction of these equations at a later stage (section 6.3.1).
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Secondly. we have substituted in the equation of motion for rigia pitch:

Pr = Sww — ?—khii —k"e@ﬁr +(e‘sw\)ﬂ_a\c§~\’AWb§

However, the rotor pitch control econ here still includes the governor and

mast bending tevms, as well as external control inputs.

Thirdly, the rotor torque YCQ/oa has been put in place as the equa-
tions of motion for the rotat .al sp.ud perturbation ws. The drive train
couples the rotational speed perturbations of the two rotors, so it is

necessary to construct these equations at a later gtage (section 6.3.1).

Consider now the case of a rotor with four or more blades. Each rotat-
ing degrees of freedom of the blade (bending or torsion motion) must result in
N degrees of freedom for the rotor as a whole. Thus increasing the number
of blades adds degrees of freedom and equations of motion to the rotor de-
scription. In axial flow these additional degrees of freedom do not couple
with the collective and cyclic degrees of freedom of the rotor. Hence the
equations given above remain valid for rotors with N > 3 also, and we need
be concerned here only with the equations of motion for the additional degrees
of freedom. These additional degrees of freedom are not coupled inertially
with the shaft or gimbal motion. The additional equations of motion for

bending and torsion of a rotor blade with four or more blades are then:

Azde + Ay 4+ Aoxp = Bvp 4+ Mass

with the vectors of the degrees of freedom and blade pitch control hare
definecd as follows:

(I W (AT () g M
[%‘W v\ @ﬂlz_ One 9(\«5 ev)lz ]

o COWN oM T
\’R.: ©ne Ong g1«\);;: ]

The inertial coefficient matrices are given in section 6.1.4.
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The aerodynamic forces are required to complete the equations of
motion, In axial flow the aerodynamic forces still do not couple the addi-
tional degrees of freedom for N 2 4 with the shaft or gimbal motion. Hence
the aerodynamic forces for axial flow take the form

with the coefficient matrices defined in section 6.1.5.

The aerodynamic forces in nonaxial flow (pu > 0) couple all degrees of
freedom of the rotor with each other and with the shaft and gimbal motion.
Then not only are additional degrees of freedom and equations of motion
involved if N > 3, but the number of blades also influences the equations
and the hub reactions given above. Rather than directly presenting the aero-
dynamic matrices for the general case of three 9. more blades in nonaxial
flow, the analysis is extended by means of an observed pattern in the coeffi-
cients. In the nonaxial flow equations (section 6.4.3), note the repeated

occurrence of the following submatrices:

! S 5'1 YO e 8D

P=| 20 2¢¢ 2qs,

= 2¢,
2S,  2¢s, 2§,2J 2<,
> - S, < h] \ <O "'Sl G B
Pb= | o _205 22 = | 2¢
o =25 25, 2s,

I -

(using the notation Sn = gin nwm and Cn = cos nwm). These matrices are a
direct result of the introduction of the Fourier coordinate transformation
(columns) and the application of the summation operators to obtain the non-
rotating equations (rows). The matrix DP arises from application of the
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Fourier transformation to the time derivatives (ai or f)i) + In the B, and X
# and DP appear, while in the C matrices
only some rows appear. The extension to an arbitrary number of blades

(N > 3) is then simply

|
2%

¥ 251
— t

2Cu
25w }
-n"

matrices, only some columns of

(a s v ase @)

2.¢,
M — | 25 (o =S <4 v WSy wCa O )

(21 4

2Cn
28,

"

Rotors with three or more blades may be analyzed within the same
general frameworx, but the two-bladed rotor is a speclal case. The rotor
with N > 3 has axl-gsymmetric inertial and structural properties and hence

the nonrotating frame equations have constant coefficients in axial flow.
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In contrast, the lack of axi~symmetry with two blades leads to periodic

coefficient differential equations, even in the inertial terms and in axial
flow. Only in special cases are the dynamics of a two-bladed rotor described

by constant coefficient equations. The equations of motion again take the

form

tad

A,Xe + A% + A X’" A2
28R L MR o\’x& + 2 + A\ = gVQ"l' MQ&&Q
F = Cz ¥ +Ccie+c.xg+'€"23z+2"‘& + Caas

with now for N = 2 the rotor degrees of freedom and pitch input defined as
follows:

NN
Y = [-ﬁ

A S N A S .A_,_n.*))'r

[ & 37

I

Ve

The inertial coefficient matrices are defined in section 6.4.6. Note that

there are periodic coefficients in the matrices coupling the rotor and shaft
motion (K, c, .

Thé required aerodyanmic forces for the two-bladed rotor case again take
the form
~

—Maew = A% + hAoxg "“IK\& + Agot — @C’ 35

V%

. = < xe + Coxeg +’C\:4;l + Coov -+b63;

The aerodynamic coefficient matrices are defined in section 6.4.7.

An independent blade analysis is useful for problems not involving the
shaft motion or other excitation from the nonrotating frame. The only rotor
blade degrees of freedom involved are the bending and torsion motion. The

shaft motion, gimbal motion, and the rotor speed perturbation are dvopped
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from the system. Only a single blade need be analyzed, in the rotating irame.

The equations of motion for the bending and torsion modes are then:

- 11 - 2 -
T (S + gsov-q(\n‘*‘ % ‘}-33 + 2= I:‘.“'.‘ T
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. g *
—E Mk i~ £ oM 5 = S O

AZXQ —+ &,;\g +A Y = g\lg

T
with Xp ™ (qkpk) and VR econ' These equations can also be obtained by

dropping all degrees of freedom except the collective mocdes fro

rt

Tevnd =
he aGNa.Y515

3]

above; a separate construction for the independent blade case is more effi-

c¢ient however.

6.1.7 Constant coefficient approximation.- The rotor dynamics in norn-
axial flow are described by a set of linear differential equations with
periodic coefficlents. A constant coefficient approximation for nonaxial flow
is desirable (if it is demonstrated to be accurate enough) because the calcu-
lation required to analyze the dynamic behavior is reduced considerably
compared tc¢ that for the periodic coefficient equations, and because the
powerful techniques for analyzing time-invariant linear differential equations

are then applicable. However, such a model is only an approximation to the
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correct aeroelastic behavior, The accurazy of the approximation must be
determined by comparison with the correct periodic coefficient solutions.
The constant coefficient approximation derived here uses the mean values of
the periodic coefficients of the differential equaticns in the nonrotating
frame.

To find the mean value of the coefficients, the operator

S
= (DN

o

is applied to the periodic aerodyn-.mic coefficients (given in section 6.4.3),
resulting in terms of the following form for the N =3 case:

AL CET oW ML) AW
5= éa S ; v;\
2:&5‘*)‘.‘
2 ST V..
M \
1 " \
o5V, %fhﬁ
n Svarp — "
_ 14§ . MM, = | M
= Ve or p ETULL S0 o LM
o . e M -+ r A
Gt W, MO o L MBS
2 S, BaW, Tt

‘é’M"S
Here Me and MnS are the harmonics of a Fourier series representation of
the rotating blade aerodynamic coefficient M:

o = e s
M(Pan) = M° + §| M oS W - M i

In the preszent case, these harmonics must be evaluated numericaily. The
aerodynamic coefficient M i1is calculated at J points, equally spaced around

the azimuth, Then the harwonics are calculated using the Fourier interpola-

tion formulas:

350~




Ma — J-:: ?: M(*)‘{‘)

M“c' = %-_ % N\(“V&\ (=03 v\“{-lQ
we 1 . . .
M — ¥ gj M(LP“\ S “\PA

where b, = by = j2n/3) (3 =1, ..., J). The number of harmonice required

is n =N-1 for N odd and n = N-2 for N even (N is the number <f blades).

Good accuracy from the Fourier interpolation requires at least that J = 6n.

Using these Fourier interpolation expressions, the required harmonics are

M cos'¥;
z =+ Z MO,
:%)V\?$ 3 ‘S ;;~veP3 ( ;\>
M+ 3 M 2cns® ¥y %
[ ‘%Mz" 2 st sp.a !
5 2 s .
\ IMm / Sty M'Ph

It follows then that the constant coefficlent approximation is obtained
from the periodic coefficient expressions “y the simple transformation:
4 12
- ay - e m
N MO = 5 L GO

The summation over N btlades (m =1, ..., N; Ay = 21/N) for a periodic
roefficient is replaced by a summation over the roter azimuth (j =1, ..., J;
My = 2n/J) for the constant coefficient approximation. This is quite con-
venient since the same procedure may be used tc avaluate the coefficients for

the two cases, with simply a clange in the azimuth increment., The periodic
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coefficients must be evaluated throughout the period of ¢ = 0 tc 2m/N; the

constant cnefficient approximation {mean values only) is evaluated only once.

With the substitution (1/N) L~ (1/J) I, the results given in section
6.4.3 for the periodic coefficient matrices are directly applicable to the

constant coefficient approximation as well.

For the case of a rotor with four or more blades, the constant coeffi-

cient approximation involves the transformation of higher order harmonics:

N CS‘: 3 ‘;“
A4 = L w ,
N w§:=l CaCa M) :\"? CuCa M (wé)
CwSae
SwSya ;':SS’
(_\3%‘ s 3 |
Can (-1 S
Sw (=137 \ 'e)

So the periodic coefficient results are still applicable to the constant
coefficient approximation if the summation over the N blades 1s replaced

by a summation around the xotor azimuth.

This transformation is also applicable tu the case of a two-bladed
rotor, but the constant coefficient approximation is not as useful or as
accurare for N =2 as for N > 3. With three or more blades, the source
of the periodic coefficients is nonaxial flow, hence the periodicity is order
¥  or smaller. At low advance ratio then, the constant coefficieut approxi-
mation may be expected to be a good representation of the correct dynamics.
The two-bladed rotor has also periodic coefficients due to the inherent lack
of axi-symmetry of the rotor. This periodicity is large even for axial flow,
and neglecting it in the constant coefficient approximation may be a poor
representation of the dynamics. In particular, it is not possible to use the

constant coefficient approximation as formulated here Sor the flight dynamics
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analysis of a two-bladed rotor helicopter, since this averaging eliminates

the coupling between the rotor and the shaft motion.

6.2 aircraft Model

6.2.1 Aireraft degrees of freedom.- The aircraft motion is described
by the rigid body and elastic airframe degrees of freedom:

ke = {9&} = L be 2 Me %¢ YW 2§ Yoy (KT 3T

as delined in section 4.2.1. The aircraft controls consZst of flaperon,

elevator, aileron, and rudder deflections:

— i e
Vg = L SS <Se, Sa S¢ J
The rotor hub motion is obtained from

d = C Xg

where ¢ 1is defined in section 4.2.2, including the sign changes for a
clockwise rotating rotor and scaling for rotor #2. Recall that the Euler
angles do not contribute to o s ay, and a, however. 1In addition there is a
linear acceleration due to the rotation of the velocity vector in body axes

by the Euler angular velocities, written

Aot = T xg

(see section 4.2.2),

The feedback of the airframe elastic motion to the rotor cyclic pitch is

O
AOpesy = — & Y [, o5 WVt K

as defined in section 4.2.3.
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6.2.2 Aireraft equations of motion.- The linearized equations of motion

for the aircraft rigid body and elastic motion are:

-
Ei::]:**i:t* S o o o o
o m* o lx + [-MON, o o Rg
X
o S My ° o M’:\swk
(& ] o o
SEEEA TS
e o Mo

(see section 4.2.4). The generalized forces due to the rotor hub reactions

are
'R
‘3} jz = B
{Y-“r c.‘:

where cT is defined in sectien 4.2.5, including the sign changes for a

clockwise rotating rotor and the scaling for rotor #2.
The generalized forces due to the aircraft aerodynamics can be linearized
¥ succesively perturbing the lnpuils to the analysis described in section

1.
v
4,2,6, Hence for the rigid body degrees of freedom we obtain:

K _ . 4 5 s
ol = QZ%F"'G‘[‘?: \""1: 8i\+L¢Jl::, +h M
Ve
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(The coefficients of the matrices are the aircraft stability derivatives, due

to the wing/body, horizontal tsil, and vertical tail.) A gust velocity
uniform throughout space is considered; hence the gust velocity components
are the same at the wing/body and tail. The mean inflow perturbations
influence the airframe through the rotor-induced aerodynamic interference,
which is modelled as described in section 4.2.6, So the interference

velocities at the wing and tail are obtained from

/ Siv, 1P}EVn|(¥~\G£ZF Qﬂ:;) ‘va2(:~v:.G£;F(N:;> -1
—\:“ = KB CR)  KuaCaa Rer G
-<;\, .M)(v|<ZV| E:;f(;ngﬁ) ¥:V2,<:VQLG£;P <3:i;i> ¢

—r

From section 4,2.7, the generalized forces for the airframe elastic degrees

of freedom (k > 7) are:
*\’ _ X Fody = 8
(QV~ = S %‘ [— %‘ﬂ“ 1* -+ F“S gz ]
8¢

Hence the aerxoelastic motion of the helicopter airframe is described by a set

of linear, constant coefficient differential equations of the form
Y + G i» R \>
2 "8 V RS+ Qo Y = l,\vg -+ L%S»:§‘+' L’X Yeua

~ T
RN S S oA
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where X is the vector of aircraft degrees of freedom, Vg is the vector of
aircraft control variables, g 1s the vector of gust velocity components

(in wind axes), and F1 and F2 are the hub reactions of the two rotcrs.

6.2.3 Drive train equations of molion.- A model for the transmission
and engine dynamics was derived in section 4.3.2. The degrees of freedom
involved are the rotational speed perturbations of the two rotors (@Sl and @sz)
and the engine speed perturbation (degree of freedom we' defined relative to
the rotation of rotor #1). With the coupling of the rotors by the drive

train, it is more appropriate to use the degrees of freedom defined by

or

I

3 ."Psa — ( P:r_, /C‘;l\ HPS‘

where rIl/rIz = 92/91 ig the ratic of the trim rotational speeds of the two
rotors. So ws is the rotational speed perturbation of the rotors and drive
train as a whole, while wI represents differential rotation of the two
rotors. The degrees of freedom wI and we therefore involve =lastic deflec-
tion of the drive train. The engine model introduces the throttle control

variable et. The linearized equations of motion for the drive train are
then:

NI .SZiSz
@% C'_'i_"' (b’?: vz

¢+ X, 23N

(X} ) » % . °
+ T (b + %) + 0q (%) = o) By

T
o (1ED, - G200 6,

% " - *’
+¥‘Mk (rsz-r-e. Yo + "5«3; “’:r) <+ \Km,_”f’: =0
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The constants appearing in these equations are defined in section 4.3.2 for
several drive train configurations.

For the autorotation case the we degree of freedom is dropped, and the
QQ, Qt’ and IE engine terms in the ws and wI equations are omitted. For
the engine out case, with the engine and rotors still connected, the engine
terms QQ and Qt are omitted. The case of constant rotor speed is treated
by dropping the ws and wI degrees of freedom from the system.

The rotor speed governor, consisting of is and ws feedback to the
engine throttle and to tbe cnllective piteh of each rotor, is descrihzd by
the following equations:

T Aaaw"; + Tu Aezf"’l + AG?.,P‘ = KP. \ltf; + k:r., \PS
T2z A%pv, + T Aégw“:. + BOgevr, = KP,,\l.’s + kW

mmn maedad e

{see section 4.3.3). TFor ihe tilting proprotor configuration, the variable

= 2 .
ws is replaced by the symmetric variable wsym ws + 1/ ¢I

6.3 Coupled Rotor and Aircraft

6.3.1 Coupled equatiors of motion.,- The equations of motion have been
derived for the two rotors and the aircraft body. The rotor equations of
motlon take the form

. < 7 < ~ 7
A% + AR +Axp 4 At + A& - Ajer = Bvg -+ B¢ s
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(see section 6.1.6). The rotor degrees of freedom vector xR consists of
flap/lag bending, rigid pitch and elastir. torsion, gimbal or teeter motion,
rotational speed, &nd inflow perturbations. The rotor control vector Ve
consists of the blade pitch controil. The gust vector in shaft axes is

related to the gust vector in velocity axes by

35"2@.%/

(section 4.1.4). The hub motion is related to the aircraft degrees of
freedom by

ol = <Xg

P

0
|

o = <Xg + & 915

(section 4.2,2; only the 3 x 3 submatrix in the upper left corner of ¢ is
nonzero). For rotor #2 it is necessary to change the time scale to the
rotational speed of rotor #l.
b)) S _3
>SC = STz 254t

So the mac.ices Al, Ki, C

1° and Ei are multiplied by (91/92); and the
2

matrices A,, A,, C,, C, are multiplied by (91/92) .

2

The aircraft equations of motion take the form

e . -A.-lq
Qq s + q, XS 4+ Qe XS === \o\ls -+ bc., %, - \9)‘ ((S?./&D .
JL‘.‘

-
"‘""CCI F}| ‘+ CI?.Fez.
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(see section 6.2.2). The vector Xy consists of the aircraft rigid body
and elastic airframe degrees of freedom. The vector vy consists of the

aircraft controls.

The equations for the rotor and aircraft can now be combined to con-
struct the set of linear differential equations that describes the dynamics

of the complete system. These equations take the following form:

)\-\z'i-*- R+ Agxw = Rv4-Ryvp + BG,}

The state vector X, control vectors v and v
defined as:

) _ (0
x=[ (870" Bec Batdrotacts ‘s Au Ax, A,
((;(K) e('-\ 6(‘3 BGS)NM&Z ‘P:: .A-uz "'A',‘l -A.lj.‘_
P OS¢ e v wr 2 Falk2 ) W 46, M A,

p? and the gust vector g are

]

oM
v=| S

O rotor 4t D cotar 2. Sy Se S S Oy ]-r

25 = [: Ue Ve Wg .tX-T-

The vector of the degrees of freedom for the entire system (x) consists of the
degrees of freedom of the two rotors and the aircraft, The rotational speed
degrees of freedom of the two rotors are replaced by the coupled degrees of
freedom ¢S and wI; and the engine speed degree of freedom '% is added. The
governor dynamics introduce the degrees of freedom Aet, Aegovrl’ Aegovrz'

The vector of control variables for the entire system (v) consists of the
blade pitch of the two rotors, the ailrcraft controls, and the engine throttle.
The vector of the pllot's contrcls (vp) is related to th= individual control

inputs by the linear transformation
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I
where TCFE is defined in section 4.1.6. The aerodynamic gust vector (g)

1s in velocity axes.

The coupled equations of motion are obtained by substituting the hub

mot.ion into the rotor equations and hub reactions, and then the hub reactions

into the body equations of motion.

coupled system are:

The resulting coefficient matrices for the

Az

P 4
Azm R

It

As

St

»z
Stz

~N
Aztz <R2

J SZ 2 e a. 2 ~o
Bl ) Caea |22-% Can c““’(}'fb“lzcznckz
~ ~
Algl Alf! C*l + Azg. Q&.
g' A g‘-o 1 Sl. 2 A -
A| = ('3'1;\ Az (?ZAA:&?.Q:%-(E Azgzcu
x C KT X~
o, - C - .
_Jr (St v I (gﬁ cgz Gea Tp2
i 1Rk —\Sii)ckzt'lkl

T ~ -— ‘SL' 2 ~ -
—<p Cop, o1 - (‘;‘{J ce2 C2p2 k2

ADRI

L)
Ao&l R

A022

>

oelq’-

-+
s | Q‘\ ”CIZ CORZ

L ¥ o T A
as — g} Gopy Cpy —Cz Gora2 ez
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Recall that the Euler angle contributions are not to be included in a
ay, and a,. Hence in constructing Ao it is necessary to skip the angular
lacd band c y
hub motion (ax, ay, az) columns of A° and C0 for the Euler angle \¢F, BF’

pp) columns of c¢ (and A)) when evaluating K;c and E;c.

The rotor mass will be included in the helicopter gross weight. Hence in
constructing A2 it is necessary to skip the linear hub motion (xh, Vi zh)
columns of 52 for the rig}d body (¢F, eF, wF’ Xp» Ypo zF) columns of ¢
(and A2) when evaluating Czc. Also the rotor mass is included in the
generalized mass of the airframe free vibration modes; so the linear hub
motion columns of Eé will be skipped for all the body degrees of freedom
columns of ¢ when evaluating CZC' This approach is also required for the
cTEéc term in Al. Since the term involving ¢ is the linear hub accelera-
tion due to Euler angle velocities, which has already been included in a;
if the gross weight includes the rotor mass, it follows that the entire

cTEéE term is to be dropped.

The construction of the coupled equationcs of motion is still incomplete.
The matrices defined above basically account for the coupling of the rotors
and aircraft through the rotor hubs, It remains to account for the coupling

which occurs through other paths.
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Frequently the rotor is modelled as having a rigid control system. This

tvption requires some restructuring of the equations of motion, since the
retor equations have been derived assuming that the blade rigid pitch
degrees of freedom are present in the model and that the blade pitch control
inputs enter through these degrees of freedom. 1In the limit of infinite

control system stiffness, the solution of the rigid pitch equation of motion
reduces to

Po= Be = e = T kg K o+ (bygmmtes, ity

or in the nonrotating frame

Bo Se \ 6'

e S G

s = hd ) - E: sz Gis

One e ¢ ‘sy"
ons Sus 3“5
Sul2 o On/y com Bwiz | ¢

o QO
-ku &‘6\ L] a.s h')
- o Reg L - | 'S
° o
o (=]
o>

for N > 3; and

2“,\)0 - (:"’L* — i-:: kP‘. (g:>t — kf’g ((;r)

o
+ ( elqc‘ﬁ'P — 1 P > \Ps
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for N = 2, The blade rigid pitch motion irn this limit consists of the
commanded control input, feedback of the bending and gimbal motion due to the
kinematic coupling, and a pitch change due to the azimuth perturbatior with

a fixed swashplate. Substituting for Py the pitch/bending, pitch/gimbal,
and pitch/azimuth coupling requires operations on the colummns of Ao, as
defined by the above equations. Next the rotor terms in the control matrix

B are reconstructed from the rigid pitch colummns of Ao since the blade
pitch motion becomes a control variable rather than a degree of freedem., Then

the equations of motion for the rigid pitch degrees of freedom are dropped
from the system.

So far the aerodynamic hub forces have been put in place for the Au,
Ax’ and Ay equations of the two rotors; o = ex, has been substituted for
the hub motion; and the-time scale for rotor #2 has been changed to Ql.
Completion cf the equations of motion for the inflow dynamics requires the
following steps.

a. Multiply the thrust by (0a/2y)3A/3T and the moments by (ca/2y)dA/aM.

b. Add Ky times the Au equation to the Ax equation, and Ky times
the Au equation to the Ay equation.

¢. Construct the ground effect terms (body motion contributlons to

-(1/32){z) in the A , and A , equations.

d. Account for the coupling of the Xul and Auz equations due to rotor/
rotor interference.

e. Construct the diagonal terms: 1 in A, and 7 =\(M 3\ /M or RT M /aT

in A2 (timee (91/92) and (91/92)2 for xotor #2).

f. Construct the aerodynamic interference terms

—A:“.
by ( . )
(St /R‘)-A-Hz

in the alrcraft equations,

So far the torque has been put in place for the rotational speed equations

of the two rotors; a = cxs has been substituted for the hub motion; and the
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time scale for rotor {f2 has been changed to Q. Completion of the equations

of motion for the drive train dynamics requires the following steps.

a. Transform the wsl and wsZ columns of the matrices according to

N = N
2

to convert from wsl and wsZ degrees of freedom to ws and ¢I
degrees of freedom.

b. Combine CQl and C as required rYor the ws and wI equations.

Q2
c. Construct the equation of motion for we and complete construction
of the ws and *1 equation by adding inertial, damping, and spring

terms. Construct throttle contrul terms in ws and we equations.

d. Construct the governor equations, and the govexrnor degree of freedom

terms in the other equations of motion.

It is still necessary to account for the mast bending and governor feed-

back terms in the pitch control econ' The pitch/mast bending coupling is
(for each rotor)

A9\ > cl
N = - Z (k ) s
15 =7 M S

for N > 3, and

v

AD, = — = <kmc;°°5w“'"kms,;s'~9“3?gi

for N

2.

For a two-bladed rotor the pitch control degrees of freedom are 00 and

el. It is also useful to consider conventional cyclic control, which gives

DO, == 9I(_ (;05"’) ~4- eis W\P
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The e&c aad Gls colusms of the control matrix can be constructed from the

61 column according to this equation.

Next, the pilot's control matrix is constructed from the individual

control matrix by the linear transformation BP = BTCFE'

Finally, the unused equations of motion and degrees of freedom are
eliminated €rom the model by deleting the appropriate rows and columns from
the coefficient matrices. Note that a number of the degreas of freedom are
first order (uno spring terms): all the inflow perturbation variables, the
rigid body degrees of L[reedom wF’ Xpr Ypo and zp rexcept possibly in ground
effect), and perhaps the rocational speed degree of freedom (in axial flow
with no integral governor).

6.3.2 Quasistatic approximction.- It is fraquently possible to reduce
the order of the system of equations describing the rotorcraft dynamics by
ronsidering a quasistatic approximation for certain of the degrees of l{reedom.
Assume that the equations of 1iotion have been reordered so that the quasiscatic

variables (xo) appear last in the state vector:
Yy

"

The quasistatlic approximation consists of neplecting the acceleration ard

velocity terms of the quasistatic variables. Thus the equations of motion

take the form:
°] [ * A, o= Ao AT [ | _ 2 \\v
|8, o \Xa M A o)l x. + AL AT L% g°}

-

\

»

»

L

The quasistatic variables now are not described by differertial equations but

rather by linear algebraic equations. The solution for X tlen is simply

o =l ° ot o . ok
=AY L& v— A% — A%, ATk, ]
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Substituting for X, in the X equations of motior gives then the reduced-

order equations for the quasistatic approximation:

LA - K2 CRIYIRS TR+ LAY =AY (A'A™ 1%,

" Vo oe\~t , o oy L L . >
+ l:lke../lo <: o.) /\c: :1){| = s ~ F\ (/\ ‘3 ‘ Eé \4

In the present analysis, the quasistatic approximation can be applied to
the inflow dynanics of either or both rotors, to the rigid pitch/elastic
toreion degrees of freedom of either or both rotors, to all the degrees of
freedom for either or both rotors, or even tu all the du¢grees of freedom

except the rigid-body moulons of the aircraft.

The quasistatic approximation retains the low-frequency dynamics of the
eliminated degrees of treednm. Whether that is a satisfactory representation
of the elastic behavior must be established by comparison with the results of
the higher order model.

The quasistatic approximation as implemented here does not give tae low
frequency response when applied to a two-bladed rotor. The source of this
difficulty is the fact that the teetering equations of motion (B;k), Oik),
BT) are really still in the rotating frame, so the response of tne teetering

modes to low frequency inputs from the nunrotating frame is not at low

frequency =lgo, but rather at freq

6.3.3 Symmetrice aireraft.- With lateral symmetry of both the aircraft
and flight state, the symmetrin and antisymmetric motiones are completely
decoupled. Hence it is possible to analyze the dynamics by considering two
sets of equations, each of half the order as the whole system. This case is
applicable to side~by-side or tilting proprotor aircraft configuration in a
trim flight condition with nn sideward velocity or turn rate.

The equations of moticn must be restructured in terms of symmetric and
antisymmetric degrees of freedom. The motions of the right and left sides of
the aircraft are given by respectively the sum and difference of the gymmetric
and antisymmetric degrees of freedom:
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R E SN o N
Frorerz = Fige — FJoms

These conversions apply to the rotor bending, torsion, gimbal, and inflow
degrees of freedom, and to the rotor pitch control variables. The columns
of the coefficlent matrices are recons cucted according to these definitions
of the symmetric and antisymmetric degrees of freedom, The symmetric and

antisymmetric equations of motion are obtained by operating on the rows of
the matrices as follows:

(5‘5"" ‘2—9‘3 — i‘(ﬁﬂor'&-l .ng . %(m&w 2 o._g:)
(ornasign 20 D = L (rotoc Wi 29 L (rotec 2 o)

Finally, the symmetric and antisymmetric drive train motions are obtained
from

Wy = —2ZYaou

N/C. — WQ E — Wg.&i
(from section 4,3.3); the columns of the matrices are reconstructed according
to these equations. Now the symmetric and antisymmetric degrees of freedom

are completelv decoupled, and may be analyzed separately. The state vector,

control vectors, and gust vector for the symmetric system are:
Y (k)
X =
{(s ® Bec Bes WgJL...L,.L)
?
9‘: x;;- -Z.F %:¥ WQ‘ :&S.t Agaovfl

v = [9““ 8& &; Qt-l“r.
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VP == Y, So SS ét]?

25 = [_ Wg Wg :}-1.

The state vector, coatrol vectors, and gust vector for the antigymmetric
gystem are:

X = [G,(ﬂ a(‘) Rac Bas “Wr A A, J—‘) be e VW E q“k]-r
V= [L EBC‘Ml S Sc :]-r

Ve‘[s':' Sp ]’r’
9= [ve] ™

Note that it 1s necessary to designate symmetric and antisymmetric elastic
airframe vibration modes.

6.4 Matrices of Rotor Equations of Motion

6.4.1 Inertial matrices for rotor equations.- The inertial matrices

for the rotor equations of motion in the nonrotating frame are given below.

For clarity, the superscript * denoting the normalization of the inertial
coefficients has been omitted.

~368-

P S




o — e g 1

9,0 B Qi;i B o

qa B QP B o




_ N S —— [ R, I R A
1.9
b
nx. v | X4
3
¥
g, o'b
‘«,. 1=
h IR
b'b
nw. ° *1z2
LI
e WN
A
1z-
ity
L €42
Ay
1.5q u—
LPSY
S ¥ 2
]
153 v~

-370-




lo(v&'l)

2.
lo(vc 3]

-371-

1
. m - w—— e — RS e
'
|
— . “4__:1' —_— - - R S
L =
i
—_— - = -t - - - - - - —
e - 4 e -~
£
©
'
Y
)
-~
o e -
P & »
Cd w o
v [
-~
=
J
- & o .
- a 3 PI. o
tal ta & & &
hed 4 - - -
' TN
|
- i g o
-, g o~
> _ o a
o - o
' 3 by
' {
I U U T
=
[ .
L
» - ..H.J
b k:
um Ealit -
- Ay =
! ) x
3 > -
~ - )
% PR
Fod - ~
| il
! -
(-
- M
™ ' o -
d R
7~ €
- Sﬂl s
- L +




-372..




21
q ¥
-
Zqua'iB
21 1
q, @ B
->
- .
hlpka kB
-
=21 °k
P B
21
(o]
21
(o]

-373-~




-37h4-




A 58T 1

'NU

-375-

I se-

S A R S



¥,,.©
bb
mx. < 19
d
' ¥,.0
c 8.0 0 |8 80
oHN - I- 1yt I
N ¥,.0 i
db e .
°1z mw. * Tsg- SIS €2 m‘«.. .
3 ﬂo

~376-




q

Al

T

?'b

d

.muv

IZ

=377~




~-21
0

21

-378-




6.4.2 Aerodynamic matrices for rotor equotions in axial flow.- The

aerodynamic matrices for the rotor equations of motion in axial flow are

given below.

-YM_ -+ VI B
‘%94 el e
-YM . —YM . "YM .
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6.4.3 Aerodynamic matrices for rotor equationg in nonaxial flow.- The
aerodynamic matrices for the rotor equations of motion in nounaxial flow are
given below. Note that each matrix is a summation over all the blades, that

is, m=1, ..., N. The notation C = 1oswm and S = sinwm is used in these
matrices.
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6.4.4 Inertial matrices for rotor with four or more blades.- The

inertial matrices for the equations of motion of a rotor with four or more

A

Ay

blades are given below.

- m
1 -5 .
9, WPy
1 -s .
U UPy
I -s ..
QU Py
A2 =
1
-s_ . Py
Py L
kP1
1
-S . P
Prly T
k1
1
-S Px
Py I
kP1
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9 k Py
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Py P K
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6.4.5 Aerodynamic matrices for rotor with four or more blades in axial
flow.- The aerodynamic matrices for the equations of motion of a rotor with
four or more blades in axial flow are given below.

— -
-yM_ .
Iy
-yM .
98y
~YM .
9394
AT e N
"Y . -Y
Py PPy
-Ybi . "'Ybi L4
-YyM_ . Y .
o i N
!
-vM -nyM . -YM
Y 994 Y qkqi qkpi
n M . - M -V}'i
Vady | Maggy 9P
-yM -YM
LCRCR WPy
A0 = ;
-yM -nyM ., -YM -ny!
Prdy Prd4 PrP1 PyPy
nyM . -YM nyM . -YM
Py Py kP1 PPy
-YM -YM
pa, PPy
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6.4.6 Inertial mairices for two-bladed rotor.- The inerstial matrices

for the two-bladed rotor equations of motion are given below.

= ! = 3 = + miT.
C cosvm and S sinwm is used, where wm ¢ + o7
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6.4.7 Aerodynamic matrices for two-bladed rotor.- The aerodynamic

matrices for the two-bladed rotor equations of motion are given below. The

notation C = coswm and § = sinwm i8 used, where wm = ¢ + mm.
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7. LINEAR SYSTEM ANALYSIS

The flight dynamics and aeroelastic stability analyses (sections 5.3.3
and 6) result in a set of linear differential equations describing the air-

craft motion, of the foxm
ALX + Ak + Agx = RBov

where x 1s the vector of degrees of freedom and v is the vectur of control
and gust inputs. The coefficient matrices (AZ’ Al’ Ao, and BO) are elther
coustant or periodic in time. The analysgis of these linear equations

proceeds as follows (see reference 37).

7.1 State Variable Form

It is convenient to transform the equations to a standard first order
form. Let MX be the number of degrees of freedom and MV the number of
controls (dimensions of x and v). Assume that MX1l of the degrees of
freedom are first order, that is have a zero column in the spring matrix AO.
Reorder the degrees of freedom so these first states occur last in the

vector X
X
by

where x, are the MX-MX1l second order degrees of freedom aru x, are the

MX1 first order degrees of freedom. Then
N

where KB has dimensions MX * (MX-MXl). The equation of motion can now

be written in the form

X = Ax+@v

b5




A "‘Az Al _A;'A'o

i

=] o
- [ AD'B. |

o
with the state vector
X2
= |4
Xy

There are MX2 = 2*MX-MX1l states; the top MX states arxe the velocities of
the degrees of freedom, and the bottom MX-MX1 states are the dispiacements

of the second order degrees of freedom.

7.2 Constant Coefficient System

7.2.1 Eigen-analysis.- The transient solution of % = Ax is

£t A
X = %u;e, t}-‘(w\ == M e .tj{(o\

where Ai and u, are the elgenvalues and eigenvectors of the matrix A, and
qi(O) are constants determined by the initial conditions. A 1is the diagonal
matrix of eigenvalues, and M 1is the model matrix with the eigenvec-~rs as

columns. The system i1s unstable if Re Ai > 0 for any mode.

Tiie frequency of a mode is w = IIm X|, and the natural frequency is
w = IAI. The frequency in Hz 1s obtained by multiplying by Q/2m. The
period is then 71 = 1/w sec, with w the frequency in Hz. The damping ratio
is ¢ = —Re%{k| (fraction of critical damping). The time constant is

426-




T = ~1/(QReX) sec. The time to half-amplitude is then 11/2 = ,693t (or time

to double-amplitude for unstable modes).

7.2.2 Static response.- The static response, obtained by setting

-

x =0 in x = Ax + Bv, is
-1
X =~-A"Bwv
7.2.3 Frequency response.- The frequency response, obtained by setting
X = xoeiwt and v = voeiwt in % = Ax + Bv, is
Yo = \-—\vh
where

B = - (A-iV'R = - (ADd (A +u*z=Y'R

The frequency response can also be obtained from the poles and zeros by

Xk, Bl
v ™ (p—*)

where p are the poles (elgenvalues of A) and 2z are the zeros.

7.2.4 Zeros.~ In Laplace form the equation x = Ax + Bv becomes
— -1
x = — (A~s 8v

By Cramer's rule then

% = AF

——

vy T X (A -s)

where A* = (A~8) with the i-th column replaced by the j-th columm of B.
The poles are defined by det(A-s) = 0, hence are the eigenvalues of the
matrix A, as above. The zeros are defined by det(A*) = 0. In A* the
diagonal elements are all of the form (akk-s), except for the i-th column.

127~




By expanding the determinant of A* it is possible to reduce it to a form
with (akp-s) for all the diagonal elements:

— WA = K, AR (A, —5)

Then the zeros are the eigenvalues of the matrix Al' We have then

Xi __ AoAY A o R

o —

——
—

v At (A-5) 'AXCA—s> | T (p-5)

and the static response is k2 = kl nz/mp.

7.2.5 Transient response.- The general solution of X = Ax + Bv is

ARt t Ae-%) _
Xx=Meg Mix.+§ M M By D

>

Consider the case with zero initial conditions at to = 0 and control with
time variation of the form v = vozf(T) (£ =0 for t <0). Then

X = M g. it; Q:;; (t-x) S!¢§'t ~§ ,V‘—J Eg\v.

= M { VL({-)} M By,

where F = {Fi} is a diagonal matrix depending on the eigenvalues and on the

input function £. The cases considered are
a. step response, f =1

b. impulse response, f = §(t)

c. cosine impulse, f = 1/2(l—cos£%£§, 0<t<T
d. sine doublet, f = sing%E, 0<t<T

e. square impulse, f =1, 0 <t < T

28~




f. square doublet, f =1 for 0 < t < I f = -1 for % <t <T

2)

The function Fi(t) is readily evaluated for these and other inputs.

7.2.6 BRMS gust response.- Consider the RMS gust response of the
system X = Ax + Bg. Here the only input considered is the vector of gust

components g. The gust is model as a Markov process:

= my

where w 1is stationary white gaussian noise, with zero mean and correlation

E [ WoOW (Y] = Rg $(=2D

For an RMS gust velocity of Ogs We have QG = ZGGZ/TG. In forward flight
the correlation time is obtained from T, = L/2V, where L is the gust
correlation length and V dis the aircraft velocity. The RMS acceleration

can be obtained by including accelerometers in the model:

Ta S +a = QY+ Gr = QA+ + GE o

where 1 is the accelerometer lag. For the acceleration of a particular

state xi we have

Toi + ap = (W)

so the row of C1 has a 1 in the ii column, with the rest of the elements

and the entire row of Co equal zero. For body axis acceleration at the

-
point r we have

N N JL Y- { . .
Talg +ay =< f i“(}sk -+ UFXV = Q"‘ —-’—Q.).

where the summation is over the rigid body and elastic modes (see section
4.2.2). The matrix Cl is here zero except for the rigid body and elastic
airframe acceleration elements, and the matrix Co is zero except for the

Euler angle velocity elements,
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The aircraft, gust model, and accelevometers are thus described by the
set of equations

! i
x A A o B |[x 3

Eé; :%;Qh3> Qo -+ o
%y o © —.:%}b 1} .
L .

L
or
Yz 0+ Gw
The correlation matrix
Z = E(zv)
is then the solution of the equations
T -
EZ + 2§V + GQR. & =o
The solution is
- ram ). 2T
7 = << = /V\?_ ':;.SM
\""*'\A

where M 1s the model matrix of F, and IG is the diagonal matrix with 1

for the gust columns and zero elsewhere. Note that only the diagonal elements

of the correlation matrix Z are of interest normally. Let
{*“.3} = M

{rip 3 = ™M
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Then with the summatior k extending only over the gust columns of
-1
M

¥

z Ny N
le = - = YMx o e &' )M_r.

is the RMS gust response of the I-th state.

7.3 Periodic Coefficient System

Consider the system of equations x = Ax + Bv, where A 1is periodic
with period T, A{t + T) = A(t). The transient solution can be written

X = w (4) et 3. (©)

I

as for the constant coefficient system, but here the modes u, are periodic

i
funccions of time. The eigenvalues Ai are obtained as follows.

The state transition matrix ¢ 1s calculated by integrating $ = Ad
over one period, t = 0 to T, with initial conditions ¢(0) = I. Let
C=¢(T); and let A_and v be the eigenvalues and eigenvectors of the

matrix C. Then the system roots are

o= RN = (DAL DL)

(the principal part — a multiple of 2w/T can be added to the frequency)

and the mode shapes can be obtained from

-—\."‘t
The system 1s unstable if ReX > 0 (or IACI > 1) for any mode.

It i1s necessary to integrate the equations $ = f(t, ¢) = A(L)¢
numerically from t =0 to t = T, Two methods are considered. The first

method is a modified trapezoidal rule:
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P sy

where ¢

it

]

1

124

I

=¢(t), -¢(t:+1),and h~t_*_l tn.

+ QDV\\) —+- D(R}\

b+ % Ch,,
Pbn + '%<A“n bopr + A L)
= % hand Gl BAD §,
Gl A p,, +% e Ane ) (1 2D by,

b+ B0+ AL At A b,

The second meihod is

the fourth order Runge—Kutta wethod :

$p, =

4’“ —+ %(: <kt+2v‘z+2¥‘3 +¥9\+ Dg‘;\)

ko= A, b,

K,= Anpzr (P, + ik.\
Ky = “+i(¢“+%k23
Ky = Aumr (b + 2 ky)
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