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series. The form of the models is a Kalman filter/predictor. Once a model has been determined, predictions + ]
can be made based on this model and past data. Since the underlying dynamics of the time series may change i i

in an unpredictable manner, provision has been made to estimate the parameters of the model recursively.
This allows one, for example, 10 follow the effects of policy changes {fast rate of change of parameters) or :
more long-term changes which cannot be explicitly modeled. ?
b
H

The technical effort was divided into three major phases:

Phase I: PJM payoff matrix column mean data over a five-year period. beginning in January 1973.
were collected and statistically analyzed. A total of 50 categories were selected to span the dimensions of sex,
skill score and job area ( 4dministrative, Electronic. General and Mechanical). A frequency analysis showed
that various series contained significantly different spectra, with peaks at 6/year, 4/year. and 3/year. The
= semiannual component is probably tied to the academic year. A correlation analysis showed that most female N
i high skill series move together. Female low skill series also showed the same trend. though not as marked. !
i Male series were, in general, correlated. but were less so than the female series. Male and female series were .
essentially uncorrelated. A set of state space models was developed for the individual time series. A set of -+ 3
& Kalman filter/predictors was then generated, based on the state space models. N i

; Phase I1: An adaptive Kalman filter methodology was developed for the PJM data. The adaptive filter
was an approximate maximum likelihood estimator for the Kalman filter/predictor parameters. Two !
adaptation parameters were used: (a) an age weighting parameter 10 discount old data. and (b) an adaptation
: time constant to control the rate of change of the parameter estimates. The adaptation parameters were
‘ themselves varied recursively 1o minimize the mean-squared prediction errors. The dynamic coefficients of a
linear Kalman filter/predictor were estimated causally from the data, along with the usual Kalman filter state
estimates, and shown to give better performance than the non-adaptive (stationary) Kalman filter/predictor.

Phase I1I: An extended Kalman filter was developed for use on the PJM data. This filter was intended
for use in estimating the parameters of the Kalman filter: i.e.. the problem studied was that studied in Phase
11. The extended filter did not appear as suitable for use on PJM data due to: {a) increased complexity. (b) its
generally poor convergence properties, and (c) its generally decreased accuracy.
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1. INTRODUCTION

The computer-based Air Force Advanced Personnel Data System (APDS)
and the Procurement Management Information System (PROMIS) utilize several
advanced concepts from the field of statistics and operations research
(Ward, Haney, Hendrix and Pina, 1978). 1In particular, the Person-Job
Match (PJM) system is based on the develcpment of a payoff matrix the

(i,j)Ell element of which represents the predicted payoff to the Air Force

of assigning the ij job to the iEb individual. The purpose of the PIM
system is to maximize the total pavoff to the Air Force over all tasks
and individuals. Since the PJM system is sequential, a job has to be
assigned to a person at the current time without full knowledge of the
availability of pcrsons and their job skills in the future. For example,
if the planning horizon is 9 months, the optimal allocation of jobs at
the current time would depend on the statistics of the available pool of
applicants over the next 9 months. 1In this sense, the PJM problem is one
of stochastic optimization or of decision under uncertaintv. The method
by which this problem is being solved is discussed at greater length in
Chapter 2. TFor the puiposes of this discussion, it will suffice to state
that the present algorithm relies c¢n the column mean (average over task)
of the payoff matrix. Due tc the large number of transactions that occur
in the system, it is not feasible to maintain current column means. The
quantities used must thus be estimates of the current means given histori-
cal data. It is this problem of pavoff mean time series estimation that
this report will address.

Over the last 30 years, starting with the groundbreaking work of
Bellman (1957) on Dynamic Programming and that of Kalman (1960) on pre-
diction, a large amount of research has been done in the field of sto-
chastic optimization and control, The state space representation of
dynamic and muitistage systems has plaved a kev role in the solution of
these problems. The earliest applications of these techniques.took place .
in the aercsvace field where the state space models were easy to derive
from known phvsical laws. The applicatioas in the management and socio-
economic areas have bheen slow to develop due to the difficulty of deriving
state space models for such systems. However, recent work in the area
of system identification (e.g., 1EEE, 1974; Mehra and Lainiotis, 1376)
has provided several methods for deriving state space models empirically
from input-output data. This research has studied the application of the
concepts for solving the P problem.

The specific methed of appreoach consisted of four phases which pro-
gressed from the initial development of a linear Kalman filter/predictor
(Phase I) for job column payoff means to its enhancement by using adaptive
(Phase I11) and extended (Phase IIT) Kalman filtering techniques, followed
by a more general study of the PJM system for further improvements and
applications of the state space techniques {(Phase IV). Since the structure
of the state space model and and parameter values cannot be inferred
directly from theoretical or first-principle considerations. <echniques
of gystem identification, parameter estimation and time se . : :nalysis
(IEEE, 1974; Mehra and Lainiotis, 1976) have been used for by . ling

0




predictive models. Scientific Systems, Inc. has utilized already-
developed software for state space model structure determination using
canonical correlations and for parameter estimation using the maximum
likelihood method. A brief description of these programs is contained

in Chapter 4. The state space forecasting program described in Chapter 4
also performs automatic detrending and deseasonalizing to convert non-—
stationary time series into stationary time series.

The models for the Kalman filter/predictor are based on historical
data and a priori knowledge. Since the structure of the real system may
change over time, it is important to detect these changes and adapt the
Kalman filter accordingly. The exact form of the adaptive filter depends
upon the expected structural changes, but the techniques of model valida-
tion and hypothesis testing (Chapter 4) can be used to detect changes in
system:structure, states and parameters. These techniques have been ap-
plied to the PIM time series. )

Extended Kaiman filters can provide improvements to the basic Kalman
filter to account for non-Gaussian statistics, nonlinearities in the state
and measurement equations and errors in independent variables (Mehra, 1976),
which may be present in the PJM system. They can also provide an alternate
adaptive filter methodology.

Application of stochastic control techniques for optimal assignment
under uncertainty (e.g., to take into account confidence levels on fore-
casts and to use second order statistics of the payoff series) is one
method of solving the PJM assignment problem.

This report is organized as follows. In Chapter 2, a basic descrip-—
tion of the PJM system is given, and the problem of payoff matrix column
mean prediction is discussed. Chapter 3 presents a statistical analysis
of payoff data spanning a 5-year period, from January 1973. The notions
of state space modeling and prediction for time series data are introduced
in Chapter 4, including the formulation of the prediction problem in a
Kalman filtering regime. Chapter 5 presents an efficient technique for
model structure determination, based on recent results in stecchastic
realization theory. The methods in Chapter 5 are limited to stationary
- sprocesses. - Statc- space models for selected PJM time series are given in
Chapter 6; predictions based on these models are found and compared with
persistence predictions. Analysis of PJM data has revealed significant
nonstationarities in the parameters of the linear modeks. The nonstation-
ary problem is attacked by using a parameter-adaptive Kalman filter pre-
dictor, developed in Chapter 7. This adaptive algorithm is an approximate
maximum likelihood estimator. An alternative approach is to use an Ex-
tended Kalman filter for parameter adaptation. This method is discussed
in Appendix C. The adaptive algorithms are applied to the problem of PJM
time series prediction in Chapter 8 and to prediction for series with
known mathematical structure in Appendix D. Numerical comparisons indi-
cate that improvements can be obtained over the use of stationary time
series models. Conclusions and recommendations for further work are
given in Chapter 9.

NS




2. PJM SYSTEM DESCRIPTION

2.1 Problem Statement

The assignment procedures in the Air Force Procurement Management
Information System (PROMIS) are well described in Ward et al. (1977).

The critical information for person-job matching is the Predicted Payoff
Array, which contains payoff values estimated from a mathematical model
using person-job information and the subjective judgement of Air Force
managers (Ward, 1977). The assignment problem may be solved using optimal
algorithms for batch assignment or near-optimum algorithms for sequential-
constrained-choice assignment. It is more useful in practice to develop
an allocation array using decision indices (Ward, 1959) since alternative
assignments that are nearly optimal can also be indicated.

The PJM problem has mostly been formulated in the operations research
literature as a static deterministic assignment problem. In practice,
however, it is a stochastic dynamic problem in which decisions have to
be made sequentially over time based on the best current information to
optimize the payoff over a certain period of time. In this sense, the
PJM problem is akin to the Secretary Problem (Bellman, 1957), but much
larger in size and scope. Bayesian statistical decision thoery and sto-
chastic control provide suitable mathematical frameworks for such problems.
The most elegant results in stochastic control and Bayesian decision ana-
lysis are available for the so-called Linear-Quadratic-Guassian (LQG)
problem, invelving linear dynamics, Gaussian statistics and quadratic cost
or payoff function (IEEE, 1971). The optimal decision law is a linear
function of the optimal state estimate and the control law does not depend
on the second and higher order moments of the state estimates (certainty
equivalence principle). The optimal state estimate is given by a linear
Kalman filter (Kalman, 1960).

The PJM problem does not satisfy all the assumptions of the LQG for-
mulation, but its optimal solution in a constrained sequential mode would
involve forecasting of job skill levels over the planning horizon. If we
denote by r (t) the payoff (or reward) at time t of matching individual i

i,3
to job j, then the variation of L j(t) over the individuals {i.e., i's)
* -
may be described by a probability distribution function Pj t(r). In
L]

other words, P t(;) denotes the fraction of applicants with payoff less
’

3

than or equal to r for job * and time t. If the pool of applicants is very
large, Pj t(r) would tend to be a continuous function of r and can be
]

differentiated .to obtain a probability density function pj t:(r3==de t(;)/d;.
? ’

In a sequential decision process, the optimal allocation of individuals

to jobs would be done in such a way as to maximize the expected payoff,

EP, with respect to all feasible feedback assignment rules {ai (r,(1)yeuns
% R

r(t))} where

()}

(r . (1),...,r

T
EP(a) = | J I E{rij(t) a
t=1 j€J i€l

1,373 A




E{+} denotes expectation with respect to Pj .
»

(r); ai’j(rj(l),...,rj(t)) is

a binary valued function (1 or 0) specifying an assignment at time t of

individual i to job j based on the observed payoffs {rj(l),...,rj(t))}.*

In practice, this decision function is too complex to implement, so that

certain statistics of the observed payoffs will be used, e.g., the mean
t-1

- X r.(t) and r,(t) may be used,** as is currently

(e=1) 2, ] j

being done in the APDS-PROMIS system. Another choice would be
{ﬁj(t—l),ﬁ,(t-l),rj(t)} where the assignment also takes into account the

value ﬁj(t~1)=

standard deviation, 8j(t—1) around the mean ﬁj(t—l). Irrespective of how

the decision function is defined, the optimal assignment still involves
maximization of R with respect to assignment rules for future time periods.
The exact formulation of this problem requires use of dynamic programming
or backward induction (Bellman, 1957), which though useful from a concep-
tual point of view, is computationally impractical with current state of
the art. A good suboptimal procedure at time t is to forecast the values
of the future mean payoffs, namely, ﬁj(t+l),...,ﬁj(T) and to solve a de-

terministic assignment problem assuming certainty equivalence, namely,
the forecast mean values are the actual mean values. If the decision rule
also includes the standard deviation aj(t), then these deviations may also

be forecast and used for assignment. All the forecasts would be updated
with each new applicant, using a recursive filter/predictor. The details
of this procedure are discussed in the next chapter.

2.2 Problem Formulation

In the previous section, it was shown that a solution of the stochas-
tic multistage PJM problem requires forecasting of future mean payoffs
over the planning horizon (9 months in PROMIS). Since historical data
on the mean payoffs are available, statistical model~building methods
using state space or time series methods can be used for forecasting.

The advantages of using state space metheds are that multiple time series
can be handled in essentially the same way as single time series, and
contrcl theory methods can be used for decision analysis. In addition,
once a state vector model has been identified, Kalman filtering technigues
can be used for recursive forecasting. The confidence intervals for fore-
casts are also obtained directly from the covariance calculations which
are an integral part of the Kalman filter.

The basic payoff model for PJM at time of contract start was:

Y = bOY0 + b3Y3buY11 + b12Y12 + b13Y13 + bZYZ + b3Y3

where
Y = payoff value of a particular person assigned to a
particular job;
*If decision indices are used, a will be a continuous variable.

i,

*%A hat over a quantity denotes itz cstimatce.

9




Y, = constant fill component, which is given to eligible
person-job combinations so that each possible clas-
sification is assigned a positive payoff;

Yl3 = Indicator of skill area preference (Mech, Admin, Gen,
or Elect);

Y11 = aptitude~-difficulty component, which is a composite
function of applicant aptitude and job difficulty;

le = technical school success component, which is a pre-
diction of final technical school grades based on a
regression of final grades of previous graduates onto
their aptitude test scores, high school graduation
status and high school courses taken;

Y, = variable fill component, which is a function of time
left until a particular enlistment date and of the
proportion of a specific job quota for that date
which has been filled. Typically, Y, is increased

- 2
as the deadline approaches;

Y3 = minority/non-minority component, which is a function
of percent minority/non-minority representation on
a given job. Y., increases for jobs with lower than
average representation.

o’ bll”"
and are specified by managers and policy makers. The coefficients are
adjusted so that the maximum payoff is 1000.

The weights b control the priorities of the six components

Given a set of payoffs {Yij; i=1,...,m; j=1,...,n} for m people
and n jobs, the payoff matrix is

Cyll 12 yIn ]

L yol Y™

and the column means are

m
P17 ¢
™ i=1
The data available for this study included column means over a 5-year
period (1973 -1977) for the total payoff and for the components Y, and

Y,,-
12
were supplied. Data for a total of 320 job categories (CAFSC) were supplied.

In addition, total number and eligible number of applicants data

10
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f The accuracy of predicting column means is of particular importance

; for optimally assigning applicants in a sequential procedure such as PJM.
| No accurate dynamical models for this set cf time series, based on economic
modeling, presently exist, nor are they likely to be developed. The prob-
lem is compounded by high month~to-month variation which sometimes causes
certain series to look like a white noise (i.e., completely unpredictable)
process. However, the times at which policy changes which might affect
the nature of the time series go into effect will be known. This in-
formation can be used to look for trends in the data at specific times.
Thus, the prior information relating to possible structural properties of
the PJM column means is minimal.

The best approach to the problem at present is to utilize empirical
techniques based on stochastic realization theory, which are important
generalizations of the well-known techniques of regression analysis.

The specific problem addressed in this report is development of a
systematic methodology for time series prediction which will be applicable
to PJM time series data. The techniques developed are quite general in
nature, but will be demonstrated to possess merit for the specific prob-
lem studied. That is, they are demonstrated to offer improvements over
traditional (stationary) time series analysis techniques when used to
predict payoff column means.

11
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3. PAYOFF DATA ANALYSIS

3.1 Data Used in the Study

The basic data sets used in this study consisted of two sets of time
series. Both sets consisted of monthly averages or totals broken down by
job category, Control Air Force Specialty Code (CAFSC), and spanned 5 years
beginning with January 1973. There were thus 60 data points in each series
analyzed. The first data set used consisted of monthly column means of
the payoff data. The second data set consisted of the monthly means of
two components that are used in computing the total payoff (known as Y11

and Y,,) and the monthly totals for eligible individuals and total in-
dividuals for each category. These last two quantities modulate the
number of applicants for the various job categories and so may be seen
to affect the variable fill component used in the payoffs.

Both data sets display much the same basic character. For this rea-
son, this section and those that follow will emphasize the data set con-
sisting of only monthly payoffs. Also, since the data set consists of
320 categories, only a representative sample of job categories was selected
to span the various categories in their various dimensions of sex, skill
score, and job area (Administrative, Electronic, General and Mechanical)

A total of 50 payoff series were analyzed to determine their basic
statistical behavior. These series are listed in Table 3.1.

3.2 Preliminary Discussion of Basic Time Series Behavior

It is often desirable to examine plots of the basic data to discover
any underlying trends, similarities between series, etc. that may be tied
to an understood phenomenon. A set of plots of the raw series, their 3-
month moving averages and 12-month moving averages for a set of repre-
sentative series are given in Appendix A, Figures A.l1-A.45. As may be
seen, the series exhibit a variety of behaviors.

The E80F class data appear very noisy, indicating that prediction
will be relatively difficult. The remaining ESOF class data were smoother,
with a single peak near December 1975. The E70F data are relatively smooth
and show two peaks--one near December 1974 and one near December 1976.

The E60F data match E70F closely, and ES0F also lcoks similar to the E7QF
class. G60F data do not exhibit the peak near December 1976. MSOF

data are doubly peaked with the first peak somewhat lower and occurring
earlier. The male series are, in general, smoother than the correspond-
ing female series. All series should probably be regarded as nonstationary
due to their lack of a long-term mean. Two general trends appear that

are not well understood in terms of a causal event or policy change. The
first trend is the rapid increase in the payoff beginning in January 1976.
The second is the leveling off and falling of the payoff beginning in 1977.
The 3-month averages also show the expected local peak of pavoff in the
summer months. The anticipated midwinter peak is often absent. These
peaks have been historically associated with an increase in enlistiments

at the end of the first and second terms of the academic year.
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For the remaining classes, G50F, G40F and A4OF cluster and exhibit
a rise in 1974, wide variation during 1975 and 1976, and a fall during
1977. Classes A50F and M4OF exhibit unique shapes. These data suggest
that only a few significantly different time series models may possibly
represent most of the time series data.

Because of the fact that it is expected that cyclical variations
will occur in the data due to academic year end, etec., it is also of in-
terest to investigate the structure of the series. If this is done, a
variety of behaviors is observed. A sample of these behaviors is given
in Appendix A, Figures A.46-A.51. The series F30430 displays a fre-
quency peak corresponding to a component with a 4-month period. F43130
shows a peak with subannual frequency, but also appreciable components
at semiannual and quarterly periods. Similar behavior occurs in F27131
and F42333, but with diminished higher frequencies. In F20430, the
higher frequencies are almost gone, while M23123 shows hardly any higher
frequencies. The semiannual component is probably tied to the academic
year. The cause of the higher frequencies is unknown, and the lower
frequencies are probably the result of policy changes.

Due to the similarity in shapes between some of the time series,
it is of interest to investigate the interclass correlation functionms.
These correlation functions are given for both the raw series and the
movement (first difference) of the series in Tables 1 and 2 (Appendix A),
respectively. Examining these tables, it is possible to make several
observations: certain groups such as the E80 female jobs (variables 1
to 4) are highly correlated with themselves but not with most oth-r jobs.
The only significant correlation is a mild one with the female E70 job
46330 (variable 11). 1t is interesting to note that the E80F jobs do
not show significant correlation with the E80M jobs, This may indicate
that the variable fill component may dominate the payoff for certain
groups since all the E8QOF jobs are competing for the same small pool of
recruits. A similar behavior is observed for the A80M jobs (variables
30 and 31).

Interpretation of the correlation matrix of the series movement is
that most female high skill series move only in unison with their group.
That is, the A80OF iobs will move as a group but are not strongly correlated
with members nf other groups. The low skill female series show a greater
tendency to mwove in a correlated fashion with members of other female f

; low skill groups. It is interesting to note that the movement of the ]
| female series is not significantly correlated with the movement of the
male series. The male series show a higher tendency to be correlated
with each other than do the female series.

This completes the basic time series analysis of the raw data.
Because of the nonstationary behavior of the series, statistics such as
means, variance, kurtosis, etc. have little or no applicability and will
not be presented.
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Table 3.1

Series Analyzed in Data Set #1

CAFSC Skill Level Series Name Used
in this Report

30230 E80 X30230
30331 E80 X30331
30333 E80 X30333
30430 ESO X30430
67231 A80 X67231 i
67232 A80 X67232
20230 G80 X20230
20530 G80 X20530
20830 G80 X20830
25130 G80 X25130
46330 E70 X46330
46230 E60 X46230
20430 G60 X20430 ]
54130 ES50 X54130
54230 ES0 X54230
54231 E50 X54231
54232 ES0 X54232

B 54530 E50 X54530

i 99000 E50 TSK295 ~ Female, TSK296 - Male
43130 E50 X43130
42732 G50 X42732
99000 A50 TSK287 - Female, TSK288 - Male
23132 G40 X23132
27131 A4O X27131
42333 M50 X42333

X signifies that male seriecs are prefixed by M, female series by F

14
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4. STATE SPACE MODELING AND PREDICTION FCR TIME SERIES DATA

S—

4.1 Introduction
In Chapter 2, the payoff rj(t) for job j was defined as a stochastic |

process in the sense that it is a function of time t and of a random
variable s (e.g., skill) which varies over the population of applicants.*
The probability distribution of r, (t) was denoted by P ,(r(t)) where

3 3

- - ]
P r) = Prob{r (t)<r 4.1 {

5,e® RORE) (.1

The mean payoff mj(t) over a given population of applicants is,

therefore, defined as 1

m (t) = [ T dP, (r) = E{r (t)} (4.2)

J

where Sj denotes the set of all possible payoffs for job j. For a sequential- :
constrained solution of the PJM problem, one is interested in the time- i

evolution of the probability distribution function P (r) or, more modestly,

3.t

of the mean mj(t).** Assuming that the time evolution of m,(t) consists

3

of deterministic (e.g., trend, seasonal) as well as stochastic components
describable by a finite order Gauss-Markov process, one can construct a
state vector model of the following type:

xj(i+l) = ¢jxj j

mj(i) = Hjxj(i) (4.4)

(1) + v, (1); i = sample number (4.3)

Here xj(i) is an nx 1 vector of state variables, where n is the sum
of the crders of the deterministic and stochastic components. vm(i) is a
Gaussian white noise (i.e., uncorrelated in time) sequence with mean Gj
and covariance Qi' The matrices Qj(n>in) and Hj(l‘*n) are known as the

state-transition and output transformation matrices. The definition of
the state vector x,(i) is not unique, and any other vector related to

3

x,(1) by a nonsingular nxn transfcrmation matrix is also a state vector.

3

This fact can be used to simplify the structure of matrices Oj and Hj to

certain canonical forms. Once the canonical forms have been chosen, the

*To be more precise, payoff should be denoted as rj(s.t).

**An obvious extension would be to study the time evolution of both the
mean and the variance of r, (t).

3
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dimension of the state vector and consistent estimates for the parameters
are obtained by using Akaike's Canonical Correlation Technique (Akaike,
1974).

The state vector model of Eq. (4.3) - (4.4) does not take into account
lagged payoff correlations between jobs. For example, if the mean payoffs
m, and m on jobs j and k tend to be correlated with each other at dif-

3

different times, an augmented state space model may be defined as follows:

(xj(m) J’@j, °J.k xj(i) . vj(i) “s)
ka(i+l) LQk,j’ ¢k xk(i) vk(i)

", (i) “H ,0 x, (i)
b h| k| (4.6)
_mk(i) 0, Hk xk(i)

where the off-diagonal block matrices ¢k j account for the interaction
1

over time between job payoffs. The advantage of using Eq. (4.5) - (4.6)
is that the predictions of mj(i) and/or mk(i) may be improved since one

series may contain leading-indicator type of information for the other
series.

Further improvements of the state space models may be obtained by in-
cluding exogenous variables, denoted by vector u. Examples of possible
exogenous variables that would influence payoffs are better educational
background, increased standard of living, special training, incentive pro-
grams, improved salaries, advertising and special recruimment campaigns.
The exogenous variables can be included in Eq. (4.3) - (4.4) as follows:

x,(i+1) = ¢jx

3

mj(i) = Hj

h
xj(i) + Du

(1) + Guj(i) + vj(i) 4.7)

j(i) (4.8)

where G is the input distribution matrix expressing the influence of
exogenous variables on the state of the system.
We now discuss in detail the state spare modeling methodology.

4.2 State Space Models

State space models of random processes are based on the Markov property
which, in simple terms, implies the independence of the future of the
process from its past, given the present state. In other words, the state
of a Markov process summarizes all the information from the past that is
necessary to predict its future. For obvious reaszons, only the case
where the state vector is finite dimensional is of practical interes:z. A
general state vector model is typically specified in terms of the following
five quantities (see Figure 4.1): (i) three vectors respectively of input
u({), output y(i) and internal state variables x(i); (ii) a rule for
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Measured «(1) Transformation Transformation
Input S Model > Model

Figure 4.1. State Vector Model
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transformation of the state vector from one time instant to the next;
(i11) a relationship between the input-output and state variables; (iv)
initial state x(0) and (v) joint statistics of all random variables.

Mathematically,
x(i+1) = £(x(1), u(i), ©, 1) + w(i) (4.9)
y(i) = h(x(i), u(i), O, i) + v(1) (4.10)

i=o 1, 2,...

where x(i) is nx 1 state vector, u(i) is r x1 input vector, w(i) is qx1
process noise vector, © is mX 1 parameter vector, y(i) is p x 1 output
vector and w(i) and v(i) are assumed to be uncorrelated white noise se-
quences with known distributions. Similarly, the distribution of x(0) is
assumed known.

All mathematical models including the state vector model are only
approximations to reality. It will be shown here that a number of models
used in forecasting can be written in the form of Eq. (4.9) and (4.10).
If the model is physical or conceptual, the state x(i) has a physical
meaning. In black-box.or time series models, the state need not have a
physical meaning. However, it still possesses an abstract mathematical
meaning stated above for a Markov process.

When Eq. (4.9) and (4.10) are linear, then the model is known as a
Gauss-Markov model. 1t is of special significance and is written as

%(1+1) = Ox(i) + Gu(i) + Tw(i) (4.11)
y(i) = Hx(i) + v(i) (4.12)
i=0,1, 2,...

where w(i) and v(i) are assumed to be Gaussian white noise (GWN) sequences
with zero mean and covariances Q and R. The initial state x(0) is normaily
distributed with mean X, and covariance P,. The matrices ¢, G, H, I', Q,

R and P, are determinisgic but may be time-varying. The main advantage

of the gepresentation (4.11) and (4.12) is that the mean, covariance and
correlation functions for x(i) and y(i) can be computed recursively by
solving a set of first order vector difference equations (Brvscn and Mo,
1969). Furthermore, the posterior distribution p(x(i)|y(i), y(i-1),...,y(1))
turns out to be Gaussian and its first two moments are computed recur-
sively by the Kalman filter.

Process and Measurement Noise

The state vector model (4.11) - (4.12) contains two white noise terms,
namely, process noise w(i) and measurement noise v(i), which physically
have quite different interpretations and effects. v(i) represents the
errors inherent in observing the true state of the svstem x(i), whereas
w(i) represents random shocks during the evolutiocn of x(i). If we neglect
v(i) and assume for the time being that all the state variables can be
observed, i.e., y(i) = x(i) and all matrices are time-invariaant, Eq. (4.11)
may be written as




y(i+1) = Oy(1) + Gu(i) + I'w(i) (4.13)

Eq. (4.13) represents a first-order autoregressive process with ob-
served input (or exogenous variable) u(i) and random errors w(i) (Whittle,
1963). Chow (1975) and Mehra (1974) show how econometric simultaneous
equations models may be written in the form of Eq. (4.13).

Consider now the case where there is no process noise, i.e., w(i) =0,
and the initial state x(0) is known perfectly. Then, given {u(i)}, the
{x(1)} process is deterministic and Eq. (4.12) represents a signal plus
noise model. The prediction problem, in this case, consists essentially
of separating the signal from the noise. Notice that this nice interpre—
tation may be lost if x(i) =y(i) - v(i) is substituted into Eq. (4.11)
yielding

y(i+1) = dy(1) + Gu(i) + (v(i+l) - dv(i)) (4.14)

Eq. (4.14) corresponds to a vector first order Autoregressive Moving
Average (ARMA) model (Whittle, 1963). The same type of model is obtained
even if the w(i) term is kept in the model.

To show the modeling flexibility of the state vector form, we consider
the following examples:

(i) Time Varving Regression Model. Consider a time varying regression
model with d(i) as the dependent variable and zl(i),...,zm(i) as the in-
dependent variables.

m
d(1) = § a (i) 2z, (1) + n() (4.15)
k=1

Assume further that the time variation of each of the regression coefficients

may be described by a first order scalar model with random shocks Ek(i),
namely

ak(i+l) = akak(i) + Sk(i) (4.16)
k=1,...,m

Eq. (4.15) and (4.16) may be expressed in the form (4.11) - (4.12) by de-
fining

y(i) = d(1), n(i) = v(i)
T
x (1) = Cal(i),...,am(i)], =0, I'=1
A(i) = [zl(i),...,zm(i)]
ay El(i)
2 .

o = . w(i) =|
o £.(1)
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(1i) Error-in-Variable Model (EVM) with Correlated Independent Variables.

Suppose that in Eq. (4.15) the independent variables 2z (1) can only be ob-
served as b (i) with errors e (i), i.e.,

bk(i) = zk(i) + ek(i) k=1,...,m (4.17)

Suppose further that z (i) may be modeled as first order scalar Markov
process, namely:

zk(i+l) = ¢kzk(i) + Ck(i) (4.18)

The model of Eq. (4.15), (4.17) and (4.18) may be written in the linear
state vector form (4.11) - (4.12) for the constant coefficient case and in
the nonlinear form (4.9) - (4.10) for the time varying case. The state
vector in the latter case consists of (zl(i),...,zm(i), al(i),...,am(i)).

The evolution equation (4.9) is linear in both cases (i.e., Eq. (4.11)),
but the outpt equation in the time varying case involves products of
states. Models of this form can be used to develop adaptive Kalman fil-
ters, in which the desire is to track changing coefficients which vary in
an unpredictable manner (i.e., track ¢ in Eq. (4.11)).

4.3 Recursive State Estimation and Kalman Filter Equations

Consider the model of Eq. (4.9) - (4.10) with O and p(x(0)) specified.
Recursive equations to propagate conditional densities are derived as fcl-
lows, starting from p(x(0)):

p(x(1) YD) » px(+D|¥Y) » p(x(i+1) ¥

(prediction) (update)

where i {y(1), y(i-1),..., y(1)} denotes the set of all observaticns
available at time t.
One-step-ahead prediction is done using the state equation as follows:

[p(x(i+1), xci)IY‘) dx (1)
fpx(i+1) | x i), YhHp (1)1t dx(4)
= fpw(i)(X(iH)-f(X(i), u(k), 9, 1)) x

[}

p(x(1+1)|¥h)

4.19)

p(x(D) Y dx(1)

where p (*) denotes the probability distribution of w(i) and the inte-
w(i) y

gration is carried over the sample space of x(i).
Measurement update is done using Bayes Rule as follows:
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i+1

) = p(x(1+D) |¥Y, y(1+1))
_ py+) [x (1) P (i+1) | YD)
[p(y(1+1) |x (i+1))p (x (i+1) [Y) dx(i+1)

p(x(i+1) Y (4.20)

Notice that

POYUHD [R(#1)) = p g0y (7 (+1) = h(x(i+1),u(i+1),0, (1+1))

where pv(1+1) denotes the probability distribution of v(i+l). Also,

Eq. (4.19) may be used repeatedly for prediction more than one step ahead.
The actual forecasts are obtained by minimizing the loss function

averaged with respect to the prediction densities. For example, if the

loss function is mean square forecast (output) error one step ahead, then

the mean of p(x(i+1)lYi) is chosen as the best forecast. Other attributes
of a density function commonly used in practice are the median and the mode,
the former minimizing the absolute forecast error and the latter selecting
the most probable value of the random variable. (For details, see Degroot
(1970) and Bryson and Ho (1969).)

The computation of Eq. (4.19) and (4.20) is quite cumbersome due to
the multi-dimensional integrations and the nonparametric specification of
the density functions. By using the special case of the linear Gauss-
Markov model (Eq. (4.11) and (4.12)), elegantly simple results are ob-
tained due to the following facts:

a) Linear transformations of Gaussian random variables are also

Gaussian.

b) The Gaussian family has the conjugate property that for Gaussian
priors and Gaussian likelihood functions, the posterior distri-
butions are also Gaussian.

¢) Gaussian distributions are completely specified by their first
two moments, i.e., mean and covariance.

A justification for using the Gaussian assumption comes from the
central limit theorem according to which the limiting sums of non-Gaussian
independent random variables, under certain regularity conditions, have
Gaussian distributions.

Kalman filter equations. Let the mean and the covariance of the

Gaussian density function p(x(i+1)|Yi) be denoted by ﬁ(i+1)]i) and P(i+lii),
respectively. We would also denote the same as

p(x(+1) |Yh) & N@E@E+D 1), PEH) 1)

where ~ N(a,b) signifies "distributed normally with mean a and covariance
b." Similarly, let

p(x(1) Y & NG| 1), PE]1))

Eq. (4.19) leads to the following two equations:

21
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Prediction equations:

RUA+L[1) = $()RU[1) + 6(1)u(i) (4.21)
PGH]1) = ()P D)2T(1) + F()Q)ITT (i) (4.22)

!
;
;

Eq. (4.20) leads to the following equations:
Update equations:

RG+1[i+1) = R@E+L]1) + Ki+1)v(i+l1) (4.23)
V(it+l) = y(i+l) - H(I+1)R(i+1]1) (4.24)
K(i+l) = P(i+1]1) HE(i+1)T (1) (4.25)
T(i+1) = H(i+1)P(i+1]1)HI (i+1) + R(i+1) (4.26)
P(i+1]i+l) = [T - K(i+1)H(i+1)]P(i+1}1) (4.27)

Initial conditions:

(4.28)
(4.29)

"
»

x(0]0)
P(0]0)

]
o
o

Eq. (4.21) - (4.27) constitute the basic Kalman filtering equations
and they are solved recursively starting from the initial conditions
(4.28) - (4.29) in the sequence {(4.21), (4.22), (4.24), (4.26), (4.25),
(4.23) and (4.27). TFor predictions more than one step ahead into the
future, only Eq. (4.21) and (4.22) are used recursivelv, Since for Gaus-
sian density functions, the mean, mode, and median are the same, the
k-step-chead forecasts ﬁ(i+k}i) will be optimal for a whole class of
symmetric loss functions--that is, even functicns of estimation error
(Degroot, 197C). The covariance matrix P(i+k|i) provides ccnfidence limits
for the forecasts %X(i+kii). The prediction and update steps are illus-
trated in Figure 4.2.

4.4 Propertics of Kalman Filters

In addition to the optimality properties stated above in the Bavesian
decision theorv sense, the Kalman filters have a number of other interesting
properties of practical significance. We mention these properties here
without detajled proofs.

(i) Innovation propertv. The one-step ahead prediction error sequence
V(i) = y(i) - Hx(i i-1) is known as the "imnovation sequence'" since it rep-
resents new information brought by observations y(i) in addition to the

. . . . . i-1 .
information contained in the past observation historv Y . The sequence

v(i) has the interesting property that for aan optimal filcer it is a zero
mean Gaussian whte noise sequence with covariance I(i). It will be shown
in the sequel how this property may be used to test the optimality of

Kalman filters, to detect changes in the process model and to build adap-
tive and robust Kalman filters. It has been shown by Kailath (1968) that
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the innovation property follows directly from the orthogonality principle
of linear least squares estimation and that this property may be used as

a starting point’ for the derivation of the Kalman filter. Furthermore,
since {v(i)} may be obtained from {y(i)} by a causal and a causally-inver-
tible transformation, the innovation sequence contains as much information
as the original observation sequence.

(i1) Stability. It has been shown by Kalman (1963) and others that
the Kalman filter possesses the prouperty of global asymptotic stability
for a completely controllable and observable system. The last two pro- v
perties of the system are of central importance in modern system theory
and relate to the structure of the system matrices ¢, ' and H. For time
invariant systems, necessary and sufficient conditions for the system of
Eq. (4.11) - (4.12) to be completely controllable and observable are that
the rark of the following two matrices be n, where n is the dimension of
the state vector, i.e.,

Rank([, 7. 627,...,»™" 1] = o (4. 30)

Rank (HT,5THT, ..., 3" HTyT

] =n (4.31)
The physical interpretation or the observabilitv property is that for

a noise-free observable sv-tem, the initial state x(0) can be reconstructed

uniquely from the noise-frec measurements at n time instants, that is,

y(),...,v(n)!}
The controllabilitv property Puies the existence of a control sequence

transferring the svstem rrum a civen 1n.tial state to any other state in
finite time and with finite contrsl encr.ev,

The practical significance o1 the controllabdility and observability
conditions are that for time-iaviarian: <.steus, the filter covariance
matrices (P(i+l: i), P(i'i)) and Kulmin w.in K{i) reach constant steady
state values, independent of the initial conditions. Furthermore, since

these matrices can be precomputed (without R1ving observations {v(i)}),
the real-time Kalman filter comoutations can be reduced to Lg. (4.21),
(4.23) and (4.24). In manv applications, the assumption of constant
Kalman filter gain does not degrade Tiltor pertormance by very much, but
results in significant compurationsl savings. Wiener filtering (Wiener,
1949) for stationary processes alsc correcponds to this case.

(1ii) Numerical propercies. The Kalman filter equations (4.21) -
(4.27) can be written in different forms with different numerical pro-
perties. Unfortunately, the cquations (4.21) - (4.27) known as the covar-
iance form of the Kalman filter, though phvsically easiest to comprehand,
are not best suited for numerical computation. In systems with widely
separated eigenvalues of the filter covariance matrices, round-off errors
can lead to non-negative definite covariance matrices. A solution to the
problem is obtained by using Cholesky square roots of the covariance
matrices by equations of the type:

P(1]1) = s(i]i)sTa|D) (4.32)




Recursive equations are developed for S(i]|i), and Eq. (4.32) is used
to compute P(i|i). Another advantage of this approach is improved accuracy
on finite bit machines since the condition number of S(i|i) is half that
of P(ili). In particular, the accuracy of single-precision square root
Kalman filters is comparable to that of double-precision covariance Kalman
filters. The triangular factorization of P(ili) offers several other ad-
vantages which are discussed in a recent book by Bierman (1976).

Kalman filter equations can also be written in terms of the informa-
tion matrices which are defined as the inverses of the covariance matrices
(see Schweppe, 1973). The information form has the nice property that the

prior information PO can be set to zero without any numerical difficulties.

The information form also plays a role in square root filtering and in
systems with Fisher-unknown inputs (Schweppe, 1973; Mehra, 1975). In
the latter case, the limit Q-+l is considered to model input forcing
functions that are deterministic but completely unknown (i.e., no prior
information on {v(i)}).

Cases in which the measurement noise is correlated or some of the
measurements are noise-free have been considered by Bryson and Henrick-
son (1968). It is possible to reduce the size of the Kalman filter in
these cases. Other techniques for reducing the dimension of Kalman fil-
ters are discussed in Galdos and Gustafson (1977).
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5. STATE SPACE MODEL STRUCTURE DETERMINATION

Multidimensional or multiple time series are encountered commonly
in economic, sales, production, financial, scientific and engineering
applications. Even so, one finds very few techniques in the literature
for their modeling and forecasting. The univariate time series, on the
other hand, has received considerable attention and has been used exten-
sively by Box and Jenkins (1970) and others for modeling and prediction.
Several attempts have been made over the last decade to extend the Box-
Jenkins approach to multiple time series. However, most of these attenmpts
have failed because the multiple time series case requires certain new con-
cepts and techniques not present in the Box~Jenkins approach.

Recently certain groundbreaking developments in the field of systems
identification and control theory (IEEE, 1974; Mehra and Lainiotis, 1976)
have led to a new approach to the modeling and forecasting of multiple
time series. This chapter describes the theory and application of a
computer program based on the new approach which can analyze a large
number of time series simultaneously, limited only by the size of the
computer memory available for the storage of data. The program can per-
form differencing and choose the order of the model automatically so that
user intervention is minimal. Even on univariate time series, the program
has been found to be more convenient and faster to use than the Box-Jenkins
method.

5.1 Theoretical Basis

The program is based on state space models, stochastic realization
theory, statistical decision theory, canonical correlation analvsis and
Kalman filtering combined in a unique way for multiple time series analysis.
A brief discussion of the technical aspects is given below. For full
technical details, the reader should consult a chapter by Akaike in Mehra
and Lainiotis (1976).

5.2 State Space Models

The state of 2 system is defined as a collection of all informatien
from the present and past history of the process sufficient te predict its
future behavior. The state vector may be defined from theorerical con-
siderations or from an analysis of the past history of a process. The
former approach leads to a theoretical or physical model such as the sim-
ultaneous equation models of econcmics (e.g., Klein's model of the U.S.
economy), dvrnamical models of mechanics, or circuit models of electrical
engineering. These models are too specialized to be made part of a general
purpose program for multiple time series forecasting. 1In practice, there
are many processes and systems for which theoretical models are not avail-
able, and statistical models have to be developed directly from the data.
This chapter describes an approach which achieves this statistical model
development bv identifying the state of the system from a canonical cor-
relation analysis of the observed data and by using state vector canonical
models whose parameters are uniquely defined from the input-output
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properties of the system.
Let y(1), i=1,2,3,...,N be a p-dimensional vector of an observed
time series. Thén a state vector model of the process is of the form

x(i+1) = Fx({1) + Gu(i+l) (5.1)
y(i) = Hx(i) (5.2)

where x(i) is an n-dimensional vector of state variables (generally n2p)
and v(i+l) is a p~dimensional vector of one-step-ahead prediction errors
or "innovations" which is a zero mean white noise process. Matrices F,
G, and H, respectively nxn, nxp, and p xn, depend on the statistical
properties of the process. The covariance matrix of V(i) is denoted by I.
The system of equations (5.1) and (5.2) is completely specified in terms
of the quantities (n,F,G,H,L). 1t is shown easily that the state vector
model of Eq. (5.1) and (5.2) is equal to an ARMA model in the sense that
both models will produce an output series v(i) with identical statistical
properties. However, there are several advantages in using state vector
models instead of multidimensional ARMA models. These are:

(i) Once the state vector model is identified, prediction or fore-
casting is done trivially by setting vtE 0 for all future values of t.

The prediction of some of the series when the future values for the rest
are known is also done easily bv using a Kalman filter.
(ii) A multidimensional ARMA model of the type

y(i) + Biy(i-l) + ... +Bmy(i—m) = u(k) +A1u(1'-1) + ... +A.Lu(i-L)

is not unique in the sense that a large number of matrices (Bl...Bm,
Al"'AL) may produce a y(i) series with identical statistical properties.

(This problem does not arise for univariate series.) The same problem

exists for the state vector model but it is easilv solved by restricting
(F, G, H) to the so-called "cancnical foras" (Mehra and Lainiotis, 1976).
The restrictiens on (Bl...Bm, Al"'AL) are more complicated and are dif-

ficult to incorporate easily ir an identification proaram.

5.3 Stochastic Realization Theory

The problem of determining the internal structure of a state vector
model, namely (n,F,G,H,.) given its external! behavior, namely the ccr-
relation function (CO,CI,CZ,...)* of the output v(i) is called the sto-

chastic realization problem. Further conditiens such as the minimality

of n and the uniqueness of (F,G,H,Z) are imposed tO develop a parsimonious
representation whose parameters can be identified uniquely from the dacta,
It should be noted that stochastic realizatien theory by itself does not

* 1
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solve completely the problem of multiple time series modeling since the
correlation function (CO’CI"") is not known exactly and must be estimated

from the observed time series (y(1),y(2),...,y(N)). This problem is
solved by using tools of statistical decision theory and canonical cor-
relation analysis, discussed by Akalke in Mehra and Lainiotis (1976).

Statistical decision theory is used in the development of the in-
formation criterion and the test statistic for selection of model order
(Akaike, 1974). Autoregressive (AR) models of different orders are
developed using a Levinson-Whittle~Wiggins-Robinson algorithm and are
employed in tests of fit, determination of G, and in generating forecasts
for cross-checking with the state vector model.

A flow diagram of the procedure is shown in Figure 5.1. The basic
concept behind the method is that the state vector of a system at current
time i may be defined as a basis vector for the space spanned by the cur-
rent output and future predictions:

{y(1), §G+1]1), ..., §UE+K]i), ...,}

(This space is referred to as the "prediction space" of a system at time i,
since §(i+k|i) is the predicted estimate of v(i+k) based on observations
up to time i.) It can be shown that this space is finite dimensional for
a finite dimensional system and that the dimension of the system can be
determined by examining the canonical correlations between two sets of

variables U and Vk for k=1,2,3,... where

U= {yT(i),yT(i-l),...,yT(i—k)}, k sufficiently large, and

Ve = {yT(i).yT(i+1!i),...,yT(1+k|i)}

By increasing k one at a time and by considering elements of y in a
given order, the state vector x(t) of the system is determined as a sub-
set of Vk as shown in Figure 5.1. Once the state vector is identified,

the matrix F is determined simultaneously from the canonical variables.
The purpcse of fitting the AR model and computing the impulse response
function is to estimate the Kalman gain matrix ¢ and the innovation co-
variance matrix Z. Notice that the procedure identifies the stationary
Kalman filter model directly and does not involve solving Riccati equations.

5.4 Transformation to Stationarity

The program can perform automatic differencing and deseasonalizing
to convert the given time series individually to stationary ones. The
tests of stationarity and the choice of the seasonality period are based
on the autocorrelation function, The automatic differencing (one period
and seasonal) are continued until the transformed series passes the
stationarity test.

The program has already been used successfully on a number oi time
series, both multivariate and univariate. It has the advantage that no
cumbersome and time-consuming nonlinear searches are performed to estimate

i8
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the parameters. The canonical correlation and AR modeling techniques

provide asymptotically efficient estimates of all system parameters (Mehra

and Lainiotis, 1976).

5.5 Development of Kalman Filter from Cancnical State Space Model

Once the state space model is specified, the next step is to derive
the Kalman filter from it.
The Kalman filter is based on a system model of the form
x(i+1) = dx (i) + w(i+l) (5.3)
y(i) = I'x(1i) + v(i) (5.4)
where the initial state x(0) is a Gaussian random variable with mean n
and covariance matrix P0 and w(i), v(i) are mutually independent zero

mean Gaussian white noise sequences with respective covariances W, V.
The Kalman filter produces the minimum-variance estimate recursively
according to

R(i+1{1) = oR(1}4) (5.5)
K(i+1]i41) = ﬁ1(1+1{i) + K(i+1)r(i+l) (5.6)

where X(i+l1|i) is the one-step-ahead prediction of x, and r(i+l) is the
one-step~ahead output prediction error

r(i+1) = y(i+l) - TR(i+1]1) (5.7)

The initial condition is X(0) =m. The gain matrix K(i+l) is computed
according to

1

K(i+1) = P(i+1])TTS(i+1)~ (5.8)

S(i+l) = TP(i+1[4)TT + v (5.9

where P(i+l!i), S(i+l1) are, respectively, the one-step-ahead state and

output error covidriance matrices. P(i+l) is the covariance matrix cf
estimation errors which is computed recursively by

P(i+1]1) = 6P(i]1)oT + W (5.10)

P(i+1]i+1) = P(i+l|i) - K(i+1)TP(i+1]i) (5.11)

with initial condition P(0[0) =P Since the state space model is a

0
steady state one, we are interested in the steady state Kalman filter in
which K(i) =K ¥i, P(i|i) =P V¥i, S(i) =S ¥i, P(i+1l1) =P' V¥i.

In this case the equations to be solved are

K = p'ris] (5.12)

an




S=TP'TT 4 v (5.13)

P' = fpe’ + W (5.14)
P = P' - KIP' (5.15)
The Kalman filter has the desirable property that the sequence {v(i)}
is a zero-mean Gaussian white noise sequence with covariance matrix Si'

By comparing the Kalman filter and state space models, the following cor-
respondences are seen to hold:

State Space Model F|G|H]|L

Kalman Filter ¢ K r S

In order to proceed further, we will take advantage of the special
form of the state space equations. The state vector x(i) is of the form

y(1)
x(1) = r (5.16)
y (1)

where yr(i) is an n-m vector which contains predicted values of the com-
ponents of y(i). Now we note that the state space model is of the form

X(1+1]1+1) = OR(i]|1) + Gu(i+1) (5.17)

V(i+l) = y(i+1) - §(i+1 1) (5.18)

y(i+1) = Hx(i+1) (5.19)
where

(1K) = E[x(1) |y(1),y(2),...,y(K)] (5.20)

is the conditional expectation of x(i), besed on data up to y(k}). Siace
F(i+1]i+1) = y(i+1), K is of the form

mXn
K=|-=----- (5.21)
(n-m)*m
$ is of the form
]
Omxm i 012 * (n~m)
¢=|------ + - Rl (5.22)
¢ t $
21(n--m)xm ' 22(n—m)x(n—m)

3]




and H is of the form

. H = [qm*m‘ mx (n-m)

fect measurements. Thus P assumes the form

Lo(n-m)ﬂm | P(n—m)x(n-m)

"o 1 (5.

: )
L P = [_ Omxm ; 0mx(n—m) .

23)

Eq. (5.17) - (5.19) correspond to the Kalman filtering equations for per-

24)

The remaining question is the form of P' and the driving noise covar-

iance ratrix W. Partition W as

W "W
W= _I;mfm-;_ EZEXS“Iml - - (5.

W (")

12 ' 22(n-m)x(n-m)
and P' as

p' | p!
P' = 'lT + -2 (s.

p! P!

2 '3

Then Eq. (5.12) - (5.15) yield
pf = P} - KTz (k)T (5.
r.T
L = 0121’ ¢12 + wll (5.
r,T r.T .
Z(K") ¢129 ¢22 + W, (5.
v . r,T
P3 @22P 32 + w22 (5.
Py = £x5HT (.
' =
P1 b3

25)

26)

~
~1
~

28)

29)

30)

31)

In these equations, there are (n-m+l)(n-m)/2 free variables vhich may be

specified. One solution is to specify w22 >0; for example

W,, =01 (5.

22 nm

33)

However, there are constraints on woz which need to be met. To see this,




st

write (5.30) in the form

r N 4 r r,T
' P = 0,,P @22 + [wzz"K Z(K) ] (5.34) 4
If ¢22 is unstable, we can get a solution by picking
r r,T
0 s w22 < K'Z(K")

On the other hand, if ¢ is stable, then we are assured of a solution if

22

>KrZ(Kr)T. An approximate value of W can also be picked by statis-

¥22 22
tical tests on the original data. For example, the covariance matrix of i

X, z-=E[x(i)x(i)T], may be calculated for the data ensemble and then W
found from

W= X-0%0" >0

Note that this implies stability of &, which we expect in practice since
the payoffs are bounded. Using (5.25), wzz can then be estimated. A fur-

ther check is that the two computed values of le
approximately.

Once W, , is selected, P’ is found directly from (5.34) by solving a
22

linear vector-matrix equation by writing out the components of P¥ in

L L 1 ] v
E vector form. The values of Pl’ PZ’ P3, kll and le are then computed

directly, which completely specifies the parameters of the Kalman filter.

Given the model of (5.17) - (5.19), predictions can be easily made bv
noting that the predicted value of y(i+k) given data v(1),v(2),...,y(1)
is

should agree, at least

$(i+k|1) = [1:016%%(i]1); k=20 (5.35)

The advantage of using the Kalmar filter ferm is that some verv powerful
adaptive filtering techniques have been developed using this form and
these may be easily mechanized for solving the PJM problem. We will
discuss in Chapter 7 the adaptive filtering problem and then develop a
specialized approach for the PJM problem.

«—’ -
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6. STATIONARY STATE SPACE MCDELS - RESULTS

6.1 Introduction )

In order to apply the methodology of stationary state space model
identification given in the preceding sections to the PJM pavoff series,
a number of stationary models were identified using the s2I state space
identification program. This program implements the process of automatic
differencing determination, canonical correlation analysis, model order
determination, parameter identification and forecasting. It is capable
of producing a number of outputs such as the identified model, forecasts
with upper and lower 95 percent confidence limits, goodness-of-fit statis- 3
tics, etc.

The models reported in this section will consist of models derived
only for the payoff series dataset. Because of the large amount of out-
put associated with each model, only a representative sample of outputs
will be presented. A summary of the state space model error, l2-month
moving average model error and persistence model error for 13 male and
13 female series is given in Table 1 of Appendix B. The state space
models for these series were produced then by identifving the system on
the first 4 vears of data (1973 -1976) and then predicting the series for
the last year (1977).

The persistence model was taken to be the value of the series for
December 1976 and forecasting no change over 1977. The moving average
model was taken to be the average of the preceding 12 months (January
1976 to December 1976) with no change forecast for 1977. 3

A listing of the abbreviated cutput from the state space model pro-
gram with plots of the historical data and 12-month predictions are given
in Appendix B, Tables 2 through 27 and Figures B.1l through B.52. In
these figures, the suffix PH stands for the one step ashead prediction of
the history over the four-vear fit set, P stands for the 12-nouth pre-
dictions, and PU and PL stand for the upper and leower 95 percent confidence
limits on the predictions.

6.2 Discussion of Results

The reselts of the experinent cannot be termed encouraging. The
models developed for all the male series and all but scveril of the female
series do not contain leadine terms as state variables and so are siaple

first-order nodels. For many of the male series and several of the fe
male series, tirst order ditferencing was performed te obtain a more sta-
tionary behavior., In thoso cases, the state transition element value wvas

quite small, often of magnitude 0.1 or 5.2, This Yact, taxen with the

low order models, tends to indicate that the series have quasi-randon walk
character.  ihis hvpothesis is borne out when the perfermance of the state

for predicting a rwgem walk process.  For the majority  f the male series,
the persictence predictor performs better than the state space model, even
though the fit of the model over the earlier 4 vears is good. In examining
the series for which the state space model performance is poor, it is noted

that the model tends to overestimate the serics due to the unforescen
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leveling off and even decline in the series values during 1977. It is
precisely this type of behavior that may viclate the assumption of statis-
tical stationarity for the PJ series payoff{ data and make the problem
more suitable for treatment by the adaptive methods covered in later
sections.

The performance of the state space models on the female time series
data is superior to that of the male series when scored against a persis-
tence predictor. The models produced, however, have much the same charac-
ter as the male models except for the two series in which leading terms
were found. The EB0OF series (F30230) was the worst to predict, with the
model being basically series mean. Other models often achieved an R2 of
0.8 or 0.9 against the original series data, but showed poor performance
against the differenced data.

In summary, it should be concluded that the time-invariant state
space models are probably not suitable for prediction of payoff series
data due to the sudden shifts in the series. These series will probably
be treated better by adaptive filters than any constant valued model.

N S

s




i i AR s bioe o e A st

oo VMM b3 X0 255 i N N i o Ao i e o

7. ADAPTIVE KALMAN FILTERING METHODOLOMGY FOR PJM PAYOFF DATA

7.1 Motivation

Although the Kalman filter has many desirable properties, it suffers
from some fundimental limitaticns. One such limitation is that the ma-
trices ¢, K must be known a priori. These narrices may be time varving,
but if thie time variation is known a priori, the Kalman filter remains
optimal,

The situation chanpes, however, when ¢ changes in an unpredictable
manner or the statistics of the process noise chanses. Ve may indicate
this more precisely by writing the steadyv-state Kalman gain matrix in
the form
T.-1

s

K = P'H (7.1)

where P' is the error covariance matrix for the estimate §(1+1li) and ”
is the covariance matrix for the innovations (I is outputted directly by
the state space modeling program). The matrix P' is given by

P' = 0POL 4 W (7.2)

where P is the error covariance matrix for the estimate i(i+]!i+l) and W
is the covariance matrix for the process ncise. Assuming a Markov process
of the form

x(i+l) = $¢x(i) + w(i) (7.3}

where x(i) is the true state, then

W= Efu(i)w ()] (7.4)

Using (7.3) as our model of the true state, P and P' are, respectively,
the covariances of ﬁ(ifi)-—x(i) and &(i+i!i) -x(i).

It is clear that the gain matrix K changes :f 2 or W changos. Thus
if the dynamics, modeled by %, or the process noise statistics, modeled
by W, change with time in an unpredictable manner, we need to develcp a
technique for estimating them,

Previous numerical studies on the PJM pavoffs have sugpested that the
underlying process changes with time. Figures 7.1-7.6 show the 12-ronth
moving average for several payeffs during the period 1974 -1977. 1t is
clear that the dvnamics change significantly over the entire 5-vear period
but tend to persist over at least several months. That is, the variation
in the dynamics is not entirely random. The pavoff for F42333 has dv-
namics which appear to change at discrete points--the middle of 1975 and
the beginning of 1977, Otherwise, the dynamics for this pavoff appear to
be the same. For payoff F20530, the dynamics change abruptly at the
middle of 1975, but change only gradually thereafter. The payoff for
M67232 undergoes abrupt changes in dynamice in the middle of 1974, the
middle of 1975 and the middle of 1976, The dvnamics for the M27131 pavelf

o
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undergo an abrupt change in the beginning of 1976 and a gradual charge
during 1976 and 1977. The dvnarics for the F46330 payoff are scen to
undergo abrupt changes three, possibly four, times. Finally, the M30230
payoff dynamics are seen to change abruptly at the bepinning of 1977.
The nature of the changes in the dvnamics of these series is not pre- i
dictable; we cannot predict where cr how fast the dvnamics will change
for any of them. This suggests that adaptive filtering techniques might
be useful in building better prediction models for the payoifs. These
results also supgest that we need to develop methods which can adapt to
the following situations:

(i) slow changes in parameters

(ii) step changes in parameters

In the sequel, we develop an adaptive filter which can handle both
types of situations by simply varying a single scalar parameter.

7.2 Approaches to Adaptive Filtering T

The different pcssible methods of adaptive filtering may be divided
into four general categories: 1) PBayesian estimation; 2) maximum likeli-
hood; 3) correlarion methods; and 4) covariance matching. )

A discussion of these techniques and compariscons between them have
been given by Mchra (1972). Of these four methods, the maxinum likeliheod
approach is generallv the most attractive since it produces (ideally)
consistent, unbiased and efficient estimates for ail parameters. One
drawback of the maximum likelihood approach is that numerical solutions
require solving difficult nonlinear programmine problems (Gupta and Mehra,
1974). However, it is also possible to develop approximarion techniques
which lead to solutions which may be found recursively. This is the
approach taken in the sequel.

7.3 Maximum Likelihood Estimation

Let o denote the set of parameters we wish to estimate. For example,
if we wish to simultaneously estimate the matrices & and K, then

a = {6,k}
Now let Yk=={y(l),y(Z),...,y(k)}, with v(1i) =Hx(i). Then the marginal
probability density of a, given Yk, is
kK P(Y|o)P(a)
P(a]?) = ” (7.5)
P(Y ")

where

p(¥¥|0) = p(* L,y () [

py () Y5, 0y p (Y5 ) (7.6)

P Y (=D VT2 ety |0
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Under the assumption that y(i) is CGaussian, it follows that p(y(i)IYi-l,a)
is Gaussian with mean H@ﬁ(i—lli—l) and covariance I.
The maximum likelihood estimate can be obtained by maximizing

L(a) = log p(aIYk)

k
=l ) [y(i)-m&(i-l[i-l]Tz‘l[y(i)-u¢§(1-1|1-1)] f
i=1 .
- %-log|2| + log p(a) + constants (7.7 )
with respect to a. i
In Eq. (7.7), the matrices ¢, I and the estimates ﬁ(i-l]i-l) are all

functions of a. If no a priori distribution on o is given, the term log p(a)
is dropped. We will make this assumption in the sequel.

The solution is found by solving, simultaneously, the first-order }
necessary conditions l

L(a) _ aL(a) _
=0, 0 (7.8)

Denote the maximum likelihood estimates by &, L. Then

K
L(a) I Mt 2y
), . (e (7.9)
da A =1 %a l&,Z
n
%@' = ee{kzl-zt Y wvn T}, =0 (7.10)
i=1 la E ;
Eq. (7.10) gives i
. K
Ixg I vvT (7.11)
i=1

The remaining problem is to solve (7.9) for 4. 1This is a nonlinear
problem and we must resort to some type of iteration scheme. The method
which appears to work best in general practice (Gupta and Mehra, 1974) is
the Gauss-Newton iteration:

241 -1 3L(a)T

8 da

£
=4 - (1] 2 (7.12)

a

where IF is the Figsher information matrix

he




}
3
r

; v -1 v,
da 3

j (7.13)
i=1

The maximum likelihood parameter identificaticn algorithm may now be

s 0 :
summarized as follows. Starting with initjal estimates A and L, com-
pute

k T
(i) rt o %!ﬁil—-z'lv(i) (7.14)
a
i=1 L
a=a
r= gt
k T
. ] W) -1 3v(di)
(ii) I _Z 5 e (7.15)
i=1 2
a=qa
P
CEE N A L S (7.16)
411 & T
(iv) &0 = E b v(i)v(i) (7.17)
i=1 4]
a=q i
if H&Q+l—azﬂ >g go to (i), otherwise stop.

This iteration solves the estimation problem in a batch mode. We
will adapt it to a more useful recursive form in the next secticn.

7.4 Development of Adartive Filtering Aleorithm

In this section, an adaptive filter suitahle for on-line cperaticn
is develeped. The arguments follow closely the work of DuVal (1976). in
adapting the maximum likelihood estimator of Secticon 7.3 to adaprive i
tering, scveral points must be kept in mind:

1. We wish to make the adaptive filter completely racursive.

2. We wish to disccunt old data which were subject to dinamics
different from those of the present data. This will be done using age-
weighting of the darta.

3. We need to be aware cof the fact that we are attempting, in
reality, to solve a nonlinear filtering problem. Since the optimal =ciu-
tion cannot be found in practice, we must be careful to ensure that tiae
approximations we ake do not degrade the convergence properties of the

.
—
)

algorithm.

In particular, we will make the assumptinn that the innovitions

are linear in the paramcters, when in fa-t
As a consequence, it is not a good idea to
optimal values at each sample. Rather, we
rection to the paramcter cstimates at each
formula:

the relationship is nenlinecar.
update the parancters to their
will make only a partial cor-

sample using the following




a(k+1) = a(k) + L[Ia(k) -a(k)] (7.18)

where a(k) is the actual parameter vecter utilized in the filter and
G(k) is the "cptimal' value computed in the adaptation process.

4., The innovations covariance matrix & is comwputed independently of
the identification of the parameters. We may therefore use anv constant
weighting matrix W in place of 7 in the cost function L(a) and eliminate
the need to identify £ on-line. This may also lead to more robust adap-
tive filters since increased values of v(i) are compensated in L(x) by
increased values of T. By using a constant matrix W, we are exerting more
positive control in keeping the innovations small.

With these points in mind, we now turn to the development of the
adaptive filter. The cost function we will use is

k

J(k) =} Y "o W lucay (7.19)

e~ %

i=1
where ¥ is a scalar age-weighting factor used to discount older data in
a gradual fashion. We.will made several assumptions:

(1) The filter has reached a statistical steadv state so that the

optimal gains are constant.

(2) The innovations are approximately linear functicns of the

paraneters (the elements of ¢ and K).

We now make one important additional assumption, namely, that the
gain K, as determined in the state space modeling program, remains close
to optimum for the duration of the time series of interest. The PJM
payoff data of Figures 7.1-7.6 suggest that greater changes are expected
in ¢ than in K in most cases. For this reason, the following develop-
ment will be based on adapting the transition matrix ¢, but using a con-
stant gain matrix K. This is equivalent to saying that following the
trends in the data will be more important than estimating changes in its
rms variation about the trend.

There are several possible approaches to on-line adaptation of ¢.
The simplest approach is to simply adapt each component independently,
thus elimivating a high-order matrix inversion. However, this appreach
neglects the interactions between the elements of &, which mav be quite
significant. If all components are adapted simultaneously, a matrix of

dimension n2 Xn? must be inverted. A different approach has been taken
by DuVal and represents a compromise between these two extremes. This

approach is based on adapting the components of ¢ one column at a time. ’
The rationale for this approach is that each column of ¢ acts on a sirgle
component of the state vector, so that the column elements will be more
highly correlated with each other than with the elements of other columns.

Let ¢i be the ith column of ¢; i.e.,

vy

L O A

Then, using the relations,
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where x, (i-1.1i-1) is the j component of x(i~1 i-1). Now using
]

x(i-1]i-1) = %(i-11i=2) + K.(i-2)

we have
Ix(i-1'4-1) _ 3R(i-1}i-2) | (i-1)
3% Ty Kag,
S j j

Combining these results and defining the sensitivity function
x(iti-1)

3P,

G (i) =
! ]

gives the recursion
Gi(1) = 1%, (i-11i-1) + O(I-RH)G,(i-1) (.20
Now define

Sj(i) %, —hbj(l) (7.2

Using these results, we can compute the cradients of the cost function as

Yk'isj(i)Tz:“lv(i) (.22

1 |

!
j i

i~ X

rj (k) = =




2 k .
Ao =2 s 5 s (ol ls (7.23)
4 vj~vj i=] ] 4

Then by analogy to (7.14) - (7.17), the naxinum likelihood estimates of
¢, are found via the iteration

]

AR+1 X 2 -1.1
k) = W - [V (k Dok 7.2¢4
Y (k) ¢j(‘) [ J.( )] J( ) ( )

where

g = 1o
3 ] l 2
6y =800

!
A = A (k
j(k) j( )

5>

b=

2
i3

(k)

: .k
This iteration corresponds te a batch processor using the data Y . We

1 wish to convert it to a recursive form. We start by noting that
T -1 -
I (k) = vyl (k-1) + S_(k) W "v(k) (7.25)
J b) J
- T.-1
Aj(k) = Yzj(k-l) + Sj(k) S Sj(k) (7.26)

We will make the additional assumption that only one iteration of the
maximur: likelihond equations will be made at each tire step. This appears
to be a reascnable assumption since we do net expect the matrix + to

] undergo a large ‘uvp ot a singie time but rather, that chanpes will occur
over at least severa! successive time stepse.  Fven if large changes did
occur at only a sinerle step, it would take severai additional measure-
mants of v to estirate the change. This assurption is also in keeping
with the shijosori. of "cauticus” adantaticn to minirize the effects oo
unmodeled uncertainties. Witn this assumption the adaptation equaticens
(7.18) and (7.24) become

v
D
] -~

1.

. (k) = & (k-1) - A (k) T (k) (7.27)
i ] ] J
bi

! O (k1) = > (k) + Z[% (k) -1 (K)] (7.22)
i ) J J
i

In order to analvze this algorithr we first consider its performance under
| average steadv-state o onditions.

Steady-State Conditinns

| When the adaptor has converged, the following conditions hold, on the
average (cf. (7.24)):
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E[Fj(k)] =0 (7.29)

or

K

1

E[s,(i)w'lv(i)] =0 (7.30)
i=1 J
We wish to investigate the conditions under which (7.29) holds. Now use
S.(i) = -HG_ (1)
J ! (7.31)
v(i) = -He(i|i-1)
where i
e(i]i-1) = &(i]i-1) - x(i) (7.32)
Then (7.28) becomes
b T.T -1
Y OE[G. (i) H W "He(i|i-1)] = ©
i=1

Assume, for simplicity, that y is a scalar. Then a sufficient condition
for (7.30) to hold is :

E[e(ili-l)Gi(i)T] =0 Vi (7.33)
Now ‘
e(i+1{i) = (I-KH)e(ili-1) - w(i+l) (7.34)
Let ;
3= ¢(1-xm) |
Then
Gj(i+l) = rﬁj(ili) + 5cj(i)
e(i+i]i) = Je(ili-1) - w(i+l)
Def ine
Qi) = Ele(i]i-D6, (D))
Q;(i+1) = E{f{fe(i]i-1) - w(i+11[1xj<i!i) + G?(i)5T]}
= 601(1)-':'T —Elw(i+l)ii(i!i)] —F[w(i+1)ci(i)T]3T-+3E[c(i!i—l)ﬁj(i|i)‘




The terms invelving w(i+l) are zero since w(i+l) is assumed independent
of the past. Thus

T

e

Q. (i+1) = &Q ()¢ + IE[elili-1)x (ili)] (7.39)
J J J

If the filter has converged to a solution % after r time steps, we wish

to have

Qj(i) = 0; i=r,r+l,....
This will be satisfied if

A LT
Efe(ili-1)%(ili) ] = 0: i=r,r+l,. ...
This condition is equivalent to

Ele(i]i-1)&(i]i-1)T] = Efe(ili-1)e(i]i-1) T KT = prax’

Under optimal (Kalman) filtering the left-hand side is zero since the error
and estimate are orthogonal. Thus, the algorithm will not converge, on

the average, to a Kalman filter. This failure rav be traced to the fact
that the matrix I was not included in the cast. A simple modification
leads to an algorithm which does converge, on the average, to the Kalman
filter, if it converges at all. The modification is to use another re-
cursion for Gj(i):

Gj(i+1) = Iﬁj(i|i—1) + ¢(k)[I—KH]Gj(i) (7.36)

This form yields an "unbiased'" adaptcr, in the sense that (7.33) is
satisfied for i2r. However, it does not necessarily vield a minirum
variance estimate of %,

We now consider another approximaticn we have used thus far, namelv
that the value of % is constant for all time steps since we have assuned
batch processing of the data.

L3

Accounting for Varying Reference Transition Matrices

The adaptation equation for ¢j (7.27) is based on the assumption that
¢j is fixed for 211 time steps. In practice, this will not be true and

we need to account for the fact that 9, is time varving. We may do this
in the following manner. Let J

k
J =% ) Vv Tt

¢j(k)

be the cost assocfated with the sequence éj(l),Qj(Z),...,¢j(k). Viewing

cI ()
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A
Ehis as a reference sequence we can expand the cost for using an estimate
¢j(k) as a Tavlor series to second order:
' " K k-1i 2 T T, -1
E J@E00) = Jg+ LYo =) ]S W V()
’ i=]
¢. (1)
J
K k-i,2 T T..-1
+ 3y TR (0 - e(0 ) S WS 8, (k) =9, (k)]
i=1 J J 3 )
1¢j(1)

~
The minimizing value Qj(k) satisfies:

3J(8. (k) k..
R DG k-i_,  T.~1 .
B&j(k) .Z Yo US(i) W Tu(i)

i=1 ) .
L
oJ( )
K ki T -1 N
+ ) Y TS(di) WUS(4) [5,(k) =2.(i)] = 0
=1 (1) ’
J
Similarly, for the estimate aj(k—l) we have
k-1 ,
R A TEO VAT €Y
i=1 ,
(1
ch( )
k-1 ,
+ 1 YW s (3, (k-1) =&, ()] = 0
i=1 P ]
fo, (1)
h|

These may be convertad, using (7.22) and (7.23), intc the form

~ K kel ..T -1
T.(k) +A (KO, (k) = L Y S(i) W S(1)9, (1)
3 373 i=1 j

k-1 .
I (k-1) + A, (k=13 (k1) = § v s Twlsciaye. (1)
] ] ] &1 ]

Combining these yields

(k) - vyl

A ~ T "1
- - 1\. - . - = ) )Y, <
j j(k 1) + A(k)¢j(k) Y J(k 1)¢J(k 1) = S(k} W S(k)wj(k)

el .. -
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Now using (7.25) and (7.26) are rearranging gives

$i00 = 8,1 - Aj<k>'ls<k)Tw‘l{v(k)

- S() [o, (k) - $j(k-1)1} (7.37)

This equation is valid for time-varying reference values of ¢j.

This completes the major development of the adaptive filter. 1In
summary, the adaptation equations are (7.28) and (7.37), while A is up-
dated using (7.26). ANote from (7.37) that an nXn matrix inversion is
required to compute ¢j(k). If n is large, this can cause numerical pfbb—

lems. This prcblem can be alleviated in most cases if m, the dimension
of y, is less than n by using an alternate form that only requires in-
verting an m>m matrix. This may be done as follows.

Simplification for mXn

By using the matrix inversion lemma (Bryson and Ho, 1969) and (7.26),
we can write

-1 1 -1
A, (k = = [I-D.(k)S.(k)]JA. (k- 7.38
J() Y[ DJ()J()]J(k 1) ( )
where
D, (k) = A'(k-l)'lSj(k)TMj(k)—l (7.39)
J
-1 T
) =8 (k- S, . .
Mj(k) Qj(k)AJ(k DTS ()" W (7.40)
Another form for Dj(k) is
-1 T -1
D, = A( S. (k)W 7.41
J(k) J k) J(k) ( )
which gives, for (7.37),
. (k) = ¢, (k-1) - k) - [ -3 (k- 7.42
95(k) = ¢, (k1) Dj<k>{v<x> JOIERORENC D1} (7.42)

Note that /\j(k)'_l can be computed recursively using (7.38) -~ (7.40) by

inverting only the mXm matrix Mj(k).
We remark that the equation for updating éj is in the form of a

Kalman filter with Dj(k) the Kalman gain matrix and

v(k) - s<k>[¢j<k>-$j(k-1>1

B S TS e S e,




the innovations process. The matrix A, (k) is the covariance matrix of
estimation errors of ¢ 3

Summary of Adaptive Filterine Equations

The preceding development 1s summarized in Table 7.1, which presents
the final form of the adaptive filtering algerithm. In the table,

. -1
Kj(l) Aj(l) .




Table 7.1:

Initial
conditions:

Filter:

Cost:

Adaptor
Gain

Propagation:

Adaptor:

Sensitivity

ropagation:

Propagate
State
Estimate:

Adaptive Filtering Algorithm

J(0) = 0, &(0), Kj(-l), Sj(l) =0, cj(1) =
%(1]0) = o(0)%(0]0), ¢5(1), ajm)

{v(i) = y(i) - KR(i{i-1)

(%(i]1) = R(i]i-1) + Kv(d)

J(1) = vI(i-1) + v W v

=1
M (1) = sj(i)Kj(i-l)sj(i)T + YW

D,(1) = Kj(i-l)sj(i)TMj(i)’l

Ry = 3 (1-0,(0s, (1R, (1-D)

(6,0 =$j<i—1)-nj<i>{v<i)-sj<i>[ojci>-$j(i—1>1}
Lb (341) = ¢,(1) + B3, (D) - ¢, (D)]

! G, (141) = Iﬁj(i!i~1)-+¢(i)[1-KH]Gj(1)

(s (i#1) = -HG, (1+1)

j = jH

if j n+l, go to A

{¢(1+1) = [0, (14D o, (i) | ... I¢n(1+1)]

x(1+1[1) = d(4+1)x(i]1)
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8. ADAPTIVE FILTERING OF PJM PAYOFF DATA

8.1 Nature of the Experiment

In order to test the adaptive filter developed in the earlier sec-
tions c¢f this report on actual PIM payoff data, a number of experiments
were run. In these experiments, the let °r was exercised on data that
exhibited what might be thought of as "pelicyv'" changes; that is, those
PIM payoff series that showed a behavior pattern for a reasonable length
of time and then a change. This property of reasonably constant behavior
over a perivd of time of either the original series or a series derived
from the original by some differencing operation is important tc the cor-
rect operation of the adaptive filter.

The adaptive filter has, in some sense, properties similar to that
of a phase locked loop. That is, there will exist a bandwidth in the
rate of signal change over which it will function properly. Exceeding
this bandwidth will cause the filter to lose the "sional" (in this case
the state transition matvrix) and perform poorly. Like the loop filter
in a phase locked locp, the adaptive filter has two paraceters that con-
trol the bandwidth over which it will correctly track the siznal. The
first parameter is y, the age weighting parameter. This parumeler is
similar to the settling time of the loop filter. Tou long a tirme con-
stant (y high) will cause the filter to be slugsish in reacting to fast
change in the transition matrix, Too short a time coustant (4 low) will
cause the filter to respond only to very recent data. The second para-
meter is £, the state transition matrix slow rate porareter. - should
be set to a low value for highlyv random data and to a hich wvalue for
smoothly varying data. This parameter is similar to the dampin: of tie
phase-lock filter, in that too high a value will cause the filter to
overreact to a change and overshoot, beounce or even oscillate. Too low
a value will cause the filter to adapt too slowlv t¢ a chinpe in the
inputs.

Ideaily, these two parameters should be varicd on-linc in re-poo-.

to the loccal behavior of the signal. During periods o! si ol oioina.,
should be relatively low and £ relativelv high in order o tra . 1oy
change. During periods of constant Lehavicr, the roverse <o @ .

to filter out noise. The adaptive filter thus nas within it~ i: U
lem of adapting its own parameters. The expericents of rthis <eotg
a scheme for this which seems to give reasonable results. This
will be discussed later in this section.

In order to reduce the bandwidth of the change in the state tronei-
matrix and reduce varijations ahout underlvin: trends, oxverimeon
section used right~justified or causal moving averaces oU the ' ran-
off data. The desire to reduce Lhe bandwidth was motivated by two factog
The first factor was that the pavoff series data were quantized or per-
haps rounded to the nearest inregral value. Thus, {f the actucl scrics
was 100.9, 100, 98.9,..., the quantized data available would have been
100, 100, 98. This results in a much higher bandwidth than was realis-
tically expected in the data, with a large number of step changes. The
second reason was to observe the response of the vy and 8 adaptation
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algorithm to changes that could be more easily pinpointed.

- 8.2 Determining y and B

There exist a number of approaches for determining Y and B. The
first is to assume that the two variables are constant for the series.
The values of y and 8 that may be used can be found by evaluating the
filter performance on some cost criteria for a historical dataset. A
minimum cost point can be found and values of Y and B used for the future
filtering problem. This approach has an obvious advantage and several
disadvantages. The advantage is that it is probably more inexpensive to
determine the values only once rather than determining them on-line. The
disadvantage is that this approach is most likely to be very suboptimal.
The optimum values of y and B are most likely time varying quantities,
so a single value will give locally poor performance. Either the iilter
will be too sluggish or else it will overshoot when viewed on a local
level. Further, even if the optimum values of y and 8 are constant over
the historical data, there is no guarantee that they will be so in the
future.

A second approach will be to filter for Y and 8 in some manner. To
do this, we must construct some sort of model for the behavior of y and R.
A heuristically reasonable model for these parameters would be that they
would be produced by a persistence plant. That is, that the values of
Y and 8 are as likely to increase with time as they are to decrease. This
assumption is violated at the boundaries zero and one, but will be accepted
here. We thus will assume the model:

Y{t+l) 1 0yt nl(t)
+

B(t+1) 0o 1]l8¢t) n,(t)

where n(t) is a white noise vector with zero mean and covariance matrix Q.
For our purposes, it will suffice to assume that Q is ¢’ for some O.

This basically states that Yy and B meve independently of each other with
increments of equal probability.

The total model is basically one c¢f two-dimensional Brownian mcticn.
Again, this wili he violated at the bouncaries, but is not totaliy un-
reasonable in the interior.

The next thing that must be assumed in the filter is a cost function. }
Since our ultimate desire is to minimize the error in the state variable
predictions, a quadratic form on the one-step prediction innovation will
be reascnable.

Finally, it is necessary to mcdel the transfer function from y and 3
to the predictions, and the additive noise on this transfer function. The
transfer function itself is quite trivial, being the adaptive filter it-
self, That is, all else being constant, the prediction made by the adap-
tive filter is a function of y and £, The noise, however, is not so
straightforward. First, like the plant noise, it is not a Gaussian vari-
able. Secondly, its variance is process noise dependent. That is, it
depends on the plant and additive noises of the observed series, which in
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general  are unknown. If we assume an a priori "signal-to-nvise' ratio
of the y and B plant to the additive noise in the adaptive filter, we
may make some headway. Call this parameter a(i).

Given these assumptions, it is possible to design a filter that
attempts to track y and . The algorithm is basically as f[ollows:

1. Assuming a value for y(i) and £(i), perform a prediction of
x(i) (the state variables) for time i+l, giving x'(i+l).

2. Observing y(i+l), calculate the actual cost function in-
curred.

3. Varying y(i) and B(i) within a radius a, perform step 1 as
if that value had been used to predict x(i+l). i

4. Evaluate the cost function of step 2 for these predictions.
5. Select as y(i+l) and B8(i+l) the minimum step 4 cost o and B.
6. Go to step 1 for time i+l.

This algorithm is motivated in terms of our earlier discussion as
follows: step 6 is the prediction step of a Kalman filter. Steps 1 and
3 are the medulation steps in an extended Kalman filter. Steps 3 and
4 taken together find the direction of steepest descent or rhe cost
function. This may be viewed as the sensitivity matr.x computation of
the extended Kalman filter. Step 5 in combination with step 3 is an up-
date step in the filter. Although still scmewhat ad hoc, this algoritim
contains sufficient motivation to make it reasonable in practice.

8.3 Results and Discussion

The adaptive filter was run on a number of PJIM pavet! scries. A
list of some of the series with the prediction c¢rror surmary o! the
adaptive filter and persistence predictor errors tor 1, 3 and 12-month
predictions are given in Table 8.1. Figures 8.1-8.8, 6.9-8.16, and
8.17 - 8.24 show the l-wmonth, 3-month and IZ-month predicticons with ob-
served data respectively. Figures 8.25-238.32 show the values of v and
determined by the program,.

The performance of the adaptive filter's l- and 3-menth predistivrs
- are quite geod wihen compared to the persist. e predictor. The estin.tos
? are generally unbiased and the error covariance less thin the persistonce
‘ predictor. Examining the plots, we note an overshoct or undershceot at
those times that the system changes, but tails is an expected event.

The performance of the filter in its 12-month predictions is, at
best, poor. While still relatively unbiascd, the error covariance is
large. Examination of the plots, in particular that of F46330, shows the
cause. Basically, the filcter is usually beinn asked to predict further
into the future than the mean time between policy changes. In the worst
case, its predictions become 180° out of phase with reality.

The plots of ¥y and 3 show that the algorithm is indeed changing these
parameters on the basis of changes in the behavior eof the series. For
the majority of the series, however, the parameters ave being modified
in a counter-intuitive manner. At points of chanpge in the series, vy




increases and £ decreases. During periods of cunstant behavior, Yy de-
creases and £ increases. For this reason, the alporithm previously
presented may have to be modified or superseded. 1t should be noted,
however, that the algorithm yields results that are better than single
choices of vy and B. Table 8.2 documents the performance of the adaptive
filter in the varying Yy and £ mode versus several choices of a constant
Y and 8. The varying mode performs better.

The coanclusion that may be drawn from these experiments is that the
adaptive filter performs in a superior fashion to the persistence pre-
dictor for short and medium range predictions. For lone range predic-
tions beyond the mean time to a policy change, the filtur performs in a
manner inferior to a simple persistence predictor. Finally, the algorithm
that varies vy and 8 gives better performance than a constant y and 8, but
is probably suboptimum.
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Table 8.2: Adaptive Filter Performance on Series
TSK288 Using Various 7y and B

8 Mean Error
Y Error Covariance
Varying Varying 0.010 0.0111
.5 .5 0.002 0.0148
.6 .4 0.004 0.0185
| .6 0.001 0.0123
.3 7 0.163 0.0402
.5 .6 0.001 0.0135 ’
5 .7 0.007 0.0125
1
/ L
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9. CONCLUSIONS AND RECOMMENDATIONS

This study has revealed certain characteristics of the PJM pavoffs
that can be exploited in developing efficient prediction schemes. First, i
series within particular groups tend to move together. For example, the
E80OF series are highly correlated as a group, but tend to be uncorrelated
with other series. Series in the E80F group are not highly correlated with
series within the E80M group. This may indicate that the variable £ill
component dominates for certain groups since, for example, all E8OF jobs
are competing for the same small pool of recruits., Similar behavior was
seen for the A80M group. The female low skill series show a greater ten-
dency to move in a correlated fashion with members of other female low
skill groups. The male series tend to move together as a group more than
the female series. However, the female and male series tend to move in-
dependently. These tendencies could be used to reduce the number and
complexity of prediction models. For example, a single model may be used
to represent an entire group. Many of the series within that group could
perhaps be modeled with that model. Series which differ significantly
could be modeled independently or models of their difference from the
group model could be constructed.

A methodology was suggested for modeling the PJM time series, based
on a multivariate state space representation in a Markovian setting. A
powerful approach to model structure determination, based on recent re-
sults in stochastic realization theory, was discussed. An algorithm based i
on this theory was utilized to generate state vector models for a selected ‘
number of PJM series. The model was in the form of a time-invariant Kal-
man filter/predictor. Prediction of the series was found to be adequate
in some cases and poor in others. The poor results were almost invariably
caused by shifts in the nature of the time series. The implication from
a modeling point of view is that the parameters of the state space models
change in an unpredictable maznner and time-invariant models are not ade-
quate under such conditions.

In order to remedv this problem, an adaptive filtering -technique was - - ..
developed. The parameters of a Kalman filter/predictor of fixed structure
were estimated recursively using an approximate maximum-likelinood approach.
Based on an analysis of the FJM payoff data, it was concluded that only
the transition matriz needed to be reestimated; the Xalman gain was assumed
to be fixed. An extended Kalman filter was also considered for this
parameter estimation problem but was discarded since, comparatively, it
is less robust, less accurate and more complex.

Detailed numerical tests on PJM payoff{ data were performed. Compari-
son of prediction error statistics was made between the adaptive filter/
predictor and a pure persistence predictor. The adaptive filter was
found to give substantially better results. Additional tests were run
using data generated from known stochastic dynamical models. Tradecoff
studies demonstrated the robustness of the adaptive filter and gualitative
bounds on adaptation parameters in order to maintain stability of the
adaptation process.

Further development of the adaptive filter should be undertaken.
More systematic techniques for varying the adaptation parameters on line
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should be developed. In particular, Yy should be a function of the smooth-
ness of the estimated parameters. The Kalman gain should be adapted sim-
ultaneously with the transition matrix, being careful that their (nonlinear)
interaction does not degrade stability properties of the adaptor. The
possibility of adapting all of the elements of ¢ simultaneously should be
explored. The effect of using more that one iteration per time step should
be examined., Comparisons with several other approaches, such as sto-~
chastic approximation, should be made. An extension to include prior
information (size limitations on ¢, e.g.) should be made, possibly using
a Bayesian formulation.

Another extension which should be explored is the use of disturbance
models. For a model of the form

[N

x(i+l) = &x(i) + n(i+l)
where n is white noise, we may add a disturbance d to give
x(i+l) = ox(i) + n(i+l) + d(i+l)

The disturbance may be modeled as an unknown constant, or may be slowly
varying. A possible model is the first-order Markov process

d(i+l) = Ad(i) + v{(i+l)
with v(i) a white noise process. Using an augmented state
x(i)
d(i)

x (i) =

this formulation may be handled by the general theory given in Chapters
4, 5 and 7 and Appendix C. As a simple example, a disturbance model was

used for prediction of the 12-month moving average payoff series F42333. i
.. The model used was

x(i+l) % (i) + n(itl) + d(i+1)

a(i+l) —;—d(i) + v(i+l)

The Kalman gains were set to 2/3 for both x and d. The results are shown
in Figure 9.1 and indicate that the disturbance filter gives much better
performance than any first-order stationary model, due to the piecewise-
stationary trends on the data.
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3 MONTH MOVING AVERAGE OF FAYOFF
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Figure A.18. Plot of 3-Month Moving Average of F67231
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Figure A.21. Plot of 3-Month Moving Average of F46230
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CORRELATION MATRIX

Skill

Level

1 F30230(T) E8OQF

2 F30331(T) E8OF

3 F30333(T) ESOF

4 F30430(T) ESOF

S F&7231(T) A80F

& Fa7232(T) ASCOF

7 F20230(T) G80OF

8 F203530(T) G8OF

? F20830(T) G3OF

10 F25130(T) G80F
11 F446330<(T) E70F
12 FA46230(T) E6OF
13 F20430(T) G60F
14 F54130(T) E50F
15 F54230(T) ES0F
16 F54231(T) ES0F
17 F34232(T) E50F
18 F54530(T) ESOF
19 TSRK295(T) E50F
20 FA3130(T) M50F
21 FA42732(T) G50F
22 TSK287<(T) ASOF
23 F23132(T) GAOF
24 F27131<¢(T) A4OF
25 F42333(T) MAOF

246 M30230(T) EBOM
27 M30331(T) E8QOM
28 M30333(T) EBOM
29 M30430(T) EBOM
30 M67231(T) ABOM
31 M67232(T) ASOM
32 M20230(T) GBOM
33 M20530(T) G30M
34 M20830(T) G8OM
35 M25130(T> GBOM
346 MA6330(T)H E70M
37 MA6230«(T) E60M
38 M20430(T) G6OM
39 M54130<(T) ESQM
40 MSA230(T) ESOM

M54231(7T) ESQM
M54232(T) ESQM

D
-

&
4]

43 MS4530(T) £50M
44 TSK296(T) ES0M
45 MAa3130(T) E50M
46 M42732(T) G50M
47 TSK288(T) A50M
48 M23132(T) G4OM
49 M27131(T) A4OM
S0 MARIIR(T) MAOM

Table 1:

1

1.0000
0.9751
0.9804
0.9875
0.1403
0.1237
0.0865
0.0707
0.0950
0.0915
0.4001
00,0737
0.0275
~.0033
0.0045
0.0158
0.0402
0.0043
-,0154
0.142%
0.0550
0.0871
0.0580
0.0542
0.2274
0,0391
0.0229
0.0302
0.0399
0.0037
0.0024
0.1100
0.1140
0.0196
0.1267
’00292
0.0558
0.0118
0.0523
0.0804
0.0775
0.0755
0.0614
0.0672
0.0728
0.0118
0.0779
0.0113
0.04634
0.0%07

[

1.0000
0.995S
0.9917
0.2065

-.0222

~-.0518
—00675
-.0372
‘00495
0.3420
-+0060
-+1302
‘01036
-.1064
-+ 0962
-.0721
~.1031
~.1219
0.0761
-.085¢6
“00432
”00890
~.0794
0.2945
-+1002
-+1043
-.103%
-.1016
0.02383
0.0074
0.0285
0.0351
-.0416
0.0441
'01080
~.0462
-+¢1130
-+ 0576
—00309
‘00354
-+0468
-+0632
~.0400
~.0401
-.1130
0.0101
=+1224
=.0006
—-. 00827

1.0000
0.9545
0.0399
0.0087
-.0308
-00490
‘00269
”00279
0.3404
0.0094
—00988
"0804
—00797
—e0661
-.0461
_00761
_00948
0.0926
“00566
-+.0130
~,0355
-.0481
0.2895
-.0785
_00843
~.0830
_'0803
0.0135
_v0014
0.0335
0.0374
"00571
0.0503
-.0886
~. 0266
-.0866
—00336
-.0083
-.0108
-.0217
Too39°
~+0166
_00173
“00866
0.0265
-00938
00,0184
0.0124

1.0000
0.0750
0.0504
0.0174
0.0006
0.0235
0.0204
0.3619
0.0314
—o0521
-.0570
-.0532
-.0428
-.0199
-.05446
~-.0716
0.1066
—00192
0.0169
-.0176
’00177
0.25%96
-.0361
_00458
-+.0403
-+0329
0.0072
-+.0015
0.05354
0.0613
-.0247
0.0710
-+0707
-+0019
-+0599
-+ 0060
0.0197
0.0161
0.0101
—00049
0.0097
0.0086
‘00599
0.0335
~.06064
0.021%9
Q.0331

Correlation Matrix of Raw Payoff Data

150

(4]

1.0000
0.9375
0.6022
0.6105
0.4835
0.6089
0.1988
0.3481
0.65%90
0.5002
0.5420
0.5700
0.5205
0.4946
0.5296
0.1785
0.6211

0.5538

0.6360
0.5903
—02617
0.4051
0.3615
0.3888
0.4108
-.0984
_00511
0.3656
(43252
0.1011
0.3493
0.2470
0.4316
0.4664
0.4598
0.468%
0.4738
0.53%94
0.5430
0.4760
0.4834
C.4664
0.2877
0.,5059
0.2795
0.4447



-

N0 ON O

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
34
37
38
39
40
a1
42
43
44
45
46
47
48
49

S0

F67232(T)
F20230(T)
F20530(T)
F20830(T)
F25130(T)
F44330(T)
F446230(T)
F20430(T)
F54130(T)
FS54230(T)
FS54231(7)
FS4232(T)
FS54530(T)
TSK295(T)
F43130(T)
F42732(T)
TSK287(T)
F23132(T)
F27131(T)
FA2333(T)
M30230(T)
M30331(T)
M3IOI33(T)H
M30430(T)
M67231(T)
M&7232(T)
M20230(T)
M20530(T)
M20830(T)
M25130<T)
MAsIIO(T)
MA6230{T?
M20430(T)H
ME4130(T?
M54230(T)
M34231(T)
MS4232(T)
MS4530(T)H
TSK2926(T)
MA3130(T)
MA27320T)
TSK288((T)
M23132(T)
M27131(T)
MA42333(T)

é

1.0000
0.6383
0.6457
0.5747
0.651%
0.1831
0.,3692
0.6969
0.5022
0.5452
0.5494
0.5209
0.4862
00,5229
0.2224
0.6344
0,5769
0.6595
0.6046
—-.2787
0.4570
0.3950
0.4321
0.4543
-.0308
0,0288
0.3740
0.3458
0.2142
0.3738
0.2526
0.4343
0.4714
0.4623
0.4746
0.4820

(S )
Oo-J\.)LC)

0.5470
0.,4802
0.4812
0.,4714
0.2726
0,5208&
00,2634
0.4332

Table 1 (continued)

. imaciss S e it e i

1.000¢
0.9940
0.7850
0.9958
0.2602
0.4653
0.7769
0.5322
0,5940
0.5898
0.6070
0.5734
0.5943
0.3196
0.7222
0.6806
0.7419
0.6728
-.1299
0.6746
0.6579
0.6917
0.6936
0.1696
0.2614
0.6089
0.6057
0.2534
0.6146
0.3430
0.8342
0.5397
0.3811
0.6006
0.5974
0.8662%
0.4450
0.5760
0.5627
0.539%
0.,4251

L3944
0.3987
0.5444

151

1.0000
0.7874
0.9932
0.2646
0,458%5
0.7740
0.5325%
0.5780
0.5787
0.5893
0.5514
0.5771
0.3001
0.7134
0.6668
0.7324
0.6631
-+1746
0.,655¢

0.6452
0.6773
0.6809
0.1564
0.2486
0.5702
0.588%
0.2572
00,5953
G.3261
GLH1RL
0.5237
G.36560
0.5847
0.57¢8
0.6497
0.6313
C.575%4
G.5448
0.5237
0.3981
0.5838
0.3714

0.5254

1,0000
0.790C3
0.2784
0,335
0.46247
0.34659
0.4192
0.3847
0.4069
0.3670
0.3973
0.2572
0.5357
0.4331
0,35607
00,4339
-+ 1637
0.5503
2342
0.5595
0.5722
-.0010
0.0931
0.3723
00,3950
0.628%
0.3797
0.2502
0.3627
G.3486
0.3442
0.3730
0,35671
0.45204
0.4380
0.3747
Q.3661
0.34566
0.1593
DeA167
01454
0.3443

10

1.0000
0.2555
0.4642
0.7765
0,5421
0.95855
0.5875
0.5788
0.5621
0.5841
0.3342
0.7185
0.6779
0.7399
0.6702
-,1383
Q.6751
0.69552
0.5892
0.6731
0.15643
0.2542
0.6053
0.6021
0.2644
0.6105
0.3408
0.5343
0,528
0,5760
(0996
0,5964
0.8608
Q&HA20
0.,5934
0,58605
0.5428
0.4189
Q0.5%72
00,3982
0.5411




33

%0

Fa6330(T)
Fa46230(T)
F20430(T)
F54130(T)
F34230(T)
F54231(T)
FS4232(T)
FS4S530(T)
TEK295(T)
F43130(T)
F42732(T)
TSK287(T)
F23132(T)
F27131(T)
FAa2333(T)
M30230(T)
M30331(T)
M30333(T)
M30430(T)
M&7231(T)
M67232(T)
M20230(T)
M20530(T)H
M20830(T)
M25130(T)
M46330(T)
MA52307)
M20430(T)
M&3413007)
M54230(T)
M54231(CT1)
MS4232(T)H
MTAL3Q(T)
TSK2G6(T)H
M4a3130(T)
M42732(7T)
TSR2BHT)
M23132(T)
M27131(T)
Ma2333(T)

11

1.0000
0.5954
0.4199
0.3903
0.3848
0.3588
0.3548
0.3730
0.3414
0.1816
0.3871
0.3547
0.3488
0.3383
0.177%
0.3189
0.3070
0.3156
0.3047
‘00651
-+0917
0,3139
0.3253
0.2000
0.3299
0.2517
0.3900
0.3353
0.3643
0.3684
0.3643
0.3787
0.3957
0.34%91
0.4071
0.3533
0.2941
0.3682
0.26%97
0.39%0

Table 1 (continued)

1.0000
0.7410
0.8107
0.8267
0.7868
0.8125
0.8207
0.8282
0.5055
0.7404
0.7166
0.7143
0.7107
0.3342
0.6033
0,.5724
0.55%97
0.5459
e 0828
-.0%974
0.4947
0.492%3
0.0204

o.t?ﬁf)"_\

Al aa
0.5934

e 7230
0.7374
0.6973
0.6949
0.é876
0.6880
0.7068
N, 45847
0,725k
0.7376
0.667¢
0.7442
0.46760
Q.708%

152

13

1.0000
0.,8540
0.8963
00,8759
00,8893
0.8677
0.8R50
0.5109
0.9596
0.9073
0.9996
0.9218%
0.0130
0.7822
0.747%
0.7654
0.7744
~-+0623
0.0044
0.6482
0.6251
0.1104
0.6570
0.6525
0.8214
0.8513
08440
Q.8407
Q,8437
0.8793
0.8882
0.5415
0.3442
Q.3513
0.56743
0.8%39
0.6735
0.7¢63

14

1.0000
0.9782
0.9399
0.96920
0.92725
0.9730
0.3775
00,3955
0.84604
0.8784
0.84%99
0.2925
0.6915
0.6503
0.6483
0.6394
—00618
_00294
0.6474
0.6076
-.0410
0.6677
0.7107
0.8850
0.8727
0.8609
0.8481
0.8456
0.54%3
0.8612
0.8484
0.8720
0.8727
0.810%
0.8743
0.8208
0.8448

1.0000
0.9572
0.2909
0.987%9
0.9930
0.6197
0.9352
0.9007
0.5240
0.8987

. 2863

0.7257

0.6968
0.6%913
00,6825
-.0510
- 00:02
C.6343
0.6474
-. 0228
0.7016
0.7454
0.5347
0.9C07
00,8914
Q,8823
0.8513
0,8340
0.8%44
0.23825
00,8975
0.9007
0,8305
0.90783
0.8354

0.8752




16
17
18
19

o }
“

-~
s

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
33
207
40
41
42
43
44
45
46
47
48
49

=
-

FS4231(T)
FS4232(T)
FS4530(¢(T)
TSKR2925(T)
F43130(T)
F42732(T)
TSN287(T)
F23132(T)
F27131(T)
F42333(T)
M30230(T)
M30331(T)
M30333(T)
M30430(T)
M&7231(T)
M&7232(T)
M20230(T)
M20530(T)
H20830¢(T)
M25130(T)
Ma£330(T)
MAL&23D0(T)
M2CATOIT)
MZ4LT0CTY
MG2230(T)
MS4231(T)
MS4232(T)
MZ4530(TH
TSR295(T)
Ma3i30(T)H
Ma2732(TH
TSh2E3¢T
H22132(T)
MZ7L31(T)
MA22T3(T)

16

1,0000
0.92510
00,9542
0.9581
00,6399
0.9014
0.8841
0.9030
0.8845
0.,2488
0.4880
0.6551
0.6472
0.46506
- 00740
- 00406
0.46604
0.6084
-.,0447
0.6710
0,71641
¢.8478
¢.8843
0.8599
0.8532
0.8525
0.8518
0.84652
0.8513
0.,8675
0.88471
0.,803%
0.8874
0.8172
0.8391

Table 1 (continued)

17

1.0000
0.,7851
0.9839
0.6365
0.9417
0.9233
0.9302
0.9130
0.3115
0.2270
0.,7053
0.46981
0.6901
-.0453
-.0145
0.7232
0.6824
e 0456
0.7393
0.74%96
0.8976
0.9142
0.9139
0.9066
0.905%
Q. $055
0.2138
G.e091
0.7151
0.9140
0.85612
0.9199
C.8668
¢.2007

18

1.0000
0.9903
0.6453
0.917%
0.8%93%
0.9035
0.8890
0.3324
0.7100
0.6832
0.6771
0.6648
e 0436
"00209
0.6926
0.65C0
-,080Y
0.7087
0.7571
0.8934
0.92005
0.8935
0.8345
¢.8825
0.8739
¢.6902
Q. 8849
0 Touv4
DL, F005
0.38%540
0.8989
0.8422
0.8G12

19

1.0000
6.60%24
0.92267
0.8884
0.9164
0.8864
0.300¢%
0.7020
0.6756
0.6670
0,6558
-.0304
-.0043
0.6636
0.6243
e 0594
0.6808
0.7385
0.8771
0.,686859
0.876%5
0.8689
0.8653
0.8887
0.3777
D.3701

Ry

0w

[as]
jes

w
N

.

o

0.8253
0.8711
0.2368
0.8610

[ I
O

5

1.0000
0.5571
0.64461
0.5780
0.6321
0.5027
0.5741
0.5851
0.,95598
0.9750
-.1232
-+1002
0.6293
0.6083
0.1301
0.6011
0627

0.7009
0.6%941
0.6958
0.703686
0.46978
N.8&532
O.5681
Q.4898
0.6892
0,6941
O.&%48
C.675%
C.7092
¢.7000




21
22
22
23
24
25
il

27
28
29
30
31
32
33
34
35
34
37
38
39
40
41
42
43
44
45
46
47

48

S0

F4a2732(T)
TSR2B87(T)
F22132(T)
F27131(T1)
F4a2333(T)
M30230(T)
M30331(T)
M30333(T)
M30430<(T)
MO67231(T)
M67232(T)
M20230(T)
M20530(T)
M20330(T)
M25130(T)
MA&330(CT)
M4s230(T)
M20430(T)
M54130(¢T)
MS4230(T)
M54231(T)

SA4232(TH
ME4530(T)
TSK296(T)
M43170(T)H
MA2TITCTS
TSR288(T15
M23132(T)
M27131(T)
M42333(T)

21

1.0000
0.72437
0.9823
0.9463
0.1625
0.7768
0.7488
0.7615
0.7608
_00465
00,0036
0.7219
0.6872
0.0366
0.7397
0.7350
0.8909
0.8929
0.92020
0.7022
0.9035
0.2207
0.9232
0.8992
0.8991
0.8929
0.7937
0.9195
0.784¢6
0.8730

Table ! (continued)

+J
48]

1.0000
0.9551
0.98%3
0.24%50
0.8013
0.7794
0.7802
0.7880
—00116
0.0328
0.,7923
0.7509
_00405
0.795%
0.74626
0.5221
0.94641
0.95038
0.924607
0.92659%5
0.925465
0.9641
QG.Q572
0.9517
0.7451
0.38769
0.9579
0.8737
0.,2334

1,0000
0.9620
0.1304
0.7927
0.7645
0.,7712
0.7812
'00393
0.0174
0.7121
Je 6768
0.,0493
Q.7226
0.7412
0.6019
0.3¢87
0.9032
0.20029
C.P067
C.223%
0.9221
Q.9C¢Q7
0.?2010
0.8v87
0.,778%
0,902/

0.7766
0.8716

1.0000
0.1947
00,8000
0.,/7846
0.7871
0.7%45
_00649
-.0176
0.7629
0.727
-+04320
0..7645
07726
0.9176
0.5383s
0.9501
0.9504
5.9564
0.9608
0.29%G
(G.9P476
Q.5455
U926
.40y
0+7584
0,540
0.9231

rJ
(4]

1.0000
0,1400
0.1447
0.1107%
0.0520
Q0.0G825
-~ 0225

0,3523

[SIURARD I3
00,3150
O.3351
0. 245
O, 3242
Oe 0005
D, 2801
O, 33594
0. 3457
R SHY)
IR
VL0893
Q.5501

H.4l30




26
27
28
29
30
31

33
34
35
36
37
k{:
39
40
a1
42
43
44
35
44
47
48
49

30

31
32
33
34
35
36
37
38
39
40
41

43
44
4%
34
a7
ag
49
50

M30230(T)
M30331(T)
M30333(T)
M3I0430(T)
M&67231(T)
M&7232(T
M20230(T)
M20530(T)
M20830(T)
M25130(T)
Mas330(T)
Ma4230(T)
M20430(T)
594130(¢T)
M54230(T)
M54231¢T)
MOAZ32(TH
MI3S30e Ty
TCRD9AV TS
M43130CT)
MI2732(TH
TER288(¢T)
M231320T)H
M27131¢T)
MAQ3I33(T)

M&7232¢(T)H
M2G230(T)H
M20T30(TS
M20830¢TS
M25120<¢CT)
MIAI2GCT)
MASI0OTS
MIGAZ( T
MH5317010T)
MSA2000T)
MRS )
MBI (TH
MUd5 200
TR 40T
MaIt ioiy;
MADTTI 0T
TSt DT
ML A20T)
22131 ¢T1)
MATTIIT(T)

1.0000
0.9698
0.975
0.9738
0.0243
0.1090
0.7663
0.7680
2709
0.7659
0.7374
0.78%8
0.7914
0.7909
0.8023
0.8027
0.81%2
0.8176
0.7830
0.7726
0.7916
0.46885
0.801¢
0.46489
0.7774

31

1.0000
0.3332
0.3602
0.11064
0.3494
-. 0978
~.0327
-+0426
~-.0041
0.0293
0.02%4
0.0225
‘00138
0.033%
=+0470
~+ 0424
0.05402
-.08678
0.0275

*00314

Table 1 (continued)

1.0000
0.9808
0.9804
_'0175
0.0706
0.7685
0.7692
0,2586
0.7596
0.747¢6
0.7716
0.7626
0.7848
0.7916
00,7941
0.807%
0.8044
0.77467
0.7619
0.7624
0.668%5
0.7759
0.4651Q
0.7723

32

1.0000
0.5339
0.16%9
0,%91R
Dy &N
Q.7:37
00,7480
0.800%5
0.820t1
0.8216
0.8076
0.7974
0,8143
0.7802
0.7400
0.7871
0.7164
0.7639
0.81789

155

1.0000
0.9878
0.0197
00,1096
0.7773
0.7814
0.2651
0.76%4
00,7223
0.7428
0.7501
0.7780
0.7887
0.7922
0.8111
0.8B05¢
0.7728
0.7568
0.7501
0.6537
0.76%90
0. A248
0.74825

33

1,0000
0.233%
0.7827
00,6344
Q.7474
0.7087
Q.7624
Q0.7844
0.7348
0.7755
0.7643
0.7829
0.74461
0,7087
007‘116
0.46829
00,7178
0.7854

1.0000
' 0038
0.0861
0.7610
0.7592
0.2807
0.7518
0.7218
0.76072
0.7648
0.7829
0.7925
0.7962
0.8157
0.8126
0.7744
0,7609
0.7648
0.64460
0.783¢9
0.6196
0.7615

34

1.0000
00,1649
0.0060
-.0336
-+0382
- »072:
-.05764
-,0406
~.0114
-.0173
-,0645
- 0577
"00382
-.1875
-.0238

[
—'2 \J:‘

-.0354

30

1.0000
0.9762
0.2954
0.3205
0.06399
0.311%5
+1018
+ 0494
T e 0639
0321
.0002
«0008
0191
0517
.0078
0631
iy ¥ 0639
0.0484
-+1049
0.0383
- 00432

o

o

1.0000
0.6811
0D.788s
0.7564
0.8052
0.8252
0.8241
0.8121
0.8015
0.822

0.7683
07564
0.8007
0.7229
0.7746
0.8285




T

36
37
38
39
40
a1
42
43
44
45
46
47
48

50

a1
42
43
44
45
46
47
48
49
50

446
47
48
49
50

M46330(T)
M36230(T)
M20430(T)
MS4130(T)
M54230(T)
M54231(T)
MS34232(T)H
M54530(T)
TSK296(T)
MA3130(T)
M42732(T)
TSK288(T)
M23132(T)
M27131(T)
M42333(T)

MS54231(T)
MS54232(T)
MS4530(T)
TSR2946(T)
MA3130CT)
MA2732(T)H
TSK2884(T)
M23132(T)
M27131(7)
MAZ333(T)

MA2732(T)
TESRZ2UG T
M23132(T)
M27131¢T)
MA2333(T)

36

1.0000
0.8762
0.8326
0.8346
0.8281
0.8341
00 79‘15
0.8031
0.827¢9
0.8234
0.8326
0.8237
0.8014
0.8138
0.8328
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1.0000
0.98861
0.9863<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>