AD=AQ90 491 GEORGIA INST OF TECH ATLANTA ENGINEERING EXPERIMENT -=ETC F/6 6/1
AN ANALYTICAL APPROACH FOK USE WITH WAVEGUIDE ENZYME=INACTIVATI-=ETC(U)
DEC 78 J J WANG DAMD17=77=6-9422

NL

UNCLASSIFIED




"m | O e 2
= #22 122

e

T
L

22 s e




w—w

VE &g &Mk

AN ANALYTICAL APPROACH FOR USE WITH WAVEGUIDE
ENZYME—-INACTIVATION INVESTIGATIONS

By
Johnson J. H. Wang

ADAC90491

Supported by

U. S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
FORT DETRICK, MARYLAND 21701

Grant No. DAMD17-77—-G—-9422

Approved for public releass;
Distribution Unlimited

The findings in this report are not to be construed as an official -~
Department of the Army position unless so designated by other w
authorized documents.

DECEMBER 1978

GEORGIA INSTITUTE OF TEGHNOLOGY

Engineering Experiment Statlonv ;
Atlante, Georgia 30332

FILE COPY

Yo—v——




' - UNCLASSIFIED - __ S

SECURITY CLASSIFICATION OF THIS "A(;E (When l).la Fnlered)

v

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 _REPORT NUMBFER 2 GOVT ACCESSION NO.

,.é:r e ::m:__.:__'_:__._._.MQ.TA&O_S{.Q“L_{%L:

3 RECIPIFNT'S CATALOMG NUMBER

L TYEE OF REPORT 6 PERIOD COVERED

s | {8 5%
T A Analvtical Approach for Pse with Yaveguide ! > Final epart. e T
{ tuzvme- Inactivat ion lovest ivations « =0 J} Febramump- 77 =4 Scpsonhas 78
{ 6. PERFORMING O3 'CRT MUMBE
e e 1

Ragiied-s e 8 CONTRACT OR NUMBER(s)

1r. et j
T, ; o= / )]

R VSN DU l\.mg_x § /3 A DAMDLI7-77-G-94272

" - \

7 P RFORMING ORGANIZATION 1 AME AND ADDRESS 16 PROGRAM LLE’M’E‘NT PROJECT, TASK
Fagineering bxperiment Station JAREA .
Ceorgi @ bastioate ot lornanlogy (b277]A 3E76277]A8 SJ 0.003 ?

& .' i : . s ] .
Atl;mt:x, Georyia HERR P (6”02A)‘ M6 ]ﬂZB 01 DU.116

- - - - —————— e e S—

I ANTRULLING DFF1 e »AME AT ADDRESS N2 _REPQRTI DATR
Armv Medical Rescarch cmd Development Conmat / ( 1 Dec amivapmsis® | 3 I

13 NUMBER OF PAGES

Vore sowrnox, Frederdick, MDD 21701

48 pages

T A

[ 13 MONITORING ATENGY MAME 8 ADDRESS(! difterent from Caontrolling Offr. e) “T5 SECURITY €1 ASS

ol this ceport)

Vel Y
UNCLASSTFIED &-”

154 DECL ASSIFICATIO
SCHEDULE

b e e e -
16 DISTRIBUTION STATEMENT (of this Report)

Approved for Public Releases Distribution Unlimited

F; DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

Approved for Public Release; Distribution Unlimited

R S ——
18. SUPPLEMENTARY NOTES

Nosimetry
hyadic Green's Function
Microwave knzvme Inactivation

hody inside a rectancular wavegunide.  The numeri
dvadic Green's function containing a double infi
coaboated v partial o summation technique.  The

T‘) KEV W()RDS ((‘mmm:e on uv<;sn side if necessary and Identify by block number)

Waveguide Discontinuity Method of Moments

2Q f&is1 WA\ T i mur on reverse side Hf nec nqsury and IdonuI) Pw block numhw)

A vameyical analysis technique has becn developed to compute the fields inside
a three-dimensional arbitrarilv-shaped heterogencous dielectric or biological

e — e e —e o —

cal computation involves a
nite series, which is
numerical resilts compared - »

DD n\:am| 1473 LINT N T T NOV RS 1S DBSOLETE UNCLASS

TFIED

SECURITY CL

ASSIFICATION OF THIS PAGLE When Dara .m,.ln

{3950 L 4




UNULLADD LI LY

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

-~ very well with reflection and thermographic measurements. This analvtical
approach should be an efficient tool in guiding the design of microwave
applicators used for rapid inactivation of enzymes.

~

—

Accen”
[ nT1s [ 4
DTIC 7 [
Unana- .
Justs”

e e
S

By
Distr-

UNCLASSIFILD.
SECURITY CLASHFICATION OF T4'* PAGE(When Dete Entered)




i3 AN ANALYTICAL APPROACH FOR USE WITH WAVEGUIDE
: ENZYME-INACTIVATION INVESTIGATIONS

.E K
3 FINAL REPORT :
: PROJECT A-1943 .
X e L 1

; .
Johnson J. H. Wang é
|
H December 1, 1978 ]

Supported by

U.S. Army Medical Research and Development Command
Frederick, Maryland 21701

Grant No. DAMD17-77-G-9422

Georgia Institute of Technology
Atlanta, Georgia 30332

Approved for Public Release;
Distribution Unlimited

The findings in this report are not to he construed as an
official Department of the Army position unless so designated
by other authorized documents.

E—V




SUMMARY

A numerical analysis technique has been developed to compute the
fields inside a three-dimensional arbitrarily-shaped heteroéeneous
dielectric or biological body inside a rectangular waveguide. The
numerical computation involves a dyadic Green's function containing a
double infinite series, which is evaluated by a partial summation
technique. The numerical results compared very well with reflection and
thermographic measurements, which were conducted at Walter Reed Army
Institute of Research. This analytical approach should be an efficient
tool in guiding the design of microwave applicators used for rapid

inactivation of enzymes. In addition, the accomplishment represents a

significant progress in microwave and electromagnetic theory.
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SECTION I
INTRODUCTION

The role of cyclic adenosine monophosphate (cyclic AMP) as an
intracellular medictor of the action of a number of hormones has been
well established [1-3]. 1In addition, cyclic AMP is also considered
important in the function of the central nervous system [4,5]. The
distribution of cyclic AMP in the brain can therefore be used as an
important tool in neurochemical research such as in the evaluation of
the effects of hormones or drugs in the central nervous system. In
order to determine the distribution of cyclic AMP, however, it is
necessary to inactivate rapidly two enzymes, adenylate cyclase {(AC) and
phosphodiesterase (PDE), which produce and degrade cyclic AMP, if left
active. Otherwise, the level of cyclic AMP concentration to be studied
may be distorted in a few seconds after the animal is sacrificed [6-8].

There are two types of widely-used inactivation techniques —-
liquid nitrogen freezing and microwave heating. The disadvantages of
liquid nitrogen freezing include the slowness of the process, the
nonuniformity of the freezing pattern throughout the brain [9,10}, and
the Inconvenience in post—mortem dissection at freezing temperatures.
Microwave heating is a promising approach based on the principle that
cyclic AMP is a relatively heat-stable substance [11] while the AC and
PDE enzymes are heat labile and denature irreversibly at temperatures in
the range of 65°-90° C. With microwave heating, the inactivation of
enyzmes can often be achieved with exposure times on the ovrder of 1-2
seconds or less, permitting subsequent required dissection of the brain
at room temperature.

Microwave inactivation can be carried out by an open or closed
system, 1In the open system, a plane wave is employed to illuminate the
animal without the direct interference of enclosing conducting
boundaries. The disadvantages of the open system include a large power

source required and the necessity of containment of radiated power with

a conducting screen or an anechoic chamber. The closed system, such as




a rectangular waveguide, is highly efficient in power usage and has
negligible leakage power which is desirable as far as radiation hazard
and man-made noise are concerned. As a result, recent research in
microwave inactivation techniques has been concentrated in the closed
system type, such as the rectangular waveguide applicator [12]. Lenox,
et al., [12] have shown that using a waveguide applicator, modified from
a WR430 waveguide, only 2.8 seconds are needed to inactivate the brain
enzymes in a 325-gram rat at 2450 MHz with a source of 3500 watts.,
Microwave leakage is less than 5 mw/cm2 at a distance of 10 cm from the
applicator surface.

Microwave heating can be considered as being generated by a
continuously distributed equivalent source throughout the whole
biological body, and is therefore potentially more uniform than the
usual exterior heating produced by localized sources. The uniformity of
temperature in a biological body under microwave excitation is
determined by the degree of uniformity of the equivalent source
distribution, its thermal conductivity, and the time of exposure. For
the case of rapid enzyme inactivation, the heating pattern is roughly
proportional to the equivalent source distribution. Therefore,
nonuniform equivalent source distribution generates "hot spots”™ in the
brain tissue, which may distort the AMP distribution to be studied.
Difficulties in obtaining uniform heating patterns have long bheen
recognized at Walter Reed Army Institute of Research (WRAIR) in its
continued research effort in microwave enzyme inactivation [12].

The physical problem of waveguide enzyme inactivation is
considerably more complex than the open inactivation system employing a
plane wave. The physical parameters involved in the process are
numerous, making it extremely difficult and expensive to design a
waveguide inactivation system by a purely experimental or trial—-and-
error approach. Under these circumstances, the idea of guiding the
design of the microwave applicator by an analytical approach appears
attractive, and the present research grant was awarded to Georgia Tech
to investigate the potentiality of this approach.

The theoretical approach taken at Georgia Tech was to develop a

computer algorithm to compute the distribution of dissipated power

2




inside a three-dimensional arbitrarily-shaped heterogeneous dielectric
body inside a rectangualr waveguide with matched termination. The
theoretiral work supported by this grant has been partially documented
in a paper [13] which discussed the theory and its numerical validation.
This analytical technique was then checked against thermographic data
generated at WRAIR, Satisfactory agreements between the theoretical
results and the thermographic data were observed.

The results of this research have demonstrated that the analytical
approach taken at Georgia Tech is a powerful tool which should help
significantly future development of a waveguide enzyme inactivation
system to achieve rapid and uniform heating in the brain tissue. The

technical accomplishments are discussed in the following sections

together with recommendations for further research in this area.




SECTION II
THEORY

The problem to be considered is shown in Figure 1, in which a three-
dimensional, arbitrarily-shaped heterogeneous biological body is
electromagnetically illuminated in a rectangular waveguide. It is
desired to determine the temperature distribution in the biological body
as a function of space and time. The analysis involves two steps,
namely, the computation of the distribution of power dissipation and the
calculation of the resulting temperature distributions. The first step
involves the solution of an electromagnetir boundarv~value problem. The
second step involves the solution of the heat rondurtion problem with
the heat source represented by an equivalent distributed source of
dissipated power density.

Although numerous publications have appeared in the literature on
i the analysis of waveguide discontinuity problems, not a single truly

three—dimensional solution has been published, according to a review

paper by Silvester in 1974 [14]., 1In the related cavity resonator
problem, finite—element [15] and TLM [16] methods have been employed to
compute the resonant frequency and field distribution when dielectric
blocks were placed inside the cavities. Thus, the theoretical work
performed in the present grant represents a significant advance in
microwave and electromagnetic theory. Most of the details of the
numerical analysis have been discussed in a publication [13] which is
included in this report as an appendix. However, the treatment of the
singular problem in the dyadic Green's function was only briefly
mentioned in Reference 13. Because of the controversy in the literature
on the singularity problem [17-22], it is desirable to document the
approach taken for this problem in the present study.

The heat conduction analysis that relates the equivalent
distributed source in the form of distributed power dissipation to the
temperature distribution in the brain tissue has bheen carried out by Guy

[23,24]). His approach was taken with modifications to explain phenomena

BN B Ry 9 s = e
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near the interface of thermal discontinuities.

A. The Electromagnetic Boundary-Value Problem

The basic approach has been summarized in Reference 13 which is
included in the Appendix. In this report, the discussion will be
restricted to the handling of the numerical difficulties in the singular
and doubly~infinite series Green's function employved in the analysis.

Yaghjian [17,18] recently indicated that the dvadic Green's
function in the source region was not unique but rather dependent on the
geometry of the "principal volume” involved. This generui statement,
regardless of the boundary-value problem under consideration, was
supported by Chen [25] for the free-space case. Their views offered an
explanation for the apparent discrepancies in the literature [19-22] but
are puzzling on some other aspects. In this report, no attempt is made
to resolve the disputes conclusively but merely to provide information
obtained in the present analysis which could be used by interested
researchers.

The electric field in the source region, as shown in Figure 2, can

be expressed in terms of a dyadic Green's function in the following form

E(®) = juw lim G(r,r') -+ J(xMdv' + E (1), (1)
av > 0 [ v - av

where r,r' = positional vectors of the field and source points,
G (r,r') = the electrical dyadic Green's function,
G,(r) = electric field at r,
J(r') = source current at t',

w = radian frequency,

= permeability in space S,
\Y = volume occupiled by the volume current source,
AV = an i{nfinitesimal volume in V enclosing the
singularity of ge(smg’) at r = r', and

E (r) = a correction term,
ﬂ—

The space S5 under consideration can be an infinite homogeneous

space or a homogeneous space partially or completely bounded. The
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Source region V

Figure 2. '"Principal Volume" integration in the source region.




limiting term is often called the principal value of the integral since
its singular point has been excluded. Discussions on the correction
term and the prinecipal-value integration dated back to the work of
Kellogg [26]. The work of Kellogg and Van Bladel [27] implied that Et
was unique and independent of the choice of AV. 1In treating the
principal integral of the scalar potential, Kellogg explicitly stated on
page 18 that a necessary and sufficient condition for the convergence of
the integral is that for any small positive number € there exists a
number § > 0 such that if AV and AV' are any two regions containing

the singularity P and contained in the sphere of radius § about P,

o ™ Jow I
V=-AV V-AV? ’

Kellogg further emphasized that "the 1limit" is not regarded as
existing if it is necessary to restrict the shape of AV in order to
obtain a limit. The only restrictions on AV are that it shall have a
boundary of a certain degree of smoothness (be a regular region in the
sense of Chapter IV, Section 8, p. 100) that it shall contain P in its
interior, and that its maximum chord shall approach 0., Spheres,
circular cylinders, cubes, and pill boxes all have regular surfaces, and
the resulting Ec in Equation (1) should therefore be also independent of
the shape of AV, even though a vector, instead of a scalar, is involved.

In the present waveguide analysis, AV is chosen to be a rectangular-
sided cell whose dimension along the longitudinal axis of the waveguide
approaches zero while dimensions in the other two coordinates remain
constant, This selection of principal volume AV appears to be the same
as the "pill box" type in Yagjian's report [18], and is therefore in
agreement with all the known views in the literature. However,
numerical experiments have not yet been conducted to determine whether
the correction term Ec is dependent upon the shape of the principal

volume AV,




The self-impedance matrix element Qiz, which corresponds to the
limiting integral on the right-hand side of Equation (1), should hold
the answer to the present puzzle. Since the electric field E(r) is
unique, the two terms on the right-hand side of Equation (1) must add up
to yield the correct value for E(r). One can therefore construct
various principal volumes to see whether a dependence on the principal
volume exists for the correction term Ec’ and, if it does, whether a
generalization as claimed by Yagjian [18] 1s valid. Even though no
formal investigation has yet been made in this respect, an examination
of the mathematical expressions in the waveguide case [13], the free
space case [28], and the strict convergence criterion of Equation (2)
indicates that the issue is far from being resolved.

The self-impedance element sz, for p = 1, can be evaluated by a

partial summation technique as follows:

SRS S S o

QQq 2q %q

where

Tll - j 5 : = eonaom mr \2 2 4ab
1q 2abk? k b +k namn
m=0 n= nm nm '

[ nmaY, LU )
sin 72 sin T ] jknm cos [knm(zq - ZQ):,

nrX nrX mnm Y mnyY

. L, . 3
exp (Jknm AZZ/Z) cos ——;3 cos —" sin — 9 sin l (4a)
and

[« -] o
Sll _ =3 Z Z “onom mn\ 2 + 2 4ab
P4

Lq 2abk m=0 n=0 nm b / nm nnmm

nrAX mrAY nnX nmX
sin ‘ sin ¢ 2 cos ——1 c

2a 2b ik 0s

nm

mrY mmy

sin -E—ﬂ sin 5 L (ab)




and all the notations are the same as defined in Reference 13.
11
fq

The term Ttl in Equation (3) converges rapidly but the term §
Using the summation formulas in [13] one

converges extremely slow.

obtains
- c nrAX nuX nnX
G 1 Z on q ¢
¢ = — sin cos cos T
9 k-m =0 23 a a n
AY AY
1 ) L . £ 2
AR 'b +,[l-—b(Yq-YQ+—2 Y]
. sy, )| ax,
A i -1
N1 - b(\{ -Y, - )]‘ l 5 t 5
X, o AX, [
- n'fi - "—-(X - - — 5
)] V{1 a2t X, 5 )]‘ . (5)

\r'
(1 - 3—(Xq - Xl +

[ - l ; 3 A
T T Siabe n | T (1
11
1 Y,
4+ sin a' .7 - = - ==
sin a ll'r[l b(Yq + Y2 5 )]
3 Y,
+ £ sin 2 llv{l - E(Yq - Yl + =) ]
n R '
- 1 ! - — p
n sin 2 11W[L b(Y Y2 7 )] ’, (ba)
- N I e AN 2 (bb)
2 13 ‘/ ( ;) + k ,
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1
T '= —— -sinh a,, 7
n sinh a5 " ‘ 11
1 AY2
+ sinh '1llw[l - E(Yq +Y, - ——5—)]
£ AYQ
+ £ sinh ullu[l - b(Yq - {9 + _E_)]
n AYQ
- nsinh alln[l - b(Yq - YQ - _3_)]
and
-E"_ﬂ2 2
11T 3 (a) -k
In Equations (6a) and (7a),
AY,
‘ 1 for Y - Y +—=
o= qQ L ks
a -1 otherwise,
and
[ 4
1 for Y - Y - —% >
n = q 1, 2
-1 otherwise

1
1 - b(Yq tY, +— )1

AY2

<

‘. (7a)
(76)
20
s (Sa)
0
(8H)

Similarly, expressions for Qii can be obtained by exchanging

between m and n, between Axl and AYP between Xq and Yq, between XQ and

Yl’ and between a and b in Equations (3) through (8). The expressions

33
for qu are

33

33 33

Q =T

iq

tq

+
Seq °

(9




"

where

33
qu

33 _
T?.q )

33

where

alq b

In Equation (11),

; = = £ 2 2
_ i Z 2 on om mr) (m) ]fmb
= —_— + — —_—
2abk n=0 m=0 l\rlm [< a nrmn
nﬂAXR mnAY2 o
. , 2 . _.
(sin 7a sin T ) EE— Cos[knm(“q ZL)J
nm
nnX nnX mny m®y
. 7 . . 4 L
exp(Jknm AZQ/-) sin ——;ﬂ sin sin ——Bg-qxn <
33 33
+
aiq Tb)lq
AY AY
B 61 2
B I A
AY AY (
& N 2 B _n - - £
+6[1 - 5 Yy = ¥, - 591 - al1 b ¥q = ¥, - )]‘
£X AX
1 L 1 L
. a(Xq + Xz + > ) - a(xq + xl - )
AX '
' - E_' -\ __Z - ' -n - ¥
+ &' [1 a(Xq % + 7 )] n' [1 a (Xq ki
AYO
R (1 for Y - Y, + — 20
o= q i -
?—l otherwise ’
AYE
‘ 1 for Y -Y - - 20
- q 2 2
n /-1 otherwise ’
AX,
‘ 1 for X - X, - == . n
W' = q v -
(-1 otherwise ’
‘ AXZ
1 for X - X, + > > 0
v , q . -

otherwise

(1)

(i

(13)




Also in Equation (11),

» "~

33 . < € nraX nrX
bsA = —% -=n_om sin L sin 4
iq n : : : : mn k- 2a a

n=u m=0U nm

nnxl mrlY mnY mwy,
sin sin —¢ = sin ——7;41 sin s < (14)

It appears that numerical experiments can be fruitfully conducted
by letting Ax‘Q and AY: vanish as rapidly as AZQ and then observe what
correction term Ec(E) should be used. Short of a laboratory experiment,
these tests should be very useful in resolving the existing
discrepancies in the literature.

It is also interesting to note that a similar singular property has
also been observed in Green's function representation of an infinite
planar array with wire antenna elements. It was observed that the
Green's function has a singular point associated with the component of
the equivalent source current in the direction perpendicular to the
plane of the array [29,30]. The computer program yilelded good results
when the array was made of horizontal dipoles (dipoles parallel to the
array plane), but it "blew up” when dealing with vertical dipoles
(dipoles perpendicular to the array plane). Since the planar array
problem is intimately related to the rectangular waveguide problem, this

phenomenon seems to support the result

E =J 2 (15)
- z

in References 20, 21, 22 and dispute Yagjlan's (18] result which states

that

E = J/3, (16)
L. T =

where a cube is chosen as the principal volume.
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B. The Temperature Distribution Inside a Biological Body Under

Microwave Excitation

. The density of power dissipated Pd in a biological body 1is

P,(n) = we™(D) [E(@], (17)

where €” 1s the imaginary part of the complex permittivity. The density
of power dissipated, P; in Equation (17), can be considered as a
distributed heat source inside the biological body. The temperature
distribution as a function of time, space,and initial conditions can
then be computed from purely thermal considerations. The problem can be

formulated by the heat equation [31] as follows

aT 2 2 2
. =a 9T+ 4ma”§ , 13

Q@

where T = temperature distribution function,
t = time,

g2 = Laplacian operation,

a = K/pc, K being the heat conductivity, o the density, and
¢ the specific heat of the medium,
S = Pd/énK, and
Pd = heat source distribution.
Both T and Pd in Equation (18) are functions of time t and spatial
coordinate r. P, represents the distributed source which is a known

quantity computed from Equation (17). The solution of Equation (18)
together with all the initial and boundary conditions has been obtained
for several elementary geometries [31,32]. For complex geometries,
numerical matrix method such as the finite-difference method can be
used. For simple cases, an approximate formula used by Guy [23] is very
convenient. The short-term temperature rise AT is approximately

proportional to the power dissipation at the point of interest, namely,

14




Poo= v p eldT,
(19)

where » and ¢ are as defined in Equation (18) and o is a eoefficient
related to the exposure time. Based on Equation (19), the relative
short-time temperature distribution is approximately the same as the
density of power dissipation. Guy did not indicate the origin nor the
rationale for Equation (19). However, Equation (19) can be considered
to be a special case of Equation (18) at a short period after t = 0.
Since 72T = 0 at t = 0-, as was the usual case, we have V2T =0atT-=
0+, and Equation (18) can be approximated by Equation (19).

Equation (19) 1s often satisfactory when applied to the interior
reglion of a homogeneous portion of a dielectric body of low thermal
~onductivity, It fails to provide useful results near the edge of the
dielectric body or at the interface of two different types of
dielectrics, as was noted by Guy. As shown in Figure 3, Guy's
measurement of temperature profj of a block, formed with muscle in
Reglon 1 and fat in Reglon 2, exhibited gross deviation at the interface
trom his -alculated power dissipation curve. Thus, Equation (19)
appeared to fail in the neighborhood of the interface between the fat
and the muscle tissues. Guy then proceeded to correct this discrepancy
hv enfurring the continuity of temperature at the interface. Although
his approach appears reasonable on a qualitative basis, many questions
remain to be answered.

A more rigorous appraoch was taken In the present study by using
the diffusion FEquation (18). We first investigated the fat-muscle
block of Figure &4, and was able to obtain good numerical results.
However, we have found that the temperature distribution is quite time

dependent, being fastly varying in the first five seconds. Thus, the

temperature profile can not be simply established by recording within,
say, five seconds after the heating.
We first examine the case in which the muscle is held at a uniform

temperature T  and the fat is held at 0°k at time t = 0- as shown in

15
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REGION | REGION 2
T(X,0)=T, T(X,0)=0
[} a 4
K[,C],P[ K2,C2,P2
MUSCLE FAT

Figure 4. A one-dimensional composite body of muscle
and fat.
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Figure 4. In the absence of a heating source, the temperature

distribution is [32]

T(x,t) = T . 2 : 8" serfc (ntba - x

n=0 [ 2/t %
:
; :
+ erfc (Zntla + x ( for 0 < x < a
' 2v klt
1 + -
- To " B erfc 2na +u(x-a)
- n=u 2 vkt K
) -
- arfe (2n+2)a +u(x-a) t for o .
2/ ket \ X ooa (20)

where
Ve - .V Rk
- KV K, KV kg (21a)
K, /@ - K, ey
X o= oK (21b)
Ky I\l/C1 , and
ky = Ko/Cyy (cle
and kl’ (i, and kz, C2 are the heat conductivity and specific heat for

Regions 1 and 2, respectively.

The temperature profile along the x axis changes rapidly during the
first five seconds, as shown in Figure 5. As a result, merely recording
the temperature as soon as possible (for example, Guy did it in less

than five seconds) does not guarantee consistent and meaningful results.
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Equation (20) can also be employed to compute the approximate

temperature for the case in which the initial temperature distribution .
is not uniform. An example is shown in Figure 3 for the fat-muscle

block studied by Guy. The relative temperature distribution can be

approximated by modifying the temperature expression of Equation (20)

with the nonuniform dissipated power distribution P As can be secen,

the temperature peak near the interface on the musc?e side shifts along
the x axis during the first 10 seconds. This observation is important
in understanding the thermographic data obtained in the present
research, in which an apparent hot spot near the edge of a tissue has
also been observed.

F It is difficult to solve Equation (18) for a biological tissue of

more complex geometry other than slabs, spheres, ellipsoids, and

cylinders. However, it has been observed that the simple approximation

of Equation (19) is valid in regions far from sharp temperature

gradients such as the edge of or interface in a tissue.




SECTION TII
COMPARISON WITH THERMOGRAPHIC MEASUREMENTS

Two types of thermographic measurements were made: one using
thermographin paper and the other using thermographic camera. The
thermograhir paper measures the peak temperature during and after the
exposure time but does not record accurate data. Furthermore, it is
always difficult to place a thermographic paper at the proper location
without affecting the experiment. The thermographic camera is more
accurate but Is also difficult to look at the inside of a tissue. As
has been discussed in the preceding section, the temperature
distribution varies with time. Merely taking a quick picture
immediately after heat exposure does not always yield consistent data.
Consequently, great care must be taken when comparing the calculated and
L measured thermal data. Measurements were made at WRAIR, even though
some preliminary tests were performed at Georgia Tech. All the cases
studied were rectangular-sided blocks which are convenient for the hook-
keeping of the location of the field points.

Figure 6 shows a comparison between the calculated dissipated power
intensity and the temperature profile recorded with thermographic paper
for Case C in Reference 13. Although a general agreement can be
observed in the comparison, the thermographic measurement was difficult
to calibrate and repeat. The dielectric model used had a high water
content which generated hot steam during the later stage of the

exposure. A power level of 15 to 50 watts was used, and exposure times

of 15 to 25 minutes were tried. Usually four or more recordings of
different exposure times must be tried before a recording of good
quality can he obtained.

Figure 7 shows the physical configuration of a dielectric (Stycast
Hi-K16) block inside a WR284 waveguide. The block is divided into 54
identiral rells which were numbered as shown in the figure. The
caleculated dissipated power intensity at the center of each cell on the
top layer is plotted in Figure 8 in a perceptive view. Two

temperature profiles measured with a heat-sensitive camera are shown in

21
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Figure 9 for comparison. Satisfactory agreement is observed except for

a discrepancy on the far end of the block where the calculated power
dissipation continuocusly rises toward the edge of the block while the
measured temperature shows a drop near the edge. This disagreement can
be explained in the following manner.

As has been discussed in the preceding section, the temperature
distribution is approximately proportional to the dissipated power
intensity only for a brief period after the exposure and only for
regions away from the surfaces with discontinuity of thermal
coefficients. The drop-off of the temperature near the distal (load)
end of the block can be explained in the same manner it was in Figures 3
and 5. The calculated power dissipation corresponding to (a) of Figure
9 is plotted in Figure 10 in the same fashion. Good numerical
convergenre is indicated in computations using 24, 54, and 63 cells.

The 63-cell calculation employed a configuration of unequal cell volumes
to obtain great details in the questioned distal end near z = 2 cm. As
can be seen, there is a definite rise in power dissipation toward the
edge of the bhlock. Temperature distribution is czalculated using thermal
conductivities of 0.0084 and 0.0008 watts/cm-°K for specific heats of
4,186 and 0,1 joules/cm3-°K for the dielectrir and the air,
respectively. The resulting temperature fall-off, however, was much
closer to the edge than the measured data in Figure 9(a). We have
found, however, that the temperature peak ~an be shifted away by as much
as 0.4 cm from the edge by using different thermal coefficients in the
computation. Therefore, the calculation could be improved by using more
reliable thermal coefficients and by a more refined thermal modeling

approach.
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Figure 9. Thermographic measurements on the top surface of the
block sample of Figure 7.




“(¥)p OIDBI4 JO SI[NSAl paansvou Ayl yitm uostavdwod
10} 94anluladwael pue ajisusiul aamod paledrssy yajehoje)y EPV-A |
3 3 ! ! Issiyp V]

- - 0 | P4
1 I ﬁ Sﬁu.N =
=
,\m\\w
3 X w v
= |
m“ 0103 o KQ h
o G- X < ~
0 o~

o m
2 NE
m o
- XMl 5
— O'x0Ot = m
z G- .
— x
- 12
&
3 = ———— X208 218410377310
- \/
= _ -
~ FIHNIVESCNIL
Wc. ¢ ST1130 €9
~ o S71730 149 SONQOD3S 2 =1

X S77130 v2




SECTION 1V
CONCLUSIONS AND RECOMMENDATIONS

An analytical tool has been developed to compute the
elertromagnetic fields inside a three-dimensional arbitrarily-shaped
heterogeneous dielectric or biological body inside a rectangular
waveguide. The profile of dissipated power intensity, and hence the
temperature, can be determined with satisfactory accuracy. Immediate
application of this technique will he to provide guidance for the design
of microwave applicators for rapid inactivation of enzymes. The
techniques involved in the present analysis represent advances in
microwave and electromagnetic theory. Their impact could be extended
into other physical and mathematical sciences.

Numeriral tests have been condurted for rectangular—-sided
homogeneous bodies only, even though the computer program was written
for a general three-dimensional arbitrarily-shaped heterogeneous body.
The computer program was checked by numerical convergence tests and
conservation of energy, as well as by direct comparison with measured
reflection and thermographir data. For dielectric bodies of low to
medium dielectric constants (less than, say, 15), excellent results
were obtained. The quality of the results degraded gradually with
in~reasing diele~tric constants. However, even for high dielectric
constants of about 50, fairly good results were yielded by the computer
pro -ram,

“urther research should include test rases of bhiological bodies of
greater rcomplexity, such as a two layer ellipsoid or even a full rat

ronfiguration. In addition, the waveguide structure can he modified to

represent a more practical applicator such as a waveguide with a

shorting plate at the end. These tasks have been {nitiated during the
present grant period but could not be completed with the limited funds
available.

It is also recommended that a more accurate theoretical approach be

established to relate the distributed power dissipation and the

temperature profile insi{de the biological body. FExtensive numerical




data should be generated to guide the applicator design. However,

improvements of the existing algorithm must be made before data

generation, since the computer runs are quite costly.
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Analysis of a Three-Dimensional Arbitrarily
Shaped Dielectric or Biological Body
Inside a Rectangular Waveguide

JOHNSON J. H. WANG, MEMBER, IEEE

Abstract~This paper preseuts 3 method for the analysis of three-dimen-
sional arbitrarily shaped dielectric obstacles inside a rectanguiar wave-
guide. The pumerical computation involves a dyadic Green’s function
containing a double infinite series, which is evaluated by a partial summa-
tion technique.

I. INTRODUCTION

AVEGUIDE obstacles and discontinuities, includ-

ing the dielectric type to be discussed in this paper,
are long standing problems in electromagnetic theory.
Many of them, essentially two dimensional, have been
solved and were summarized by Marcuvitz {1]. The gen-
eral three-dimensional discontinuity problems. however,
remain unsolved in spite of the advent of modern high-
speed digital computers and the method of moments [2]
which permut treatment of problems not solvable by exact
methods. Upon reviewing the status of numerical tech-
niques for passive microwave devices, Silvester and
Csendes {3] observed in 1974, “not a single truly three-di-
mensional solution has been published™ for waveguide
discontinuity problems. This statement is apparently still
valid today.

This lack of published research activities in three-dimen-
sional waveguide discontinuities has been in many cir-
cumstances due to the deficiencies of the Green's func-
tions in the waveguide region. A dyadic Green’s function
for the rectangular waveguide was presented by Tai in
1972 [4) and later revised by the same author in 1973 [5].
Tai’s expression includes a double infinite series summing
over the contributions from all the individual waveguide
modes. Recalling the simple expression of the free space
Green's function, one immediately recognizes the greater
complexity in the waveguide case.

This paper presents a successful use of the dyadic
Green's function in the analysis of the electromagnetic
problem of a three-dimensional arbitrarily shaped dielec-
tnc or biological body inside a rectangular waveguide. In
the process, the extremely slow convergence of the double
infinite series in the Green's function had to be modified
by means of a partial summation technique. The im-
mediate application of this new analytical technique is in

Manuscnpt received November 7, 1977; revised February 7. 1978
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Fig. 1. A three-dimensional arbitrarily shaped heterogeneous dielectric

body illuminated inside a rectangular waveguide.

microwave waveguide enzyme inactivation in neuro-chem-
ical research [6]. Extension of this technique to highly
conductive obstacles is feasible but may require modifica-
tion of the volume integral into a surface expression.

II. THE INTEGRAL EQUATION AND THE DyaDIC
GREEN'S FUNCTION

The problem to be considered is shown in Fig. 1. n
which a three-dimensional arbitrarily shaped heteroge-
neous dielectric or biological body is electromagnetically
luminated in a rectangular waveguide. The dielectric
body has a permittivity distribution of e(r), where r is a
positional vector. Outside the volume ¥ occupied by the
dielectric body. the permittivity is homogeneous and is
denoted by ¢,. Free space permeability p, is assumed for
both the dielectric body and the medium outside "

The time function e ~/*. where ¢ and w are time and
radian frequency, is used in all the equations 1 this paper
for ready comparison with Tai's work {4], [S]. Since the
e’ convention is perhaps more widely used. a comment
on the conversion of the equations to this convention is
justified at this point. For the ¢/*' convention. one merely
changes to —; all the j's appearing in the equations 1n this
paper.

In Fig. 1, E(r) denotes the electric field ntensity at r
and E'(r) denotes the field intensity at » with the dielec-
tric body replaced by the medium ¢,. The scattered field is
defined as

E'(ry=E(r)-E'(r). 0]

The volume equivalence pnnciple can be shown to be
valid in the bounded as we!l as the unbounded space. As a
result, the problem as depicted in Fig. | is equivalent
everywhere to a homogeneous waveguide with ¢,. u,. and
with volume current density

J(r)=—j«:[c(r)—¢,]£(r). (2)
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It follows from the theorem of superposition that the
electnc field radiated from J(r) is equal to E*(r). There-
fore,

(3)

where 6, is the dyadic Green’s function of the electric
type and

E*(r)=jop, fy&,(r,r’)-l(r’) av’

G.(r.r)=Golr,r)- ;lZ-EES(r.r’) 4)

1
where § denotes a three-dimensional Dirac delta function,
Z denotes a unit vector along =, ky=wVe, g, and G4 is
defined below. The term involving § had not been in-
cluded in Tai’s earlier work [4] until 1973 [S] and has been
a subject of recent discussions [5], [7], [8]. G, was not
explicitly expressed in the literature except by Rahmat-
Samii [7]. However, Rahmat-Samii’s expression has a
number of errors in the pnint. For the clanty of the
present discussion and the convenience of future refer-
ences, it 1s desirable to present it in the following long
form:

j i i 60"60"'8,/(,_|z—z'|

G, (r.r)=
ol 2abk? 20 S0 Konn

-[i\?[kz—(m)z cos X cos mx’
- |
a a a
Y’ 2
sin —— sin —— +yy kz—(ﬂ) sin 27X i 27X

b b [ % a

nmy nmy’ fmm\t . nm?)
-COs —— cos —— + 33 (——) +(—)

b b [ a b/ |

mmwx _. mmx
-sinp —— sin ——

a a
onmy . onmy' (mvr nmw
-sin —=— —_ (== ). ==
sin —= sin — ry[ 2 )( 5 )]
.cosmsinm

a

nmy nmy’ mmn\ { nw
.sin —— —_— x| - =)=
sin —= cos — yr[ ( p )( 5 )]

. ommx mmx’
-sin

nmy | onmy' ., nmwl . mmx . mux'
-c0s — sin —— +y 2| £k ——]sm—s

b b y[ Imn g a Mg

nmy . onmy' . .r_ . awrl.. mmx . mmx
“CO§ —— sin —— + 7 k —]sm———s —_—

5 sin = + 35 Fkan G | sin T sin 2
. nmy nmy' L r_., mmw mmx mmx’
-§in —— cos — +3ix k — | sin —

5 5 [+/ma]macosa
onmy o onmy' o r oy mnx . mux’
-sin —— sin —— +x2| *jk,_— | cos — _—

5 - [ Jhmn =, ] 4 Sin
oony . onm
-sin _bz sin %} forz2: (5)
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where
¢ ={ 1, ifa=0
012,  otherwise
r=field point=(x,y,z}
r =source point=(x’,y".’)
Jl(kf"kf)l/zl. if k, is real
]le(kcz— k)1 if k,,, 1s imaginary
where

2o (mT (T
k‘.—( P )+(b)'

Equations (1)-(4) can be manipulated to yield the
following integral equation:

J(r)

/w"ﬂfVG_m(r.r')-J(r)dl”*' :

/ut((ri—g-

(6)

where J, is the z component of J. The unknown J 1n (6)
can then be solved by the method of moments [2! which
transforms the integral equation nto a set of linear equa-
tions readily solvable by means of a digital computer.

III. SoLtTioN BY THE METHOD OF MOMENTS

Although there exists a number of methods by which an
integral equation can be solved numencally, the complex-
ity of three-dimensional geometry can hardly tolerate fur-
ther complication in the computational process. Even 1n
the much simpler case of plane wave incidence and un-
bounded free space. only point matching together with
rectangularly sided cells has been attempted for the
volume type of integral equation [9]. Fortunately. this
unsophisticated process has been found to be capable of
producing good numencal results. Thus point matching
with rectangularly sided cells 1s employed 1n the present
analysis.

The volume V occupied by the dielectric body s first
divided into L equal rectangular-sided cells M}'\-A1 .
each of which has constant dimensions Ax. Ay, and A:.
The electric field. assumed to be uniform inside the /th
cell, is designated as E (r,), where r, represents the center
of the /th cell. The equivalent current in (2) can then be
expressed as

L3
Jin=73 X J'B'(r

(=] k=]

(7)

where B/ is a basis function defined as

Bf(r)y=1u, P'(r). k=1.23o0rxy.: (8)

4, in (8) denotes a unit vector, and

9

P’(r)-{ I, forrmaV,
) 0.  elsewhere.
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The weighting function is defined as

Wr(r)=68(r—r)i, p=12.3. (10)
The scalar product between f and g is defined as
(f8)= [ fgdo (1
,

We can generate a set of linear equations by first
substituting (7) into (6) and then performing a scalar
product on the resulting equation with the weighting func-
tion of (10) for p=1,2,3 and ¢=1,---,L. This moment
generating procedure leads to the following set of equa-
tions:

3 L
S S kagr=cr, p=1,23:q9=1,--,L (12)

kwm] lm])
where
Cr=—E'(r) (13)
8 8¢ 8%-8¢
= hyp T *x 23
AT = fuo Q'+ Jw { e(r)—¢ ¥ e(r,) } (4

8f n (14) is the Kronecker delta, being | whenp=qg and 0
otherwise, and
Qf;k = LVIG‘,’:)/‘("‘I,") av’ (15)

where G% is the (p.k) component of the dyad (_7;0. The
integration in (15) can be carnied out to yield

& J S« Confom k
= ———IQF? 16
8= 2abi Eo ”.2.0 ki OF (16)
where
F?%=[the (m.n)th term of G& ]-¢ *=ie=5l (17)
d4ap . hmdX,  mmdY,
Q= — sin —— sin — (18)

and I in (16) depends on the index pk. For pk being (1.3).
(2.3% (3. 1), (3.2). where (1.2.3) corresponds to (x.y.z), we
have

2 . Az, Az,
. :kme/'“-‘w “l sm(k,,,,,—z——). lfquz,+—2~
)‘ Zz—e"‘-"""z sin [k,,(z,~3)].  otherwise.
mn
(19)
For other pk indices. we have
2 { cos [kpylz, = 2)]ertme 2 1),
L e
_ Az, Az
[= |f':,+—2—>:q>z,——5—
) Az
k- sin (k”"'_i—l )e"- o otherwise.

(20)

459

~ASE . 2650 MN:
& TRUNCATICN
& SUMMATON
< a a
- a
z @,
3 an % . a
! et e o o o .
: T ’
& * e
=4
<
3
Q e " " " "
29 10 &C 80 [o}o] 20 49

NUMBER CF TERMS, MM of NN

Fig. 2. Companson of convergence between direct truncation and par-
ual summation.

As can be seen in (14)-(20). the matrix element 4f/
involves a double infinite series which does not converge
rapidly unless |z, — | is large. When p=gq as 1s the case
for the self cells which are the diagonal matrix elements
[2,—2|=0 and the series convergence is extremely slow.
As an example, Fig. 2 shows that no sign of convergence
is exhibited even after 140X 140 terms are used in the
summation. Thus the computation of the matrices can not
be carried out by a simple truncation of the series.

This computational difficulty can be surmounted by
direct summation of the part of the infinite series which
contains terms nonvanishing with increasing M and N.
This partial summation transforms a matrix element of a
double infinite series into a single infinite series or even
into an expression of closed form, which can be truncated
for computation. Fig. 2 shows that convergence is
achieved with about 20 20 terms for the partial-summa-
tion technique. which is significant improvement over the
direct truncation method. For most off-diagonal matnx
elements, direct truncation is satisfactory because of the
predominant influence of the exponential terms with the
argument of jk,, |z, — 2| or jk,,Az,/2 as shown in (19)
and (20). As a result of these exponential terms which
rapidly decrease with m and n. off-diagonal matrices with
nonvanishing |z, -z, | can be computed with a finite senes
truncated according to a precision criterion established by
the value of jk,,,|z, — z,|. Depending on the value of jz -
;. approximately 16 X8 up to 21 X 12 terms were used for
m and n in the examples reported in this paper.

The partial summation technique is tedious but
straightforward. The portion of the infinite series which
consists of terms slowly convergent with m and n are
summed by means of the following formulas [10]:

x .
< sin kx w—x
P .

= O<x<2n
2 Tk 3 ( ]
k sin ka _ « Sin ha(7—x) 2 e
2 e 2 prrp— a->0. 0<x <27
k sin kx sin {a[(2m+|)-rr—x]}
By - *
koo ki-at 2 sinan




2mr < x<(2m+2)m, a being noninteger

cos h(m—x
coske | m SSRTTX) 1 o o,
k=1 k*+a? 2a sinhar 242
cos kx 1 gcosa[@m+1)m—x]
Py k?-g? 242 2 a sin ar ’

2mr < x <(2m+2)m, a being noninteger.
The explicit expressions for the matrix elements after
partial summation are too complex to be presented in this
paper and the interested readers are referred to {11} for
further details. Their computation on a digital computer is
efficient since only logical expressions and elementary
algebraic and transcendental functions are involved.

IV. NUMERICAL EXAMPLES AND SUPPORTING
MEASUREMENTS

A method for analyzing the electromagnetic problem of
a three-dimensional arbitrarily shaped body inside a rect-
angular waveguide has been presented. A Fortran IV
computer program was written for the numerical testing
of this approach. Measurements were also conducted to
compare with the theoretical prediction. Several cases
were studied and satisfactory results have been obtained.
Validation of the theory and the computer program was
achieved with numerical convergence tests as well as
direct comparison with measured data. which included
transmission-reflection characteristics and thermographic
heating patterns.

Three cases, as shown in Fig. 3, are presented in this
paper. All of the test cases consist of homogeneous dielec-
tric bodies with rectangular side walls aligned with the
waveguide walls. This choice of geometry conformal to
the Cartesian coordinates is mainly for the sake of sim-
plicity in data management and should not result in any
significant loss of generality as was noted in the free space
case {9]). For highly conductive obstacles, the surface
curvature of the obstacle plays a more important role and
therefore should be treated with greater discretion.

It was noted that the linear cell dimensions should be
A/2 (A being the free space wavelength divided by the
square root of the dielectric constant) or less in order to
yield accurate data. This observation had been reported in
the free space case studied by Livesay and Chen [9] and
later by Hagmann er al. [12]. Fig. 4 shows good agree-
ment in the reflection and transmission properties of Case
B between a 12-cell calculation and the measured data
using a model made of silica compound. A 12-cell calcula-
tion from Case A. being also a case of low dielectric
constant, yields a power reflection coefficient of 0.114 at
2.65 GHz. dropping down to 0.035 at 3.5 GHz, which was
verified experimentally with a paraffin wax model.

While 12 cells are sufficient for the calculation of Cases
A and B, many more cells are needed for Case C, which
has a high dielectric constant. Case C was originally
intended to be a phantom model for simulating muscle
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tissue. The model was made by muxing water, powdered
polyethylene, and “super stuff.” a modeling compound
manufactured by Wham-O Co., San Gabnel. CA. The
dielectric constant and loss tungent were then measured at
various frequencies. There were difficulties in achieving
and maintaining the desired dielectric properties of the
phantom model and. as a result, only the repeatable
measured data are shown in Fig. 5. in which compansons
are also made for three calculations using different num-
bers of subvolume cells. The measured data in Fig. 5
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agree reasonably with the calculation. The 12-cell config-
uration is obviously overty crude, yet the results are in
gross agreement with those of finer configurations. Note
that in the 45-cell calculation the y dimension of each cell
is 0.8833 cm, which is about 0.52A at 2.5 GHz and 0.68A at
3.1 GHz. C nvergence becomes more rapid when the
linear dimensions of the subvolume cells decrease to A /2
or less.

The rapidity of convergence of the present model ap-
proach is further illustrated in Figs. 6 and 7. Fig. 6 shows
the calculated power reflection and transmission
coefficients versus the number of cells used for the geome-
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try of Case C with two values of complex dielectric
constant. In Fig. 7, the field distribution inside the dielec-
tric body is compared for various numbers of subvolume
cells used in the calculation. It has been noted that the
convergence of field intensity is related to the profile of
the field. When the field vanes slowly with the coordi-
nates, convergence is rapid. Fig. 7 presents typical situa-
tions with moderately varying fields. The favorable in-
fluence of the lower dielectric constant on the conver-
gence of the field distribution is clearly demonstrated.

Dielectric bodies of high dielectric constant require not
only a larger number of cells but also a greater number of
terms in the Green's function series. This i1s due to the fact
that the distance between adjacent cells is small because
of the smaller size of the cells. The attenuation of higher
order modes, being independent of the dielectric constant,
decreases when the distances between adjacent cells
centers are shortened. As a result, the calculation cost for
cases of high dielectric constants increases rapidly with an
increase in dielectric constant.

V. CONCLUDING REMARKS

A general three-dimensional waveguide dielectric ob-
stacle has been successfully treated by employing the
moment method on an integral equation nvolving a dy-
adic Green's function. This general method can be ap-
plied to a number of waveguide problems. An immediate
extension of this technique would be to ferromagnetic
obstacles. For highly conductive obstacles a surface-type
Green’s function may be more desirable.
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