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ABSTRACT

The tunctional correctness technique is presented and explained.

An implication of the underlying theory for the derivation of loop

invariants is discussed. The functional verification conditions concerning

program loops are shown to be a specialization of the commonly used

inductive assertion verification conditions. The functional technique

is compared and contrasted with subgoal induction. Finally, the diffi-

culty of proving initialized loops is examined in light of the inductive

assertion and functional correctness theories.
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A Comparative Analysis of Functional Correctness

1. Introduction

The relationship between programs and the mathematical.

functions they comprte has tong been of interest to computer
scientists [McCarthy, 1963; Strachey, 19663. More recentty,
(MitLs, 1972, 19753 has developed a model of functionaL

correctness, i.e. a technique for verifying a program correct
with respect to an abstract functional specification. This
theory has been further developed by [Sasu I, Misra, 1975; Misra,
19783 and now appears as a viable alternative to the inductive
assertion verification method due to (Floyd, 1967; Hoare, 19692.

In order to describe the functional correctness modeLt we
consider a program P with variables vl, v2, ... , vn. These
variables may be of any type and complexity (e.g. reals,

structures, files, etc.) but we assume each vi takes on values
from a set di. The set 0 a dl x d2 x ... x dn is the ggt# spic
for P; an element of 0 is a djj fLj# . A data state can be

thought of as an assignment of values to Program variables and is
written <cl,c2,...,cn) where each vi has been assigned the value

ci in di.
The effect of a program can be described by a function

f:D->D which maps inpt data states to output data states. if P
is a program, the function computed by P, written EP3, is the set
of ordered pairs ((XY) I if P begins execution in data state X,
P will terminate in final state Y). The domain of (P3 is thus

the set of data states for which P terminates.
If the specifications for a program P can be formulated as a

data state to data st ate function f, the correctness of a program

can be determined by comparing f with [P3. Specifically, we say
that P computes f if and only if f C (P3. That is, if f(X) = Y

for some data states X and YV we require that (P](X) be defined
and be equal to Y. Ncte that in order for P to compute f, no

explicit requirement is made concerning the behavior of P on

inputs outside the domain of f.

Ex.mp11 1: Corsider the simple program

P 0 v11, 092

b : b * a;
a :w a - 1

29.

The function computed by the program can be written as
[P3z=(<ab>,<Otb*a!)) I a>O) U ((<ab)<ab)) I a<0).

Thus if a is greater than or equal to zero, the program maps a
and b to 0 and b'a respectively, otherwise the program performs

* the identity mapping. As a notational convenience, we often use
conditional rules ard data state to data state "assignments"

" (called £g~rjilt aiJjjijljouij) to express functions. In this
notation we have

(PJ x (a>zO -> att :9 Ob'a: ITRUE -) ab :2 atb).

Finally, if we are giten f o (a)uO -) atb :x 0oba.) as the
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function to be computed, we may say that P computes f, since f is
a subset of EPI.
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A Comparative AnaLysls of Functional Correctness 5

2. The Functional Correctness Technique

The functional correctness method relies heavily on a

technique for verifying that a WHILE loop computes a given state
to state function, we present this WHILE loop technique as a

theorem and then describe the method for general programs.

Nol*12R0: The dovain of a function f will be written as
o(f). The notation f o g will be used to represent the
composition of the functions g and f. we will use the shorthand
BeQ for the WHILE loop Whilg e ag 0 2d. Finalty, in several
examples we will use the notation SUf(abtc,d) for the summation
from azb to c of d.

tItiDoit g: The loop BQ is closed for a function f if and

onLy if for all X in D(f), O(X) implies [03(X) is in D(f).
intuitively, a loop is closed for f if the data state remains in
0(f) as it executes fcr any input in D(f).

ihtgrt- 1: if the loop B*Q is closed for a function f, then
the Loop computes f if and only if, for all x in D(f)

(2.1) the loop terminates when executed in initial state X,
(2.2) B(X) -> f(X) f([Q3(X)), and
(2.3) 9(X) -> fMK) X,

PEL2f: First, surpose (Z.0), (2.), and (2.3) hold. Let
X103 be any element of D(f). By condition (2.1) the loop must
produce some output after a finite number of iterations. Let n
represent this number of iterations, and let X[n) represent the
output of the loop. Furthermore, let x(I), X[2] ... x(n-1J be
the intermediate states generated by the Loop, ie. for all i
satisfying 0 <z i t n, we have B(Xt(i) £ X[ti1 = (0](X(i)) and
also "8(Xn]). Conoition (2.2) shows f((O) ICIC 13) .
f (x(n)). Condition (2.3) indicates f(xln)) x X(n). Thus f(X[OJ)
z X(n and the Loop computes f.

Secondly, suppose the koop computes f. This fact would be
contradicted if (2.1) were false. Suppose (2.2) were false, i.e.
there exists an x in D(f) for which 8(X) but f(X) U) f(UMC1)).
From the closure requirement, (43(X) is in 0(f) and the loop
produces f((Q)(1)) when given the input (03(X). But this implies
the Loop can distinguish between the cases where (03(1) is an
input and the case where (0](x) is an intermediate result from
the input X. Howe ver # this is impossible since the state
describes the values cf all program variables. Finally, if (2.3)
were false, there would exist an x in 0(f) for which the loop
produces V as an outptt, but where f(X) <) X. Thus the loop must
not compute f.

An important aspect of Theorem 1 is the absence of the need
for an inductive assertion or Loop Invariant. Under the
conditions of the theorem, a loop can be proven or disproven
directly from its function specification.
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L&A!Ra e Z: Using the loop P and function f of Example 1, we
shall show P computes f. D(f) is the set of all states

satisfying a >= 0. Since a is prevented from turning negative by

the Loop Dredicate, the Loop is closed for f and Theorem 1 can be

applied. The termination condition (2.1) is valid since a is

decremented in the Loop body and has a lower bound of zero.
Since [Q](<a,b>) = (a-l, b-s), condition (2.2) is

a > C -> f(<ab>) = f(<a-,b*a>)

which is
a > C -> CO,b'a!> = <0,b*a*(a-1)!>

which can be shown to be valid using the identity a! = a*(a-1)'.

Condition (2.3) is
a = C -> <Ob*a> z <ab)

which is valid using the definition 0! = 1.

The functional correctness procedure is used to verify a
program correct with respect to a function specification. Large

programs must be broken down into subprograms whose intended
functions may be more easily derived or verified. These results

are then used to sho. the program as a whole computes its
intended function. The exact procedure used to divide the
program into subprograms is not specified in the functional

correctness theory. In the interest of simplicity, the technique
presented here is based on prime program decomposition [Lingert
mills & Witt, 1979). That is, correctness rules will be

associated with each prime program (or equivalently# with each

statement type) in the source language. The reader should keep
in mind, however, that in certain circumstances, other

decomposition strategies may lead to more efficient proofs. One

such circumstance is illustrated in Section 5.

In our presentation of the functional correctness procedure,
we will consider simple Algol-like programs consisting of
assignment, IF-THEN-ELSE, WHILE and compound statements. Before

the correctness technique may be appliedt the intended function

of each loop in the program must be known. Furthermore, it is
required that each loop be closed for its intended function.
These intended functlcns must either be supplied with the program

or some heuristic (not discussed here) must be employed by the

verifier in order to derive a suitable intended function for each

Loop. This need for intended loop functions is analogous to the

need for sfficiently strong loop invariants in an inductive

assertion proof of correctness.
in order to prove that a structured statement S (i.e. a

WHILE, IF-THEN-ELSE, cr compound statement) computes a function
f, it is necessary to first fr1jyg the function(s) computed by

the component statemert(s), and then to ytrj Z that S computes f

using the derived sub functions. Consequently, the function

correctness technique will be described by a set of function
derivation rules and a set of function verification rules:

trivt LuJzs " Used to compute ES).
l: S = :ze

1) Return tv:ue).
o 2 S 1s s2

MIN
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2) Reriv. (S23

3) Return (s2l o [Sil.
D3: S S J1 a lbao Si tLt SZ 11

1) RIL.L IS']2) RE~lt E(S23

3) Return (9->(s1] I TRUE-)(S2]).
04: s: e do S, ad

1) Let f be the intended functior).
(either given or derived) J dce,

2) V~rjjX that klljt B g1 "" ?.

computes f

3) Return f.

grifx aUigi used to prove S computes f. t "
V : S v:e ...1) -tri E".S

2) Show f(x)=Y -> (SJ(x) = V. Dt-
V 2 S = S1;$2 -A lva*

1) RirIMC CS3 / .. . . Col
2) Show f(x)=Y -> CSJ() =Y.

v3: S = if e .bI S gilt S2 fI
V4: S =~iIt 1) trixt CS)

2) Show f(x)=Y -> [SJ(X) Y
v4: S = Whit, 9 92 S1 29

1) erix (S). ..
2) Apply Theorem 1.

Before considerirg an example of the use of these rules, we
introduce two conventions that will simplify the proofs of larger
programs. First, we allow an assignment into only a portion of

the data state in a cncurrent assignment. In this case it is

understood that the other data state Components are unmodified.

L!!Q ie 3: If a ;rogram has variables vl,v2,v3, the sequence

of assignments
vi := '; v3 := 7

performs the program function
vlv3 :2 4P7

which is shorthand for
vl,v2,v3 :2 4,v297.

Secondly, if a function description is followed by a List of
of variables surrounded by 0 characters# then the function is
intended to oescribe the program's effect on these variables
only. Other variables are considered to have been set to an

undefined or unspecified value.

ElioJ . .: if a grogram has variables vlv2,v3 that take on
values from di,d2,03, respectively, the function description

f (v1 > 0 -> v2,v3 :z v3,v2) Nv2,v3N
I is equivalent to

i, (V1 > 0 -> vl,v2,v3 :" ?,v3,v2),
where ? represents an unspecified value. Note that in a sense,
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functions Like f are rot data state to data state functions; more

accurately they are general relations. E.g. in the example,

09,2,9P maps to <1,3,2> as well as <493,2>. However* we adopt

the view that f is a dl x d2 x d3 to d2 x d3 mapping and in this

light, f is a functior, we call (v2,v3) the grI2 jgt for ft

written RS(f). Functions nrot using the 9 notation are assumed to

have the entire set of variables as their range set. Similarly,

if the variables vrlgvr2t,.,vrk are the necessary inputs to d

function description f, we say that (vr1,vr2,,,,,vrk) is the

g Lntin S£ for f, written DS(f). In Example 5, the domain set
for f is {vlv?,v3) which happens to be the entire set of

variables, but this reed not be the case. Note that some

functions (e.g. constant functions) may have an empty domain set.

Note that the existence of functions with domain and range

sets that are proper subsets of the entire set of variables has

several implications for the Derive Rules given previously. In

rule D2, we require that DS([S23) C RS((SI). If this is not the

case, an intended function has been given with too small a range

set. The resulting domain and range sets are given by
DS(ES1;S23) = OS(CS1]) U DS([S2)
RS(ES1;S23) =  RS((S2]).

in rule D3, the resulting domain and range sets are

D S(Ii I B ttCn S Ilit SZ 1.) 
oS(C63) U DSC(SJ) U Ds(ES2J)

Rs( IC±1 8 1t Si Cjjg S2 iJl )
RS([S1J) n RS(tS2]).

{E!!21tf 1: Consider the following program

SI) (n>zO -> s := SUM(it,1m,i**n)) Ns#

1) a := 1; s :a 0;

S2) (n>=l -> s := s + SUM(iami**n)) Ns#

2) w!'i. a <2 m
3) i :20; p :21;

S3) (n>=i -> pi :z p*a''(n-i),n)

4) wHit ion g9
5) i := i * 1;
6) := P * a
7)
S) s :: S P;
9) a :"a 4 1

10) Qg.

In this example, the functions labeLled Sit S2 and S3 are the

intended functions for the program, outer WHILE loop and inner
WHILE loop respectiveLy. We use the notation Fn-m as the derived

function for Lines n thru m of the program.

Step 1) - Using D1 and D2 we get
FS-6 = tip := Ji glP*a,

Step 2) - We must verify the inner toop computes its intended
function. The closure condition and termination condition

are easily verified. The other conditions are

i<n -> <pa**(n-l),n> (ptata'e(n-i-1),n >
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dnd
i=n -> <p*a**(n-0),n> =<)4

which are cledrly true.

Step 3) - Using D1 and 02 we derive F3-7 as follows:
F3-7 z (n>xi -> pi := p*a**(n-i),n) o F3-3

= (n>=i -> pi := p*a**(n-l),n) o ip : 0,1

= (n>=C-> pi :r a.*nn).
Step 4) - Again with Dl and D2 we derive F3-9:

F3-9 = F8-9 o (n>=D -> p.1 := a**nn)
= s.a := s*pta*l o (n>=0 -> pi := a**nn)
= (n>=C -> pgisa :x a**nnsa*na*l).

Step 5) - Now we are ready to show the outer loop computes its

intended functicn. Again the closure and termination cond-

itions are easily shown. The remaining conditions are

a<xm -) s*SU4(iamti**n) = s+a**n#SUM(ia+l,i**n)
and

a>m -> s.SUM(i,.,mie*n) sq
both of which are true.

Step 6) - We now derive F1-10. Applying D2 we get
Fl-1G a (n>zl -> s : s * suM(i9a9mei**n))#s# o fl-i

an>1 -) s : s # sum(iami**n))#sN o as := 1,0
in=1 -) s : sum(i,1,mi**n))#s#.

Step 7) - Since the intended program function agrees with

F1-10, we conclLde the prodgram computes its intended

function.

The functional correctness technique was developed by

[MilLsO 1972, 1975). This verification method is compared and

contrasted with the inductive assertion technique in (Basiti &

Noonan, 1978). The presentation here emphasizes the distinction

between function derivation and function verification in the

correctness procedure.
In [8asu . Misra, 1975), the authors prove a result similar

to Theorem I for the case where the Loop contains local

" . variables.
The closure requirement of Theorem I has recieveO

considerable attention. Several classes of loops w hich can be

proved without the strict closure restriction are discussed in

[Nisra, 1978; Basu, 19801. Results in [Wegbreit, 1977), however,

indicate that, in general, the problem of "generalizing" a Loop

specification in order to satisfy the closure requirement is

NP-compliete.

* V

ff

€*-

"ill I I ml-I



A Comparative Analysis of Functional Correctness 10

3. The Loop Invariant f(XO) = f(X)

An important implication of Theorem I is that a Loop which

computes a function must maintain a particular property of the

data state across iterations. Specifically, after each

iteration, the function value of the current data state must be

the same as the function value of the original input. In this

section we discuss and expand on this characteristic of loops

computing functions fcr which they are closed.
A 12 2 Q st£ l2n for the Loop B.Q is a booLean-vaLueo

expression which yields the value TRUE just prior to each

evaluation of the precicate B. In general, a Loop assertion I is

a function of the current values of the program variables (which
we wilt denote by X), as well as the initial values of the

program variables (cenoted by X0). To emphasize these

dependencies we write I(XOX) to represent the loop assertion I.
Let D be a set of data states. A Ig2R ioXpriln for B.'

over a set 0 is a boolean valued expression I(X0,X) which

satisfies the foLLowing conditions for all X0X in D
(3.1) I(XO, XO)
(3.2) I(XG,X) & B(X) -> I(XOdQ (X)) 3 [Q](X) in D.

Thus, if I(X0,X) is a loop invariant for 6*0 over D, then I(XO,X)

is a Loop assertior under the assumption the loop begins

execution in a data state in 0. Furthermore, the validity of
this fact can be demonstrated by an inductive argument based on
the number of Loop iteratioins.

Loop assertions are of interest because they can be used to

establish theorems which are valid when (and if) the execution of

the Loon terminates. Specifically, any assertion which can be

inferred from

(3.3) I(xO,x) & "(x)
will be valid immediately following the loop.

It Should be clear that for any Loop B*Q, there may be an

arbitrary number of valid Loop assertions. Indeed, the predicate
TRUE is a triviat loop assertion for any WHILE Loop. However,

the stronger (more restrictive) the Loop assertion, the more one

can conclude from condition (3.3). For a given state to state

function f, we say that I(XC,X) is an f_-adtgut 122 MU1,rt12
iff I(X0,X) is a loop assertion and I(XOX) can be used in

verifying that the locp computes the function f. more precisely,
if f is a function, the condition for a loop assertion I(x0,x)

being an f-adeQuate tcop assertion is

(3.4) I(x0,x) & "B(X) -> X~f(XO)
for aLL X0 in D(f). A loop invariant I(XOX) over some set

containing D(f) for uhich condition (3.4) holds is an f:#.0tUgg t

129 iQY iti-J.

[ 1 arje 6: Let P denote the program
_tilt nsI a it (0,1) 42

if a > 0 ihtt

a := a - 2
t t1 a :- a * 2 !i
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Consider the following predicates
I I(do'a) i ff T RUE

12 (a a) iff abs(a) < aabs(aO)
13 (aa i f f ocd(a) = odd(aO)

4(aOta) i f f od(a) = odd(aO) 9 abs(a) <= abs(aO)
TS(aOta] iff ocd(a) = odd(CO) I (a=3 & O=2)

where abs denotes an absolute value function, and odd returns I
it its argument is odc and 0 otherwise. Each of the 5 predicates
is a loop assertior. Let D be the set of aLL possible data
states for P (i.e. D a (<a> I a is an integer)). Let f =
((<a>,<odd(a)>)), ano consider 13. Since a in (0,I) implies
a~odd(a), we can infer a=odd(aO) from 13(aOa) 9 a in (0,1).
Thus 13 is an f-adequate Loop assertion. SimiLarLy, 14 and 15
are f-adequate Loop assertions, but neither 11 nor 12 is
restrictive enough to be f-adequate. Predicates 13 and 14 are
Loop invariants over C; however, since IS fails (3.2) it is not a
Loop invariant (a=3,aC=2 is a counter example).

TIjbrC1 Z: if 8*Q is closed for f and B*Q computes f then
f(xO) = f(x) is an f-adequate Loop invariant over D(f), and
furthermore, it is the weakest such Loop invariant in the sense
that it 1(XOX) is any f-adequate Loop invariant over D(f),
I(XOX) -> f(X)=f(xO) for aLL X,XO in 0(f).

PrggL: First we show that f(X)=f(XC) is a Loop invariant
over D(f). Conditior (3.1) is t(XO)=f(XO). From Theorem 1, for
alL X in D(f)t

B(X) -> f(X) = f([Q](X)).
Thus for aLL XXO in DI)(f)t

3(X) 9 f(XO)=f(X) -) f(xO)xf(X)=f([Q (X)) -> f(XO)=f([Q3(X)).
Adding the closure condition B(X) -> tQ](X) in D(f) yields
condition (3.2). Thos f(x)xf(X0) is a Loop invariant over D(f).
Again from Theorem 1, for alL X in O(f),

" (X) -> f(X)zX.

* Thus for all XO in D(f),
f(X)=f(XO) 9 "8(X) -> f(X)=f(XO) & f(X)zx -> f(XO) = X

which shows f(X)=f(XO) is f-adequate. Let 1(XOOX) be any
f-adequate Loop invariant for B*Q over D(f), and Let ZOZ be
elements of 0(f) such that I(ZOZ). Since 8*Q computes f and Z
is in DMI), there exists some sequence ZE1J,Z(2], ... ,ZCnJ
(possibly with n=1) %.here Z[1]=Z, Zn]=f(Z), with 8(Z(1]) £

Z~i4lJ = CQ](ZCi]) for aLl i satisfying 1 < i < n. By condition
(3.2) we have I(ZOZt1J), i(ZO,2(2J), ... ,I(ZO,Z[NI); thus
1(ZOf(Z)) and -B(f(Z)). Since ZO is in DCf) and I(XOX) is
f-adequate,

I(ZOtf(Z)) & "B(f(Z)) -), f(O)•fM )

from condition (3.4). Thus for aLL ZOZ in 0(f)t
1(zO,Z) -> f(ZO) : (2).

SS 9LiooOu:t: In this example, 13 is of the form
f(x)=f(XO). 13 is cLearLy weaker than the other f-adequate Loop
invariant 14. It is worth noting that 15 is weaker than 13, but
IS is not a Loop invariant, and I2 is weaker than 13, but 12 is

. -. A .A -.-
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not f-adeQuate. This situation is illustrated in Figure 1. The
set o f pairs ((&Ogg)) is partitioned into 2 sets with a not in
(0,1) on the Left and a in (0,1) on the right. Note that 14 (or
any other f-adequate Loop Invariant for that matter) is a subset
of 13. Furthermore, each f-adequate Loop assertion is identical
where a is in (0,1). This shaded region is precisely the set f.

a *{0,L1) I a E {0,1)

114

12

,, 13 15S

Figure 1.

Consider the problem of using Hoare's iteration axiom
(3.5) P & a (0) P -> P,(B*Q) P£

to prove the loop 8*0 Computes a function f for which it is
closed. In our terminology,, P must be a Loop invariant over some
set containing D(f) (otherwise Xv'f(X0) for all XO in 0(f) cannot
be inferred). However, using a loop invariant over a proper
superset of o~f) is in general unnecessary, unless one is trying
to show the Loop Computes some proper superset of I, If we
choose to use a Loop invariant P over exactly DMf, Theorem 2
tells us that fCN)af(XO) is the weakest invariant that will do
the job. In a sense, the weaker an invariant is, the easier it
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is to verify that it is indeed a Loop invariant (i.e. that the

antecedant to (3.5) is true), because it says Less (is Less
restrictive, is satisified by more data states, etc.) than other
Loop invariants. Alorg these tines, one might conclude that if a

Loop is closed for a function f, Theorem 2 gives a formula for
the "easiest" Loop invariant over D(f) that can be used to verify

the Loop computes f.

Let us again consider Loop invariants and functions as sets

of ordered pairs of data states. Let Bea compute f and Let

I(XOX) be an f-adequate Loop invariant. We have seen that in
this case

((X0,X) I J(X0,X) "8(X) & XO in o(f))
is precisely f. That is, f must be the portion of the set

represented by I(XO,X) obtained by restricting the domain to M(f)
and discarding members whose second component cause 8 to evaluate
to TRUE. Can the set represented by i(XOX) be determined from
f? No, since in generaL, there are many f-adequate invariants
over D(f) and the validity of some wiLl depend on the details of

a and 0 (e.g. 14 in ExampLe 6). However, Theorem 2 gives us a
technique for contructing the only f-adequate invariant over D(f)
that wiLt be valid for nZ 9 and Q, provided B*Q computes f and

is cLosed for f. Srecificatky, this invariant couples each
element of D(f) with its Level set in f. Put another way - alL
f-adequate loop invariants over D(f) describe ghat the Loop does
(i.e. they can be useC to show the loop computes f), and some may

also contain information about ho the final result is achieved.
That is, one might be able to use an f-adequate Loop invariant to

make a statement about the intermediate states generated by the

Loop on some inputs. The intermediate states "predicted" by the
weakest invariant f(x)zf(0O) is the set of aLL intermediate

states that could ;ossibly be generated by any Loop S*Q that
computes the function correctLy. Thus, the invariant f(X),f(XO)
can be thought of as occupying a unique position in the spectrum

of alL possible Loop invariants: it is strong enough to describe
the net effect of the Loop on the input set D(f) and yet is
sufficiently weak that it offers no hint about the method used to
achieve the effect.

.£5I!a ! Z: Consider the foLlowing program
w_ ig a > 0

a= a - 1;
:.C € : c * b

This loop computes the function
f = (a>=0 -> atbc := Ob,c'a'b).

From Theorem 2, we know that

I(<aObO9cO)>,a ,bc>) 1ff <0,bOcC*aO*bO)0<Obcea'b>
is the weakest f-adequate invariant over D(f)z(<atb,c> I a>=).

Consider the sample input <4,10,7>. Our Loop will produce the

series of states < 4,I0,7), <3,10,17), <2,10,27>, 1,10,37),
<0,1C,47>. Of coLrse, our invariant agrees with these

intermediate states (i.e. ((4,10,7>,l0,7))

IC'.,1O,7>,<3,1O,17>), *.. , 1(<4,10,7>,<0,10,47>)), but it also
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agrees with <6,10,-13>. We conclude then, that it is possibLe
for some loop which computes f to produce an intermediate state

<6,1',-13) white mapping <4,10,7> to <0,10,47>. Furthermore, no
Loop which computes f could produce <6,109-12> as an intermediate

state from the input <4,10,7> since the invariant would be

violated.
To emphasize this Point, we define an f-adequate invariant

I(X0,x) over D(f) for B*Q to be an 101zrOAL 111nfiAllt if I(X0,X)
impLies that B*Q wiLL generate X as an intermediate state when
mapping X1 to f(XO). Intuitively, an internal invariant captures

what the loop does as weLL as a great deal of how the loop works.

In our exaaple, b=t0 & c=c0*b*(aO-a) & 0<&<=az0 is an internal
invariant, but I(<a09b09c0><,abrc>) as defined above is not (the

state <6,10,-13) on input <4,10,7> is a counter example). It

should be clear that if f has an infinite domain, no Loop exists

for which f(X)xf(XO) is an internal invariant. However, if we

consider non-determiristic Loops and weaken the definition of an
internal invariant to one where I (xO,x) implies X ofX be

generated by B*Q when mapping X0 to f(XO), such a loop can always

be found. This Loop boutd non-deterministicaLty switch states so
as to remain in the same LeveL set of f. Our example program

could be modified in such a manner as foLlows:

wbiit a > ) 0 f
t := "some integer value greater than or equal

to zero*;
c :z c + b * (a-t);

a : t

and corresponds to a "blind search" implementation of the

function.

In ttasu L Misra, 19753, the authors emphasize the

difference between Locp invariants and Loop assertions. The fact

that f(X) = f(XO) is an f-adequate Loop invariant appears in

[Basu 9 Misra, 1975; Linger, MtLs Witt, 19793. The

independence of this Loop invariant from the characteristics of

the Loop body is discussed in [Basu 9 Misra, 19753.

.U

.. '- 11 -'
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4- Comparison of the Hoare and RiLLs LOOp Verification Rules

An alternative to using Theorem 1 in showing a Loop computes

a function is to apply Hoare's axiomatic verification technique.
That is, one could verify P (B*Q) A where

P iff X=X0 in D(f), and
R iff Xzf(N0)

by demonstrating the following for some predicate I:
(AI) P-> I

(A) a I1 (0) 1
(A3) "B& I -> a ,

Strictly speaking, conditions Al thru A3 show partial
correctness; to show total correctness, one must also prove

(A4 ) B*Q terminates for any input state satisfying P.
Note that if B*Q is closed for f, a predicate I that satisfies Al
and AZ is a Loop Invariant over Off) (or some superset thereof).

We now wish to cempare these verification conditions with

the functional verification conditions. Recalling from Theorem

1, if t*Q is closed fcr f, the functional verification rules are:
(Fl) B*Q terminates for any input state in Off)
(F) a(X) -> f(X) f([Q](X)) for slt X in Off)
(3) B(X) -) f(X) = X for all X in D(f).

In the following discussion we adopt the convention that if f is
a function and X is net in O(f), then f(X)aZ is false for any Z.

Thegrjg : Let B*Q be closed for f. If f(X)sf(xO) is used
as the Loop invariant I in Al-A39 then Al & AZ 9 A3 & A4 1ff F1 &
F2 & F3. That is, the functional verification conditions Fl-f3

are equivalent to the special case of the axiomatic verification

conditions AI-A4 which results from using f(X)-f(XO) as the loop

invariant 1. In particular, if I iff f(X)zf(XO) in the axiomatic

rules, then
Al is true,
A? iff F2 provided X in D(f) & BM) -), X in O(Ct),
A3 iff F3,

j j A4 iff Fl.

LPg2!: we begin ty noting that the termination conditions A4
and F1 are identical, thus A4 iff Fl. Secondly Al is

X=Xa in 0(f) -> f(X)uf(XO)

which is clearly true for any f. Combining with our first result
yields A1 9 A4 1ff Fl. Condition A3 can be rewritten as

S"(X) 9 f(X)af(XO) -) Xsf(XO)
which is trivially true for any X,XO outside D(f). Thus A3 may

,. be rewritten as
( (A3') For all X,10 in 0(f), "B(X) & f(X)zf(XO) -> Xaf(XO).

Note that A3' -> F3 by considering the case where xNXO.
Furthermore, by adding f(X)sf(XO) to the antecedent of F3 we get

F3 -> (-B(x) & f(x)sf(xO) -> f()M X & f(x)cf(XO) -> f(XD)zx),

thus F! -) * o. NOw be have A3 1ff A3' iff F3 and adding this to

our result above we get Al 9 A3 9 AA iff F1 & F3. we next prove
A2 & A4 iff F2 9 Fl. This combined with the above equivalence

U: *
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yields the desired result Al 9 AZ 9 A3 9 A4 itffl & F? F3.
kote that if there exists id X in D(f) such that B(X) but CQJ(x)
is not defined, then tie t oop itself will be undefined for Xt
both A4 and F1 mill be false and A2 9 A4 iff F1 9 Fl. We now
consider the other case where for all X in O(f), 9(X) -> X in
D((CO). In this situation we will show A2 iff F2; combining with
A4 1ff F1 yields A2 9 A4 1ff F2 & F1. Rule A2 may be rewritten
as

B(X) 9 f(X) a f(XO) (Q) f(X) a f(XO)
which aqain is trivially true if x or x( is outside D(f); thus A2
is equivalent to

For ail XXO in o(f), B(X) 9 f(X)zf(IO) (G) f(X)xf(XO).
Since Q terminates for any input X in D(f) such that 8(X) by
hypothisis, this may be tramvsformed to
(A2") For alt XXO in D(f), O(K) 9 f(X)af(XO) -) f(Q](X))uf(XO).
As before, we can show A2-)F2 by considering the case where
XxXO, and FZ-)A2 by adding f(x)af(X0) to the antecedant of F2.
Thus A2 iff A2' iff F2 which implies A2 iff F2, This completes
the proof.

The purpose of Theorem 3 is to allow us to view the
functional verification coinditions as verification conditions in
an inductive assert ior proof- Not surprisingty, both techniques
have identical termination reQuirements. If the termination
condition is met, F2 amounts to a proof that f(X)af(X0) is a loop
invariant. Condition F3 aounts to a "Rule of Consequence",
testing that the desired result can be implied from the loop
invariant t(X)uf(XO) and the negation of the predicate Be

- - ,
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5. SuugoaL induction and Funictional Correctness

Subgoal induction is a verification technique due to (Olorris
9 weibreit, 1977]. In this section we compare subgoal Induction
to Mills' functional correctness approach.

we ir st note that subgoal induction can be viewed as a
generalization of the functional approach presented here in that
subgoal induction c an be used to prove a program correct with
respect to a general input-output relation. A consequence of
this generality, however, is that the subgoaL induction
verification conditions are sufficient but not necessary for
correctness; that is, in general, no conclusion can be drawn if
t he subgoal induction verification conditions are invaLid.
Provided the closure requirement is satisfied, the functional
verification conditions (as well as the subgoal induction
verification conditions when applied to functional
spec if ications) are sufficient and necessary conditions for
correctness. Results in Cmisra, 1977] suggest that it is not
poss ib le to ob tain ne cessa ry veri ficat ion condi tions f or general
input-output relations.

in order to "tcrc precisely compare the two techniques, we
consider the fltow chart program in Figure 2 taken from (N4orris 46
wegbreit, 1977].

A

Figure 2.
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In the figure, A98,CC are points of control in the flow chart, P
is a predicate and Q,F and S are function nodes. Note that this

flow chart program amounts to a WHILE loop surrounded by pre and

post processing. Our goal is to prove the program computes a
function T. Morris 9 wegbreit point out that subgoal Induction
uses an induction on the B to 0 path of the flow chart; that is,

one selects some relation V, inductively shows it holds for all 8

to 0 oaths, and then uses V to show I is computed by all A to D

paths. In our illustration, since T is a function, It will be

required that V itself be a function* Once V has been selected,

the verification conditions are
(SI) "P(X) -> V(X)a S()

(S2) P(X) -> V(R(X)) a V(M)

(S3) T(X) x V(Q(X)).
Note that S1 and SZ test the validity of V; S3 checks that V can

be used to show T°

The functional verification theory presented here is similar

with the exception that the function S is not included in the

induction path. we select some function f and show it holds for

all B to C paths (i.e. we Show the WHILE loop computes f) and

then use f to show T is conputed by all A to 0 paths. Once f has

been selected, the verification conditions are
(FI) P(X) -> f(X)zX

(F2) PCX) - f(R(x)) 2 f(x)
(F3) T(X) S(f(Q(X))),

Note that both techniques require the invention of an

intermediate hypothesis which must be verified in a "subproof."

This hypothesis is then used to show the program computes T. The

function S in the flow chart program is absorbed into the

intermediate hypothesis Ji the subgoal induction case; it is

separate from the intermediate hypothesis in the functional case.

Indeed, the two intersediate hypotheses are related by
V aS c f.

If S is a null operation (identity function), the

intermediate hypotheses and verification conditions of the two

techniques are identical. A difference between the two

techniques, however, can be seen by examining the case where a is

a null operation. if the loop is closed for T, subgoal induction

enjoys an advantage since T can be used as the intermediate

hypothesis. That is, the subgoal induction verification

conditions are simply
(S11) "P(X) - S(M) a 7(W)

(S2") P(X) - T(IR(X)) a TM().

In the functional case, one must still derive an hypothesis

for the Loop function f. A heuristic which can be applied here

is to restrict one's attention to functions which are subsets of

$**-1 o T. However, it is worth emphasizing that this rule need

not completely specify f since, in general, S"-1 o I is not a

function relation. Once f has been selected, the verification

conditions are
(F11) "PCX) -> f(X)=X
(F2?) P(X) -> f(R(X))uf(E)

(F3) T(m) * S(f(X)),
The difference between the two techniques in this case is
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due to the prime pregram decomposition nature of the functional
correctness algorithm described in Section 2. A more efficient
proof is realized by treating the loop and the function S as a
whole. Accordingly, correctness rules for this program form
might be incorporated into the prime program functional
correctness method described earlier. The validity of these
rules can be demonst rated in a manner quite similar to the proof

of Theorem 1.

Llaug~t fl: we wish to show the program
t..lt x i a 1- (0,1,Z,3) de

II a (0 jhib x :a x * 4
tlt x :a , - 4 1i

a )
• 1 bt " , :% - 2 Li

computes the function Tu-(<x>,(odd(x)>))) The subgoat induction

verification conditiors are
x in (0,1,2,) -> S(x) a odd(z), and
x -in (0,1,9Z3) - odd(R(m)) a odd(x), where

S(x) a if x ) I then x-2 else x, and
R(n) a if a ( 0 then z*4 else x-4.

Both these conditions are straightforward. Now let us consider
the prime program furctiOnat case. Suppose we are given (or may

derive) the intended loop function
f x ((-0>,<->) I x in (0,1,2,3) 9 x mod 4 a x0 mod O)o

we can verify that the loop computes f by demonstrating F1' and
F2'. Condition W3# uses f to complete the proof.

The difficulty with splitting up the program in this example

is that it requires the verifier to "dig out" unnecessary details
concerning the effect of the loop. One need not determine

explicitLy the function computed by the loop in order to prove

the program correct. The only important loop effect (as far as
the correctness of the program is concerned) is x in (0,1,2,3)

4and odd(s) z odd(xO). In this example, treating the program as a
whole appears superior since it only tests for the essential

characteristics of the program components.
it is worth observing that an auiomatic proof of a program

* of this form could be accomplished by using the loop invariant
7(X) a T(XO). The verification conditions in this case would be

equivalent to the subgo*a induction verification conditions.
14ote that, in general (as in our example), T(X) a T(X0) is too

weak an invariant to be f-adequate for the intended loop function

a $!- -4
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6. Init ialized LOOPS

The Preceading section indicates that it is occasionaLly
advantageous to consider a program as a whole rather than to
consider its prime prcgrams individuaLly. In this section we
attempt to apply the same philosophy to the initialized loop
program form.

we wilL aain corsider the program in Figure 2 with the
understanding that S is a null operation. we want to prove that
the program computes a function T, i.e. that T holds for alt A to
C paths. We have seen that prime program functional correctness
involves an induction on the 9 to C program path using an
intermediate hypothesis f. An inductive assertion proof would
involve an induction on the A to 9 path using some Loop invariant
I(XO,X). This invariant differs from those discussed previously
in that it takes into account the initialization for the Loop.
In this section we discuss briefly the difficulty of synthesizing
the intermediate hypotheses f and I.

In order for the program to compute T, we must have
Q(X)=Q(Y) -> T(x)=T(Y). Consequently, the relation represented
by T o (0**-1) is a function and is a candidate for the
intermediate hypothesis f. Unfortunately, the domain of this
function is the image of D(T) through Q, and since the purpose of
the initialization is often to provide a specific "starting
point" for the loop, the loop wilt seldom be closed for this
function. Thus the problem of finding an appropriate f can be
thought of as one of generatizing T o (Q**-i).

Lnuoit 9: we want to show the program
s := 0; 1 := 0;
,jjgi ( n

:= I 4 1;
:= s * atiJ

m. ¢~omp)ut es s:=SUM(k i, na~kJ). If Q represents the function
J performed by the initialization, T o (O**-1) is

' ' (sz0, iz0 -) s:aSUMCk,ltntaCkJ)).
; Note that the loop Is not closed for this function. To verify

the program using the functional method, this function must be
generalized to a function such as

f S : S SU(ki*in,.LkJ).

We now consider the relative difficulties of synthesizing a
function f for which the LOOp is closed (for a functional proof)

and synthesizing an adequate loop invariant (for an inductive
assertion proof). f we have a satisfactory f, an appropriate4hypothesis for a loop invariant is (OK) 1ff f(Q(x))-f(X). We

Snow try to go the other way. Suppose we have XyxOxn), can we
' derive from that a function f for which the loop is cLoSed? We

motivate the result as follows: we could obtain an equivalent
program by aodifying the initialization to
(non-deterministicatly) map XO to X if I(XOX) is true. The
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modified program stilt computes the same function; if the
initialization maps XC to anything other than Q(XO)g the effect
wilt simply be to save the Loop some number of iterations. By
the same argument that was used to show the Loop must Compute T 0
(Q**.1), the program must also compute T o (I(XO,X)**-1). Note
that the Loop is necessarily closed for this function; otherwise
the invariant would be violated, we conclude then that the
synthesis of a function for which the Loop is closed and the
synthesis of a suitable invariant are equivalent problems in the
sense that a solution to one problem implies a solution to the
other problem. The translation between loop invariants and
intermediate hypotheses in a subgoat induction proof is discusseo
in [Morris & Wegbreit, 19773.

L.apsait 2 (&01ielgg: An inductive assertion proof of our
program might use the invariant s=SUN(kIia[k]) & i<=n. Note
that this invariant is essentially equivalent to f(Q(XO))zf(X)
(where f and 0 are as defined previously). Using the technique
outlined above, we may derive from the invariant

f' = (s=SUM(k,1,ia~k]) 9 i<zn -> s:=SUM(k,1,n,a&kJ)).
Observe that this is quite different from the original f, but
that f' is quite satisfactory for a functional proof of
correctness. it may seem puzzling that f'(Q(XO))=f'(X) is the
constant invariant IRUE and yet Theorem 2 states that such an
invariant must be f'-adequate. This is not a contradiction,
however, since

TRUE & J)un -> szSUM(k,l,n,aCk])
is valid for any state in D(f). Similarly, a functional proof
that the loop computes f" is trivial with the exception of
verifying that the closure requirement is satisfied. This is no
coincidence: proving closure is equivalent to demonstrating the
validity of the Loop invariant.

4

.

.
J
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7. Summary

Our purpose has been to explain the functional verification

technique in tight of other program correctness theories. The
functional technique is based on Theorem 1 which provides a

method for proving/disproving a Loop correct with respect to a
functional specification for which it is closed.

In Theorem 2, a Loop invariant derived from a functional

specification is shown to be the weakest invariant over the

domain of the function which can be used to test the correctness
of the Loop. Theorem 3 indicates that the functional correctness

technique for loops is actually the special case of the axiomatic

method that results from using this particular loop invariant as
an inductive assertion. The significance of this observation is
that functional correctness can be viewed either as an

alternative correctness procedure to the inductive assertion
method or as a heuristic for deriving Loop invariants.

The subgoaL induction technique seems quite similar to the

functional method; the two techniques often produce identical

verification conditions. we have, however, observed an example
where the subgoal induction method appears superior to functional
correctness based on prime program decomposition. More work

appears necessary in precisely characterizing these situations

and determining if there are circumstances under which the

functional method is more advantageous than subgoal induction.
we have examined the inductive assertion and functional

methods for dealing with initialized Loops. We have shown that
the problems of finding a suitable loop invariant and finding a

function for which the Loop is closed are identical. The result

indicates that for this class of programs the two methods are

theoretically equivatent; that is, there is no theoretical

justification for selecting one method over the other.

L. i
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