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ABSTRACT

\Y

The functional correctness technique is presented and explained.

An implication of the underlying theory for the derivation of loop

invariants is discussed.
program loops are shown to be a specialization of

inductive assertion verification conditions. The

is compared and contrasted with subgoal induction.

culty of proving initialized loops is examined in

The functional verification conditions concerning

the commonly used
functional technique
Finally, the diffi-

light of the inductive

assertion and functional correctness theories,
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1. Introduction

The vrelationship between prograas oand the wmathesatical
functions they compute has Long been of interest to computer
scientists [McCarthy, 1963; Strachey, 1966). More recently,
(Mitis, 1972, 19751 nhas developed a wmodel of functional
correctness, f.e. & technique for verifying a program correct
with respect to an abstract functional specification. This
theory has been further developed by [gasu & Misra, 1975; misrs,
19783 and now appears as a viable alternative to the inductive
assertion verification method due to [Floyd, 1967; Hosre, 1969].

In order to describe the functional correctness wmodel, we 1
consider a program P with variables vi, v2;y ¢ee 4, vn, These
variables wmay be of any type and compleafty (e.9. reals,
structures, files, etc.) bDut we assume eadcth vi takes on values
from a set dis The set 0 = d1 x d2 x se0 x dn s the gaty space
tor P; an element of D is a data 3tates A data state can be
thought of as an assignment of values to program variables and is
written <cl,c2y0009Cn> where each vi has been assigned the value
ci in dio

The effect of & program can be described by a function
$:0->0 which maps input data states to output datas states. If P
is a program, the function computed by P, written [P], is the set
of ordered pairs ((x,¥) | if P begins execution in data state X,
P will terminate in final state Y), The domain of (P] {s thus
the set of data states for which P terminates.,

1t the specifications for & program P can be formulated a3 »
data state to data state function f, the correctness of a progrees k
can be determined by comparing f with [P), Specifically, we say
that P computes f if and only #f ¢ € (P]., That is, #f f(x) = ¥
for some data states X and Y, we require that (PJ(X) be defined
and be equal to Y. Ncte that in order for P to compute f, no
explicit requirement is wade concerning the behavior of P on
inputs outside the dosain of f,

Exampie 1: Corsider the simple program

P = yhile o > 0 d¢o
b b * a;
a s =1

od

The function computed by the program can be written as
[PY={(<a,b>,<0sb*a'>) | a>=0) U ((<a,yb>,<a,b>) | a<0).
Thus #f a is greater than or equal to zero, the oprogram eaps 2
and b to 0 and b*a! respectively, otheruise the program perfores
the identity mapping. As a notational convenience, we often use
conditional rules ard data state to data state “spssignments"
(called gopsurcent a233igpeeogs) to express functions. In this
notation we have
(P) = (a>=0 => a,t :2 0,b2a' |TRUE => asb := a,yb).
Finally, if we are gitven ¢ = (a>=0 => a4b := 0O,b*a!) as the

T e I
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A Comparative Analysis of Functional Correctness

we mady say that P computes f, since ¢ s

function to be comput ed,
a Subset of [(P],

i




A Cowmparative Analysis of Functional Correctness S

2+ The Functional (Correctness Technique

The tunctional <correctness method relies npedvily on @
technique for veritying that a wHILE Loop computes a given st,te
to state function. we present this WHILE (oop technique as o
theorem and then describe the method for general progranss.,

Notation: The domain of a function f wiltl be written as
p(t). The notation f o ¢ will be wused to represent the
composition of the functions g and fo we will use the shorthang
B*Q for the WHILE (loop yhile B do G gg. Finatly, in several
examples we will use the notation SUM(a,b,c,d) for the summation
from 2=b to ¢ of d.

Pefinition: The loop B*@ is closeo for a3 function f {f and
only if for all X fn D(f), B8(X) implies [QJ(X) 4s n D(f).,
Intuitively, 2 loop is closed for f if the data state remains in
D(f) as it executes fcr any input in D(f),

Ihegrem 1: It the loop B8+a is closed tor & function t, then
the loop computes f i1 and only if, for all X in D(f)
i (2.1) the loop terminates when executed in inftial state X,
f (2.2) B(x) => #+(x) = #(La)(x)), and
L (2.3) “B(X) > ¢t(x) = Ao

Proof: First, sugpose (2.1), (2.2), and (2.3) hold. Let

x{J) be any element of D(f)., By condition (2.1) the loop must

produce some output after a finite number of fteratfons., Let n {

represent this number of iterations, and let X(n) represent the

output of the toop. Furthermore, Llet XxC1), x[2), +es X(n=1]) be

the intermediate states generated by the loopy t.0c fOr atll i

satistfying 0 <= i < n, we have B(X[§)) & x(§¢12 = (QI(xC§¥]) and

¥ also “B(xIn))., Concition (2.2) shows f(x[(0)) = ¢(x[(1)) = .6 =

. t(x[{nl). Condition (¢.3) indicates f(x(n)) = XCnd. Thus ¢(x(01)
= X(n) and the loop computes f.

Secondly, suppose the loop computes f. This fact would be
contradicted if (2.1) were false. Suppose (2.2) were false, t.e.
there exists an X in D(f) for which B(X) dbut f(Xx) <> f({QJ(Xx)).
From the closure requiresent, [(Q)(x) is n O0(f) and the Lloop
X! produces 1([QY(X)) when gitven the input [Q)(X). But this implies
» the Lloop can distinguish bDetueen the cases where [Q(X) is an
. input and the case where (Q)(X) §s an intermediate result froa
"t the dnput x, Mowever, this s {impossible since the state

. describes the values cf all program variables. Finally, ¢ (2.3)

were false, there would exist an x in D(f) for which the Loop
produces X as an output, but where f(X) <> X, Thus the loop must
not compute f.

? An important aspect of Theorem 1 is the absence of the neeo
ﬁ tfor an inductive assertion or Lloop dinvartfant. Under the

conditions of the theorem, a» loop can be proven or disproven
directly from tts function specitication,

'
[ 4
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Ex2mple 2: uUsing the Loop P and function f of Example 1, we
shall show P computes f. D(f) is the set of all states
satisfying a >= 0« Since a is prevented from turning negative by
the loop predicate, the Loop is closed for f and Theorem 1 can be
applieds. The termination condition (2.1) is velid since a is
decremented in the Lloop body and has a lower bound of 2ero.
Sfnce [Q)(<a,b>) = <a-1, bea>, condition (2.2) is

a > C => t(<a,b>) = f(<a=~1,b*ad>)
which is
' a > C=> <0,bra'> = <0, brar(a=-1)">
which can be shoyn to be valid using the fdentity a' = a+*(a-1)!,
Condition (2.3) is
a = [ => <0yb*atl!> = <a,b>
which is valtd using the definition 0' = 1.

The functional ccrrectness procedure is used to verify a
program correct with respect to a function specification. Large
programs must be broken down fnto subprograms whose f{intendeda
functions may be more easily derived or verifieds These results
are then used to show the program as a whole computes its
intended tunction. The exact procedure used to divide the
program into subprograms s not specified in the functional
correctness theory. In the interest of simplicity, the technique
presented here s based on prime program decomposition [Linger,
Mills & witt, 19791, That s, correctness rules will be
associated with each prime program (or equivalently, with each
statement type) in the source Language. The reader should keep
in mind, howeve that in certain circumstances, other
decomposition strateg fes may lead to more efficient proofs, One
such circumstance is {llustrated in Section 5.

In our presentation of the functional correctness procedure,
we will consider simple Algol-Like programs consisting of
assignment, IF~THEN-ELSE, WHILE and compound statements. Before
the correctness technique may be applied, the intended function
of each Loop in the progras must be knowun, furthermore, it is
required that each loop be closed for its intended function.
These intended functicns myst either be supplied with the program
or some heuristic (not discussed here) must be employed by the
verifier in order to derive a suitable intended function for each
toop. This need for intended loop functions is analogous to the
need tor sufficiently strong Lloop idnvariants in an {inductive
assertion proof of correctnesse.

In order to prove that a sStructured statement S (f.e, o
WHILE, [F-THEN~ELSE, ¢cr compound statement) computes a function
fy, it is necessary to first derive the function(s) computed by
the component statemert(s), and then to yerify that S computes ¢
using the derived subfunctionse. Consequently, the function
correctness technique will be described by a set of function
derivation rules and » set of function verification rules:

perive Rules =~ Used to compute [S].
01: S = v:ize
1) Return [v:zel,
0p2: S = s81;82

P Y . "“'
o y*« dow 7
. a ié. . .
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A Comparative Analysis of Functional Correctness

1) periye (s1)

2) perive [s2)
3) return (s2) o (S1).
03: S = jg 8 gheo S else S2 {4
1) periye (S1)
2) pecixe (s2)
3) Return (B=>(S1) | TRUE->(S2]).
bb: S = yhile B do SV gd
1) Let f be the intended functio )
(either given or derived) Accenyo~ . -
2) yecity that yhile 8 do s? od [y 7 TOr
computes f Dt ST
3) Return f. L pals T
R Rl cn -
Verify Rules - uysed to prove S computes ¢, _i“nir:mniow
vi: S = vize Tl T
1) periyg (5] ;V~=‘ B
2) Show f(x)=y => [SI(X) = Y, istrip., ;.
v2: S = §1;s2 P
1) peciye (S1 /‘" “< ¥ Codeq ]
; 2) Show fOX)=Y => (SI(X) = v, 'y, &0 0TS
v3: S = jt B ghen S1 else S2 1i SRt T T
\ 1) perive (S sl
! 2) Show f(x)=Y => [SI(X) = Y, ! ;
\ ve: s = yhile 8 do S1 od : '
1) periye (s1) T e .
2) Apply Theorem 1, ‘§“‘“-4

Before considering an example of the use of these rules, wve
introduce two convent fons that will simplify the proofs of larger
programs, First, we allow 2an assignaent into only a portion of
the data state in a concurrent assignment, In this case it s
understood that the other data state components are unmodified,

C e e

4 Example 3: If a crogram has variables vi,v2,v3, the sequence
of assignments
vl =2 &; v3 := 7
i \ performs the program function
vievd % 407
i€ which is shorthand for
viev2evy 2 44w, 7.

-
3

-———

Secondly, if a tunction description is followed by a tist of
of variables surrounded by # characters, then the function s
intended to ocescribe the program“s effect on these varfables
only. Other variables are considered to have been set to an
undefined or unspecif ied value.

Exaeple &: 1f a grogram has variables vi,v2,v3 that take on
' ? values from d1,d2,d3, respectively, the function description
* f = (vl > 0 => v2yv3 :2 v3,v2) Nv2,viN
‘ i is equivalent to

(vl > 0 => vi,v2,v3 = ?,v3,v2),
where ? represents an unspectified value. Note that in a sense,

‘ - ——— T T eI A S e :
v b PR : S
Lo Siesder S aad
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functions Like f are rot data state to data state functions; more
accurately they are general relationse. Eege in the example,
€1,2:3> maps to €1,3,2> as well as <4,3,2>, However, we adopt
the view that f is a d1 x d2 n d3 to d2 n d3 mapping and in this
Light, f is a functior. we call {(v2,v3) the range 32t for f,
written RS(f), Functions not using the ¥ notation are assumed to
have the entire set of variables as their range set. Simiflarly,
if the variables vri1,vr2y.29vrk are the necessary inputs to a
function description f, we sSay that {vrlyvr2seeeyvrk) §is the
domgin set for f, written 0S(f). In Example 5, the domain set
tor f 45 {vi,v2yv3) which happens to be the entire set of
variables, but this need not be the case. Note that some
tunctions (e.g. constant functions) may have an empty domain set,
Note that the existence of functions with domain and range
sets thay are proper subsets of the entine set of variables has
several implications for the Derive Rules given previously, In
rule D2, we require that 0S([S2)) € RS([S1)), 1If this is not the
case, an intended function has been given with too small 2 range
set. The resulting domain and range sets are given by
pSC(S1;52)) = 0S({S1)) v osclsel)
RS(LS1;52)) = RSC((S2)).
In rute p3, the resul ting domain and range sets are
0S(Cif B then ST glse S £i1) =
0s({el) u oS((S1)) U BsS(LsS2Y)
RS(Lif B8 theg ST else S¢ £i)) =
RS (Ls1)) n RS(LS2D),

Example 3: Consider the following program

s1) (n>x0 => s := SUMti, 1 ,m i2en)) NsH
1 a = 1; s =2 Q;
s2) (n>=1 => g 2= s ¢ SUM(f,a,mei®**n)) ssH
2) while & <= m do
3 1 :30; p = 1;
s (n>=1 => p,i 1= prase(n=-i),n)
“) while 1<n go
5) IR TR I I
6) £ = p * 2
7) cg,
2} s 1= s * p;
$) a 1% 3 ¢+

In this example, the functions lLabelled St, S2 and S3 are the
intended functions for the program, outer WHILE loop and inner
WHILE loop respectively. We use the notation Fn-m as the derived
function for Lines n thru m of the program,

Step 1) ~ Using 01 and D2 we get
FS-6 = fep % §i*1,p%a.

Step 2) - We must verify the inner Loop computes its intended
functfone The closure condition and termingtion condition
are easily verified. The other conditions are

icn ~> <pease(n-i),n> =z Cprarare(n=3=-1),n>

R R T
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A Comparative Analysis of Functional Correctness 9

and
izn => <praealp-j),n> = <p,4>
which are clearly true.
Step 3) -~ Using D1 and D2 we derive F3-7 as follows:
F3=7 = (n>=i -> pyi := peasn(n-t),n) o F3~3
= (n>=t => p,i = prars(n=i),n) 0 §,p 2= 0,1
= (n>=C => pyi 5 asanynd,
Step &) - Again with D1 and D2 we derive £3-9:
F3-9 FB=9 o0 (n>=0 => p,§ := at*n,n)

$e3 :* s*ped*l 0 (n>=0 => pyf = a*en,n)

(n>zC => py,iy5¢a 13 aven,n,s¢avtn,p+i),

Step 5) ~ Now we are ready to shouw the outer loop tomputes its
intended functicne Again the closure and termination cond-
itions are easily shovwre The remaining conditions are

ac<am => seSUM(f,aom,1%en) = sepeteaneSUM(i,atl,m,y,i*t*n)

LI L 1]

and
am => seSUM(i,a,m,iten) = s,
both of which are truee.
Step &) ~ We now derfve F1-10, Applying D2 we get
F1-10 = (n>=x1 => s := s ¢ sum(isa,meiven))ish o f1-1
£ (n>z1 => s :=2 s ¢ sum(i,a,mei**n))NskH o0 a,s := 1,0
z (n>=]1 => s := sus(i,1,my,inen))isH,
Step 7) -~ Since the intended program function agrees with
F1-10, we concliude the program computes its intended
tfunction.,

The tunctional <correctness technique was developed by
(mitls, 1972, 19751, This veritication method is compared ang
contrasted with the inductive assertion technique in (Basili &
Noonan, 1978, The gresentation here emphasizes the distinction
betyeen function derivation and function verification 1in the
correctness procedure,

1n [Basu R Misra, 1975), the authors prove a result similar
to TYheorea 1 for the <case where the Loop contains Llocal
variables.

The closure requireaent of Theorem 1 has recievea
considerable attentions Several classes of Loops which <c¢can be
proved without the strict closure restriction are discussed in
{Misra, 1978; Basu, 1$80). Results in [Wegbreit, 1977]), however,
indicate that, in general, the problem of “generalizing™ a Lloop
specification in order to satisfy the closure requirement is
NP~complete,

[
o s
- \’"'.ﬂ
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A Comparative Analysis of Functional Correctness 10

3. TIhe Loop Invariant f(Xx0) = ¢(Xx)

An important implication of Theorem t is that a Lloop  which
computes a function must maintain a particular property of the

data state across iterations. Specifically, after each
iteration, the function value of the current data state must be
the same as the function value of the original inpute. In this

section we discuss and expand on this characteristic of {oops
computing tunctions fcr which they are closed.

A loop 2s5s¢ergign for the Lloop B#+Q is a boolean-valuea
expression which yields the value TRUE just prior to each
evaluation of the precicate B. In general, 3 Loop assertion I 1is
3 function of the current values of the program variables (which
we will dgenote by X)), as well as the initial values of the
program vartables (cenoted by x0). To emphas ize these
gependencies we write I(X0,X) to represent the loop assertion 1.

Ltet 0 be a3 set of data states. A loop inypriant for Bed
over a set 0 is a boolean valued expression I1(X0,Xx) which
satisfies the folftowing conditions for atl X0eX in D

(3.1 I1(x0, xQ)

(3.2) I(xG,y,X) & g(x) => 1(x0,La3(x)) & [g)(X) in D.
Thus, if I{(X0,X) is a loop finvariant for B*Q over D, then I{(x0,x)
is a \loowp assertior wunder the assumptign the Lloop begins
execution in a data state in D, FfFurthermore, the validity of
this fact can be demorstrated by an inductive argument based on
the number of Loop iterations.

Loop assertions are of interest because they can be used to
establish theorems which are valid when (and if) the execution ot
the loop terminates. Specifically, any assertion which <can be
inferred from

(z.3) 1(x0,x) & “8(X)
will be valid immediately following the loop.

It should be clear that for any loop B*Q, there may be an
arbitrary number of valid Loop assertions, Indeed, the predicate
TRUE is a trivial loop assertion for any WHILE Loop. However,
the stronger (more restrictive) the loop assertion, the more one
¢can conclude from condition (3.3). fFor a given state to state
function f, we say that 1(x0,x) is an f-adeguple LQoop assertion
itf I{(x0,x) s a loop assertion and 1(X0,Xx) can be used in
verifying that the Locp computes the function f. more precisely,
if ¥ is a function, the condition for a loop assertion 1(xD,x)
being an f-adequate lcop assertion is

(3.4) 1(x0,X) & “8(x) =~> x=t(x()
for all X0 in D(f), A {oop invarfant 1(X0.X) over some set
containing D(f) for which condition (3.4) holds is an f-pdeguate

togR invariant.

Example 6: Let P denote the progranm
while ngt a in (0,1) do
it 2 > 0 then
a = a =~ 2
elsg a := a ¢+ 2 {i
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Qeg¢.

Consider the following predicates

11¢alya) i1ff TRUE

12(aC,a) iff abs(a) <= abs(al)

13(a0,a) iff ocd(a) odd (a0)

14(a0,8) iff odd(a) odd(a0) & abs(a) <= abs(,a0)

15CaD,a) iff ocd(a) odd(a0) | (a=3 & a0=2)
where abs denotes an absolute value function, and odd returns 1
if its argument is odc and 0 otherwise. Each of the S predicates

is a (\oop assertion. Let D be the set of all possible data
states for P (i.ee D 2 (<a> | a 4is an integer)). et f =
{(<a>,<0dd(a)>)), anc consider 13. Since a in (0,1) implies

a=odd(a), we can infer azodd(ald) from [3(a0,a) & a in <{(0,1).
Thus I3 1i1s an f-adequate lLoop assertion. Similarly, 1& and 15
are t-adeguate Lloop assertions, but neither I1 nor 12 s i
restrictive enough to be f-adequate. Predicates 13 and 14 are ]
toop invariants over C; however, since IS5 fails (3.2) it is not a
Loop invariant (a=3,alC=2 {s & counter example).

Tpegree 2: 1f B*0 is closed for f and B+«Q computes f then
$(x0) = ¢$(x) is an f-adequate (oop invartant over D(¢t), ang
furthermore, it is the weakest such Loop invariant in the sense
that it 1(x0,x) is any f-adequate Ll(oop fnvariant over D(f),
ICXDeX) => f(X)=€(x0) for all X,X0 in 0(f).

Progf: First we show that f(X)=f(x() s a Lloop invariant
over D(f)., Condfition (3,1) is t(X0)=¢(X0). From Theorem 1, for
all X in D(f),

B(X) => f(x) = f(lQ@I (X)),
Thus for atltl X,XC in p(f),
BC(X) B f(x0)=f(X) => $(x0)=f(x)=¢(LQJI(x)) -> $(x0)=f([QI (X)), ]

Adding the closure condition B(X) => [@J(X) 4n D(f) yields !

condition (3.2). Thus f(Xx)=t{(X0) is a lLoop invariant over D(f).
& Again from Theorem 1, for atl X §n D(f),
: “g(X) => ¢t({x)=x.
Thus for all X0 in D(¥),

fex)=f(X0) & “8((X) -> £{(X)=4(X0) & ¢#(X)=x -> $(X0) = X

which shows f(X)=f(X0) 1is f-~adequate, Let I(XQ0,X) be any
f~adequate loop invariant for B+Q over D(f), and let 20,7 be
elements of DCf) such that 1(20,2)e Since 8#Q computes f and 2
is n D(f), there exists some sequence 2011,202), oee ,2Z(nl
(possibly with n=1) where 2011=2, I(nl=€C2), with B8(20%1) &
ZCi*1) = (QXC€Z2Ci3) for all § satisfying 1 ¢ § < n, By condition
(3.2) we have 1(20.1[13). 1(10'2[2]). 2o 'I(ZO'I[N]),' t hus
1(20,$(2)) and “B($t(2)). Since 210 s in DC(f) asnd I(X0,X) s
f~adequate,

. wve

. - .
PR . o~ R

1€20,1C2)) & “BUICI)) => $€20)=¢(2)
from condition (3.,4). Thus for all 20,2 fn O0Cf),
I€20,2) => 1¢10) = (1),

Eadiaa? W 3

Exapple & Sfcoptinuegl: In this example, 13 is of the form
f(x)=¢(xQ). 13 §s clearly weaker than the other f-adequate loop
invartant I4. 1t ¥s worth noting that IS5 is weaker than 13, but
1S 4s not a Loop invariant, and 12 s weaker than I3, but 12 is




.
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not f-adequate. This situation is illustrated in Figure 1., The
set of pairs {((a0,a)) is partitioned into 2 sets with & not in
{0,1) on tne Left and a in (0,1} on the right, Note that 14 (or
any other t-adequate Loop invariant for that matter) is a subset
of 13. Furthermore, each f-apdequate loop assertion is identical
where a is in (0,1). This shadea region is precisely the set f{,

a £ {0,1} I a € {0,1)

Figure 1.

b — ——

Consider the proplem of usijng Hoare”s jteration axiom
(3.5) P & B (Q) P -> P (B*a) P 8 8
to prove the loop B*Q computes 8 function f for which 1t s
closed. 1In our terminology, P must be a Loop invariant over some
set containing D(f) (otherwise X=f(Xx0) tor all X0 ¥n D(f) cannot
be inferred), However, using a Lloop dnvariant over @& proper
superset of D(f) is in general unnecessary, unless one {is trying
to show the Loop computes some proper superset of f, If we
choose to use a Loop invariant P over exactly D(f), Theorea 2
tells us that f(x)=f(x0) is the weakest invariant that will do
the jobe In a sense, the weaker an invartant ¥s, the easier it
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is to verify that it s indeed a2 Loop invariant ({1.e. that the
antecedant tn (3.,5) is true), because it says less (is less
restrictive, is satisified by more data states, etce.) than other
loop invariants. Along these Lines, one might conclude that if &
loop is closed for a function f, Theorea 2 gives a formuyla for
the "easiest” Loop invariant over p(f) that can be used to verify
the loop computes f,

Let us again consider loop invariants and functions as sets
of ordered pairs of date states. Let 8*Q compute f and let
I(XxJ,X) be an f-adequate Loop invarfant. We have seen that in
this case

CX0yX) | 1(X0yX) & “B(X) & X0 in pl($))
is precisely fo That is, f must be the portion of the set
represented by 1(X0,X) obtained by restricting the domain to 0(f)
and discarding members whose second component cause B to evaluate
to TRUE. Can the set represented by 1(x0,X) be determined froms
t? Noy» since in general, there are many f-adequate invariants
over 0(f) and the validity of some will depend on the details of
B and @ (e.ge 14 in Example 6). However, Theorem 2 gives us a
technique for contructing the only f-adequate invariant over D(f)
that will be valid for any B and @, provided 8+*Q computes f and
is closed for f, Srecifically, this 1{invariant couples each
element of D(f) with its level set In f. Put another way - all
t-adequate loop invarijants over D(f) describe yhat the loop does
(foe. they can be used to show the Loop computes f), and some may
also contain information about hoy the final result is achieved.
That is, one might be able to use an f-adequate loop invariant to
mdke a statement about the intermediate states generated by the
toop on some inputs. The {intermediate states “predicted® by the
weakest invariant f(x)=f(x0) is the set of all intermediate
states that could ¢gossibly be generated by any loop B*@ that
computes tne function correctly, Thus, the invarfant f(X)=f(x0)
can be thought of as occupying a unique position in the spectrua

of all possible (oop invariants: it is strong enough to describe
'ﬁ the net effect of the (oop on the input set D(f) and yet s
sufficiently weak that it offers no hint about the method used to
achieve the effect,

. Example 7: Consicer the following program
'-‘ whilg 2 > 0 do

a4 := &a - 1;

€= ¢ *+ Db

QQ.

This loop computes the function
f = (a>z0 => aybyc 2= O.b.COQ'b).
From Theorem 2, we know that
1(<aQyb0,ycO0>¢<aybyc>) iff <0,00ycCtaleb0>=<0ybyctand>

is the weakest f-adequate invariant over D(f)={(<a,byc> | a>=Q).
i Consider the sample input <4,10,7>, Our loop will produte the
: series of states <‘|10|7>' <3.‘°'17>' <Z.10.Z7>. ("10'37>'
, <0,10,67>, of cowrse, our fnvariant gagrees with these
intermediate states (.0, 1€¢<4,10,7>,¢<6,10,7>),
1€<6,10,7>,<3,10,172) % e o 1€€45,10Q00729<0410,47>))y put it also

- S T
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agrees with <6,10,-13>, We conclude then, that it 1{s possible
for some loop which computes f to produce an intermediate state
<6,13,-13> while mapping <4»10,7> to <0,10,47>. Furthermore, no
loop which computes f could produce <6,10,-12> as an fintermediate
state from the input <€4,10,7> since the f{nvariasnt would be
violated.

To emphasize this point, we define an f-adequate invariant
1(x0,x) over 0(t) for B*Q to be an jpternal ioxarispt if 1(x0,x)
implies that B+Q will generate X as an intermediate state when
mapping X0 to f(x0). Intuitively, an internal invariant captures
what the (00p does as well as & great deal of how the loop works.
In our example, b=tD & c¢=c0*b*(a0-a) & D<=a<=30 ¥s an internal
invariant, but 1(<a0,00,c0>,€<89brvc>) as defined above is not (the
state <6,10,-13> on input <4,10,7> §s & counter example). It
should be clear that it f has an infinite domain, no loop exists
for which t(X)=f(X0) s an internal invariant, However, {f  we
consider non-determiristic loops and weaken the definition of an
tnternal invarfant to one where I1(x0,x) implies x a@gy be
generated by B+Q when mapping X0 to f(x0), such & Loop can always
be found. This loop sould non-deterministically swuitch states so
as to remain in the same level set of f. Our exsmple program
could be modified in such a manner as follows:

while 2 > 0 dg
t :z “some integer value greater than or equal
to zero”;
c * b * (a-t);
t

owao
L ]

d
and corresponds to a “bling search” implementation of the
function.

In fBasu B8 misra, 1975), the authors emphasize the
ditference betueen locp invariants and Loop assertions. The fact
that f(x) = {f(x0) is an f-adequate loop invariant appears in
(Basu .1 Misra, 1975,’ Liﬂge"' mills g Witt, 1979). The
independence of this Loop invariant from the characteristics of
the loop body is discussed in [Basu & Misra, 19753,




PO P

. - ——————

Ay =Y S—

- ———

B R T YA

A Comparative Analysis of Functional Correctness 15

4o Comparison of the Hoare and Mills Loop Verification Rules

An alternative to using Theorem 1 in showing a loop computes
8 function is to apply Hoare”s aniomatic verification techniques
That is, one could verify P (BeQ) R where
P ift x=x0 in D(t), and
R ittt xs3¢(x0)

by demonstrating the following for some predicate I:

(A1) P-> 1

(A2) 881 () 1

(A3) “B 8 I -> R,
Strictly speaking, conditions Al thru A3 show partial
correctness; to show total correctness, one aust also prove

(AL) 8*Q terminates for any input stete satisfying P,
Note that if B*Q is closed for t, a predicate 1 that satisfies A1
and A2 is a toop invariant over D(f) (or some superset thereof).

We now wigh to ccmpare these verification conditions with

the functional verification conditions. Recalling from Theores
1, it B*Q is closed fcr f, the functiopnal vepification rules are:

(F1) 8+*Q terminates for any input state in D(f)

(F2) 3(X) => f(x) = £(LQI(X)) for atl X in 0(#)

(f3) “B(X) => t{(x) = X for atl X €n 0(f),
I1n the following discussion we adopt the convention that ¢ ¢ {s
a function and %X is nct in D(f), then f(X)=7 {s talse tor any 2.

Theorem 3: Let B*Q be closed for f. If f(X)=¢(xD) s wused
as the Loop invariant 1 in A1-A3, then A1 & A2 & A3 & A4 iff FT &
F2 & f3. That §s, the functional verification conditions F1-F3
are equivaltent to the spectal case of the axfomatic verification
conditions Al=-AkL which results from using f(X)=f(X0) as the Lloop
invariant 1. In particular, §f 1 $ft f(x)=¢(X0) in the antomatic
rules, then

Al is true,
A2 ift F2 provided X in D(f) & B(X) =-> X in 0((Q)),
AS f1f F3,
AG iff F1.

Progl: we begin ty noting that the termination conditions Aé
and F1 are identical, thus A4 iff f1, Secondly At s
X=xp in D(f) > £(x)=f(x0)
which is clearly true for any f. Combining with our first result
yields A1 & A4 §ff F1., Condition A3 can be rewritten as
“B8(x) & f(x)={¢(x0) ~> X=¢(X0)
which is trivially true for any X,xX0 outside D¢(f)e Thus A3 may
be rewritten as
(A3") For all X,20 in DC(f), “B(X) & ¢#(x)=t(X0) => xst(x0).,
Note that A3 <> 3 by considering the case where x=xQ0.
furthermore, by adding f(X)=f(x0) to the antecedant of F3} we get
F3 => (TB(X) & F(x)I=f(xQ) => ¢(X)eX & f(X)=¢(xD) -> #{(xD)=x),
thus FT => a3°, Now se have A3 4ff A3° iff F3 and adding this to
our result above we get A1 8 A3 B A4 §tf F1 & 3, we neat prove
A2 & Ak iff F2 & Fl. This combined with the above equivalence

"y
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yields the desired result AY & A2 & AY R A6 iff F1 [ fFe L 4 F3.
Note that if there exists and X in D(f) such that B(X) but (@l(x)
is not defined, then tne loop itselft will be undefined for X,
both AL anad FY will be false and A2 & AL 1ff F2 & F1, e now
consider the other case where for all X in D(f), B(X) > X {n
0({Q1). In this situation we will show A2 1ff F2; combinfng with
AL 11 FY1 yields A2 & AL iff F2 & F1, Rule A2 may be rewritten
as
B(x) & f(x) = £(x0) (a) t(x) = #(x0)

which again is trivially true if X or X0 §s outside D(f);, thus AZ
is eguivalent to

for all X,Xx0 inD(f), B(X) & ¢(x)=¢f(x0) (@) f(X)=1(Xx0).
Since Q@ terminates for any input X In D0C(f) such that B(X) by
hypothisis, this may be transforeed to
CA27) For all X.x0 in D(?), B(X) & ¢(x)2f(X0) => f(L{QI(WI)=¢(x0),
As before, we ¢can shouw A2°=>F2 by considering the case where
A=x0, and F2=->A2° by edding f(x)=st(X0) to the antecedant of f2,
Thus A2 1t A2° 4¢¢ FC which faplies A2 iff F2, This completes
the proot.

The purpose of Theorem 3 s to allow us to view the
tfuncrionatl veritication conditions as verification conditions in
an inductive asseptior proof. Not surprisingly, both techniques
have identical teraination requiremengs. 1f the teraination
condition is met, F2 amounts to 3 proo¢ that f(X)=sf(XD) tg & Lloop
invariant. Condition F3 amounts to & "Rule of Consequence®,
testing that the desired result can be fmplied from the Loop
invariant t(x)=f(x0) and the negation of the predicate 8.
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Se Subgoal lnductien and Functional (Correctness

' Subgoal fnduction §s a verfification technique due to [Morris
{ § wegbreit, 19771, 1n this section we compare subgoal 1{nduction
to Mills” tunctional correctness approach,
Wwe first note that subgoal i{nduction can be viewed as 2
: generalization of the functional approach presented here in that
subgoal induction can be wused to prove & program correct with
respect to a general finput-output relation. A consequence of
this generality, however, is that the subgoal induction
verification conditions are sufficient but not necessary ftor
correctness; that is, in general, no conclusion can be drawn if
the subgoal induction verification conditfons are inval id.
provided the <closure requirement s satisfied, the functional
verification conditions (as well as the subgoal induction
verification condi tions when applied to functional
specifications) are sufficient and necessary conditions for
correctness. Results in ([misra, 1977) suggest that it §s not {
possible to obtain necessary verification conditions for general
input-output relations,
' In order to ncre precisely compare the two techniques, wve
{ consider the flow chart program in Figure 2 taken from (Morris &
! wegbreit, 1977).

Figure 2.
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In the figure, AyBy(,0 are points of control in the flow chart, P
is a predicate and Q,F and S are function nodes, Note that this
tltow chary program amounts to & WHILE loop surrounded by pre ana

post processing. Our goal is to prove the oprogram coaputes 2

tunction T, Morris & Wegbreit point out thet subgoal induction
uses an induction on the B to D path of the flow chart; that s,
one selects some relation v, inductively shows it holds for il 8
to D pathsy, and then uses V to show T s computed by all A to D
paths, 1In our fllustration, since T is a function, {t will be
required that V itself be a function. Once V has been selected,
the verification condfitfons are

(51) TP(X) => V(X)) = S(X)

(S2) P(X) => V(R(X)) = V(X)

(s3) T(x) = v(a(xN.
Note that 51 and S2 test the validity of v, S3 checks that V can
be used to show T,

The functional verification theory presented here is similar
with the enception that the function S is not included in the
induction path. e select some function f and show it holds for
all B to € paths (f.e. we sShow the WHILE Lloop computes f) and
then use f to show T is computed by all A to 0 paths. Once f has
been selected, the verification conditions are

(F1) ~“Pix) => f(x)=X
(F2) P(X) => f(R(X)) = f(X)
(F3) T(X) = SC1CQ(X))) .

Note that both techniques require the invention of an
intermediate hypothesis which must be verified itn a “subproof.”
This hypothesis is then used to show the program comsputes T, The
tunction S in the flow chart bprogram 1is absordbed 1{nto the
intermediate hypothesis in the subgoal induction case; it is
separate from the intermediate hypothesis in the functional case.
Indeed, the two intersediate hypotheses are related by

v =0951¢t,.

It S s a null operation (identity function), the
intermediate hypotheses and verification conditions ot the two
techniques are f{dentical. A difference between the two
techniques, however, can be seen by examining the cose where Q@ is
a null operation., If the Loop is closed for T, subgosl induction
enjoys an advantage since T can be used as the intermediate
hypothesise That +{s, the subgoal induction vertficetion
conditions are simply

($1°)  “P(X) => S(X) = T(X)
($2°) P(X) => T(R(X)) = T(X),

In the functional case, one must still derive an hypothesis
tfor the Loop function t. A heuristic which can be applied here
is to restrict one”s attention to functions which are subsets of
se*=1 o0 Te HOwever, it is worth emphasizing that this rule need
not completely specify f since, in general, Se*=1 0 T {3 not a
function relation, once f has been selected, the verification
conditions are

(F17) “P(X) => t(X)=X
(F2°) P(X) => S§(R(X))=¢(X)
(F3°) T(x) = S(1(Cxn)),
The difference betveen the two techniques $n this case g
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due to the prime prcgram decomposition nature of the functional
correctness algorithe described in Section 2. A wmore effticient
proot s realized by treating the Loop and the function S as a
whole. Accordingly, correctness rules for this progrem fora
aight be incorporated into the prime program functional
correciness method described earlier. The validity of these
rules can be demonstrated {in a manner quite similar to the proot
of Theorem 1,

Exapple B: we wish to show the program
ghile noy = in (0,1,2,3) do
it » < 0 ghep x 3 x ¢ &
elig » = x - 4 {3}
T'H
it « > 1 ghegn x =2 x = 2 1}
computes the function Ts{(<a>,<0dd(n)>)). The subgoal induction
verification conditions are
x in (041,293 => $S(x) = odd(x), and
x "in (0,1,2,3) ~> 0dd(R(x)) = odd(x), where

S{x) 2 it x > 1 then x=2 else xy, and

R(x) = if x <0 then x*, else x~4.
6oth these conditions are strafghtforwarde Now let us consider
the prime progres furctional case. Suppose wve are given (or say
derive) the intended loop function

t 2 ((<u0>p<a>) | = in €(0,1,2,3) ¢ x mod &4 = x0 mod 4),

we can verify that the Loop comsputes f by demonstrating F1° ang
F2”. Conditfon F3° uses f to complete the proot,

The diffticulty with splitting up the program in this exanmple
is that it requires the verifier to “dig out™ unnecessary details
concerning the effect of the L(oop. One need not determine
enplicitly the function computed by the loop in order to prove
the program correct. The only important loop effect (as far as
the correctness of the program §s concerned) 4s » in (0,1,2,%)
and odd{(x) = 0dd(xd)e In this example, treating the program as a
whole appears superfor since 1t only tests for the essential
characteristics of the program components,

It is worth observing that an sxiomatic proof of a progras
of this form could be accomplished by using the Lloop invariant
T{(x) = 7(XQ). The verification conditions in this case would be
equivatlent to the subgoat finduction verification conditions.
Note that, in general (as in our example), T(X) = T(x0) s too
weak an invariant to be f-adequate for the intended loop function

f.
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6. Initiatized Loops

The preceeding section indicates that it §s occasfonally
advantageous to consider @& program s 3 whole rather than to
consider its prime prcgrams individually, In this section we
attempt to apply the same philosophy to the inittalized loop
progras form,.

we will again consider the program fn Figure 2 with the
understanding that § is & null operation. Wwe want t0 prove that
the program computes a function T, 4.e., that ¥ holds for atl A to
C paths. We have seen that prime progras functional correctness
involves an {induction on the B8 to € program path using an
intermediate hypothesis f. An inductive assertion proof would
tnvolve an fnduction on the A to B8 path using some loop invarfant
I(X0,x). This invarfant differs from those discussed previously
in that it takes fnto account the initialization for the (oop.
In this section we dfscuss briefly the difficulty of synthesizing
the intermediate hypotheses f and I.

In order for the program to compute T, we must have
Q(Xx)=Q(Y) => T(x)=7(y). Consequently, the relation represented
by T o (@**-1) 45 a function and s 2 candidate for the
intermediate hypothesis f. Unfortunately, the domain of this
function is the image of p(7) through Q, and since the purpose of
the initjalization s often to provide a specific "starting
point™” for the loop, the lLoop witl seldom be <closed ftor this
function, Thus the oroblem of finding an appropriate f can be
thought of as one of generatizing T o (Qee-1),

want to show the program

Exapple 2: we
0; ¥ := 0;
§

d
computes s:=Su§(t.1.n.a[kJ). 1f Q@ vrepresents the function
perfarmed by the initialization, ¥ o (Qee=1) ig

(‘:0"30 -> s:‘SUR(k"|.n..[k]))o
Note that the Loop is not closed for this function, To verify
the program using the functional method, this function must be
generatized to a function sucgh as

| = s := g ¢ SUH(kgi’1pnv0[k]).

We now consider the relative difficulties of synthesizing a
tunction f for which the Loop is closed (for a functional proof)
and synthesizing an acequate loop f¥nvariant (for an inductive
assertion proof). 1f we have a satisfactory f, an appropriate
hypothesis for a loop invarfant is I(x0,x) 4¢tf f(alx0))=f(x). We
now try to go the other way. Suppose we have 1(xD,x), can we
derive from that a function t for which the loop is closed? we
motivate the result 33 follows: we could obtain an equivalent
programs by rodifying the initiat{zation to
(non-deterministically) map X0 to X {§f I(X0.X) is true. The




aodified

will

the same argument that was used to show the loop must compute T o

(Qee=1), the program sust also compute T o (1(XO,X)ee~1), Note

that

the invariant would be violated, We concluge then that the

A

simpl

the |

synthesis

synthesis of a suitable invariant are equivalent probless in the

sense

other problenm. The translation between Lloop invariants and
intersediate hypotheses in & subgodl induction proof is discussea
in {Morris 8 wegbreit, 1977],

is valid for any state in D(f7), Similarly, a functional proot
the
verifying that the clcsure requirement is satisfied. This s no
coincidence: proving closure is equivalent to demonstrating the
validity of the loop invariant, |

that

that

Exampole 9 (coniipuedl: An inductive assertion proof of our
program mi
that this invariant is essentially equivalent to f(Q(x0))=f(X)
(where
outl ined above, we may derive from the invariant

[ 2 =
Observe that this is quite different from the original +{, but
that
correctness., It may seem puzzling that ¢7(Q(x0))=f"(Xx) {s the
constant %
invariant must be f“~adequate. This s not a contradiction,
however, si

f

"

program still computes the same function; §f the
initialization maps XC to anything other than a(x0), the etfect
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y be to save the loop some number of iteratfons. B8y

oop ts necessarily closed for this function; otheryise
of a tunction for which the loop is closed and the

a solution to one problem implies a2 solution to the

ght use the invarfant s=SUM(k,V1,i,a(k])) & i<=n, Note

and Q@ are as detined previously). Using the technique
(s=SUM(ky 1,i4alk]) & d§<=n => s:=SUMCk,1,n,alk])).,

is quite satisfactory for a functional proof of

nvarfant TRUE and yet Theorem 2 states that such an

nce
TRUE & ¥>=n => s=SUM(k,1,n,alk])

loop computes f° §s trivial with the exception of
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Te Summary

Our purpose has been to explain the functional verification
technigue 1in Light of other program correctness theories. The
functional technique is based on Theorem 1 which provides a
sethod for proving/disproving a loop correct with respect to a
functional specification for which it is closed.

In Theorem 2, 2 loop finvariant derived from a functional
specification 1is shown to be the weakest invariant over the
domain of the functionrn which can be used to test the correctness
of the loope. Theorem 3 indicates that the functional correctness
technique for Loops is actually the special case of the axiomatic
method that results from using this particular toop invarisnt as
an inductive assertions The significance of this observation is
that functional correctness coan be viewed either as an
alternative correctness procedure to the inductive assertion
method or as a heuristic tor deriving Loop invariants.

The subgoal induction technique seems quite similar to the
functional method; the two techniques often produce identical
verification conditions. We have, however, observed an example
where the subgoal induction method appears superior to functional
correctness based on prime program decomposition, More work
appears necessary ir precisely characterizing these situations
and determining it there are circumstances wunder which the
functional method is more advantageous than subgoal induction,

Wwe have examined the 1{dnductive assertion and functional
methods for dealing with initialized Loops. We have shown that
the problems of tincing a suitable Loop invariant and finding a
function for which the loop s closed are identical. The result
indicates that for this <class of programs the two methods are
theoretically equivatent; that s, there s no theoretical
justification for selecting one method over the other.
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