AD-A090 370 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS F/6¢ a/S
n.‘x'c‘nogmvl::;mém THE MEASUREMENT AND APPLICATION OF GRAVITY ==ETC(V)
80 O

UNCLASSIFIED

| o
a0
Ay

END




1 s 2

il £

22

by
o I m 2.0
s £
[

= |
28 flis poe

MICROCOPY RESOLUTION TEST CHART




ADAO90370

DG FILE_COPY.

BUTLER ?J_;\( ’&} . qf.. \

. e e - v —— g s e s
e - st e [

e
: é MICROGRAVIMETRY AND THE _yEASUREMENT AND {

-

\ APPLICATION OF GRAVITY'QRADIENTS

P T
e rmaon e s

)/ e &5
{ éWAIN K.;%UTLER, L
U. . ARMY ENGIN ERIMENT STATION

VICKSBURG, MISS. 39180

INTRODUCTION

Gravimetry is the science which studies the earth's gravi-
tational field in all its aspects. Applied gravimetry involves mea-
surements of the vertical component of the gravitational field g, -
and the attempt to deduce geologic structure from the data. Any in-
version of the gravity data to yield a possible causative mass (or
density) distribution will be nonunique (as with inversions of all
potential field data); however, by coupling geological constraints
and other available geophysical data, the range of feasible solutions
can be narrowly bracketed. Commonly, the objective of gravimetric
exploration is the location of structural or stratigraphic environ-
ments typical of oil and gas or ore deposits. perhaps less obvious
application of gravimetry is to geotechnical fpkoblems, where the ob-
jective is shallow structural mapping to detect anomalous conditions
such as subsurface cavities, fracture zones, faults, variation in
depth to top of rock, buried river channels, etc. These high-
resolution applications of gravimetry involve not only a significant
scaling down in size and depth of the structures of interest and cor-
responding decrease in required profile and grid spacings, but also
relative measurements of the acceleration of gravity in the ugal
range (1 pgal = 10-6 gal = 106 cm/s2 =~ 10-9 times the normal gravi-
tational acceleration). High-resolution gravimetry is properly re-
ferred to as microgravimetry (1-3). Application of microgravimetry,
particularly to geotechnical problems, has enjoyed only limited suc-
cess due to poor gravimeter sensitivity and accuracy and lack of ap-
preciation for proper field procedures. However, the development of
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a true "microgal" gravity meter* in the late 1960's has made micro-
gravimetry a viable geotechnical field method.

Recognizing the potential value of microgravimetry for geo-
technical applications, the U. S. Army Engineer Waterways Experiment
Station (WES) began a research effort in 1978 to assess the benefits
to the Corps of Engineers and WES of developing complete in-house
capability for application of microgravimetric techniques. One of
the most promising areas of application is the detection and delinea-
tion of subsurface cavity systems in areas with solution-~susceptible
bedrock. Microgravimetry has successfully been applied at a field
test site in Florida to map a cavity system. Another area of inter-
est and the subject of this paper is the use of microgravimetric
techniques to determine the first vertical and horizontal derivatives
(gradients) of g, . The gravity gradients are of fundamental im-
portance and offer three advantages over measurement of just g,
alone: (a) increased detectability limits and resolution of anoma-
lies due to shallow structures; (b) gradient profiles have diagnostic
properties which, in many cases, may make subsurface structure iden-
tification more straightforward; and (c) the gradients should selec-
tively filter out anomalies from deeper structures and thus enhance
the detection of anomalies due to shallow structures. The results of
a controlled field study to evaluate techniques for determining grav-
ity gradients and the use of these data for structural interpreta-
tions are presented in this paper.

GRAVITY GRADIENTS

Considering a Cartesian coordinate system (X,y,z), with the
z-axis vertically downward, the derivatives of interest are dg,/dz ,
agzlax , and 3g,/3dy . It is a natural approach to study a function
such as g, by examining its derivatives or gradients in specified
directions. Since g, = 9U/3z , where U is the gravitational po-
tential, we are interested in defining various components of the sec-
ond derivative matrix U,;s , where the comma indicates partial dif-
ferentiation (with respect to the subsequent indices) and i and j .
=1, 2, 3 corresponding to x, y, z, respectively. For U due to
a purely two-dimensional structure, U,jj is a second-order tensor.
In particular, we are interested in U,y, , U,yz , and U,zz .
Since V2U = 0 in source-free space, we know that U,,, (U,xx
+ U,yy) . Also since V2g, = 0, we have g, , = -(8z,xx
whlcz suggests a way in which 82,2z and 8z, (by integrating¥
could be obtained by numerical methods from gridded gz data.

* LaCoste and Romberg, Inc., Model-D "Microgal Gravimédted. f»-—-——
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Indeed, numerous techniques for calculating 3g,/3z (gz z) have been
proposed; however, all suffer from all the inaccuracies’and deficien-
cies of the original g, data and from fictitious anomalies intro-
duced by the numerical process (4). Clearly, the problems associated
with calculating 8z,x OF 8z,y from gridded g, data should be
much less difficult. However, the basic problem remains that, for
standard survey techniques, the grid data are too widely spaced for
the gradient values to have any real significance for delineating
structures.

It is highly desirable that field techniques be developed
for directly determining the gravity gradients. Since gravity gradi-
ometers do not exist (5), the determinations will be finite difference
approximations to the partial derivatives, i.e.

1lim
Az~0

1lim
Agz/Az -+ agz/az S Axoo Agz/Ax > Bgzlax ; etc.

Vertical gradient

For the vertical gradient, the procedure simply involves
measuring g, on the surface and at one or more positions vertically
above the surface station. Measurements in tall buildings on a floor-
by-floor basis have been utilized (a) for the determination of the
free-air vertical gradients and (b) to accurately calibrate gravime-
ters (6,7). Portable tower structures must be utilized in applica-
tions of the vertical gradient data (c) to correct field gravity data
and (d) as an exploration method to locate anomalous masses and struc-
tures. Attempts to make practical field vertical gravity gradient
measurements have met with considerable difficulty. The problem re-
duces to a trade-off between practical field implementation (manage-
able tower height), greater tower height (distance between measure-
ment stations) to decrease the probable error in the determination,
and the need to approximate the true gradient.

Horizontal gradient

For the determination of horizontal gradients, the situation ~
is much simpler since virtually any horizontal separation between mea-
suring stations is logistically feasible. The main consideration now
becomes one of keeping the spacing small enough to adequately define
the anomaly. Another consideration is the need to define the direc-
tion of the maximum horizontal gradient. This can be accomplished by
double track profiling or by measuring at three locations at the cor-
ners of say a right triangle (13) for each gradient determination.
For geotechnical applications, horizontal separations of the range of
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5 to 10 m will be required, and this data will conveniently be avail-
able routinely in microgravimetric surveys.

Relation between gradients for
two-dimensional anomalous structures

While two-dimensional structures do not exist in nature, in
many cases the approximation to two-dimensional conditions is very
close. Thus, analytical consideration of two-dimensional structures
(constant cross section and long in say the y-direction) is not only
convenient but useful for a large number of real geologic conditions.
For a two-dimensional anomalous structure, the vertical gradient
g8z z(x,0) and horizontal gradient gz,x(x,O) on the surface are re-
lated by a Hilbert transform (14)

- -]

(£,0)
21 gz,x ’
gz’z(x’o) = ; E -x dg

where x 1is the profile point and the integral is interpreted in the
sense of its Cauchy principal value. This relation is of great value,
since, if it proves impractical to determine either of the gradients
in the field, one of the gradients can be calculated from the other.

A computer program has been written to perform the Hilbert transform
for discrete data.

RESULTS OF A FIELD STUDY OF GRAVITY GRADIENT TECHNIQUES

There has been much speculation on the feasibility and
utility of gravity gradient determinations. However, no definitive
study has been reported. The study reported here is a preliminary
attempt at a definitive evaluation of gravity gradient techniques.
Three criteria guided the selection of the test case: (a) the anom~
alous structure should be precisely defined; (b) the anomaly both in
gz and the gradients should be large (in a "microgravimetric sense'")
and should have a relatively short wavelength; and (c) the structure
should approximate two-dimensional conditions. These criteria
seemed most easily satisfied by a shallow man-made structure. The
structure chosen was the concrete-lined drainage channel shown in
Figure 1. Since the structure is at the surface, the gravity anom-
aly is large and has a short wavelength. Also, since the channel
extends to either side of the bridge for at least 100 m with no sig-
nificant change in cross section, the structure is approximately two-
dimensional. The bridge itself is the only major non-two~dimensional
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Figure 1. Drainage channel structure chosen
for microgravity and gravity gradient field
tests

aspect of the site. Pertinent dimensions are given in the diagram
in Figure 2, which will also be the basis for two-dimensional model
calculations.*

oo ]

Figure 2. Locatim.l of drainage 2 P B e X s =

channel along profile line and 2m 7 N\ } g as \

dimensions of two-dimensional N Ii 7/

model. Profile line direction — ———(mm |
is N22°E -Ejs-m {6-IN.) CONCRETE ;

CHANNEL LINER (ESTIMATED)

The survey over the drainage channel consisted of 16 sta-
tions over a 55-m line perpendicular to the channel, with the approx-
imate center of the channel at the 34-m position. At each station
g, measurements were made at the ground surface and at a nominal
elevation of 1.3 m vertically above the ground station. No elevation

* Two-dimensional model calculations were accomplished using a com-
puter program TALGRAD which utilizes the algorithm of Talwani (15)
to compute g, profiles due to an arbitrary number of polygonal
cross-sectional structures. The program also allows for the com-
putation of Ag,/Az and Ag,/Ax along the profile for arbi-
trarily specified Az and 4x .
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or Bouguer corrections were necessary for the data (no elevation
change). The data were corrected for latitude change in station lo-
cation in the usual manner (16). Linear drift corrections were ap-
plied to the data utilizing base station reoccupations, and the
drift curves were compared to theoretical earth tide curves calcu-
lated for the site to verify consistent gravimeter performance.

Results of the two-dimensional model calculations and the
observed gravity data are compared in Figure 3. The model profile
results agree closely in anomaly amplitude and width with the ob-
served data, with the major deviation being the approximately 70-ugal
positive anomaly (relative to the model profile) between 30 and 36 m.
However, this is precisely where
the non-two-dimensional aspects
of the structure, i.e., the bridge
pillars and beams, should make a
positive contribution to the ob-
served gravity profile. The
maximum positive contribution due
to the pillar beneath the pro-
file line should be about 30 ugal,
with the remainder of the 70-ugal
anomaly accounted for by the
- other pillar and the bridge
beams.

-

Finite difference ap-
proximations to the horizontal and
vertical gradients of g, along
the profile were computed for the two-dimensional model and from the
observed field data. Figures 4 and 5 present the horizontal and ver-
tical gradient profiles, respectively, for the two-dimensional model.
For the horizontal gradient (Figure 4), profile values were computed
for Ax = 3 mand Ax = 10 m. The finite difference approximation
Agz/Ax to 3gz/3x should become better as Ax decreases; and
clearly the horizontal gradient profile for Ax = 3 m is sharper and
has greater amplitude than the profile for Ax = 10 m, as expected.
The vertical gradient profile (Figure 5) was computed for Az
= 1.3 m, corresponding to the nominal value used for the field mea-
surements. Note that the four corners of the structure are fairly
well defined in Figure 5 by the vertical gradient profile.

Figure 3. Gravity profiles across
the drainage channel

Horizontal and vertical gradient profiles determined from
the field data are shown in Figures 6 and 7. The horizontal gradient
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values are shown for various values of Ax (corresponding to various
possible combinations of stations); however, the dashed line connects
points for Ax = 10 m. The comparison between Figures 4 and 6 is
quite good for the curves for Ax = 10 m, both in general shape and
in anomaly amplitude and width. Also, the general trend of increas-
ing anomaly amplitude and sharpness with decreasing Ax is seen in
the observed data in Figure 6. The vertical gradient data (Figure

7) are very erratic and only with a great amount of smoothing and
imagination do the results resemble the model results of Figure 5.
There are several possible reasons for the erratic nature of the
vertical gradient data:

a. The value Az = 1.3 m is too small for the vertical
separation between measuring stations due to the probable error in
the measurements, i.e., a larger Az would result in a larger Agg
and hence decrease the significance of the probable error.

b. The vertical gradient determination is more strongly
affected by the non-two-~dimensional aspects of the structure than
the horizontal gradient determination.

c. The vertical gradient is known to be strongly
influenced by very shallow density fluctuations, so a preferable
procedure might be to make the lower g, measurement some small
distance, say 0.2 m or so, above the ground surface.

It is probable that the two large positive values of vertical gradi-
ent between 30 and 35 m are due to the bridge pillars and beams.

Calculation of vertical
gradient profile from
the horizontal gradient profile

Utilizing the horizontal gradient profile for the two-
dimensional model (Figure 4), the vertical gradient profile shown in
Figure 8 was computed using the Hilbert transform relation and com-
puter program discussed earlier. Except for the sign reversal
(caused by assuming the z-axis vertically downward for the two-
dimensional model results), the vertical gradient profiles in Fig-
ures 5 and 8 agree qualitatively very well. The lower amplitudes
and frequency content of the profile computed by the Hilbert trans-
form are not unexpected; however, the comparison would improve if
the profile itself were longer and/or a smaller Ax were used for
the horizontal gradient profile.

Similarily, a vertical gradient profile (Figure 9) was
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4 computed from the horizontal gradient profile of the observed data

E (Figure 6) over the structure using the Hilbert transform. Again,

] only with extreme smoothing is there even qualitative similarity
between the observed and calculated vertical gradient profiles (Fig-
ures 7 and 9, respectively). However, the profile in Figure 9 com-
pares qualitatively quite well with the vertical gradient profiles
in Figures 4 and 6. Thus, the procedure of determining the hori-
zontal gradient profile from field measurements and then calculating
the vertical gradient profile via the Hilbert transform appears
very promising.

Utilization of gravity gradients

The motivations for determining gravity gradients have been
discussed previously. A complete discussion of the possibilities for
utilization of gradient data for subsurface structural delineation is
beyond the scope of this paper and also premature. Thus, the con-
cepts under consideration will only be briefly covered.

A very promising technique for displaying the gradient data
is a gradient space plot, i.e., 8z,z Versus gz x . In such a
space, each point will correspond to a given profile position or
value of x . As an example, the gradient profile data for the two-
dimensional model (Figures 4 and 5) result in the gradient space plot
in Figure 10. Corresponding points along the profile and the plot
are indicated, and the manner in which the geometry of the structure
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might be deduced is indicated.

Another promising technique involves the concept of the
analytic signal along the profile, defined by A(x) = gz’x(x)

- igz’z(x) . Note that the gradient space plot is just a complex
plane plot of the components of A(x) . The amplitude of A(x) is
defined in the usual manner, a(x) =_|A(x)[ = (gzz’X + gzz,z)l/2

Above a two-dimensional structure with corners, the a(x) will be
the superposition of symmetrical, bell-shaped curves, one for each
of the corners. The properties of the bell-shaped curves determine
the profile position and depth of the structural corner causing the
signal. Thus, the decomposition of the a(x) signal into bell-
shaped curves represents in principle the solution of the structural
problem.

SUMMARY AND CONCLUSIONS

Microgravimetry has been successfully applied both to a
natural cavity site in Florida and to a man-made structure to delin-
eate small-scale, shallow subsurface features. The horizontal
gravity gradient profile has been adequately determined from a
microgravimetric survey and successfully compared with the results
of a two-dimensional model study. Measurement of the vertical
gradient profile with a relatively short tower structure (Az = 1.3 m)
was not as successful. However, utilization of the Hilbert transform
allows the vertical gradient profile to be calculated from the
horizontal gradient profile. For cases in which the assumption of a
two-dimensional, polygonal cross-sectional geometry is approximately
valid, use of the gradient profiles permits a unique structural
interpretation.

Future work in this research effort will concentrate on:
(a) improved field procedures for microgravimetric surveys; (b) con-
tinued attempts to determine vertical gradient profiles across known
structures using larger values of Az than in the past; (c) further
study of the application of the discrete Hilbert transform; and (d)
in~depth studies of interpretative methods using the gradient data.
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