
AD-AC90 347 TEXAS UNIV AT AUSTIN SOFTWARE AND DATA BASE ENGINEER-ETC FIG 9/2
AN INTEGRATED METHODOLOGY AND TOOLS FOR SOFTWARE DEVELO$0NT. (U)
AUG 80 D CHESTER. R T YEN AFOS-77-3409

UNCLASSIFIED SD0E6-20 NL

F ,,m
m mm

mm m

A I.

2 8 IIIIZ

'"'I ll2.0

L 1125 1. _4 ___

jjj

AFOSRTR- 8 0 -0 9 6 7/IY

f-e

Z0

08

AN INTEGRATED METHODOLOGY AND TOOLS

-' FOR SOFTWARE EVELOPMENT&

i' - Danlel/Chester

____Raymond T.jYeh 7

CIJ \(DVWB2 Augjb 108W

Funds for this research were derived from the Air Force Office of

Scientific Research under Gcrant V
4LOOT30

L

AIR FORCE O
F FI F- OF SCIENTIFIC RESARCH ({SC}

NOTICE OF TFANSITTAL TO PDC

This toohnlCal report ha5 beell revitwed Ond i

approved for publi, rp.l ea8O JAW AFR 19U-12 (7b).

Distr'butie" is unlimited.

. D. i$L9SE.:,hi'i 1nfrt8on Officer

2

ABSTRACT

-Or research has developed a methodology for the development of

software and several tools to help the designers of software systems.

methodology incorporates models of various aspects of a system under

* opment. They include models of how efficiently the system will

m, what function the system will compute, and what alternatives

t signers have considered and decided against. The methodology was

a to data base systems, where it works in a way that agrees with

p experience with those systems. The tools w& developed include

m f system performance, specification languages, a design

di tion language, facilities for modelling conceptual entities and

s ays to control the complexity of processes that are operating

it el (concurrent programs).

,,oSion For

DTIC A

l i
',/o

3

I INTRODUCTION

Although many activities are being carried out in software

engineering today, it is far from a mature engineering discipline. Part

of the reason is that the academic community is interested In more long

term research (such as program correctness, automatic programming, etc.)

and industry is busy in developing ad hoc aids to correct its immediate

problems. As a result, software engineering as a discipline urgently

needs engineering aids for software designers.

In order to provide engineering aids to software designers, it is

necessary, in our opinion, to enhance current software design methods

based on a step-wise refinement approach to incorporate design

evaluation methods which are based on performance, and by developing

languages and tools for documenting intermediate design decisions to

control system evolution. Furthermore, any such enhanced methodology

needs to be verified by application to real system construction. It is

our opinion that data base systems (DBS) is a class of systems which can

be used for testing the methodology.

II RESEARCH OBJECTIVES

Our research at the University of Texas has been directed for the

last three years toward the following engineering aids:

a) A methodology for software development. This is to be a

practical adaptation of current ideas like step-wise refinement

(Dijkstra 1972]. We want to divide the development of a software system

into a sequence of stages in such a way that as many errors as possible

can be caught in the early stages of the design process.

b) Hierarchical performance models. We proposed to develop a

hierarchy of models; crude models which employ only gross

characteristics of subsystems would be used at the top level while more

refined models would be used as the design evolves. These models help

designers to evaluate the performance of their designs at an earlier

stage of design than is done currently. By discovering errors before a

fine level of detail has been worked out, designers should save a

~~ir -

4

significant amount of redesign and reprogramming effort.

c) A specification lan age for constructing "mock-ups". A common

approach used in other engineering disciplines is to build a "mock-up"

or "prototype" so that the designer will have an opportunity to

investigate a scaled down model before construction takes place. This

specification language is intended to provide the software designer with

a working model of his design so that he can test whether it behaves as

intended before he works out the finer details of the design.

d) A software design documentation language. This language is to

be used to express a designer's intention and provide a framework for

making the structure of a system more explicit. Intermediate design

decisions are to be recorded in this language so that there is available

a complete trace of the evolution of the design, including alternative

designs that were considered and discarded.

e) A methodology for data base system development. This is to be

an application of our methodology to data base systems. With such an

application in mind we can specify the steps in the step-wise refinement

process. This application of our methodology will help to verify the

practicality of our approach.

f) A conceptual schema definitional facility. This is to be an aid

for software system designers, especially data base designers, to model

their understanding of the system application and its environment so

that they can formulate clearer and more precise requirements for the

system than they otherwise would.

g) Language constructs to support the specification, design and

verification of concurrent Prorvams. These are to overcome the problems

that arise when most design methodologies are applied to concurrent

programs. These constructs are to support high-level abstraction, to

support a general communication concept and to allow step-wise

refinement to be as easy for concurrent programs as It is for sequential

programs.

'a'
..

iI

III RESEARCH ACCOMPLISHMENTS

Our research group has made substantial progress toward development

of these aids. We have worked out a software development methodology,

applied it to data base system design, developed performance models,

specification languages, conceptual schema facilities and communication

ports for concurrent programs. Some of these aids were developed as

thesis projects by graduate students in our group. The others were

developed by or under the direction of faculty. The following sections

describe for each research objective what we accomplished and where more

details can be found in journal papers and technical reports.

A. Methodology for Software Development

We believe that there are two well-established engineering

principles which should be added to software engineering:

a) design evaluation, and

b) development of "mock-up" models as an aid to designers.

We know of only limited work in this area [Chester and Yeh 19771.

It is our conviction that these two principles could well he

included in software design processes to complement the current

methodology of step-wise refinement [Dijkstra 19721 in software

development. We have proposed a software design methodology [Yeh and

Baker 1977, Chester and Yeh 1977, Yeh 1978b, and Baker, Chester and Yeh

1978) based on the philosophy of step-wise evaluation and refinement by

using three models to characterize the design process as shown in Figure

1.

The system structure model is the usual model for decomposing the

system into a hierarchical structure of levels of abstractions [Robinson

and Levitt 1977, Dijkstra 19681 using the step-wise refinement approach.

The system documentation model is a mechanism for documenting all the

intermediate design decisions of the system so that modification during

the design process or in the future during system evolution can he

accomplished clearly and meaningfully. The hierarchical performance

evaluation model is used to evaluate the system design as the design

unfolds. It is important to note that during the design process, all

................ ... : :....: ... 7.. T7Ii7I:T ..

6

three models interact and should be refined simultaneously.

ESYSTEM
STRUCT URE

-:11

HI ERARCHI CAL
SYSTEM PERFORMANCE

DOCUMENTATION EVALUATION

Figure I - A Model for Software Design Process.

Aspects of these models are discussed in more detail elsewhere in

this report. In particular, The hierarchical performance evaluation

models are discussed in section B, the system structure models in C and

G, and the system documentation models in D and F.

One of the problems that arise with a new methodology is that a

large body of software has already been developed that is incompatible

with that methodology. In the case of our methodology, most previously

written software is incompatible because it is not organized into a

hierarchy of abstract machines as reflected in the software modules.

During the last year of research we examined the problem of

restructuring existing software so that it can evolve (be maintained)

within the framework of our development methodology. We took as our

test case the problem of restructuring COBOL programs into programs

based on abstract data types (module definitions that implement abstract

machines) because there are so many COBOL programs and programmers. If

. -

7

COBOL programmers can benefit from our development methodology and if

they adopt it, it will significantly change a large part of the

computing community.

We have implemented an extension to COBOL, called XTC, which allows

COBOL programmers to define abstract data types. XTC [Chester 1980) is

a small extension; it involves some additions to COBOL syntax that allow

programmers to group subroutines with the data structure on which they

operate and to declare such data structures without repeating their

internal formats. A preprocessor [Hartman 1980a) has been written in

COBOL so that XTC programs can be compiled with a standard COBOL

compiler. i

We have studied the problem of transforming COBOL programs with

large global referencing environments into a set of procedural and

abstract data type modules. A methodology is presented in [Hartman

1980b] for performing this restructuring in a conservative manner, i.e.,

so that as few program statements as possible are changed and the

restructured program is functionally equivalent to the original program.

The steps of the methodology that require design decisions are clearly

distinguishable from those that can be automated. The methodology uses

a "data-driven decomposition" heuristic that is justifiable for many

COBOL data processing programs. Following the setting of goals and

initial program understanding, the program-s data structures are

partitioned to form the kernals of abstract data type modules, each with

a concept and an inclusion rule for assigning statements to it. A

combination of flow analysis and symbolic execution are used to create

the operations of each module, and the calls and parameters which

preserve the original logic and data access. The methodology has been

demonstrated by restructuring a 1500 line production COBOL program into

ten modules. The XTC language was useful for coding the modules.

B. Hierarchical Performance Models

1. Hierarchical Performance evaluation

The success or failure of any system, of course, depends greatly

upon the level of performance which it achieves during actual operation.

Current approaches to performance evaluation rely heavily on monitoring

F1
8

V

a system after its design and implementation and then fine-tuning to

achieve a desirable level of performance. In many cases, however, major

redesign is required - an effort which may account for a large portion

of the system development cost.

This section contains a very brief description of a performance

evaluation technique which can be used with the hierarchical design

approach and which seems to have several advantages over current

performance evaluation procedures. A fuller description is found in

[Baker, Chester and Yeh 19781 and in [Baker (Ph.D. thesis) 1978]. This k

technique involves the construction of a hierarchical performance

evaluation model (HPEM). The purpose of this model is two-fold:

a) To provide the designer with feedback at each step of the design

process regarding the performance characteristics of the system, and

b) to provide a basis for choosing between alternative designs at

each level.

The HPEM is developed in parallel with the system design and is,

likewise, hierarchically structured. As the design unfolds new levels

are added to the HPEM - each reflecting increased knowledge about the

implementation of the system and the resulting effects upon system

performance. Thus, the HPEM allows the designer to derive as much

information as possible about the potential performance characteristics

of the current design. Constant interaction with the HPEM enables the

designer to "guide" the system down an appropriate design path with a

minimum of redesign and backtracking.

The addition of each level to the HPEM consists of three distinct

phases:

a) parameterization,

b) construction of an analytical model, and

c) queuing network simulation.

In the following sections we will briefly describe each process.

9

2. Parameterization

The parameterization of the ith level of the HIPEM Is concernet with

specifying those aspects of the system design at level I which are

important with respect to system performance. The designer has complete

freedom in choosing the performance parameters and hence design aspects

may be represented explicitly, implicitly, or not at all in the HPEM.

The parameterization is modular with respect to the system design. That

is, for each data abstraction of system level i a performance parameter

specification is developed - this specification reflecting the

properties of the data abstraction relevant to system performance.

The performance parameters of level i can be classified as design

parameters or implementation parameters. The design parameters,

representing aspects of the design which have been established, may be

further classified as scenario parameters or control parameters.

Scenario parameters represent aspects of the state of the system

which are determined by the user applications. The value of a scenario

parameter at level N is determined by an expected workload

specification. At level i (0 <= i <= N) the value of each scenario

parameter is derived from a scenario parameter mapping function which

defines the value of the parameter as a function of the performance

parameters of level i+1.

Control parameters represent aspects of the system design which may

be varied to enhance the performance of user applications.

During the evaluation process, the system designer may use

different values of control parameters in order to determine the most

appropriate configuration of the system for an application.

Implementation parameters represent aspects of the system design

which have yet to be realized but which must be Included in the model

for proper evaluation of the system. Implementation parameters at level

i, for example, would include the dzslgner's estimates for the execution

speeds of level i operations. The values of such parameters represent

constraints on the design which have yet to be satisfied.

i

10

3. Analytical Model

The analytical model consists of analytical equations which define

the cost of a particular design (completed through level I) in terms of

time expressions for the operations of level i and estimates of storage

requirements.

Using an approach similar to the one used by Wegbriet[19761, it is

possible to analyze a program module at level I in order to derive a

cost expression in terms of the model performance parameters at level

1+1.

The designer can then evaluate the cost of executing this module

for various values of the model parameters.

Performing such analysis on all modules at each design step thus

enables the designer to construct a cost expression for the design in

terms of the parameters of the most recently completed level.

4. Simulation Model

Unfortunately, many aspects of complex systems cannot be captured

by an analytical model. In data base systems, for example, performance

can be significantly affected by such things as contention for resources

caused by multiple users, locking protocol, and creation of temporary

data objects - factors which cannot easily be incorporated into an

analytical model. Likewise, a simple time expression may not adequately

characterize complex, parameterized operations. Thus, we propose that

the third phase of HPEM be a simulation of the operation of the system

design.

The basis for the simulation process is a queuing network model

constructed by the designer. It differs, however, from the typical

queuing models in that it attempts to model contention for abstract

resources (relations, files, directories, indexes, etc.) defined in the

software rather than hardware resources such as CPUs, disks, and T/O

devices. The structure of the model reflects that of the system itself,

that is, a hierarchy of queuing networks is constructed each of which

models the performance characteristics of the system design at a

particular level of abstraction. Thus, successive networks in the

hierarchy represent increasingly detailed models of the system

performance. Moreover, adjacent networks are "connected" in that the

solution of each network can be used to parameterize the immediately

preceding one.

C. Specification Language

We developed two specification languages. The first one, reported

in [Chester and Yeh 1977] and [Baker, Chester and Yeh 1978], was a

language for specifying abstract machines in terms of their internal

states, represented by list structures. The specification of a machine

consisted of a description of its initial state, the effects of various

operations on the machine, the exception conditions under which the

operations are not applicable, and, if the operations are functions, the

values they return. With the help of an interpreter for this

specification language, we could "run" the specifications as programs,

providing us with a "mock-up" of the system to be designed. By

experimenting with the running specifications we could see whether they

behaved as intended, thereby allowing us to catch errors in the

specification before design work has begun.

One problem with this specification language, besides being a very

high level programming language, was that it encouraged the use of

"hidden" functions: functions that are defined to simplify (or,

sometimes, to make possible) the definition of operations, but which

themselves were not going to be implemented in the final system.

Dissatisfaction with this aspect of the language led to the development

of the second specification language, which is described in [Chester

1979]. This specification language is based on the concept of traces,

which are sequences of operator calls on an abstract machine. By

identifying the states of abstract machines with the sequences of

operator calls that produce them and by relating these states to the

values that subsequent function calls will return, a designer can

specify the behavior of abstract machines purely in terms of their

"external" properties. No speculation or commitment to the internal

structure of the machines is required.

1'2

D. Design Documentation Language

Although we have not implemented a design documentation language,

we have described such a language in much detail in (Chester and Yeh

1977] and [Baker, Chester and Yeh 19781. This language, which is to be

an integral part of the design process and not merely a specification

tool that is used "after the fact", contains the following three

features for describing global properties of system designs.

1. Specification of Alternative Designs

Consider the implementation of level i in the hierarchical design

process. There may exist a large number of modules which may be

combined in various ways to produce alternative designs for level 1-1.

The designer may document in the language a) modules that must appear

together in designs, b) modules that represent alternatives to other

modules, and c) modules that are optional in the design.

2. Specification of Modules Interconnections

In specifying the interconnections between modules of a system

design we are concerned with several different relationships. These

include the has access relationship, where one module has access to

instances of another module by virtue of the fact that it created that

* instance or has access to another module that has access to it, and the

* uses relationship, which indicates the means by which one module may use

instances of another module to which it has access. These uses include

reading from and writing to modules and creating new instances of

modules.

3. Specification of Level Structure

In describing the structure of a particular level design it is

desirable to consider specifying the hierarchical relationships (if any)

between modules of the level, and partitioning the level into subsystems

which may be partially ordered within the level.

E. Methodology for Data Base System Development

Data Base Systems (DBS) were chosen for an Initial study and

verification of our methodology for the following reasons:

El

13

a) DBS will become a necessary tool for almost every institution of

even moderate size. They will become some of the most widely used

software systems. Yet, surprisingly, no systematic approach exists for

their development.

b) We believe that the important problem of designing DBS lends

itself naturally to software engineering methodologies. Recently, work

by researchers in the data base area [Smith and Smith 1977a, Senko 19681

pointed out that notions such as abstract data types and hierarchical

organization are important tools for data base design.

c) DBS can provide a focus for our methodology and tools to gain

necessary experience before generalizations can be made. For example,

one of the problems in using the top-down approach in design is to

determine where the top is. In data base areas, it is generally agreed

that the "conceptual schema" should be the top level. Furthermore,

there seems to be some agreement on the number of levels in DB design so

that a hierarchical methodology can be evaluated against some of the

existing systems. On the other hand, DBS can be very sophisticated so

that every aspect of the enhanced methodology can be exercised.

d) We believe that the problem of data base design can be

approached effectively utilizing the same methodology of hierarchical

structures provided a hierarchically structured data base management

system exists with a transparent design and clear documentation (e.g.,

designed with the proposed methodology). This is so because the

designer of data bases can take advantage of the level structure of the

data base management system and proceed downward from the conceptual

schema using evaluation tools.

e) Data bases are part of a variety of development tools, such as

the library of documents prepared in the design documentation language,

and of many software systems in general.

Our multi-level approach to data base system design is illustrated

by Figure 2, which shows how the levels of the DB system design

correspond to the levels of our software development methodology. The

first step in the design Is to obtain a conceptual schema of the

information structure; then the conceptual schema is mapped into a

.,-j ._________...._____________,_________"

14

logical schema. The details of physical storage structures are designed

in four more levels of mapping with each level Introducing more

implementation decisions.

Details of our methodology for tile design of data base systems are

given in [Baker, Chester and Yeh 1978, Yeh, Araya and Chang 1979, Yeh,

Chang and Mohan 1978, Baker and Yeh 1977, Yeh and Baker 1977, and Yeh

1978a]. Related information can be found in (Yeh, Roussopoulos and

Chang 1978, Mohan 1979a, Mohan 1979b, Mohan 1979c, and Mohan and Yehi

1979].

Our methodology was used on a small scale by Jou and Shih in a data

base system for storing chinese characters. The system is partially

described in [Shih (M.S. report) 1980].

F. Conceptual Schema Definition Facility

A data base is a model of a portion of the real world. The first

steps in data base design are to capture the real-world concepts and to

map them into some formal descriptions. Such formal descriptions, or

"Conceptual Schemata" (CS) [ANSI/SPARC 19761, should be independent of

the DBS used or the actual implementation of the data base. In contrast

to a "conceptual schema", a "logical data base structure" refers to the

data base structure constrained by the capability of a given DBS, and a

physical data base structure" refers to the details of the storage

structures of a data base.

We have developed and implemented a Conceptual Schema Definition

Language (CSDL) to ease the translation of unstructured knowledge about

the data in a data base system and the uses of that data in an

application into a formal conceptual schema. CSDL is a design tool with

which the designer can express his understanding of tile application.

CSDL is described in great detail in [Yeh, Roussopoulos and Chang 1978,

and Jou (M.A. thesis) 1979).

i1

15

(Data Base Design) (Program Design)

. (Conceptual Model) I

LOGICAL .4;CIEMA _-._ ASTRACT MACHINE

(data model Bpic.) !

__ _ _ _ _ _ _ _ _ _ _ _ 0
REFIND LOGICAL SCHEMA AS. .

- ASTCT MACHINE

(DBMS Spec.) _____ _____1

V\Ii I

"I - I

AC P ATH CAI E STRUCTURE | -- | + ABSTRACT MACH INE
H 1 PRI-4A

5 LOCTIVESTRUCTUJRE

jLEVL (Hot language +______

Figure 2 - Multi-level Data Base System Design.

16

There are two data types in CSDL, concepts and frames. The

operators defined on them are divided into three classes, naming,

selection and linking. All three classes of operators appear in every

data definition facility. The first class allows the designer to name

objects (concepts), and relationships among them. The second

corresponds to specialization or particularizaLion, namely the means for

deriving from a general concept a more specialized one. Linking is the

grouping together of two or more concepts or relationships to form

another meaningful relationship. Linking is very general and is used to

express relationships among concepts and/or frames that were formed by

other linking operations.

The operators are the only direct means for creating and

manipulating the abstract objects that model the application. By

adhering to a strict programming discipline, we can guarantee the

syntactic correctness of the created conceptual schemata. In addition,

the high level operators of CSDL free the designer from having to know

the internal representation of concepts and frames and the task of

making it consistent.

CSDL has relevance to software development methodology as well as

data base design because it or something like it may be useful for

formalizing the requirement specifications of software systems. This is

so because software systems can be viewed as "models of the real world.

If, for instance, we consider an information system for a hospital, or a

real-time system that controls chemical processes, we see that those

systems reflect to a large extent the environment that they have to

control and the policies or goals of the organization to which they

belong. From this perspective it is important to reach a high level

understanding of the environment and the set of goals or policies that

constitute the context of the software system, and this would be greatly

facilitated by a tool like CSDL. Once that understanding has been

modelled, it will be much easier to extract from it the exact

requirements of the software system under development.

AM

17

G. Concurrent Program n Constructs

Although many design methodologies exist, they are not all adequate

for use in the environment of concurrent programs. In order to

incorporate parallelism into these methodologies, we need concurrent

programming constructs that decompose problems into manageable parts and

are helpful in exploring the parallelism that is possible in the system

being designed. We have introduced three such constructs:

communication ports, behavior controllers and structural locks. These

mechanisms constrain concurrent programs so that undesirable effects

such as deadlock cannot occur while at the same time they leave the

designer with considerable freedom to take advantage of concurrency in

his design.

A commnication port (CP) is a general mechanism to specify the

interaction among software components which can proceed in parallel. It

is similar to Brinch Hansen's distributed process (Brinch Hansen 1978J

with two additional capabilities: CP specifies precisely which

processes can comunicate with one another as well as when the

communication between two processes should be disconnected. The second

capability is derived from the notion of "disconnect time" which can be

used to model various communication mechanisms such as read/write and

the conventional procedure call/return. This capability allows the

programmer to specify a high degree of overlapping of processes and thus

is a tool to develop efficient concurrent programs. The first

capability provides support for abstraction and data protection in the

same fashion as in other high level (sequential) programming languages.

Thus, the use of this mechanism makes the resulting programs easier to

comprehend and more reliable.

Every communication port has its own name. Each port has one

master process and one or more servant processes. Master and servants

can communicate with each other via CP. The difference between master

and servant is that the master has the right to disconnect the

coimunication at the time it chooses once the communication is set up,

while the servant has no such right. For more details see [Mao and Yeh

1979a, Mao and Yeh 1979b, Mao and Yeh 1980, Mao (M.A. thesis) 1979 and

Mao 1980J.

im. A ,

18

Behavior controllers are based on the observation that in a

properly structured computing environment, the external behavior of a

process can be restricted to the performance of externally identified

operations on data objects. By properly constraining and scheduling a

process's external behavior one can deal with many of the problems of

concurrency. There are two kinds of behavior controllers: 1) rights

controllers, that enforce constraints on the sequence of operations

performed by a process through a particular data object access path, and

2) synchronizing controllers, that schedule the execution of operatic'g

on a shared data object to achieve specified sequence constraints which

are independent of the access path (and, therefore, process) through

which the operations are performed.

Abstractly, both kinds of behavior controllers are finite state

machines which change state with each operation on the data objects.

Thus both a process and the data object it wants to manipulate have

states associated with them, and the process can perform an operation on

the data object only if there is a transition from the process state and

a transition from the data object state which correspond to that

operation. For more details, see Conner (Ph.1D. thesis) 1979 and

Conner 1979).

For concurrency in data base systems we have devised structural

locks. These mechanisms lock certain fields of certain records from

other processes. There are simple tests, based on set operations

applied to sets of record identifiers and sets of attributes appearing

in DBS transactions, that effectively determine when conflicts will

occur so that transactions can be scheduled for maximum parallelism. It

is expected that structural locks will be especially effective on

machines having associative architectures. For more information see

[Lee and Yeh 1979a, Lee and Yeh 1979b and Lee (Ph.D. thesis) 1979].

We also did some work of a more theoretical nature. An algorithm

for determining when a computation involving parallel processes has

terminated, due to Dijkstra and Scholten, was generalized in fChandy and

Mlisra 19791. A simple model of concurrent programs was made by

conservatively extending known ideas in sequential programing. This

model is reported in [Chandy and Misrs 1980).

19

PROFESSIONAL PERSONNEL ASSOCIATED WITH THIS PROJECT

K. M4ani Chandy

Philip Chang

Daniel Cheater

Jayadev Msisra

Nick Roussopoulos

Raymond T. Yeh

20

STUDENTS RECEIVING DEGREES WHO WERE ASSOCIATED

WITH THIS PROJECT

Jerry Baker, Ph.D. in computer science, 1978.

"Hierarchical Performance Evaluation"

Michael Haden Conner, Ph.D. in computer science, 1979.

"Process Synchronization by Behavior Controllers"

Emery Dze-Min Jou, M.A. in computer science, 1979.

"A Conceptual Schema Definition Language

Design and Implementation"

Sukho Lee, Ph.D. in computer science, 1979.

"Locking Mechanisms for Concurrency Control and

Consistency in Data Base Systems"

Tsang William Mao, M.A. in computer science, 1979.

"A Study on the Language Features for I
Concurrent Programming"

Lory PeI-Yu Shih, M.S. in computer science, 1980.

"A Portable System for Chinese Character Input

and Output Processing"

-- t!

21

CHRONOLOGICAL LIST OF PUBLISHED PAPERS

Chandy, K. M., 1977, A Data Base System for Generating Linear

Programming Models, ORSA/TIMS Conf., Los Angeles.

Chester, D., and Yeh, R. T., 1977, Software Development by Evaluation

of System Design, Proc. COMPSAC77, Chicago, Illinois, Nov.,

431-441.

Yeh, R. T. and Baker, J., 1977, Toward a Design Methodology for DBMS:

A Software Engineering Approach, Proc. 3rd VLDB Conf., Tokyo,

Japan.

Yeh, R. T., Roussopoulos, N., and Chang, P., 1978, Data Base Design -

An Approach and Some Issues, Data Base Technology, INFOTECH State

of the Art Report. I

Baker, J., Chester, D., and Yeh, R. T., 1978, Software Development by

Stepwise Evaluation and Refinement, Software Revolution, INFOTECH

State of the art report.

Yeh, R. T., 1978a, Data Base and Software Engineering - a Design

Viewpoint, Proc. 4th VLDB, West Germany.

Yeh, R. T., Chang, P., and Mohan, C., 1978, A Multi-Level Approach to

Data Base Design, Proc. COMPSAC78, Chicago, Illinois.

Chandy, K. M. and Misra, J., 1979, A Generalization of Termination

Detection for Diffusing Computations, submitted to CACM.

Chester, Daniel, 1979, An Approach to Abstract Specification Based on

Traces, Proc. COMPSAC79, Chicago, Illinois, Nov., 123-127.

Lee, S. K. and Yeh, R. T., 1979a, Concurrency Control in Distributed

Environment, Distributed Data Bases, INFOTECH State of the Art

Report.

Lee, Sukho and Yeh, Raymond T., 1979b, Structural Locking for

Concurrency Control in Data Base Systems, Proc. COMPSAC79,

Chicago, Illinois, Nov., 123-127.

Mao, T. W. and Yeh, R. T., 1979a, Communication Port: A Language

22

Concept for Concurrent Programming, Proc. of I)stributcd ComputIng

Systems Conf., Oct.

Mao, T. W. and Yeh, R. T., 1979b, An Illustration of Systematic

Design of Parallel Programs for Real-time Applications, Proc.

COMPSAC79, Nov., 392-397.

Mohan, C. and Yeh, R. T., 1979, Distributed Data Base Systems - A

Framework for Data Base Design, Distributed Data Bases, INFOTECH

State of the Art Report, Infotech International.

Yeh, R. T., 1979, Notes on Programming Methodology, Encyclopedia of

Computer Science and Engineering.

Chandy, K. M. and Misra, J., 1980, A Simple Model of Distributed

Programs Based on Implementation-Hiding and Process Autonomy, ACM

SIGPLAN Notices, Vol. 15, No. 7, July.

Mao, T. W. and Yeh, R. T., 1980, Communication Port: A Language

Concept for Concurrent Programming, IEEE Transactions on Software

Engineering, SE-6, 2, March, 194-204.

I

- ~...................... _-.........- -... 'i"

23

TECHNICAL REPORTS AND OTHER PAPERS

Baker, J. and Yeh, R.T., 1977, A Hierarchical Design Methodology for

Data Base Systems, TR-70, Department of Computer Sciences,

University of Texas at Austin, Austin, Texas.

Yeh, R. T., 1978b, Notes on Programming Methodology, Technical Report

SDBEG-1, Department of Computer Sciences, University of Texas at

Austin, Austin, Texas.

Baker, J., Chester, D. and Yeh, R. T., 1978, Software Development by

Stepwise Evaluation and Refinement, Technical Report SDBEG-2,

University of Texas at Austin.

Yeh, R. T., Roussopoulos, N. and Chang, P., 1978, Data Base Design -

An Approach and Some Issues, Technical Report SDBEG-4, Department

of Computer Sciences, University of Texas at Austin, Austin, Texas.

Mohan, C., 1978, An Overview of Recent Data Base Research, Technical

Report SDBEG-5, Department of Computer Sciences, University of

Texas at Austin, Austin, Texas.

Chandy, K. M. and Misra, J., 1979, A Generalization of Termination

Detection for Diffusing Computations, Technical Report TR-106,

Department of Computer Sciences, University of Texas at Austin,

Austin, Texas.

Mohan, C., 1979a, Some Notes on Multi-Level Data Base Design, Technical

Report TR-128, Department of Computer Sciences, University of Texas

at Austin, Austin, Texas.

Mohan, C., 1979b, Distributed Data Base Management: Some Thoughts and

Analyses, Technical Report TR-129, Department of Computer Sciences,

University of Texas at Austin, Austin, Texas.

Mohan, C., 1979c, Data Base Design in the Distributed Environment,

Technical Report TR-131, Department of Computer Sciences,

University of Texas at Austin, Austin, Texas.

Yeh, Raymond T., Araya, Agustin and Chang, Philip, 1979, Software and

Data Base Engineering - Towards a Common Design Methodology,

-: , . ' "_.. . ; , -:

24

Technical Report SDBEG-6, Department of Computer Sciences,

University of Texas at Austin, Austin, Texas.

Mohan, C. and Yeh, R. T., 1979, Distributed Data Base Systems - A

Framework for Data Base Design, Technical Report SDBEG-lO,

Department of Computer Sciences, University of Texas at Austin,

Austin, Texas.

Mao, T. W. and Yeh, R. T., 1979a, Communication Port: A Language

Concept for Concurrent Programming, Technical Report SDBEG-12,

Department of Computer Sciences, University of Texas at Austin,

Austin, Texas.

Mao, T. W. and Yeh, R. T., 1979b, An Illustration of Systematic

Design of Parallel Programs, Technical Report SDBEG-13, Department

of Computer Sciences, University of Texas at Austin, Austin, Texas.

Lee, Sukho and Yeh, Raymond T., 1979b, Structural Locking for

Concurrency Control in Data Base Systems, Technical Report

SDBEG-14, Department of Computer Sciences, University of Texas at

Austin, Austin, Texas.

Conner, Michael Haden, 1979, Process Synchronization by Behavior

Controllers, Technical Report SDBEG-16, Department of Computer

Sciences, University of Texas at Austin, Austin, Texas.

Chandy, K. M. and Misra, J., 1980, A Simple Model of Distributed

Programs Based on Implementation-Hiding and Process Autonomy,

Technical Report TR-127, Department of Computer Sciences,

University of Texas at Austin, Austin, Texas.

Chester, Daniel L., 1980, An Abstract Data Type Extension to COBOL,

Technical Report SDBEG-17, Department of Computer Sciences,

University of Texas at Austin, Austin, Texas.

Hartman, John, 1980a, XTC User's Guide, Technical Report SDBEG-18,

Department of Computer Sciences, University of Texas at Austin,

Austin, Texas.

Hartman, John, 1980b, A Methodology for Restructuring COBOL Programs

into Abstract Data Type Modules, Technical Report (in preparation),

S.

25

Department of Computer Sciences, University of Texas at Austin,

Austin, Texas.

Mao, Tsang William, 1980, A Study on the Language Features for

Concurrent Programming, Technical Report SDBEC-19, Department of

Computer Sciences, University of Texas at Austin, Austin, Texas.

26

REFERENCES

(Not Supported by Grant)

ANSI/X3/SPARC study group on Data Base Systems, 1976, Interim Report,

ACM-SIGMOD Newsletter, FDT 7, 2.

Brinch Hansen, P., 1978, Distributed Processes: A Concurrent

Programming Concept, CACM, Nov.

Dijkstra, E., 1968, The Structure of T.H.E. Multiprogramming System,

CACM, 11, 5, 341-346. I

Dijkstra, E., 1972, Notes on Structured Programming, in Structured

Programming, (ed. Hoare), 1-82, Academic Press.

Robinson, R. and Levitt, K., 1977, Proof Techniques for Hierarchically

Structured Programs, Current Trends in Programming Methodology -

Vol 2 - Program Validation, (ed. Yeh), Prentice-Hall, inc.

Senko, M. E. etc., 1968, A File Organization Evaluation Modem (FOREM),

Information Processing 68.

Smith, J. M. and Smith, D. C. P., 19 77a, Data Base Abstraction,

CACM, 10, 6.

Wegbreit, B., 1976, Verifying Program Performance, JACM, 23, 4, 691-699.

Ii

