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Introduction

7--'/The discrete Fourier Transform (DFT), defined below 2 is a

valuable tool in many fields from signal orocessina to partial differential

equations. There is strong incentive for computino the transform quickly,

and, after two decades of active research, we now know the minimum number

of essential multiplications required for the task and have algorithms

which use precisely this number, It does not follow that, in the end,

these will be the most desirable techniques but they are certainly of

interest in their own right. Majorcrcdit for thas r o'l- -tems--te---.

bosgo-taA1.._God, R.M. Radef%- and S. WineeradC This story, and more,

is told in the book,-f5]P2

At the heart of these methods lie Winograd's algorithms for n point

DFT's, where n is a small prime. He used a quick way of forming the

product of two polynomials modulo a third one and that theory, in turn, uses

the Chinese Remainder Theorem and some abstract algebra. Section 5

exhibits the correspondence between his approach and ours.

This communication points out that these optimal algorithms follow

directly from the spectral factorization of certain matrices called

circulants, Specifically the real and imaginary parts of the eigenvectors

of these circulants take the place of polynomial representations in

Winograd's theory. Such an approach is not as strange as it may seem

at first glance; if an arbitrary column vector must be multiplied by a

matrix C using few multiplications then it is natural to see whether C

can be written as C - X D Y where the elements of X and Y are small

integers and D is diagonal, All normal matrices can be factored into the

canonical form XDXT and, for some small circulants, the eigenvectors X of

C are very simple. Another connection is that I.J. Good, in [3b], showed

how to use the DFT to invert large circulants. We are, in some sense,

inverting that work.
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The canonical factorization of circulants is not as powerful as the

number theoretical approach of Winograd. For example, the factorization

does not yield the fast algorithm for DFT(ll) nor the proofs of minimality.

On the other hand it does yield the algorithms which are in use and it K

does so in a rather simple way. Some people may enjoy a low brow deriva-

tion of these valuable schemes.

A recent survey article [2] linked the DFT with an impressive

variety of topics in pure and applied mathematics and yet no mention was

made of the circulants lurking in the background.

We barely mention the well known FFT and the reader is referred to

[5] to see its connection to the algorithms discussed here.

2. The DFT and Cyclic Convolution

The material in this section is standard but must be included if only

to establish the notation.

The vector or sequence {xo,... 9X to be transformed may be

thought of as data (complex values) given at n equally spaced points. The

transformed sequence { " n is defined by

n-lj ki

x W k x., k = 0,...,n-1, (2-1)
Xk I a

where

w exp(2-r vr--/n) ,

is the primitive nth root of unity. Different professional groups give

somewhat different definitions of OFT but the variations are minor. For
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example, signal engineers call (2-1) the inverse OFT. In order to

suppress indices we can use matrix notation. Let x and 2 denote the

column vectors associated with the two sequences and let F denote the

Fourier Transform matrix,

1 1 1 ... l

1 W 2 w . n-2 u] (2-2)

n-i

Note that the order of F is implied by w. Note also that we have

used the relation w = 1 to reduce all the exponents in F below n. The

definition (2-1), commonly called DFT(n), now becomes

= F(wnX. (2-3)

F is a very special Vandermonde matrix and a well known property is

F4 (n) =n 2  (2-4)

The letter I denotes the identity matrix.

The inverse OFT is simple

1 n-I ,
x -F(w )x, (2-5)

- n n -

The eigenvectors of F are too complicated, see [2], to yield a fast

method for computing the OFT so we turn to other arrangements.

.. .. . ..-. .. = -. . . ., - -- U ~ ii .A
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It is customary to remove the trivial part of the computation of

(2-3) as follows. Since

x0  x0 + xI + .. + xn_
V 0  1 . n-l 1

the essential computation is

n-l k

X k o= X0 E x, k-l,...,n-l, (2-6)
jul

or, equivalently,

n-l
Xk E x =  (Wkj 1 1) x. , k l,...,n-1 (2-7).

j=l

The remarkable fact is that the xk , k=l,...,n-l, can be computed using

between n and 2n multiplications instead of (n-l) 2  as suggested by

(2-6) or (2-7).

In 1968 C.M. Rader pointed out in [6] that when n is prime the

variables can be reordered so that (2-6) becomes a cyclic convolution.

Let us illustrate this for n = 5, in which case it is only necessary to

exchange the last two variables.

| 1
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2 4 31 - 3 )4w-X W W U) W

2 4 3
x2  (2-8)

4 43 2
x -x W W W U) X4 0 4

3 2 4
~3 -0 x3j

Note that each row of the matrix is obtained by shifting left the row

above in a cyclic fashion. The new ordering is monotonic when {1,2,3,41

is seen as a multiplicative group modulo 5:

20 2 1 2 2 2 3 (mod 5)

1 2 4 3

Rader's observation reduces the OFT computation to that of cyclic convolu-

tion. There are several clever tricks available for doing this quickly

but it was Winograd's achievement to determine the minimal number of

multiplications that are needed and to exhibit the algorithms which achieve

the minimum, The minimum depends quite strongly on n. It also depends on

the algebraic field in which the multiplication is taken to act but we will

not focus on this aspect of the algorithms which is treated fully in [5].

Finally we remark that the case when n is prime is the important one

as explained in Section 4.

3. Circulant Multiplication.

We take n to be prime and rewrite Rader's observation slightly.

Instead of taking both the {x. and the in the same new ordering we

reverse it for the {x.} When n =5 this yields

I•I
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Xl Xo 0o W o LiXl !

^2 3 4J

x2  X 0  W W W W x 331
4 2 J3 (

x4 - 0  W 3 ,x 4
x3 3 xo 4 2 !"3 0) L o c ox/

Of course the only difference from (2-8) is that each row of the matrix

in (3-1) is obtained from the row above by shifting right instead of left.

The advantage is that the matrix in (3-1) is a circulant matrix and a great

deal is known about them. See [l] and [4].

For all prime n Rader's observation reduces DFT(n) to multiplying

an arbitrary vector by a special circulant matrix of order n-l. We now

list the standard facts about circulant matrices.

FACT 1. Every m x m circulant is a polynomial in the full cycle

(or shift) matrix

0 0 11

1 0 0

P =P 0 1 O0 (3-2)
m

0 1 0r

The coefficients of the polynomial are given by column 1 of the circulant.

The degree is less than m.

There is nothing to prove here but we will illustrate the property using

the matrix in (3-1) which can be written as
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2 4 2 3 3(P I + 2P4 + W P4  + P4 3. (3-3)

0 4

Note that I P4  P4  and, in general, note the special pattern of

the l's in the powers of Pm

mm

FACT 2. Pm is a permutation matrix. Its eigenvalues are the roots of

unity and its eigenvectors are mutually orthogonal. Moreover

P is real and so it has a real canonical form A = A whichm m

is a direct sum of powers of

cos a -sin e
R m = e =2Tr/m ,
sin cos e)

together with 1 and, if m is even, -1.

Corresponding to each complex eigenvalue are the real and imaginary

parts of the eigenvector. These two real vectors span the associated

invariant plane and, of more importance to us, these two vectors are columns

of an orthogonal (real) matrix which reduces Pm to A . In symbols,

SmAmSmT  1 (3-4)

Here ST denotes the transpose of S, We call (3-4) the real spectral

factorization of Pm and show it for small values of m in Table 1.

[Table 1 could go near here.]
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Eigenvectors are only defined up to a constant nonzero factor.

Hence there is no loss in generality in writing

S = GA (3-5)

where A is diagonal and positive definite and may be chosen at our

convenience.

FACT 3. Let (P m be any m x m circulant and let Pm (GA) A (GA)

be the real spectral factorization of the cyclic shift matrix

P . Thenm

(P GA (A)(GA)T  (3-6)

is the associated spectral factorization of (Pm). In othermj

words, the eigenvectors of Pm are eigenvectors of cp(P ) for

any polynomial qp.

Whenever G's elements are small integers then (3-6) provides a

minimal multiplication algorithm for forming the product t(Pm )x. In symbols,

T
(Pm)x = GAO(Pm)AG x

T
= G(D(G x)), (3-7)

where

D = Ab(Pm)A

is block diagonal with 2 x 2 and 1 1 1 blocks. Only the application of
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T
D involves genuine multiplications, G and G act via additions and

subtractions.

[Table 2 could go near here.]

The only way that the OFT affects the circulant product (3-7) is

through the complex polynomial q. In Table 2 we list and (Rmk )

for several small values of m. Recall from Fact 2 that R is the matrix
m

k
representing rotation through an angle 2-r/m. It turns out that (R

is also of the form ( -Y and, as a bonus, 6 and y are either both

real or both pure imaginary. Multiplication of a real vector by such a

matrix requires 3 real multiplications and 3 additions. This holds even

when 8 and y are matrices. One implementation follows from the

matrix identity

CB I 1 0 0 B+C 0 0 1 (3-8)

0 0 B-C I 0

In general (3-8) is preferable to

= ) (3-9)
( B - 1 i0 (B-iC ( I il

Another useful identity is

(B C) ( _) ( (B+C) ) C 1 ) (3-10)

CB I -I 0 (B-C) I -I
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which is just a block version of (3-7) when m = 2. We shall use (3-8) and

(3-10) later.

For completeness we give the nonzero elements of D in Table 3.

These numbers are the values, at the (n-l)st roots of unity, of a polynomial

of which the coefficients are nth roots of unity.

[Table 3 could go near here.]

Our interest is in the number of real multiplications required to

compute DFT(n). For reasons that appear in the next section we make the

peculiar definition

mult(n) -1 + no. of multiplications required for DFT(n).

If n is prime and G's elements are small integers then

mult(n) = 3(n-l)/2 = 2n - 1 - (n-l)/2

when x is real. For complex data the counts are only doubled. On binary

computers the count can be reduced by 1 when n = 3,5 because multiplica-

tion by or can be accomplished by a shift.

It is clear that DFT(2) and DFT(4) require no multiplications.

However in dealing with larger values of n we must define

mult(2) = 2, mult(4) = 4.

More precisely

mult(n) m ax{n, 1 + no. of multiplications required for DFT(n)}.



In order to obtain a systematic development of the G matrices

for larger values of m it is worth noting that the factorization

developed in this section extends immediately to matrices of the form

-z -z -z

3 2 4

z3  z2  z -z
4  3  2

Such matrices are polynomials in the orthogonal matrix

0 0 0 -1

~ 1 0 0 0
P4

4 0 1 0 0

L0 0 1 0J

The only difference is that the eigenvalues of P mare in the roots of -1

(instead of +1), The factorization (3-10) reduces a circulant of order 2m

to a direct sum of a circulant of order m and one of these "improper"

circulants of order m.

In order for G to have small integer elements it is necessary tkat

xm-lI have no irreducible factors (over the rationals) of degree exceeding 2.

4. The DFT Factorization

In order to deal nicely with DFT~n) for large n it is convenient to

recast the results of the previous section as a factorization of the DFT

matrix itself. The task is to compute F(wn)X x .

?n
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The first step of eliminating x0 and x0 can be seen as performing

one step of triangular factorization of F(n ). This leads to (2-7)

rather than (2-6). For example,

1O 0 1:0 0 0 0 1: 1 1
-- a€.------------.

l; o1 0o
B a:

-( 5)  1 4 o:

l.O 0u l, ...,4 O"

Section 3 showed that, when n is prime, there are permutation matrices

111 and 112 such that

1:O0 0 0 0 I-'0 0 0 0 I',Il l l

0: 0"1 0: 0"
1 1 F(w n)112 =G 0 D GT (4-1)

1 0: 0

When G's elements are small integers this leads to an algorithm with

minimal number of multiplications. The D matrices exhibited in

Section 3 were based on (2-6) but the only modification needed to conform

to (2-7) is to change the top element of D from -1/(n-l) to -n/(n-l).

Verification of this assertion is left to the reader.

With a slight abuse of notation we will write (4-1) as

IF(Un)"12 = GDGT, (4-2)
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or

F(w n ) VGDGT, (4-3)

and we call this the DFT factorization of F(wn). The context will make

it clear whether F(w ) or a circulant matrix of order n-l is beingn

factored.

Note that ^- (equivalence under permutations) is a true equivalence

relation.

The important observation of I.J. Good in [3a] may be summarized as

Theorem. If Z. and m are relatively prime then

F(Wm 9A F(wt Z E F( m) (4-4)

Here ' denotes the direct (or Kronecker or tensor) product of matrices,

namely

allB a12B . 1
A®, B = (a21B a22B

1..
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Example: F(w6) F(w2) 2 F(w3)

1 1 1 1 1 1

2 4 2 4
x1 1 x2

^ 2 1 4 2
x~~~~iA 169J1, x

i3 1 1 -1 -1 -1

2 4 5Xl W 1J w I x5

5 1

- [F( 2 ) @ F( 3) + ; x+ ( x) , x_ (x)[ F x x 3
X4 I

Algorithm: = F(w 3) x+

F(, 3 ) x,

x2 x5

In order to emphasize the theorem's hypothesis we point out that

F(L9 ) # ®F(3 ) 2 F(w3).

Thus a 2 dimensional OFT on 3 x 3 points is not equivalent to a 1 dimensional

OFT on 9 points.

There is a routine procedure for changing the OFT factorization (4-3)

into an enlarged form G2DG1  where D is diagonal (not just block diagonal)

and has an order not less than D, namely mult(n). It uses the identity

(3-8) to replace (3 -Y) by diag(y,B+y,S-y). Note the G2  is not the

transpose of GI. We illustrate the procedure when n - 5,

I.-
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Figure 1. Transition to strictly diagonal form.

G D GT

1 1 1 1 0 -5/4 0 1 1 1 1

1 1-1 01 L0 1 -1 1 -1

1 1-1 0 3 -Y 0 1 0 -1 0

1-1 0 -1 y ( 0 1 0 -1

G2 Gl

1 00 0 00 1111

1 1 1 1 0 1 -5/4 0 1 1 11

I 11-1 1 10 0 1 -1 1-

1 1-1 0 -1 Y0 1-1-11

1- -1 -1 0 0~ 00 1 0 -
0 1 0 -1 o0

The implication of Good's theorem is clear. Given fast algorithms for

DFT(Z and DFT(m), i.e.

F (wj)i. G D GT

Then, provided Z. and m have no common factors,

^,'(G~ Gm) (D, 9 Din) (GZ Gm .
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yields a fast algorithm for DFT(7m). Formula (4-5) invokes a valuable

property of direct products, see [4].

The number of multiplications required is best seen from the full

representation

F(,m) " (G9 2A G Gm (2))(6Z 6 m)(Gm (I 2 G ( )Z (4-6)

Since 0 Dm is diagonal of order mult(z)-mult(m) we have

mult(Zm) = mult(Z).mult(m). (4-7)

For example, mult(210) = mult(2.3.5.7) 324.

We say that (4-5), or (4-6), is the OFT factorization of F(Gm).

In order to get a fast OFT algorithm for any natural number n it

is necessary to exhibit a OFT factorization for prime powers pr. Unfor-

tunately this becomes very messy as r increases. Circulants do appear

but they have to be combined with subblocks which involve OFT(p k ) for

k < r. We content ourselves with exhibiting the OFT factorization for n 9

and n =8 in Table 4.

[Table 4 could go near here.]

One consequence of this messiness and our ignorance of mult(pr)

is that the favorite composite numbers for the OFT are those with a variety

of prime factors. This is in stark contrast to the FFT of Cooley and

k
Tukey which favors n - 2

This concludes our elementary presentation of Winograd's OFT. There

Is far more to this subject than we have indicated here.

;4
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5. Relation of Circulant Multiplication to Winograd's Formulation

It is instructive to see in detail the correspondence between our

factorization of the circulant and Winograd's derivation of cyclic

convolution using polynomials.

Let u be the indeterminate in the polynomials.

Cyclic convolution on n points can be rephrased as the formation

of the product of two arbitrary polynomials modulo the polynomial u - .

This can be done rapidly with the aid of the Chinese Remainder Theorem.

For simplicity, we take n = 5 and define

2 3rX(U) =x1 + x3u + x4u + x2u
Q(u) = + W2U + Li4U2 + W3U3

X(u) =X^1 + xu2 ^xI+ xu + x u 3 .

im I x2 4 3u

The object is to find R given any X and a fixed Q. It turns out that

X = X mod (u 4-1).

The fast algorithm requires knowledge of the irreducible factors
n-l

of u - 1. In our case

u - I = (u-l) (u+l) (u2 +1),
Q, (u) Q2(u) Q3(u),

defining Ql, Q2 , and Q3 . Also needed are another set of polynomials, of

degree less than 4, which are defined, for k 1,2,3, by

Sk(u) 1 mod Qk'

0 mod QJ J k.



The Sk are analogous to the fundamental polynomials for Lagrangian

interpolation in that they serve to reconstruct a polynomial given only

its values "at" the Qk The word "at" should be construed as "modulo"

in the previous sentence. The existence of the Sk is the essence of

the Chinese Remainder Theorem.

Finally define i'k(u) = 1(u) mod Qk, k = 1,2,3.

Now we can formulate the algorithm succinctly.

Phase 1 (called the preweave by signal engineers):

Form Xk = X mod Qk' k = 1,2,3.

Phase 2 (multiply):

Form Xk k Xk mod Qk' k = 1,2,3.

Phase 3 (called the postweave or recovery):

Form X = AISI + X2S2 + X3S3.

When the S have O,±l coefficients then Phase 3 needs no multiplica-k

tions. By the Remainder theorem X = X(l), X2  X(-l), X3 = () +

XM u, X (0 ) = x - x4, etc.

Let us determine the Sk and k explicitly. It is easy to

verify that

S "2Q3 - (l + u + u2 + u3),
2 23,

S - -.Q Q3  • '.(l - u + u - u

S3 - QIQ 2 - (l - u2

Since * a exp(2-ri/5) a little algebra yields
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£(u) =w + w + w + w -1, (since w 1),

£(u) =w- + 2(cos L cos 4j )
2 2 35

3(u) =(w - w ) + (w -w )u
I1T 4ir

=2i(sin L + si u)

(0 +£2Q (1) ~

These values define the matrix 0 in Table 3. Note that the polynomial

product 2.X3 mod involves more than one scalar multiplication. In

fact

X 3(u) ( u u)3

3(0).X 3(1) + Q 3 (1).X 3(0)
Q3()X3 33

=(1 u) Q £3 OX 3 (0) - Q23 (7)X3 (1) ) modQ,

Q\ £3 MX 3 (
0 ) + Q (0).X3()Q

U) S1 u3 (0) 3() (3 (0)
3 3(0 3 (

When the steps are laid out in matrix form the connection wi th circulant

factorization is apparent. (See Table 1.)
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Phase 1. X 1 1 1 1 xIX2  1-1 1 -1 x

2 3
X (0) 01 - 0 x

x 0 1 0 -1 x

Phase 2. X Q 0 0 0 Xl

0 Q2 0 0 X

~(0) (0 (0)
3 3 3 A3

X3  0 0 3 )  3(0) X3(1)

Phase 3. 1[ 1 1 0 ;4 0 0 0 Xl

1 -1 0 1 0 0 0

9 3

x4 1 -1 0 0 0 0 X3

S1  S2 S3  S3u

To recover the polynomial X in Phase 3 it is only necessary to pre-

2 3multiply by the row vector (1 u u u ). Of course the constants ,

are absorbed into the matrix in Phase 2.

. i4
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Table 1

P (GA) A (GA)TI,

"Real spectral factorization of the cyclic shift matrix"

Notation: A @ B : diag(A,B) direct sum of A and B.

m 2: G 1 A- 2 1 .

1 2 0  2 21 y
120 -2 Cos- sin L-

m = 3: G : 1 -21 , A = diag(3,6,2), A = 1 a 3
sin Lt cos 2

1 1 0

1 -1 0 1 A-2= diag(4,4,2,2),
m=4: G=

1-1 0 A 1 g) 0-

1 - 0 -1 0 -1 1 0

1 1 2 0 2 0

1 -1 1 - 1 A diag(6,6,12,4,12,4),
1 1 -l 1 -l -Il 0]R

m 6: G: R A R ,
1 -1 -2 0 2 0 0 1

1 cos r/3 -sin - I/31

1-11 -1-1 -1 Rsin -/3 cos Tr/3

iI

i .
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Table 2

"The circulant polynomial arising from DFT(m+I)."

_~ o-11
w exp(2-, v-0j), j :

1 oJ

2m = 2: w(t) w3 + w3 2t

=(A :t(1) + p(-l) :-I • T

m = 4: 5(t) : + w52t + 5t2 + W53t

(1 ) = -1, p(-I) : 2(cos 2Tr/5 - cos 4-r/5) 2(cos 2 + cos
5

(R) : 2/-i fsin 27/ 5 -sin 4 /5

sin 41T/5 sin 2T/S5

m = 6: (t) w w7 + w7
3t + w7

2 t 2 + w 76t3 + w 7 4t4 
+  75t5

D(1) -I, (-I) = 2/- (sin L+ si 6 ,' ~7 7 sn-- si-7,
3 2 6 4 w5 3 2 4 5

(R) (2,w + w - - 2w 6 - w + w )I + vf(w3 + w - w w ,
/-I{(2 sin - sin in+ -6- + sin L

7 sin - + )I -(sin L )J

v M{sin Tr + 2 s in L-~- - s in LT)I+ v7( s in .1 + sinT7 7 7 -
p(R 2 w71 + 73R 2 _ w7 2R + w7 61 + w74R2 _ 75 R

(2w -W - . 2 + 2w6 4 w) + ( - w + w - w )J,2 7 47t 6 ,, . + o 4 -, + 6os ,),(2 cos - - o-) + - 7 o -
7 7 7 7- 7)

: (cos : + 2 cos L-7 + cos )7r + ,i(- cos + cos 3,T)j.
7 7 7 T ,,,
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Table 3. "D : (,)A"

A 4 B : diag(A,B), i -v-T.

n 3: D = -s (1/2) /3 i2

721

n 7 5: D - 1 (1 + sin - + sin s)i n7 -

7:1=- ~ , , 2 3 i l , I

(sin 2 + 2 sin 2 - sin ))

1 (sin IT i 3
y : 4- (si +  i-)

12 4-2 2 3-rT
kcos 7 + 2 Cos 27 + Cos 37,

1 (_Cos T 37T

2 2 3( sin - + sin - + sin L)

-y = -sin T + sin 2r - 2 sinL
6. 7 77

6+TJ = 1 (_ Cos 7 + cos 2r + 2 cos 7)6 7 -7
1 2 3,

6-r)- = (2 cos + cos L - Cos L)
7 7 os 7

Note 1. Some minor modifications will be given in Section 4.

Note 2. All angles have been reduced to the range (0,-T/2).



-24-

2Table 4a. The DFT Factorization for n = 3

x0  1 0

x 3 1 1 6 3 3 6 3 6x6w w w w w w x6
x) 1 1 1 w w w .w x6

3 6 5 7 8 4 2x 1 w 3 w w w 7 w 8 x
6 32 5 78 4

8 1 w 6 w 2 x
3 6 42 57 8

x 1 w w w w .w w w x7

4
1 6 3 8 4 2 5. 7

3 6 7 8 4 2 5

6 3 5 7 8 4 2x 5  1 w w w w w w U w x 2

1 -111:000000- (
13 I 0 F(w3 ) 0 OOCGlOlOtO xi

I000'O1
r

S

r T
s G 6 0 D6  0 x(6 )

r

S

111:000000] 0I 13 0 0 F(w3): 0 0 000l01010-- x--
' ' ' 000' 010101

---------------------------------------- --
010
0 01 I: GT (1)G6  010 0 D6  0 G x

6 6001l010

0 0 F(w3 ) '3, 0

2 3 4 L5

t +5t + t + Wt + wt + t, w exp(2 -/9),

A -1 - /- see Table 1.
y 5/

mult(9) 3 + 8 + 3 : 14. 06 A (A 6 ).
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Table 4b. The DFT Factorization for n = 23.

111x0

1 1 1 1 -1 -1 -1 l x

1 1 -1 -l i i -i -i

l 1 -1 -l -i -i i i

5 5
xl1 -1 i -i - -i iw

1 -1 i-i -iw i i -i

x7  l - -i i -. i -

x3  , -l -i i i, -iw -, 3

dia,

dg 1 1 1 0 0 0 0
i 0 0 0 0 1 -1 -1

: 1 1l 0 0 0 0 0 0
' l i 0 0 - 0 0 0 0

-0 0 0 0 1 -1 0 -I I

L-l:-i 1 ai 0 0 0 0 1 -1 1 -1

where a 1//2 = cos 7/4 sin 7/4, i = -.

The cyclic convolution on {xl ,x3 ,x5 ,x7} does not lead to an optimal

scheme here.

mult(8) = max {8,2} 8.
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