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ABSTRACT

Creep crack growth in a nickel base alloy at elevated temperatures

was analyzed through a hybrid experimental-numerical (HEN) procedure.

This HEN procedure consisted of simultaneous use of creep crack growth

test displacement data from center cracked plate specimens of IN-1O0 at

13500 F and a theoretical finite element model of the test specimen.

A two-dimensional (constant strain triangular ) finite element program

was developed which accounts for both nonlinear viscoplastic material

behavior and changing boundary conditions due to crack growth. Three

viscoplastic material models -- (1) Malvern Flow Law, (2) Norton's Creep

Law, and (3) Bodner-Partom Flow Law -- were incorporated into the program.

These time dependent material models were numerically integrated through

time by a linear Euler extrapolation technique. A variable time step

algorithm was included that maximized time step size during the analysis

while maintaining good accuracy. This program was used as the plane stress

theoretical model for the HEN procedure to analyze sustained load creep

crack growth.

A method for getting creep crack growth behavior solely from high

resolution displacement measurements, in conjunction with a cracked specimen

model which utilizes realistic constitutive relationships, has been developed.

The constitutive law, in the form of the Bodner-Partom material model, was

especially tailored to the nickel-base alloy studied which displays time

dependent nonlinear inelastic behavior at elevated temperatures. It has

been demonstrated that the technique can be applied where crack extension is

xix



very small and could not otherwise be resolved by conventional experimental

crack measuring techniques. This method provides realistic monotonically

increasing crack growth values. The predictions agreed to within 10% of

post-test measurements.

Crack growth rate and crack growth criteria were studied. Cracktip

strain and crack opening displacement were studied in the HEN results for

a unique parameter controlling crack growth. Because the parameters were

not independent of time due to apparent environmental degradation, it became

necessary to establish an empirical criterion for crack growth based on the

best fit of HEN results. A damage accumulation criterion based on creep

rupture formulations was also developed and applied with promising results.

Several crack growth rate criteria were investigated, one of which

is the stress intensity factor. The K criterion matched fairly well with

an extrapolation of published results. But two other criteria, based on

the C* integral and load point displacement rate which are closely related

theoretically, were found to be ineffective as crack growth rate criteria.

xx



I INTRODUCTION

BACKGROUND

The United States Air Force currently places strict fracture mechanics

requirements on airframe construction and maintenance [1.2]. These

requirements involve detection of flaws by periodic nondestructive in-

spection and then predicting the remaining useful life of the part through

specified fracture mechanics techniques. Consequently, if an airframe part

is examined and found to have no flaws that can grow to critical size

prior to the next periodic examination, it can be returned to service.

In contrast to the airframe, low-cycle-fatigue limited jet engine parts

may be retired from service when no flaws have yet been found in them.

This situafion occurs because the retirement of engine disks is based on a

"crack initiation" criterion. Under this criterion all components of a

given population are considered to have failed as soon as a crack of some

finite size e.g., .031 inches, has statistically formed in the member

of the population which has minimum strength properties [3]. No attempt

is made to utilize the additional life associated with the remaining

population members which have statistically higher properties and are

therefore expected to be uncracked.

From a safety standpoint, this approach has been generally very successful.

However, for real materials and real design situations, lifetimes based

on time crack initiation of the minimum member tends to be extremely con-

servative for a component population.

It has been estimated that replacement costs for low-cycle-fatigue

limited jet engine disk components could reach the $100,000,000 level by the

1980 to 1985 time period [4). A significant reduction of this cost could be

realized if a procedure was developed to provide accurate assessment of useful

residual life in retired engine disks. This procedure would require both

1~a



improved inspection and fracture mechanics life prediction techniques.

The present research is aimed at developing more accurate fracture

mechanics life prediction capabilities. Various controlling aspects of

fatigue crack growth are strain, stress, stress intensity, temperature, load

application frequency and environment. Speidel [5] provides an excellent

discussion of the relative effects of each of the above aspects on fatigue

crack growth rates at high temperatures. It was shown that at each V

elevated temperature there is a critical frequency below which the crack

growth rate is creep dependent (i.e. dependent on exposure time to load) and

this creep dependency increases with decreasing frequency. Also the

effects of an aggressive environment is another time-dependent phenomenon

that results in a frequency dependence of the crack growth rate which is very

similar to that brought about by creep. I.
Various engine missions may include long dwell times at high stress

levels. Crack growth controlling aspects may then be reduced to stress and

strain levels, stress intensity, temperature and environment since load

cycling is not occurring during these dwell periods.

Due to the high stress concentration in the vicinity of the crack tip,

(i.e., infinite stress concentration using linear elastic fracture mechanics)

and the high temperature environment for an engine disk, the stress-strain

relations for the material are non-linear and time-dependent. The high stress

concentration causes the material to yield and envelope the crack tip with a

plastic zone. Simultaneously, the high temperature allows the material

under load to flow with time, the phenomena known as creep, (i.e., increase

strain with no increase in stress). Also the environment, both temperature

and atmosphere, may be changing the ductility of the material thereby

lowering its ability to strain prior to fracture.
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SCreep crack growth studies of metals in a vacuum indicate that removal

of air from the crack can reduce the crack growth rates by two orders of

magnitude [5). This result demonstrates the importance of recognizing

environmental effects in addition to what may be called mechanical effects

on crack growth. Environmental effects may be thought to dictate the

critical level of strain at fracture whereas mechanical effects determine

the rate at which the material moves to the critical strain levels.

The present work mainly deals with the mechanical aspects of crack

growth under fixed load in materials that deform with time (creep crack growth).

However, since the experimental data used herein, came from elevated

temperature tests in laboratory air, some environmental effects were also

considered.

A theoretical model for creep crack growth under varying and fixed

loads must be able to account for the changing boundary conditions

associated with crack growth. In the event of total unloading and reloading

between two different fixed loads the possibility of crack closure and

separation needs to be taken into account. These changing boundary

conditions coupled with nonlinear time dependent material behavior are well

suited for the finite element method.

APPROACH

The modeling effort considered herein involved developing a two-

dimensional (plane stress/plane strain) nonlinear, time dependent, finite

element program to investigate creep crack growth under constant load. The

finite element analysis incorporated the constant-strain triangular element.

The nonlinear time-dependent material constitutive model took the form of the

Bodner-Partom viscoplastic flow law [6,7,8,9]. This flow law was integrated

through time by an Euler extrapolation scheme [101 and incorporated into the

I3



overall finite element program by means of the residual force method [11).

Material constants for the Bodner material model were determined by

Stouffer [12] to best match the behavior of IN-1O0 [131, a current jet

engine turbine disk alloy.

Time step sizes of the Euler scheme were maximized subject to specified

amounts of change in stress and strain over a given time step. This time step

maximization scheme provided the ability to transition from small fraction of

a second time steps for the load up phase to large time steps of the order of

minutes or even hours for the constant load creep phase. This variable time

step capability was a necessity to make a numerical study of creep crack growth

computationally feasible.

Crack growth and possible crack closure during unloading was accounted

for by simple modifications to the structural stiffness matrix. These simple

modifications were made possible by choosing an iterative Gauss-Seidel

linear equation solver (141 which requires no explicit factorization of the

stiffness matrix. Hence between time steps, pertinent terms of the stiffness

matrix could be easily changed to account for crack growth and the general

procedure continued without costly matrix factorization time required.

The finite element program which includes the capability of accounting

for material creep behavior and crack growth was used to study the creep

crack growth in a center cracked plate test specimen. Several finite

element models were incorporated to study different initial crack lengths

in the plate geometry. These models were subjected to various loads that

were chosen to coincide with a parallel experimental program conducted by

W. Sharpe [151.

The primary objectives in the present research were to determine the

actual rate of creep crack growth in test specimens from experimental dis-

placement and compliance measurements and to determine the most reliable

4



criterion for predicting creep crack growth in a typical jet engine turbine

disk alloy. Specifically the interest was in IN-IO at 13500 F. These

objectives were to be accomplished by the so-called hybrid experimental-

numerical procedure [16]. In this procedure, crack growth rates would be

estimated, imposed on the finite element simulation, and then the finite

element model displacement results would be compared with experimental data

for the same geometry and loading conditions. A similar method is to allow

the crack to grow sufficiently so that predicted crack opening displacement

rates from the finite element model match experimental data for the same

geometry and loading conditions. After good correlation of displacements

between model and experiment was achieved, fracture criteria were sought

out from the calculated parameters in the finite element model such as

stress, strain, and displacement. Criteria were sought which could match

the now determined experimental crack growth rates, displacement, or

displacement rates over a range of crack length and load levels.

Once a reliable creep crack growth criterion is determined and found

to be independent of specimen geometry it can then be applied to an actual

turbine disk specimen. With the determination of flaw sizes in the disk

through nondestructive examination techniques, the crack growth criterion

could then be used to predict the remaining time for these flaws to grow

to critical dimensions under constant load applications.
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II LITERATURE REVIEW

Creep crack growth in general may be thought of as subcritical

crack growth in a material that deforms with time under constant external

load. This time dependent deformation or creep may be reversible

(i.e., anelastic creep) or it may be permanent (i.e., plastic creep).

At elevated temperature metals generally exhibit nonlinear time dependent

deformation. Under uniaxial tensile loading, the strain in a smooth bar

increases with time until failure ultimately occurs. Based on similar

response of many materials, researchers have subdivided the creep curve

into three regions as shown in Fig. II-1. After the initial instantaneous

strain E , materials often undergo a period of transient response where0

the strain rate, , decreases with time to a minimum steady-state value

that persists for a substantial portion of the materials life. These two

regions are referred to as transient or primary stage and steady-state

or secondary stage respectively. Final failure with rupture life tR occurs

soon after the creep rate begins to increase during the third or tertiary

stage of creep. A common empirical relationship between creep strain rate

and stress in the secondary stage of creep is given as:

where a is the uniaxial stress, £ is the creep strain rate, and yc and 6

are empirical constants chosen to match creep test results.

Creep crack growth has been studied using viscoelastic [17-20],

viscoelastic-plastic [21] and plastic creep material models for metals as

indicated in a literature review by Fu [22]. The viscoelastic modeling,

a form of anelastic behavior, pertains mainly to nonmetals such as

6
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elastomers, polymers, and solid rocket propellants. The material of

interest in this investigation is a current jet engine turbine disk

alloy known as IN-IO [13]. In the present study all time dependent

deformation of IN-100 is treated as permanent and consequently any

anelastic behavior is considered negligible. However, a brief review

of some anelastic (i.e. viscoelastic) creep crack growth studies will

be addressed later.

The next two review sections will consider recent creep crack growth

studies of an analytical or closed form nature as well as applications

of the finite element method to creep crack growth.

ANALYTICAL CREEP CRACK GROWTH STUDIES

Knauss [17] analytically modeled steady crack growth in a visco-

elastic sheet. In his study the plastic zone, which was assumed small,

was accounted for by prescribed fixed and finite stress distributions in

the cracktip region. No interaction between cracktip and the far field

stresses were allowed. This means the stress profile ahead of the moving

cracktip remained constant and independent of the far field stresses.

Magnitudes and gradients of the stress in this cracktip region were studied

along with two crack growth criteria. The two criteria were maximum

strain and a maximum strain energy criterion.

Schapery [18, 19, 20) performed a viscoelastic crack growth analysis

similar to Knauss but placed no significant restrictions on the nature

of the failing material at the cracktip. It could be highly nonlinear

and rate sensitive. An energy criterion for failure was also used here.

Wnuk 1211 included plasticity with viscoelasticity for his quasi-

static extension of a tensile crack analysis. A "final stretch" crack

growth criterion was proposed. This criterion postulates that the amount

8



of deformation which occurs within the cracktip region or process zone

during the time interval just prior to decohesion of this zone is a

material constant. In contrast to the maximum strain criterion, the

"final stretch" criterion is path-dependent.

Fu's review [22] of quasi-static crack growth in metals at elevated

temperature presents four different creep crack growth rate equations:

a1A (K) 1-2)

E : ,( (11-3)

- C ( ) (11-4)

D (C) :P(11-5)

where A is the crack growth rate, K is the linear elastic stress intensity

factor, a is the net section stress, (e.g. load divided by remainingn

uncracked ligament In a center cracked plate geometry), j in general is

the load-point displacement rate, and C* is a line integral related to

the rate of change of potential energy release per unit of crack growth

[22-251. The C* integral also discussed in Appendix C, is obtained

directly from Rice's J integral by introducing strain rate and dis-

placement rate instead of strain and displacement such that:

r X- .- ' cdS] (II-6)

becomes

D.r7 (11-7)
TI
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where:

Co

T - traction vector

u9i, u , - displacement and displacement rate respecively

EiiiC li- strain and strain rate respectively

r, x, ds - see Fig. 11-2

There are available experimental data supporting any of the rate

Eqs 11-2 through 11-5 as listed by Fu.

The following conclusions have been extracted from the literature:

1. The stress exponent 8 in Eq II-1 plays an important role in

determining the characterization of the crack tip behavior. For

a < 5 the stress intensity factor approach, Eq 11-2 say be used,

and for 0 > 7 the net section stress approach may be used [26,27].

2. Critical test conditions for evaluating a creep crack growth

criterion should consist of at least two geometries which have

different stress-intensity-factor divided-by-stress ratios [23].

Some crack growth criteria have been fomd to be dependent on

geometry and therefore have no general application. Use of two or

more test geometries helps determine how dependent a crack growth

criterion is on geometry.

3. Creep crack growth results from two competing processes. These

processes are (1) growth and coalescence of defects which contribute

to crack advancement and (2) the creep deformation process that causes

retardation and even arrest of crack growth [25].

4. Creep crack growth rates are very sensitive to environmental
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effects. Removal of air from the crack can reduce the crack growth

rates by two orders of magnitude [5].

5. Crack opening displacement crack growth theories indicate

that failure times due to creep crack growth are controlled by

the stress intensity factor at large stresses and by net section

stresses at very low stresses [28]. However, a counter viewpoint

is stated in [29] where it is concluded that creep crack growth

does not correlate well with the stress intensity factor at relatively

high stress levels.

6. Creep crack growth rates correlate with the energy rate integral C*.

This method holds great'promise for design calculations because

C* can be calculated using finite element analysis as well as

measured empirically in constant displacement rate tests [241.

7. An approximation to C* in the form of the product of net

section stress and load line displacement rate, referred to as 3,

gives good correlation of creep crack growth rates in specimens

of different geometries [29].

8. Crack growth theories generally fall into one of two categories.

Either they are of an energy nature (e.g. J or C* integrals),

or they deal with some localized crack tip parameter such as strain

or crack opening displacement.

FINITE ELEMENT ANALYSIS RELATED TO QUASI-STATIC TIME DEPENDENT CRACK GROWTH

The general technique of approximating a continuum with simple

discrete elements such as uniaxial bar elements dates back to the 1940's

[30]. The history of the finite element method in structural analysis,

as it is known today, is well described by Zienkiewicz [31]. The

application of the method to the problem of nonlinear material behavior

has also been developed [31]. The purpose of this section is to briefly
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review the use of the finite element method for the stress analysis of

cracked plates where nonlinear time independent and time dependent

materials models were employed.

ELASTIC-PLASTIC (TIME INDEPENDENT) ANALYSIS. The finite element

method has been widely used to determine the stress and strain fields

around cracks in nonlinear materials where time independent elastic-

plastic materials models were incorporated (32-45]. Several of these use

the "initial stress" or "initial strain" approach to elastic-plastic

modeling as described in Appendix A. During the last few years many

reports have been published on this subject. This review will not cover

all these publications, however, it will concentrate on two areas: (1)

crack tip element selection and (2) crack growth modeling by the finite

element method.

There are several choices to consider when selecting finite

elements to model the vicinity of a crack tip. These choices might best

be classified into two categories. The first category is to use the

same element type incorporated in the model remote from the crack tip

(e.g. constant strain triangles). The second category is to use a

special crack tip element that has functions to include the specific

stress or strain singularity desired at the crack tip.

There are of course benefits and disadvantages to each choice.

Using the same element such as a constant strain triangle both at the

crack tip and remote definitely has the benefit of simplicity. However,

the cost of this simplicity is the requirement to use large numbers of

such elements around the crack tip to obtain acceptable results. Also

in a fully plastic material, some elements do not accurately model

incompressible strain behavior (46]. The bilinear displacement

12



quadralateral is most susceptible to this inaccuracy, furthermore the

constant strain triangle is one of the least susceptible.

The selection of a special cracktip element requires knowledge

of the stress or strain singularity around the cracktip. Several authors

have developed the inverse square root "r" singularity for linear

elastic cracktip behavior. Accordingly many special elements have been

addressed to this singularity. In a paper entitled "Cracktip Finite

Elements Are Unnecessary" [47], the authors describe the modification of

the eight noded isoparametric elevent such that it incorporated the

l/j? stress singularity. Therefore any existing finite element program

that had the eight noded isoparametric element in it also effectively has

one form of a special cracktip element capability for elastic analysis.

Further considerations of the local cracktip stress and strain

distributions in an elastic-plastic material have led to the expressions

[48]

or.= K r h4 f (e
(11-10)
(I-i)= KC r J+ e

where K , K are plastic-intensity factors and n is a strain hardening

exponent. This type of singularity was embedded in a cracktip element

and used to evaluate the plastic intensity factors as a function of

applied loading (49]. The advantage of this method was that the large

strain gradients in the cracktip region are accounted for by Eq II-10.

For elastic-plastic and creep type materials the singularity changes

between initiation and growth of the crack and in general is not known.
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The development of a special crack tip element in the case where the

singularity is not known to begin with would be an extensive undertaking

by itself [37] without bringing in the additional complexity of a

moving crack tip.

Finite element researchers have considered the crack growth problem.

Kobayashi, Chiu, and Beeukes [431 analyzed an extending crack under

monotonically increasing load. Crack extension was achieved by applying

a relief force equal in magnitude but opposite in direction to the

restraining force at the crack tip node. This relief force was applied

in 100 equal increments or in one single increment. The crack opening

displacements at the node adjacent to the crack tip computed by the 4

single increment method were less than 5 per cent smaller than the

corresponding displacements computed with the 100 increment method.

Lee and Liebowitz [35] ising a similar technique demonstrated that plastic

strain energy increased linearly with crack length as the crack grew

in their analysis. Anderson [36] also made use of relaxing the crack tip

node force incrementally to simulate crack growth in the finite element model.

Shih, DeLorenzi, and Andrews [42] analyzed crack Initiation and

stable crack growth in elastic-plastic material by special use of eight-

node isoparametric elements. Initial crack tip blunting was modeled

followed by crack extension. Crack extension was modeled by a combination

of crack tip node shifting and then releasing it to move on to the next

element's nodes. Moving these nodes within elements at the crack tip

required approximations to be made about Gauss point iocation and relocation.

These approximations are not necessary when only a node release method

and elements such as constant strain triangles are employed to model

crack growth. The lir strain singularity provided by the special use

of these eight noded isoparametric elements may better model the crack tip
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singularity for a fixed crack length and a theoretical continuum.

However, when the crack initiates and grows in a creep type material

the strain singularity is unknown, especially when considering a grain

structure around the crack tip rather than a continuum and the fact that

a creep crack follows an intergranular path.

VISCO-PLASTIC AND CREEP (TIME DEPENDENT) ANALYSIS. Several references

have been found on viscous or time dependent material models being

incorporated into finite element program [50-60]. In general these

material models may be similar to Eq. II-1 for pure creep with the

addition of time independent elastic-plastic relationships, or they

may have short term response viscoplastic relationships that only model

the load up phase. Zienkiewicz [101 proposed placing a short term

response viscoplastic equation in series with a long term response creep

law, similar to Ea. II-1. This would be a unified time dependent material

model where no direct coupling is assumed between short term plastic

strains and long term creep strains.

Only a few papers have been found to date that use a time dependent

material model and the finite element technique to model crack growth.

Ohtani and NaKamara [61] analyzed creep crack propagation with an elastic-

secondary creep material model. The secondary creep law was identical

to Eq. 11-1 in its uniaxial form. A critical strain criterion (i.e. average

effective plastic strain at the crack tip) was used for determining the

time to grow the crack in the finite element model of a center cracked

plate. Crack tip nodes were released to simulate crack growth. Goodall

and Chubb did a similar analysis on the compact tension specimen 1621.

A critical strain crack growth criterion was again used. Finaly

Zaphir and Bodner [63] incorporated the time dependent Bodner-Partom
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viscoplastic flow law into the NONSAP finite element code to analyze

a double-centilever-beam cracked geometry. In this case, high loading

rates were studied over short time periods relative to creep analyses.

Consequently the "recovery term", as described in a later section and

used to best model creep, was not included. No crack growth was allowed

here.

In each of the finite element solutions referred to previously,

a unified time dependent material model that, not only accurately

models the short term load up stage of material response, but also

smoothly transitions into the pure creep stage was never considered.

In addition, the hybrid experimental-numerical technique was not

used with high resolution experimental crack opening displacement data.

It was anticipated, in the present research, that the combination of a more

realistic time dependent material model and high resolution test data

would result in a much better understanding of what controls creep crack

growth than provided by these prior analyses.
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III FINITE ELEMENT COMPUTER PROGRAM DEVELOPMENT

This section describes the development and validation of a finite

element computer program called "VISCO". VISCO is a two dimensional

plane stress/plane strain program that incorporates three different

nonlinear time dependent viscoplastic material models. It uses constant

strain triangular elements with the option to release fixed nodes and thus

has the capability to simulate crack growth. Results from VISCO are

compared with other published solutions to check its validity.

The approach selected for elastic-viscoplastic analysis with the

finite element technique employs the "residual force method" (11),

(see Appendix A for a complete discussion on this particular approach).

In the residual force method the elastic stiffness is used during the entire

analysis and any nonlinear elastic-viscoplastic deformation that occurs

must be accounted for by developing so-called plastic-load vectors that

add to the force side of the governing equilibrium equation. In general,

the matrix equation which governs the response of a discretized structure

can be written as

K +11-1)

where [K] is the elastic stiffness matrix {U} i is the generalized nodal

displacement vector for the ith time step, {P}i is the load vector after

the ith time step due to external forces, and {Q)- is the plastic-load

vector computed from plastic strains accumulated prior to the ith time step.

For each element, these plastic-load vectors are self-equilibrating. The

viscoplastic strain rate expressions which develop plastic strains with

time under load are described below.
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VISCOPLASTIC MATERIALS MODELS

In solid mechanics it is customary to separate the two important

groups of phenomena described respectively by "creep" and "plasticity".

The first includes all time dependent effects and results in creep strains

accumulating at a finite rate. The second group develops permanent

(plastic) strains instantaneously, since time does not enter directly

into consideration as in the elastic-plastic approaches given in Appendix A.

From a physical point of view, creep and plasticity cannot be treated

separately as only the combined effect is measurable. Also the concept

of time independent or instantaneous plasticity is only a convenient

mathematical approximation and not experimentally based.

Viscoplasticity, in a complete sense, is the combination of these two

strain groups into a unified plastic strain rate model. A model with this

capability is the Bodner-Partom viscoplastic flow law [6-9) from hereon

referred to as the Bodner model. The superposition of Malvern's overstress

law [66,671 with Norton's law for secondary creep has also been proposed

as a unified viscoplastic flow law [10].

Each of these flow laws has been incorporated into VISCO by assuming

small strains and decomposing the total strain rate into elastic (reversible)

and plastic (nonreversible) components.

j L +4 (111-2)

which in general are both non-zero for all loading/unloading conditions.

Anelastic stresses and strains corresponding to time dependent reversible

deformations with energy losses are not considered in this formulation

and are assumed to be relatively unimportant. This assumption seems quite

justified based on the good correlation between predicted and test results

to be shown later.
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The elastic strain rate i is related to the stress rate by the time
ij

derivative of Hooke's law. The plastic strain ij P. assuming incompressibility

and isotropy, is taken to follow the Prandtl-Reuss flow law of classical

plasticity

P s ij(111-3)P

where Sij are the components of the deviatoric stress tensor and X is a

scalar that reflects the viscosity of the material. The specific form of X

is presented below for each of the viscoplastic flow laws.

MALVERN (OVERSTRESS) FLOW LAW. A portion of a total viscoplastic

model that accounts for the so-called instantaneous plasticity during

loading might take the form as given by Malvern [66,67], otherwise known

as the "overstress" model:

ici

where yp is a fluidity constant whose magnitude will determine the strain

rate sensitivity of the model, see Fig III-1, ae is the effective stress

defined as 3 J2 where J 2/6 the second invariant of the deviatoric stress

defined as J = I/2SijSij' and T(P) is the strain hardening yield stress

shown to be a function of the effective plastic strain, p , defined incrementallye'

as deY =V2 dciP dE:! The strain hardening stress function, within VISCO,
e . ij ij

takes one of two forms, either a linear relationship such as

EP H EeP (111-5)

or a Ramberg-Osgood type
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I< 0

where a is the initial yield stress, the constant H' represents the slope

of the stress versus plastic strain curve, and R and m are constants of

a Ramberg-Osgood type stress-strain curve. In Eq 111-6, note that if the

effective plastic strain eP is at or near zero such that the function
e

R(c)mis less than the initial yield stress, a , then 7(cp) is sete o e

equal to a .

Implementation of the Malvern model then requires selection of

Eq 111-5 or Eq 111-6. This selection would depend on the best fit

of the material's uniaxial stress-strain curve developed under strain rates

at or near the lowest strain rate expected to be modeled with the Malvern Law.

If Eq 111-5 were chosen, the initial yield stress, co, and slope, H' would

be determined from this experimental curve. A similar determination would

be done if Eq 111-6 were selected. The fluidity constant, yp, would

be chosen to best reflect the strain rate sensitivity of the material

(see Fig. III-i) displayed by experimental stress-strain data developed

at high strain rates.

The Malvern model may also be used to perform time independent elastic-

plastic solutions. In this case time becomes a fictitious parameter and

thus the fluidity constant, yp, may take on any non-zero positive value.

The elastic-plastic solution is the steady state value of the stresses,

strains, and displacements after the load has been applied. This has been

found to occur in approximately 30 timesteps after maximum load application
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unless total section yielding develops.

An Euler linear extrapolation scheme is employed within VISCO for the

time integration of the viscoplastic strain rate expressions. The

Malvern model is integrated in VISCO as follows

-•- ( 1 1 1 -7 )

d (111-8)

= (c;) - +J~EP I')(119

roY (III-10)

t !,
where the superscript i refers to the timestep and a subscript i refers

to specific components of stress or strain.

NORTON'S LAW FOR SECONDARY CREEP. Another portion of a total visco-

plastic flow law that complements the Malvern model and accounts for long

term creep is given by Norton's creep law [68] written in multiaxial form as

3 S (I-1

where y c and B are constants determined from uniaxial creep test results.
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Creep test data at two different stress levels are required. A straight

line is fitted to each test's secondary stage of creep strain plotted versus

time, see Fig II-I. The slope of this line or strain rate and stress

level from each test is substituted into Eq III-11 which provides two

equations to solve for the two unknown constants. After taking the

natural logarithm of eq III-11, the simultaneous solution of the twoI
equations is straight forward.

The Euler extrapolation scheme for integrating Eq III-lI in VISCO

is similar to the one given for the Malvern model and will not be re-

peated here.

It would appear that the combination of the Malvern and Norton laws

would provide a complete viscoplastic flow law. However, metals at

elevated temperature have been observed to display a phenomenon called

"recovery" [69]. Recovery is the softening of cold-worked metal or it

may be characterized as a fading memory of prior strain hardening.

In creep crack growth at elevated temperature and under constant

load, consider material well ahead of, but in the path of, the crack.

During load up this material will plastically deform and strain harden

depending on its proximity to the initial crack tip. Subsequently, during

the sustained load phase, the phenomena of recovery will allow this material

to soften prior to the arrival of the crack tip at which time additional

f -loading will occur. The amount of recovery prior to the arrival of the

crack tip should then have some effect on the values of stress and strain

developed around the crack tip when it reaches the material being considered.

Therefore, this investigation will focus on the following viscoplastic flow

law which does include the phenomenom of recovery.

BODNER VISCOPLASTIC FLOW4 LAW. In this formulation by Bodner and

Partom [6-91 the A parameter from Eq 11r-3 is expressed in terms of

hi
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second invariants by making use of the square of Eq. 111-3.

T D E1- = a= Ja (111-12)

where D is the second invariant of the plastic strain rate and J is the2 2

second invariant of the deviatoric stress.

Rather than specifying a specific yield criterion as in classical

plasticity, this formulation by Bodner and Partom is based on the assumption

that a continuous functional relationship exists between the plastic

deformation rate and the stress invariants, i.e.

K~3 T) (111-13)

where Z are one or more internal (viscoplastic) state variables and T isk

the temperature. Introducing Eq. 111-13 into Eq. 111-12 and solving

for A gives

= / (111-14)

The general form for the evolution equation, i.e. history dependence,

of the viscoplastic state variables Z is
k

F T)ii-
ZK K (111-15)

For conditions of uniaxial stress of constant sign, the hardened

state with respect to plastic flow is assumed to be represented by a

single state variable Z which depends on plastic work. This single state
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variable Z also corresponds to isotropic hardening. Additional state

variables are necessary for such characteristics as kinematic hardening

which will not be employed here.

The particular form chosen for D (J2,Z,T) was motivated by the

equations of dislocation dynamics and given by Bodner and Partom as

P +-(± 1 v.
= ~.exp~'~~~I .3(111-16)

The factor (n + 1)/n was introduced at an early stage in the development

of the equations for numerical purposes and only affects the numerical

values of some of the material constants. The constant D is described0

as the limiting value of the plastic strain rate in shear. Its value can

be arbitrarily chosen and is usually taken to be the same large number

4 -
for all materials. A value D = 10 sec is generally adequate except

0

for conditions of very high rates of straining.

The parameter n controls strain rate sensitivity and also influences

the overall inelastic level of the stress-strain curves. A decrease

of n leads to increasing strain rate sensitivity and lowering of the

level of the stress-strain curves.

As stated previously, Z is assumed to be a function of plastic work,

Wp, and the following relationship is introduced

z Z ((z,) - ( 7°) eK wpJ (111-17)

The quantity Z1 is the maximum value of Z which is necessary if the

deformations do not revert to elastic behavior at large values of W
p

Z is the value of Z for which W = o and can therefore be the initial0 p

state point from which plastic work is measured. It is noted that the
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general function, Eq 111-17, would be a basic material property and

that W is the relative amount of plastic work done from some initial
p

state, (i.e. W is not an absolute parameter).
p

p- QS E~q1(111-18)

The quantity m in Eq 111-17 is a material constant that relates to V
the rate of work hardening.

At high temperatures, it is generally necessary to consider the

thermal recovery of hardening generated by plastic deformation. In

this case the plastic work, W, is redefined as follows:

*~ ,~ + rec. (111-19)

where

Zrec (111-20)

where Z is the stable, (i.e. non-work hardened) value of Z at a given

temperature, and A and r are additional material constants chosen to

match the models behavior to creep test data as was done for the Norton

model. Note that the second term on the right of Eq 111-19 (i.e. the

recovery term) makes a negative contribution to W due to the negative
p

sign on A, since Z is always greater than or equal to Zi.

The recovery term in Eq 111-19 is essential if the material model is

to be able to represent secondary creep. Secondary creep is the balanced
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condition when the rate of work hardening equals the rate of thermal

recovery or, setting the time derivative of Eq 111-19 to zero,

+ " - o (111-21)

At relatively high strain rates, the thermal recovery in Eq 111-19

is relatively unimportant and the steady state condition is realized

when Z reaches its saturation value Z
1*

Again, VISCO employs the Euler extrapolation scheme for the numerical

time integration of the Bodner equations. During each time step Eq 111-3

and Eqs 111-14 through 111-20 are integrated as follows for each element

, = z,- (,x-°) ep - w P (111-22)

~ e~p~ (n..± (111-23)

r~c. ,;-Z; )r

r'e (111-26)

where the superscript i refers to the timestep and a subscript i refers

to a specific material constant, Zi, or to specific components of stress

and strain.

The specific material constants required for the Bodner model in this

investigation were determined to best fit the behavior of !N-1O0 at the

temperature of 1350*F. This material was characterized by performing
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uniaxial tensile stress-strain tests and creep tests at different stress

levels at 1350 0 F. The following constants for the Bodner model were

developed by Stouffer [121 and the details of this procedure are summarized

in Appendix D. The A and r constants defined by Stouffer are different

than the constants used in the present formulation:

4 -1D = 10 sec
0

n 3.50

Z = 224.4 ksi
0

Z= 251.5 ksi

m 3.750 ksi -

This first group of constants is based on stress-strain curve data.

A = 1.142 x 10
- 2 sec

- 1

r = 3.52

Z = 100 ksi

This second group of constants is based on creep test data. The elastic

modulus at 1350OF was determined to be

E - 26.3 x 106 psi

and Poisson's ratio was arbitrarily chosen as

v = .3

Figure 111-2 shows a comparison of the stress-strain behavior of

the Bodner model (using the given IN-l00 material constants) and experimental

stress-strain data. Each of the curves displays the response of the

Bodner model under the loading condition of a given constant strain rate.

The experimental data were generated at a strain rate of .83 x 10- 3 sec - 1

and compare quite well with the Bodner curve for the same ,train rate.

Some variation occurs in the region of initial inelastic behavior but

this difference is small.
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Figures 111-3 and 111-4 compare creep behavior of the Bodner model

with experimental data at the stress levels of 127.3 ksi and 72 ksi,

respectively. Note the initial experimental curve's slope or strain rate

is duplicated by the Bodner model in both figures. However, the strain

magnitudes difter somTwiiat due to the initial time required for the

Bodner model to reach steady state creep at these stress levels. Also

as the experimental strain rate increases with time the Bodner model

cannot closely follow since its formulation restricts it to only secondary

type creep in this situatijn (i.e. constant strain rate for constant stress).

SOLUTION PROCEDURE FOR ELASTIC-VISCOPLASTIC STRUCTURES

In elastic-plastic analysis, it is necessary to apply loads incrementally

to satisfy the appropriate yield condition (e.g. von Mises) and flow

rule (e.g. Prandtl-Reuss) associated with incremental plasticity [64].

Similarly, with elastic-viscoplastic behavior an incremental procedure

-is required, but here time is incremented directly while load, strain,

stress, etc. are incremented indirectly through the time integration

procedure. The algorithm used for a typical time step in the elastic-

viscoplastic residual force method [10] is summarized as follows:

1. Add time increment dti to the preceding time ti- I to obtain
i

the current time t

2. Compute increments of plastic strain, {dej} i = {£ idt and
i ij

add to preceding plastic strain, i} ={j + dEi. . In
ii i 1j, ij

general the plastic strain rate, { j}, is a function of the material's

viscosity and the given stress level (see the Viscoplastic Material

Models section).

3. Compute the plastic load vector {Q} i- = f [B][D] {j )idvol.
Vol I
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4. Compute the current external load vector {Pi = {pIdt + {Pi

5. Compute the nodal disrp "ements {U} from Eq. III-l,

{U}i = [KI-l1{p i + {Q~i-lf.
i

6. Compute the current total strain {c..} from the strain dis-
13

placement relationship, {cii = [B]{U}i .

7. Compute the current stress {o} as follows, {o ij = [D] {ci.} i  
- {iis.

8. Check the timestep size in terms of prescribed stress and strain

change tolerances per time step (see the following section on

Variable Time Step Integration of Viscoplastic Flow Laws). If

these tolerances are not exceeded the time step size may be increased

for the next time step or left the same value. However, if the

tolerances are exceeded, the time step size is reduced and steps

1 through 8 are repeated for this same time step in an effort to

satisfy the stress and strain change tolerances.

9. Repeat steps 1 through 8 until the desired simulation time

is reached.

VARIABLE TIME STEP INTEGRATION OF VISCOPLASTIC FLOW LAWS

One of the final objectives in the development of VISCO was to be

able to accurately model nonlinear material behavior both in the high

strain rate load up stage and during the low strain rate constant load

creep stage. For stable accurate results, the time step size must be

orders of magnitude less during the load up stage compared to the creep

stage. Therefore to be computationally feasible in a large problem (many degrees

of freedom) some method is necessary to determine the maximum time

step during each stage of the analysis while maintaining reasonable

accuracy. Cormeau [65] investigated the numerical stability of simple

time marching schemes used in elastic-viscoplastic analysis. The Malvern

and Norton models were studied amcRq others. For the Malvern model the
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following maximum time step size was determined

4 3 7 (TI1-28)

where V is Poisson's ratio and all other parameters are as defined earlier.

For the Norton model the maximum time step was

4Ft m 4 (1 + -Y) (1-93 (i E /3 )-1-

In general dtN is several orders of magnitude larger than dt If the

Malvern model or the Norton model are used separately Cormeau has shown

Eqs 111-28 and 111-29 to work well. However, if the Norton and Malvern

models are coupled together for a more complete flow law a method is

necessary to provide the maximum time step during transition from load

up (Malvern dominated phase) to creep (Norton dominated phase). In

addition, this time step maximizing scheme is all the more required

when numerically integrating the Bodner equations since Cormeau's analysis

does not directly apply to the Bodner viscoplastic flow law. Consequently

the following logic, which is also similar to the MARC program [57), was

incorporated into VISCO.

This time step maximizing logic continually tries to increase the

time step size subject to a stress and strain constraint. These constraints

are the allowable amounts of change in stress, utol, and strain, cto I ,

during a given time step and their values will be discussed later in this

section. The conputer algorithm is based around parameters Pa and P

defined as follows

C(111-30)
i34
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oe

- ( ) (111-31)

Ctotal f of

2 + 2 +.CO 2
where c total = x + z a xy and the super script i refers to

the time step. Note that if the change in effective stress between time

steps i and i-I just satisfies the stress constraint or stress tolerance,

atol, then Eq 111-30 will give a value of unity for P0. Similarly, if

the effective plastic strain increment for time step i, (deP)i , just

satisfies the strain constraint or strain tolerance, atol, then Pc will

equal unity from Eq 111-31.

The parameters P and P are calculated for every element and P is

set equal to the largest one. One method of changing the time step size

based on P is

41- = f/ ;-I/P (111-32)

Note that if P is unity no change in the time step size, dt, occurs. How-

ever, if P is less than one, dti is greater than dt i-  and if P is greater

i i-lthan one dt is less than dt . In the case of P being greater than one,

the amount of change in stress or strain has exceeded its respective

tolerance and recalculations for that time step are necessary using the

reduced time step size from Eq 111-32.

To avoid several successive recalculation steps that develop when P is

greater than one and Eq 111-32 is used, the following substitute for Eq

111-32 was employed.
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at; +- r+.6 P _ I
o' I.ZS Q ' 1  If .s- P < .8 (111-33)

d' /c d '-  If P< .S

Note that Eq. 111-33 reduces the time step size more than Eq. 111-32 if P

is greater than one but if P is less than one Eq. 111-33 increases the

time step size slower than does Eq. 111-32. Both of these differences

between Eq. 111-33 and Eq. 111-32 tend to reduce the number of calculation

steps required.

Determination of the values for the stress and strain tolerances,

atol and c to respectively, was accomplished by employing VISCO to analyze

a plate with a V-notch. This particular geometry was chosen since it has

a high stress concentration around the notch and is therefore somewhat

similar to a plate with a crack which is the geometry of ultimate interest

in this research effort. However, the V-Notch geometry can be modeled with

far less elements than a cracked plate requires and still compare with

other V-notch solutions in the literature [40]. Figure 111-5 shows the

finite element mesh employed for the V-notch plate . Only one quarter

of the plate is modeled due to symmetry. Element sizes were made smallest

near the V-notch in order to capture the stress concentration there.

A total of 182 constant strain triangular elements were employed which

is somewhat less than Yamada et. al. [40] used. However, good agreement

with Yamada was achieved and this will be demonstrated later in the

Validation Examples section.
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MALVERN MODEL. An elastic-perfectly visco plastic (i.e. c(eF)
e

constant) plane stress analysis was carried out using the Malvern model.

The ratio of elastic modulus E to the yield stress was 288 and the ratio

of applied remote stress to yield stress was 0.593. Poisson's ratio

was 0.2. The load was applied in nondimensional time of Y t 
= 10- 4

p

where Y is the fluidity constant in the Malvern modelEq. 111-4.P

Results were taken after all stress and strain rates were zero. This

may be defined as the steady state condition which was observed to

occur after Y t = 0.4.
p

Several analyses of the V-notch were performed using different

values for the stress and strain tolerances. Examination of the results

found that between displacements near the notch, plastic strain near

the notch, and total plastic strain energy in the model, the last one

was most sensitive to stress/strain tolerance variations. Table III-1

displays the percent variation in plastic strain energy as stress/strain

tolerances are varied. The percent variation is relative to the plastic

strain energy calculated when ato = .01 and EtI = .01.

It was noted that the stress/strain tolerances that kept the percent

variation in plastic strain energy around one percent also kept the time

step size, during most of the computing, under Cormeau's critical value,

d t * in Eq. III-2B. The amount of computer time increases rapidly

as the tolerances are reduced to a value of .01. A good compromise

between computer time required and apparent accuracy from Table I1-I

is a stress tolerance of .03. Note that for this stress tolerance, the

strain tolerance can be relaxed all the way to .20 with little change in

plastic strain energy. These results are in agreement with the recommendations

for stress/strain tolerances in the MARC program (57].
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BODNER MODEL. A similar stress/strain tolerance investigation was

performed with the Bodner material model in plane stress. The V-notch

model in Fig III-1 was again employed. The material constants used for

the Bodner equations were those matched to IN-100 and given previously.

The ratio of applied remote stress to yield stress was again .593

which is based on 140 ksi for the initial yield stress. Maximum load

was reached in 10 seconds and plastic strain energy results were then

taken similar to the Malvern model investigation. Again several analyses

of the V-notch were performed using different combinations of stress

and strain tolerance values. The results for the Bodner model are given

in Table 111-2. Comparing Table III-1 and 111-2 shows that the Bodner

model develops less plastic strain energy variation for the given stress/

strain tolerances than does the Malvern model. This comparison indicates

that higher stress/strain tolerances could then be used for the Bodner

model. However, if the analyses are continued into the creep phase,

it was observed that the stress valies tend to oscillate somewhat when

they should be monotonically relaxirg near the notch tip. This oscillation

was fairly well damped out when a stress tolerance of 0.03 was used.

Once this small value for the stress tolerance is chosen the strain

tolerance has little effect as long as its greater than or equal to

the stress tolerance.

The average computation time for the Bodner model was about twice

that required for the Malvern model. The average central processor

time required on the CDC-6600 was 150 sec for this 200 degree of freedom

problem with the Bodner model.

VALIDATION EXAMPLES

The following five examples were performed to demonstrate the validity

of the VISCO computer program. The first four examples employ the Malvumr

40



C)C

U11

0

0 "P

4-
Lt~ 0 0)

4-,
U a

u -
-
LM

z: -

Lr\ C C)0)

41-



model to compare with published time independent elastic-plastic solutions.

The Bodner model is then tested in the fifth example by comparing

its behavior with the results from coupling the Malvern and Norton flow

laws together.

INFINITE SHEET WITH PRESSURIZED HOLE. The first example employs the

Malvern model to analyze the infinite sheet with a pressurized hole.

Comparisons are made with the exact elastic-plastic strain history

independent deformation solution by Hsu and Forman [70]. The material

6properties for this plane stress solution were E = 10.5 x 10 psi,

v = 0.5, and a Ramberg-Osgood stress-strain equation

- E r I (111-34)

*E 0

where 6 is the total strain (i.e. elastic plus plastic), a is the0

initial yield stress (ao = 55000 psi) and n determines the shape of the

curve (n = 9). Eq. 111-34 must be inverted, so that yield stress F is a

function of plastic strain cP, in order to be used in the Malvern model.

The first step in this inversion process was to split the total strain L

into its elastic, E, and plastic, p , parts and then set the elastic
E

strain, C , equal to a/E. Eq. 111-34 may then be rewritten as

E: = Er + E oP -~ - "- (111-35)

nSolving for a results in

0- o + (111-36)
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n+h
and taking the n root of Eq. 111-36

-= a- b ( E E (111-37)

The stress, a, on the left hand side of Eq. 111-37 will now be redefined

as the strain hardening yield stress c so that, approximately,

- ; +E E- T. -(111-38)

Note when a equals a and cP is zero, Eq. 111-38 is identically satisfied.
0

Also when a is greater than a0 , the plastic strain will be greater than V

zero and the product E c Pwill have the major effect on a, which is desired.

The finite element mesh for modeling the infinite plate was similar

to Fig. 7b, however, 132 triangular elements were used. The outer radius

to inner radius ratio of the element mesh was 15 which was assumed to

approximate an infinite radius plate.

Figure 111-6 shows the radial and tangential stress profiles for

three internal pressure ratios, P/a . Hsu and Forman indicated that,
0

in consideration of Budiansky's criterion for the acceptability of

deformation theory, their infinite plate solution should not disagree

greatly with an incremental elastic-plastic solution. One may observe

from Fig. 111-6 a close approximation between the techniques thus

lending validity to the incremental plane stress approach incorporated

within VISCO.

THICK CYLINDER WITH INTERNAL PRESSURE. The second example employs

the Malvern model to analyze a thick cylinder with internal pressure.

In this case comparison is made with a non-finite element solution by

Hodge and White [71] who again used deformation theory. This was an
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elastic-perfectly plastic plane strain analysis. The ratio of the elastic

modulus to yield stress was E/o = 190.9 with v = 0.33. The ratio of outer radus

to inner radius for the cylinder is two. Figure 11I-7b shows the finite element

mesh used to model a symmetric section of the thick cylinder. The mesh

incorporates 40 triangular elements. Figure II1-7a shows the tangential stress

profile for a pressure ratio, P/, of 0.76. Both the elastic and the elastic-

plastic profiles are given. There is good agreement with Fodge and White and

thus validity is again given to the incremental plane strain portion of the

VISCO program.

V-NOTCHED PLATE IN TENSION. The third example employs the Malvern model

to analyze a V-notched plate in tension. Comparison is made with another

finite element solution by Yamada, et. al. [401. A time independent tangent

modulus approach was used by Yamada et. al. for their elastic-plastic analysis.

This was an elastic-perfectly plastic plane stress solution where the ratio of

the elastic modulus to yield stress E/ = 666.7 and v = 0.3. The finite element

mesh used herein was the same as given previously in Fig 111-5 where only one

quarter of the plate is modeled due to symmetry. Element sizes were made

smallest near the V-notch in order to capture the stress concentration there.

A total of 182 constant strain triangular elements were employed which is some-

what less than used by Yamada et. al.

Figure I1-S shows two y-component of stress profiles for the minimum

section of the V-notched plate. Note for the applied stress of c/o = 0.125,

which was Yamada's initial yield load, the present results from VISCO agree

very well except for the elements immediately at the notch. The high elastic

stress concentration near the notch was not modelled as well by the present VICO

analysis due to larger element sizes being used in the notch vicinity. However,

with yielding at the applied stress of a/o = 0.584, comparison with Yamada's

results at the notch are much better. Note that plastic action diminishes stress

gradients and thus fewer elements are needed for an elastic solution can he used
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to produce good stress profiles after yielding occurs. However, it should be

kept in mind that plastic action does not diminish the strain gradient like the

stress gradient and therefore strain profiles, even after yielding, will be

quite sensitive to eleme.nt sizing.

Figure 111-9 displays the finite element mesh for the V-notched plate with

those elements left out that have exceeded the yield stress for the applied

stress of 0/37= o.584. The absence of these elements thus describes the plastic

zone size compares well with that of Yamada. Numbers within the elements of

Fig III -9 reflect each elements effective stress as a percentage of yield

stress.

CRACKED THREE POINT BEND SPECIMEN. The fourth example employs the Malvern

model to analyze a cracked three point bend specimen as shown in Fig III-10.

This will be the same problem as was solved with ten different computer codes

for an ASTM analytical round robin and documented by Wilson and Osias [72].

6This was a plane strain crack problem where E=31.59 x 10 psi, v= 0.30, and

the following Ramberg-Osgood equation was used for the stress-strain curve

- -+ -g( 111- 39 )

where E is the total strain (i.e. elastic and plastic), n is 10, and B0

is 120 x l0 psi. To make Eq ITI-39 compatible with the Malvern model,

stress must be written as a function of plastic strain. Therefore, after sub-

tracting the elastic strain (also equal to a/E) from both sides of Eq 111-39,

solving for the stress a, and redefining a as 7

.-
= B, ( °)

(111-40)

Due to symmetry only one half of the three point bend specimen was
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modeled with the finite element mesh in Fig. II-ii. This particular

pattern for the element mesh was used by Ohtani and Nakamura [61] for a

center cracked plate. Note how the element sizes are reduced as indicated

in Fig. III-11 by arrows to the first and second reduction. This pattern

provides for an unlimited number of element size reductions while also

maintaining good element aspect ratios (e.g. from 1 to 0.5) and insuring

no two neighboring elements differ in size by more than a factor of 2.

Accordingly, each reduction cuts the preceding element size in half.

Eight element size reductions, incorporated in the Fig. III-11 mesh,

step-wise reduced the 0.20 in. elements at the upper boundary to a

7.8125 x 10-4 in. element at the crack tip. This crack tip element size

was slightly smaller than the smallest used in reference [72]. The total

number of elements in Fig. III-11 was 584 with 388 nodes. Figures 111-12,

111-13, and 111-14 show the results of VISCO compared to 10 time independent

elastic-plastic solutions documented by Wilson and Osias. Eight of

these solutions fall within lines II and III in Figs. 111-13 and 111-14.

The other two solutions fall near line I in these two figures. In all

cases the present results from VISCO fall within the ASTM round robin

range as shown in these figures. Therefore the element sizing and

arrangement in Fig. III-11 as used herein with VISCO appears to give

good results for a complex problem that includes a crack and loads that

induce bending.

CENTER CRACKED PLATE WITH BODNER MODEL. The fifth example employs

the Bodner model to analyze a center cracked plate . Comparison will be

made with results from a similar analysis using the Malvern model coupled

with Norton's Law as follows
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This Malvern-Norton combination is a superposition approach suggested

by Zienkiewicz [10] to model in a unified sense both initial load up

viscoplasticity and creep under sustained load. Also, to assess the

contribution of pure secondary creep in the Bodner model, comparison

will be made to an analysis using only Norton's Law for the viscoplastic

material model.

The material properties will be those matched to IN-100 at 13500 F.

The constants for the Bodner model will be those previously given for

IN-100. The yield stress as a function of plastic strain, o(ic1 ), needed

for the Malvern model will be a multilinear fit to the experimental

stress-strain curve in Fig. 111-2 and given as follows

130. (1. + 76.2 Ce Ks; for E 0

(111-42)

1 ,.4 KSI -For Ee -

The fluidity constant y for the Malvern model will be given a value

-i
of .58 sec This value for y is sufficiently high such that the

given a function is followed very closely (e.g. recall Fig. 111-1 for

y = ). The constants for Norton's Law will be yC =37394 x 1060

-10.64
(psi) /sec and 8 = 10.64. These values were determined by matching

the initial IN-100 creep behavior in Figs. 111-3 and 111-4 as discussed

in the Norton's Law for secondary creep section.

Due to symmetry only one fourth of the center cracked plate is

modeled by the finite element mesh given in Fig. 111-15. The plate's

height is 2.8 in., width is 1. in., and thickness is 0.3 in. The crack
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length, 2a, is .2734 in. or a/W equal to .1367. The numbers inside the

elements indicate a total of 355 elements were employed. The total number

of nodes is 211. The triangular elements around the crack tip have a

height and base dimension of 7.8125 x 10- 4 in. Further discussion of

this element mesh will be presented in the Applications section since

this particular mesh was also employed there to simulate the experimental

program. A maximum stress of 36320 psi will be applied to the upper

boundary of the center cracked plate in 5 seconds and then held constant

for an elapsed time of 1000 seconds. This applied stress level corresponds

to a load level also used in the experimental program to be simulated later.

A comparison of the behavior of these three material models is

given in Figs. 111-16, 111-17, and 111-18. The effective stress and plastic

strain in Figs. 111-16 and 111-17 are from the element at the crack tip

which had the highest elastic stress concentration factor.

The stress-strain behavior in Fig. 111-16 occurred over a time period

of 1000 sec. The values to the left of 6% strain occurred in approximately

5 sec (the load up period) whereas to the right of 6% strain, stress

relaxation and redistribution is taking place over approximately 1000 sec

of sustained l'ad creep behavior. Note how the Norton model behaves

during the load up period (i.e. strains less than 6%). Due to its slow

creep response, the effective stress from the Norton model approaches

the values that would occur during load up in an elastic analysis. However,

the Norton model relaxes the stress down to values very similar to the

other material model stress values. In general the Bodner model behaves

very similar to the Malvern-Norton combination both during load up and

the sustained load creep periods.
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Figure 111-17 shows the time dependent behavior of the effective

stress and plastic strain from the same crack tip element. After approximately

20n sec., all three material models develop nearly indentical effective

stress values. Plastic strain behavior with time is also very similar

for the three models except for under 100 sec. of time. The difference

in percent plastic strain between the three curves developed primarily

from different plastic strain rates during the load up phase and remains

fairly constant for time greater than 200 sec.

Figure 111-18 shows how the crack mouth displacement increases

with time after the maximum load is achieved. The location of the crack

mouth displacement is indicated in Fig. 111-18 to be 0.050 in. from the

vertical centerline. Again the three curves are very similar after 200 sec.

and their separation is due primarily to dissimilar behavior for time

under 200 sec. The Norton model displays more displacement after maximum

load than the other models since it is effectively making up for its

slower plastic strain rates and associated displacements during the load

up phase. This apparently is also true when comparing the Malvern-Norton

to the Bodner model displacement curve, however, here the difference

is much less.

Therefore, based on these comparisons with somewhat similar material

models used to analyze the center cracked plate, the Bodner model within

VISCO is considered to be working well. For further discussion and

comparison of these material models sL reference [77].

SUMMARY OF FINDINGS

The following findings were dotermined from the preceding validation

examples and the general development of the VISCO program.

1. The stress tolerance, atol which controls the variable time

step size in VISCO's numerical time integration algorithm, provides
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good results for reasonable computer time requirements when set

to the value of 0.03. The strain tolerance, Eo I , has little

effect as long as its greater than or equal to the stress tolerance.

This finding pertains to the Bodner, Malvern, and Norton material

models.

2. The VISCO program, while employing the Malvern material model

agrees well with so-called exact elastic-plastic deformation

solutions both in plane stress and plane strain conditions.

Agreement is also good with time independent elastic-plastic

finite element solutions in a V-notched plite and a cracked

three point bend specimen whose results came from an ASTM

analytical round robin.

3. The finite element mesh pattern in Fig. III-li works well for

modeling cracked plates. This pattern conveniently provides

for an unlimited number of element size reductions to capture

the crack tip singularity while also maintaining good element

aspect ratios and minimizing the total number of elements required.

4. A crack tip element size to specimen width ratio of 7.8125 x 10
- 4

in a cracked three point bend specimen provided good agreement

with an ASTM analytical round robin.

5. The Bodner material model has been shown to behave similarly to

the Malvern-Norton model for both load up and sustained load creep

stages. Also, for time greater than 200 sec. after load is applied,

the pure secondary creep Norton law behaves similar to the

Bodner model. In general, these similarities in material model

behavior should be true for most any metal however, the indicated

200 sec. time delay between the Norton and Bodner models pertains

specifically to the IN-100 alloy at 1350'F.
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These findings therefore, support the validation of the VISCO

computer program and provide some of the required details for applying

the VISCO program with the Bodner model to creep crack growth simulation.

I
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IV HYBRID EXPERIMENTAL-NUMERICAL PROCEDURE TO

ANALYZE CREEP CRACK GROWTH

The simultaneous use of experimental data from crack growth tests

and a theoretical model of the experimental cracked specimen has been

termed the Hybrid Experimental-Numerical procedure by Kobayashi [16].

One example of this procedure would be to grow a crack at experimentally

determined rates through the theoretical model of the experimental specimen.

Then, from the results, one could seek out potential crack growth criteria

which hopefully, during crack growth, display themselves as fairly

constant parameters independent of both crack length and load intensity

(e.g. stress or strain at the crack tip, crack-opening displacement, etc.).

In the present investigation, the Hybrid Experimental-Numerical

procedure required the theoretical model to track experimental displacement

rates rather than crack growth rates. The theoretical model consisted

of the VISCO program employing the Bodner constitutive equations and a

finite element mesh of the experimental specimen. The experimental dis-

placements were either measured near the crack tip or near the vertical

centerline (crack mouth) of the center cracked plate test specimens as shown

in Fig IV-I. The displacements were measured continuously with time

by an optical interferometric displacement measurement technique developed

by Sharpe [74]. Figure IV-2 shows a typical experimental displacement

versus time curve. The present numerical procedure required the crack

to grow through the theoretical model such that the displacements due to

elastic-plastic behavior and crack growth added up to the experimental

displacements as time progressed. Therefore, crack length versus time

became a product of the present analysis rather than an input.

CRACK LENGTH VERSUS TIME

Ideally for this investigation, the experimental data should be in
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the form of crack length versus time rather than displacement rates.

Unfortunately, it was nearly impossible, experimentally, to measure crack

length as a function of time with any degree of precision or reliability on

the surface since the total amount of crack growth in these tests was extremely

small (e.g. 100 microns) and since the creep crack would grow internally

or tunnel without associated surface crack growth.

Another attempt to measure crack growth rate indirectly employed

the elastic compliance method first demonstrated by Clarke [75]. This

method utilizes the change in elastic compliance of the specimen with

time and then with the aid of a compliance versus crack length relationship

based on linear elastic fracture mechanics, crack growth with time may be

determined. Figure IV-3 shows schematically an experimental creep crack

growth load versus time history designed to provide discrete values of

compliance at selected time intevals. The load is reduced approximately

20% and then restored as shown at times t through t3 to provide load dis-

placement data at various times during the test. Figure IV-4 shows a

typical set of load displacement data for increasing times t1 to t4 in a

creep crack growth test. Compliance is defined as displacement divided

by load and therefore the slope of each line in Fig IV-4 represents the

compliance at each particular time. Note that compliance is shown to

decrease in going from time tI to t2 and then increase from time t2 to t4 .

Comparing this behavior to a typical elastic compliance versus crack length

curve given in Fig IV-5, the mathematical implication is that the crack

shortens with time. Although this compliance decrease/increase behavior

has also been observed by Donat [761, no known experimental data supports

any physical shortening or healing of the crack. However, the important
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implication of this compliance behavior is that a one to one relation

between crack length and compliance does not exist during creep crack

growth. Therefore, the elastic compliance method cannot be used directly

to measure crack length with time in creep crack growth tests.

MATCHING EXPERIMENTAL DISPLACEMENT DATA

In each Hybrid Experimental-Numerical application of the VISCO

finite element model to simulate creep crack growth tests, the y-dis-

placement of the node which was closest to the point where the experimental

measurement was made was monitored with time. If the node's displacement

became less than experimental displacement at a given time a crack tip

node would begin to be released to simulate crack growth through the model.

CRACK TIP NODE RELEASE METHODS

Crack tip nodes were released in one of two different methods. The

first method releases the node and totally unloads it in 5 sec. The

second method unloads the current crack tip node linearly with time over

the total time span between the time when the current crack tip node is

begun to be released and the time when the next crack tip node will be

released. The 5 sec. node release method for crack growth must be used

when matching experimental displacements or when a crack growth criterion

is used. In both of these cases when certain conditions are satisfied,

the crack must grow so a node is released. However, when the current node

is being unloaded it is not known when the next crack tip node will be

released and therefore the continuous unload method cannot be used. The

5 sec. unload time for the first method was based on the size of the crack

tip elements and the maximum crack growth rates occurring in the creep

crack growth test data (i.e. maximum crack growth rate equals element

size divided by 5 sec). If a crack growth rate criterion were used then

it could be determined by extrapolation when the next crack tip will be
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released and thus the current crack tip node could be unloaded in a

continuous fashion by the second method. The second node release method

can also be employed when all node release times are specified at the

beginning of the computer run (e.g. release times based on results from

a prior computer run using release method one and matching experimental data).

In both node release methods, the node force required to hold the

crack tip node at zero displacement would be calculated from the stresses

in the adjacent elements as follows

Elewients

which is consistant with the formulation of the stiffness matrix in

Appendix A. The crack tip node restraint force, f is then the component

of ff1 perpendicular to the crackline. The boundary condition on the node

is converted from zero displacement to a force equal to f . This force

f is then removed depending upon which node release method is chosen,V

see Fig IV-6.

The change of the crack tip node's boundary condition from dis-

placement to a force boundary condition is handled very conveniently with

the Gauss-Seidel iterative linear equation solver as discussed in Appendix B.

Whenever a node is fixed in a certain direction, its equilibrium equation

in that direction is skipped over during the iterative solution procedure

and when the node is released its equilibrium equation is included within

the iterative procedure. No lengthy refactoriza ion of the stiffness matrix

is required for these boundary condition changes.
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V APPLICATION OF THE HYBRID EXPERIMENTAL

NUMERICAL PROCEDURE TO CREEP CRACK GROWTH

The first objective in the present research was to develop a method for

getting crack growth behavior solely from displacement measurements made on a

cracked specimen under constant load and at elevated temperature. This objec-

tive is extremely important since small but significant amounts of crack growth

can not otherwise be resolved by conventional experimental crack measuring

techniques. The second objective was to seek out crack growth criteria based

on the crack growth behavior identified from the present work on the first

objective and by examining various parameters around the cracktip in the the-

oretical model (e.g. stress, strain, crack opening displacement, etc.).

This section presents the results of applying the hybrid experimental

numerical (HEN) procedure to creep crack growth in IN-100 at 13500 F. The

experimental portion of the procedure consisted of displacement versus load

(i.e. compliance) and displacement versus time test data reported by Sharpe

[ 15]. The numerical portion of the HEN procedure consisted of the VISCO

finite element program employing the Bodner material model. The material con-

stants for the Bodner model were those given in Section III.

The machining specifications for the specimens used in the experimental

program are shown in Fig V-1. Only the center uniform cross section part of

the specimen was considered in the VISCO simulation and due to symmetry onl\

one quadrant of this section was represented by the finite element meshes

given in Figs V-2, V-3, and V-4. Each of these meshes represent the center

cracked plate test specimen with different crack lengths. The convergence of

these meshes has been verified through the work in Section III and further

discussion of their accuracy will be provided in subsequent paragraphs. Fig-
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res V-2, V-3, and V-4 have half crack lengths, a, or 0.137 in., 0.237 in.,

0.312 in. respectively. Due to the variations of the initial crack length

through the thickness, the surface measurement cannot be used directly and

thus effective initial crack lengths must be determined. These effective

initial crack lengths were determined by matching experimental load-dis-

placement data along the crack such that the finite element model displayed

elastically the same compliance as the experimental specimens did. For

efficiency sake it has been found realistic to use the same element mesh for

slightly different initial crack lengths.

The VISCO finite element program has both plane stress and plane strain

analysis capability. The current investigation chose plane stress as re-

ported in reference [78] where theoretical plane stress J integral values

agreed best with test data for an even thicker ( 1 in. thick ) compact ten-

sion specimen. A theoretical model must display realistic compliance be-

havior in order to calculate J values that agree with test data. Likewise, in

the present research realistic compliance behavior is a necessity.

Figures V-2, V-3, and V-4 display the same general pattern of elements

which worked well for the three point bend specimen in Section III. The ele-

ments at the cracktip have a height and width of 7.8125 x 10- 4 in. This size

cracktip element in combination with the given general element pattern, pro-

vided for 355, 278, and 362 elements respectively in the three figures.

Figures V-2 and V-4 provided 20 uniform elements ahead of the cracktip for

subsequent crack growth whereas Fig V-3 had eight uniform elements. Figure

V-5 shows the expanded element layout around the cracktip from Fig V-3. This

region of uniform elements ahead of the initial cracktip avoids unrealistic

changes in compliance, as the crack grows through the model, that can develop

when nonuniform element sizes are used. The number of uniform elements

incorporated ahead of the cracktip is a compromise between anticipated crack

growth and computer time required.
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The elastic compliance of the specimens modelled by these three meshes

in VISCO was compared to an empirical solution by Eftis and Liebowitz [79]

in the form of

This comparison is shown in Fig V-6, with the symbols a,vand W as defined

in the figure. Also shown is nondimensionalized compliance versus crack

length for locations off the vertical centerline and relatively near the

cracktip. These locations correspond to the displacement measurement loca-

tions used in the experimental program. It can be seen that the centerline

compliance agrees very well with published results. Also note that if the

off centerline results are linearly extrapolated (i.e. dashed line) back to

the Effis and Liebowitz curve they intersect at a/W values which correspond

to their distance behind the cracktip. These results all support the validity

of the finite element meshes used in the present investigation.

Figure V-7 shows elastic crack opening displacement profiles using VISCO

and the mesh in Figure V-2 compared to the Westergaard equation for elastic

displacements around the cracktip. The following form of the Westergaard

equation is restricted to plane stress displacements behind the cracktip and

on the crack surface (i.e. crack opening displacement)

4 K(V-2)

where r is the distance behind the cracktip and KI is the mode I elastic stress

intensity factor which for the center cracked plate can be written as [73]
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where again a and W are the half crack length and specimen width respectively.

Note that agreement with the Westergaard equation is quite good here for the

results from VISCO using the mesh with the shortest crack length, Fig V-2.

The same cracktip element size was used in all three crack length models.

Therefore agreement with Eq V-2 would even be better for the longer crack

i length models since the ratio of element size to crack length will be smaller.

It has been shown through elastic finite element convergence studies that as

this ratio of cracktip element size to crack length decreases, accuracy in-

creases [81].

Another consideration supporting this size cracktip element (i.e. 7.8 x

-410 in.) is that IN-100 grains are approximately the same dimension [13].

It may be argued that the finite element method is a continuum analysis tool

and that accuracy should only improve as elements are refined. However,

realistically a continuum does not exist at and below the grain size, espe-

cially around the cracktip. Thus incorporation of elements smaller than the

grain size might be unrealistic. Furthermore, it is postulated that the

physical blunting of the cracktip that can be associated with noncontinuous

grain structured material might be more effectively considered by the finite

element model used herein since the cracktip elements have a dimension on the

order of a grain size.

CRACK GROWTH PREDICTIONS

A summary of the creep crack growth test data reported by Sharpe [151

is given in Tables V-1 and V-2. In general the experimental program objectives

were to generate creep crack growth data in the center cracked plate speci-
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men at 13500 F for several different loads and cracked lengths. The loads

were specified in terms of a range of stress intensity factor values from

approximately 15.0 to 35.0 ksi Y- infor each respective initial crack length.

With these objectives in mind and the limited number of test specimens,only

one test was done at each of the test conditions. In the process of de-

veloping the experimental procedure, several tests did not result in good

data and consequently were not used in the present investigation as implied

by the discontinuous test numbers in Table V-1.

The initial surface crack lengths, as, were measured on the surface of

the test specimens after fatigue precracking and prior to the load applica-

tion for the creep crack growth tests. Displacements across the crack were

measured at the indent locations, qualitatively referred to as mouth or tip

locations described in Section IV. In each of these creep crack growth tests,

the load was applied in 5 sec. and held constant for the given test duration

time (excluding small unload/reload cycles for compliance referred to in

Section IV).

Figure V-8 is a photograph of the fracture surface of specimen number

2. This photograph was taken after breaking open the center cracked plate

specimen following creep crack growth tests 5 and 6. The two dark bands in-

dicated with arrows are the creep crack extensions from tests 5 and 6 where-

as the remaining fracture surface is either pre-test or post-test fatigue

crack growth.

Post-test crack length measurements were made on the fracture surface

as described in Fig V-9. The average of the four crack length measurements

was defined as the experimental crack length a . This averaging was done to
m

smooth out crack length differences due to asymmetric crack growth and vari-
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Figure V-9. Post-Test Crack Growth Measurements
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ations through the thickness. Table V-2 gives a tabulation of the initial

crack length, as, and a . In addition, a crack length determined by com-Sm

pliance, ad, and the initial crack length used in the finite element model,
C[

ao, is given. The ac crack length was determined as discussed earlier by

varying the crack length in the finite element model until the model's com-

pliance matched experimental compliance data.

For convenience a modified form of the above compliance technique for

crack length determination was also employed which reduced the number of

element meshes for different crack lengths required. This modification to

the compliance method made use of the experimental compliance, CE, and the

finite element model compliance, CFE, for a crack length near the test

value. To determine the test specimen's crack length, the difference be-

tween CE and CFE was divided by the rate of change of compliance with crack

length //a (i.e. slope of curve in Fig V-6) as follows and added to the

model's crack length

=C 0o +  Cr
= c/ + (V-4)

where c/ a is determined from the model for nearby crack lengths. The com-

pliance CFE pertains to a model crack length of a. -

The effective stress intensity factor, Keff, in Table V-2 was calculated

from Eq V-3 using the crack length, am, and the load given in Table V-1. The

stress inten-ity factor, FE' is also calculated for convenience from Eq V-3

but using the crack length a . For another check on the element mesh, the

elastic stress intensity factor, KE, was also calculated based on J integral

values determined from VISCO for several paths. For linear elastic plane

stress behavior [73]

(V-5)
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(Appendix C describes the VISCO routine for calculating the J integral).

Figure V-lOa shows a scaled drawing giving four different J integral

paths used in VISCO for the center cracked plate specimen. Figure V-lOb

shows normalized stress intensity factors calculated from Eq V-4 and the J

values along paths one through four in Fig V-lOa. These J values were from

a linear elastic VISCO analysis. For linear elastic material, the J in-

tegral is theoretically path independent and this path independence is

demonstrated in Fig V-10. It should be noted that the good agreement be-

tween VISCO results and Eq V-3 in Fig V-lOb also indicates that the

finite element mesh (i.e. Fig V-2) accurately represents the center

cracked plate.

Table V-3 summarizes the basic details of the VISCO computer runs which

employed the HEN procedure. The computer run numbers designated by S1

through S7 will frequently be referred to in the following discussions. As

described in section IV, each of these runs incorporated the Bodner material

model and the crack was grown in the model at a sufficient rate such that

model displacements matched test data with time. Each node released was

unloaded in 5 sec. except runs S1 and S7 as indicated in Table V-3. Table

V-4 summarizes the basic details for VISCO runs similar to Table V-3 but

with no crack growth allowed. It can be seen from these tables that the

computer time required for the high load runs (e.g. S2 and A3) is much

higher than for the lower K levels. In the case of run A3, computer time

required is high due to a large load causing a great amount of plastic

flow to occur. Recall from section III that high plastic strain rates

result in small time step size which then requires more times steps to sim-

ulate a given amount of time relative to the case of low plastic Strain
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r

rates. Furthermore, in the case of run S2, extensive crack growth occurred

requiring 19 nodes to be released. Each node release also requires rela-

tively small time steps due to the redistribution of stress and the associ-

ated plastic straining around the cracktip.

Figures V-lla through V-16a show the match of VISCO displacements with

each particular test's displacement data. Also, the amount of displacement

in VISCO for no crack growth under load is given. These displacements are

relative to the displacements existing at the time maximum load is achieved

which means all displacements prior to reaching maximum load were not

included in this test data. Maximum load was normally achieved in 5 sec.

The experimental optical technique for measuring displacements is highly

sensitive and can resolve displacements in the neighborhood of 0.1 micron.

However this technique loses sensitivity when displacement measurements are

much larger than a micron. Since the main interest was to record displace-

ments after reaching maximum load (i.e. the creep crack growth data) and due

to the desire to maintain high measurement resolution the load application

displacements were left out of the creep crack growth displacement data.

Test 6 was an exception where displacement measurements began after 5 minutes

of test time had expired.

The main details of the HEN procedure can be graphically seen in Fig

V-lla and V-llb. Observe in Fig V-lla the two specific curves of cracktip

displacement. One from VISCO with no crack growth and the other being test

data. These curves start to deviate from each other at a time of approxi-

mately 4 min. and for a time of 20 min. the difference is fairly great as

is shown by a bracket in Fig V-1la. This bracketed difference is attri-

buted to physical crack growth and requires release of cracktip nodes in this

simulation.
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Figures V-llb through V-16b depict the resulting crack growth from

the HEN VISCO runs for each test. Note that due to this discrete finite

element analysis technique, the crack growth is a step funtion (i.e. re-

lease of individual cracktip nodes) whereas realistically the crack might

in general be growing in a smoother manner with time.

COMPARISON OF RESULTS FROM USING DIFFERENT NODE UNLOADING METHODS. In

cases where the total creep crack growth is only a few node distances (7.81 x

-410 in.e20 microns) the displacements developed by VISCO deviate signif i-

cantly from the test displacement versus time curve (e.g. see rig

V-15a which implies that the model is too compliant or the unloading of the

cracktip nodes is too rapid. These deviations become less significant for

larger amounts of crack growth as seen in Fig V-fla. One approach to mini-

mize these deviations for small crack growth cases is to make a second

VISCO run for the same test. In this second run, node release times from

the first VISCO run are input. Therefore the continuous node unload method

can then be used as described in section IV.

Figure V-11a shows VISCO displacements from employing the 5 sec. node

unload method (VISCO Run S3) and the continuous node unload method (VISCO

Run S7). Note that the displacements from Run S7 are only slightly below

and run parallel to the test data with no excursions. Also, Run Sl in Fig

V-13a matches test data with no excursions and this is a case similar to

Fig V-15a where overall crack growth was small and deviations were large.

Later on crack growth criteria will be postulated based on stress and/

or strain at the cracktip and therefore reliable data from the HEN procedure

is required for these two quantities. Figures V-17 and V-18 show the differ-

ences in stress and plastic strain at the cracktip which develop, between

VISCO runs using the two different node unload methods. For large amounts of
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crack growth in this case, the relative difference in effective stress at

the cracktip is seen to reach a steady state value of approximately 7%. The

relative differences of the y-component of plastic strain at the cracktip,

as seen in Fig V-18, is much less. These differences in stress and strain

are relatively small and it is concluded that essentially the same results

(i.e. stress and strain at the cracktip) can be achieved for either node

unload method for cases with large amounts of crack growth. For crack growth

under small loads or for small crack growth rates more time is allowed for

stress relaxation ahead of the cracktip. Thus on the average cracktip

stress and strain also differ little between the two unload methods for slow

crack growth. With this as background, it was decided that all subsequent

solutions would be carried out using the 5 sec. node unloading scheme.

DEPENDENCE ON DEFORMATION HISTORY. Tests 8b through 8d were not included

in the HEN VISCO runs since no fatigue precracking was done prior to these

tests. Without fatigue precracking these tests were considered to be a-

typical due to their different prior deformation history. To check out de-

pendence on prior deformation history the following VISCO analysis was

performed.

Three VISCO runs with no crack growth were made to simulate Test 8b

and its dependence on prior deformation. Each run had one of three load-

time profiles in Fig V-19 input to it. The VISCO run A7 had no prior

load history, run A8 had Test 8a load history with a total unload and re-

load cycle, which is the most realistic load-time model of Tests 8a and

8b, and finally run A9 had Test 8a load history with no unload, but a load

increase to the Test 8b load level. The top of Fig V-19 shows the displace-

ment versus time profile for each of these VISCO runs compared to Test 8b

data. Again these displacements are relative to the displacements existing

when the maximum Test 8b load is achieved.
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In the case of run A8 where complete unloading occurs prior to Test

8b load, the VISCO results showed that plastic flow reoriented itself during

the unloading due to the reversing of the principal stress at the cracktip

to compression. This stress develops during unloading since the material has

prior tensile plastic strains from the Test 8a load and cannot return to

its original strain free state. This compressive behavior, if associated with

crack growth, leads to the crack closure phenomenon described by Newman [831.

Comparing displacements of run A8 and A9, where no unloading was done,

indicates quite similar behavior. When no prior deformation history exists

as for run A7 the displacements differ significantly, as shown in Fig V-19,

from those with prior load-deformation history. Note that run A7 fits the

test data curve best. However, test compliance data indicates that some

crack growth occurred in Test 8b. If displacements associated with this

crack growth were included in these VISCO runs, experience with Test 8a

would indicate that runs A8 and A9 would be brought up to the test data and

run A7 would be much in excess of test results. It should also be noted

that the form of the Bodner model employed in VISCO does not include the

Bauschinger effect prevalent in metals when compressive yielding follows

tensile yielding. Therefore, for the current investigation Tests 8b through

8d will not be further studied in order to minimize dependence on pretest de-

formation history in this investigation.

CRACK GROWTH RESULTS. Table V-5 displays the total creep crack growth

increments measured and calculated for the indicated test. The column en-

titled Aam presents the measured crack growth based on the average of four

measurements across the thickness as shown in Fig V-19. The column entitled

Aa is the total crack growth calculated in the HEN VISCO runs and shown pre-
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(k
viously in Figs V-llb through V-16b. Two other convenient methods for

calculating crack growth without the need of HEN VISCO runs were also used

and their results are presented as Aa2 and Aa 3. The method for calculating

Aa2 is an original technique developed in the present investigation and will

be discussed subsequently.

The column entitled ta is the crack growth calculated by Clarke's
3

elastic compliance method [75]. This method predicts negative crack growth

in some instances where compliance was observed to decrease as discussed in

section IV. Figure V-20 compares crack growth calculated by Clarke's method

to the results from a HEN VISCO run for Test 9. Note that experimental

elastic compliance changes from Test 9 indicate some unrealistic negative

crack growth while incorporating Clarke's method whereas the VISCO results

show a realistic monotonically increasing amount of crack growth with time.

However, for times greater than 20 min., both curves are approximately para-

llel which lends support to Clarke's method for large amounts of creep crack

growth also demonstrated by Donat [76].

The column in Table V-5 entitled Aa2 is the crack growth calculated by

a variation of Clarke's elastic compliance method as described below. In

this variation no unload/reload cycle data are necessary during a creep crack

growth test as discussed in section IV. The VISCO simulation of the test is

also simplified since a VISCO run is made using test conditions, but no crack

growth is allowed in the VISCO model. Thus any increase in displacements

after reaching maximum load in the no-crack-growth VISCO run can only occur

due to time dependent plastic deformation allowed by the Bodner material model.

Examples of these no-crack-growth VISCO displacements were given in Figs V-lla

through V-16a. Through simultaneous use of test displacement data and the no-
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crack-growth VISCO results, the crack growth Aa2 is calculated as follows

AQ,,ITesi - S ) / (V-6)

where 6 is the experimental displacement. The displacement 6V is theTest

value calculated in VISCO for the same test conditions but no crack growth

is allowed. The denominator term, Ac/Aa is the rate of change of elastic

compliance with crack length generated from elastic VISCO runs of the test

specimens. By releasing cracktip nodes and dividing the resulting VISCO

displacements by the load to get the respective compliances, the curve of

compliance versus crack length was determined for each test's indent or

displacement measurement location (see Fig. V-6). The slope of this com-

pliance versus crack length curve then provided Ac/Aa ratio. The applied

load P is divided into the difference of 6 and 6 to generate a change in
Test V

compliance. This change in compliance is assumed to be primarily dependent

on crack growth which means that the plastic zone developing around this fixed

cracktip is approximately the same size for an extending crack and simply

translates along with the cracktip.

Figure V-21 graphically defines 6Test and 6V at an arbitrary measure-

ment time tm . Note that this Aa2 method is effectively the same as the HEN

VISCO procedure for small amounts of crack growth where, as mentioned above,

the plastic zone size of crack growth versus time could also be generated by

this Aa2 method by applying Eq V-6 continuously along the test data curve.

Consider the measured crack growth column Aa and the HEN VISCO resultsm

Aa The differences between these two columns is only + 10% for those

tests totally modelled. Only part of Test 6 was modelled since the number of

uniform crack growth elements ahead of the initial cracktip were already
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exhausted after half of the test duration. This also occurred in modelling

Test 9. Hence, in both Test 6 and 9 the value of Aa was determined by K
I

extrapolating the final or relatively steady state slope of the crack growth

versus time curves in Figs V-12b and V-14b. Another special characteristic

of Test 6 is that displacement data versus time was not measured during the

first five minutes of the test. Thus, based on other test behavior, a sig-

nificant amount of the early relatively rapid displacement rates were ignored.

Some of this early displacement would apparently have required more crack

growth in VISCO than the existing data did while using the HEN procedure.

The crack growth values, Aa2, in Table V-5 also correlate quite well

with the measured values Aa . The good correlation of Aa2 with test datam 2

provides support to this convenient method, developed herein, for calculating

creep crack growth. The significant convenience feature in calculating Aa2

is that once a no-crack-growth VISCO run is made for a given set of test

conditions, Eq V-6 can simply be applied for analyzing all further experi-

ments with approximately the same test conditions (e.g. load, crack length

and geometry).

A somewhat similar HEN analysis was done by HSU et. al. [32]to predict

crack growth in zirconium at elevated temperatures. HSU's crack growth pre-

dictions were 2.5 times greater than actual test data. In the present HEN

analysis, crack growth predictions were within approximately 10% of test data

for the tests that were totally simulated. The extremely good correlation using

the present method is attributed to both higher resolution experimental dis-

placement data than HSU's and a more realistic material model that includes

creep behavior. Additional displacements due to creep in HSU's analysis would

have reduced the amount of crack growth predicted. Since HSU's predictions were

high, this reduction would be in the direction of better correlation with test
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data.

Another comparison of current results can qualitatively be made with

Newman's finite element analysis of fatigue crack propagation [83]. Figure

V-22 shows crack opening displacement profiles during creep crack growth

from the VISCO model as represented by the solid lines. Note that with the

cracktip at point zero, the elastic crack opening displacement profile(i.e.

the dashed line in Fig V-22) is lower than the solid line which incorporates

the Bodner material model. However, as the crack grows a wake of residual

plastic deformation is left behind the cracktip. After 12 increments of

crack growth, Fig V-22 shows how this plastic wake diminishes the elastic-

plastic crack profile below a purely elastic profile for the same crack length

"a". The residual plastic deformation indicated by the cross-hatched area

in Fig V-22 was also displayed in a similar figure by Newman.

CRACK GROWTH CRITERION

Based on the good correlation between actual and predicted crack growth,

the VISCO results from the HEN applications were examined for potential crack

growth parameters. The local cracktip parameters such as strain and crack

opening displacement (C.O.D.) were examined initially since these parameters

have shown promise elsewhere [84, 851 for correlating finite element results

with crack growth test data.

The main goals here were to check out the validity of existing crack

growth criteria (i.e. critical C.O.D. and strain), possibly modify one of

these existing criteria to better fit test data, and postulate a new criterion

that might better account for creep damage accumulation and crack growth dis-

played by the HEN VISCO analysis.

CRITICAL STRAIN CRITERION. Examination of the strains in the elements

adjacent to the cracktip prior to each node release for crack growth in the

HEN VISCO runs revealed that no single value for the critical strain would
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satisfy all test conditions. However, a few VISCO runs were made using

a fixed critical strain criterion to further evaluate its applicability.

The critical strain criterion was implemented in VISCO by comparing

the average of the plastic strain components normal to the crack and with-

in elements adjacent to the cracktip with a critical strain value, C crit'

as time progressed. When the average cracktip plastic strain exceeded the

critical value, c crit' the cracktip node was released and unloaded in 5 sec.

Table V-6 gives a summary of the basic details for VISCO runs employing the

critical strain criterion. A cit value of 0.030 was found to work well A

from the HEN VISCO runs of Test 8a where KE was 16.3 ksi Th. However for K

Test 9 where KFE was 36.8 ksifi the Ecrit value needed to be 0.090 to work

well as shown in Fig V-23a. The corresponding r dependent crack growth
crnt

versus time is given in Fig V-23b. The 5 crit value of 0.075 allowed too

much displacement compared to test data as seen in Fig V-23. The displace-

ment results for a crit value of 0.090 appear to fit the data quite well over

the first five min. of the test. Likewise the resulting crack growth in Fig

V-23b agrees quite well with the HEN data in Fig V-13b. However, based on

examination of the prior HEN VISCO runs, if the simulation time were continued

the Ecrit value of 0.090 would have been too large. Therefore, insufficient

crack growth would have resulted and the displacements would have fallen away

from the test data as shown by the extrapolated dashed curve.

Figure V-24 displays the HEN VISCO cracktip strain values taken at the

time a cracktip node was to be released in the HEN VISCO runs. This plot was

motivated in an attempt to find a general trend of the critical strain values

or to determine a mathematical relationship with time to envelope the HEN

results. Note that in general the strains are high for short times and then

diminish with time to a common value of approximately 0.03. In order to de-

114



0 0 0
p 0 Nt 0 -4 -4W r

C~C)

4C) CD -.t 0 C4
Cn r- C 0 4c

C -t W~U2L(V)

-~ -CZ

w *dw c

10 1- m -4 _q-4

0 0) 0)

00 C

Cfo -4

0) u CD a) C
-H w co0L) -co U) cq V

E-4 C ) 1-4 C1

4--J

.- I

-'-

C)

> 4

Co.0V C 0 m c 0

0 'n 0.
tro C 0C

L) .I

44 C

-:t::

115



0-

C Test 90

2 8• KFIE 36.8 ksi I r.
E- ao/W=1367

z w6 (a)

I'S
00

S2A VISCO Run E3
I-
O a VISCO Run E2

0 150 5 10 15
TIME (min)

15 - E- .075 VISCO Run E2

0
0 E= .090 VISCO Run E310

(b)
0

5
Distant* Between Nodes= 20. miione

0W 

(U 0  i

0 5 10 15
TIME (min)

Figure V-23. VISCO Critical Strain Crack Growth Criterion,
(a) Resulting Displacements Due to Crack Growth,

(b) Resulting Crack Growth

116



12

'0 VISCO Run. S6
o VISCO Run S1
o VISCO Run 53

10 A VISCO Run S4
<> VISCO Run S2

8 T=O

a.>- -Eq V-7A,.

T = t--0

(_4 
0

•2 F1

0A

0 1000 30 40 50 60

TIME (min)

Figure V-24. Time Dependent Critical Strain Crack Growth Criterion

117



velop a critical strain funct:ional expression one can see a need for

a decaying parameter which would fit the upper bound strain values in

Fig V-24 related to rapid crack growth. In addition the expression

must have the capability of allowing the region around the cracktip

node to deteriorate with exposure to the cracktip environment (i.e. not

only the environment external to the specimen but also the singular strain

state internal to the specimen). Cracktip deterioration is considered to

be displayed by the lower bound of strain values in Fig V-24. Therefore

the general properties of the critical strain function have been stated.

The curve must be decaying with test time, thus a negative exponential

function is in order. And since critical strain values appear to diminish

with cracktip exposure time, but not as rapidly as an exponential function

would dictate, the cosine function was examined.

An empirical expression for the critical strain that fits the HEN

VISCO results fairly well is given by

= oE, A exp(6 t) cos"w I
Ecr %+= k: To T m--. (V-7)

where: c =0.03, A=3.0, b=1.34xlO-3 sec - , T =600.sec.
0 O

The value of £ re-resents the critical strain for large time. The co-

oo
efficient A is determined at t equal to zero. Once A and C0 are chosen

b is determined by best fitting the upper bound where cracktip exposure

time is small and set to zero (i.e. T=o). The parameter T determines how
0

rapidly the critical strain diminishes to c with cracktip exposure time

T.

Motivation for the development of Eq V-7 comes from environmental

effects such as oxidation at these high temperatures from exposure to

laboratory air. This oxidation is then associated with changing material
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properties at the cracktip such as the critical strain value. Crack growth

in alloys similar to IN-IO has been found to be quite sensitive to the en-

vironment and the resulting oxidation that can occur when an elevated tem-

perature crack growth test is done in air [86]. Therefore Eq. V-7 is an

attempt to represent the rate at which the critical strain for crack growth

is diminished with time due to environmental effects.

The critical strain criterion just formulated would be employed in

VISCO in the following steps.

1. Register both total test simulation time, t, and cracktip exposure

time, T.

2. Evaluate the critical strain level during each time step from Eq.

V-7.

3. Compare with cracktip element's plastic strain accumulating in

the VISCO analysis.

4. Release cracktip node when VISCO plastic strain at the cracktip

exceeds £crit from Eq. V-7.

5. Cracktip exposure time T is set to zero and the above steps 1-4

are repeated for the next cracktip node.

CRITICAL CRACK OPENING DISPLACEMENT CRITERION. The crack opening dis-

placement is here defined as the C.O.D. at the first node behind the crack-

tip in the finite element model. Examination of C.O.D.'s taken from HEN

VISCO runs in Table V-3 just prior to releasing a cracktip node revealed

no single C.O.D. value that could be used for all test conditions as a cri-

tical C.O.D. A value of 0.280 x 10- 4 in. was found from HEN VISCO results

for Test 8a with KFE - 16.3 ksiyrTn to work best, yet when a few VISCO runs,

as summarized in Table V-7, were done with a critical C.O.D. criterion and

an increase to FE=3 6 .8 ksiTin for Test 9, the best critical C.O.D. became
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approximately 0.500 x 10- 4 in. as shown in Fig V-25. Further observance

of Table V-7 and Fig V-25 shows that this criterion was very sensitive to

small changes in critical C.O.D. Therefore further evaluation of this

criterion was deemed unnecessary as compared with the less sensitive cri-

tical strain criterion.

CRITICAL DAMAGE ACCUMULATION CRITERION. In several theoretical works

and as stated recently by Goodall and Chubb [62], creep rupture of uncracked

components under a varying stress history is governed by the life fraction

rule. Consequently, this reference indicated that for a uniaxial stress

history, a(t), rupture occurs at a time t given by

r

dt (V- 8)0f tt = I(va

where tr (a) is the rupture time corresponding to a constant stress level,

c. When experimental stress values are plotted against their rupture times

on logarithmic scales the relationship is often linear in the region of

practical interest. Thus if M and C are material constants it is assumed

that

CM,.M t )= C (V-9)

Substituting Eq V-9 into V-8 yields

j 0 A- C (V-10)
0

The description of creep rupture given by Eqs V-8 through V-10 was dis-

cussed by Goodall and Chubb. The reference mentions that this rupture

model is only one of several possible formulations. However, neither experi-

mental nor theoretical work has provided an alternative to Eq V-8 that

gives a significantly better description of material response.
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It is recognized that Eq V-9 applies most directly to creep rupture

of uncracked uniaxial components. However, the present author considers

that similar behavior might be possible in creep crack propagation. A

schematic of the postulated behavior involved with creep crack propagation

is given in Fig V-26. This figure shows a creep damage front preceding the

crack. Within this front, the material is accumulating creep damage in the

form of microcracks. This type of creep damage is also associated with

creep rupture of uncracked components.

In order to apply Eq V-10 as a crack growth criterion a process zone,

6, is required and defined in Fig V-26. In addition, the rupture time i.

t is redefined from Eq V-8 to the elapsed time the crack requires to growr

from one node, in the HEN VISCO results, to the next node. In other words,

it is the time period during which the process zone, 6 is exposed to the

cracktip stress field prior to rupture. In the VISCO finite element analysis,

this process zone was taken as one element preceding the cracktip. The

average component of stress normal to the crackline from three elements

adjacent to the cracktip was used as the stress, 6, in Eq V-10 as shown in

Fig V-26.

Since the greatest stress exists at the cracktip and environmental de-

gradation is considered to be most prevalent there, most damage accumulation

was assumed to occur in the process zone after the arrival of the cracktip

to the process zone's border. Therefore time in Eq V-10 was measured from

cracktip arrival time to the current cracktip node, tA9 or

j odte n C
0- t(V- 11)

A
The constants M and C were determined based on results from the HEN VISCO
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runs. To accomplish this, Eq V-Il was approximated as

M..t
M r~ (V-12)

The rupture time or crack growth times t were taken from HEN VISCO results.

The stress, Gavg' also based on HEN results, was an average over time tr

of the cracktip stress defined previously. Since the interest here is to

develop values for M and C which apply to the entire set of tests, it be-

came obvious that there were more combinations of t and oavg than nece-r

ssary to uniquely define nd C. Consequently, to include the data from

each HEN VISCO run, a lez .- iare fit of the data on a log-log plot was

used to best fit the time-stress data. The values chosen were

M=15
79 1

C=8.63 x 10 (psi) 1 5 sec

Equation V-Il along with the above constants were then incorporated

into VISCO as a critical damage accumulation criterion for crack growth.

Table V-8 summarizes the basic details of the VISCO runs using this crack

growth criterion.

Figures V-27 through V-32 give the results of applying VISCO with the

critical damage accumulation criterion to the indicated test number in each

figure. The resulting VISCO displacements are compared to test data in Figs

V-27a through V-32a whereas the resulting crack growth from VISCO is given

in Figs V-27b through V-32b. For the higher loadings such as Test 9 in Fig

V-30a the difference between test data and VISCO results is greatest. Part

of this difference may be due to the fact that at this high load (K =36.8
FE

ksiV ') the damage zone as indicated in rig V-26 is much larger than the pro-

cess zone sited used herein (i.e. one element size or a characteristic dimen-

sion of 7.81 x 10 - in.). Hence significant damage accumulation may occur

in the material before arrival of the cracktip or time tA for a given element

in the crackpath. This damage occurring in an element prior to tA for that
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Figure V-27. Test 5 -VISCO Critical Damage Accumulation Criterion,
(a) Displacement Results, (b) Crack Growth Results
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Figure V-28. Test 6 - VISCO Critical Damage Accumulation Criterion,
(a) Displacement Results, (b) Crack Growth Results
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respective element was neglected in the present damage accumulation criterion.

However, for the lower loads agreement with the test data is quite good

considering that creep rates for the same test conditions can easily

vary by a factor of two or three which is why log-log plots are used to

plot creep data [29].

It should also be noted that the M and C values used were determined

from the approximate Eq V-12 expression. Crack growth results from this

criterion might also be improved by iterating or making small changes

to M and C and making further VISCO runs in an effort to better fit test

data.

CRACK GROWTH RATE CRITERIA

In this section crack growth rate criteria will be discussed based on

the steady state crack growth rates developed by the HEN VISCO runs. The

steady state crack growth rates were determined by best fitting a straight

line to the crack growth curves in Figs V-llb through V-16b. The initial

transient portion of these crack growth curves was ignored for these steady

state values. Also a discussion of the merits of the C* integral as a

crack growth rate criterion will be given.

STRESS INTENSITY FACTOR CRITERION. Crack growth rate, A, has

previously been found to correlate with the elastic stress intensity

factor as given in Eq 11-2 and recalled here

6L A ( K) (-3

This relationship plots as a straight line on log-log paper, as shown in

Fig V-33. The experimental data referred to in Fig V-33 was for IN-100

behavior at 1350*F which is the same alloy and temperature used in the

present investigation. Note that Donat's experimental data [76] covered
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a range in K values from 30 to approximately 80 ksi n. In order to

compare with the lower K levels in the current investigation, the line

representing the best fit to Donat's data was extrapolated as shown by

the dashed line in Fig V-33. Agreement with the present HEN VISCO re-

suits, in which KFE is taken from Table V-3 and a from Figs V-llb through

V-16b is good especially considering the fact that the test data line

was extrapolated.

This criterion has the distinct advantage relative to criteria pre-

sented earlier that once the constants A and a are determined, it can be

used independent of finite element analyses. This advantage is due to the

fact that K can be calculated for most test geometries by relatively simple

equations like Eq V-3. Thus the so-called steady state creep crack growth

rate can be simply calculated from Eq V-13, but it should be kept in mind

that incubation time for crack initiation nor the initial rapid crack growth

observed in the HEN VISCO results is captured with this criterion.

NET SECTION STRESS CRITERION. Crack growth rates have also been shown

to be related to net section stress as given in Eq 11-3 and recalled here

a) (V-14)

Figure V-34 shows how Eq V-13 also plots as a straight line (the dashed linc)

on log-log paper. The present results seem to correlate to Eq V-14 as well

as they did to Eq V-12 on log-log paper. This is not surprising since for

the center cracked plate it can be shown that K is approximately directly

proportional to a n for crack lengths of aA from .2 to .7 which spans the

the crack lengths in the current study. The net section stress criterion,

like the K criterion, also neglects crack growth characteristics.

C* INTEGRAL CRITERION. The C* integral is an extension of the J integral

concept for application to creep crack growth (a detailed discussion of C*
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is given in Appendix C). Theoretically the C* integral is path independent

for a creeping solid where stress is only a function of the plastic strain

rate and elastic strain rates do not enter into the formulation. In the

present research, C* was calculated as shown in Appendix C. In this cal-

culation total strain rates were attributed to creeping plastic strain

rates which implies no elastic strain rates exist. For a realistic material

that includes elastic behavior, if the elastic strain rates are zero then

the stress state is constant with time. And therefore, the creeping plas-

tic strains, since they are a function of stress must also be constant.

Accordingly, with constant stress and strain rate the W* integral was in-

tegrated directly in Appendix C.

The above description for calculating C* in VISCO was implemented

and applied to a realistic elastic-viscoplastic material (i.e. IN-100)

being studied herein. It was observed that during load application

the C* values were extremely high due to the elastic strain rate con-

tribution. After maximum load was achieved C* values reduced down to

much lower steady state values until crack growth began in the HEN VISCO

runs. Again as crack growth began, the C* values increased significantly

due to the elastic strain rate contribution as stress was redistributing

around the moving cracktip. It should be noted that any attempt to re-

move elastic contributions to strain and displacements will resilt in an

ill posed problem since the displacement rate components needed in Eq 11-7

cannot be resolved into an elastic and plastic portion.

Thus far evaluation of the C* integral given in Eq 11-7, the elastic
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part of the strain rate is neglected, otherwise the integral has no

meaning. But when the elastic strain rates are ignored, C* should only

be calculated after the stresses are fairly constant and prior to crack

initiation, C* will then be a constant until the crack begins to grow.

Therefore it is impossible to relate C* to any incubation time for crack

growth. Moreover, during crack growth the contribution from elastic strain

rates is again substantial and cannot be ignored. Therefore it appears that

the C* integral is ineffective as a fracture criterion in a finite element

model for creep crack growth in the current investigation.

LOAD POINT DISPLACEMENT RATE CRITERION. An expression relating crack

growth rates to load point displacement rate was given in Eq 11-4. Unfor-

tunately this criterion suffers from problems similar to the C* integral.

The load point displacement rate after reaching maximum load is the sum of

the displacement rate due to crack growth as well as the displacement rate

due to plastic deformation. Hence the load point displacement rate may have

several values for the same crack growth rate depending on the rate of

plastic deformation such as demonstrated in Eq V-6. One can get an appre-

ciation of how much plastic deformation contributes to the overall displace-

ments by looking at the no-crack-growth displacements versus time in Figs

V-lla through V-16a which are totally a result of plastic deformation. There-

fore the load displacement rate does not provide a unique solution to the

crack growth rate unless variations in the plastic deformation rate can be

neglected.
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VI SUMMIARY AND CONCLUSIONS

A two dimensional (plane stress/plane strain) finite element program

has been developed which accounts for both nonlinear viscoplastic material

behavior and changing boundary conditions due to crack growth. Three visco-

plastic material models: (1) Malvern Flow Law, (2) Norton's Creep Law, and

(3) Bodner-Partom Flow Law were incorporated into the program. These time

dependent material models were numerically integrated through time by a

linear Euler extrapolation technique. A variable time step algorithm was

included that maximized time step size during the analysis while maintain-

ing good accuracy. This program was used as the plane stress theoretical

model for the hybrid experimental-numerical procedure employed to analyze

sustained load creep crack growth test data. The test specimens were

0center cracked plates made of IN-100 and tested at 1350 F.

The following statements and conclusions are based on the creep crack

growth analysis herein.

1. A method for getting crack growth behavior solely from displacement

measurements in conjunction with a cracked specimen model which uti-

lizes realistic constitutive relationships has been developed. The

constitutive law was especially tailored to the nickel-base alloy

studied which displays time dependent nonlinear inelastic behavior

at elevated temperatures. It has been demonstrated that the technique

can be applied where crack extension is very small and could not

otherwise be resolved by conventional experimental crack measuring

techniques (e.g. compliance techniques or using a travelling micro-

scope). This method provides realistic monotonically increasing

crack growth values with resolution better than 0.001 in. Crack growth
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predictions agreed to within 10% of post-test measurements.

2. Numerical procedures were developed to efficiently integrate the non-

linear time dependent material models and simulate crack growth by two

cracktip node unloading methods. The numerical time integration pro-

cedure utilized an Euler linear extrapolation technique with a vari-

able time step algorithm that maximized time step size during the

simulation while maintaining good accuracy. One cracktip node unload

method diminished the restraining force on the finite element cracktip

node in a specified 5 sec. time period independent of crack growth rate

whereas the second method continuously unloaded cracktip nodes in pro-

portion to a predetermined crack growth rate. Unloading the nodes con-

tinuously provided a closer fit to displacement versus time test data

however the average displacement versus time was approximately the same

for both node unloading methods.

3. A procedure was developed for determining crack extension using cal-

culations of viscoplastic deformation with no crack growth. In this

procedure, the difference between total test deformation and viscoplastic

deformation is attributed to crack extension. Extremely good crack

growth predictions were made.

4. The elastic compliance method for resolving creep crack extension has

been shown to imply negative unrealistic crack growth and is unreliable

especially during the first part of a creep crack growth test.

5. Several parameters were studied for their potential as creep crack growth

controlling parameters.

a. No single fixed value of strain for a critical strain crack growth

criterion was found to match all test conditions in this investigation.

Environmental effects apparently tend to lower the critical strain
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magnitude with time, under !.ad. An empirical relationship was

developed, based on the HEN results, which gives the critical

strain a diminishing value with time. This investigation did not

include any plane strain analyses. Due to higher constraint at

the cracktip for plane strain, less stress redistribution would

occur. Therefore it seems possible that the critical strain for

all test conditions may vary less in a plane strain simulation.

b. No single fixed value for C.O.D. was found to match all test con-

ditions using a critical C.O.D. crack growth criterion. The C.O.D.

behaved similar to the cracktip strain with time however its per-

cent variation was less.

c. A critical damage accumulation criterion for crack growth was de-

veloped based on a modification of the life fraction rule for creep

rupture to account for environmental effects at the cracktip. App-

lication of this criterion provided good agreement with the low to

medium load test conditions. For the highest load test cases, this

criterion predicted crack growth rates somewhat lower than the HEN

results. It appears that accumulation of damage over all time and

not just cracktip exposure time might improve the results.

6. Data obtained in this investigation through numerical calculations pro-

vided crack growth versus time and thus crack growth rate time, z.

The a data compared well with published data for the same material and

temperature when plotted against stress intensity factor. The present

data was obtained for a and K values lower than the referenced data.

Net section stress also provided good correlation with the predicted

crack growth rates.

7. The C* integral and load line displacement rate were investigated as
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possible parameters controlling crack growth rate, a. Tue C* in-

tegral is an unreliable parameter for predicting creep crack growth

due to its formulation which is based on a creeping solid behavior

that neglects elastic strain rates. The load line displacement rate

which can be shown to be proportional to C* also does not provide a

unique solution for the crack growth rate unless variations in plastic

deformation rate can be ignored. In general these parameters appear to

have no applicability to crack growth rate prediction using numerical

modeling of materials. However these parameters seem to correlate

data fairly well once the solution is known as seen in the literature.

8. Constant strain triangular finite elements of the size of grains at the

cracktip work well for resolving small increments of creep crack growth

through the method developed herein.

9. VISCO results using the Bodner-Partom material model were very similar

to the VISCO results incorporating the Malvern-Norton superposition model

for the center cracked plate, especially for times greater than 200 sec.

after load application. Also for times greater than 200 sec., Norton's

law alone in VISCO was very similar to VISCO results using the Bodner-

Parton material model.

10. Displacements and the associated crack growth were found to be signifi-

cantly dependent on prior deformation history. Prior deformation history

became very important in the case of Test 8 where no fatigue precracking

was done between creep crack growth tests.

The above advancements in the understanding of creep crack growth behavior

at elevated temperature are especially suited for aiding future slow crack growth

tests for determining the threshold load levels for creep crack growth. In

addition the crack growth criteria investigations provide significant progress

towards life prediction of actual turbine disks.
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The following additional research work is recommened to further the

life prediction capability developed in the present work.

1. Use present approach to analyze other test specimen geometries (e.g.

compact tension specimen) to determine dependence/independence of results on

specimen geometry and also assess repeatability and material data scatter.

2. As computers become faster and more efficient finite element

techniques are developed, a three dimensional analysis of creep crack growth

should be accomplished to correctly model through the thickness variations

in test specimen behavior. As a first step in this direction, plane strain

analyses similar to the present work might provide additional insight into

creep crack growth behavior.

3. Future work needs to include cyclic or engine spectrum loading conditions.

4. Additional material characterization test data is needed in general for

IN-100. Tests providing this data should be done at several temperatures such

that the constitutive model could be further developed and include temperature

dependence.

5. Environmental effects should be further researched by performing creep

crack growth testing in several different environments such as vacuum, inert,

salt spray, high sulfur content, variable oxygen partial pressures, etc.

In summary the technique developed herein is worth exploring further in that

it has potential for providing information on crack growth rate behavior in

engine materials under typical operating conditions which might not be readily

obtained using conventional techniques. This information in turn, is necessary

in order to implement a retirement for cause philosophy for U.S. Air Force jct

engine components.
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APPENDIX A. FTNITE ELEMENT FORMULATION

In the following sections, the basic concepts and equations used in

the finite-element analysis of elastic and elastic-plastic, materials are

briefly reviewed. These equations provide background for the elastic-

viscoplastic nonlinear finite-element computer program development.

The basic philosophy of the finite-element method [31] is that an

approximate solution to a complicated problem can be obtained by sub-

dividing the region of interest into a finite number of discrete elements

and then choosing appropriate relatively simple functions to represent

the solution within each element. These functions are simple compared

to the so-called "exact" solutions which account for the entire region of

interest. In this section the equations associated with representing a two-

dimensional body as a finite number of elements are presented. The dis-

placements in each element were expressed as a simple polynomial and the

equations relating displacements to applied loading for both plane-stress

and plane-strain conditions are given.

DISPLACEMENT MODEL

The displacement function used in the displacement formulation is

generally selected as a polynomial. The polynomial expression allows for

simple differentiation and integration. Also, as the element size becomes

small, the polynomial expression permits a simple approximation to the

exact solution. A polynomial of infinite order corresponds to an exact

solution. However, for practical purposes the polynomial must be truncated

to a finite number of terms. Thus, the number of elements in a structure

must be large enough so that the displacement function for each element

closely approximates the exact displacements in that particular region.

In any numerical method, the solution should converge to the exact
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solution as the size of the elements become small. For the displacement

formulation, it has been shown that under certain conditions the solution

provides a lower bound to the exact displacements [311. To assure this

convergence certain conditions must be satisfied. First, the displacement

function must be chosen so that rigid body displacements do not cause

straining of the element. Second, the function must also be chosen so that

a constant state of strain is obtained as the element size approaches zero.

The simplest polynomial function which staisfies these two requirements and

also maintains displacement continuity between adjacent elements is the

linear-displacement function.

Displacement Function. Figure A-1 shows a typical triangular element, m,

with nodes i, j, k numbered in a counter-clockwise direction. The linear-

displacement function which defines the displacements within the element

is given by

oe + ) + A (
(A-l)

if 0( Y.0~

where the constants ai are determined from the six nodal displacements and

nodal coordinates as

0I Z (A-2)

A.0(3 C J C K

and

(0(4 K a

a gieVy. j (A-3)
b- 6A 6 K i

where A is the in-plane area of the element. The coefficients a., b.,

and c1 are given by
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where x and y are coordinates of the nodal points. The other coefficients

for subscripts "j" and "k" are obtained by cyclic permutation of the

subscripts i, j, and k.

Element Strain. The total strains at any point within an element are

defined in terms of the displacement derivatives as

_V (A-5)

- 4

From Eqs A-1 to A-5, the total strains are written in terms of nodal displacements

and coordinates as

(A-6)

where {U} is the generalized nodal displacement N) T = {Uui v UkV k}

and

b. 0 6. 0 K

2~W 0  CI 0 C, 0 CKj A;
[ 2A] "Z o c o j 6 (, A-7)

[Ci b C3 6 CK K

The superscript T denotes the matrix transpose.

ELASTIC ANALYSIS

For linear elastic and isotropic materials, the relationship between

stresses {o}, strains {}, initial stresses {u I and any initial strains

{L } is given by
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where [D I is the elastic material property matrix. The matrix [D ] for

plane-stress conditions where o a 0 is given by
xz yz

1 0 (A-9)

where E and v are the modulus of elasticity and Poisson's ratio, respectively.

For plane-strain conditions where E 0 0, the elastic material property
z

matrix is given by

-- " '7 y ).] l(A-10)r

rol : (I-V'
00 Z (--7 .)

Under plane-strain conditions, a normal stress also exists and is given by

CT V (X+rY) (A-il)

Method of Solution. The equation which governs the elastic response

of a discretized structure can be derived from the principle of virtual

work [31] and is given by

where [K 1 is the elastic stiffness matrix of the strtlcture, t i" thi

generalized displacement vector, {P} is the external app] icd load w'ct,,r,

and {Q} is the force vector due to the presence of initi.1l "tres,, ,il,! ,r

initial strain.
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The coefficients of the elastic stiffness matrix are obtained from

[K7 2 " [JT D] 1]j vol (A-13)

where the integration is taken over the volume of each element and the

summation is over all elements in the structure. The nodal forces due to

initial stresses are given by

and the nodal forces due to initial strains are given by

=~~~~ t fBT)J~ 0~ 1  (A-15)

ELASTIC-PLASTIC ANALYSIS

The application of the finite element method to problems involving

materials that obey linear constitutive laws is straight forward because

the material properties are constant. Therefore only one solution is

required to obtain displacements for the elastic structure. However, for

elastic-plastic problems the coefficients in the stiffness matrix vary as

a function of loading. Thus, the elastic-plastic displacements are usually

obtained by applying small load increments to the structure and updating

the coefficients of the stiffness matrix. Another technique called the

"residual force" method [11] avoids modifications of the stiffness matrix

by adding on a so-called plastic load vector to the force side of the

equilibrium equation (i.e. Eq A-12). Only the residual force method will

be discussed herein.

Yield Criterion. In any elastic-plastic material the elastic formulation
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can be used prior to plastic yielding. Thereafter it is necessary to have

a yield criterion to determine :he state of stress at which yielding occurs.

The von Mises yield criterion is one of the most widely used. This criterion

assumes yielding is caused by the maximum distortion energy [64]. The

yield criterion for plane stress conditions is given by

2

F =~ a Fc7~ y dj 0-- + 3 a-x 7' (A-16)

and for plane strain

.1.
Cr Y f(A-17)

where a is the uniaxial yield stress. If the state of stress is such that

F < 0, the material is still in the elastic range. Wrhen F = 0, a plastic

state is obtained and one of the flow theories of plasticity must be

employed to determine subsequent plastic behavior under increasing stress

or strain.

Flow Theory. One of the basic assumptions in the theory of plasticity

is that the total strain {c} or total strain increment {dJ' can be decomposed

into elastic and plastic strain components as follows:

or, incrementally,

tdE ~ 4- (A- 19)

In the incremental theory of plasticity the plastic strain increment vector

{dcP} is a function of the current state of stress and is related to th,

yield criterion through the Theory of Plastic Potential [80]

,de P = (A-20)

where ). is a positive scalar quantity. This flow law is also written in
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terms of strain rate

[ {:;I i:: ] -  Z -' "-](A-21)

In this case X' has the significance of the coefficient of viscosity.

Equations (A-20) and (A-21) are also known as Drucker's Normality Principle [64]

which by its name specifies that the plastic-strain increment vector is to be

aligned normal to the yield surface in nine dimensional stress space. hen

the von Mises yield criterion is used with Eq A-20 the resulting expression

for {dcPl is identical to that proposed by Prandtl and Reuss [64]. The

total strain increment vector can now be written as

where the elastic strain increment vector has been related to the stress

increments {do} through the elasticity matrix. Therefore, if was knoin,

then the desired stress-strain relation for an elastic-plastic material

would be obtained. When yielding is occurring, the total differential of

Eq. A-16 or Eq. A-17 gives

F (A- 23)
JT

The increment in yield stress d- is obtained from a uniaxial tensile test as

, C P = H P (A-24)

where 11' is the slope of the stress-plastic strain curve, dcu is the

uniaxial stress increment, dcP is the uniaxial plastic strain increment.

Using Eq. A-20 for the uniaxial case gives dr p =2. Tc lq. A-23 becor-ts

H2~c (A-25)
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Eliminating from Eqs A-22 and A-25 res,,1 ., in an explicit expression

relating increments in stress to increments in total strain [44]. This

expression is

{OLa- C)C OE~ (A-26)

where

J: - H ' (A 27)

The matrix [D EP is the elastic-plastic matrix which replaces the elasticity

matrix [D ] in an incremental analysis. For an elastic-perfectly plastic

material, H' is set equal to zero. In general the slope of the uniaxial

stress-plastic strain curvw, 11', varies with plastic strain. Therefore

to relate a muL]tiaxi:i al stic strain state to a uniaxial experimental

stress-plastic strain curve, an effective plastic strain is defined in

incremental form as

C cr (A- 28)

ELASTIC-PLASTIC SOLUTION TECHNIQUES

The procedures, used to solve small displacement elastic-plastic

problems incrementally within a finite element computer program, may be

divideu into two categories. In one, the effects of plasticity are

accounted for directly in the stiffness matrix. The second category treats

plastic behavior as an additional plastic load that is combined with

applied or external loads in the equilibrium equation (i.e. Eq. A-12).

These two procedures are referred to as the "tangent Modulus" and "residual

_arce" methods respectively. Only the residual force method in the form
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of "initial stress" and "initial strain" will be summarized herein.

Initial Stress Method [44]. The equation which governs the response

of a discretized structure under loads which cause plastic deformation [311 is

I I. '- I

--_ iQ (A-29)

where K.J is the elastic stiffness matrix, {U.} is the generalized displacement

vector, {P) is the applied load vector, and {Q} is the "effective" plastic-

load vector which accounts for elements in a plastic state. The initial

stress method approaches the solution to an elastic plastic problem by

applying a series of small load increments to the structure until the

desired load is reached ({P1 i = {pi-l + {dP1). The superscript i denotes

the current increment and i-l denotes the preceding increment. After each

load increment an iterative process is required to stabilize the plastic-

load vector. The subscript I denotes the current iteration and I-1 denotes

the preceding iteration. During the ith increment a purely elastic problem

is solved and the increments in total strain {dfl and corresponding elastic

stress {do } are computed from the displacement increments {dUi for every
E

element. Because of the material nonlinearity the stress increments are

not, in general correct or if the correct stress increment for the corresponding

strain increment is {do}, then a set of body forces or plastic-load vectors

{dQ} caused by the "initial" stress {doo ) = (ido E ) -{do) is required to

maintain the stress components on the yield surface or compatible with the

uniaxial stress-strain curve. The correct stress increment is computed

with Eq A-26. The plastic load increments are computed from Eq A-14

Elements are in the elastic state when {dLyo = 0. The total plastic-load
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vector is then computed as

+ (A-31)

At the second stage of computation the new force system {Q} is added to

the applied load vector and a new set of displacements is obtained.

Again, some of the stresses are likely to exceed the yield criterion and a

new set of plastic-load increments are computed. This iteration process

is repeated until the change in the plastic-load vector is sufficiently small.

See Fig A-2 for a uniaxial schematic of this iterative procedure and

Fig A-3 for the mathematical algorithm. Consider points A,B, and C in

Fig A-2. Point A is the state prior to the load increment. Point B is

the state after the load increment has been applied and one "initial" stress

iteration has been accomplished. Point C is the state of stress and strain

sought after which satisfies equilibrium with external loads and compatabilitv

with the material's stress-strain curve. Notice point B satisfies compatabilitv

but not equilibrium since {do I 1< {do I

INITIAL STRAIN METHOD

The initial strain method parallels the initial stress method somewhat

and accordingly this development will begin just after step 4 in the

"Initial Stress" algorithm in Fig A-3.

The elastic-plastic material matrix [D ] is used as follows
EP

This plastic strain increment {dVP I is then used to calculate a plastic

force vector increment

L~4~ JL8~j4EJ~oI(A- 33)
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This plastic force vector increment is added to the external force vector

increment{dP} for the augmented global force vector used in the next

iteration as follows:

j/J'j ., = LK]- ' P  /  e (-34)

[- ] I (A-35)

The stress increment {do) is calculated as follows

Steps (1) - (4) of the Initial Stress algorithm and Eqs A-32 through A-36

above are repeated until compatability with the materials stress-strain

curve is established. Compatability is shown to be achieved after "n"

iterations in Fig A-4. Also, compatability would display itself by

little or no change in the plastic strain increment between iterations.

Note that equilibrium is continually satisfied in this initial strain method.

This version of the initial strain method differs from Narcal [45] by t1

fact that iterations within a load increment are done globally rather than

within each element as the "constant strain" method of iteration implies

in Marcal's paper.
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APPENDIX B. ITERATIVE SOLUTION TECHNIQUE

FOR NODE POINT DISPLACEMENTS

The matrix equation which governs the response of a discretized structure

is

[Ki {LJJ JP (B-i)

where [ K] is a symmetric positive-definite n x n matrix, {U} is the unknown

node point displacement vector, and {P) is a known load vector. In the

finite element method for structural analysis, the matrix [ ] is usually

highly banded and if stored in compacted form (i.e. only nonzero terms

retained) requires much less space in the computer than the product n x n

reflects. Also, if there are changing boundary conditions, such as freeing

nodes to simulate crack growth, then the [ K matrix must be recomputed.

A solution technique that works well with compacted [ matrices and

conveniently admits boundary condition changes, is the Gauss-Seidel iterative

technique with over-relaxation [14]. This technique may be implemented

in the following manner[87]. Consider Eq B-1 rewritten as

VSK X SXY f1P
-- - - - - (B-2)

where U and U represent node point displacement vectors in the x and yx y

direction respectively, P and P represent the node force vectors in thex y

x and y direction respectively. The submatrices SXX, SXY, SYX, and SY"

n n
in the matrix [K] have dimensions - x -, but due to their bandedness

n

can be compacted to a matrix which is - x 9. The dimension 9 minus I

reflects how many adjacent nodes can be connected to anv given node. This
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I

is not very restrictive since triangular finite elements develop undesirable

aspect ratios if there are more than 8 nodes connected to any one node.

Appropriate terms of the matrix [ K] are retrieved from the compacted

submatrices with the help of a matrix NP and a vector NAP. The vector NAP

n n
has the dimension - and the matrix NP has the dimension - x 9. The Ith

2 2

component of NAP or NAP(I) stores the number of adjacent node points

connected to nodepoint I. The (I, J) component of NP or NP(I,J) stores the

address of the terms in the submatrices associated with the Jth adjacent

node point connected to node point I. Note that for node I, J may go from

1 to NAP(I).

Consider the governing equation for node point I displacements written as

yxX (11 SYY()) '

V ) y

If the right hand side of Eq B-3 is defined as the vector leitn slx'inc.

for the displacements at node I yields

a,SKK(I,I) sxy(r)i)FRX (B-4)

U y [SyX (1)') *syy I(i*0J FRY(-)

Note that the matrix to be inverted in Eq B-4 is only a 2 x 2. Also since

this is the only place these terms of the submatrices are used this 2 x 2

may be inverted and its components stored in their original submatrix locations.

To incorporate an over-relaxation factor, Eq B-4 is modified
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as follows

,A Ux() X [SX (,1SY (,) FKX3 U (:')I (B-5)

where the superscripts m and m-i refer to iteration number. The left

hand side of Eq B-5 is the change in displacements between iterations

without applying an over-relaxation factor. But the new total displacements

for iteration m using an over-relaxation factor are

auri
ax11rnIU (B-6)

where XFAC is the over-relaxation factor which normally ranges from 1.8 to

1.9 for structural analysis.

Convergence of these iterations is checked by computing an effective

force unbalance term, SUM, defined as

If SUM becomes less than a specified small value, 9, iterations are stopped

and the node point displacement solution is obtained. The value of 9 is

chosen based on examining solutions for various sizes of 9. A good starting

value for 9 is one tenth of the applied load. The final 9 is then chosen

based on the amount of accuracy desired.

Displacement boundary conditions are easily input to this solution

routine by simply specifying the desired node point displacements and then

require the iteration algorithm to skip ove- the node displacement equattions

which have fixed displacements. Likewise, if a fixed node is released

during the analysis such as for modelling crack growth, this node's dis-
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placement equation may be reactivated in the iteiation algorithm.

Convergence of this solution technique (i.e. when SUM i@) is

dependent on the initial guess for the node displacements. Usually for

convenience all unknown displacements are initialized at zero. However,

for each succeeding solution, such as in a nonlinear incremental analysis,

much better initial displacement values are available from the prior solution.

These initial displacements from prior solutions significantly reduce the

number of iterations to convergence.
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APPENDIX C. THE J AND C* INTEGRALS

J INTEGRAL

Rice's J Integral is defined as

3- = f[WEIy _T RA',-01 s] (C-1)

where

(C-2)

and r is a closed loop around the cracktip as shown in Fig 11-2. Expanding

J and integrating along a rectilinear path in the x and v directions results in

'T V - ax- y+ (-.y "M +v-Y(C-3)

)C

The following describes a numerical procedure for calculating the J integral

with a finite element program that incorporates constant strain triangles.

Consider Fig C-1 which is a region of elements taken from a finite element

model of a cracked geometry. Paths 1 and 2 are two possible paths. The

contribution to path 1 from element 2 is

where the number inside parenthesis refers to the element number these

values came from. A similar contribution would come from element 5 for

path 1. Path 2 which also runs through element 2 would also have the above

contribution from element 2 but as path 2 turns and runs along the border of

elements 6 and 1 the following is the contribution

A F61 R
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Notice in this case an average of the stresses and strains in the two

elements is taken by effectively running half the element length in element

6 and half in element I.

The strain energy term 'W(2) in Eq C-4 is calculated as follows

Although these equations are shown for specific element numbers their form

is used for all elements along the J integral path.

C* INTEGRAL

The C* Integral [23) defined as

where

.7

'3

and r is the same type of path as for the J integral. C* may be obtained

by replacing strain and displacement in the J integral with strain rate

and displacement rate respectively. The rational behind this is based on

the assumption that the material being analyzed behaves as a creeping

solid such that

(C-9)

or in a multiaxial sense

_________ (Cit)r.
'3
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where W* was defined in eq. C-8. Notice Eq. C-9, which is considered a

plastic strain rate, makes no provision for admitting elastic strain rates.

Hence the claim of path independence for the C* integral can only be

approached in a realistic elastic-plastic material once the stresses have

reached a steady state value (i.e. a.. = 0). With this restriction on

stresses, C* may also be defined as J or the time rate of change of the

J integral. In general J would include the time derivatives of stress and

traction but if they are restricted to zero then J is equal to C* for a

creeping solid. Also with &.. equal to zero, Eq C-8 may be directlyij

integrated to

Vy = (7 .C-l1)

Using this form of W*, C* may be numerically calculated in the same fashion

as the J integral with the exception of using strain rates and displacement.
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APPENDIX D. DETERMINATION OF BODNER

MATERIAL MODEL CONSTANTS

This appendix describes how each of the material constants for the

Bodner-Partom material model can be determined. Normally high costs

and material shortages prevent obtaining more than one or two stress-

strain curves and the same number of creep tests. Ideally, to best

characterize the material, several stress-strain curves should be

generated over a wide range of strain rates, similar to Fig 111-2.

Likewise, several creep tests should be performed over a wide spectrum

of stress levels.

In general the Bodner material constants are dependent on temperature.

However, the temperature dependence is suppressed by performing the

material characterization tests (i.e. stress-strain and creep) at the

same temperature that the Bodner model will be applied.

To determine the Bodner constants from uniaxial test data, the

Bodner equations are written in uniaxial form as follow: (the total

strain rate is the sum of plastic and elastic strain rates)

-+" +(D-1)

and the plastic strain rate for uniaxial tension is

.- /
1-D e L6 ' I (D-2)

where

-- , - XP- ) [ (D-3)

,,rC,,- )(D-4)
WP Mz -7)
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A 'r
-- ZRI ) !j (D-5)

over small time intervals, such as a typical stress-strain test at 10-3 sec
-1

strain rate, the recovery term, rec' may be ignored and then

,WP =(D-6)

Since test data can be resolved into the forms, 6 and a, Eq. E-2P

is solved for Z which then is a function of t and a as follows
p

':a n+ I (W -P ) (D-7)

The viscoplastic material constants in these equations are broken

into "short time response" and "creep" groupings for determination.

SHORT TIME RESPONSE CONSTANTS

The short time response constants for the Bodner model are D0 , n,

m, Z0, ZI. These constants are primarily determined by using stress-

strain test data.

The constant D is normally assigned the value of 10 4sec- 1 . For

high strain rate applications, D may be set higher (e.g. 10 6sec
- )

which would result in small changes to the other constants.

The constant n is directly related to the model's strain rate

sensitivity. High n values reflect low strain rate sensitivity and

vice versa. Changes in n affect the stress values for a given strain

rate by shifting up or down the family of stress-strain curves, but the

shape of the curve is preserved. The value of n is determined in an

iterative fashion. The first estimate of n should be between 1 and 10
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based on past material modeling efforts (8]. Plots of Z versus W pP

are then made by simultaneous use of each stress-strain curve, Eq E-l,

Eq E-6, and Eq E-7. The value of n is then adjusted with the objective

of making all Z versus W curves from each stress-strain test fall onP

top one another. This value of n will then satisfy the requirement

that Z is a single value function of W as given in Eq E-3.P

The first approximation of Z can also be determined from Eq E-7.

A small value of 1 (e.g. 10-6sec- ) and the lowest apparent initial
p

yield stress from the stress-strain test data are substituted into Eq E-7.

The resulting value of Z is defined as Z . Note that Z is the primary0 o

constant that determines the stress level at which significant plastic

straining (i.e. 1P > 10-6sec - 1) begins.

The constants Z and m are determined by rewriting Eq. E-3 as
1

An iterative process is now begun to determine Z1. The first estimate

of Z1 should be larger than Z (e.g. 1.5 Z ) since Z is the maximum

value for Z. By incorporating this estimate of Z., a plot of In (Z -Z)

versus W is made based again on stress-strain test data, Eq E-l, E-6,P

and E-7. This should approximate a straight line whose slope

is the constant m and extrapolation of the line to W a 0 provides aP

* value of Z . If this Z obtained graphically does not agree with the

previous value for Z0 , adjust Z1 accordingly and reiterate.

These values for n, m, Z0 , and Z which primarily govern the

short term stress-strain behavior should be input to a computer program

that numerically integrates Eqs E-1 through E-4. Stress-strain
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predictions from the model should be made for each experimental strain

rate to see how good the fit is. Only minor adjustments to the short-time-

response constants should be necessary to best fit test data.

CREEP CONSTANTS

The creep constants for the Bodner model are Zi, A, and r. These

constants are determined based on data from at least two creep tests at

different stress levels.

During secondary creep, when plastic strain rate is approximately

constant, it follows from Eq E-7 that Z must also be a constant. In

addition, if Z is a constant it follows from Eq E-3 that W is a constantP

which makes * - 0. Hence,with W = 0 in Eq E-4 and combining withP P

Eq E-5

The constant Zi represents the minimum value for Z corresponding

to secondary creep. If creep occurs below the apparent yield stress

implied by Z0 , the value of Z1 must be less than Zo . Moreover, Zi

must be less than or equal to the smallest value of Z from Eq E-7

when using creep test data (i.e. 6P and a).. After selecting a value

for Zi, the constants A and r can be determined after rewriting Eq E-9

in terms of natural logarithms

Stress and plastic strain rate are substituted into Eq E-1O along
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with the appropriate Zfrom Eq E-7 and creep test data. With data from

creep tests at two different stress levels two linear equations in terms

of the two unknowns A and r are developed. The constants A and r are

then determined by simultaneous solution of these two equations based on

Eq E-1O and creep test data.

The complete Bodner model should then be tried out in a computerized

numerical integration scheme in an effort to make final adjustments

to the constants for a best fit to the test data.

It became apparent to the author that in working with this material model

a sensitivity study is required in order to see the effect of changes in the

respective constants on creep crack growth. Yet it is felt that the results

and conclusions presented in the main body of this report provide realistic

directions and trends of creep crack growth.

1

176



VITA

Terry D. Hinnerichs was born on 30 November 1946 at Norfolk, Nebraska.

He graduated from Stanton High School in Stanton, Nebraska in 1964. He

then attended Northeast Nebraska Technical College in Norfolk, Nebraska

and graduated in May 1966 with an A.A. degree. Continuing on to the

University of Nebraska, he gradu4ted with distinction with a B.S. in

Mechanical Engineering in January 1969. He then was employed by the Aircraft

Engine Division of General Electric, Evendale, Ohio for approximately one

year. His employment at G.E. involved research in jet engine turbine aero-

dynamics and vibrational analysis. In 1970 he enlisted in the United States

Air Force. While working at the USAF Academy as a faculty research assistant,

he took course work from Colorado State University (via video tape program)

which led to his M.S. in Mechanical Engineering in the spring of 1973. In

June 1973 he was commissioned as a second lieutenant in the United States

Air Force and was assigned to the Air Force Materials Laboratory (AFML).

While at AFML his duties included research in the areas of fracture mechanics

and thermostructural response of reentry vehicle nosetip material. In February

of 1976 he was assigned to the Air Force's 4950th Test Wing Aircraft Modifi-

cation Center where he managed the resources applied to major aircraft

modifications to support airborne test requirements. In July 1977 he came

to the Air Force Institute of Technology to pursue a doctorate in Aerospace

Engineering. He is currently being assigned to the Air Force Weapons Laboratory.

He married Miss Cheryle Newton in 1969, and they have two children,

Todd and Christopher.

177



SECURITY CLASSIFICATION OF THIS PAGE (When Date..era d)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
N PBEFORE COMPLETING FORM

REPORT NUMBER . GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TITLE (ad Subtitle) S. TYPE OF REPORT & PERIOD COVERED

VISCOPLASTIC AND CREEP CRACK GROWTH ANALYSIS PhD Dissertation
Y THE FINITE ELEMENT METHOD Is. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) II. CONTRACT OR GRANT NUMBER(e)

TERRY D. 111NNERICHS
CAPTA I N USAF

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & OORK UNIT NUMBERS

Air I'orce Institute of Technology (AFIT-EN)
1rtglIt-Pattraons AFB Oh 45433

WitCONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE

June 1980
1S. NUMBER OF PAGES
177

[ . MONITORING AGENCY NAME & ADDRESS(/I different trom Controlling Office) 1 IS SECURITY CLASS. (of thie repot)

UNCLASSIFIED
II.. DECLASSIFICATION DOWN GRADING

___J SCHEDULE

16. DISTRIBUTION STATEMENT (of thiE Repot)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. It dilfferent f" peport)

W. SUPPLEMENTARY NOTES A roved. for Public Rele se; IAW AFR 190-17
~LA..

F E RI C. LYNC , Jor, F
Director of Public Affairs

| II KEY WORDS (Continue on reverse side i1 nece , m id Identify by block nuinbs)

Creep Crack Growth

Finite Element Method

Vtscoplast icity

20 ABSTRACT (Continme on revetre aide N necessary and Identify by blou-k nullbet)

"* Creep crack growth in a nickel base alloy at elevated temperatures was
analyzed through a hybrid experimental-numerical (HEN) procedure. This HEN
procedure consisted of simultaneous use of creep crack gro th test displacement

data from center cracked plate specimens of IN-100 at 1350O; and a theoretical
finite tlement model of the test specimen.

A two-dimensional (constant strain triangular) finite element program was
developeci which acounts for both nonlinear viscoplastic material behavior and /

(Contiuuted on Reverse)

DO N 1473 F-. NOV S I UBSOET IINCASS I FED

%t iRiTY LASSIFICAI ION )I III , S "A. n nn 1 1110114d)



UNCLAV SIFIED
$ICU ITY CLASSIFICATION OF THIS PAGE(When Date atred)

Block 20: ABSTRACT (Cont'd)

changing boundary conditions due to crack growth. Three viscoplastic material
models -- (1) Malvern Flow Law, (2) Norton's Creep Law, and (3) Bodner-Partom
Flow Law -- were incorporated into the program. These time dependent material
models were numerically integrated through time by a linear Euler extrapolation
technique. A variable time step algorithm was included that maximized time
step size during the analysis while maintaining good accuracy. This program was
used as the plane stress theoretical model for the HEN procedure to analyze
sustained load creep crack growth.--_

A method for getting creep crac. growth behavior solely from high resolution
displacement measurements, in conjunction with a cracked specimen model which
utilizes realistic constitutive relationships, has been developed. The con-
stitutive law, in the form of the Bodner-Partom material model, was especially
tailored to the nickel-base alloy studied which displays time dependent non-
linear inelastic behavior at elevated temperatures. It has been demonstrated
that the technique can be applied where crack extension is very small and could
not otherwise be resolved by conventional experimental crack measuring tech-
niques. This method provides realistic monotonically increasing crack growth
values. The predictions agreed to within 10% of post-test measurements.

Crack growth rate and crack growth criteria were studied. Cracktip strain
and crack opening displacement were studied in the HEN results for a unique
parameter controlling crack growth. Because the parameters were not independent
of time due to apparent environmental degradation, it became necessary to estab-
lish an empirical criterion for crack growth based on the best fit of HEN re-
sults. A damage accumulation criterion based on creep rupture formulations was
also developed and applied with promising results.

Several crack growth rate criteria were investigated, one of which is the
stress intensity factor. The K criterion matched fairly well with an extrapol-
ation of published results. But two other criteria, based on the C* integral
and load point displacement rate which are closely related theoretically, were
found to be ineffective as crack growth rate criteria.

I

UNCLASSIFIED

SECURITY CLASSIFICATIO* OF Tu.r PAGE(nWen Dote Enerd)


