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Abstract

A brief summary of work completed by the authors during the period 9/1/79-

8/31/80 on the investigation of dispersive wave mechanisms for enhancing the

conversion efficiency of parametric acoustic arrays is presented via (i) a detailed

review of the physical concepts underlying the investigaticn, (ii) an in-depth

review of the theoretical models upon which the investigation is based, and

(iii) a sumary of results- obtained to date, followed by a statement of con-

tinuing objectives.
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~. ~ ±~ ~Sum and Difference Frequency

S(x,y,Z) Velocity Potential Spectrum

p' (xy,z) Excess Pressure Spectrum
W

, 0  Density

" cc Low and High Frequency Speed of Sound in a Monorelaxing
0 •Medium, respectively

Nonlinear Coefficient of the Equation-of-State

, (y+l)/2 Second-Order Nonlinear Coefficient of a Fluid (y-l+• in liquids)
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1. Introduction

Parametric Amplification, as originally envisaged by Cullen and by Tienr

and Suhl 2 , concerned the transfer of energy to a weak signal of frequency 'w via

sinusoidal perturbation of the parameters (e.g. inductances or capacitances) of

an electrical transmission line at frequency 2W. In effect, if a weak sig..al of

frequency o and a stron6 puaip wave of frequency 2w are simultaneously present

in a nonlinear transmission line, interaction occurs between them giving rise to

a difference-frequency component (i.e. 2w - w - w)which augments and consequently

amplifies the signal of frequency w. As subsequently shown by Roe and Boyd 3

however, the presence of nonlinearly generated harmonics greater than 2w significantly

diminishes and ultimately undermines the amplification process. For example,

nonlinear generation of the sum frequency (i.e. 2w + W - 3w) component gives rise

via degerative interaction with the second harmonic (i.e. 2w - 3w - -w) to a

depletion of the amplification gain at the signal frequency. In order to ensure

the efficacy of Parametric Amplification therefore, filtering circuits must be applied

to the transmission line to make the system appear as a low pass filter which will block

frequencies greater than the second harmonic. In the case of nonlinear electro-

magnetic transmission lines such filtering is readily achieved. However,in the case

of nonlinear optical and acoustical parametric wave interactions which occur in

bulk media the problem of minimizing the influence of degenerative coitpling becomes

extremely difficult to realize. For this reason the development of .)w noise

narrowband Parametric Acoustic receivers has been severely inhibited. Likewise,

the conversion efficiency of Parametric Acoustic transmitters (which constitute

a generalization of the basic form of Parametric Amplification described above)

as envisaged by Westervelt, 4where a difference-frequency signal w is formed via

nonlinear interaction of high intensity, high frequency pump waves of frequencies

Wl and w, in a bulk medium, is severely diminished by degenerative coupling effects. H

In this instance, the conversion efficiency is reduced both by pump depletion

via energy transfer to nonlinearly generated higher harmonics (i.e. 2nwI, 2nu)2 )

$
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K,

and by degenerative coupling between these harmonics and the upper sideband

5
intermodulation frequency components (i.e. nI + 2 y 2 ). As shown by Tjotta , the

most significant of the latter interactions is that which occurs between the com-

paratively strong sum- frequency component and the secondary pump wave harmonic 2w 2 .

One solution to the problem of blocking those parts of a nonlinearly generated

spectrum that inhibit the resonant interaction of desired spectral components in

bulk media is to inhibit the amplification of unwanted frequency components via

dispersive processes. Since each spectral component travels at a different phase

velocity in a dispersive medium, the amplitude variation of spectral components

acquire the character of spatial beats due to the accumulation of relative phase

shifts during the course of propagation. As the dispersivity increases the beat

periods decrease, thus reducing the peak amplitudes of the spectral components. By

ensuring that unwanted components of a nonlinearly generated spectrum occur in

regions of strong dispersivit:r which at the same time appears virtually dispersion-

less to the frequencies of interest, only the latter spectral components are

strongly coupled, thus ensuring the possibility of significant parametric

amplification. On account of the strong 'inherent' dispersivity of most optical

dielectrics this effect has been successfully exploited in nonlinear optical

6parametric amplifiers, as described by Bloembergen. Since, on the contrary,

most acoustical media are weakly dispersive, very few cases of 'dispersive wave

filtering' have been realized with the exception of Shiren's 7 ' 8 beautiful ex-

perimental induction of anomalous dispersion in MSO crystals containing Ni++

44of f ions via applied magnetic fields. Another, exception is the Parametric
e

Acoustic Amplifier realized by Ostrovskii and Papilova9 'I 0 via boundary-induced

dispersion in fluid filled rectilinear waveguides. A related, but unrealized form

of boundary-induced 'dispersive wave filtering' has been discussed by

Zarembo, Serdobol'skaya, and Chernobai 11 ' 12 In this instance, plane pump
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waves propagating in a simple resonator of length L are reflected from frequency

dependent termination impedances such that upon reflection from the impedance

Z at L the resulting sum-frequency phase shift is equal to V radians, Since the
L

amplitude of the sum. frequency component is therefore zero at points 2L, 4L,

etc., its growth and resulting degenerative influence will be significantly reduced.

Again, the use of inhomogeneties (e.g. bubbles) to effect 'dispersive wave

filtering' as analysed by Zabolotakaya and Soluyan13 appears to virtually exhaust

the extent of investigations in fluids carried out to date. In solids, Parametric

Amplification based on the interaction of pump waves propagating at oblique angles

with respect to each other has been investigated by Zabolotskaya, Soluyan, and

14-16 17 18Khokhlov4 , Lord , and Ivanov and Pluzhnikov , based on earlier theoretical

work 1 9 2 2, As described by Rudenko and Soluyan2 3 , the required angle for 'resonanL

interaction' between interacting waves is determined by the synchronism conditions

(i.e. Wnm a nl ± mW2 , k nm nkl + mk2). For waves propagating at an angle these

conditions are not satisfied at all the intermodulation frequencies. Since longi-

tudinal and transverse waves propagate in a solid with different velocities, it

is possible therefore at certain intersection angles between the pump waves to

satisfy the synchronism conditions at the difference frequency. In such instances,

the synchronism conditions are violated at the sum frequency and hence the latter

is effectively suppressed. This in turn ensures parametric efficiency enhancement

via reduced degenerative coupling interactions.

Summarizing the limitations of the above papers, it should be noted that

previous investigations of parametric gain enhancement via 'dispersive wave filter-

ing' have been peacemeal and generally restricted to particular cases of loesless

plane wave propagation. They have moreover, been based on the ubiquituous assumption

that the effect of dispersivity is sufficient to reduce all nonlinear coupling
6,23 '

to that of three frequency (pump, signal, and idler) interaction process.' 2 3

No attempt has been made to address the problem of how much dispersivity

... ... .. ... ... .. ... ... ............ i- ......
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is required in the presence of absorption and diffraction losses to effect varying

degrees of parametric amplification. Of course, this is a much more comprehensive

and difficult issue because it involves the analysis, not of three, but of all

significant nonlinear wave interactions subject to absorption and diffraction

losses, which must inevitably be carried out via numerical methods. It is our

contention however, and the purpose of the present investigation to show that

no meaningful progress can be made in utilizing 'dispersive wave filtering' to

enhance the conversion efficiency of parametric acoustic arrays until this matter

is resolved. This will be accomplished by computing solutions of dispersive non-

linear acoustic wave equations in terms of dimensionless parameters. The secondary

question of how much amplification can be realized in particular dispersive media,

in particular frequence bands etc., can then be deduced as a consequence of these

investigations.

'1 ,~2
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2. Theory

In this section we will outline the methods and procedures that will form

the basis of our investigation, including some new analytical results. Although

related, we wish to make a distinction between 'boundary-induced' dispersion and

'inherent' dispersion, the former being self-evident, and the latter being due

to relaxation mechanisms.

It should be noted that, with the exception of Ostrovskii and Papilova' s0
24-28work, previous investigations of finite-amplitude wave propagation in

bounded media have not been concerned with the problem of exploiting dispersivity

to enhance the process of parametric amplification. Likewise, in the case of

inherently dispersive media none of the previous work 29 -34 has been concerned

with this question, but rather with the process of soliton formation3 5 , which

although a topic of great interest does not concern us here. We will proceed

therefore, to develop an analytical procedure that linksthe two dispersion mechanisms
6

under consideration. This approach is similar to that adopted by Bloepibergen.

in his investigation of nonlinear optical wave interactions in dispersive media.

2.1 Boundary-Induced Dispersivity

In order to investigate the process of enhancing the conversion efficiency

of parametric acoustic interactions via boundary-induced dispersivity we begin

with the lossless form of the nonlinear wave equation and subsequently introduce

losses in the frequency-domain by means of complex wavenumbers. As given by
36

Slackstock this equationin terms of the velocity potential O,assumes the form

. - 2  2)• c-2 (V•.W)+(y-l) ( (v2%) + 0 (3) (1)

-2 t Vý.Vý + (ýtý)2 + 0(43) (la)

c c20 1.1 0 joJ]•

'4 -
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where the 'substitution corollary' has been invoked in deducing Eq. (la) from

Eq. (1) (i.e. (0 ) (V2)2 0 (-2 ) 0 2 1 -2 2ot " ,

For the case of wave propagation in a rectilinear layer, such as that

depicted in Fig. 1, if es (x,y) represents the m,n linear eigenmode of the

structure at an excitation frequence w , and Kmn is the corresponding transverse

wavenumber for this mode, then by definition

(V2 + (mn)2)s 0v2 . 2+32 (2

t :n x y

in2 2 mn
where (K 9 ) k, -(Xm)2 (3)

mn m

In this notation ks s/C° and X is the axial wavenumber corresponding to K 8
s

We now express • in terms of a modal expansion of the form

i(- t -nZ

(xyiz, t) - A' (z) C, (x,y) e (4)

where the unknown coefficients As (z) are to be determined by substituting
mn

Eq. (4) into Eq. (la). When this substitution is made in the left-hand-side of

Eq. (la) we obtain via Eqs.(2) and (3)

(V2 -2 •LLL " 2A a mn 2 aXs
t m,n z an z mn a ns

+ 22 s + k2 s A. z)mn s mn T

I-.2 2 mn SA i -2 mn 2 Mn 2) s
""a A -2iX (K ) )A

{ As m,n z mn A z mn Iv

Invoingthe"slowly varying amplitude approximate",tisbcoe

-i(w t-Xm z)22  s L. " mn A e( t s m,n s z n(

j



10. K

whe:e it has been assaimed that a A Sub'3tituting Eq. (4)

in thm ta*rms on the right-hand-side of Eq. (la) gives

U a L A I A... it f I it1 s Sr e

t 4 ~ oila mi,nt mfl,nomn an

min'ft aln) f
W~ '+W1 4 5 1 t Q ( +x )I
e a 9

mint m"nn'
S,•, - I-• iW t ', UL-" a" s" -i(Xs~, + xs,, )z

4 -we a st m i nv Amiln m nit eVmin ttii

(6)

where it has been assum-ed that s - •o, 0 a 0, + 1, + 2, ...,W0 being an

a-ribrary 'reference-frequency.'

In like manner

i ' iW t:• 8-$6 8"S !l8t
2 ~ 1 a ~~ 6s.t~JImn it

t t0 a--Man Mn a n m n S-.,, , ns ' n

-i(Xs , +)(9,, )z

Hence

Co 20.0 + o t 4e e aft min' m~n" A m'nI A m 1n 1

mint mitt.itt

• xx -a ~n Xm~n" - 2c ae-s" • s" S • a' ll~"

Multiplying Eqs. (5) and (8) by Es (x,y), integrating over the transverse(x,y)

plane and invoking the orthonormal relation

dxdy s (x,y) -a, , (x,y) = (9)
gIn Mating n nn

gives, upon equating the results
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S-1 0

IA5  S -all 9-s" 11 5;t? i +6" st* 1

dz M', " I mi -n n'm"n" Ammn' Am>n " - 1 2 mn 'm"n" A, Amn"" (10)
dz lni, S-S" m

Inmini,,, Tn As,,i via the Einstein summation convention, (10a)
mnmn n" no'Amn)Z

a - i(X -s+ X,,n-
where B 5 ' e 8" x)

wnm'n'm"n" 2 mn4c Xs

0 25dx (11a)

mnX .' mtn

-iXW, I X, n X mn )z
_ dto as -2 a "

* m

and B9', 2Mndn m iXmn, a ~:" -

4% XS1'

Sicejt " j oJ t x,+50•) . he xces prsstesp c ,rmPs(~,, , )

mivn 2cE.()a • (xyz -~~• S xhyl m

s--

Once the eigenmodes es (xy) have been specified for particular boundary conditions

the Bof •requni coefficients can readily be evaluated.

3Since Ps - -p o t + 00d ), the excess pressure spectrum p. (XeYIzD) is

given by Eq. (4) as p' (XyZ) *-iw p 0 (xyZ)

e2 5

d-- p A' (z) CLt Am ' An(12)
a omin mn a(~~

Assuming, in the case of parametric interactlon between finite-amplitude primary

waves of frequencies w1and w,, that all nonlinearly generated waves other than

the difference-frequency (i.e. w_ - w - W ) signal could be effectively

suppressed via boundary- induced dispersion, Eq. (10) becomes

dAw2  W2w W1  W_
- 2B I~~ A, A,,, 1 (1:3b)

*6!

z 1M n n n

iJ
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dA- W-P.w2  2d•-n •°'2 •1 2"d - " 2B nm'n m1n"Am'n'Am'2n (13c)

°i N1 A2 A2 N
whereA A A A anA; A

Mn mnm mn mn m

Cul W2
If the lowest order primary wave modes alone are excited and A AWl are

both constant, which in this instance assumes that nonlinear waveform distortion

is small, or alternatively that the primary fields are only subject to absorpticn

losses via the imaginary parts of their respective wavenumber, then Eq. (13c)

becomes

WWl W W 2'
A (z) - 2 All Al1 dz' Bmnlill

0

W__
i11 11  1 X1 1 - rixd

- I2 dz' 2. i l X 2 i

12o

Substituting for A•" in Eq. (4) it follows that the difference-frequency pressure
imn

field is given by
W IrW2 1 - ix W 1 1 1-. .. e W -C 

(14)
i : ' ( x , y , z ) d z ' e." -2po~ m,n inn10 X2 Jo

Sn ftx dx'dy' if-e(xy) .eq (x',y') 2ressu

I; mn n rol

S2in j(2 , e 1 y

1 1 C•2 1 (x',y ) •ll (x ,y')2 (15)
S2co
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where P 1 iPWA , and P I pw A 2

In order to test this weak finite-amplitude solution let us assume that the boundary

surfaces of the layered medium are removed, but that the medium itself remains

dispersive due to some inherent physical mechanism. The problem now corresponds

to the case of plane wave parametric interaction in an inherently dispersive un-

bound medium. Thus, after some manipulation, Eq. (15) becomes

SwI (w 2 iXz 2 i(X X 2 I
pW (xY'Z)+ e- L e die

2pc 3

0 00

W3, W2  X'('X 2 x • )z
aw P 1 P1 2 1-ezzW 2W

e(16)

0 1 -iI 2 --

where Y40 is the nonlinear coefficient the fluid.

z

ButXI -x2 x-x M k - -k 2 - iz - (
w - i._2 (17)

FHence,Eq. (16) can be repressed as

ia,. Pl W2 - Xz z i T- z - ikT..z 1

•' ~~~3 • i + i~k_/oT l2O2

2p 0c 0 tTi,

- ~ 11 11 zz ickz/)in a
3P 0 z. si0 3z2
2p~c0 lossless dispersive madiuni (18b)

-~_ L W. I' Pl ei-X~Z I - IS T ,e- ibk- sin 2(e/2)1

4c p c) 32. + i(k/ci ) sin 2 (0/2)

in a lossy dispersionless medium, (i8c)

where k - k1 - k2 - k- coo 9 2k_ sin 2(0/2), and tT: 2(to in the later case.

Eq. (18b) is the appropriate result for a weak parametric interaction in a

I4~ 1 I I i 1 I .... '
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lossless dispersive medium, being similar to that derived by Rudenko and

Soluyan23 for the second-harmonic field of an initially monotonic wave. Like-
iz°-

wise, if the field described by Eq. (18c) is multiplied by - D (9) , correspond-
z W~

ing to the case of a difference-frequency signal collimated over a Rayleigh
distance z kA /2w, where A is the area of the primary-wave projector and

0 0 0

D (6) is the diffraction pattern of the aperture at the difference-frequency,
-C&Tz -i2k~z uin 2 (0/2)

then in the far-field where e • e - 0, the resulting form

37of the difference-frequency signal reduces, as required, to Naze and Tjotta's

modification of Westervelts solution.

Although the solutions of Eqs. (13a) to (13c) considered in this section

are only approximate, it should be noted that exact solutions expressed in terms

of elliptic functions3 8 exist for the case of constant coefficients as shown

in Appendix A.

2.2 Inherent Dispersivity

li this section we deal with the case of parametric array formation via

nonlinearly internO.Ling colinear paraxial waves in inherently dispersive media.

If auch an interaction occurs, for example, in a monorelaxing, thermo-viscous

fluid, the governing equation for the velocity potential 0, correct to second-

order terms is given by the following modified form39 of Eq. (la):

I 2 -21 ,, B 2]
1+2 c ] 2  2 t

2c.,

mc•2 at @ + o(4 ) (19)

where 6(2•. + n + (K*C ) (1 - 1)) is thermo-viscous coefficient,

2poc,.

m - (C - Co2)/c2 is the dispersivity, and T is the relaxation time, In this

notation, co is the low frequency (i.e. WT << 1) speed-of-sound in the fluid, and

c is the high-frequency (i.e. WT >> 1) limit.

Ii'' I
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For the case of progressive finite-amplitude primary waves radiated in the

z-direction by a single projector in an unbounded medium, previous work by

Woodsum and Westervelt 4 0 justifies the approximation

* ~ (~~2 -2(~~ 2
z t

Substituting this approximation in Eq. (19) gives

2 22 -4 21 mc 2 32 (1
(1 + Tat) 1+ 26c 3 C.a a-2(a -o2 - -C 2  ++ ( 3

(20)
where B * (y + 1)/2

3Since the excess pressure p' .-. Oap € + 0(), it follows thatoc

(1 + ta2) 1 + 2-4tV2 c: 2  t 2  c 2a � +-o-4 1t3"( + =t [ 6cdttpPcC moo 0 p +Op

= = (21)

1 Z 7 i(W t->X Z)
If' - -(xYZt) - n-- P (z) e (x,y,Z) a (22)

where la2 P.n1 << 12X. D Pnl1

and X a k " icsa (23)

mk2

k -k 2 + (24)
1 1+(wT)

2

aS= R + m/2 )2 (25)

1+(w T) /

with a E " a - 2 C 0 (26)

then proceeding am before in section 2.1

s-I

dP' JZ 8- F5 +s 2s mn a
dz mIn t da"lnt sill Pmin? Fm"ni + 2 s"=wl i' m•n•m"nC PMon' Pm"n"

(27)I, I
-8mn81n'm"n" P 1 n

5 ' Psn,, via the Einstein summation convention, (27a)

n mn M

0 'J;'J')i
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2

iý W -i (X 11+× "-x )z 16
where Cnm,,n 4 e dxdy e m' n" (28)

For the case of a square aperture radiator located in the plane z u 0 centered at

41 42x - 0, y - 0, the modes es are given by Kogelnik and by Cook and Arnoult as
mn -2 L 22

2
S(l+iZ/Z 5 ) (m+n)/2 w xw ) (()iz/Z°/)(s 08(--•e~z•. /£

SMn (xz) 08)(l-iZ/Zo) + /2 w 0oe(2ux mln[Tt) 1 / 2  
in

(29)
2s 2 1 nd /2.2

where woe is the 'spot size' at frequency w, w w o(l+Z 2 1/2 an z k W/2
8s 06 0S 08 a 08

The orthonormal relation satisfied by the modes is

" dxdy cs (xIy,z) 1 (xy,z) * (30)

-ik s (X-x') 2+(y-y )2 1
and e (x,y,z) es (x',y' ,') - 2,,z-,') " 2 - (31.)

"6(x-x') S(y-y'), when z-z' (31a)

Assuming again, as in section 2.1, for the case of a weak parametric interaction

between finite-amplitude primary waves of frequencies wI and w 2 that all non-

linearly generated waves other than the difference-frequency (i.e. w w -W 2)

signal could be effectively suppressed via inherent dispersion in the medium,

Eq. (27) becomes

d P 2 P (32a)
dT• 2 C mnmn'nm"n"' Pm'nI Pmin"(3a

W2d Pn 2 •'• WI , -*
dPT 2 Cmnm,,n,, Pm1 n P mi" (32b)

d P W-• W° W *Mn 2C 2  (32c)

dz 2 CmnmI'n'm"n" Pm'n' min3)

.I.''
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W1 N W N W N1-Pl N1 p2 p2 P.NIN
"where ? P , and P (33)mn mn mn mn a mn

If, as in section 2.1, the fundamental primary wave modes alone are excited and
W W

both P ? P are constant, which implies that nonlinear waveform distortion
00 00

is small, or alternatively, that the primary waves are only subject to viscous

attenuation and spreadiag losses, then Eq. (32c) becomes

w 2* , 2- '2
P•(z) * 2 P 1 Jo dz' Cmnoooo
mn 00 Jo0 =00

2 1 z -i(X" × -X )z ' W..

~ ~ ~1 2
Poe0 Jo dz'e dx'dy' e e Ew 0 jJ.

from Eq. (28) (34)

iW

Taking the Fourier transform of Eq. (22) and substituting for P from Eq. (34),
mn

the difference-frequency field assumes the form

p• (X,y,Z) -e'Y - ). EW ( ) - (Xlysz)
pWh_~ z ei ,~ mn-00 mn mn

Wl pW2 * -ix Zr -i% (X >%-X )
Ow-2 oo o _iX Wz '7 w IC -XW I )2i 1W. • • xL Y ' I ) dz'e

2P c 4m,n- r m-'

o "- '('- °oo 2 x •

W ~ Wx ,' dx'dy' e _(x',y',Z') C 1o(X',y'z') e ,y'Y",') (35)

-000

From Sq. (31) tnis becomes
•1 2 -i(x•1 -Xý )z

I X - 00 00 ik
Pro(x,y,z) p3 e dz' 2Tr(z-z') e

dx'dy' E 00(x',y',) ( z') e zz (36)
-`F0 00



But Eq. (29) gives [2 21
- x + y

w 2(1-iz/z)

C 0o(x,y ,z) 1/ (37)
(21t) w (1-iz/z )

Hence E1 (x' ",y'z) E:2(x',Y'X) - e-M./2x 2 y 2  (38)
00 00 2Trw w0 W 02 N..

where M_.(z') 0 (-2 + w-2 + i 2(w0 w )-2 (k 1 - k 1 )Z' (39)
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Substituting Eq. (38) in Eq. (36) and making use of the identity 3
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Eq. (36) becomes
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44
To the best of the authors knowledge Eqs. (41) and (42) is, a new result for

the propagation of a parametically generated wave in a dispersive medium. If this

dispersivity is removed and k1 - k2 a k_ the equation reverts to the form investi-

gated by Fenlon4 4-47 in his detailed analysis of near and far-field parametric

acoustic array interactions. As it stands it can also be shown that in the far-

field Eqs. (41) and (42) reveals a shift in the angular spectrum dependent on te

amount of dispersivity which was first referred to by Novikov 3 0 and subsequently

by Fenlon. 4 8 Without going into further details now however, it is our intention

to fully evaluate Eqs. (41) and (42) numerically in order to determine the nature

of the spreading losses so that the complete set of spectral equations may be

solved along the beam axis. In this manner the effect of dispersivity in destroy-

ing unwanted spectral components will be investigated.

Finally, on other task that must be carried out is to elaborate on the form-

ulation of Eqs.(41)and(42) by rederiving it for the case where the two primaty waves

.I
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are at an angle relative to each other. In this instance a resonant interaction

should be possible at least in parts of the field at the frequencies of interest

(note that the interaction is considerably more complicated than that due to

simple plane wave fields) but less and less resonant at other frequencies in the

nonlinearly generated spectrum.

II!
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3. Results and Statement of Continuing Research

Before proceeding to a computer investigation of the mathematical models

outlined in this report it was felt desirable to obtain upper bound estimates

of the extent to which the conversion efficiency of a parametric array can be

increased when all frequency components other than the primary waves and the

difference-frequency are suppressed. Making use of a computer program de-

49veloped by McKendree and Fenlon which operates in the time domain but is

subject to iterative spectrum analysis this comparison is shown in Figs. 2

and 3 for the case of a virtually lossless plane wave parametric interaction

in which the frequency ratio of the primary waves is 3/2. In this instance,

it can be seen from inspection that the three frequency case has a maximum

difference-frequency amplitude nearly an order-of-magnitide than that of the

all-frequency component spectrum. Moreover, the first peak of the difference-

frequency in Fig. 2 occurs at a' 3.5 at R - 3.5/ao. Hence at a value of

0a between I and 10 it can be seen from Fig. 4, which was first evaluated by

47Fenton and McKendree, that the beamwidth is almost fully established. This

ensures that if the medium in which the three frequency interaction is term-

inated an ideal and much more efficient parametric array will be formed rel-

ative to that which would have existed under normal conditions. Similar but

even more efficient comparisonv are then shown in Figs. 5 and 6, for w /W2 - 6/5

and in Figs. 7 and 8 (u12 - 11/10 respectively. These cases provide typical

upper bounds to the maximum realizable gains in conversion efficiency achievable

via absorption and dispersion mechanisms, both physical and artificial.

The the present time we are in the process of programming and testing

frequency-domain computer methods to determine the effect of dispersive mecha-

nisms in layered media, and using then to obtain the on-axis solutions of

A.t
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finite beams in relaxing fluids. The latter is particularly difficult to

solve numerically because the diffraction losses are extremely difficult to

include. These are however, defined paraxially by Eqs. (41) and (42)

were derived within and therefore, further analysis and simplification of

these results is expected to reveal the correct way to include them in a step

by step wave propagation analysis.

Once the computer models are running,sets of nondimensional plots of the

parametric fields in dispersive media can then be evaluated, plotted and stud-

ied in detail for subsequent relation to real and artificial acoustic media.

Before concluding this discussion it is interesting to check the accuracy

of Figs. 2, 5, and 7 by comparison with the exact three frequency solutions

given in Appendix A. As far as the first peaks of the latter are concerned

they are in excellent agreement with the analogous at exact curves of Figs.

(Al), (A2), and (A3). Subsequent deterioration of the computed curves in due

both to the presence of small absorption losses (i.e. r - 10 6) and to "nu-

merical error". However, in general only the first peak of the difference-

frequency is of any interest because at this point the dispersive medium must

be terminated and the amplified difference-frequency signal released into the

unbounded surrounding medium. Hence the utility and validity of the numer-

ical methods.

During the next phase of the contract as well as performing the numerical

analysis referred to above we will carry out an analytical investigation of finite-

amplitude waves of Gaussian cross-section intersecting at a f'`.ed angle in dispersive

fluids. Unlike the simple plane wave case investigated by Rudenko and Solugan 2 3

we do nut know if this will result in a resonant interaction at all points of

the field or only in the far-field of the interaction. This is one objective of the

investigation. The other is to establish how rapidly rebnant interaction falls

I
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off throughout the field at nonlinearly generated frequencies other than the

difference-frequency, thus determining the extent to which the latter can grow

due to dispersive coupling.

Ii
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A•.ndix A

If P and P 2 are plane primary wave amplitudes of frequencies w1 and2

respectively normalized with respect to Pio and P. is the normalized differ-

once-frequency (i.e. w- a w 2 ) field resulting from their nonlinear inter-
[I -'2

action then in the absence of losses and other frequency components if the

three waves have a phase of Wr/2 then

dP 1  iN 1

daT 2 P- (A)

dP 2  iN 2
-2- PIP- (A2)

dP. iN.
,- -•- Pl 2  (MA3)

where a' *NI+N2 CoR, (A4)
N +N]0

WW
and N 1 N 2 - , N_. N N (AM)

The normalized range R - Z where z0 is the half-Rayleigh distance of the projec-

z Pc
00 C0tor and 0, where z 5p.- k is the critical range for a mean wave-

number k ½ (kl+k2 ). As shown by aloembergen, Eqs. (Al) to (AM) have an

exact analytical solution in terms of Jacobian Elliptic functions, summarized

'I 50
by Scott

P1[l 1VP cd (k (1" k2 (AM)

IP 2 1 P 20 nd(k 1 C1, k2 ) (AW)

k2 N20 1d(kla', k2 ) (A8)

2, 2 0
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where cd- cn/dn, nd I/dn, ad = sn/dn (A9)

ak -o (AlO)ad kt Tl N

1 (All)
with k(

N p

-- 5

.2 1
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