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: 1.

Abstract
5 Oy
i A brief summary of work completed by the authors during the period 9/1/79-

1 8/31/80 on the investigation of dispersive wave mechanisms for emhancing the
% conversion efficiency of parametric acoustic arrays 1s presented via (1) a detailed
‘E review of the physical concepts underlying the investigaticn, (ii) an in-depth

§ review of the theoretical models upon which the investigation is based, and
'3 (111) a summary of results obtained to date, followed by a statement of con-
tinuing objectives.
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Velocity Potential

Excess Pressure

Circular Frequency (wo being an arbitrary reference frequency;
Sum and Difference Frequency

Velocity Potential Spectrum

Excess Praessure Spectrum

Density

Low and High Frequency Speed of Sound in a Monorelaxing
Medium, respectively

Nonlinear Coefficient of the Equation-of-State

Second-0rder Nonlinear Coefficient of a Fluid Cy-1+% in liquids)
Eigenmodes

Wavenuuber at Frequency ws

Transvarse Wavenumber

Axial Wavenumber
Velocity Potential Spectral Amplitudes
Velocity Potential Weighting Coefficients

Fundamental Mode Primary Ware Pressure Amplitudes

Net Sum or Difference~Frequency Phase in a Dispersive
Medium

Attenuation Coefficient at Frequancy w,

Sum or Difference~Frequency Attenuation Coefficient

Net Attenuation Coefficient

Meun Primary-Wave Attenuation Coell.iclent
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Sum, Difference, or Arbitrary Half Rayleigh Distances,
respectively

Difference~Frequency Directivity Function

Beam Angle relative to the direction of Wave Propagation
Projector Area normal to the direction of Wave Propagation
Dispevsivity Parameter in a Monorelaxing Fluid

Relaxation time in a Monorelaxing Fluid

Shear and Dilatational Coefficients of Viscosity,
respectively

Coefficient of Thermal Conductivity
Specific Heat at Constant Pressure
Thermo~Viscous Absorption Coefficient

Low and High~Frequency Wavenumbers renpectively in a
Monorelaxing Fluid,

Axial Wavenumber at frequency wy in a Monorelaxing Fluid

Modal Pressure Amplitudes at Frequency Wy

Pressure Field Weighting Coefficients in a Monorelaxing
Fluid

Gaussian Beam Spot Size at Frequency Wy

Kronecker Delta

Particle Velocity
Mach Number

Rayleigh Distance at Mear Primary frequency
Scaled Source Level Parameter

Range
Plane wave Scaled Range Parameter
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1. Introduction

Parametric Amplification, as originally envisaged by Cullenl and by Tien
and Suhlz, concerned the transfer of energy to a weak signal of frequency w via
sinusoldal perturbation of the parameters (e.g. inductances or capacitances) of
an electrical transmission line at frequency 2w. 1In effect, if a weak sig.a' of
frequency w and a stronyg pump wave of frequency 2w are simultaneously present
in a nonlinear transmission line, interaction occurs between them giving rise to
a difference-frequency component (i.,e. 2w = w = w)which augments and consequently
amplifies the signal of frequency w. As subsequently shown by Roe and Boyd3
however, the presence of nonlinearly generated harmonilcs greater than 2w significantly
diminishes and ultimately undermines the amplification process. For erample,
nonlinear generation of the sum frequency (i.e. 2w + W = 3y) component gilves rise
via degerative interaction with the second harmonic (i.e. 2w - 3w = -w) to a
depletion of the amplification gain at the signal frequency. In order to ensure
the efficacy of Parametric Amplification therefore, filtering circuits must be applied
to the transmission line to make the system appear as a low pass filter which will block
frequencies greater than the second harmonic, 1In the case of nonlinear electro=-
magnetic transmission lines such filtering is readily achieved. However,in the case
of nonlinear optical and acoustical parametric wave Interactions which occur in
bulk media the problem of minimizing the influence of degenerative coupling becomes
extremely difficult to realize; For this reason the development of ..w noise
narrowband Parametric Acoustic receivers has been severely inhibited. Likewise,
the conversion efficiency of Paramatric Acoustic transmitters (which constitute
a generalization of the basic form of Parametric Amplification described above)
as enviasaged by Westervelt,4 where a difference-frequency signal w is formed via
nonlinear interaction of high intensity, high frequency pump waves of frequencies
W, and W, in a bulk medium, is severely diminished by degenerative coupling effects.
In this Instance, the conversion efficiency is reduced both by pump depletion

via energy transfer to nonlinearly generated higher hatrmonics (i.e, anl. anz)




and by degenerative coupling between these harmonics and the upper sideband
intermodulation frequency components (i.e. W, j'mmz). As shown by Tjottas, the
most significant of the latter interactions is that which occurs between the com~
paratively strong sum- frequency component and the secondary pump wave harmonic 2w2.
One solution to the problem of blocking those parts of a nonlinearly generated
spectrum that inhibit the resonant interaction of desired spectral components in
bulk media is to inhibit the amplification of unwanted frequency components via
disparsive processes. Since each spectral component travels at a different phase
velocity in a dispersive medium, the amplitude variation of apectral components
acquire the character of spatial beats due to the accumulation of relative phase
shifts during the course of propagation. As the dispersivity increases the beat
periods decrease,thus reducing the peak amplitudes of the spectral cumponents. By
ensuring that unwanted components of a nonlinearly generated spectrum occur in
regions of strong dispersivity which at the same time appears virtually dispe~sion-
less to the frequencles of interest, only the latter spectral components are
atrongly coupled, thus ensuring the possibality of significant parametric
amplification. On account of the strong 'inherent' dispersivity of most optical
diclectrics this effect has been successfully exploited in nonlinear optical
parametric amplifiers, as described by Bloembergen.6 Since, on the contrary,
nost acoustical media are weakly dispersive, very few cases of 'dispersive wave

37’8 beautiful ex-

perimental induction of anomalous dispersion in MgO crystals containing Ni++

filtering' have been realized with the exception of Shiren'

of fe++ ions via applied magnetic fields. Another, exception 1s the Parametric
Acoustic Amplifier realized by Ostrovskii and Papilovag'lo via boundary-induced
dispersion in fluid filled rectilinear waveguides. A related, but unrealized form
of boundary-induced 'dispersive wave filtering' has been discussed by

Zarembo, Serdobol'skaya, and Chernobaill'lz.

In this instance, plane pump




waves propagating in a simple resonator of length L are reflected from frequency
dependent termination impedances such that upon veflection from the impedance

Z, at L the resulting sum—-frequency phase shift is equal to T radians, Since the

L
amplitude of the sum. frequency component is therefore zero at points 2L, 4L,

etc.,, its growth and resulting degenerative influence will be significantly reduced.
Again, the use of inhowogeneties (e.g. bubbles) to effect 'dispersive wave
filtering' as analysed by Zabolotskaya and Soluyan13 appears to virtually exhaust
the extent of investigations in fluids carried out to date. In solids, Parametric

Amplification based on the interaction of pump waves propagating at oblique angles

with respect to each other has been investigated by Zabolotskaya, Soluyan, and
14-16 7

Khokhlov ’ Lordl , and Ivanov and Pluzhnikovle, based on earlier theoretical

worklg‘zz. As described by Rudenko and Soluyan23, the required angle for 'resonant
. interaction' between interacting waves is determined by the synchronism conditions
(L.e. Wy ™ MWy + mi, Enm = “El + mﬁz). For waves propagating at an angle these
conditions are not satisfiled at all the intermodulation frequencies. Since longi-
tudinal and transverse waves propagate in a solid with different velocities, it

i i8 posaible therefore at certain intersection angles between the pump waves to
satigfy the synchronism conditions at the difference frequency, In such instances,
& the synchronism conditions are violated at the sum frequency and hence the latter

is effectively suppressed. This in turn ensures parametric efficiency enhancement

via reduced degenerative coupling interactions.

LR BT S s

Summarizing the limitations of the above papers, it should be noted that

previous investigations of parametric gain enhancement via 'dispersive wave filter-
ing' have been peacemeal and generally restricted to particular cases of lossless
plune wave propagation, They have moreover, been based un the ubiquitucus assumption }{

that the effect of dispersivity is sufficient to reduce all nonlinesar coupling
6,23 'y

to that of three frequency (pump, signal, and idler) interaction process.

No attempt has been made to addrass the problem of how much dispersivity




18 required in the presence of absorption and diffraction losses to effect varying
degrees of parametric amplification. Of course, this is a much more comprehensive
and difficult issue because it involves the analysis, not of three, but of all
slgnificant nonlinear wave interactions subject to absorption and diffraction
logges, which must inevitably be carried out via numerical methods, It is our
contention however, and the purpose of the present investigation to show that

no meaningful progress can be made in utilizing 'dispersive wave filtering' to
enhance the conversion efficiency of parametric acoustic arrays until this matter
is resolved. This will be accomplished by computing solutions of dispersive non-
linear acoustic wave equations in terms of dimensionless parameters. The secondary
question of how much amplification can be realized in particular dispersive media,
in particular frequence bands ete., can then be deduced as a consequence of these

investigations.
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2. Theory

In this section we will outline the methods and procedures that will form
the basis of our investigation, including some new analytical results. Although
related, we wish to make a distinction between 'boundary-induced' dispersion and
'inherent' dispersion, the former being self-evident, and the latter being due
to relaxation mechanisms,

It should be noted that, with the exception of Ostrovskii and Papilova'slo
work, previous :L1:westigat::Lonszl"28 of finite-amplitude wave propagation in
bounded media have not been concerned‘with the problem of exploiting dispersivity
to enhance the process of parametric amplification. Likewise, in the case of
inherently dispersive media none of the previous workzg-aa has been concerned
with this question, but rather with the process of soliton formation35. which
although a topic of great interest does not concern us here. We will proceed
therefore, to develop an analytical procedure that links the two dispersion mechanisms

under consideration. This approach is similar to that adopted by Bloembergens.

in his investigation of nonlinear optical wave interactlons in dispersive media,

2.1 Boundary-Induced Dispersivity

In order to investigate the process of enhancing the conversion efficiency
of parametric acoustic interactions via boundary-induced dispersivity we begin
with the lossless form of the nonlinear wave equation and subsequently introduce
losses in the frequency-domain by means of complex wavenumbers. As given by

36
Blackstock this equatilon,in terms of the velocity potential ¢, assumes the form

0F - % ahe - o {at (V6.¥6) + (v = 1) (3,4) (VZ¢>>l +0 () (1)

2 J

= %9, (Vo.Vp + E-—jii] (at@?j +0 (@) (1a)
o)




ﬁ

where the 'substitution corollary' has been invoked in deducing Eq. (la) from
2,, . =2 , 2,y w £ =2 2
Eq. (1) (le. (3.0) (V5) = - () (3%0) = 5 2% @ 0.
For the case of wave propagation in a rectilinear layer, such as that
depicted in Fig. 1, if E;n (x,y) represents the m,n linear eigenmode of the

m
structure at an excltation frequence wg s and Ksn is the corresponding transverse

wavenumber for this mode, then by definition

2 mn, 2, _8 2 2 2
v + (Ks ) € mn 0,V Bx + By (2)
vhere (k™2 = k2 - (xmn)Z (3)
8 s 5
In this notation ks"ws/co and Xgn is the axial wavenumber corresponding to K:n
We now express ¢ in terms of a modal expansion of the form
x @
) s g 1lwgt - X:n 2)
¢(xiyszpt) = 5 Lo mommm Agn (2) o, (X,¥) e (4)

where the unknown coefficients A:n (z) are to be determined by subatituting
Eq. (4) into Eq. (la). When this substitution is made in the left-hand-side of
Eq. (la) we obtain via Eqs. (2) and (3)

2 =2 .2, .1 2: z: 2,8 mn 8 mn,2 ,8 8
(V" - 30 =3 G m,n{%z An = 2Xg 980 - X)) Amn} €mn

. 1w t=x ma z)
I As]e 8 8
mn s “mn mn
A 1w b~y 2)
- L L 2 .2 _nq M0 ) 2 mn,2 _  omn.2,,8 ] ]
2 a'mn {az Am “HXg 35 Apn + (kg (Ks ) Xg I A b e

— mn
ifw t-¥ z)

L/ 2 s mn s s 8
5 i 9, A ~24x_ 9_ A e

Invoking the '"'slowly varying amplitude approximate"e, this becomes
— .

mn
\ Lw t=x_ 2)
2 202y ./ o mn s 8 8
(V7 = eg B0 * 15 Xg 3, & @ (3)
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2 s [, _own 3 . ) ]
B, Amt] < izxs 9, Apn|+ Substituting Eq. (4)

where 1t has been assumed that

in the terms on the right-hand-~side of Eq. (la) gilves

“: L v \T “)"" < 8! g" a' g"
1 3: (V. V4) = % at?' ‘;;, mt‘n, m' ot Am|n| Am"n" Vemvnv ‘Vemnnn
) m'n' m"n"
el {(‘bsﬁwsn)t - (xs. +X3n )z}
— -— m'n' n''n"
‘ iw c ) Z s=g'" g" s" ~i(x + X )z
i 8 g~s' 8"
- ™ é‘wse Z;u mv"'nv o', a" Amvn' Amunn Evm'nv . Vemunn e
(6)
where it has been assumed that wg * 8L, 8 = 0, +1, 1+ 2, vesly being an
arlbravy 'reference-frequency.'
In like manner
T iw c‘r T s-g" s" s-g" g"
8(8¢)2-~3-’-—we54-‘/-' v A A w W€ e
A 4 8 "8 ' m'n' m'"n" “m'n' “u'a" Te-g" “g" “m'n' “m'a"
m'n| mllnH
-i()( ) X 0 )z
e 8= S :7>
Hence
A
-2 -1 2 L 4 S— iw ¢ 7— $— ST g-g' 8"
(:D Bt Vo.Vd + Lz' (3t¢) = 3 ?‘ws e ;Tc mT"v mw;ln Am'n' Am"n"
2¢ J 4e
o 0
mln' m"n"
“1Xg g TXgn )2 8-s' s" -1 s-s'" 8"

e X Vemvnc Vsmnnn zci Woogn g emvnv Ex'tnt (8)
Multiplying Eqs. (5) and (8) by E:n (x,v), integrating over the transverse(x,y)
plane and invoking the orthonormal relation

,w 8 8
JJ dedy € (Gy) £, () =8, 8 (9)
w9

gives, upon equating the results
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[+ ]

— .. . sl : \
s v ". ° | r. " " ) S+S” "o
dAmn n.). —— — BS’ ~s" "JTENT A ) Asn w2 = BS,E 'm''n" A, Asu wh (10)
: =TT e W " mnm'n'm'"n m'n m''n s=1 “mnm'n m'n m'n
; dz m,n m ,n 8=l
i = Bm;: a'a'n" As-s' Am" w via the Einstein summation convention, (10a)
i
i o'"n"
; W -1 + -
i where Bs’ s" «- 2 . (X 8" X " s Bk
s mnm'n'm'n" 2 mn
& 4e
3 o *s
i i 8 { s-g'" 8" x=1 s-g" _a" ‘
a xJ‘J dxdy emn ’\vsmlnv vemnnn - k 2) wa-a"ws"em'n' £ n''n" (11a)
o -0 2¢ ,
{ ° J
n'n' o''n'tw an
.‘ s’sn UJE 'i(xa+s|| - Xsn - XS )z
- and B ffa ™ — e
mnm'n'om''n" 4 2 .mn
e X
& o s
k J |
] { 8 5+3' n* "'l + " 3"* N
t‘. x'T dxdy €m vamlnt ‘ vemn n 1_2' Wopgt Yot Eqtor Epign (11b)
g\ J 0 [ 2c
: o
Once the eigenmodes e:n (x,¥) have been specified for particular boundary conditions
" i
the B:n’a.i"sn'm"n“ coefficlents can readily be evaluated. B
Since p' = -0, 8c¢ + 0(¢3), the excess presasure spectrum p& (x,v,2,) is 18
8 &

glven by Eq. (4) as p; (x,y,2) ==dw_p ¢ ~ (x,y,2) ,
8 8 :
\y ~iX_z !

AS (2) e (x,y)e °© (12)

LS () [
g pO m,n mn

PPy

Assuming, in the case of parametric interaction between finite-amplitude primary

waves of frequencies w, and Wy that all nonlinearly generated waves other than

1
the difference-frequency (l.e. w_= wy - wz) signal could be effectively

suppressed via boundary-induced dispersion, Eq. (10) becomes

W
1 !

dA Wy y=Ww W W
mn 1’ - 2 - ) .
3z - “Bonm'n'm"a" Am'n Agigh (13a) !
w2 W o W) W w_* i
dA 2= 1 - )
dz " 2Bunmtn Aprat Agegn (13b) é
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w
= Wa yWo wy wz*
"'d'l:_n - 23m|nvmnnn Am'n' Am"n" (13e)
w N w N
1 1 2,2 Wa = ,N_
where Amn E Amn , Amn = Amn , and Amn Z A .
wy W
If the lowest order primary wave modes alone are excited and All’ All are

both constant, which in this instance assumes that nonlinear waveform distortion
is small, or alternatively that the primary fields are only subject to absorpticn

losses via the imaginary parts of their respective wavenumber, then Eq. (l3c)

becomes

4

W Wy wy* F Woy by
- '

Apn(2) = 2 A Ay J dz’ B 9111

(o]

[~ -]
Wy W% .
1,2 2 11 l1% ' [ W
wLAllAll | ' -i(xw = X, ~ Xw-)z' ( dx'dy! €mn
"l [ e 1 -
2c Xw Jo
( :
W w,* W, WK
1 27 'y=1' 1.%2
Y
/€yye Veu1 * 2e2 “1%2 f1fn (14)
5 ,

Substituting for Aﬁ; in Eq. (4) it follows that the difference-frequency pressure
field is given by

*

Wy W - "
-102 Pli Pli t‘ iX, 2z z- -i(xll - Xll - Ty,
'o(%,y,z2) = L& dz'e Wy Wy W
pm » Y 3 m,n an -
- 20,5 Xo. Jo
o) Il ' m Wk

x| dx'dy' e:; (x,y) e:; (x',y") 'Veli (x',y') « Ve * (x'yy")
J ) x
. w w,* '
x=1 1 1oyt 2 byt
+?zc2 Wy W By YT gy (hy')? (15)
2¢_ .

- e AP S PN | SRR T e § 08
w b o e - e G R A A e vl




13.

w w W, * wz*

1 1 2
11 i%ulAll , and Pll 1pw2 All

where P
Q

In order to test this weak finite-~amplitude solution let us assume that the boundary

surfaces of the layered medium are remcved, but that the medium itself remains

dispersive due to some inherent physical mechanism. The problem now corresponds

to the case of plane wave parametric interaction in an inherently dispersive un-

bound medium., Thus, after some manipulation, Eq. (1l5) becomes

Wy W% vz \a
~1Bw. Pli Pli -ix% 2 z. -i(Xu,l- sz' xu@-)”'
P&_(X,Y.z)-+ ———g e T dz'e
2p°c° o
o 2 \
Wy W =1 (x x’ X, )z
Bw P 1p2 1x% 2 Wy "Wy - l
11 "1l W, l1-e
“- e e — - (16)
290 co Xw sz- xm_ }
: )
where &-igi is the nonlinear coefficient the fluid.
’z - - - -
But le - xwz Xm_ " (kl kz k_z) i (al + a, a_z)
- kT_ - iaT- @an
Hence,Eq. (l6) can be repressed as
! “2* z ~C, 2 = 1k 2
ey o SWRTE T CBGE k- | (188
rJ ey 1
W= ZDocd3 t - * ikT_ J
wp Wyt /
- 18w P, P -k 2z - tk. 2/2
- 113 11 e B kT z. ainc(kT_z/2) in a
20 ¢
oo logsless dispersive madium (18b)
| |
Wy W, O 2 2
- 1B Pli Pli ‘in z 1-e T" , e—iZk_z sin (6/2)\
o e (Lo 2 —— r
4a°p°c03 1+ i(k_/ao) sin“(8/2) j
in a lossy disparsionless medium, (iBc)
where kT- - kl - kz - k_cos § = 2k_ sin2(6/2), and aTi 204 in the later case.

Eq. (18b) is the appropriate result for a weak parametric interaction in »

Cel e

-
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lossless dispersive medium, being similar to that derived by Rudenko and

% Soluyan23 for the second-harmonic field of an initially monotonic wave. Like~
: iz
S wise, 1f the field described by Eq.

ing to the case of a difference-~frequency signal collimated over a Rayleigh

tg distance z, " k_A /2m, where A is the area of the primary-wave projector and
Ui -
(b) 1s the diffraction pattern of the aperture at the difference-~frequency,
-ogz  -12k_z 81n2(8/2)
then in the far-field where e ' e = 0, the resulting form

of the differenca-frequency signal reduces, as required, to Naze and Tjutta'537

ﬁAg modification of Westervelts'a solution.

v Although the solutions of Eqs. (l3a) to (13c) considered in this section
i are only approximate, it should be noted that exact solutions expressed in terms
of elliptic function538 exist for the case of constant coaefficients as shown

in Appendix A.

2.2 Lnherent Dispersivity

Ia this section we deal with the case of parametric array formation via

g . nonlinearly interanting colinear paraxial waves in inherently dispersive media.

) If auch an interaction occurs, for example, in a monorelaxing, thermo=-viscous

fluid, the governing equation for the velocity potential ¢, correct to second-
39

TG T T,

order terms is given by the following modified form™” of Eq. (la):
1 \
2 -2 .2 i
(L + 1) (([1 +28¢,3.1 V" - cy at) ¢ - ¢ (V0.7 + 3-% (at¢)2]
d 2eq
4 -2 .2 3
L = me Bt o+ 0(d7) (19)

{
whare 6 = —l——i .(2n + n') + (k/u ) ({y - l)l is thermo-viscous coefficient,
2ppc,

mw (ci =<, )/c°° is the dispersivity, and T is the relaxation time, In this ;

notation, <, ig the low frequency (i.e. wt << 1) speed-of-sound in the fluid, and

¢, ls the high-frequency (i.e, wrt >> 1) limit,

e B A e




135,

For the case of progressive finite-amplitude primary waves radiated in the
zwdirection by a single projector in an unbounded medium, previous work by

Woodsum and Westervelt“o justifies the approximation
2 -2 2
V6 o Vo = (3,907 & 73,0
Substituting this approximntion in Eq. (19) gives

L+ 13,) U[l + 28, 0.1 7% - 7% adyp - o2t 2, (3,00%| = me? 0% + 006%)

(20)
where 8 = (y + 1)/2 .
Since the excess pressure p' -poat¢ + 0(4:3), it follows that
(1 + 13,) “[1 +28¢ 3,192 - ;2 82) pr + 870y 0f 82 o2 = meTB2 5t 4 0(p'?)
® ® (21)
T 1w t=x 2z)
If p'(x,¥,2,6) = § ,Z_,, s Pan(®) € (Kiyiz) e °° (22)
where lBZP l << |2x 3 P’l
z mn W oz mn
and x, =k, - 1a, (23)
k= k2 w, (24)
- k" o+ 24
5 4w )?
a
a, = (& + D wg (25)
I+(w 1)
8
8 i 42 _s
with 9, €> - 2 Ve, =0 (26)
then proceeding as before in section 2.1
B-l - -] \
s T < {
dPum o .3: J Z 8,-8" s-s8" .8 l 8,8" gta'" _a''*
T - m'n! .J",n" g''=1 Gmm|nvmunu Pm'n’ annn + 2 g"'ml cmnm'n'm"n" van| m"n"J

(27)
s,s" s~s" 8
- Cm;m'n'm"n" Pm'n' Pm"n" via the Einstein summation convention, (27a)
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2
18w ‘i(\( +X w=X_ )z @ n n
_at Kgma 7 , a -
9,-8 won ® 48 e 878 s s L dxdy € ES g 5” '

28)
mnm'n'm'"n . o Cm'n' Sm'n (
3 -0
A%Fw X i J

P 3 where C

For the case of a square aperture radiator located in the plane z = 0 centered at

é x =0, y= 0, the modes e:n are given by Kogelnik41 and by Cook and Arnoult42 as
-y

11 2

?: & (xiyiz) = (l+1z/z°s)(m+n)/2 L Wog(1-12/z ) fh v e /B
: mn (l_iz/zos)(m+n+2)/2 woa(21'11+ﬂ-0-l m!n!v)llz m n'w,

(29)

2 )1/2

- 2
o6 , and z__ kswoslz.

2
1] ]
where W 18 the "spot size' at frequency Wgs Wg ™ woe(l+z /2

The orthonormal relation satisfied by the modes is

4 ®. ;
\4 Jj B dxdy a;n (x,v,2) E:'n' (%,7,2) = Gmm' 6nn' . (30) ;
B ® R
< ik - ilié_ }- (x—x')2+'(Y'l' )2 1‘ ‘\

and m.Aﬂ--w e;n(x.y,z) e:m (x',y',2') = 577(;-2-?.-)' s 2 - ae 4 ()

L: +§(x=x") §(y-y'), when z=z' ~ (31a) i

Assuming again, as in section 2.1, for the case of a wecak parametric interaction §
betwaen finite-amplitude primary waves of frequencies Wy and wz.that all non-

linearly generated waves other than the difference-frequency (i.e. w_ = wy = wz)

signal could be effectively suppressed via inherent dispersion in the medium,

i e Tk S e it i

Eq. (27) becomes

wl §

d P Wy 4=, w, w_ 1
dz -2 cmm|n'mnnn vanl Pmnnn (32a) '\s
b

.d‘

w ¥

d Pmi Wy p_ Wy Wk :
—d';_ =2 Cmm|n|munn Pmonv Pmnnu (32b) l’
‘!‘

w :
dp " W aWw W Wak !
-2 1 2 !

dzm - 2 Cmnmvn'mnnn Pm'n' Pmunn (32¢) Z
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w N w N w N,-

1. _ -
where Pmn:mell,Pz:Pmi,ande:P (33)

mn

1f, as in section 2.1, the fundamental primary wave modes alone are excited and
W w,

both Poé ’ Poo are constant, which implies that nonlinear waveform distortion

is small, or alternatively, that the primary waves are only subject to viscous

attenuation and spreadiug losses, then Eq. (32c) becomes

Wy Wk oz w_ W,

PY-(z) m 2P~ P J dz' ¢
mn 00 Qo0 A mnoooo

2 Y %Y, =-1(x -x*-x Yz!

Buw PP Wy "Wy M) v w, Wy W
A dz'e ' o dxdy'e e " €
; mn o0 00
W0 Xy Jo J)
from Eq. (28) (34)

w
Taking the Fourier transform of Eq. (22) and substituting for Pm; from Eq. (34),

the difference-frequency field assumes the form

o

o Ay, 2z ) Wo p oy W= (X,y,2)
pm-(.,y,z) - o Ko e Cmn (&€
W, We* hd
iBmf Poi Pog ~1y, 2 < o 2 -i(xml-xw;'xm_)z
- 7 e m:ﬁ;-w Emn(x.y.z) , dz'e

ZQon X “ 0
@,
1, W w, mz*

x + dx'dy! emn(x'.y',z') eoo(x'.y',z') €00 (x',y',z") (35)
g

From 8q. (31) tnis becomeas

W Wo¥ - -k o '

18u_ Poi p 2 -1, 2 F 1k i(le X, X )z
' - - | I =

pw_(XOyiz) 3 e dz 2 (z=2") e
2p°cm Fo
. ® n -i_lg-[(x-x')2+(y-y')2 -
t - ' N
x dx'dy' soi(x',y'.z‘) Eog(x',y'.z') e N 2=z + (36)

e
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4

). But Eq. (29) gives

LE _ x2 + y2

ji’ wos2 (l_iz/zos)

g eoo(x.Y.z) = (2n)1/2 wos(l-iz/zos) (37)
; Hence wl (x',y',2") ew *(x yy',2') = 2-(M-/N_)(x'2+y’2) (38)
1 ™ ¥o1¥02 V-

3

f“ where  M_(z') = (wpl W32) 4 1 20wy, Wy T (5t - kha! (39)
; and No(z') = 1+ L(zgh = zohyat + (25 z2p) 7t 2 (40)

Substituting Eq. (38) in Eq. (36) and making use of the identity?
: ‘W
4 { a2y Detextaey) | am - Gz (674D
3 Podx'dy! a e 4a ,
. |

Eq. (36) becomes N

. 18w p “ip ¥
P, (Ksy,2) = 2 °° x e X, 2 |

4n o1 02p c

.2
{ T M \z')L;+T 3 ' '
! dz' o NN @Y Ee TR, T Ky Xy e 0

N_(z Y=12M_(27) (z-2") /k_

1 -

"
wp p W2 -
ie‘l""Pocv P o0 x e ixw_z .

—
4T ¥g1¥ozPoti

2,2
-~ & - M_(x +Z ) *
f (-)+32(—)z'+aat‘7z‘2 -10x, =Xy Xy ye! (41)
1 2 =

de' e
0 3

e
CFNOMRONE




_M+(x2+y2) 19.
Z
W, w (+, (+) _,2
13k+ P 1 p 2 -iX 2z a; ‘+a, z‘+a3 z'
' 00 00 W e
P! (yyz) == e de @ ® 2
+ 4ﬂw01vozpocm ’J a; +a2 z +33 z
-1 -+ - t ‘:
. Xy gy X 2 (42)
V g
A3 M
' -2 =2y -2 -1 =1, , K
1 where M (z') = (wOl + woz) iZ(wolwoz) (kz +ky )z (43) ﬁ
+) 42 =2 =2
: and a)=’ = \1 . (w01 + woz)z( (44) &
41 \ - ! i »
: 1-72¢ 19 "
T A S -
. a (2 (0§+w0§)+r 01702 ket J
VP - Zny 2 -
: - 01 “02 o
(+) . : 3
” a, = ———3— {k_._ - (kl + kz) } (46) &
i kpkokMor¥oz | - i
;; To the best of the authors knowledge Eqs. (41) and (42) is & new result for ‘g
the propagation of a parametically generated wave in a dispersive medium. If this d
dispersivity is removed and kl - kz = k_ the equation reverts to the form investi- 4
gated by Fenlonaa-A7 in his detailed analysis of near and far~field parametric ﬂ
acoustic array interactions, As it stands it can also be shown that in the far- :

field Eqs. (4l) and (42) reveals a shift in the angular apectrum dependent on the
amount of dispersivity which was first referred to by Novikov30 and subsequently

by Fenlon.48 Without going into further details now however, it is our intention

to fully evaluate Eqs. (41) and (42) numerically in order to determine the nature i
of the spreading losses so that the complete set of spectral equations may be i
solved along the bgam axis. In this manner the effect of dispersivity in destroy-
ing unwanted spectral components will ba investigated. :

Finally, on other task that must be carried out 18 to elaborate on the form-

ulation of Eqs.(4l)and(42) by rederiving it for the case where the two priuary waves

\
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are at an angle relative to each other. In this instance a resonant interaction
should be possible at least in parts of the field at the frequencles of interest
(note that the interaction is considerably more complicated than that due to

simple plane wave fields) but less and lass resonant at other frequencies in the

nonlinearly generated spectrum,
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3. Results and Statement of Continuing Research

Before pfoceeding to a computer investigation of the mathematical models
outlined in this report it was felt desirable to obtain upper bound estimates
of the extent to which the conversion efficiency of a parametric array can be
increased when all frequency components other than the primary waves and the

‘ difference-frequency are suppressed. Making use of a computer program de-

49 which operates in the time domain but is

veloped by McKendree and Fenlon
subject to iterative spectrum analysis this comparison is shown in Figs, 2
and 3 for the case of a virtually lossless plane wave parametric interaction
in which the frequency ratlo of the primary waves is 3/2. In this instance,
it can be seen from inspection that the three frequency case has a maximum

difference-frequency amplitude nearly an order-of-magnitude than that of the

all-frequency component spectrum. Moreover, the first peak of the difference=-

frequency in Mg, 2 occurs at ¢' = 3,5 at R = 3.5/0°. Hence at a value of
9% between ] and 10 it can be seen from Fig. 4, which was first evaluated by

47 that the beamwidth 1s almost fully established. This

Fenlon and McKendree,
ensures that if the medium in which the three frequency interaction is term~

inated an ideal and much more efficient parametric array will be formed rel-

& ative to that which would have existed under normal conditions. Similar but 3

even more efficlent comparisonu are then shown in Figs. 5 and 6, for wl/w2 = 6/5

and in Figs. 7 and 8 ml/w2 = 11/10 respectively. Thase cases provide typical

i upper bounds to the maximum realizable gains in conversion efficiency achievable
via absorption and dispersion mechanisms, both physical and artificial,

g The the present time we are in the process of programming and testing

i frequency~domain computer methods to determine the effect of dispersive mecha-

nisms in layered media, and using then to obtain the on-axis solutions of
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finite beams in relaxding fluids. The latter is particularly difficult to
solve numerically because the diffraction losses are extremely difficult to
include. These are however, defined paraxially by Eqs. (41) and (42)
were derived within and therefore, further analysis and simplification of
these results 1s expected to reveal the correct way to include them in a step
by step wave propagation analysis.

Once the computer models are running,sets of nondimensional plots of the

¥ parametric fields in dispersive media can then be evaluated, plotted and stud-

u led in detail for subsequent relation to real and artificial acoustic media.

Before concluding this discussion it 1s interesting to check the accutracy
of Figs. 2, 5, and 7 by comparison with the exact three frequency solutions
glven in Appendix A, As far as the first peaks of the latter are concerned
o they are in axcellent agreement with the analogous at exact curves of Figs,
(Al), (A2), and (A3). Subsequent deterinration of the computed curves is due
b both to the presence of small absorption losses (i.e, FO - 106) and to 'nu-

?‘ ' merical error', However, in general only the £irst peak of the difference-

frequency is of any interest because at this point the dispersive medium must

be terminated and the amplified difference-frequency sgignal released into the
unbounded surrounding medium. Hence the utility and validity of the numer-
ical methods,

During the next phase of the contract as well as performing the numerical
analysis referred to above we will carry out an asnalytical investigation of finite-

amplitude waves of Gausslan cross-gection intersecting at a { ‘xed angle in dispersive

fluids. Unlike the simple plane wave case investigated by Rudenko and Solugan23
we do not know if this will result in a resonant interaction at all points of |
the field or only in the far-field of the interaction, This {is one -objective of the

investigation. The other is to establish how rapidly res.nant intaraction falls s

PR T L S




off throughout the field at nonlinearly generated frequencies other tham the

difference-frequency, thus determining the extent to which the latter can grow

due to dispersive coupling.
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three wavas have a phase of m/2 then

3 "
dar " -7 PP,
. . )

A ! o V———

; : ) where o] N1+N2 coR,

)
zﬁm:,N_'N -NZ'

wy
1. and N, = G: s, N 1

1

o [s)
N 2
"3 Po %

If Pl and P2 are plane primary wave amplitudes of frequencies Wy and Wy

respectively normalized with respect to Plo and P_ is the normalized differ-

action then in the absence of losses and other frequency componenta if the

(AL)

(A2)

(A3)

(A4)

(A3)

| Z \

- =2 : -

:? ; tor and co - where 2 " Tk is the critical range for a mean wave
i

1070

o]
number ko - % (k1+k2). As shown by Bloembergen, Eqs. (Al) to (A3) have an

‘?? exact analytical golution in tarms of Jacobian Elliptic functions, summarized

) ! by Scottso.

EXEEN
(WY

E |P2| * Py nd(k,0', k)

1
cd(klc . kz)

b § N 1/2
i - - 3
E Ip‘| Nz kz on sd(klc [ kz)

(A6)

(A7)

(A8)

TTE, W

w2 QO - S A

24.

aence-fraquency (i.e, w_ = wy - wz) field resulting from thelr nonlinear inter-

; The normalized range R = % , where 2, is the half-Rayleigh distance of the projec-
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where

and

with

cd = cn/dn, nd = 1/dn, 8d = sn/dn

P
10
kl =3 Y NoN_

1

k

2 ® =
i+ Ny (P
Y. \F..
2 \P10

(A9)

(AL0)

(All)

25.
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