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SECTION I

INTRODUCTION

In the Murman Cole procedure the supersonic and the

subsonic regions are described in the same manner. Ho..ever,

the difference stars for the subsonic and the supersonic

regions are not the same and one needs special measures for

the treatment of the sonic points and of the shock points.

The strength of the Murman-Cole approach lies in the fact

that these different requirements are combined into a relatively

simple procedure with a minimum of logical decisions. Some

of the simplicity is lost if one formulates the problems in

terms of finite elements. It is still possible to retain

the same elements in the subsonic and in the supersonic regions.

The differences in the numerical approach for the subsonic

and for the supersonic regions are brought about by the choice

of weight functions. This is probably somewhat more compli-

cated than the difference star modifications of the Murman-

Cole approach. Further complications arise when one expresses

the conditions at the sonic line and at the shock. The finite

element procedure, in order to be economical, must use elements

which are larger than one mesh of the finite difference grid

system. In the Murman-Cole procedure the location of the

sonic line and of the shock is only roughly defined. To

leave these curves uncertain within the finite elements would

impair the accuracy. A procedure of this kind has been studied

elsewhere (Ref. 1).

One may ask whether it is really advantageous to

use the same description for the subsonic and in the supersonic

regions. The present report gives the basis for a procedure

in which the supersonic and the subsonic regions are treated

separately with the provision that they match at the sonic

line and at the shock. At the sonic line one requires that

the potential and its conormal derivative agree. At the 1,

shock one imposes the shock conditions, namely continuity of

V 4
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potential and mass flow through the shock. In the present
study we shall show how this can be accomplished by a Newton-

Raphson procedure, in which one computes corrections to an

available approximation (presumably the result of a previous

iteration step). Convergence can be expected if the starting

approximation is sufficiently close. In the supersonic region

the flow can be computed rather rapidly by a marching

procedure. It is then possible to evaluate not only the

basic supersonic flow field but also variations to it, and to

derive in this manner boundary conditions for the subsonic

region along the common boundary of the subsonic and the K
supersonic regions, namely the sonic line and the shock of

the (current) approximation. The resulting equations for the

subsonic region (which are linear because one carries out a

Newton Raphson procedure) are then solved by direct elimination.
Iterations are, of course, necessary because of the nonlinearity

of the problem. The iterations of the Murman-Cole procedure

serve a dual purpose: they determine corrections to the flow

field, and at the same time, because of immediate updating,

they also take into account the nonlinearities of the problem.

The procedure just described ought to converge if one

has an approximation which is sufficiently close, but it

requires in each iteration step that one compute the super-

sonic region a number of times for different assumed shapes

of the sonic line. One might think of a different approach

in which the supersonic region is computed only once in each

iteration step. One starts with an approximation to the

subsonic field and determines the location of the sonic line.

With this result one would compute the supersonic field; in

particular, the values of the conormal derivative of the per-

turbation potential at the sonic line. For these values and

with the shock conditions, corrections to the subsonic region

could be computed. This would complete one iteration step.

2



Here one does not deal with a Newton procedure. The con-

vergence of such iterations is uncertain even if one has a

close approximation, but if the method converges, then the

matching conditions at the sonic line will be satisfied.

Whether one has convergence and whether the procedure is

economical must be determined by numerical experiment.

3



SECTION II

THE SUBSONIC REGION

It is assumed that an approximation for the subsonic

part of the flow field, including an approximation for the

location of the sonic line and of the shock, is available.

The sonic line and that part of the shock which leads to

subsonic velocities constitute the common boundary between

the subsonic region and the supersonic region. We refer to

these data as current approximations. It is assumed that

corrections to the subsonic part of the flow field are

obtained by a finite element procedure. To fix the ideas

we consider rectangular elements. For the present discussions

which are concerned with the basic questions, the character

of the shape functions to be chosen (bilinear, biquadratic,

or bicubic) is unimportant. The current sonic line and the

current shock cut through these elements. This must, of

course, be taken into account in the computations. The

subsonic problem can be formulated by means of Bateman's

extremum principle; the functional whose variation must

vanish is the integral of the pressure over the region under

consideration. A linearization is necessary because the

relation between the pressure and the velocity gradient is

of a higher degree than the second. The extremum formulation

is used only to derive the governing equations. The conditions

at the shock and at the sonic line which occur here are not

of a nature which allows one to show that the functional

described above has an extremum. Convergence can be expected

because one carries out a Newton-Raphson procedure if one

has a sufficiently close starting approximation.

If one assumes, temporarily, that along the current

sonic line and the current shock the conormal derivative to

the perturbation potential is prescribed, then the potential

4



along this line appears as unknown; the conormal derivative

appears in the equations obtained from the application of the

extremum principle (which would then hold) in the inhomogeneous

part. (The other contributions to the inhomogeneous part

arise because in general the current approximation does not

satisfy the original nonlinear equations exactly.) Actually, the

conormal derivative is unknown. Computations to be carried

out in the supersonic region express it and also the change

of the potential along the sonic line and along the shock in

terms of the change of the shape of the sonic line and of the

shock. With these additional relations, one computes

simultaneously the change of the potential in the subsonic

part of the flow field, the change of the shape of the sonic

line, and the change of the shape of the shock. The character

of the conditions at the sonic line and at the shock and the

computations necessary in the supersonic region will be

discussed in the next sections.

5



SECTION III

CONDITIONS AT THE SONIC LINE

It is our goal to express the change of the potential

and of its gradient in terms of some characterization of

the deformation of the sonic line. We confine our attention

to the supersonic region. Consider, simultaneously, a basic

flow field and this basic flow field with a superimposed

perturbation. Points for which the velocity vector is the

same in the two fields are called corresponding points. The

vector leading from a certain point of the basic

flow field to its corresponding point in the perturbed field

is called the displacement vector of this point. It is

practical to express perturbations at the current sonic line

in terms of the component of the displacement vector normal

to the streamlines. (For the simplified transonic equation

this is the component in the y direction.) Let s be a

parameter which changes monotonically along the sonic line

(in most cases the x coordinate can serve as such a parameter)

and let, for some neighboring field, dn (s) and dt (s) be the

components of the displacement vector for points of the sonic

line, respectively, in the direction normal and tangential

to the streamlines. The computations in the supersonic

region serve to express dt(s) in terms of dn(s). This will

be discussed later. We express the change of the gradient

of the potential in terms of dn (s) and d t(s). First we

compute some derivatives pertaining to the basic flow field

in terms of geometric quantities. This can be done without

difficulty even for the full potential equation in a local

coordinate system where the temporary x axis coincides with

the flow direction and the y axis is normal to it. Then one

has py = 0 and qx = a* (because we consider a point of the

sonic line). The potential equation yields

@y = 0 (i)
yy

6
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Let R be the radius of curvature of the streamline at the

point in question. Then one has

S= a* • 1 (2)
xy R

a* is the sonic velocity, usually one chooses a* = 1. Carrying

a* within the equations facilitates a check of the dimensions.

Let B be the angle of the sonic line with the local x axis.

At the sonic line one has

x 2 + y2 = a*2

and since in the chosen system of coordinates 4y = 0 one

obtains by differentiation with respect to x (along the sonic

line)

x(xx + xy tg 6) = 0

Hence

= -y tg = -a*R tg (3)
xx xy

In the local system of coordinates d (s) and dn (s) are the

displacement components, respectively, in the x and y

directions. The components of the gradient of the potential

in the directions tangential and normal to the stream lines

are given by

x ' n

Let the perturbation potential be denoted by A4. Expressing

the fact that at corresponding points of the sonic line the

velocity vectors in the basic and in the changed flow field

are the same, and introducing a linearization one obtains

At + Cxxdt + xydn =0

n + *xydt +yydn=O

7



Hence

t ( s ) = a*R-(tg dt(s) - dn(s) (4)f

n(s) = -a*R- dt(s) (5)

These equations constitute boundary conditions for the

perturbations in the subsonic region at the current sonic

line provided that d t(s) is known as a function of d n(s).

This relation will be written in the form

d t(s) = f K(s,t)d'(t)dt (6)0

The derivative dn ' d(d (t))/dt is used in order to obtainn n
a kernel K(s,t) which is less singular (and therefore better

suited for a numerical evaluation). The determination of

K(s,t) will be shown in Section V.
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SECTION IV

CONDITIONS AT A SHOCK

It will be assumed in the coming dicussions that the

shock is weak. Then the change of the entropy through the

shock is small, and the flow downstream of the shock is again

a potential flow. At the shock the potential and the mass

flow through the shock are continuous. (Continuity of the

potential assures that the velocity component tangential

to the shock is continuous.) Quantities referring to the

flow field upstream or downstream of the shock will have,

respectively, superscript 1 and 2. It is assumed that at

the current shock position the basic flow field is known

and that AI A4 and A y are expressed as functions

of d (s); so far d (s) is unknown. The basic flow field inn n
the supersonic region will be determined for the current

shape of the sonic line by means of the method of character-

istics. The potential at the current shock position upstream

and downstream of the shock are usually not the same because

the potential (2) is given by the current approximation to

the subsonic part of the flow field, while the potential
(i) is taken from the newly computed supersonic region.

The shock position in the original and in the perturbed flow

fields are characterized by

x = xshock(Y) and x = xshock(Y) + Axshock(Y)

Expressing the requirement that at the changed shock position

the potential is continuous, one obtains
€(1) (1)()
( (xshock' y) + A0 (xshock'Y) + x (x shock'Y)Axshock

(xh(k2) x5 0  ,yA (y)

(2 hckY)+ A (2) + ~(2)
(2) (xshocky +" (x shock'y) + Ox (xshock y ) Ax s h o c k (y)

9



Hence

Ock) () (Xshock'Y) (2) (Xshock - (Xshocky) + A4 (Xshocky) +

.(1) ( (2) (X))Ax(y)
x shock'Y) -x shock'Y) shock

The only unknown quantities in the right hand side are A
which depends upon dn (s) and Ax shock(y). For simplicity the

equations of conservation of mass for the flow through the

shock are derived only for the simplified transonic equation;

it expresses conservation of mass in terms of a perturbation

potential which characterizes the deviation from a parallel

flow with the sonic velocity. This differential equation

is given by

-(y + l)a*4x xx + 4) = 0 (8)
x xx yy

Hence

ff[y + l)a 1xx + 0y]dxdy= 0

xxx yy

and by partially carrying out the integrations
*12

f - [(y + 1)/2 a 4) dy + y dx] = 0
DQx y

Hence for the deviations of the mass flow from a parallel

sonic flow for a line element in the flow field with slope

dx/dy

- [(y + 1)/2 a1 2 + 4y dx/dy] dy (9)
x y

The requirement that this deviation be the same upstream and

downstream of the shock gives

10
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(- + l)a*- (2) A (2) + A (2) (dXs /dY)

' A4 (dxshockdy

(y + 1)/2)a 1*-1 (4(1)2 (2)2) + 4 (1) -(2) )(dx /dy)

X A y )y shock

+ (y + 1)a 1  AO x + (dx xdv)

" (a (1) (1) . (2) (2))+ y+ ~ x xx x xx Ashock

(1) (2)x~
+ ('xy )Axshock ( d x shock / d y )

+ y (1) _ 4(2)) (dAx shock/dY) (10)

The unknown quantities on the left hand side are Aj' (2) and
(2)

A y(2  (Actually the expression on the left is the conormal

derivative pertaining to the differential equation for A(

The unknown quantities on the right hand side are Ax (y) and

d (s). The latter function occurs in A ( I ), and A' y 1 ) .n x y

11i



SECTION V

TREATMENT OF THE SUPERSONIC REGION

For the computations of the supersonic flow field we

consider the shape of the sonic line as given. In addition

one knows the profile contour. In this section we shall

discuss the application of the method of characteristics,

although there exist finite difference methods which could

also be used. In multidimensional problems finite difference

methods would probably be preferable.

The method of characteristics for the full potential

equation and also for the simplified transonic equation is

well known. To express the ideas which are important in the

present context, we shall repeat the main equations for the
simplified transonic equaion but without reference to the
underlying mathematical theory. One starts from Eq. (8),

namely

-(y + l)a + , + = 0
x xx yy

This equation is rewritten in the form

[ (+i1/ 2 *-/ 2 i/2 3x - 1/2 *-i/2(2/3) 3/2 + y = 0
L'(YIl a x tx + -](+(-y+l) a (23)x + 0

For curves within the flow field with the slope

dx _ (y+l)1/2*-i/ /2 (l1)
dy x

t]his equation becomes
1/2 *...3//

S[+(y+l) /2 a*-/2(2/3)3/2 + py] = 0 (12a)
dy -x y

Hence, for these curves

± (~l) 1/2a*-l/2 (2/3) 3/2 + 4 y =const (12b)

12
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Curves whose slope is given by Eq. (11) are called characteristics.

Eqs. (12a) and (12b) are called compatibility conditions for

the characteristics. They express that along such curves

ox and py cannot be chosen independently. One speaks of left

or right going characteristics to suggest their orientation

with respect to the streamlines. (The positive sign in Eq. (11)

refers to left going, the negative sign to right going

characteristics.) In the method of characteristics one computes

a net formed of such curves. The state at a grid point of

such a net is readily found. Assume that one knows 4x and y

at the points l and 2 of Figure 1. Points 1 and 2 must not

lie on the same characteristics. Let point 3 be the point

where two characteristics of different families through the

points 1 and 2 intersect. Then one has

-(y+l)1/ 2 a */ 2 (213)03/2 + -(y+) 1/2a *-1/2 (2/3), ,(yl)i2a-/2(/3 x, 3 y,3 l '

(13)

1/2 a*-1/2 ( 3/2 + +(Y+l)a/2 a*-/2(2/3) 3x,2 +
+(-Yr+l)i2a*/ 2 2/ 3 )x,3 + yx,2 y,2

(Second subscripts 1, 2 or 3 refer to the numbering of the

points.) The right hand sides are known. Therefore, one

can compute immediately, 0x3 and y After these quantities

have been determined, one finds x3 and Y3, by applying

Eqs. (11) in difference form

x 3  X I = 1/2 a*1/2 1 1/2 1/2y- (y+l)i/a*-/(1/2)(4x, + xl
Y 3 - X,2 xl

(14)
x 3 -2 - 1/2 *.1/2 + 112- y (Y+l) i/a*-/ (/2 (x,3 x,2 )

Y3 -Y2x 3 x,

The flow field in the vicinity of the sonic line is

regular; that is, 0 can be developed in power series with

respect to x and y (unless a singularity propagating along a

13
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characteristic occurs at the point for which the development

is to be carried out). However, the shape of the characteris-

tics is singular, because of the power 0xI /2 in Eq. (11).

This can be taken into account when one forms Eqs. (14) in

the segment of the characteristics next to the sonic line.

If one chooses a point of the sonic line as origin of an

x, y system and aligns the x axis with the local flow

direction, then the lowest order term in the development of

4 is given by

S= const xy

hence

4x = const y

Therefore, for the characteristics in this vicinity

dx = -(Y+) 1/2 a*-/2 const1/2y 1/2
dy

and for the characteristics through the origin

x = +(y+l) /2a*-l/2 constl/2 (2/3)y 3 /2

Expressing y by x , one obtains

x = +(y+l) I 2a*-i/ 2 constl (2/3)4x3/2

Hence, for two points of this characteristic
3/2 3/2

x - x1 1/2 *-1/2 x x2  (1+(y+1) a (2/3) (15)
Yl - Y2 'x I 1 lx 2

Eqs. (14) and (15) are exact if, respectively, X 112 and I

and linear functions of y. Eq. (15) therefore, qives an

acceptable approximation for the secant directions of the

characteristics throuqhout the flow field, while Eqs. (14)

becomes inaccurate in a neighborhood of the sonic line.

14



The sonic line is reached by only one downstream going

characteristic (Fig. 2). The state at the sonic line is

determined by the compatibility condition for this characteristic

and the condition that at the sonic line x = 0.

Only one downstream going characteristic arrives at

the surface of the profile (Fig. 3). For such a point, one

has the condition for the slope of this characteristic, the

compatibility condition, and as the boundary condition, the

value of y at the contour.

1/2 -1/2 3/2 /2 *112 3/2
(y+) a (2/3)/ 2 + (y+l) 1/2a*/2 (2/3), 2 +

x,2 y,2 x,2 y,l

X x 3/2 _3/2
2 1 :*-1/2 2x,2 x,l

-y- -(1/2) (y+l) a ~ ~ , ~Y2 -Yl 3 0 x,2 - x,l

0y,2 = f(x 2 ) (16)

From these three equations, 0x2' 4y2 and x2 are found by an

iteration. To carry out the method of characteristics one

also needs data along an initial line. They are given by an

analytic expression valid for the entrance corner of the

supersonic region. This will be discussed later. Busemann

makes a special choice of the values of 0y and 0x which occur

at the grid points of the characteristic net. This allows

him to work with predetermined characteristic slopes. In

the present context, it is probably preferable to forgo this

simplification. One must, however, make sure that the

differences in 0y for adjacent points of the characteristicy|
grid are not too large (because of accuracy requirements)

and not too small (in order to avoid unnecessary work). The

first condition will be the reason that one must start new

downstream going characteristics at the surface of the

profile.

15



To obtain the local changes A x and A y one might start
with the linearized form of Eq. (7),

-(y+l)a 1 xAxx - (y+l)a AO 4' + AOyy = 0 (17)

The characteristic conditions are obtained by rewriting this

equation in the form

+(Y+l) i/2a*-i/ 2 1/2 [(Y+l) 1/2a*-/ 2 1/2 _ + a ]Ax
x x 1a x

+[(y+) 1/2 a *x + __]AN (y+l)a* 1 A

i/21/2 y _ xx x

Here all quantities except A4x and A4y are considered as
x yknown. The characteristics are again in line with the slope

= 1/2 *-1/2 1/2dx/dy = +(y+l) a*/x

that is, they are identical with the characteristics of the

original field. The compatibility conditions assume the

form

+(y+l) 1/2 a *-i/ 1/2 d--(A ) + -(Ay) - (y+l)a 41 A4x = 0
x dy x dy y xx x

(18)

The singularity which occurs in the shape of the
1/2characteristics and the factor i/2which occurs in the

last equation would make further discussions for the vicinity

of the sonic line necessary.

It is simpler if one carries out the method of

characteristics for the neighboring field as well as for the

original field without introducing a linearization. At the

beginning of Section II we defined the displacement of a

point the flow field due to the superposition of a

perturbation: the displacement vector is the difference in

16



the local vectors of points of the perturbed flow field and

of the original flow field for which the state is the same.

In applying the method of characteristics for the neighboring

field it is best to compute these displacement vectors. The

hodograph equation is linear, from this fact it follows

that one obtains again an exact solution in the physical

plane, even for the full potential equation, if one multiplies

all displacement vectors by a constant factor. As far as

the displacement vectors are concerned, this makes a limiting

process to an infinitesimally small perturbation unnecessary.

A limiting process is, however, necessary to determine from

the displacement vectors the local changes Atx and Ap . Let

Ax and Ay be the components of the displacement vector.

From the condition that at points of the original and of

the perturbed field which correspond to each other the

velocity vector is the same, one then obtains

A~x = -) Ax - Ay

(19)

Apy = -xy Ax - yy Ay

The derivatives 1 x' xy and yy are taken from the basic

flow field. The perturbations A&x and Acy are needed only

at the current location of the sonic line and at the current

location of the shock.

The method of characteristics which determines primarily

the location of the grid points for a given state of the

flow gives the displacement vectors directly. To start the

procedure, one must use the displacement vectors along some

initial line where they will be computed analytically from

data at the entrance corner of the supersonic region.

If one has points 1 and 2 in the original field and

points 1' and 2' in the neighboring field, then one obtains

the ioint 3' in the neighboring field by drawing the parallel

17
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to the characteristics 13 and 23 (see Figure 4). The displace-

ment vector is then given by the line 33'. Actually it can

be computed if only the displacement vectors 1,1' and 2,2'

and the slopes of the characteristic 1,3 and 2,3 are known.

Let point 2 be the point of the original flow field

where the downstream going characteristic through point 1

of the perturbed field which corresponds to point 1. For

the displacement vector at point 2 the component d n normal

to the streamlines is known. Then one has as locus for point

2' the parallel through point 1' to the characteristic 1,2

and the parallel to the streamline at point 2 at a distance

dn. With these data one determines the component of the

displacement d in streamwise direction at point 2. For this
tcomputation, only the displacement vector 1,1', the assumed

displacement component dn at point 2 and the slope of the

chaiacteristic 1,2 are needed.

At the profile contour one must express the fact that

the local flow angle remains unchanged if one superimposes

a perturbation. One has, in general, for corresponding
points

AO + (dO/dn)d + (dO/dt)dt = 0

Therefore, at the profile contour

(dO/dn)dn + (dO/dt)dt = 0 (20)

dO/dt is the local curvature of the profile. d6/dn is computed

from the basic flow field, best probably from the data along

the two characteristics which pass through the point of the

contour in questior. Let, temporarily, the y direction

coincide with the normal to the streamlines (and to the

profile contour). Then one has, by differentiation along

the characteristics 1,2 and 1,3

18
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(de/dy)2 , = de/dn + de/dt(dt/dy) 2 ,r

where dO/dy and dt/dy is to be formed along the respective

characteristics (subscripts Z or r refer to left or right

going characteristics). These equations are formed for both

characteristics at the point of the profile contour. The

derivatives (dO/dy) z and (de/dy)r for the point at the contour

are found from the basic flow field. Making use of the fact

that (dt/dy), = -(dt/dy) r, one obtains

dO/dn = 1/2((d/dy) z + (dO/dy) r)) (21)

of course, dn and dt (in Eq. (20)) must be expressed in terms

of Ax and Ay. One has, for the simplified transonic equation

dn = Ay , dt = Ax (22)

Point 2' lies on the parallel to the characteristic 2 through

point 1', and on the straight line defined by Eq. (20).

The flow field in the entrance corner to the supersonic

region is determined analytically. At the sonic line, one

has x = 0. Let the sonic line be given by y = y sonic(x).

xx + xy (dysonic/dx) = 0

Here, pxy is given by the boundary condition at the profile.
In geometric terms one has

a xy = R (23)

where R is the radius of curvature at the point under con-

sideration. Further information is provided by the observa-

tion that one can obtain the development of the potential

for the vicinity of a point of the contour if the velocity

vector at the contour is given, for the contour is not a

19



characteristic line. In the present context, the result

is immediately obvious. One obtains from the simplified

transonic equation for the entrance corner of the supersonic

region

0
yy

One then obtains in a sufficiently small neighborhood a

coordinate system whose origin lies at the entrance corner

of the supersonic region

x = xy ( - (dYsonic /dX)x + y)

(24)

y = y (0,0) + xyx

To start the procedure one will compute the value of y

at point 1 of Figure 7; ox = 0 because this is a point of

the sonic line.

Next, one introduces a perturbation by assuming that

for y = 0 (that is along the contour) x is given by

x(x,0) = AOx (0,0) + xx (0,0)x + AOxx (0,0)x

Since qxy is determined by the profile shape, one has in the

changed flow field

x (X,y) + Ax (x,y) = Ax (0,0) + oxx (0,0)x + A xx (0,0)x + xy (0,O)y

Thus, for the local change

A x(X,y) = Ax (0,0) + A xx(0,0)x (25)

Now, we invoke the differential equation (for x = 0, y = 0)

*-iAx0ly(-(y+l)a A0 (0,0)kp (0,0) + A xx(0,0)1 + A , (0,0) = 0

20



Hence, with a linearization

A4)y (0,0) (y+l)a*1 A4)x (0,0)4)x (0,0) (26)

and

A4)y (x,y) (y+l)a*1 A4)x (0,0)4)x (O,O)y (27)

To determine from these results the displacement vector

(components Ax and Ay) in the flow field, we express the fact

that at corresponding points the values of 4),x and 4) are the

same.

x (0,0)x + 4),x, (0,0)y = A4)x (0,0) + 0 ) (0,0) (x+Ax) + A4)x (0,0)x

+ 4)x (0,0) (y + Ay)

4) (0,0)x 4)x (0,0) (x + Ax) + A4)y (0,0)y

Hence

AO ) (0,0)
Ax(x,y) =- x(OO (28)

Ay(x,y) = [-AO) (0,0) -AO) (0,0)x +
4)y (0,0) xx

4P)x (0,0)Ao ) (0,0)

XX t ' )y) (29)

Here AO ) (0,0) is expressed by Eq. (26). So far unknown are

the assumed perturbations at the contour AO x (0,0) and A4) X (0,0).

The purpose of these computations is the evaluation of the

kernel K(s,t) in Eq. (6). one chooses d n(t) = 0, up to a

point t =T and d ntM = 1, from there on; in other words,
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dn '(t) and 6(t - 6). For this choice one computes dt(s,t).
This function depends, of course, upon the value of T. Then,

from Eq. (6)

d t(s,r) = K(S,T) (30)

These computations must be carried out for a sufficient number

of values of t and s so that, if necessary, intermediate

values of K(s,t) can be obtained by interpolation.

If the point t = T lies at the entrance corner of the

supersonic region, (x = 0, y = 0 in Eq. (29)) then one obtains

Ay(0,0) = -A x(0,0)/ xy(0,0)

Hence A p (0,0) = -4xy(0,0) Ay(0,0) (31)

For the evalution of K(s,t) described above, one has d () =n
Ay = 1 also for other points of the sonic line. Therefore,

from Eq. (29)

1 (((O'O)AO yy (0,0) dysonic1 - Oxy(0,0 ) (0,0) 0 - (AOxx(0,0) - xy(0,0) so n xi

Hence, with Eqs. (31) and (26)
*-i 2 dy sonic y00

A x (0,0) = -(y+l)a * x (0,0) dx Ay(0,O)
xx xx

This allows one to compute Ax(x,y) and Ay(x,y), for

the point at which the method of characteristics starts

(points 1 in Figure 7) by means of Eqs. (25) and (27).

The remaining discussions address themselves to the
character of the kernel K(s,t) for points at the sonic line,

other than the initial point. The computation described

above introduces at the station t = T a jump of dn (t), one

therefore expects that dt(s) will be singular for s = t.
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It is desirable to know, at least qualitatively, the

character of these singularities, for the numerical evalua-

tion gives only pointwise data. For this purpose it

is best to use the simplified hodograph equation, which

arises from the simplified transonic equation by the Legendre

transformation. To make the report self-contained, the

fundamental derivations are repeated (see for instance Ref. 2).

One starts from

-(Y+l)px4xx + yy = 0

(for simplicity we have set a* = 0)

and sets

4x =n , = 0 (33)

(x'y) = -O(h,) + xq + ye (34)

Then

T, ~+ + x D T,+ y-x -x +  + x - ax

an h 2 + x 2--, + 0 + y -o

y n ay e ay ay a

Hence with Eq. (33)

0 q + x) + e +

+ x) + + y)
, 0~~ = ( +(- as y

Dy n x)

and

xy =  (35)

T) 2



The derivatives ,x *x and 4 y are found from the
identities

n 0 x(x(n,0) ,y(n,()))

and

y (x '0)y (TI, ))

One obtains by differentiating the first one with respect

to ni and 0

1 = LX +xax n xy anT

~xxae ~xy ae

Hence

xx D ae16
(36)

ox =-1 ax =--14 4no

with

D (X-= -x 2-x 2) -D 2 (37)36 ae ae an ~nn'ee n

Similarly, from the second equation

yy = -10nn (8

Hence, f rom Eq. (8)

-(~~~6+4 nn = 0 (39)

The lowest order approximation to the basic flow in the vicinity

of a point of the sonic line is given by
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S(n,8) = Rn0 + (T) 3 I

Hence

x = T1 = R[O + 2 2

(40)

y =0 = R[n + etg]

This expression satisfies

nO.._-R
xy D tg 2R 2 (y+l) n - R2

Hence, for n small

-i
xy = R

in accordance with Eq. (2). The sonic line is given by n = 0.

There one has

x = Re

y = ROtga

In accordance with the definition following Eq. (2),

one obtains, indeed,

dy /dx = tgR
sonic

If one superimposes to V a solution D(l) then, 4(Vi) and
(iP) are the x and y components of the displacement vector.

We consider now a solution 4(i) for which ) evaluated

at the sonic line (n = 0) has a jump as one proceeds from

positive to negative values of 6 and is constant otherwise.

The choice of the signs is made in accordance with the

behavior of the flow field on the upper side of a profile.

At the sonic line the angle 0 decreases aq one proceeds in

the downstream direction and R is negative.

25



I.

Particular solutions of this character have the form

D(n, ) 3 /2f(0 (41)

where

-Y (42)

The characteristics of Eq. (39) are recognized if one rewrites

it in the following manner

'1+(Y+l)l/2nl/2 [(Y+) 1/2 1l/2 a-+

+ [;(y+1)1/2 n1/ 2 a + nisT =0

They are given by

d6 TY+11/2 )1/2d- + (y+l) i/2i/
dn

or

0 + (y+l)1 /2(2/3) 3/ 2  const

The lines = 1 are the characteristic through the origin.

One solution for which 0. = const along a line C = const

is obviously given by

4 = (3/2) (y+l) 1/28

which leads to

f = Cl/2 (43)

but it is not suitable for the present purpose. One obtains,

by substituting Eq. (41) into Eq. (39)

C(C-l)f" + [i- ]f' + f= 0 (44)
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This is indeed satisfied by Eq. (43). Eq. (44) is

reduced to a first order equation by means of Eq. (43).

f = g

C(C-l)g" + ( - 2) = 0

Hence 3 4
E _- 3 1 1 1
g' (-i) 2 6 - 1

Then, except for a factor

g = C-3/2( _ 1)1/6

S -3/2 i/6d

With this choice of the constant of integration one obtains

g = 0, g' = 0 for 1 : 1. This gives an admissible transition

along the characteristic I = 1 (Fig. 8 in the second quadrant)

from the solution 0, to the expression 3 g

for 4 as well as its first derivative vanish along this line.

The sonic line is given by n = 0, C =. One has

g(-) f 3/2 ( -l) 1 / 6 d

This constant can be evaluated in terms of tabulated functions.

One obtains by setting

g(®) = f 1/3 -1 (1_ )7/6 -
1dr 1 B

0 3 6
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where B is the Eulerian Beta-function. Hence

1 (7)
r(- 5 ) r(7

g(-) =
r (2)

One has for small

1 -2/3 1/6d = 2/3 1/6 d ;

g(- = f (1-) f -f C (1-F)
0 0

1 71 7
3 C1/3 3 6~- 3Tl/3r, r,(2),

Hence for the vicinity of the linen = 0 (=

(i1) = 3/2 Ci/2 g()

S3 )-1/2 6 4/3 2_1/3 1/6 1/3(Y}) 0 3- (y+l) a T
r(3

2

Therefore, for n = 0

(1) =_34/3 2- /3(+1)- /6 o1/3
n

-1/ r 12)

The displacement in the y direction is given by 40) In

the lowest approximation this displacement is constant at the

boundary n = 0 of the shaded region of Fig. 8, while it is

zero for 0 positive. The component in the streamline direction

of the displacement vector is then given by
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r3)
(1) 1/) r( ) 1/ 3 31/3 22/3 1/3n0 1 C 7/

r()- 7(

Now we had in the basic flow, in the lowest approximation,

according to Eq. (40)

R

Hence, for points of the sonic line immediately downstream of

the point where the jump occurs

3
() 1/3 1/3 2/3 -I/3 1/3dt d n 1 7 (y+l) 3 2 R x

This equation displays the character of d t(x) taken along the

sonic line for the vicinity of a point where dn (s) has a jump.
1/3Important for the purpose of interpolation is the factor x

Sometimes it may not be necessary to determine the coefficient

by which this factor is multiplied. The qualitative behavior

of some quantities which are needed for subsonic computations

is shown in Fig. 9.

The singularity generated by a jump of dn (x) will

propagate in the downstream direction along the characteristic

which starts at the point where the jump occurs. It is

reflected at the surface of the profile. A singularity of

the same character will occur where this reflected wave

reaches the sonic line. This wave is reflected again. These

discussions show the character of the singularities which

the kernel K(s,t) in Eq. (6) will have. As was mentioned

above, the numerical evaluation gives K(s,t) pointwise.

29
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In deriving boundary conditions for the subsonic region

from the Eq. (6), one must discretize the relations for

At and AO and d (s) in a form which is suitable for thex y n
computation of the subsonic region. This means that one

must approximate these data in a form analogous to the

expressions for A4x and Ay which appears in the subsonic
x y

finite element formulation. Details will, of course, depend

upon the character of the shape functions chosen in the

subsonic region.

This provides, at least in principle, the system of

formulae needed to carry out the procedure sketched in

Section II.
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Figure 1. Characteristics Within the Field.
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Figure 2. Characteristic Terminating at the Sonic Line.
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Ficoure 3. Characteristic Terminating at the Profile Contour.
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Figure 5. Computation of the Displacenent Vector of a Point of the
Sonic Line. (Ax I , Ay, and d are known, d t is to :e
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Figure 6. Sketch Illustrating the Relation Between d6 do

dO and 
dr

dn dt'
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Figure 7. Starting Point (1) for the Method of Characteristics.
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Figure 8. Hodograph (n, 8 plane), The Curves : 1 are the
Characteristics through the Origin. The Shaded Part
is Affected by a Jump of dn -
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dt

s

Figure 9. Qualitative Behavior of d , ,A and A at a Point of
the Sonic Line where d J m s Y' from Z~ro to a Finite
Value. n
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