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ABSTRACT

A hierarchical procedure is described for computing the

discrete correlation, hz(xy) o f(x,y), between a function f

and a kernel h . For the class of h considered here, this

correlation is equivalent to a weighted sum of correlations

of f(x,y) with the kernel h Zl1_r2hz(x/r,y/r). Here r>l, so

h_ is narrower than ht by I/r. The correlations of f with

h_ are themselves computed as the weighted sums of correla-

tions with still narrower kernels. The narrowest kernel, ho,

has unit width, and its correlation with f is f itself.

Kernels which can be computed hierarchically in this way

closely approximate the Gaussian probability distribution.

. Hierarchical discrete correlation (HDC) is more efficient than

direct correlation or correlation using the FFT, by two to

three orders of magnitude.

The HDC has immediate applications to computer image pro-

cessing. Samples of the correlations obtained at nearby image

positions can be summed to obtain band pass Laplacian
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and oriented first and second derivative operators ("Mexican

hat", edge and bar masks). The correlation of an image with

many operators and at many scales requires little computation

beyond a single HDC.

The support of the Defense Advanced Research Projects Agency
and the U.S. Army Night Vision Laboratory under Contract
DAAG-53-76C-0138 (DARPA Order 3206) is gratefully acknowledged,
as is the help of Kathryn Riley in preparing this paper. The
author also wishes to acknowledge discussions with Ted Adelson of
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of the work reported here.



1. Introduction

A fundamental and frequent task in computer image analysis

is the computation of image correlations. Typically one image

is correlated with a number of others in order to identify

objects, or, in the case of stereopsis and motion analysis, to

detect object displacements. Still more often relatively small

operators, or masks, are correlated with larger images in order

to extract local properties such as bar- and edge-like features

and zero crossings. Unfortunately correlations are computation-

ally expensive: many elementary computational steps (adds and

multiplies) are required for each location in the image at

which the correlation is computed. The expense is compounded

in tasks such as texture or motion analysis where it is appro-

priate to process the image with operators of many sizes, some

of which cover hundreds or even thousands of image pixels [1,2].

'jThis paper describes a new method for computing correlations

which is particularly well suited for image processing. The

method, called hierarchical discrete correlation, or HDC, is

computationally efficient, typically requiring two or three

orders of magnitude fewer computational steps than direct cor-

relation or correlation computed in the spatial frequency domain

using the Fast Fourier transform. In addition the method simul-

taneously generates correlations for kernels (operators) of

many sizes. These kernels closely approximate the Gaussian



Aprobability distribution, so that the correlation is equivalent

to low pass filtering. The operators commonly used in image

processing can be readily obtained from sums and differences

of Gaussian-like correlations at nearby image points. ...

The principle underlying the HDC is that the correlation I.
of a function with a large kernel can be computed as a weighted

sum of correlations with smaller kernels, and these in turn can

be computed as weighted sums of correlations with still smaller

kernels. The kernels at each iteration of the HDC computation

differ in size by a factor r, which we call the order of the

hierarchical correlation, but not in shape.

We begin by defining three types of HDC. Types 1 and 2

are for integer values of r, while type 3 is for fractional

values. Type 2 differs from type 1 only in that an even rather

than an odd number of correlations with small kernels are summed

to obtain the correlation with the next larger kernel.

Definitions and analyses are initially given for HDC in

one dimension, and then it is shown that these can be directly

generalized to a second dimension. Next we show that bandpass

Laplacian and first and second derivative image operators can

be obtained from the HDC. Finally we compare the computational

cost of the HDC with standard correlation and FFT methods.



2. Hierarchical Discrete Correlation, Type 1 (Odd)

Suppose f(x) is a single valued function of x which is

known only at integer values of x. Suppose also that w(x) is

a discrete weighting function which is defined at integral x

and which is non-zero only for -mixim. We then define the

hierarchical discrete correlation of type 1 (HDCl) as a set

of correlation functions gt(x) which are obtained from f and w

as follows:

(Type 1) go (x) = f (x)
m t-l

gZ(W = Z w(i)gtl(x+ir - ) for Z>l (1)
i=-m

Here Z, m and r are positive integers.

The function gt is obtained from f through Z recursions of

a correlation-like operation using the weighting function w(x).

Thus we say that t is the level of gt(x) in the HDC and w(x) is

the generating kernel.

Note that g,(x) is defined as a sum of k=2m+l values of

gZl(XW which are separated by multiples of 
the distance rZ-1

This sample distance grows geometrically by the factor r from

level to level, so we say r is the order of the HDC; k is called

the width of the generating kernel.

The HDCl is illustrated graphically in Figure 1.

Equivalent Kernel

The function gt which is defined recursively in Eq. 1 may

also be defined as a standard correlation of f with an

I ..~-



equivalent kernel ht:

g1(x) = ht (x) o f(x)
M

- t h (i)f(x+i) (2)
it-M

The equivalent kernel may itself be defined recursively, and

is independent of f:

h0 (x) - for x=O

{O otherwise

m .Z-l
hz(x) = Z w(i) ht_1 (x-r - ) (3)

i--m

We can show by induction that the definition of gt given in

Eq. 2 is equivalent to that given in Eq. 1. First observe that

the limit of the sum in Eq. 2, M', is just that interval over

which ht is non-zero. To simplify our derivations we can extend

the range of the sum without changing its value. (The actual

value of Mt will be obtained in the next subsection.)

For t=O we have from Eqs. 2 and 3

g0 (x) h0 (x) o f(x)

Mf

0

Z - h0 (i)f(x+i)

- f (x)

This result agrees with the first part of Eq. 1. Now suppose

i ~~~~~~~ ~ ~ ; i i NE711I......



that Eq. 2 is true for level C-i. We need to show that it is

also true for level C.

We assume:

g£-l(x) = h i(x) o f(x)

= hZ1 (j)f(x+j)
=

Now substitute this into Eq. 1:m

gt(x) = Z w(i) [ )_ 1 (j)f(x+ir +j)]
i=-m j=-.

t-lIf we let J=ir +j we get:

g,(x) Z w(i) Z h/_l(j-ir-)f(x+3)]
i=-m =-0

Thus we reorder the summations:

g,(x) =,Z Z w(i)hll(j-ir - fx)
j=-- i=-m

So from Eq. 3 we find

g,(x) = E h (j)f(x+j)
j=-Co

= hz(x) o f(x)

This concludes the inductive proof.

While Eqs. 1 and 2 give equivalent definitions, it will

be convenient to describe the correlations in terms of equi-

valent kernels, but compute them with the recursive formulation,

Eq. 1.



Width of the equivalent kernel
Suppose ML is the largest value of x for which h (x) is

non-zero. From Eq. 3 we see that

Mt = mr t- I+M t- for t>0ZI
and M = 0

Thus M = mr Z-l+mrt-2+...+m

t-l1
= m Er

i=0

- (r-l) (4)

The width k of the equivalent kernel h is k = 2M +1.

Constraints

We now adopt four constraints on the generating kernel

which are designed to insure that the equivalent kernels are

monophasic, symmetric, and centered at x=0.
m

Normalization E w(i) = 1 (Cl)

Symmetry w(x) = w(-x) for all x (C2)

Monophasic w(x1 ) 1 w(x2) 0 for 0Ix1 1x 2  (C3)
m

Equal Contribution z w(j+ir) = constant (=l/r) for
i=-m

all j, 0 j <r (C4)

The fourth constraint insures that every sample point of

f(x) contributes with equal weight to every level of the HDC

when we adopt a reduced form of correlation. (The reduced

form will be defined below.)

The properties imposed by the first three constraints on



" -- ... ...... . -- . .. ........ - - ; ? ' ° . . .. .. . . .. .. -

the generating kernel are transferred through it to the equiva-

lent kernels as well. Thus for each .,ht(x) is normalized,

symmetric and monophasic.

Example Type 1 HDC

We now illustrate the hierarchical discrete correlation

with an example which is well suited for image processing. We

let the width of the generating kernel be 5 (m=2) and the order,

r, be 2.

Let w(O)=a, w(l)=b, and w(2)=c. Then the constraints become

w(-l) = w(l) = b
(symmetry)

w(-2) = w(2) = c

a+2b+2c = 1 (normalization)

alb acO (monophasic)

a+2c = 2b (equal contribution)

From these constraints we find

i/4s a l/2

b = 1/4

c = 1/4-a/2

One free parameter remains and we take this to be a. For each

value of a within the designated range we obtain a different

generating kernel, and from it in turn a set of equivalent

kernels. For example, when a = .4, b = .25 and c = .05, the

kernels hl , h2, and h3 are as shown in Figure 2. The scales

have been adjusted in these graphs to aid comparison: in each

case the amplitude of ht has been increased by 2 while the x

scale has been reduced by the same factor. Thus the areas



under the curves have been preserved (area=l).

Notice that h1 (x)=w(x), and that h2 (x) and h3 (x) are

symmetric and monophasic. In addition these three equivalent

kernels illustrate a critical property of HDC:

Observation 1 (Constant shape): The shape of the rescaled

equivalent kernel converges towards a characteristic terminal

form as the level, Z, is increased.

Shape convergence is very rapid. If we let h. designate

the characteristic form of the rescaled kernels then, in this

example, h3 deviates from h. by less than 1%, while h4 deviates

less than 0.1%. We use h5 as an estimate of h. here (Fig. 2d)

and in the remaining examples in this paper.

The shape of the characteristic kernel depends on the

generating kernel and hence on the value assigned to the free

parameter a. Examples for a=0.5, 0.4 and 0.3 are given in

Figure 3.

When a=0.5, then c=0, so the width of the generating kernel

becomes 3. In this case the equivalent kernel is triangular,

as shown in Figure 3a. For other values of a, h,, assumes a

"bell" shape, which is broader for smaller values of a. This

illustrates a second critical property of the HDC:

Observation 2 (Gaussian-like) :Eauivalent kernels obtained when

the generating kernel has width greater than 3 approximate

the Gaussian probability distribution.

Li a 0M-



The closeness of this approximation depends on the value

of a. For a=0.4 the approximation of h. to a Gaussian is par-

ticularly good, as is shown graphically in Figure 4. As a is

made smaller the width of h. becomes greater. To characterize

this tendency we have found the best fit (LSE) Gaussian to h

as a function of a. The standard deviation, a, of this Gaussian

is shown as a function of a in Figure 5a. (a is shown normalized

by 1/r, so does not change with level of the HDC.) The

squared error between h. and the best fit Gaussian is shown

in Figure 5b. Note that the error is minimum for a 0.4.

- -*



3. HDC Type 2 (Even)

The width of the generating kernel for type 1 hierarchical

discrete correlations was always odd, k=2m+l. In order to per-

mit kernels of even width we must change the definition of the

correlation slightly:

(Type 2) go(x) = f(x)

m-1 1gt(x) = - w(i + T)gf (x+(i + 1)r _1) (5)

i=-m

In this case gt(x) is defined for integer x when (rt-l)/(r-l)

is even but for x = ...- 1/2,1/2,3/2 ... when it is odd. The

generating kernel is also defined at intermediate values of x.

To illustrate type 2 HDC's we consider an example in which

r=2 and m=2. The structure of the computation is shown graphi-

cally in Figure 6. Let w(i/2)=a and w(3/2)=b. Then applying

the constraints we find:

w(-1/2) = w(1/2) = a
symmetry

w(-3/2) = w(3/2) = b

2a+2b = 1 normalization

a>bkO monophasic

(the fourth constraint, equal contribution, is automatically

satisfied).

Thus we find:

1/4 £asl/2

b = 1/2-a

Characteristic kernels are shown in Figure 7 for a = 0.5,



0.4, and 0.3. For a = 0.5, b = 0, and the generating kernel

degenerates to width 2, and the characteristic kernel, h , is

square shaped (Fig. 7a). For smaller a h. becomes bell shaped

and Gaussian-like, although these kernels approximate the Gaussian

function less closely than the kernels obtained in the previous

example when the generating kernel width was 5. This point is

made in Figure 8 where we plot a and the mean squared error for

the best-fit Gaussian to h. as a function of a. The error is

relatively small only over a narrow range of a near az.37.



4. Reduced HDC

We now introduce a modification to the hierarchical discrete

correlation in which the number of samples of gt(x) is reduced

by a factor of r from level to level. The arrangement of nodes

in the graph which represents the correlation for a type 1 HDC,

with r=2, is shown in Figure 9a. If we compare this to Figure

1 we see that every other node has been retained at level 1,

every fourth node at level 2, and so on. However the correla-

tions defined at the remaining graph nodes (sample points of

gt(x)) are not changed, nor is the generating kernel, w, or

the equivalent kernels, h . It will be convenient to change

the index of the samples of gt(x) as follows: Let gn, be the

nth sample of gZ(x) measured from gZ(O) in the positive x direc-

tion. Then g = g(nr ), and Eq. 1 becomes:

(Type 1, reduced) gn,0 = f(n) n = ...- 1,0,1,2,...

m

= Z w(i)grn 4i 1  (6gn,£ i=-m

For Type 2 HDC let

9 rl nr
2 g~z= g (- -l~+ nr ).

(See Figure 9b.) Then Eq. 5 becomes:

(Type 2, reduced) gn,0 
= f(n)

m-1
gnt= Z w(i+ -f)g rn+i+l,t-I (7)
gn£ =-m

These reduced forms of the HDC have a distinct advantage

over the original forms in that they are obtained with

1As



substantially fewer computation steps and require less computer

storage. Fortunately no information is lost in adopting the

reduced sample density provided the sample interval (=rZ)

satisfies the relationship

r 1 (8)
2wz

where wZ is the highest spatial frequency component of g,(x)

[3, p. 70].

Let G., Hz and F be the Fourier transforms of gZ, h. and f

respectively. Then

Ge(s) = Ht(s)F* (s)

(The '*' indicates the complex conjugate.) We have observed

that hy(x) closely approximates a Gaussian distribution. There-

fore Hz can be reasonably approximated by the transform of the

Gaussian. In particular, if the Gaussian has standard deviation

al, then its transform is itself a Gaussian and has standard

deviation as = As a fairly conservative estimate of the

high frequency limit of Ht, and hence also of Gt, we say

wf = 2a. Then Eq. 8 is satisfied when

r

In fact this is approximately the ratio obtained when the gene-

rating kernel has width 4 or 5 and a is within the Gaussian-like

region (see Fig. 5 and 8). We conclude that the correlation

functions are adequately sampled in the reduced form of the HDC.

L-4-
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5. Type 3 HDC (Fractional Order)

An inherent restriction in hierarchical discrete correlations

of types 1 and 2 is that the order, r, must be a positive integer.

The smallest order of interest is r=2 since r=l results in a

process which is recursive but not hierarchical. In this case,

the distance between level t samples which are summed to obtain

each level L+l sample does not increase from level to level.

It is possible to obtain fractional orders, with r between 1 and

2, in the following way. Suppose r=k1 /k2 where kI and k2 are

integers and k2 <k 1 <2k 2. We restrict our attention to the

reduced form of the correlation so that for every k1 samples of

g,, there will be k2 samples of g,+,. These samples are computed

at regular intervals (rz and rZ+l) so that the distance from

gt+1fi to the nearest sample point of g. changes with i. However

the same nearest neighbor distance is obtained when i is increased

modulo k2 . To accommodate these k2 distance relationships we

must define k2 different generating kernels w t(x), t=O, k 2-1.

If we position the samples in the x coordinate so that gi =

r (i. t+x where 1 (rZl)/(r-l), then the distances be-
t/i 0)o wher O,= "T

tween gt+l, and the nearest g. sample will be the same as the
distance between g+,]- and the nearest sample, but in

2il n thenaetgsmp,

the opposite direction. In this case the tth generating #rnel

is simply a mirror reflection of the (k2-t-l)th kernel:

wt(x) = wk l(-x).



We do not give the general definition of the type 3 HDC since

indexing of the correlation functions and generating kernels is

rather tedious. Instead we illustrate the construction with

an example in which r=3/2. In this case there are two generat-

ing kernels, one of which is the mirror reflection of the other.

We let the width of the generating kernels be 5, and say

w0 (x 2 ) w1 (-x 2 ) = b

w0 (x 3 ) w 1 (-x 3) = c

w0 (x 4 ) W W1 (-x 4 ) = d

w0 (x 5 ) = wl (-x 5 ) = e

where

x = -7/4

x2 = -3/4

x 3 = 1/4

x 4 = 5/4

x 5 = 9/4

(See Figure 10.)

The constraints on w are the same as in previous 
HDC's except

that the symmetry constraint is replaced by one or more 
balance

constraints. Let x~ be the position of the ith member of the

kernel wt(x). Then the nth order balance constraint is

i E Ixtfi n wt(x t i) f IX i n wt(xt, i )i, for x t'i <0 i, for x t'i >0

elf



In the present example we have

a+b+c+d+e- 1 normalization

a+c+d - 2b+2e equal contribution

c Ab AdAa ae,0 monophasic

7a+3b - c+5d+9e 1st order balance

49a+9b = c+25d+81e 2nd order balance

From these we can determine the variables b, c, d, and e in

terms of one free variable, a:

.021'a&.127

17 a

23 8a
C 3 6 - T

d - 1 + 5a

1 a
54 9

The generating kernels obtained subject to these constraints

are irregular in appearance (Fig. Ila) but the equivalent kernels

are Gaussian-like and nearly symmetric (Fig. llb). The standard

deviations and errors of best fit Gaussians to h. are given in

Figure 12. Note that type 3 HDC with r = 3/2 and kernel width

5 can approximate Gaussians more closely than the type 1 and 2

examples described earlier (compare Figure 12 with Figures 5 and

8).

t. _ __,_
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6. HDC in two dimensions

The three types of hierarchical discrete correlations which

we have defined thus far in one dimension can be extended

directly to a second dimension. Assume the function f(x,y) is

sampled for x,y = ...-1,O,1,2....Then Eq. 6 for the reduced

type 1 HDC becomes:

gn, iny t t (rtnx, r ny)

gnXny10 =f(nxny)

m m
gnx'y' = i=-m j=-Ew(i,j)grn +i,rny+j,.l- (9)

The sample positions in two dimensions for types 1 and 2 HDC

with r=2 and type 3 with 4=3/2 are given in Figure 13. (Other

sample arrangements in two dimensions are shown in the appendix.)

Constraints on the generating kernel also extend in the

natural way:
m m

Normalization E Z w(i,j) = 1
i=-m j=-m

Symmetry w(i,j) = w(-i,j) = w(i,-j) = w(-i,-j)
(Type 1,2)
Monophasic w(i,j) 2 w(k,t) for lii IkI and IJI % It!

m m A A 2
Equal Contribution Z Z w(A+ir,j+jr)=constant(=i/r

i=-m j=-m A A
for O~i, <r

An important special case is that in which the generating kernel

is separable:

w(i,j) = W(i)W y(j)

1y



Here the generating kernel w satisfies the two-dimensional con-

straints just when the one dimensional kernels, wx and wy
satisfy the one-dimensional constraints. Furthermore, when w

is separable then the equivalent kernels are also separable:

h (x,y) - h x(X)h y(Y)

where h and hty are the equivalent kernels obtained in one

dimension with the generating kernels wx and wy. Thus the data

summarized in Figures 5, 8, and 12 can be applied to two dimen-

sions when the kernel is separable.

Suppose wx = wy and the equivalent kernel hzU(=hty) is

approximately Gaussian. Then ht(xy) will approximate a two-

dimensional Gaussian function and we may anticipate that

hZ(xy) will be nearly circularly symmetric. This is confirmed

in the type 1 HDC shown in Figure 14a, for which r=2, m=2, and

a-.4. On the other hand, if w xWy we obtain an equivalent kernel

which is elongated, such as that in Figure 14b. Again r=2 and

m-2, but in this case wx and w y are determined by parameters

ax=. 4 5 and ay=.25.

I.J
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7. HDC for Image Processing

We now show how the HDC can be used to construct the local

operators commonly used in image processing.

Bandlimited Laplacian, L

Laplacian-like operators have long been defined as 3x3

weighting functions in which the central weight is positive

(say 8) while the surrounding weights are negative (say -1).

Often, however, it is appropriate to convolve operators of

various sizes with an image. Such operators are said to be

band-limited since they respond to details of the image which

contain a limited range of spatial frequencies. The band-limited

Laplacian may be formally defined as the Laplacian of a Gaussian,

V2G, but the result is generally approximated as the difference

between two Gaussian functions which have different standard

deviations:

-(x2+y 2) -(x2+y)

e 212 2e 2022

L(x,y) a 2 2  2w 2

Typically the ratio a2/1 is in the range 1.5 to 2.5.

A band-limited Laplacian with a ratio a2/a =r may be obtained

from the type 1 HDC of order r simply by subtracting gt+l(x)

from g,(x). (If the reduced form of the HDC is used, samples

of g,+l(x) are not computed for every sample of g,(x). Missing

g,+, are obtained by applying w(x,y) to the neighborhood of

gt (x).)



To obtain ratios a2/a1 <r two HDC (any type) are computed

with different generating kernels. These are determined from

graphs such as those in Figures 5, 8, and 12 to obtain the desired

0. The L operator is then simply a difference between correspond-

ing samples in the two HDC.

A third procedure yields ratios a2/al>r. First an HDC is

obtained (any type) to form the central Gaussian. Then the

surround Gaussian is obtained by applying the generating kernel

in reverse. For type 1 we have

2 m m w(ij)gLnny, r = ,ni'jrgn -i n -j
n x'ny'Z gx ny i=-m j=-m X '--- +1

r r

The sums in this expression are understood to include onlynx-inv-j

those terms for which -- and _Y-_ are integer valued. Ther r
equal contribution constraint on w ensures that the sum will

have a total weight of 1/r2 , hence the r factor normalizes the

sum in the above definition. An example using this procedure

is shown in Figure 15. Here a ratio a2/a1=2.5 is obtained with

a Type 1 HDC, order r=2, width k=2m+l=5, and with a separable

generating kernel for which a=.4.

Bandlimited Derivatives, Dl and D2

To obtain band-limited operators for first and second deri-

vatives in the x direction we simply compute the difference

of gt(x) samples which are separated by the distance r in the

x direction. Using the reduced form

z, -- - -- . . .. .. . . . . .-



Di,j,t gi,j,t gi,j-l,z -gi-l,j,z gi-l,j-l,t

and

D2. 1/2(g._ +D~~jl k-l g j+kt -/(ilj+k,t + gi+l,j+k,t )

Contour maps for these operators are shown in Figures 16 and

17. Again, these are computed from a type 1 HDC with r=2,

k=2m+1=5, and a separable w, with a=.4.

7 "1 %



8. Computational Efficiency
We have already encountered several potential advantages

that the HDC has over other methods of computing correlations

with Gaussian-like kernels. These include the fact that cor-

relations are simultaneously obtained for a number of kernels

which differ in size, and the fact that only a small generating

kernel need be specified (or stored in computer memory) even to

compute correlations with very large equivalent kernels. In

addition the structure of the HDC provides a convenient mecha-

nism for adjusting the sample interval to the scale of the equi-

valent kernel. We will now show that the HDC is also computa-

tionally more efficient than either direct correlation or corre-

lations computed in the frequency domain using the Fast Fourier

transform (FFT).

The computational expense of the HDC relative to other

methods depends in part on whether only the correlation at one

level is to be used, or all correlations up to and including

that level are to be used, and on whether one generates the

full or reduced form of the HDC. We consider first the most

costly case, in which a full HDC is computed to level t, and

only the correlation at level t is of value. We wish to deter-

mine NHCD, the number of elementary operations (additions,

multiplications) per sample of g,(x). Suppose the generating

kernel has width k, and the order is r. There will be k2

elementary operations from level 1 to Z for each sample. Thus



<4

NHCD

This number should be compared to NCOR , the number of operations

per sample using a standard correlation with the equivalent

kernel h£. The width of ht is kf = 2Mt+1, where M is given

in Eq. 4. Then

COR  = k2r2

(Here we assume rz_2.) The relative efficiency of the hierar-

chical to standard correlations is given by the ratio

NHDC

NCOR r

Typical values of r and t are 2 and 6 respectively. In this

instance the standard computation requires roughly 650 times

as many elementary operations as the HDC.

Next we compare NHDC to NFFT, the per location cost of

computing a single level t correlation using the FFT. A one-

dimensional FFT requires N log 2 N elementary operations, where

N is the number of sample elements over which the transform is

computed. The standard method for computing a two-dimensional

FFT requires N 2 one-dimensional transforms, or one per element

of the transformed array:

NFFT = N log2 N

Notice that the number of computations per location depends on

the array dimensions in the FFT but not in the HDC. The rela-

tive cost is given by

Ad mug



NHCD t i 2

NFFT N log2N

As an example assume k=5, Z=6, and N=512. Then the FFT will

require more elementary operations by a factor of about 40.

Further reduction in the cost of the HDC relative to the

other methods is realized when one wishes to obtain correlations

for kernels at a number of scales. No additional computational

steps are required for the HDC, while a separate computation is

required for each scale with the other methods.

The cost of the correlation can be cut by an additional

factor of almost Z when the reduced form of the HDC is used.

As we have seen, essentially no information is lost by using

the reduced form.



9. Summary and Discussion

We have shown that correlation of a function f(x,y) with

certain kernels can be computed hierarchically: the correlation

with a large kernel, hz(xy), is a weighted sum of correlations

with a smaller kernel hZ 1l(x,y), which in turn are weighted sums

of correlations with still smaller kernels. The kernels in this

sequence differ in scale by factors of r but not in shape, so

that h _l(x,y) Z r2hZ(x/r,y/r). The parameter r indicates the

order of the hierarchy: variations on the hierarchical discrete

correlation (HDC) have been defined for fractional r between

1 and 2, and for integer r of 1 or greater.

The members of the class of kernels which can be computed

hierarchically closely resemble the Gaussian probability distri-

bution. This means that correlation is equivalent to low pass

filtering. Also the two-dimensional kernel is very nearly

circularly symmetric.

The principal advantage of the HDC method is that it is

computationally more efficient than the direct correlation and

FFT methods. In addition, correlations for a set of scaled

kernels are computed at once, without any need to construct and

store large kernels or kernels of different shapes and sizes.

These properties make the HDC particularly well suited for

computer image analysis. The correlations of an image with

sets of operators which differ in size and shape can be obtained

from a single HDC. These include the bandpass Laplacian



and oriented first and second derivative operators.

Several other correlation methods which have been developed

for image processing may now be regarded as special cases of

the HDC. Rosenfeld and Thurston [l] describe an elegant method

for computing averages within square regions which differ in

scale by powers of 2. This is equivalent to the type 2 HDC with

order r=2 and generating kernel width k=2 (see Fig. 7a). Pratt

et al. [41 also obtain convolutions with large kernels by re-

peated convolution with small kernels. (Convolutions and corre-

lations are equivalent under a reflection of the kernel.)

This method is the same as an HDC in which the order r=l. The

result is not hierarchical in the sense we describe here since

the equivalent kernels do not increase geometrically in scale

from level to level (or even arithmetically), nor do the

kernels obtained at each iteration agree in shape.

The reduced form of the type 2 HDC with r=2 and generating

kernel width 2 is equivalent to the pyramid structures proposed

by Tanimoto and Pavlidis [5] and others. The cone structure

of Hanson and Riseman [6] is like a reduced Type 1 HDC in which

the generating kernel width is 3 or 5, and the order is 2.

However, no constraints are imposed on the generating kernel in

the cone so equivalent kernels are not Gaussian-like.

Finally, the reduced HDC, or Gaussian-weighted pyramid, defined

here overcomes an awkward property of traditional pyramids, that

the information represented at each level changes with image

position. In the Gaussian-weighted pyramid values at each

-J.M Atfmk
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level represent discrete samples of the continuous correlation

function. We have shown that this function is band-limited and

that the sample interval is sufficiently small so that no infor-

mation is lost in the sampling process. This is true regardless

of image position.



Appendix

Type 4 HDC (hexagonal sampling and rotation)

There is considerably greater flexibility in the structure

of the HDC in two dimensions than in one. Two extensions will

be described here: the use of hexagonally arranged samples,

and the possibility of rotating the axes of the generating ker-

nel from level to level of the HDC. We shall only consider

cases in which there is a single generating kernel (unlike type

3 HDC), and shall only illustrate the computational structure

graphically by showing the arrangement of sample and generating

kernel nodes at two successive levels. The same constraints

apply as with previous HDC: generating kernels should be norma-

lized, symmetric, monophasic, and provide for equal contribution.

The permissible orders of the HDC are determined uniquely

by the sampling patterns. In particular, r is a possible order

only if r2 is an integer and r is the distance between some

pair of points in the sampling grid [7]. Permissible orders

for the hexagonal grid are r = 3,4,7,... and for the rectan-

gular grid r2 = 2,4,5,.... Examples with r2 = 3 and 4 (hexa-

gonal) and r2 = 2 and 5 (rectangular) are shown in Figure 18.

In these diagrams small dots show the positions of sample points

at level t while open circles show sample points at level Z+i.

The generating kernels are centered at level t+1 nodes, and the

boundary of the smallest such kernel is shown by line segments.

Extension to larger kernels is simply a matter of expanding



these bounds; the arrangement of samples is unchanged. Notice

that in all cases shown except Figure 18a, the grid of level

Z+l nodes is rotated with respect to level Z. Rotations are

unavoidable with these orders.
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FIGURE CAPTIONS

Figure 1. Graph representation of a type 1 hierarchical dis-
crete correlation. Here nodes represent sample points of the
correlation function gt(x). The horizontal position of the
nodes indicates spatial location, x, while the vertical position
indicates level, t. The generating kernel is shown as a
pattern of arrows between successive levels: sample values at
level t are weighted by a, b, c and summed to obtain the value
of a single sample at level Z+l. The same weighting pattern
is applied at each x position to compute all gt+l(x) samples
from gl(x) samples. Note that the distance between the sample
points which contribute to a sum increases as rt, where the order,
r, has value 2 in this example.

Figure 2. Equivalent kernels, ht(x), for type 1 HDC. In this
example the generating kernel has width 5, order r=2, and weight
parameter a=0.4. In general the width of the equivalent kernel
increases by a factor of r from level to level, while the ampli-
tude decreases by the same factor. We have compensated for
this effect in t e graphs by contracting the x scale and expanding
the y scale by r. Note that hl(x) is identical to the generat-
ing kernel, and that as t is increased, the shape of ht(x)
converges rapidly to a continuous function which is similar to
the Gaussian probability distribution.

Figure 3. Characteristic forms, h 9,(x), of the rescaled equiva-
lent kernels for three values of the weight parameter, a.
Examples are for a type 1 HDC in which the generating kernel
has width 5 and r=2.

Figure 4. Comparison of the equivalent kernel (solid curve)
with the Gaussian probability distribution (dashed curve). Here
a=0.4, and the Gaussian which most closely approximates the
equivalent kernel has standard deviation, o=0.56rV. This is the
most Gaussian-like equivalent kernel that can be obtained with
a type 1 HDC when the generating kernel width is 5 and r=2 (see
Fig. 5).

Figure 5. Shape characteristics of type 1 equivalent kernels.
In general the equivalent kernel becomes broader as the weight
parameter, a, is decreased. This effect is shown in Fig. 5a
as an increase in the standard deviation, a, of the Gaussian
function which most closely approximates the equivalent kernel
(least squared error). The squared error between this Gaussian
and the equivalent kernel is shown in Fig. 5b. Note that the
error is minimum, and the equivalent kernel most Gaussian-like,
for aaO.4. (The error is normalized by rescaling the equivalent
kernel so that the best fit Gaussian has unit standard deviation.)
Here the generating kernel has width 5 and r=2.
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Figure 6. Graph representation of a type 2 HDC. See Fig. 5
for explanation and comparison to type 1 HDC.

Figure 7. Characteristic forms for type 2 HDC. Forms are
shown for three values of the weighting parameter, a, when the
generating kernel has width 4 and the order r=2. (Compare with
Fig. 3.)

Figure 8. Shape characteristics of type 2 equivalent kernels.
The standard deviation of the best fit Gaussian is shown in
(a) while its squared error is shown in (b). (Compare with
type 1, Fig. 5.) Here the generating kernel has width 4 and r=2.

Figure 9a. Reduced type 1 HDC. The reduced form of the HDC is
like the standard form (Fig. 1) except that only nodes spaced by
rt are included at level t. Computations at these points are
identical in both forms.

Figure 9b. Reduced type 2 HDC. Compare with the standard form,
Fig. 6.

Figure 10. Type 3 HDC with order r=3/2. This graph illustrates
th3 construction of a fractional order hierarchical correlation.
Here there are 2 nodes at level t for every 3 at level Z-1,
and there are two generating kernels, one of which is the left-
to-right reflection of the other.

Figure 11. Generating and equivalent kernels for order r=3/2,
type 3 HDC. The generating kernel in Fig. lla is one of two
required for this HDC, which are left-to-right reflections of
one another (see Fig. 10). The characteristic form of the equi-
valent kernel is shown as a solid curve in Fig. llb while the
best fit Gaussian function is shown as a dashed curve. In this
example the weighting parameter a=0.085.

Figure 12. Shape characteristics of type 3 equivalent kernels.
The standard deviation of the best fit Gaussian is shown in
Fig. 12a while its squared error is shown in Fig. 12b. (Compare
with type 1, Fig. 5, and type 2, Fig. 8.) Here the generating
kernel has width 5 and r=3/2.

Figure 13. Node positions in two dimensions. Dots represent
level Z nodes while open circles indicate the relative position
of level Z+l nodes.

Figure 14a. Contour map for a type 1 two-dimensional equivalent
kernel. This example was obtained with a separable generating
kernel of width 5 and equal weighting patterns in bothX and Y
directions, ax = a = 0.4. (The magnitude has been scaled so
that its maximum A~ 1.)



Figure 14b. Contour map for an elongated type 1 equivalent
kernel. As in Fig. 14a, this example was obtained with a
separable generating kernel, but here different weighting pat-
terns were applied in the X and Y directions, ax = 0.45 and
ay = 0.25.

Figure 15. Band limited Laplacian operator. Laplacian-like
operators are obtained as the difference of Gaussian-like
operators computed at successive levels of the HDC. This
example is a type 1 HDC with width 5 generating kernel, r=2
and a=0.4.

Figure 16. Lowpass first derivative operator. This operator
is obtained as the weighted sum of four neighboring samples in
a type 1 HDC, as explained in the text. The upper figure
shows a contour map and the lower figure a horizontal cross-
section of the operator.

Figure 17. Band limited second derivative operator. This
operator is the weighted sum of nine neighboring samples of the
type 1 HDC. The upper figure shows a contour map and the lower
figure a horizontal cross section of the operator.

Figure 18a,b. Examples of low order hexagonal sample patterns
for type 4 HDC. In each case closed circles represent level Z
sample points, while open circle3 represent level t+l sample
points. Lines indicate the bounds of the smallest allowed
generating kernels. One such kernel is shown with heavy lines
and the distribution and values of its weights are indicated.

Figure 18c,d. Fractional order rectangular sample patterns
for type 4 HDC. (Compare to Fig. 13.)
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