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ABSTRACT

A number of different techniques are presented for moving
between adjacent blocks in an image represented by a quadtree.

~These adjacencies may be in the horizontal, vertical, or dia-
i gonal directions. Algorithms are given and their execution

time is analyzed using a suitably defined model.
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1. Introduction

Region representation is an important aspect of image

processing with numerous representations finding use. Recent-

ly, there has emerged a considerable amount of interest in

the quadtree [3-7,13]. This stems primarily from its hierarchi-

cal nature which lends itself to a compact representation. It

is also quite efficient for a number of traditional image pro-

cessing operations such as computing perimeters [10], labeling

connected components [11], finding the genus of an image (1],

and computing centroids and set properties [17]. Development

of algorithms to convert between the quadtree representation

and other representations such as chain codes [2,9], rasters

[12,14], binary arrays [13], and medial axis transforms [15,16,

18] lend further support to this importance.

In this paper we discuss methods for moving between adjacent

blocks in the quadtree. We first show how transitions are made

between blocks of equal size and then generalize our result to

blocks of different size where the destination block is either of

larger or smaller size than the source block. Such blocks are

termed neighbors. Note that the transitions that we discuss

also include those along diagonal, as well as horizontal and

vertical, directions. These methods form the cornerstone of

many of the quadtree algorithms (e.g., [1,2,9-12,14-18]),

since they are basically tree traversals with a "visit" at each

node. More often than not these visits involve probing a node's



neighbors. The significance of our methods lies in the fact

that they do not use coordinate information, knowledge of the

size of the image, or storage in excess of that imposed by the

nature of the quadtree data structure.
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2. Definitions and notation

The quadtree is an approach to image representation based

on the successive subdivision of the image into quadrants. It
is represented by a tree of outdegree 4 in which the root repre-

sents a block and the four sons represent in order the NW, NE,

SW, and SE quadrants. We assume that each node is stored as a

record containing six fields. The first five fields contain

pointers to the node's father and its four sons which corre-

spond to the four quadrants. If P is a node and I is a qua-

drant, then these fields are referenced as FATHER(P) and SON(P,I)

respectively. We can determine the specific quadrant in which

a node, say P, lies relative to its father by use of the func-

tion SONTYPE(P) which has a value of I if SON(FATHER(P),I) = P.

The sixth field, NODETYPE, describes the contents of the block

of the image which the node represents--i.e., WHITE if the block

contains no l's, BLACK if the block contains only l's, and GRAY

if it contains O's and l's. Alternatively, BLACK and WHITE are

terminal nodes, while GRAY nodes are non-terminal nodes. For

example, Figure lb is a block decomposition of the region in

Figure la while Figure lc is the corresponding quadtree.

Let the four sides of a node's block be called its N, E, S,

and W sides. They are also termed its boundaries. We define

the following predicates and functions to aid in the expression

of operations involving a block's quadrants and its boundaries.
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ADJ(B,I) is true if and only if quadrant I is adjacent to

boundary B of the node's block, e.g., ADJ(W,SW) is true.

REFLECT(B,I) yields the SONTYPE value of the block of equal

size that is adjacent to side B of a block having SONTYPE

value I, e.g., REFLECT(N,SW) - NW. COMMONSIDE(Ql,Q2) indi-

cates the boundary of the block containing quadrants Ql and Q2

that is common to them; e.g., COMMONSIDE(SW,NW) = W. If Q1 and

Q2 are not adjacent brother quadrants (e.g., NE and SW) or if

Ql and Q2 are the same, then the value of COMMONSIDE is unde-

fined. OPQUAD(Q) is the quadrant which does not share a block

boundary with quadrant Q; e.g., OPQUAD(SW) = NE. Figure 2 shows

the relationship between the quadrants of a node and its boun-

daries while Tables 1-4 contain the definitions of the ADJ,

REFLECT, OPQUAD, and COMMONSIDE relationships respectively.

Q corresponds to an undefined value.

n nFor a quadtree corresponding to a 2 by 2 array we say

that the root is at level n, and that a node at level i is at

a distance of n-i from the root of the tree. In other words,

for a node at level i, we must ascend n-i FATHER links to reach

the root of the tree. Note that the farthest node from the root

of the tree is at a level 20. A node at level 0 corresponds to

a single pixel in the image. Also, we say that a node is of

size 2s if it is found at level a in the tree.
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3. Neighbor finding algorithms

Given a node corresponding to a specific block in the image,

its neighbor of equal size in the horizontal or vertical direc-

tion is determined by locating a common ancestor. Next, we re-

trace the path while making mirror image moves about an axis

formed by the common boundary between the blocks associated

with the two nodes. The common ancestor is simple to deter-

mine--e.g., to find an eastern neighbor, the common ancestor is

the first ancestor node which is reaced via its NW or SW son.

For example, the eastern neighbor of node A in Figure 3a is G.

It is located by ascending the tree until the common ancestor,

D, is found. This requires going through a NE link to reach B,

a NE link to reach C, and a NW link to reach D. Node G is

now reached by backtracking along the previous path with the

appropriate mirror image moves. This requires descending a NE

link to reach E, a NW link to reach F, and a NW link to reach G.

Figures 3a and 3b show how the eastern neighbor of node A is

located. The algorithm for locating an equal sized neighbor in

a given horizontal or vertical direction is given below using a

variant of ALGOL 60 (8]. Note that we assume that the neighbor

in the specified direction does indeed exist (i.e., we are not

on the border of the image).

* - j, , ..



node procedure BQUALADJNEIGHBOR(P,D);

/* Locate an equal-sized neighbor of node P in horizontal

or vertical direction D */

begin

value node P;

value direction D;

return (SON(if ADJ(D,SONTYPE(P)) then

EQUALADJNEIGHBOR(FATHER(P),D)

else FATHER(P),

REFLECT (D,SONTYPE (P))));

end;

Finding a node's neighbor in the diagonal direction (i.e.,

its corresponding block touches the given node's block at a

corner) is more complex. Given a node corresponding to a

specific block in the image, its neighbor of equal size in a

diagonal direction is achieved by a three step process. First,

we locate the given node's nearest ancestor who is also adjacent

(horizontally or vertically) to an ancestor of the sought neigh-

bor. Next we make use of EQUALADJNEIGHBOR to access the an-

cestor of the sought neighbor in the direction of the adjacency.

Finally, we retrace the remainder of the path while making directly

opposite moves (i.e., 1800 opposite so that a NW move becomes a

SE move). The nearest ancestor of the first step is the first

ancestor which is not reached by a link equal to the direction

of the desired neighbor--e.g., to find a SE neighbor, the

Lia' -0 Ar~&&m~ft@6 fialfadI



nearest such ancestor is the first ancestor node which is not

reached via its SE son. For example, the SE neighbor of node

A in Figure 4a is G. It is located by ascending the tree until

the nearest ancestor, B, which is also adjacent horizontally

(in this case) to an ancestor of G, i.e., F, is found. This

requires going through a NE link to reach B. Node F is now

reached by applying EQUALADJ_NEIGHBOR in the direction of the

adjacency (i.e., east). This forces us to go through a NE link

to reach C and a NW link to reach D. Backtracking results in

descending a NW link to reach E and a NW link to reach F.

Finally, we backtrack along the remainder of the path making

1800 moves--i.e., we descend a SW link to reach G. Figures 4a

and 4b show how the SE neighbor of node A is located. The algo-

rithm for locating an equal size neighbor in a given diagonal

direction is given below. Note that we assume that the neighbor

in the specified direction does indeed exist (i.e., we are not on

the border of the image).

node procedure EQUAL CORNERNEIGHBOR(P,C);

/ *Locate an equal-sized neighbor of node P in the direction

of quadrant C */

beg in

value node P

value quadrant C;



return (SON (if SONTYPE (P) =OPQUAD (C) then FATHER(P)

else if SONTYPE(P)=C then

EQUALCORNERNEIGHBOR(FATHER(P),C)

else EQUAL ADJ NEIGHBOR(

FATHER(P),

COMMONSIDE (SONTYPE (P) ,C)),

OPQUAD (SONTYPE (P))));

end;

It is often the case that neighbors are of different sizes.

In such a case, we say that we want the neighboring terminal

nodes having equal or greater size (e.g., the eastern neighbor

of node 23 in Figure 1 is 16). If such a node does not exist,

then we return a GRAY node of equal size if possible (e.g., the

northern neighbor of node 23 in Figure 1 is J). Otherwise the

node is adjacent to the border of the image (not the region) and

NULL is returned since there is no neighbor in the specified

direction (e.g., the northern neighbor of node 2 in Figure 1 is

NULL). When a node does not have a neighboring terminal node

of equal or greater size, returning a GRAY node of equal size

is reasonable because the given node whose neighbor is being

sought has more than one neighboring terminal node in the given

direction. The algorithms for locating neighbors of equal or

greater size in horizontal and vertical directions as well as

diagonal directions are given below using procedures GTEQUAL_

ADJNEIGHBOR and GTEQUALCORNERNEIGHBOR respectively. Note

that a neighbor in a diagonal direction, say C, will not always



abut against corner C of the node whose neighbor is sought

(e.g., node 16 is a non-abutting NE neighbor of node 23 in

Figure 1).

node procedure GTEQUALADJNEIGHBOR(P,D);

/* Locate a neighbor of node P in horizontal or vertical

direction D. If such a node does not exist, then return NULL */

begin

value node P;

value direction D;

node Q;

if not NULL(FATHER(P)) and ADJ(D,SONTYPE(P)) then

/* Find a common ancestor */

QGTEQUALADJNEIGHBOR (FATHER (P),D)

else Q-FATHER(P) ;

/* Follow the reflected path to locate the neighbor */

return (if not NULL(Q) and GRAY(Q) then SON(Q,REFLECT(D,SONTYPE(P)))

else Q);

end;



node procedure GTEQUALCORNERNEIGHBOR(PDC)

/* Locate a neighbor of node P in the direction of quadrant C. If

such a node does not exist, then return NULL *

value node P;

value quadrant C;

node Q;

if not NULL(FATHER(P)) and SONTYPE(P)#OPQUAD(C) then

/* Find a common ancestor *

if SONTYPE(P)=C then Q-GTEQUALCORNERNEIGHBOR(FATHER(P) IC)

else Q""GTEQTJALADJNEIGHBOR(FATHER(P) ,COMMONSIDE (SObITYPE (P) ,C))

else Q+-FATHER(P);

/* Follow opposite path to locate the neighbor *

return (if not NULL(Q) and GRAY(Q) then SON(Q,OPQUAD(SONTYPE(P)))

else Q);

end;
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If neighbors are of different sizes, we may wish to know

the size of the adjacent or abutting neighbor. In such a case,

we want our neighbor finding algorithms to return both a pointer

to the neighboring node and a value from which the node's size

can be easily computed. This is relatively straightforward

when we know the level in the tree at which is found the node

whose neighbor is being sought. In fact, such an algorithm need

only increment the level counter by 1 for each link that is as-

cended while locating the common ancestor, and then decrement

the level counter by 1 for each link that is descended while

locating the appropriate neighbor. The algorithms for locating

neighbors of equal or greater size, with their corresponding level

positions, in horizontal and vertical directions as well as dia-

gonal directions, are given below using procedures GTEQUALADJ

NEIGHBOR2 and GTEQUALCORNERNEIGHBOR2 respectively. Note the

use of reference parameters to transmit and return results. An

alternative is to define a record of type block having two

fields of type node and integer whose values are a pointer to

the neighboring node and its level respectively.

... . ,.



node procedure GTEQUALADJNEIGHBOR2 (P, D, Q, L);

/* Return in Q the neighbor of node P in horizontal or vertical

direction D. L denotes the level of the tree at which node P

is initially found and the level of the tree at which node Q

is ultimately found. If such a node does not exist, then

return NULL */

begin

value node P;

value direction D;

reference node Q;

reference integer L;

L-L+ 1;

if not NULL(FATHER(P)) and ADJ(D,SONTYPE(P)) then

/* Find a common ancestor */

GTEQUALADJNEIGHBOR2 (FATHER(P),D,Q,L)

else Q-FATHER(P);

/* Follow the reflected path to locate the neighbor */

if not NULL(Q) and GRAY(Q) then

begin

QSON(Q,REFLECT(D,SONTYPE(P)));

L-L-1;

end;

end;



node procedure GTEQUALCORNERNEIGHBOR2 (P,C, Q,L);

/* Return in Q the neighbor of node P in the direction of quadrant C.

L denotes the level of the tree at which node P is initially found and

the level of the tree at which node Q is ultimately found. If such a

node does not exist, then return NULL */

begin

value node P;

value quadrant C;

reference node Q;

reference integer L;

L-L+I;

if not NULL(FATHER(P)) and SONTYPE(P)#OPQUAD(C) then

/* Find a common ancestor */

if SONTYPE (P) =C then GTEQUALCORNER NEIGHBOR2 (FATHER (P) ,C,Q,L)

else GTEQUALADJNEIGHBOR2(FATHER(P) ,COMMONSIDE(SONTYPE(P) ,C) ,Q,L)

else Q-FATHER(P);

/* Follow the opposite path to locate the neighbor */

if not NULL(Q) and GRAY(Q) then

begin

Q SON(Q,OPQUAD(SONTYPE(P)));

L4-L- 1;

end;

end;



At times we may wish to locate an adjacent horizontal or

vertical neighbor regardless of its size. In such a case, we

also specify a corner of the block corresponding to the node

whose neighbor is being sought. The neighboring node must be

adjacent to this corner (e.g., node 21 is the northern neighbor

of node 23 which is adjacent to the NE corner of node 23). The

algorithm for computing such a neighbor is given below by proce-

dure CORNERADJNEIGHBOR which makes use of GTEQUALADJNEIGHBOR.

node procedure CORNERADJNEIGHBOR(P,D,C);

/* Locate a neighbor of node P in horizontal or vertical direction

D which is adjacent to corner C of node P. If such a node does

not exist, then return NULL */

begin

value node P;

value direction D;

value quadrant C;

P-GTEQUAL ADJ NEIGHBOR(P,D);

while GRAY(P) do P-SON(P,REFLECT(D,C)); /* Descend to the desired corner*

return (P);

end;

Similarly, in the case of a diagonal neighbor, we may also

wish to locate the neighbor in the given direction regardless of

its size (e.g., node 20 is a NE neighbor of node 22 in Figure 1

which is smaller in size). The algorithm for locating an



arbitrary-sized diagonal neighbor is given below by procedure

CORNERCORNERNEIGHBOR which makes use of GTEQUALCORNER_

NEIGHBOR.

node procedure CORNERCORNERNEIGHBOR(P,C);

/* Locate a neighbor of node P in the direction of quadrant C which

abuts against corner C of node P. If such a node does not

exist, then return NULL */

begin

value node P

value quadrant C;

node Q;

QGTEQUALCORNERNEIGHBOR(P,C);

while GRAY (Q) do Q-SON(Q,OPQUAD(C); /*Descend to the desired corner*/

return (Q);

end;

It should be clear that procedures similar to CORNERADJ NEIGHBOR

and CORNER CORNER NEIGHBOR can be constructed that also return

the level at which the desired neighboring node is found. This

will not be done here.

The procedures outlined above always return NULL when a

neighbor in a specified direction does not exist. This situation

arises whenever the node whose neighbor is sought is adjacent to

the border of the image along the specified direction. At times



the NULL pointer is not convenient. Instead, we could assume

that the image is surrounded by WHITE blocks as in Figure 5a or

by BLACK blocks as in Figure 5b. The choice of WHITE or BLACK

for the surrounding blocks depends on the particular application.

For example, we use WHITE in the case of the quadtree to boundary

code conversion algorithm [2] while BLACK is more useful in the

case of the computation of distance (15] and the construction of

a Quadtree Medial Axis Transform (16].

At times it is useful to determine if certain edges of the

blocks corresponding to two neighboring nodes extend past each

other or are aligned. For example, in Figure 1, node 16 extends

past node 10 with respect to their western boundaries, while the

western boundaries of nodes 9 and 16 are aligned. We assume that

the level of the tree at which each of the two nodes, say P and

Q at levels LP and LQ respectively, reside is known. It should

be clear that at most LP-LQI nodes must be visited. This can

be seen by observing that the smaller of the two nodes cannot

extend farther than the other because this would imply that the

two nodes properly overlap, which is impossible. At best, the

smaller node can be aligned with the other node, and this occurs

if and only if the smaller node is adjacent to the extreme side

in the designated direction of the nearest common ancestor of

the two nodes. The algorithm for computing the aligned rela-

tionship is given below by procedure ALIGNED.

..............................................



Boolean procedure ALIGNED(P,LP,Q,LQ,D);

/* Given two nodes P and Q, at levels LP and LQ respectively, which

are adjacent along side CCSIDE(D) of node P, determine whether

either of P or Q extends farther in direction D than the other

(return FALSE), or their two sides in direction D are aligned

(return TRUE) */

begin

value node P,Q;

value integer LP,LQ;

value direction D;

node R;

integer I;

if LP=LQ then return (TRUE)

else if LP>LQ then R-Q

else R-P;

/* The smaller of the two nodes cannot extend farther than the

other because this would imply that P and Q properly overlap,

which is impossible. At best, the smaller node can be aligned

with the other node, and thais occurs if and only if the smaller

node is adjacent tc the extreme side in direction D of the

nearest common ancestor of nodes P and Q */

for I-l step 1 until ABS(LP-LQ) do

begin

if not ADJ(D,SONTYPE(R)) then return (FALSE)

else R-FATHER(R)

end;

return (TRUE);

end;



The above techniques should be contrasted with other methods

of locating neighbors [3-5,7]. In (7], a method is described for

moving between adjacent blocks of equal size that are brothers

(i.e., have the same father node). This method does not make

use of the tree structure; instead, coordinate information and.

knowledge of the size of the image are used to locate a neigh-

boring brother in a given horizontal or vertical direction.

This is accomplished by a number of primitives termed MOVE UP,

MOVE DOWN, MOVE RIGHT, and MOVE LEFT. Transitions to non-brother

neighboring blocks require the use of approximations through

the use of primitives named MORE, LESS, and GAMMA. The disad-

vantages of these methods is that they require computation

(rather than chasing links) and are clumsy when adjacent blocks

are not brothers as well as when they are of different sizes

than the block whose neighbor is sought.

In (3-5] a number of algorithms are described for operating

on images using quadtrees. Transitions between neighboring blocks

are made by use of explicit links from a node to its adjacent

neighbors in the horizontal and vertical directions. This is

achieved through the use of adjacency trees, "ropes", and "nets".

An adjacency tree exists whenever a leaf node, say X, has a GRAY

neighbor, say Y, of equal size. In such a case, the adjacency

tree of X is a binary tree rooted at Y whose nodes consist of

all sons of Y (BLACK, WHITE, and GRAY) that are adjacent to X.
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For example, for node 16 in Figure 1, the western neighbor is

GRAY node F with an adjacency tree as shown in Figure 6. A

rope is a link between adjacent nodes of equal size at least

one of which is a leaf node. For example, in Figure l,.there

exists a rope between node 16 and nodes G, 17, H, and F. Simi-

larly, there exists a rope between node 37 and nodes M and N;

however, there does not exist a rope between node L and nodes

M and N.

At this point we can give an algorithm for finding a

neighbor, say Y, on a given side, say S, of a block, say X.

If there is a rope from X on side S, then it leads to the de-

sired neighbor. If no such rope exists, then the desired neigh-

bor must be larger. In such a case, we ascend the tree until

encountering a node having a rope on side S which leads to the

desired neighbor. In effect, we have ascended the adjacency tree

of Y. For example, to find the eastern neighbor of node 21 in

Figure 1, we ascend through node J to node F which has a rope

along its eastern side leading to node 16. At times it is not

convenient to ascend nodes searching for ropes. A data structure

named a net is used to obviate this step by linking all leaf

nodes to their neighbors regardless of their relative size.

Thus in the previous example there would be a direct link between

nodes 21 and 16 along the eastern side of node 21. The advantage

of ropes and nets is that the number of links that must be

• .)



traversed is reduced. However, the disadvantage is that the

storage requirements are considerably increased since many ad-

ditional links are necessary. In contrast, our methods are im-

plemented by algorithms that make use of the existing structure

of the tree--i.e., four links from a non-leaf node to its sons,

and a link from a non-root node to its father.



4. Analysis

The execution time of the neighbor finding algorithms pre-

sented in Section 3 depends on the relative positions of the

nodes in question. Clearly, the execution time depends on the

number of nodes that must be traversed in locating the desired

neighbor. In the following we analyze the average execution

time of EQUALADJNEIGHBOR, GTEQUALADJNEIGHBOR, CORNERADJ_

NEIGHBOR, EQUALCORNERNEIGHBOR, GTEQUALCORNERNEIGHBOR,

CORNERCORNERNEIGHBOR, and ALIGNED. GTEQUALADJNEIGHBOR2

and GTEQUALCORNERNEIGHBOR2 have the same execution time as

GTEQUALADJNEIGHBOR and GTEQUALCORNERNEIGHBOR respectively

since they visit the same number of nodes.

At this point it is appropriate to elaborate on our notion

of average. We assume a random image in the sense that a node

is equally likely to appear in any position and level in the

quadtree. This means that we assume that all neighbor pairs

(i.e., configurations of adjacent nodes of varying sizes) have

equal probability. This is different from the more conventional

notion of a random image which implies that every block at level

0 (i.e., pixel) has an equal probability of being BLACK or WHITE.

Such an assumption would lead to a very low probability of any

nodes corresponding to blocks of size larger than 1. Clearly,

for such an image, the quadtree is the wrong representation.

Theorem 1: The average of the number of nodes visited by

EQUALADJNEIGHBOR is bounded by 4.

.4 - .J



Proof: Given a node P at level i and a direction D, there

are 2 n - i (2 n-i-1) neighbor pairs of equal sized nodes. 2 n-20

have their nearest common ancestor at level n, 2n-i 21 at level

n-l,..., and 2n-i. 2
n- i -  at level i+l. For each node at level

i having a nearest common ancestor at level j, the number of

nodes that will be visited in the process of locating an equal-

sized neighbor at level i is 2- (j-i). This is obtained by ob-

serving that the nearest common ancestor is at a distance of j-i.

Therefore, the average number of nodes visited by EQUALADJ_

NEIGHBOR is

n-i n 2 - 2 -2(j-i)

i=0 j=i+ln-I(i
n 2n-i - (2n-i-)

i=O

(1) can be rewritten to yield

n-1 n-i 22n-2i-j+l-

i=0 j= (2)
n i 2

n 2 (2 -1)
i=l

The numerator of (2) can be simplified as follows:

n-iZ n-i 22n-2i-j+l " j = 22n+l ni 2-2i n Z (3)

i=0 j=l i=O j=l 23

n n
But Z -A- E -.. 2- n+2

j=l 2
3 j=O 23 2n



Making use of (4) in (3) yields

2n+ n- -2i n+2-i
2 E 2 0(2- n

i=O2

n-i l 1 n+1n-
- 2 2 E (n+2)-2 n - + 2 n-i5

i=O 2 2ii=O 2 1 i=O 21

Alo 1 = 2-(1 - (6)
j=O 23 2n~

n
And 1 4 1i1 .. (7)

,2j 31 2n+2'j=0 2 2

Substituting (4), (6), and (7) into (5) yields

2n+2 .1 n2-n+2.( 1 +2nl(2 n+1
2 *t(l - Z - (+)2 .1-- ~.2--

2n n n-l

4 2n+2 16 n_,, 4 -(2 n-l1 )
3 3 ~ 4-(n+21-(2

4 2 n+2 - i~)n 4 8

The denominator of (2) can be simplified as follows:

E 2 i. (21i-1) E (2 21-2 i

i=l i=O

n n
- ~4 E-

i=O i=O

n
or E 2 *(2 -1) = (2 2n+ 3 -2 l+ 2) (9)



Substituting (8) and (9) into (2) yields

4- 3.(n-1) •2n 2n+12

22n+2_ 3 .2n+l+2

4 as n gets large

S4

Q.E.D.

Theorem 2: The average number of nodes visited by GTEQUAL

ADJNEIGHBOR is bounded by 5.

Proof: Given a node P at level i and a direction D, andn

recalling Theorem 1, there are 2 n
- ° I 2n

- .(j-i) pairs such
j=i+l

that the neighboring node is one size greater than or equal to

that of P. The index j in the summation corresponds to the

level at which the nearest common ancestor is located. For a

node at level i, a direction D, and a nearest common ancestor

at level j, we have possible neighbor pairs having the initial

node at level i and the neighboring nodes at levels j-l, j-2,

...,i+l,i--i.e., j-i possible neighbor pairs. Thus for a node

at level i, the number of nodes that will be visited in the pro-

cess of locating a greater than or equal sized neighbor at level

k with a nearest common ancestor at level j is (j-i+j-k). This

is obtained by observing that the nearest common ancestor is at

a distance of j-i. Therefore, the average number of nodes

visited by GTEQUALADJNEIGHBOR is:

n-i n 2n-i" - j-1S Z 2 2 n-j .  (j-i+j-k)

i=0 j=i+l k=i (10)
n-I . n-i

S 2 n- j.2
i=0 j=l



4

The numerator of (10) can be simplified to yield:

n-i n n-.n- -i

i=0 ji+l k=1

n-i n n-in- ,,

i=0 j=i+i

niE I nE 2n- 2i-j- 3 .2+j

i=l j=l

22n-i1n- 2i n- .2+ n-l 2

- i=0 j=l 23 j-l 23 ii

n .2 n2+4n+6
But E 2 4=6 n n (12)

j=l 23

Making use of (4) and (12) in (11) yields

22n-1l n- 2i (3 (6 -(n-i) 24ni)6 + 2 -n+2-i

2 i=O 2n-2

2n-1 n-i 1 _ 2 n-In- 1
=20-2 E(3 n +13n+20) .2 * - +

i=0 2 2i i=0 21

nl n-l - 32 n-il .23
(6n+ll) -2 n - -i -(3

i=0 2' i=0

Substituting (4), (6), (7), and (12) into (13) results in

2022n-1. 4 2+n_ 1

20- .7( 1- -L- - O3n2 13n+20)-2 1-)
2 2n2n

+(n~l)2n-i.( + )-±L3 -2'- 1. (6  (n-1) 2 +4(n-li+6)
+( n~ i) 2 n-l - 2n-l



=1 .0 2 2n+2 40 _ (3 2+13n+20) (2n_l)+( 6n+ll). (2 n -n- 1)
3 3

-9.2n + 3"(n-l) 2+12-(n-1)+18

-102 "2n+2 (3n2+7n+18)2n +2n + 14 (14)

The denominator of (10) can be simplified as follows:

n-i n-iE 2 2n-2i nE -.
i=o j=l 23

= nE 22n-2i.(2 n+2-i

i=0 n-

n-l n-i n-
2n+ - 2

n -(n+2) 1 += 22 Z 2-n2)Z - + 2-

i=0 22i i=0 21 i=0 2

= 22n+l 4 _(_l )2 n+ - 1 ) 2n .  n+l)
T 2 2n  "(n+2)(l -2+ n (2-

= 22n+2- n+l  2 (15)

Substituting (14) and (15) into (10) yields

(9n 2-9n+24) 2 n_6n-24
5- 2

2n+ 3
3- (n+l)n+l 2

Z- 5 as n gets large

s5

Q.E.D.

Theorem 3: The average number of nodes visited by

14
CORNER_ADJ_NEIGHBOR is bounded by -s-.



A

Proof: Given a node P at level i, and a direction D towards

corner C of P, using similar reasoning as in Theorem 1 and 2,

n-i n-jthere are 2 n -  
2 n

- j neighbor pairs where we make noj=i+.
restriction on the relative size of the neighboring node. j

corresponds to the level at which the nearest common ancestor

is located. For a node at level i, a direction D towards corner

C, and a nearest common ancestor at level j, we have possible

neighbor pairs having the initial node at level i and the neigh-

boring node at levels j-l,i-2,...,i4l,i,i-l,...,2,l,0--i.e.,

j possible neighbor pairs. Thus for a node at level i, the

number of nodes that will be visited in the process of locating

a neighbor at level k with a nearest common ancestor at level j

is (j-i+j-k). This is obtained by observing that the nearest

common ancestor is at a distance of j-i. Therefore, the average

number of nodes visited by CORNERADJNEIGHBOR is:

n-l n 2 j-1
Z Z 2  n-J. Z (j-i+j-k)

i=O j=i+l k=O (16),,n-i n? I 2n-i.2n-j-

i=0 j=i+l

The numerator of (16) can be multiplied to yield
n-1 n 2n-i-j(3 j2+ _

Z Z 2 2( 2 j

i=O j=i+l

n-l n-i 2
- 2 ((3 )+4ji+i2+i) (17)

i=o j-1



Nlow, compute the following component of (17) and make use of

(4) and (6):

n-i n-i2
E 2 n-ijl (4ji+i +i)

i=0 j=l

n-i 2n-2i+l n-i 2n- 2i-1 n-i i2+
E (2 Ei~ ~ + 2 E--)

i=0 j-1 23 j=1 2i

-E (2 *i(2 -n-i )2 -2i-(.2+.(1  1-))

722n-1. n-li j 2n-1 n- i 2  n-i. n-i
7- E - (4n+7)*2 E

i=0 2 2ii=0 2 2ii=0 2

nln-li .2 (
+ 5 *2 n E (8

i=O 2~

But Z .1( 3n+4 (19)
jl2 j 9 22n

n 2 2
n ~2 9n 2 +24n+20

And E - -L(20 (20)
j=1 2 2j2722n

substituting (4), (12), (19), and (20) into (18) yields

7 2n-1. 3(n-l)+4 1 n1 9 (n-i) 2 +24 (n-i) +20)
7 2(4 -) - -L - 2 (20 - I__

9 - 2n-2 27 22~i2  -2n-2

-- n-i + 1(-)2+4(n-1)+6)

64 2i 2n-l- 8 -(n-2)- *n-i_ 1 2 29 248 (1
27 In -9 -n-- (21



Now, add (14) to (21) to get the numerator of (16)
A 98. 12n+2 2 11 122

- 22  -(3n2+lln+10) 2n 2 - - (22)27 n 2

The denominator of (16) can be simplified as follows:

n-i n
E E 2n-i 2fn-J .((j-i)+i) (23)

i=O j=i+l

Compute the following component of (23)

n-l n 2L L 2ni 2nJ-

i=O j=i+l

n-i 2n-2i n-i
Z. 2 i-. z .

i=O j=l 23

n-i 22n-2i' i-(i I

i=O

2n n-l n n-i i=2 Z - 2.Z
i=O 22i i=0 21

- 22n 1 . 3.(n-1)+4) 2n (2 n+l
22n-2 2n-l

- 1 . 22n+2 2n+l + 2n + 14 (24)

9 3 9

Now, add (15) to (24) to get the denominator of (16)

7 2 2n+2(n 2 ) 2n+
l  2 8(9 2 + + i -( 5

Substituting (22) and (25) into (16) yields

14 (27n 2+15n-78) -2 n+3n 2+39n+78
3 7" 2n+2-9.(n+2) n+l +6n+8

z - as n gets large
3

~14
3

Q.E.D.

• .. ..... .... .... ,. , .... .. ..._ - ... .. . ... ....Y -_ . ..... , , .... ... ... ' " .... " W.. .. .. ...



Theorem 4: The average number of nodes visited by
16

EQUALCORNERNEIGHBOR is bounded by -.

Proof: Given a node P at level i and a direction towards

quadrant C, there are (2n-i-1)2 neighbor pairs of equal sized

nodes. 40.(2-(2 n-1)-i) have their nearest common ancestor at

1 -i n-i-ilevel n, 4 -(2 .(2n-i-- 1 )-) at level n-l,... and 4

(2-(2n-i-(n-i-l)-l)-l) at level i+l. In order to see this,

consider Figure 7 where a grid is shown for n=3. If all BLACK

and WHITE nodes are at level 0 (i.e., a complete quadtree), then

for a neighbor pair in the NE direction we see that nodes along

the fifth row and fourth column have their nearest common ancestor

at level 3 (i.e., 13 nodes labeled 1-13). Continuing the process

for the NW, NE, SW, and SE quadrants of Figure 7 we find that

all neighbor pairs contained exclusively within these quadrants

have their nearest common ancestor at level 12. In particular,

for the NW quadrant, nodes along the third row and second column

have their nearest common ancestor at level 2 (i.e., 5 nodes

labeled 14-18). The NE, SW, and SE quadrants are analyzed in a

similar manner. This process is next applied to the four sub-

quadrants of each quadrant to obtain the neighbor pairs whose

nearest common a. cestor is at level 1. Note that we had to

consider every row in the image when analyzing neighbor pairs

in the direction of quadrants whereas we only needed to consider

one row or one column when analyzing neighbor pairs in the N,

E, S, and W directions. This is necessary because for neighbors



in the direction of quadrants, each row and column in the image

has a different number of neighbor pairs with a common ancestor

at a given level while this number is constant for each row or

column when considering neighbor pairs in the horizontal and

vertical directions.

For each node at level i having a nearest common ancestor

at level j, the number of nodes that will be visited in the pro-

cess of locating an equal-sized neighbor at level i is 2(j-i).

This is obtained by observing that the nearest common ancestor

is at a distance of j-i. Therefore, the average number of nodes

visited by EQUALCORNER NEIGHBOR is:

n-l nZ Z. 4 n - j - (2- (2 n-i-(n-j)- l)-l)-"-2" (j-i)

i=0 j=i+l n (26)
E( 2n-i~l) 2

i=O

(26) can be rewritten to yield

n-i n-i
S( 2 2n-2i-j+2 3 .2 2n-2i-2j+l)

i=0 j=l
n
E (2i 1) 2

i=l

The numerator of (26) can be simplified to yield

n-i n-i 2+-i__n (2 2n+2-2i n E - 3 .22n+I-2i n 1 4-) (27)
i=O j=l 23 j=l



Making use of (4) and (19) in (27) results in

2 22n~l  E 2- 2i. (2-(2_ n,- -- 14_ n-2i )n+2-i 1 39(n-i)+4

i=O 2n3 2

n-i n-i n-i8 2 n+l 1 n+2. 1 n+2. i22nii - (n+2)-2 E _- +
i=0 i=0 21 i=2

8 n-1 n-i
+(2n+ E 1-2 E i (28)

i=O i=O

Substituting (4), (6), and (7) into (28) yields

= 8 ."22n+l" 4 .(l - 1- )-(n+2)-2 n+3. (--)+2n+2_ n(l.-2 nl 1- 22n • (i- 2n+• (2- n
T -- 2n nn-l

+n-(2n+ 8P - n(n-l)

16 22n+2 - 64 - 8(n+2)-(2nl)+8'(2n-n-l)+2n 2 + 8 nn+n

2 2n+2-(n+1)'.2n+3+n2 1 n+8 (29)
9

The denominator of (26) can be simplified as follows:

E (2i~i)2
i=l

n 22i _ n . n
E- 2 2  2 + Z 1

i=O i=O i=O

4 n+i_ I - 2 +2 -)+n+l3

1 2n+2 n+ 2= y( 2 - 3. 2n + 3n+8) (30)



Substituting (29) and (30) into (26) yields

16 (6n-10)-2n+2-3n 2+5n+40
3 2 2n+2-_32n+2 +3n+8

S6- as n gets large
3

16

Q.E.D.

Theorem 5: The average number of nodes visited by

GTEQUALCORNERNEIGHBOR is bounded by 6.

Proof: Given a node P at level i and a direction towards
n

quadrant C, and recalling Theorem 3, there are E 4n - j

n-i- (n-j ). j=i+l
(2(2n n-l)-l)-(j-i) neighbor pairs such that the

neighboring node is of size greater than or equal to that of P.

The index j in the summation corresponds to the level at which

the nearest common ancestor is located. Recall that a neighbor

in the direction of quadrant C will not always abut against

corner C of the node whose neighbor is sought (e.g., node 16 is

a non-abutting NE neighbor of node 23 in Figure 1). For a node

at level i, a direction towards quadrant C, and a nearest common

ancestor at level j, we have possible neighbor pairs having the

initial node at level i and the neighbor node at levels j-l,j-2,

...,i+l,i--i.e., (j-i) possible neighbor pairs. Thus for a node

at level i, the number of nodes that will be visited in the pro-

cess of locating a greater than or equal sized neighbor at level

k with a nearest common ancestor at level j is (j-i+j-k). This

is obtained by observing that the nearest common ancestor is at



a distance of j-i. Therefore, the average number of nodes

visited by GTEQUALCORNERNEIGHBOR is:

n-i n . n i_(n j)j-I
E 1 4

- j ( 2 -( 2  -)-l)- Z (j-i+j-k)

i=0 j-i+l k=i (31)
n-i n . i_(n j)E 4n -  (2"-(2- )- )-( i

i=0 j=i+l

The numerator of (31) can be simplified to yield:

n-i n 2n-j+l-i3 2n-2j j-i
E E (2 -2 E (j-i+k)

i=O j=i+l

n-I n-i
= n (2 2n-2i-J-3-22n-2i-2j-l )-(392+j)

i=0 j=l

22n n-i2 n-i .2 n-i .2 n- 3 (2
=(3 Z 9++£ (32)

i=O 2 j=l 23 j=l2 j=l 23  j=l 22j

Making use of (4), (12), (19), and (20) in (32) results in

22 n nZ (3-(6- (n-i)2+4(n-i)+6) - (20- 9(n-i)2+24(n-i)+20)

i-0 22' 2n-2 22n-2i

n+2-i 3 1 3(n-i)+4
+2 - -n2-7 - 3 ( -2 n i

2i • 2 2 -2i 2F

n-i n -1622  - 32+1n0'n-i

iz0 22 i=0 2-

+(6n+13).2 n  E -- + • £ i -(3n+ ) E i
i-0 21 i=0 2 i=0 im0

n-+(Tn + -in +4). E 1 (33)
i-O



Substituting (4), (6), (7), and (12) into (33) yields

16 .2 2n. 4-1- 1 )-(3n 2+13n+20)'2 n+ l " (1 l - L)
22n 2n

n . (2 nl . 2 n. (n-i) 2+4(n-l)+6 n(613- (2n_) -3- (6 2nl )+ T-(2n-1)-(n-1)

2 n-l 2 n-1

n 9 132 9- 14 3n+ ,)-(n-1)+n-(Tn + jn+4)

64 22n -64 2(3n2 +13n+20).(2 n_1)+2(6n+13)(2 -n-l)-182n33
+6(-)2 n n 9 3 2 9

+6.(n-1)2+24-(n-l)+36+ V 2n-l).(n-l)- T (3n+ f).(n-l)+n.(7 n + fn +4)

16 .2 2n+2- 2 n3 2 13n + 32

3 -(6n +14n+32)*2 +-n +3n 2 3 (34)

The denominator of (31) is equal to 1/2 of the numerator of

(26)--i.e., (29):

8 22n+2_(n+l). 2n+2+ n2 + 1n + (35)

Substituting (34) and (35) into (31) yields

(27n 2-45n+36)2 n+2- 9n3+81n-144
16" 2n+2 -18• (n+l).2 n+2+9n 2+33n+8

- 6 as n gets large

6

Q.E.D.

I77



Theorem 6: The average number of nodes visited by

CORNER CORNER NEIGHBOR is bounded by 6-.

Prbof: Given a node P at level i and a direction towards

quadrant C, using similar reasoning as in Theorems 3 and 4,

there are Z 4nJ.( 2 "(2ni-(nJ)-) -).j neighbor pairs wherej=i+l

we make no restriction on the relative size of the abutting

neighboring node. j corresponds to the level at which the

nearest common ancestor is located. For a node at level i, a

direction towards quadrant C, and a nearest common ancestor at

level j, we have possible neighbor pairs having the initial node

at level i and the neighboring node at levels j-l,j-2,...,i+l,

i,i-l,...,2,l,0--i.e., j possible neighbor pairs. Thus for a

node at level i, the number of nodes that will be visited in

the process of locating a neighbor at level k with a nearest

common ancestor at level j is (j-i+j-k). This is obtained by

observing that the nearest common ancestor is at a distance of

j-i. Therefore, the average number of nodes visited by CORNER

CORNERNEIGHBOR is:
n-1 n j-In- n4 n - j " 2-2n-i-(n-J)-l1)-l)" j (j-l+j-k)

i=0 j=i+l k=O
n-i n (36)E 4 n-J. (2.(2n- i-(n-J)_l1)_l).j

i=O j=i+l

The numerator of (36) can be simplified to yield:



n-i n 2n-j+i-i 2n-2j 3(.l21
E (2 -3.2 ) i 2 3j)

fj j=O j=i+i

n-i n-i 22n 2
...

S Z (2 2n-2i-j-3*2 2n2-2j-i).(3j2+4 ji+j+i 2+i)

i=O j=i

n n (2 2n-2i-j 3 .2 2n2-2j-i) ((3j 
2+j)+4ji+i 2+i) (37)

i=O j=i

Now, compute the foiiowing component of (37) and make use of

(4) , (6) , (7) , and (i9)

n ( 2 2n2i-j -3.2ni2 j-).(4ji+i2+i)

j=O j=i

n n-i (2 2n-2 i n -1 3 2 2n-2ii n-Ei 4ji

i=O j=1 2i j=1 22j

2n-2i n-i .2 2n-2i-i - i 2+.
+ 2 --7 3-2 2

j-i 23 j~i 2 2

ni 2n-2i+2.., n-i2-i 2n-2i+i. i 4 (n-')+4)
= E (2 *i-(2 - )-2 2n-2i
i=O 22

2n2 - 2 2n-2i 

2n-1 n-Ii ~2 3 nIn-lin n-i .2
=2 Z - + 35 *2n- - + 3-2' Z r

i=O 2 i 3i=O 2 2i i=

n-i -
-(4n+9).2 n + (2n+ L- E) i (38)

i=O 2'6 i=



I

Substituting (4), (12), (14), and (20) into (38) yields:

2-1 .22n-1. (20- 9.(n-1) 2+24.(n-1)+20 + 35 .22n-1. (4- 3.(n-l)+4)
22n-2 27 2 2n-2

+3"2n_(6- (n-1) 2+4"(n-l)+6 )-(4n+9 )- 2 n. ( 2 - n+-1)+(2n+ -).(n2-n)

1 3+ 31n 2  1
- 4n

- 20 .22n+2 8n 2 n + 1 n 3  8 2 71 80 (39)
TT 2 -n* 2 3 I 1f8n -27(9

Now, add (34) to (39) to get the numerator of (36)

164 n+2 2 n 3 172 94 208
27 .22 -(6n +22n+32)-2 +n3+ -3n + - n+--2 (40)

The denominator of (36) can be simplified as follows:

nil n n-. n-i- (n-j )..E-i 4 n (2-2n)-l)- ((j-i)+i) (41)
i=0 j=i+l

Compute the following component of (41)

n-i n 4 n-j -(2. ( 2 n-i- (n-J) 1I) -i) "i

i=0 j=i+l

n-1 n
= (2 n 2n-j+I-i-3-2n-2j)".
i=0 j=i+l

n-l i ( 22n-j+1-2i- 3 . 2 2n-2j-2i)

i=0 j=l

n-n n-i n-11
E i-( 22n+1_

2 i 1 3 22n_2i
i=0 j=l 23 j=l 2

-n- 1 1 21-2i(1= i"(2 2n+I-2i( 2 2n-2i. (1- 1

i=0 2n-i 2

' . . _ :' ~~- ' .sZ ........ . .



2n ni 2n+l n-i n-i
=2 Z - 2 Z --- + E i

i-0 22i 1=0 2'1 i=0

- 2 2n. 1 3.(n-i)+4) 2n+ l ( 2  n+l n2-n
9 n2n-2 n-i 2

12 2n+2 2n+2 1 2 13 + 32
T 2 2 +n + -6 n + (42)

Now, add (35) to (42) to get the denominator of (36)

22n+2- (n+2)2 •n+2 +n 2+4n+4 (43)

Substituting (40) and (43) into (36) yields

1 - (162n 2-62n-448) *2 n-27n 3+lln 2+374n+448- (164- 22 n+2-(n+2)-2n+ 2+n2+4n+ 4

-4as n gets large~ 27

164 2- = 6 -
27 27

Q.E.D.

Theorem 7: The average numer of nodes visited by ALIGNED
19

is bounded by

Prooi: Given a node P at level i and a direction D, using
n

similar reasoning as in Theorems 2 and 3, there are 2 -  2
j=i+l

neighbor pairs such that there is no restriction on the

size of the neighboring node. j corresponds to the level of

the tree at which the nearest common ancestor is located. Given

i and j as defined above, we have possible neighbor pairs having

an initial node at level i and a neighboring node at levels

j-l,j-2,...,i+l,i,i-l,...,2,1, --i.e., j possible neighbor pairs.



For a node at level i and a neighbor at level k, at most i-k

nodes must be visited in determining the aligned relationship.

Therefore the average number of nodes visited by ALIGNED is

n-i n 2 n-i j-1z E 2 n-j ji-kj

iO j=i+l k=O (44)
n-i n n-j

E 2 .2 j

i=0 j=i+l

The numerator of (44) can be simplified to yield

n-I n 2n-ii-i j -l
- n - 2 n-J. E (i-k)+ Z (k-i))

i=0 j=i+l k=O k=l

n-i n 2ni. n - j  2 .2

i=0 =i+l 2

n-I n i 2 2n 2i-.j-l (j 2 -j-i+i 2

i=0 j=l

n-1 2 n_2in2 _ (i_i 2 )

= 7 2 n . z . - . ) (45)
i=O j=l 23 23 2

Substituting (4), (6), and (12) into (45) leads to

n-i 2 n-2i- (n-i) 2+4"(n-i)+6 _2+ n-i+2 _(ii2)..(-7. •(6 2-i2n i-i2n
i=O 2n-i

n-i n-I n-i .2
= 22n+l. I 1 22n-i i 22n-1

i=O 2 i=o 22i i=O 2

n-i n-i n-i .2(2+3+)2~ n-i 1 n n
-(n +3n+4).2 . - +(n+2).2 Z - 2 Z (46)

i=O 2 i-O 2' i=0 2

.4 ...



Making use of (4), (6), (7), (12), (19), and (20) in (46)

results in:

22n+l. 1 (4 1 ) 22n-1 1 3(n-l)+4
2n2 22n-2

+22n-l1 (2- 9(n-1)2 +24(n-l)+20 2 6)22 7(0 2n-2 )-(n +I3 n+4 )- 2 nl 1)

2nn )n.( (n-i) 2+4(n-1)+6)

19 2n 2 2 2n-l n 1 n-l
=19 .2n+2- 2n1 2  1 86

-(n2+n+6)-2n + n + -7 (47)

The denominator of (44) is equal to (25) and substituting

(47) and (25) in (44) yields:

2_ n_ 2_19 3 (21n -17n+50)•2 -7n -13n-5021 7 7-22n+2-•(n+2)-2 2l+6n+8

19
Z 2- as n gets large

19

21

Q.E.D.

The analysis of the ALIGNED relationship performed in

Theorem 7 can also be used to yield an estimate of the cost of

finding neighbors when using the roping methods of Hunter (3-5].

Recall that roping implies that equal sized neighbors are linked

directly regardless of whether or not they are brothers. In the

case of a larger sized neighbor, the time required to access it

in a roped quadtree is equal to the number of FATHER links that

must be ascended to reach a GRAY ancestor node of size equal to

that of the desired neighbor. Therefore, the following is the

analog of Theorem 2 when roping is used.

" - £ '----- --- - -.2.- -T 2 --- :-2 --£ 2 ... _ " . .. . .. .... .... .. d ll L- 
4

m. - -- * . , ..... - ,--'- " "4



Theorem 8: The average number of nodes visited when seeking

larger sized neighbors in a roped quadtree is bounded by 1.

Proof: Given a node P at level i and a direction D we have

from Theorem 2 that there are 2n -  
2  pairs such

j=i+l
that the neighboring node is of size greater than or equal to

that of P. For a node at level i, the number of nodes that will

be visited in locating a greater than or equal sized neighbor

at level k (k.i) where the nearest common ancestor is at level j

is k-i. The average is obtained as follows:

n- n 2 E (k-i)

i=0 j=i+l k=i (48)
n-i n-i n n-i-j
E 2 E j.2

i=0 j=l

The numerator of (48) can be simplified to yield

n-i n 2 ni . i2 .2

i=0 j=i+l 2 2

n-I n-i 2n-2ij-1( 2_j)
E E 2 )

i=0 j=l

-i 2n-2i-l.n-i . (49)
Z Z2 (2 Z (49)?.

i=O j=l 23 23

Substituting (4) and (12) into (49) leads to

nE 122n-2i- (n-i) 2+4.(n-i)+6 _ 2+ n-i+2

i=O 2n-i

2n+ n-i 1 n-l n-i n- i .2
2 E --~+(2n+3)-2 E -I 2nEl .

i=O 221 i=O 2 1 i=O 2'1

2 n- i 1  5n-
-(n + 3n+4). 2 n- . .- (50)

i=O 21

d==:.



Making use of (4), (6), (7), and (12) in (50) results in:

22n+l. 4(1- -!-i-)+(2n+3)-2 n -l - (2- n+l ) 2 n-l. ( 6  (n-1) 2+4.(n-l)+6)

2 2 2

-2(n2+3n+ 4 )- 2 n-1.2 - (1 - 1)
2n

2 2n+2 2 n 4
2 (n2+n+4)'2n+ (51)

The denominator of (48) is equal to (15) and substituting (51)

and (15) in (48) yields:

3(n -n+2)-2 n-6
2
2n+3-3 (n+l)2 n+1-2

1 as n gets large

Q.E.D.

If one is interested in finding a smaller or larger neighbor

in a roped quadtree, then we must add to the analysis of

Theorem 8 a factor for finding a smaller sized neighbor. In

the case of a roped quadtree we merely need to follow the rope

and then descend to find the smaller neighbor. However, the cost

of finding the smaller and larger sized neighbors is precisely

the cost of the ALIGNED procedure. Thus for a roped quadtree,

the analog of Theorem 3 is given below.

Theorem 9: The average number of nodes visited when seeking

smaller and larger sized neighbors in a roped quadtree is

bounded by 19

21L
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Proof: Given a node P at level i and a direction D we have

from Theorem 3 that there are 2 2n j neighbor pairs such
j-i+l

that there is no restriction on the size of the neighboring node.

For a node at level i, the number of nodes that will be visited

in locating a greater than or equal sized neighbor at level k

(kki) where the nearest common ancestor is at level j is k-i.

Similarly, in locating a smaller sized neighbor at level k (k<i)

i-k nodes will be visited. The average is obtained as follows:

n-l n 2n-i ,i-l j-1Z Z "22n-- E (i-k)+ E (k-i)

i=O j=i+l k=O k=i (52)
n-l n n-i 2n-j.

i=O j=i+l

However, (52) is identical to (44) and our result follows.

Q.E.D.

Note that the bounds of Theorems 8 and 9 do not reflect the

fact that one must also visit one additional link due to the

presence of the rope (i.e., the link which the rope represents).

It should also be clear that if the quadtree is netted, then

no links need ever be traversed except for the link which the

net represents.

__ __-I

.......................
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5. Concluding Remarks

We have described the neighbor finding techniques for quad-

trees in detail. The analyses of the various algorithms demon-

strate that the operation is quite efficient. We have used an

unusual model of a randon image in our analysis. However, as

stated in Section 4, had we used a model which attributes a given

probability (e.g., 1/2) for a pixel being BLACK or WHITE, the

quadtree for a 2n by 2n image would most likely have n levels

and have neighboring nodes of equal size. In such a case,

Theorems 1 and 4 are applicable and show a lower bound on the

execution time of adjacent and corner neighbor locating algo-

rithms. Thus our model attempts to present a more realistic

view of the time complexity of these algorithms.

We have also analyzed an alternative neighbor finding technique

which makes use of a construct termed a rope. In such a case, we

saw that neighbors can be located more quickly (at about 1/2 to

1/3 of the cost when our technique is used). Nevertheless, if

space is at a premium, roping should probably not be used without

some careful thought. An upper bound on the number of links

necessary to achieve roping is four times the number of leaf

nodes since each leaf node may participate in a maximum of four

ropes (one for each side).
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Figure 2. Relationship between a block's four quadrants and

its boundaries.
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Figure 5. Technique to avoid lacking a neighbor in
a given direction.
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Figure 6. Adjacency tree for the western neighbor of
node 16 in Figure 1.

17 8 22

14 15 16 9 19 20 21

18 10 23

1 2 3 4 5 6 7

27 11 32

24 25 26 12 29 30 31

28 13 33

Figure 7. Sample grid illustrating blocks whose nodes are at
level 0 and whose nearest common ancestor is at level
a2 when attempting to locate a NE neighbor.
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