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ABSTRACT

Blum's Medial Axis Transformation (MAT) of the set S of
l's in a binary picture can be defined by an iterative shrink-
ing and reexpanding process which detects "corners" on the
contours of constant distance from S, and thereby yields a
"skeleton" of S. For unsegmented (gray level) pictures, one
can use an analogous definition, in which local MIN and MAX
operations play the roles of shrinking and expanding, to com-
pute a "MMMAT value" at each point of the picture. The set of
points having high values defines a good "skeleton" for the set
of high-gray-level points in the given picture.
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1. Introduction

Let S be a subset of a picture, let P be a point of S,

and let D(P) be the largest "disk" (or neighborhood of some

specified shape) centered at P that is contained in S. We

call D(P) a maximal disk of S if it is not contained in D(Q)

for any Q#P. Evidently, S is the union of its maximal disks.

The "medial axis transform" (MAT) Il] of S consists of the

centers of these disks together with their radii. In digital

pictures "disks" are usually approximated by squares, whose

orientation depends on the definition of distance in the grid.

When the "chessboard" distance d((a,b) , (c,d)) = max(la-c, Ib-di)]

is used, the "disks" are upright squares. When the "city block"

distance [d((a,b),(d,c)) = ja-cI+Ib-d] is used, the "disks"

are an approximation of diagonal squares.

An equivalent definition of MAT uses paths from a point to

the boundary. The distance of a point x in S from S is the

length of a shortest path from x to the complement S. The MAT

can then be defined as the set of all points in S which do not

belong to the minimal path. of any other point, together with

their distances. It has been shown [2] that for digital pictures
using discrete distance metrics the points in the MAT are those

points whose distances from I are local maxima. The MAT can be

regarded as a generalized axis of symmetry of a figure, and

constitutes a kind of "skeleton".
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Several generalizations of the MAT have been proposed,

based on these definitions, which allow a MAT to be defined

for a gray level digital picture, rather than for a two-valued

picture representing a set S (l's at points of S, O's elsewhere).

One generalization (3], the SPAN (Spatial Piecewise Approxima-

tion by Neighborhoods), is defined in terms of maximal homoge-

neous disks; the given picture can be approximated if we are

given the set of centers, radii, and average gray levels of

these disks (5]. If the picture is two-valued, and "homogeneous"

means "constant-valued", the SPAN reduces to the MAT. Another

generalization, the GRAYMAT [4], is based on the concept of

gray-weighted distance: the gray-weighted length of a path is

proportional to the sum (or integral) of the gray levels along

the path; the gray-weighted distance between two points is the

lowest gray-weighted length of any path between them. The

GRAYMAT is the set of all points which do not belong to any

minimal gray-weighted path from any other point to the zero-

valued background, together with the corresponding distance.

This too reduces to the MAT in the two-valued case. Still

another generalization, the GRADMAT (51, computes a score for

each point P of a picture based on the gradient magnitudes at

all pairs of points that have P as their midpoint; thus these

scores are high at points that lie midway between pairs of anti-

parallel edges, so that they define a weighted "medial axis".
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Each of these generalizations has disadvantages. The SPAN

is costly to compute, since it involves testing neighborhoods

of all sizes at every point for homogeneity. The GRAYMAT is

defined relative to the set of O's in the picture, so that it

requires the picture to be segmented into O's ("background")

and non-0's ("objects"). The GRADMAT turns out to be rather

sensitive to noise and to irregularities in region edges.

This paper proposes a new grayscale generalization of the

MAT which is inexpensive to compute, does not require the pic-

ture to be segmented, and is insensitive to noise. Its defini-

tion is based on the fact that the MAT of a set S can be con-

structed by a process of iteratively shrinking and reexpanding

S (6]. For grayscale pictures, the operations of local MIN and

local MAX are generalizations of shrinking and expanding,

respectively [7]. Thus if we use iterated local MIN and MAX

instead of shrinking and expanding, we obtain a "MAT" construc-

tion that is applicable to grayscale pictures. The resulting

"MAT" will be called the MMMAT (short for "min-max MAT").

Section 2 reviews the shrink/expand construction of the MAT

and defines its min/max generalization. Section 3 shows that this

MMMAT construction yields reasonable "medial axes" in a variety

of cases.
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2. The MMMAT

The MAT can also be defined by a propagation process start-

ing at the contour of the figure, and propagating toward the in-

side of the figure. The contour is the initial wavefront of the

propagation process, and the propagation velocity is fixed.

Wavefront superposition is not allowed, and wavefront intersec-

tion points are the points of the MAT. The gray level extension

of this "grass fire" definition was given in (6], where the pro-

pagation velocity is inversely proportional to the gray level.

Following the above definition, the propagation of a wave-

front in a binary digital picture can be modelled by a sequence

of "shrink" operations, and the MAT can be constructed by a

simple process of iterated shrinking and reexpanding using the

appropriate neighborhood (4-neighborhood for the city block

distance, 8-neighborhood for the chessboard distance). Let

S(k) denote the result of "expanding" S k times, where a single

expansion step (S( ) ) means that all points of N which are neigh-

bors of points in S are adjoined to S. Similarly, let S(k)

be the result of "shrinking" S k times; a single shrinking step

means that all points of S which are neighbors of points in E

are deleted from S. Shrinking S is evidently equivalent to

expanding S, and vice versa. A point is in S(-k) iff its

distance from f is at least k; here the distance is city block

if we use only horizontal and vertical neighbors in the defini-

tion of shrinking, and the distance is chessboard if we also
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use diagonal neighbors.

It can be shown that for all nonnegative i and j we have

(s- (j) Q s(J-i) r (s(j)) (-i); thus in particular, for all

nonnegative k we have (S(k))() s The difference set

D = s(-k+l)_(s(-k))(1) consists of points whose distances from

S are k-1, and which have no neighbor at distance k or greater;

hence the discrete case Dk is just the set of distance maxima

at distance k-i from S. Thus UD is the set of all distance
k

maxima, i.e., of MAT points.

Shrinking S is equivalent to performing a local MIN opera-

tion on the two-valued picture that has l's at the points of S,

and expanding S is equivalent to performing a local MAX operation

on this picture, where "local" is defined in terms of the appro-

priate set of neighbors. For a gray level digital picture Z,

let (k) be the result of applying k iterations of local MAX to

E, and let Z-(-k) be the result of k iterations of local MIN.

It can be shown (7] that for all nonnegative i and j we have

(E(-i) ) (j) : E(j-i) (E(j))(-i); thus in particular, for all

nonnegative k we have (Z(-k) ) (1) a (-k+l),so that thedif-

ference picture Ak = E(-k+l)_(z (-k)) (i) is everywhere nonnega-

tive (all picture operations are performed pointwise). If Z is

a two-valued picture and S is its set of l's, then the set of

l's of Ak is just Dk.

In the two-valued case, when we shrink S, a given point P

of S remains unchanged until k -d(P,S), and then changes to 0;



but in the general case, when we iterate local MIN, the value

of P may change many times. Let Zk(P) be the lowest gray level

within distance 'k of P; thus Z0 a Z1  where Z0 is PIS

(0) (-k)gray level in E= . Readily, Zk(P) is the gray level E (p)

of P in E-k). If Zk(P)= Zk-l(P), Ak must be 0 at P, since

the max of Zk(P) and its neighbors in Ak is at least (hence

exactly) Zk-l(P); but if Zk(P) < ZklI(P), Ak may be >0 at P.

The MMMAT value of P can be defined in terms of the Ak(P)

values (k=l,2,...) in several ways. One possibility is to use

their maximum; another is to use their sum. As we shall see in

the next section, both of these definitions yield MAT-like loci

of high MMMAT values. It is evident that the max definition

yields values in the same range 10,Z] as the picture's grayscale,

since 0 s A E (-k+l)-(E-'k)) (1) E(-k+1) z for all k. For the

sum definition too, we have 0 s Ak & k" On the other hand,
N (-k) z(-k-l)) = E(O)- (-N- 1 ) . Z; and since ((-k-1)) (1)

k=O (k)
E( , this implies (Z(k)((kl)) ()) S Z.
When the local MIN operation is iterated many times, border

effects become a serious problem. In the two-valued case, if

we require that S be interior to the picture, then the border of

the picture consists entirely of O's, and we can treat the out-

side of the picture as consisting of O's without creating any

artifacts. In the grayscale case, however, whatever value(s)

we use outside the picture will have effects on their neighbors

inside it, and as the process is iterated, these effects propa-

gate, as we will see in the next section.



3. Examples and concluding remarks

Figure 1 shows eight pictures and their MMMATs computed in

three different ways: max Ax using eight- and four-neighbor

operations, and ZAk using eight-neighbor operations. The four-

neighbor version contains artifacts due to border effects,

resulting from the fact that the oatside of the picture is

treated as consisting of O's. In all cases, the high MMMAT

values constitute very reasonable "skeletons" of the dark points

in the given picture.

In the two-valued cases, S can be reconstructed from its

MAT by a reexpansion process; in fact, S is the union of the

disks centered at the MAT points and with radii equal to the

distance values of those points. In the grayscale case, analo-

gously, if we know Ai(Z)1 A 2(Z),...,Am(Z) for each Z, we can re-

construct E from Z(-m) by an iterated local MAX process, where

at each step we add the appropriate A value back into the picture.

Specifically, given Z(-M), we have Z(m+l) = (Z(m ) +Am;
. (-m+2) ((-m+ 1) )(1) +Am1 .. I-1(0) E(-i)) (i)+11 No e

= +AI--ll;'l''; = (Ei l) +AI .A Note,

however, that this reconstruction processs requires a large

amount of information, namely m arrays of A values, unlike the

two-valued case where we only need a single distance value for

each point. This is a consequence of the fact that in the MAT

construction process, the value of a point changes from 1 to 0

only once (for k equal to its distance from S), whereas in MMMAT

construction, the value of a point may change at every iteration.



In any case, the picture cannot be reconstructed from its

MMMAT values, since these are maxes or sums of Ak'S, and we need

all of the individual ak values for correct reconstruction.

It has been suggested [11 that biological visual systems

compute MATs and use them to extract perceptually significant

features from shapes and patterns (e.g., lobes on a shape corre-

spond to branches on its MAT). However, it seems implausible

that visual systems threshold their input, which would be neces-

sary for MAT computation. The MMMAT provides a possible alter-

native approach in which medial axes can be computed from un-

thresholded input.
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Figure 1. Some pictures and their MMMATs.

a) Originals
b) 8-neighbor MMMATs using maxk
c) 4-neighbor MMMATs using maxk
d) 8-neighbor MMMATs using Zk
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