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ABSTRACT

Blum's Medial Axis Transformation (MAT) of the set S of
1's in a binary picture can be defined by an iterative shrink-
ing and reexpanding process which detects "corners" on the
contours of constant distance from S, and thereby yields a
"skeleton” of S. For unsegmented (gray level) pictures, one
can use an analogous definition, in which local MIN and MAX
operations play the roles of shrinking and expanding, to com-
pute a "MMMAT value" at each point of the picture. The set of
points having high values defines a good "skeleton" for the set
of high-gray-level points in the given picture.

The support of the Defense Advanced Research Projects Agency
' . boratory under Contract
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1. Introduction

Let S be a subset of a picture, let P be a point of S,
and let D(P) be the largest "disk" (or neighborhood of some

specified shape) centered at P that is contained in S. We

call D(P) a maximal disk of S if it is not contained in D(Q)

for any Q#P. Evidently, S is the union of its maximal disks.

i The "medial axis transform” (MAT) [1] of S consists of the

S centers of these disks together with their radii. In digital
pictures "disks" are usually approximated by squares, whose
orientation depends on the definition of distance in the grid.
When the "chessboard" distance (d((a,b),(c,d)) = max(|a-c|,|b=d|)]

is used, the "disks" are upright squares. When the "city block"

distance [d((a,b),(d,c)) = |a-c|+|b-d]) is used, the "disks"
b are an approximation of diagonal squares.

An equivalent definition of MAT uses paths from a point to

the boundary. The distance of a point x in § from S is the
length of a shortest path from x to the complement S. The MAT
can then be defined as the set of all points in S which do not
belong to the minimal path. of any other point, together with
their distances. It has been shown [2] that for digital pictures
using discrete distance metrics the points in the MAT are those

points whose distances from S are local maxima. The MAT can be

regarded as a generalized axis of symmetry of a figure, and

5;? constitutes a kind of "skeleton".
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Several generalizations of the MAT have been proposed,
based on these definitions, which allow a MAT to be defined
for a gray level digital picture, rather than for a two-valued

| picture representing a set S (l's at points of S, 0's elsewhere).

T

One generalization [3], the SPAN (Spatial Piecewise Approxima-

tion by Neighborhoods), is defined in terms of maximal homoge-
neous disks; the given picture can be approximated if we are

.f given the set of centers, radii, and average gray levels of

| these disks [5]. 1If the picture is two-valued, and "homogeneous"
means "constant-valued", the SPAN reduces to the MAT. Another
generalization, the GRAYMAT [4], is based on the concept of
gray~weighted distance: the gray-weighted length of a path is

proportional to the sum (or integral) of the gray levels along

the path; the gray-weighted distance between two points is the

lowest gray-weighted length of any path between them. The

GRAYMAT is the set of all points which do not belong to any

j minimal gray-weighted path from any other point to the zero-

| valued background, together with the corresponding distance.
This too reduces to the MAT in the two-valued case. Still

” another generalization, the GRADMAT [5], computes a score for ii

each point P of a picture based on the gradient magnitudes at

all pairs of points that have P as their midpoint; thus these

scores are high at points that lie midway between pairs of anti-

parallel edges, so that they define a weighted "medial axis".




R i eetm.

Each of these generalizations has disadvantages. The SPAN
is costly to compute, since it involves testing neighborhoods
of all sizes at every point for homogeneity. The GRAYMAT is
defined relative to the set of 0's in the picture, so that it
requires the picture to be segmented into 0's ("background") ;
and non-0's ("objects"). The GRADMAT turns out to be rather |
sensitive to noise and to irregularities in region edges.

This paper proposes a new grayscale generalization of the
MAT which is inexpensive to compute, does not require the pic-
ture to be segmented, and ié insensitive to noise. 1Its defini-
tion is based on the fact that the MAT of a set S can be con-
structed by a process of iteratively shrinking and reexpanding

S [6]. For grayscale pictures, the operations of local MIN and

local MAX are generalizations of shrinking and expanding,
respectively [7]. Thus if we use iterated local MIN and MaX
instead of shrinking and expanding, we obtain a "MAT" construc-
tion that is applicable to grayscale pictures. The resulting
"MAT" will be called the MMMAT (short for "min-max MAT").

Section 2 reviews the shrink/expand construction of the MAT
and defines its min/max generalization. Section 3 shows that this
MMMAT construction yields reasonable "medial axes" in a variety

of cases.




2. The MMMAT

The MAT can also be defined by a propagation process start-
ing at the contour of the figure, and propagating toward the in-
side of the figure. The contour is the initial wavefront of the
propagation process, and the propagation velocity is fixed.
Wavefront superposition is not allowed, and wavefront intersec-
tion points are the points of the MAT. The gray level extension
of this "grass fire" definition was given in [6], where the pro-
pagation velocity is inversely proportional to the gray level.

Following the above definition, the propagation of a wave-
front in a binary digital picture can be modelled by a sequence
of "shrink" operations, and the MAT can be constructed by a
simple process of iterated shrinking and reexpanding using the
appropriate neighborhood (4-neighborhood for the city block
distance, 8-neighborhood for the chessboard distance). Let
S(k) denote the result of "expanding" S k times, where a single
expansion step (S(l)) means that all points of § which are neigh-
bors of points in S are adjoined to S. Similarly, let S(-k)
be the result of "shrinking” S k times; a single shrinking step
means that all points of S which are neighbors of points in §
are deleted from S. Shrinking S is evidently equivalent to
expanding §, and vice versa. A point is in s{=K) j¢e its
distance from S is at least k; here the distance is city block
if we use only horizontal and vertical neighbors in the defini-

tion of shrinking, and the distance is chessboard if we also




use diagonal neighbors.

It can be shown that for all nonnegative i and j we have

nonnegative k we have (s (=K, (1)

; thus in particular, for all

s s{~k*1) e gifference set

D -(s consists of points whose distances from

k
S are k-1, and which have no neighbor at distance k or greater;
hence the discrete case Dk is just the set of distance maxima

at distance k-1 from S. Thus UD, is the set of all distance
maxima, i.e., of MAT points. §

Shrinking S is equivalent to performing a local MIN opera-
tion on the two-valued picture that has l's at the points of S,
and expanding S is equivalent to performing a local MAX operation
on this picture, where "local" is defined in terms of the appro-
priate set of neighbors. For a gray level digital picture I,
let z(k’ be the result of applying k iterations of local MAX to
I, and let £‘~X) be the result of k iterations of local MIN.

It can be shown [7] that for all nonnegative i and j we have
(z(-i))(j) s z(j-i) s (z(j))(-i);
(-k))(l)

thus in particular, for all

nonnegative k we have (I 3 2('k+1), so that the dif-

(-k+l)_(z(°k))(l) is everywhere nonnega-

ference picture Ak £ I
tive (all picture operations are performed pointwise). 1If I is
a two-valued picture and S is its set of 1's, then the set of
1's of &y is just Dy -

In the two-valued case, when we shrink S, a given point P

of S remains unchanged until k = 4(P,S), and then changes to 0;




but in the general case, when we iterate local MIN, the value

of P may change many times. Let Zk(P) be the lowest gray level
within distance =k of P; thus 2, 2 Zy Zeeny where zO is P's

0
(0)

-k
gray level in I=I . Readily, Zk(P) is the gray level Z( )(P)

of 2 in 2™, 1£32 (P)= 2z, _ (P), A must be 0 at P, since .
the max of 2, (P) and its neighbors in 4, is at least (hence
exactly) Zk_l(P); but if zk(P) < Zk_l(P), Ak may be >0 at P.
The MMMAT value of P can be defined in terms of the 4, (P)
values (k=1,2,...) in several ways. One possibility is to use
their maximum; another is to use their sum. As we shall see in
the next section, both of these definitions yield MAT-like loci
of high MMMAT values. It is evident that the max definition
yields values in the same range [0,2] as the picture's grayscale,
since 0 = 4, = (D (k) W=kt g5 £or a11 k. For the
sum definition too, we have 0 = Ak 3 ZAk. On the other hand, a

N
po(p(-R g (k=10 o 50 _;(-N-1) ¢ 7, and since (z("k~1)) D) ?

k=0
3 3 (=k=1) g(=Kk) _ (g (=k=1), (1)

, this implies I( ) = 2.

When the local MIN operation is iterated many times, border
effects become a serious problem. 1In the two-valued case, if
we require that S be interior to the picture, then the border of
the picture consists entirely of 0's, and we can treat the out-
side of the picture as consisting of 0's without creating any
artifacts. 1In the grayscale case, however, whatever value(s)

we use outside the picture will have effects on their neighbors

inside it, and as the process is iterated, these effects proéa- t

gate, as we will see in the next section.
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3. Examples and concluding remarks

Figure 1 shows eight pictures and their MMMATs computed in 4
three different ways: max Ax using eight- and four-neighbor ]
operations, and 2Ak using eight-neighbor operations. The four- ;
neighbor version contains artifacts due to border effects,
resulting from the fact that the catside of the picture is
treated as consisting of 0's. 1In all cases, the high MMMAT
values constitute very reasonable "skeletons" of the dark points
in the given picture.

In the two-valued cases, S can be reconstructed from its
MAT by a reexpansion process; in fact, S is the union of the
disks centered at the MAT points and with radii equal to the
distance values of those points. 1In the grayscale case, analo-
gously, if we know Al(Z),Az(Z),...,Am(Z) for each Z, we can re-
construct I from 2(—m) by an iterated local MAX process, where
at each step we add the appropriate A value back into the picture.
(-m), (1)

Specifically, given 2('m), we have £!™™1) _ (3 ) +A

pm2) o g meh (D een(@ 2 @) Bhes L vote,
however, that this reconstruction processs requires a large
amount of information, namely m arrays of A values, unlike the
two-valued case where we only need a single distance value for
each point. This is a consequence of the fact that in the MAT
construction process, the value of a point changes from 1 to 0
only once (for k equal to its distance from S), whereas in MMMAT

construction, the value of a point may change at every iteration.
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In any case, the picture cannot be reconstructed from its

MMMAT values, since these are maxes or sums of Ak's, and we need
all of the individual Ak values for correct reconstruction.

It has been suggested (1] that biological visual systems
compute MATs and use them to extract perceptually significant t
features from shapes and patterns (e.g., lobes on a shape corre-
spond to branches on its MAT). However, it seems implausible
that visual systems threshold their input, which would be neces-

sary for MAT computation. The MMMAT provides a possible alter-

native approach in which medial axes can be computed from un-

thresholded input.
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Figure 1. Some pictures and their MMMATs.

a) Originals
b) 8-neighbor MMMATs using max
¢) 4-neighbor MMMATs using max
d) 8-neighbor MMMATs using &

k




o9 B s i i PR P bt UL S0 "0 Pttt 4

UNCLASSIFIED
© SRCUMITY CLASSIFICATION QF THIS PAGE (When Dete Eniered)

READ ONS
REPORT DOCUMENTATION PAGE BET O e e ot
1. REPORT RUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
Ly
) -fHo90 437
4. TITLE (and Sudtitie) S. TYPE OF REPOAT & PCRIOD COVERED
A MIN-MAX MEDIAL AXIS TRANSFORMATION Technical

! : 6. PERFORMING ORG. REPOAT NUMBER
% 7. AUTHOR(E) T. CONTRACT OR GRANT NUMBEND | )
: Shmuel Peleg J
i Azriel Rosenfeld DAAG-53-76C-~0138

3. PERFORMING ORGANIZATION NAME AND AODARESS 10. PROGRAM CLEMENT. PNOJ!CT T ASK

x Computer Vision Laboratory, Computer AREA & VORK UMIT NUMBERS

Science Center, University of Maryland,
College Park, MD 20742

1. CONTROLLING OFFICE NAME ANO ADORKSS 1. REPOAT DATE
U. 8. Army Night Vision Laboratory January, 1980
Ft. Belvoir, VA 22060 13. NUMBER OF PAGES

Td. MONITORING AGENGCY NAME & AQONESS(I/ ditlerent (rem Controlling Oltice) 18, SECURITY CLASS, (of this repert)

4o n e e ey e oo Wl vl T

Unclassified

e v 1Y T T Y TrvY
1Sa, OECLASSIFICATION/ OOWNGRADING
SCHEDULE

ot ————————————————
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

e ) e i e A P A L

17. OISTRIBUTION STATEMENT (of the sbetract entered in Bleck 20, it different /rom Report)

o 18. SUPPL EMENTARY NOTES

19. XLY WOROS (C - re eide it y and | tty by bdlock number)
Medial axis transformation
Skeleton

Min and max operations
> 7 }'XJ r‘)

ABSTRACT (Continwe en reverese side if y by bioek number)

(Blum's Medial Axis Transformatlon (MAT) of the set S of 1's in a
binary picture can be defined by an iterative shrinking and reex-
panding procesg which detects "corners"” on the contours of constant
distance from(S,) and thereby yields a "skeleton” of S. For unseg-
mented (gray level) pictures, one can use an analogous definition,
in which local MIN and MAX operations play the roles of shrinking -~
and expanding, to compute a "MMMAT value" at each point of the _ d

DD ,'5%%; 1473  soimow oF 1 wov s 13 cssoveTR UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS BAGE (When Dete Entered)




o

UNCLASSIFIED

SECUR TY CLASSIFICATION OF THIS PAGEWhen Dote Envered)

."L ’

~picture. The set of points having high values defines a good

"skeleton" for the set of high-gray-level points in the given
picture.

TINCLASSIFIZD

SECUMTY SLASSIFICATION SF TS PAGE/hen Dare Entered)




