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SECTION 1
INTRODUCTION

Various regression schemes have been used with limited success to
analyze empirical explosive cratering data and so define scaling relationships.
The objective of this study is to improve the precision of these scaling laws
using combined statistical and dimensional analysis techniques that result in
functional forms relating a simplified set of generalized variables.

The approach used here is to first develop a set of independent
nondimensional parameters from the independent physical variables of the
phenomenon through dimensional analysis. For example, dimensional analysis of
recent centrifuge experimental data on cratering lead to the identification of a
charge size-parameter (Schmidt, 1977). A statistical regression analysis is
then performed to determine functional relationships among these parameters.

The common obstacle defeating previous attempts to unify this type of
data was an inability to correlate the large number of independent variables
necessary to describe the phenomenon. In this study, dimensional analysis
provides a method to systematically combine groups of variables, allowing a
common comparison of grossly different types of experiments, leading to
mathematical models for the statistical regression analysis. The combined
approach is a new technique incorporating recent scaling developments that allow
simpler functional forms based upon fewer generalized variables. This hybrid
methodology leads to improved confidence in prediction and quantification of
associated uncertainties.

One of the few comprehensive statistical approaches to correlating
different soil media is an earljer work by Dillon (1971). He tried to combine
data for various types of materials by using a large number of parameters to
relate soil properties. It is not totally clear how the regression was run, but
it is clear that his model was far too complex for any useful prediction.
Dillon states that every effort was made to keep the number of parameters to 40
or less (page 43). These are too many parameters for a problem of this type and
one would have little confidence in any extrapolation. It is not surprising
that his multiple correlation coefficient values are quite large when fitting a




ey M v

Canind i m. e

B M

i

T e e s R

model with 40 or so parameters. However, the values given appear even higher
than the quality of the data fit on the plots suggests. This along with the
fact that two of the values exceed 100, a theoretical impossiblity, indicates
either severe numerical problems or a programming error. Dillon's work is weak
statistically in the area of combining the different soil materials and very
little reliability can be placed upon that portion of the research.

The other limitation imposed by Dillon's approach was his ad hoc choice
of using a 5/16 yield scaling exponent for all linear dimensions. In the
present study, scaling laws are determined directly by the statistical
regression on the appropriate non-dimensional w-groups. These latter quantities
serve as a set of generalized variables and require no ad hoc scaling exponent;
but rather, as is shown in Section 3, theoretical analysis alone can assign
appropriate scaling exponents for various size regimes (see Table 3 and Figs. 7,
8 and 9).

The study described here incorporates a particular material strength
theory developed under a concurrent DNA centrifuge experimental program (Schmidt
and Holsapple, 1979). This feature of the analysis significantly improved
correlation, greatly reducing the scatter for cratering events in different
media.
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SECTION 2
BACKGROUND ON STATISTICAL MODEL FITTING

2-1 THE “TRUE® RELATIONSHIP AND EXPERIMENTAL VARIABILITY

In Physics, other than atomic physics, it 1is assumed that if all
relevant information and appropriate physical laws were known, experimental
findings could be predicted without error. Thus, this must also be true in
relating explosions to craters. In point of fact, not all the relevant
relationships are known. The data are not only affected by measurement error
but also by inherent varfablility in the explosive and in the cratering medium.
Further, it is presently beyond human capability, to measure every relevant
quantity. The "“true" relationship between explosions and cratering dimensions
is consequently masked by variability in the data.

2-2 ESTIMATING THE UNDERLYING “TRUE“ RELATIONSHIP

Because there is variability, investigators cannot hope to discover the
appropriate relationship and to fit all of the data points with complete
precision. Since a completely accurate prediction cannot occur, a mndel 1is
fitted to the data that explains much of the variation in the data. Statistical
model fitting is the science and art of finding a mathematical model to fit data
with random variability. An example of such data is the cratering data used in
this report.

In general, the mathematical model used to fit data will depend upon a
finite number of unknown constants called coefficients or parameters. The first
step is to estimate the unknown coefficients from the data. The second step is
to determine whether the model does give a reasonable fit to the data. The
model can then be used to predict observed values before additional data are
collected. The accuracy of the prediction depends upon the correctness of both
the mathematical model and the statistical model for variability. Checking the
fit of the model and the appropriateness of assumptions of random variability
allows quantification of the variability in a future prediction.




2-3 LEAST-SQUARES CRITERIA FOR FITTING DATA

Investigators want to fit the “best" possible curve to the data. To
find a best fit there is a need for some criterion with which to measure the
goodness of the fit, such as the method of least squares. First proposed by
Gauss, it is mathematically tractable in many situations and can be easily
calculated. If the variation about the true curve is distributed according to a
probability distribution (called the Gaussian, normal, or bell-shaped curve),
the method picks the curve which makes the probability of the observed data as
large as possible. This is also called the method of maximum likelihood.

To examine this method, consider Fig. 1 where some response (dependent
variable y) is observed whose value may fluctuate with the value of the
independent variable x. Consider now a family of proposed curves to model the
data y; the curves give y as some function of x and the parameter 6. Three
parametric curves are drawn corresponding to values of 6 =1, 6= 2, and 6 = 3.
The data points being fitted are given by the four triangles. Suppose the curve
corresponding to 6 = 1 were to represent these data. Corresponding to an x
value of Xy the appropriate y value on the curve is given by 91. Similarly
corresponding to x,, the y value on the curve is given by the value yp. The
difference between the observed value Yy and the value for §1 predicted by X is
the quantity Y3 minus 9]. The principle of least squares directs us to examine
the sum of the squares of the deviations of the data points minus their
predicted values. In this case that sum is given by eq. 1.
sum of Squares = (y, - 9702 + (v, - 902+ (y3 - 9307 + (4 - 9)° (1)

This sum of squares can be computed for each of the three curves given
in Fig. 1. Of course, as changes between the three curves are made, the value
9] predicted for Y will change. Of the three, the curve corresponding to 6 = 2
would have the minimum value for the sum of squares. Thus according to the
least-squares principle, the curve with 8 = 2 is chosen in preference to 6 = 1
or & = 3. In general, the dependence of the family of curves upon the
parameters may be quite complex. Although the numerical problem of finding the
curve that minimizes the sum of squares may be difficult, the method is straight
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Fig. 1

Three possible curves, y = f(x,8), for a
least squares fit to four data points
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43 forward. The difference between the observed y and the predicted ¥ for the best ;
3 fit is called the residual. The differences are called residuals because this :
' term measures the amount of variability left over and not explained by the model

used to fit the data, i.e. residual variability.

2-4 POTENTIAL PROBLEMS WITH THE METHOD OF LEAST-SQUARES FITTING

C e e -

PR S g

Though the method of least-squares fitting has proved useful, it is not ;
a solution for all data analyses. In this section some of the problems that one
may encounter using the method of least squares fitting are briefly discussed.

One problem in model fitting is using the wrong model. For example,
consider Fig. 2, visually the data appear to consist of two clusters of points.
Within each of the clusters y decreases as x increases. If a straight line is
fitted to such a combined data set, the line would go through the centers of the
two groups but would predict y increasing with x. Checking the fit becomes more
difficult, however, when using many independent variables to predict a dependent
response variable due to human inability to visualize four (or more) dimensional
space. In addition to various mathematical methods for checking the fit of a
model, some of which are discussed later, a variety of two-dimensional plots can
be used to insure that the fit is reasonable. A common practice in higher
dimensions is to plot the residual value versus the predicted value. If the
prediction is off by a larger amount for larger (or smaller) predicted values,
such a plot would show the trend. Figure 3 gives another example of a wrong
model; fitting curvilinear data with a straight line.

A second problem is created by what are called outliers. A data point
is an outlier if in some sense it is separated by a considerable amount from the
rest of the data. Fiqures 4 and 5 illustrate what can happen if a data set has
an outlier., Figure 4 shows the body of data where the value of the dependent
variable y tends to decrease with the value of the dependent variable x. When
an outlier is added, a line of best fit has the form shown using the least
squares method, rather than reflecting the trend of y decreasing with

increasing x. Figure 5 shows a data point which is an outlier having an extreme
value for the dependent variable y. It causes a sizeable shift in the curve for
best fit. Other variations occur when using higher order curves for a model.
Occasionally outlying values result from poor experimental technique or values

10




N «
< )
‘B
] .
1. ;f
) |
y - axis
Line of best fit
x - axis ]
Fig. 2 Wrong model
:
B
1 1
:
. ®e @ E ]
] . LY :. - -..'.. !
* % -. é 1
y - axis ; o . ;
. ; :o : i
x = axis
)
] Fig. 3 Curvilinear data with straight line fit
| 1
}




y - axis

y ~ axis

Line of bast fit

Outl!or/

x = axis

Fig. 4 One outlier

[

Line of best fit /O
with outlier

utiier

\Linc of best fit

without outliar

x - axls

Fig. 5  Data with outlier




R PO s Ay e o

Nl

DT b A AP vk ~ \outs &/ 37 ot iy — = - S

inappropriately measured. In other circumstances outliers may reflect some sort
of transitional or phase effect. In model fitting one should consider the

possibility of outliers and examine the affect that these data have on the model
fit.

2-5 GOODNESS OF FIT

It is useful to have a measure of how well the fitted model explains
the data. Suppose there are n data points and for each there is a dependent
variable y, whose variability is to be explained; and a vector of independent
variables x;, which will be used to explain the y variability. After performing
a least-squares fit to the data, how well has the explanation worked? Suppose
for the moment that the independent variable x is not used to predict y and only
a constant is to be used to predict the value for y. Equation 2 below shows how

to pick the constant using the principle of least squares.
n
. 2
minimum :E: (y; - C) (2)
i=1

That is, C is chosen to minimize the sum of squares of the deviations of y about
the fixed constant value C. It can be shown that the value of C that minimizes
the sum of squares is the mean of the sample data, or Y.

Yy + o 0

n

: ] * Yn

y-=s n = Z yi/" (3)
i=)

Now, if a dependence on the variable x is used, there will be some residual
variability left even after fitting the model. The residual variability as
defined above is given by eq. 4,

2 Gy, - 3)? (4)

The residual variability is the sum of squares of the deviations of residuals,

the observed value y; minus its predicted value 91. Starting with the




variability of eq. 2 where C is equal to ¥ the variability left is given by eq.
4. Thus, the fraction of the variability not explained is given by eq. 5.

n n
)INCIER AN MR AL (5)
i=]

i=1

Hence, the fraction of the variability explained, called the mu]tip]g
correlation coefficient is one minus this quantity. It is usually denoted by R
and can be written

n .2
Ty, -y
RZ =7 - i (6)
L =12
i=

If the Y; values are not all the same so that the denominator is nonzero and if
the family of curves being fitted contains the constant function, the value of
R™, lies between zero and one. This value will be equal to one if and only if
the curve has fit the data exactly; that is, every single datapoint lies on the
fitted model. This is almost never the case. The R2 value will be zero only if
the fitted model is a constant. Once again, this is usually not the case. Even
if a "true" R2 value is zero, (i.e. the family of predicted equations has no
more predictive ability than a constant), experimental variability will usually
allow some fitting of the data so that the observed R2 will be nonzero. The
multiple correlation coefficient R? is a measure of the success of the least
squares fit -- it is the fraction of the variability in the dependent variable
explained by the fit of the model.

2-6 NONLINEAR STATISTICAL MODELS

Some differences occur in the least-squares method when the unknown
parameters are used linearly in the prediction of y and when they are not used
linearly. A model is called linear if the "true" model is such that the

14
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expected value of y is equal to a linear sum. Each term of the sum may involve

<
[

<
1

<
[

<
[

y

an unknown coefficient times a know function of the independent variable x.
Examples of this are given in eqs. 7 below where the a, are unknown
= ap + ayXx (7a)
=ap +agx + a2x2 + a3x3 (7b)
= a5+ 3, e* (7¢)
= ap sin x + ay cos x + 3, sin 2x + ay cos 2x (7d)
= ag e* + a xe* + ax + as e X + 2, xe X (7e)
X X2 -X -x2
age +a; e taxtaze  +tae (7F)

In contrast when y is not a linear function of the a;, the models are called

nonlinear.

y:

~«<
"

y:

exp (a, + ayx + a, x2) + agx (8a)
a, + sin (a]x) + Cos (azx) (8b)
3 2 ;
ag *ap x "+ oag exp(-a4x ) (8¢c) ’
Note that the mathematical model is linear when it is linear in the unknown
coefficients but not necessarily a linear function of the independent variables

Xis which may be treated as a generalized vector. 3 7

There are some
models. The least squares solution for linear models can be written explicitly.

Except possibly for the numerical analysis problems of inverting a near-singular
matrix, the least squares solution of a linear model may be found easily,

Some examples are given in egs. 8 below.

important differences between linear and nonlinear
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efficiently, and accurately. On the other hand, the nonlinear model is such
that it is more difficult to find a solution. Except for a few very special
cases, the variability is minimized by selectively varying the values of the
parameters to reduce the residual sum of squares. The result leads to a local
minimum; that is, if you move slightly in any direction by changing the
parameter values, the value of the sum of squares becomes larger. This,
however, does not assure that a global minimum over all possible values for the
parameter was determined.

An illustration of a sum of squares for a nonlinear mode! with one
parameter is shown in Fig. 6. A local minimum at 84 is not the overall minimum
which is at 8. If one tries to find a nonlinear least squares solution by
starting at 83, the answer would probably turn out to be e]; whereas if one
starts at 83> the answer would turn out to be 8. In general, there is no known
way to assure finding a true global minimum in nonlinear minimization. Having
some idea of the correct value, however, will usually lead to the global
minimum, In general, nonlinear optimization takes considerably more
computational time and has more numerical analysis problems than do linear least
square solutions.

2-7 THE DIFFERENCE BETWEEN PREDICTIONS USING MODEL FITTING AND THE
DEVELOPMENT OF "TRUE" MODELS FOR A PHYSICAL SITUATION

To fit a mathematical model for purposes of prediction, it is not
assumed that the model fitted is a "true" model with physically significant
parameters. Rather, it is a model descriptive of the overall pattern of the
data. Usually to develop a "true" model, there needs to be some physical
understanding of the problem which gives the appropriate form of the model to be
fitted. However for the purposes of prediction, a good fit to the data is
usually satisfactory.

2-8 GUIDELINES FOR LEAST-SQUARES MODEL FITTING
(1) It 1is dangerous to extrapolate very far beyond the range of

observed data for models fit for prediction purposes. This is not as true of
models developed where it is known that the model is correct and has physical

16
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significance. This is one of the advantages of the dimensional analysis
approach. Since the dimensional analysis is developed by modeling the physics
involved, by using similar experiments there is scientific reason to believe the
prediction will hoid up better than a purely empirical fit.

(2) The more complex the model, the more precarious is the
extrapolation of predictions to other situations.

(3) Increasing the numbers of parameters is increasingly precarious
using nonlinear-least-square models and can result in great numerical
difficulties in finding the appropriate fit.

(4) Although theoretically one more observation than the number of
parameters is needed for the least-square fit, in practice the number of
observations for estimating the model should always be at least five (preferably
a minimum of ten) per parameter used.

womt et
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SECTION 3
DIMENSIONAL ANALYSIS FOR EXPLOSIVE CRATERING

An important aspect of cratering phenomena is the prediction of the
! crater resulting from a given explosive in a given soil or rock medium. Often
direct experimentation is not possible. Alternatives include numerical
simulation (e.g., Knowles and Brode, 1977; Cooper, 1977; Maxwell et al. 1973;
Orphal, 1977; Swift, 1977 and others) or scaling the results of other
experiments or tests. Frequently, results of small laboratory or field tests
are scaled in some manner to predict the results of events many times larger in
magnitude. It is this scaling application that is addressed in this section.

The objective in this section is to examine the exact conditions under
which special scaling rules will hold and how the results depend on both the
number and the choice of independent variables. The difference between using
either the mass or the energy of the explosive is examined. It is shown that
the choice is immaterial, except in those cases when other variables are assumed
to be held constant. Under these conditions it is shown that varying the energy
as opposed to varying the mass are two very different hypotheses, leading to
different results. In the literature, differences in results, interpretations
and uncertainties over the applicability of various scaling rules are many times
due to a failure to distinguish between similar and nonsimilar experiments.
This distinction is discussed and scaling of both types is considered.

3-1 BACKGROUND

Two scaling rules are well known. In the traditional "cube-root"
scaling, all crater linear dimensions are assumed to vary with the cube-root of
either the energy or the mass of the explosive. Consequently, the volume of the
crater is proportional to the total energy or the mass of the explosive.
Likewise, for "quarter-root" scaling, all crater linear dimensions are assumed
to vary with the one-fourth root of the explosive energy or mass. This form is
sometimes referred to as gravity-scaling (e.g., Gault and Wedekind, 1977).
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Which, if either, of these two scaling rules is appropriate has been
the subject of numerous papers dealing with cratering (Chabai, 1965, 1967, 1977;
Crowley, 1970; Gault and Wedekind, 1977; Killian and Germain 1977; Vortman,
1968, 1977; and others). It is commonly thought that cube-root scaling should
hold in a regime where soil material strength dominates the cratering
mechanisms. Conversely, when the stresses in the cratering process are much
larger than material strengths, quarter-root scaling is thought to hold.
Chabai's work (1965) implies that whether the energy or the mass of an explosive
is chosen as the size variable will determine which scaling rule will hold.
Vortman (1968, 1977) does not distinguish between similar and nonsimilar
experiments and consequently faults dimensional-analysis techniques as being
unable to predict the different observed dependences of radius and depth upon
yield for field-test results. White (1971) identified some of the shortcomings
of various approaches to scaling in a summary paper comparing the methods up to
that time.

3-2 FORMULATION

Consider the apparent crater volume V produced by a half-buried (zero
depth of burst) spherical explosive in a geological medium. Non-zero depth of
burst is considered later. The value of V is assumed to depend on the total
explosive energy E, the explosive specific energy Qe’ the mass density of the
explosive &, the mass density of the soil e, the "strength" of the soil Y, and
gravity g. For present purposes, the "strength" Y can be any material property
with the units of pressure. While other variables can be identified which may
influence V, their inclusion is not necessary for the arguments which follow in
this section, as will be discussed later.

Other choices of variables to characterize the explosive can be
interchanged with those in this list. For example, the mass W of the explosive
is related to the total energy E by the specific energy per unit mass of
explosive Qe as follows:

W= E/Qe. (9)

The enerqy density per unit volume Qv is given by
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Q, = Qg (10)

and the radius, r, of the explosive is determined by

(41/3) 3 & = W. (1)

If the stress quantity, Y is taken to be the bulk modulus K, the sonic velocity

is given by VK/ .

In all cases, three independent variables are used to characterize the
explosive. These include a measure of size, which can be one of W, E, or r, a
measure of specific energy Qg Or energy density Q,» and the mass density 8.
(Nondimensional constants, such as the perfect gas constant of the explosive
products, occur in common theories for detonating high explosives. However, the
inclusion or omission of dimensionless constants will not affect any of the
following results. Additional dimensional constants, which may be required for
non-ideal explosives, can change the results as discussed in Section 3-5). Thus
together with the soil properties of strength Y and density © and with gravity
g, any dependent variable, such as volume V, 1is then a function of six
independent variables. These variables involve independent units of mass,
length, and time; hence, following standard methods of dimensional analysis,
they can be reduced to a set of four dimensionless w-groups in a variety of
ways; see, for example, Buckingham (1914), Baker et al. (1973) or Chabai (1977).

One possible combination, based upon using W, Q% and 8§ to characterize
the explosive, leads to a so-called mass set:

"'[ = ng ’ (]23)

e @3, (12v)
e

P AR (12c)

373,

", = %-. (12d)

Another set based upon using E, Qv and § for the independent explosive
properties will be called the energy set:
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(13c¢)

7 % (13d)

Alternatively using E, Qe and 6§ for the explosive gives a third set
which can be referred to as the gravity set:

R ("—E‘l)3/4 : (14a)
3 3

7, - %; @5 (18b)
= Y

"3 - FQ; > (]4(:)
T, (14d)

Any one of these sets can be converted into either of the other two by simply
multiplying products of powers of that set and using eqs. 9 through 11. Other
combinations can also be developed.

For convenience of the reader, all the symbols and definitions are
summarized in Table 1. Also included is notation which will be used in the
analysis to follow.

3-3 SIMILARITY REQUIREMENTS

A given series of experiments are similar in the current context if
they all have the same numerical value for each of T1s Tps T3 and as which
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Table 1.

Symbols and definitions used in the analysis.

b v apparent crater volume
‘ W mass of explosive charge

E energy of explosive charge
r equivalent radius of explosive charge
) mass density of explosive charge
Qe specific energy of explosive charge
Q, energy density of explosive charge
Y “strength" of cratering medium, any material property with

dimensions of pressure
density of cratering medium

gravity field strength

height of burst

exponents introduced in eq. 27

exponents defined in eq. 30

exponents introduced in eq. 39

"mass set"--dimensionless parameters defined in eqs. 12

"energy set"--dimensionless parameters defined in eqs. 13

"gravity set"--dimensionless parameters defined in eqs. 14
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implies that any other set of w-groups will also be constant for the series.
(Note, a more general definition of similarity for cratering experiments given
by Schmidt and Holsapple (1978a, 1980a) does not rest upon any assumptions about
the list of independent variables.) Assuming that V is determined by the six
independent variables given above, then ™ must be determined solely by the
remaining L through Th- Thus, if Ty through Ty each have the same value for
different experiments, ™ will also. From these sets of m-groups, certain
scaling rules for similar experiments are commonly deduced by the following
arguments.

From the mass set, since ﬂ] has the same value for such similar
i experiments,

V=W, (15a)

Likewise, from the energy set, since %] is constant,

And from the gravity set, since ;] is constant,

v et (15¢)

Equations 15a and 15b are called cube-root scaling, while eq. 15¢c is
called quarter-root scaling because linear crater dimensions will then vary with
W or E to those powers. Thus, it can be said that the first two sets of
r-groups "imply" cube-root scaling, whereas the latter set "implies" quarter-
root. From this point of view it appears that different scaling rules are
obtained from different choices of dimensionless groups. This apparent paradox

is, of course, specious and can be resolved by examining the exact conditions




of

under which each scaling rule applies. In each case, the scaling rule holds

P4 o

only for variations of the variables which preserve similarity. This means

g fa b

that each w-group must be held constant for the experiments under consideration.
This is achieved in a different way for each of the above cases as is now shown.

For the mass set, V is proportional to W only if o is constant. In
addition, Ty, T3 and T, must be constant. This gives

p = constant, (16a)
§ = constant, (16b)
1/3

gQW = constant, (16¢)
e

Y .

T constant. (16d)

e

For the energy set, V is proportional to E only if Q, is constant. Also, ;2- ;3
and 54 are constant, requiring

G, = constant, (17a)
o9 EV/3 - constant, (17b)
Y = constant, (17¢)
%—= constant. - (17d)

For the gravity set, V is proportional to the three-fourths power of E only if
pg is constant. This, in addition to constant values of Ez, %3 and 54, gives

pg = constant, (18a)
% = constant, (18b)
S4 q, s1/4 (18¢)
Y .
A = constant. (18d)
Q
e
I
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These three sets of conditions are different and prescribe different
ways to preserve similarity involving changes in gravity, charge type and size,

and medium properties. Since they relate to different ways to preserve
similarity they each give a different dependence of volume on energy or mass.

Suppose similarity between experiments conducted in a fixed soil type
is desired. In this special case, both ¢ and Y are constant for those
experiments, and it is assumed that Y is nonzero. Further restrictions on
experimental conditions can now be written. For the mass set, the similarity
conditions that would produce cube-root scaling are (from eqs. 16a through 16d)

Q. = constant, (19a)
§ = constant, (19b)
QW]/B = constant. (19¢)

Likewise for the energy set, the similarity conditions that would produce
cube-root scaling are (from eqs. 17a through 17d)

Q, = constant, (20a)
§ = constant, (20b)
gE]/3 = constant, (20c)

In contrast, for the gravity set, eqs. 18a through 18d reduce to the following
similarity conditions that would give quarter-root scaling

Qe = constant,
E = constant,

8§ = constant,

!
I
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g = constant, (21d)

Thus, similarity conditions leading to cube-root scaling from either the mass
set or the energy set in a given material are possible and require using the
same explosive, but gravity must be varied. At constant gravity, similarity
conditions leading to cube-root scaling cannot be satisfied by varying size.
From the gravity set, it can be concluded that there are no two different
experiments satisfying the similarity requirements which lead to quarter-root
scaling for experiments using a common explosive in a given material with
nonzero strength (note in particular equation 21b). Hence, quarter-root scaling
among similar experiments could only be realized by varying both the soil
properties and the explosive properties. It should be noted that these
statements do not imply that a choice of the gravity set rules out similar
experiments in their entirety in a fixed material and with a fixed explosive.
Only experiments that must give quarter-root scaling are eliminated and are
impossible (i.e., eq.l4a, :] = constant). Regardless of the choice of m-groups,
similar experiments in a fixed material with a fixed explosive are only possible
if gravity is varied as charge size is varied so that gE]/3 is constant, and the
volume must vary as the cube-root of energy or mass.

In the event that the soil has zero strength Y, other possibilities for
similarity between experiments exist. In this case, restrictions based upon the
material-strength 7-group are not present. Hence, the mass set allows similar
experiments with cube-root scaling of size in a given strengthless material
whenever

§ = constant, (22a)

1/3 ¢ -1 < constant, (22b)

gW e

whereby a fixed explosive is not required. However, for a fixed explosive, g
must be varied.

For the energy set, with a strengthless medium, the results are the
same as for a medium with strength, given above by eqs. 20a-20c.
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For the gravity set, eliminating the strength term gives, for a fixed
medium,

g = constant, (23a)
gl/4 Qe'] = constant, (23b)
& = constant. (23c)

Quarter-root scaling is possible in fixed soil having zero strength, but only
with different explosives,

A11 of these cases are summarized in Table 2. It is seen that the
reason that different scaling rules are generated from different choices of
v-groups is because they require different constraints to achieve similarity.
Quarter-root scaling is only allowed among experiments with explosives having
different specific energy, as specified by eq. 23b. For a series of experiments
with both medium and explosive type fixed, similarity requires variations in
gravity; and cube-root scaling results. This can be proved from any choice of
dimensionless parameters.

3-4 SCALING NONSIMILAR EXPERIMENTS

Scaling based upon experiments that are nonsimilar is determined by the
functional relationship among ®-groups given by

“] = F (“29 "39 ﬂ4)s (243)
Fo=F (R, Ty, 7y (28b)
3= F (R, Fa 7). (24c)

For a given medium and explosive, the last two ¥-groups are constant in each
set, and the first m-group reduces to a function of only the second:

"] = G ("2)9 (256)
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G (75), (25b)

Ty =6 (7)) (25¢)

These functions cannot be deduced from dimensional analysis arguments, but must
be determined by experiments or other means; determination of any one function
will determine the others. Additional assumptions will now be introduced which
lead to scaling rules relating nonsimilar experiments. These assumptions are
that certain variables do not influence the volume V (at least over some given
range).

Consider the above energy set for the general case given by eq. 24b:

vVQ _ 1/3
R F [og E

1 £ q

Y
4/3 s 6;! %] . (26)

v

For some range of interest of the independent variables, assume that the
function F in eq. 26 can be represented by a product of powers having the form

Fo=kF, % E R R Y, (27)

where k is a constant of proportionality. (Whenever the variables are bounded
away from zero, a linear Taylor series approximation of log T as a function of
log Tos log "3 and log L will give this form. Thus this form can always be
assumed locally, except in the case of zero strength, which must be treated
separately. Whether or not such an approximation holds over any large range of
interest is actually immaterial; the restrictions on the exponents to be derived
below are bounds on the slopes of the function on a log-log plot. The
motivation for this power-law form is its common usage for crater scaling
rules.)

Using the definitions of the 7-groups gives
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which can be rearranged giving

Vv« 2 g3(a-1)03-4a+b Y—b (29)
with

a=1-a/3, (30a)

b=8, (30b)

and where the density terms have been omitted, since they do not contribute to
the analysis to follow.

Fundamental constraints on scaling brought about by restrictions on the

exponents follow from assumptions on the sign of the volume variation due to
changes in each independent variable. In particular, it is now assumed that, in
eq. 29, for all other variables held fixed, the volume will not decrease (i.e.,
it will increase or remain constant) as

. the total energy increases,

. gravity decreases,

. the energy density Qv decreases, or
. the strength Y decreases.

These assumptions are supported by experimental evidence and energy
balance arguments. As the energy increases, more energy is available to do
work., Both the gravity and material strength require work to be done during the
excavation. As the energy density decreases, the transmitted stresses are
lower, less energy is lost to internal energy in the cratered medium, and the
overall process efficiency increases. This point has been made by Burton, et
al. (1974). Note that all other variables in eq. 29 are assumed fixed in these
assumptions so that, for example, the assumption that V increases as Ov
decreases is for fixed energy, not fixed mass.
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The four assumptions listed above imply that

a>o (31a)
b>0 (31b)
3(a-1) <0 (31c)
3-4a+b<0. (31d)

Equations 31b and 31d can be combined as

0<b<4a-3 (32a)
from which

a> 3/4 (32b)
which, used with eq. 31c, gives

3/4 <Ca< 1. (33)

Using eq. 9 and 10 in eq. 29, gives

a y-b g3(a-]) Q 3(1-a)+b

Vel e

(34)
Thus the above bounds provide limiting dependences upon both charge mass and on
energy. The case of a = 1 is cube-root scaling, while a = 3/4 gives quarter-
root scaling. Therefore, the above assumptions require that all scaling be
bounded by these two extremes. The exponent b is restricted by eq. 32a and
depends upon the value of a. For the 1limiting case of cube-root scaling, when
a=1,

0<b<. (35)
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This permissible range on b is reduced as the value of a decreases; and for
quarter-root scaling, a = 3/4, b must be zero and there can be no strength
dependence.

Other special cases occur when the exponents take on particular values.
Note that certain combinations of the independent variables can be identified as
stress quantities. For example, the energy density Q, = GQe determines the
Chapman-Jouguet (C-J) pressure of the explosive. Thus, E3 is proportional to
the ratio of the medium strength to the C-J pressure. Likewise 52 (using eqs.
9 and 10) is

1/3 1/3

2 = S = (%) F (36)

v

which is proportional to the ratio of the lithostatic pressure at the charge
base to the explosive C-J pressure.

If the lithostatic pressure is very much smaller than either the soil
strength Y or the C-J pressure, perhaps ?] is independent of iz and the soil
strength dominates crater formation mechanics. (Holsapple and Schmidt (1979)
and Holsapple (1979a) have observed such a regime for cohesive materials. The
material strength Y used here can be taken to be the cohesion ¢ in those
papers.) If %1 is assumed to be independent of ;2 and hence independent of
gravity, the exponent a must be equal to one (@ = 0); cube-root scaling will
then hold, and the volume V is given by

v« gy7P gb! (37)

Assume alternatively that the soil strength Y can be neglected. Then
b =8 =10 and the exponent a is only restricted by eq. 33, allowing any scaling
between cube-root and quarter-root. If in addition, it 1is assumed that the
volume is independent of the energy density Q> the exponent of Qv in eq. 29
must be zero. This along with b = 0 gives a = 3/4, resulting in quarter-root
scaling.
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Nther combinations of dependence or independence of the variables under
consideration exist and lead to different results. A summary of these results is
. given in Table 3 for each of the three choices of mw-group sets given above.
- These were derived under the assumption that the functional dependences
indicated in eqs. 24a through 24c could be represented locally by a product of
! powers of the pertinent m-groups, as was done for the energy set in eq. 27.
(It might be noted that for dry sand such a power law dependence of 7; on the =,
variable has been shown to be valid both for explosive and for impact cratering
over a total range of eighteen orders of magnitude in scaled enerqy by Schmidt
2 and Holsapple, (1978a, 1978b, 1980a), Schmidt et al. (1979), Schmidt (1980) and
by Gault and Wedekind (1977). For other materials such a power law may hold
E only locally as shown by Holsapple (1979a) and Holsapple and Schmidt (1979).

-~ PR

The volume dependence (or independence) is then considered for g, Y and
; either Q, or Q . Restrictions on the exponents given are based on the same
f assumptions given above fnllowing eq. 30. Namely, that for all other variables

} held fixed, the volume V must not decrease as g or Y decrease or as E or W
increase. Also for fixed energy (E = Qew) and all other variables held fixed,
the volume must not decreacse as Q. (or Q) decreases. In all these cases, five

independent variables are held fixed, including ¢ and §.

P; The assumption that the volume is independent of Qe at fixed W,
included in cases 1.3, 1.4, and 1.5 (Table 3) leads to the further requirement
that the volume is independent of the total charge energy at fixed charge mass.
This is contrary to experimental evidence (Schmidt and Holsapple, 1978a, 1980a).
3 Nevertheless, these cases are included, since they relate to conditions
implicitly assumed by Chabai (1965) and others using mass scaling. If Qe is
omitted from the initial set of variables, a dependence on W alone is not a
meaningful assumption, as discussed by Divoky (1966).

The results presented in Table 3 can be shown graphically as a region
of permissible values for the various exponents governing the functional
dependences. Consider case number 3.0 of Table 3, shown in Fig. 7 as the
specific-energy exponent versus the energy exponent. All permissible pairs of
these exponents are contained within the bounds shown. Figure 8 1is a
E, permutation of the same information, with the material-strength exponent shown
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Table 3. Summary of scaling laws relating nonsimilar cratering experiments.
Crater
N(:nse Crater Volume V Volume ¥ Resulting Scaling Rule Restrictions Remarks Concerning Crater
umber Depends on These Assumed for Crater Volume V, on Volume Dependence Upom
3::::;::: lndep:ndent LT Exponents Charge Energy (or Mass)
0
1.0 None whybgdla-1)g 3(1-a)+b Jacacl bounded by quarter-root sad cube-root
e D<b<4a-d {quarter-root implies b=0)
3(a- -
1.1 W. Quv 8,0, Y, 9 \ wW’g (a ”023“ +) 34<acl } bounded by quarter-roct and cube-root
bag
1.2 (referred to as [} HlY'erb as=1 results in cube-root scaling
0cbel
1
1.3 the mass set q,* [} ’OYD ael, b=0 results 1n cube-root scaling®
1.4 where [ = NQQ) Y. 000 ngo a=1, b=D results in cube-root scaling®
1.5 9. 0° wiy® a=1, b=0 results in cube-root scaling®
1.6 9, Y Hloeo a*l, b=0 results fn cube-root scaling
2.0 None E'Y'bga("‘)o 3-4a+b 3/4cacl } bounded by quarter-root and cube-root
v 0<b<4a-3 {quarter-root implies b=0)
2.1 E. Ov‘ 5,0, Y, 8 Y E'ga("l)()':"‘n 4 <cac 1} bounded by quarter-root and cube-root
b=0
2.2 (referred to as 9 [lv-bovb'l arx] results in cube-root scaling
D<bel
2.3 the energy set) Q, gig3(a-1)y3-4e Yd<ast } bounded by quarter-root and cube-root
b=4a-3
2.4 Y. Q, [3“9'3“ 8=3/4, b0 results in quarter-root scaling
2.5 9. Q, gl as1, b=l resylts fn cube-root scaling
2.6 g, ¥ (10"1 a=1, b=0 results fn cube-root scaling
3.0 None El'-bgl(l-l)o 3-4a+b 4cacl } bounded by quarter-root and cube-root
e 0<b< 4a-3 {quarter-root imp)tes beD)
3.1 £, 0!. &, 0, Y, g Y E'g](°'1)0e3'4° J4cac l} bounded by quarter-root and cube-root
b=0
3.2 (referred to as 9 Elv'boeb‘l a =1 results in cube-root scaling
0<bel
3.3 the gravity set) Qe an3(a-l)v3~4a J4cac l} bounded by quarter-root and cube-root
b=4s-3
3.4 Y, Q! [3“9'3/‘ 2=3/4, b=0 resylts {n quarter-root scaling
3.5 3. Q, ghy! a=1, bel results tn cube-root scaling
3.6 9, Y 510"1 a=1, b=0 results in cube-root scaling

*Included for completeness only, 8s {1t is physically unreasonable and {nconsistent with observations (see text and Figure 9).
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Fig. 7
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ENERGY SCALING EXPONENT ~ @

Admissible bounds on scaling exponents shown on plot of the energy
exponent @ versus the specific energy exponent at fixed energy. As
can be seen, quarter-root scaling, d = 3/4, is only permissible
under the condition of no specific energy dependence, 3-4@ +b= 0.
Note different horizontal and vertical scales.
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Fig. 8  Admissible bounds on scaling exponents shown on plot of the
energy exponent @ versus the material strength exponent h. Note
different horizontal and vertical scales,.
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as the ordinate. These fiqures clearly show that quarter-root scaling requires
independence from both strength and specific-enerqy effects.

Figure 9 shows another example correspondic~ to case number 1.0 of
Table 3, where the mass of the explosive is the independent variable for charge
size. This illustrates the impossibility of having no dependence upon specific
energy for fixed explosive mass, unless there is also no dgravity and no strength

dependence. As mentioned above, it is important to recognize the distinction
between this assumption and the assumption of no dependence on energy density
for fixed explosive energy. These two conditions give two entirely distinct
lines in Fig. 9.

The following statements are based on the results summarized in Table 3
and in Figs. 7 through 9. Although the apparent crater volume was used as a
representative crater-dependent variable, these results also apply to crater
radius, crater depth, true crater volume, and any other size variable of
interest that is assumed to be restricted by the given assumptions following eq.
30 Tisted above. These conclusions apply to the scaling of all nonsimilar
experiments.

1) Cratering dependence on energy is bounded by cube-root and
quarter-root scaling rules for fixed explosive type in a given
medium,

2)  The additional assumption of no gravity dependence gives cube-root
scaling. Subsequent dependences on Y and Qe (or Qv) are related
as shown in cases 1.2, 2.2, and 3.2 of Table 3.

3) No dependence on strength Y does not imply quarter-root scaling.
A further requirement of no dependence on Qq Or Qv at fixed energy
is necessary for quarter-root scaling to hold as shown by eq. 29.

4) The assumption of no dependence on Qp» when using the mass W as a
measure of explosive size, is entirely different from assuming no
dependence of Qe when using the energy E as the explosive-size

measure. Furthermore, the former case is contrary to any known
experimental observations.
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5) In every case, the assumption of no dependence on any two of the

variables Y, g and either Qe or QV produces a specific
relationship between the energy dependence and the remaining
variable.

Certain converse statements can also be made as follows:

6) If cube-root scaling holds, then the volume V is independent of
gravity g.

7) If quarter-root scaling holds, then the volume is independent of
not only the strength Y but also of the specific energy Qe and of
the energy density Qv at fixed energy. No dependence on the
strength is expected for certain size regimes; however, no
dependence on the specific energy is less certain.

This last statement may explain why quarter-root scaling is not observed in
practice. As identified in the foregoing discussion, three stress quantities
are included in the variables: the explosive C-J pressure, the lithostatic
pressure, and the strength of the medium. Even when the strength of the medium
can be ignored, the ratio of the other two can affect the results and the
scaling need not be quarter-root.

3-5 SCALING GENERALIZATIONS

Some of the differences between the results given here and those of
other authors are due to the choice and the number of independent variables on
which the crater characteristics are assumed to depend. For this reason, it is
important to determine exactly how restrictive the choice is, and if the
inclusion of additional variables would change the results.

The final crater formed by a given explosive is assumed to be
determined by the geometry and the initial conditions of the problem and by the
constitutive equations that describe the behavior of each of the three media:
the explosive, the cratering medium, and the overlying air. For a half-buried
spherical charge in an infinite half-space of soil, the only geometric parameter
is the charge radius, which is dimplicitly included in the above 1list of
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variables. For buried or suspended charges one must include the depth or height
of burst dimension. The initial conditions include the initial densities and
pressures in the various media. Therefore, the atmospheric pressure and the
density of the air could be added to the 1list of independent variables.
Remaining variables would be those related to constitutive properties of each of
the three media. Many can be suggested, depending on the complexity of the
equations that fully describe the actual media behavior.

As a first generalization then, a more general constitutive description

of the cratering medium 1is considered. The crater excavation problem is
basically mechanical in nature. A very general mechanical constitutive equation
is one that relates the stress tensor at each point in the material, at a given
time, to the entire history of the deformation in some neighborhood of that
point. Within this context, the description of a material can depend on, at
most, the three independent dimensions of stress, time, and length. A subclass

of such materials called "simple materials” by Truesdell and Noll (1965), has
the stress at a point determined by the entire past history of the strain at
that point. These materials have no inherent length dimensions, but do have, at
most, units of stress and time, Dimensions of time can be eliminated in the
case of rate-independent behavior. This reduction still includes all types of
nonlinear elastic, rate-independent plasticity, fracture, porosity, and many
other diverse and complicated behaviors. For this group, all material constants
will be either dimensionless or have units of stress. Other than the
dimensionless m-groups given above, the only additional m-groups resulting from
these constitutive equations would be ratios of each of those with stress units
to the primary quantity Y and any dimensionless constants for the material as
n-groups themselves.

For example, suppose a bulk modulus K of the medium was included.
Then, in addition to the previous T-group, a new group

_K
T|'5 ——Y- (38)
would occur. Additional material constants with dimensions of pressure, call

them Yy, Y,,... would add additional such groups. Then eq. 28 would include
powers of these m-groups, so that eq. (29) would become
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v « 2 g3(a-1) Q3-4a+b Y-(b+c+d+...) KC Y? (39)
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in terms of the original constants a and b and new powers c, d, etc.

Now, for a fixed medium, it is aqain plausible to assume that the
volume will not decrease as

. E increases at fixed g and Q,
. g decreases at fixed E and Qv

. QV decreases at fixed E and g.

Therefore, from eq. 39

a>o0 (40a)

3(a-1) < 0 (40b)

3-4a+b < 0 (40c)
which gives

T+ Rcaq (40d)

Hence, the scaling rule is bounded above by cube-root scaling, but cannot be

proven to be bounded below by quarter-root scaling without further assumptions
on the coefficient b.

Consider the special case with only the one additional variable, the
bulk modulus K. It may be plausible to assume that, among various cratering
materials, the volume will not decrease as

. The strength Y decreases at fixed K
or . The bulk modulus K decreases at fixed Y.

The former assumption is identical to that made earlier. The second
has been suggested by Chabai (1977). 1In this case,
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so that

and thus eq. 40d gives

<axi, (414)

and quarter-root again becomes the lower bound. Conversely, it is true that
there can be no dependence on either medium strength property Y or K, yet
quarter-root scaling need not hold. If quarter-root scaling does hold, then egq.
40d and eq. 41c are compatible only if b = 0, eqs. 4la and 41b then give ¢ = 0,
and the volume must be independent of both material properties Y and K, as well
as the explosive energy density Qv'

If the additional parameters Yi» Yps ... etc., are included, an

assumption that the volume would not decrease as any one of them decreased, for
all others fixed, would be sufficient to give the same result (41d). Whether
this assumption was plausible would depend on the specific case.

A1l of the above results depend strongly on the assumption that the
materials in question can be regarded as both rate- and scale-independent. In
materials such as rock, there is evidence that the characteristic strength
measures decrease as the size of the explosive increases and the resulting
crater also increases. This is attributed to the increased influence of fault
planes and crack nucleation sites as the size scale increases. As noted by
Chabai (1977) both this size effect and also rate effects can give scaling that
is in excess of cube-root (a > 1). This probably explains the results of

Vortman (1977) where the exponent a is in excess of 1.0. However, it is not

expected that this trend would continue to ever-increasing sizes; see Schmidt
(1980).
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Additional variables that define the initial state of the overlying air
may include the atmospheric pressure Po' Indeed, there is evidence that for

buried bursts, increased P0 gives decreased volume for all other variables held
fixed, although this effect is not observed at zero depth of burst (Herr, 1970).
Recent experiments on impact cratering show results analagous to those for
buried explosives (Holsapple, 1979b). The atmospheric pressure has, of course,
pressure dimensions and therefore would occur in the theory exactly as one of
the material constants just considered for the soil. Furthermore, if the sign
of the variation of the volume is assumed to be the same for pressure P, as that
just considered for both Y and K of the soil, there is no need to repeat the
analysis, eq. 41d again holds. (In contrast, for above ground bursts, recent
data of the authors (Schmidt and Holsapple, 1980b) implies decreased volume for
decreased pressure Po. This is attributed to the decreased coupling of the
energy to the ground in this case.)

The last important variable to be considered is the depth or height of
the explosive for nonsurface-burst conditions. The additional w-group can be
taken to be

_h o 8,173

where h is the distance from the ground surface to the charge center,

Inclusion of this variable will not affect any of the above arguments.
It 1is only necessary that it be constant throughout. Consequently, all
restrictions on scaling rules that have been derived at least insofar as the
stated assumptions are valid, hold for any fixed value of h/r.

3-6 DISCUSSION OF SCALING RESULTS

A discussion of the relation of these results to those of some previous
references is appropriate. In a paper dealing with scaling of crater
dimensions, Chabai (1965) omits the specific energy Qg from his Tlist of
independent variables. He then concludes: “When gravity field strength is
considered significant and 1is included in the dimensional analysis, crater

dimensions are scaled by cube-root rules with mass-gravity scaling and by




fourth-root rules with energy-gravity scaling.” The implication that the choice
of w-groups can lead to different resuts is a consequence of omitting the
specific energy Qe and by a failure to distinguish between the scaling of
similar and nonsimilar experiments. Divoky (1966) correctly noted the effect of

the omission of Qe. Chabai (1965) also considered scaling for nonsimilar

experiments, without explicitly noting that such an extension requires an
assumption of independence of certain m-groups.

In a later paper, Chabai (1977) includes the specific energy Qe in an
ancillary vm-group. He recognized the requirement that specific energy must be
varied to preserve similarity; however, he states: “From dimensional analysis
we obtain cube-root scaling rules or quarter-root scaling rules depending on
whether or not gravity is considered unimportant or important in cratering.”
The present analysis gives results that agree with only the first part of this
statement, regarding cube-root scaling. It is not true that dependence on
gravity alone requires quarter-root scaling for nonsimilar experiments.
Furthermore, his results based upon similarity need not apply to nonsimilar
experiments.

Usually, the scaling application of interest is not among similar
experiments but, rather, among nonsimilar experiments. As demonstrated above
with the choice of the mass, the energy, or the gravity set, similar
experiments, using the same explosive type in a given soil, always scale as the
cube root; but require variations of gravity. Scaling among such similar
experiments is moot in that it only verifies that the controlling variables have
been included in the analysis. Other scaling laws, e.g. quarter-root as shown
above for the gravity set, can be achieved for similar experiments in the same
soil only by varying the explosive and holding gravity constant and then only
for strengthless materials. In any case, the results depend only on which other
variables are held constant and not on the choice of 7-groups.

Lastly, Chabai's statement (1965) that material properties must be
scaled in order to preserve similarity is only true for constant gravity or for
media which are dominantly strain-rate dependent or have inherent size
properties.




The confusion surrounding the application of rules based upon
similarity to nonsimilar experiments can perhaps be traced to misinterpretation
of Sedov N\959), who was one of the first to recognize that gravity must be
included in the analysis. His hypothesis was based upon using an incomplete set
of variables: dep*n of biiial h, soil density P1s charge energy E and gravity
g. This leads to a single n-group,

. _E i
"eEDov ;_-;;I = constant, (43)
] by

and is equivalent to saying that all cratering experiments are similar.

Equation 43 appears to be the origin of the concept of quarter-root
scaling, even though Sedov did recognize that his hypothesis was only an
approximation which ignored "the effects of atmospheric pressure as well as the
effect of internal elastic forces in identical materials." He did not, however,
jdentify a dependence on QV or Qe and his results are subsequently represented
by cases 2.3 and 3.3 in Table 3. (Sedov's first Russian edition appeared in
1943, the third Russian edition in 1954 and the fourth Russion edition in 1956.
Haskell (1955) appears to have independently identified the role of gravity in
cratering and proposed a gravity modeling law which was simply (Ll/LZ) =
4y /) 4.)

In summary, similar experiments serve to verify understanding of the
phenomenon. This inciudes the confirmation of a complete and consistent set of
independent variables. In addition, similar experiments can be used to simulate
other events. For example, by the use of a centrifuge small amounts of
explosive can be used to simulate very large field events, as indicated by eq.
19c. However, it must be stressed that scaling rules based upon similarity need
not apply to nonsimilar experiments, which is often assumed in the literature.
Rather, as discussed, a set of nonsimilar experiments, such as the Nevada Test
Site (NTS) series, will result in specific scaling rules based upon soil
properties, explosive properties, and geometry of burst., The form of these
scaling rules (e.g., the yield dependence) is determined by the analysis used to
derive the relationships in Table 3.
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SECTION 4
APPLICATION OF STATISTICAL-DIMENSINNAL ANALYSIS TO CRATER DATA

4-1 STATISTICAL MODEL DEVELOPMENT

In the previous section, various dimensionless groups and their

restrictions on functional dependences were derived based upon plausible
physical assumptions consistent with the experimental observation. The choice
of which dimensionless groups are used in a particular application is theoret-
ically arbitrary. The choice is ultimately based upon their utility and
simplicity for explaining the data. A useful check on the dimensional analysis
is to generate pi-groups based upon a statistical analysis of the original
variables. A linear form consisting of a product of powers can be fitted to an
n-dimensional array of n variables. The resulting powers can then be checked
against the requirements of dimensional homogeneity providing a check that all
variables have been included.

In recent laboratory scale experimental programs using a centrifuge, it
was found that the mass set (egs. 12a through 12d) provided a very good
correlation for explosive crater formation at zero depth of burial.

To compare different soil types, the assumption of a Mohr-Coulomb
strength theory was used to define the soil failure envelope for various stress
states (Schmidt and Holsapple, 1979). The shear strengths at failure consist of
two parts: a constant cohesion ¢ and a contribution due to confining pressure p
and the angle of internal friction ¢.

S=c+ptand (44)

Therefore, the generic strength Y, used to define 3 in eq. 12c, is now inter-
preted to be the cohesion ¢

C

n3 = 3‘0—' (45)

e

The dimensionless quantity ¢ can be conveniently included as an independent

r-qroup

b o
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e = tan ¢ (46) i
)
- For cratering at depth of burial d, an additional group is necessary ;
1
! "6 = d (D/w)]/?’ (47)

The complete set of m-groups to be used to statistically correlate the
various data are given as follows:

e vt o et ™ g, g ¥

= — (48a) ]-

1 W S

1/3 i1

PR ) (48b) H

e §i

!

c s

1!3 = m_. (48C) ;

4

"y = 00 (484) ']

r E

TI'S = tan¢ (488) l
_ P\1/3

The ultimate goal is then to determine the dependence of the response variable

Do e A

"] as a function of the five independent variables
Ty H (Mo, Mo T e ) (49)

In principle, if there were in existence a multitude of cratering data

for a common range of all the variables ", through ", a regression analysis on
all five independent variables could be made. In the absence of such a
multitude of data, restricted functional dependences based upon physical ideas
or the limited experimental data are examined.
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Consider, in particular, the special case of cratering at zero depth of
burial (d.o.b.), "6 = 0. For each combination of explosive type and soil

w—

medium, "3, "4 and “6 are fixed. Thus, for each such combination there should
be a single curve of "] versus "2.

! Figure 10 shows a series of such results, with each symbol type
' representing a fixed soil-explosive combination. There are a total of 91 points
on the curve, including both laboratory and field shots. All explosives used in :
these shots were some type of chemical high explosive.

While each set of points for a given soil-explosive combination defines

a particular trend, the entirety of points shows a very large spread. This
indicates a need to account for a dependence on each of “3, "4 and "6.

Now it seems plausible that the ratio of the stress magnitude generated
by the explosive to the strength of the material is an important physical
parameter. The stress or pressure due to the explosive at any point in the
media is determined by the Chapman-Jouget (C-J) pressure PCJ which 1is a

characteristic of the explosive used. In terms of the properties defined
previously, this C~J pressure is given by

Pey = 2(v-1)sq, (50)

where Y is the perfect gas constant of the explosive products and has about the
same value for all common explosives. Thus,

Peo = 80

and the ratio of strength S to PFJ is given by

S _c+ptand _ VE%“) + (E%_)(tan ¢) (52)
e e
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At this point, a measure of the confining pressure p is needed. It is
commonly thought that the predominant cratering motions and material failures
occur after the passage of the strong shock wave. The residual confining
pressure is then the lithostatic pressure which at any depth h is equal to egh.
Using this measure of confining pressure in eq. 52 gives

Y C egh
57— (%) + (z£) (tane) (53)
PCJ éQe <SQe

The three terms in parentheses can each be written in terms of the previously
defined w-groups (eqs. 48). The first is exactly T3 and the last is exactly
T - The other can be rewritten using ea. 11 as

1/3
gg?@%u%n%ﬁ—g) " (3 @ &), (54)
Now it is necessary to pick a characteristic dimension h, compared to
the charge radius r. Clearly, an average or characteristic value for h should
be a value between the charge radius r and the final crater depth d, which is
typically on the order of a few times r. Consequently, for all experiments
considered, the product of terms in square brackets in eq. 54 is on the order of
unity and is henceforth dropped as inconsequential. With this simplification,

S
T)_zn + 7w (55)

This combination of w-groups is useful in correlating cratering in
materials with differing strengths. In this form, the gravity-size parameter
"2 occurs because of the dependence of strength on confining pressure propor-
tional to size and gravity. In addition, the gravity-size parameter is
important in its own right as a measure of the work done against gravity in

excavating the crater. For a cohesionless material ("3 = 0), only this latter

dependence should remain. A new parameter formed in the simplest way as a
linear sum
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will reduce to a constant times "2 when there 1is no cohesion. Data and

auxiliary arguments indicate that for typical granular materials such as dry
sand with tan ¢ on the order of 0.5 to 0.7, the term k should be smaller in
comparison. A value of 0.1 has been found to work as well as any other for the
present purposes. Consequently, a strength-gravity-size parameter is defined

ﬁz =TT, (“6 + 0.1) (57)

which will prove to be useful in correlating a range of data for various
strength materials.

A plot of "] versus ﬁz is shown in Fig. 11. All of the data points now
fall near a single curve, which is a straight line on this log-log plot. The
combined strength-gravity-size parameter has worked exceptionally well as a
parameter to correlate the large differences between various strength materials.
The implications of the use of this ﬁz parameter are given elsewhere (Schmidt
and Holsapple, 1979) and will not be duplicated here.

The Mohr-Coulomb-failure envelopes were constructed from static
triaxial test data. Values for cohesion and angle of internal friction are
based directly upon this measured data where available. Some of the data shown
in Figs. 10 and 11 are from the 1-G laboratory-scale experiments performed by
Piekutowski (1974, 1975, 1978). These shots were all in dry sand at various
densities. For these, no direct measurements of soil-strength properties for
the various densities were made. It is apparent that those at lower bulk
density have 1less angle of internal friction. The approach taken was to
determine what variation of ¢ with o would best correlate the shots, using the
theory given above, to see if the results were reasonable. Fig. 12 shows the

final choice of ¢ versus o for these dry-sand events. The results seem
plausible.
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Once all of the zero-d.o.b. shots were correlated with the effects of

LI

varying media and explosive properties, it was possible to consider the
extension to all values of the d.o.b. w-group LA For the zero e shots, the
final correlation was fit by the curve

m né’ = constant (58)

where the best choice for a is about 0.47. The parameter iz incorporates all
effects of m,, 73, m, mg, and 7y, at least for the zero d.o.b. shots (mg = 0).

If on the plot of m versus ¥,, the events with various 7 are plotted
while there is increasing scatter, the various ms lines are essentially parallel
to the Te = 0 line on the log-log paper. Consequently, the correction for
non-zero m, is assumed to be independent of 1'72, and a total functional form is
given by

T T, = C(1r6) (59)

This indicates the usefulness of a plot of LA ié’ versus T for all available
shots.

Such a curve is shown in Fig. 13. It is seen that all 226 points, most
of which overlay to the extent that they cannot be distinguished from one
another, fall very close to the curve shown. Only at large d.o.b. is there much
scatter. This is scatter from field shots in desert alluvium that were
presumably reproducibility tests for identical shot configurations. No
significantly better fit to the results of these 226 points can be found using
this model. (Note that Fig. 11 is a cross plot of this curve at Te = 0.)

To characterize the behavior near zero d.o.b., a range of s from -2.0
to +2.0 is shown separately on an expanded scale in Fig. 14,

Alternative results using the same 226 points which should be compared
with Fig. 14 are given in Figs., 15 and 16. Figure 15 is a plot of ™ Versus mg
and therefore has no correction for size, strength or gravity. These
correlation parameters are essentially those used by Dillon (1971) and others
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with 1ittle success. Figure 16 has the size correction, and is thus a plot of
m nz“ versus e but there is no strength correction. These two figures
demonstrate that there is significant reduction of scatter by incorporating the
strength-qravity- size parameter discussed above.

4-2 DETAILS OF STATISTICAL-DIMENSIONAL ANALYSIS
The above arguments indicate that a reasonable functional form for a
model to statistically correlate the data is

m Fy =0 (g, 1?26 ) (60)

Furthermore, trial and error showed that the data are well modeled by taking the
Tog of the left-hand side to be a polynomial in the parameter ﬂeize as

n -
Tog (m ®,%) = 3 a; (g 7,8)" (61)
i=0

The fit shown in Fig. 13 was based on a 4th order polynomial that reduced to a
lower order polynomial as shown. Higher orders up to 9th order were considered
but discarded at this stage for simplicity since they consistently provided no
additional terms. This will be discussed below. Equation 61 may be rewritten
as.

n
log ™ :-a 109 Lo :E: a, ('n6 528)1 (62)
i=0

Note that the equation is linear in a and ai and nonlinear in 8. An alternative
was to try a nonlinear fit using these seven coefficients. However, a nonlinear

optimization rarely works well with that many parameters. For this reason an
iterative procedure was used. First, a nonlinear fit was used for the power
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coefficients a and B to obtain a value which minimizes the sum of squares. A
linear reqression was then run on the 3. After finding the a; which further
decrease the sum of squares, the nonlinear optimization for the a and the 8 was
rerun, Since at each step this will decrease the sum of squares and since the
sum of squares 1is non-negative, after a finite number of tries one must be
within a reasonable distance of a local minimum. This was non-productive, how-
ever, due to a paucity of depth-of-burial data at large ﬁz. Consequently, 8
was set to zero since it proved to be a totally insensitive parameter for this
limited data set. This may not be the general case and should optimum
excavation again be of interest, more data should be collected. This could be
done inexpensively by using a centrifuge.

The model was simplified as much as possible using what is called a
stepwise-multiple-regression program. First it was assumed that the
fourth-order polynomial has only a constant term. At each step an additional
coefficient was added if the coefficient was statistically significant when
added to the prediction equation. When no more terms can an be added, the
program terminates. In practice it gave a simpler model than the whole
ninth-order polynomial, usually a cubic.

This program is illustrated by the following discussion on the output
from the linear and nonlinear programs used for this study. The discussion will
proceed referencing the specific printed computer output (Appendix A) which is
annotated with large capital letters near the right margin. These letters
correspond to the following paragraphs so labeled.

A. This is the start of the computer run. There are a total of 226
observations, and the total number of variables is 5 of which the 5th variable
is the dependent or response variable; that is, the variable to be predicted.
Variable 6 would consist of a dummy code always taking the value 1 which would
be the constant term. The constant term is always in the regression. At each
Step a new variable will be allowed to enter the regression only if the added
amount of prediction is ctatistically significant at the 0.05 level. If after a
certain number of variables are added to the predictive equation and a variable
already in the regression turns out to be no longer statistically significant at
the 0.15 level, that variable will be dropped from the equation. That is, the
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variable dropped has a significant level less than 0.15 for adding to the
regression equation.

B. The output then gives the means, standard deviations and the matrix
of correlation coefficients between variables. Recall that the square of the
correlation coefficient hetween two variables tells how much of the variability
in one variable can be explained linearly with the .other variable. The
correlation coefficient has a plus sign if the variables increase together or a
minus sign if they tend to go in the opposite direction.

C. The only variable added here is the variable 6, or the constant
term. Thus, there is no prediction beyond prediction with a constant. Note
that in this case the R2 value or the square of the multiple correlation
coefficient is zero. The prediction is as good as it can be using a constant.
At each step the variables in the equation will be printed out along with the
value of the coefficient a;. Note in this case, predicting only with a
constant, the coefficient is -0.693. This, of course, is the mean of the

response variable, as can be checked above the mean of variable 5 is -0.6935.

D. At this point p.rtial-correlation coefficients are computed for the
variables not in this equation. The following describes the meaning of the
partial correlation coefficient. At each step in the stepwise regression, some
variables, even if only the constant term, will already have been added. A
partial correlation 1is the correlation between the dependent or response
variable and the variable noted after the effect of the other variables in the
prediction has already been taken out. To compute a partial correlation one
subtracts the best prediction for both the dependent variable and the variable
considered in terms of the varjables already in the predictive equation. For
example, variable 3 has a partial correlation with the dependent variable
-0.163. In other words, after subtracting out the best prediction for the
dependent variable and variable 3 in terms of a constant predictor, (i.e., their
means) the amount of variability left in the dependent variable that can be
explained by variable 3 is a square of this number. The minus sign shows us that

the dependent variable tends to decrease as variable 3 increases.
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E. At each step, the variable that adds the most to the prediction
(provided it is statistically significant) is chosen to enter the eguation. In
this case, that variable 1is variable 1. Note, comparing C and E that the
standard deviaton of the residuals (that is, the square root of the sum of
squares of the residuals divided by N minus the number of predictors being used)

has decreased. In addition, the fraction of variability explained has increased
from 0.00 to 0.08.

Following the "multiple-correlation coefficient squared" is a table
called an analysis of variance (ANOVA) table. The total sum of squares is the
sum of the squares of the observed, dependent variable minus the mean. Each
stage can be broken up into two sum-of-squares groups: the sum of squares of
residuals, discussed earlier, and the rest of the sum of squares which is the
part explained by the regression equation. If the errors are normally
distributed, these sums of squares may be used to calculate a statistic which
has a distribution called an F distribution. To get the F distribution, each
sum of squares is divided by its degrees of freedom, or DF. This is a term
indicating how many dimensions of the data pcints, or how many data points,
effectively contribute to the variability expressed in the sum of squares.
Dividing the sum of squares by the degrees of freedom gives a mean square. The
ratio of the two mean squares is the F statistic. The first number of the
degrees of freedom is the numerator degrees-of-freedom and the second number the
denominator deqrees-of-freedom. The statistical significance of the overall
prediction can be found in the F distribution tables. Following this, we once
again have the coefficients S using the fit with a constant variable and

variable 1. To the right of that are the standard errors of the estimated
coefficients.

F. Proceeding to the next Tline, a new set of partial correlation
coefficients 1is given. Note the great change in going from D to F. The
correlation of variable 2 that was quite small before (in the range of -0.34) is
now quite large. This occurs because variable 1 contained most of the
predictive information compared to the remaining variables. Once variable | is
in the equation, the remaining variables are about equally effective in
explaining the remaining variability in the dependent variable.




G. The program proceeds step by step increasing the value of multiple-
correlation coefficient squared. Nccasionally, when a variable is added, a
partial correl=cion coefficient increases because the variables left may not
have predicted as well before, but, when added to the predictive ability of the
variable just included, they help predict more of the remaining variability.

H. This 1is the last step, which added variable 3. The
partial-correlation coefficients printed below G indicate there are no values
large enough to be statistically significant. At this point, the program again
writes out the coefficients and the dispersion matrix of the coefficients. The
dispersion matrix gives the estimated variances and covariances for the errors
in the coefficients. This gives some idea of the precision with which the
coefficients are estimated. It also helps to establish confidence intervals for
various quantities estimated in terms of the parameters a; .

[. Finally the success of the prediction can be examined, as weill as
some idea of the appropriateness of the normal model, by looking at the observed
and predicted values and their residual values, which, of course, are the
difference between the two. The residuals will be approximately normally
distributed if the model is correct. The far right-hand column gives the
standardized residuals, which are the residuals divided by their standard
deviation. Values greater than 2.0 or, at most, 3.0 in absolute value will not
tend to occur if the sample is normal. Such values indicate that the data has
outliers which should be examined.

J. This is an example of the output using the nonlinear-least-squares
program used in this study. The program proceeds iteratively to try to find a
minimum for the residual sum of squares. As can be seen from the two lines
designated "residual sum of squares," the estimated residual sum of squares has
decreased a little. The values for a and 8 have gone from starting points of
0.5 and 0.167 to 0.499 and 0.1667. The sum of squares changes very little
because of the accuracy of the initial starting point.
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4-3 ESTIMATING FUNCTIONS FROM THE ESTIMATED MODEL INCLUDING A MEASURE OF
THE ACCURACY OF PREDICTION

Suppose that we wish to compute some function of our parameter values,
called 9] up to ep at a datapoint x. Let the function be called y as in eq. 63.

- £(8. ® 9
y = f( 10 Tprtees Tpo X) (63)
We would like to estimate the value at the true parameter value. Let these be
e; through ep Yle want to estimate Yo a5 given in eq. 64.
6> 6° 0° A
yo‘f( 1° 20 p’ _X_) (6)

The estimated parameter values, 91 through 9p, will not be the true values, but,
for a large sample size, they will be close. We may expand the function f about
the true parameter values in a Taylor series, taking the first order terms.
Thic leads to the approximate equality of eq. 65 below.

p
Y- ¥, (- %) oF (65)

If we square both sides of this equation and take the expected value we are led
to eq. 66. Since the method of maximum likelihood in this case gives estimates
whose expected value is the true value asymptotically, eqg. 67 follows.

p p
2 3f 3f ° °
EL(y - 7)1 = 20 20 o a E0(05- %) (0= 0] (66)
i=1 j=t ' Y
p
I 3
Std. Dev. y = :E: f Covariance (9., ®.) (67)
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Thus, we see that we may get some idea of the variability in the estimate y from
knowing the partial derivatives of the function we are estimating and the
covariance of the parameters estimated.

This may be usefuily employed to estimate the variability of various
predicted quantities.




SECTION 5
RESULTS

From dimensional analysis alone, limits were derived on functional
dependences for crater scaling laws. The general results shown in Table 3 are
arplicable to the assumptions put forth in Section 3-4. These conclusions
reinforce the hypothesis that scaling should be bounded by quarter-root and
cube-root ltaws. More importantly, independence of certain variables is
necessary to achieve these 1limits. For example, as shown by case 2.4,
quarter-root scaling can only be achieved if the crater volume is independent of
both material strength and source specific energy. This latter independence has
not been demonstrated.

Seven generalizations leading to the results in Table 3 follow from the
analysis and are given in the text following eq. 30. Modifications attributable
to the inclusion of a more general class of material behavior are also given and
affect only three of the previous conclusions.

These results are general and can be used directly to approximate
limiting behavior for different regimes of charge size and soil type. More
importantly, for this study, they provide the framework for selecting a
statistical model. By virtue of the dimensional analysis alone, the number of
independent variables has been reduced to a set of independent w-groups three
less in number. This simplification allows fitting a statistical model in two
or, at most, three dimensions permitting straight-forward model fitting using
graphical representation for further visual evaluation.

Figures 10 through 16 show how the role of the different governing
variables can be determined. This leads to combinations of m-groups which
themselves are also new, more complex w-groups. By successive combination of
appropriate w-groups, using statistical model fitting at each step, the total
dependence upon all the independent physical variables can be included. In the

present example, for the apparent volume dependence, the procedure went as
follows. '




Non-dimensional volume "] in a given material for constant d.o.b. was
observe. to be a simple function of a gravity-scaled-size parameter "2' The
variability due to different material types was then correlated using a
strength-gravity-parameter ¥,, again at constant d.o.b. as shown in Fig 11.

Achieving this for constant d.o.b. gave a useful form for a scaled
volume ™ izu, which was then correlated with a nondimensional d.o.b. as shown
in Fig. 13. A general nonlinear form given by eq. 61 was tried first. However,
with the large proportion of the near-surface data base used in this study, no
significant improvement in the fit could be found, and g was set to zero,
resulting in the final fit shown in Figs. 13 and 14. This zero correlation for
g was due to a paucity of large-yield-explosive data.

Before this more elaborate non-linear d.o.b. correlation (g # 0) is
tried further, the compendium of data must be further expanded to include all
available large-yield data, especially at depth. This could include the nuclear
data which was deliberately omitted in this pilot study to avoid additional
variability due to source characteristics. Once a reliable model for cratering
with conventional explosives 1is determined, it can be used to determine
appropriate nuclear source characteristics. It is better to formulate
statistical models from high-quality, well-characterized data. This helps to
identify trends due to material strength, size, gravity, etc., which can then be
eliminated from the total variability. Then the nuclear data can be added
leaving only the source variability to be characterized.

Foremost within the scope of this pilot program, the objective was to
demonstrate the utility of a combined statistical-dimensional analysis technique
using a well-defined, high-quality data base. In many cases, the experimental
test conditions and soil-site surveys are not properly documented or require
extensive search to recover some of the older documents. This is a serious
problem for any statistical correlation of cratering data or for free-field
environment. The scope of this program did not allow a totally comprehensive
search, although a compendium of more than 1500 cratering events was cataloged
and put on computer cards. A summary of this compendium is given in Appendix B.
From this master compendium, selected data were chosen and added in consecutive
groups to the working compendium. This permitted a controlled expansion of the
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data base, allowing a careful second screening of less obvious inconsistencies,
due to source or soil descriptions in particular, at each step. The working
compendium consisted of 226 events at the end of the study. Another advantage
of working with a characteristic, but high quality subset of data is efficiency
of computer cost and turn-around while sorting out fundamental forms for the
statistical model.

The SDA methodology is an iterative approach utilizing simple
statistical models to determine interdependences of various w-groups. From
these, more complex m-groups are developed and, again, statistically correlated.
The advantages of this method are manyfold. The dimensional analysis not only
reduces the number of independent variables, but provides nondimensional forms
allowing direct comparison among grossly heterogenous data. This includes very
small-scale Tlaboratory and field data, centrifuge data, large-scale field
events, and, ultimately nuclear data. Source-type variations can also be
compared on a common basis allowing the utilization of impact data as well as
high explosives to further formulate nuclear parameters (Schmidt and Holsapple,
1978b).

At all stages, physical models can be used to formulate the statistical
model. This avoids the common probiem of using a high-order polynominal in each
physical variable--all represented simultaneously in an n-dimensional space. In
addition to precluding any simple graphical representation, confidence in
prediction is reduced due to excessive dependence on a large number of
parametric coefficients. In contrast, the SDA hybrid approach optimizes the
functional form of the scaling relationships, thus, minimizing the number of
free coefficients. This is done 'hrough consecutive recombination of variables
using arguments of dimensional analysis prior to each statistical-regression
analysis.

69




SECTION 6
RECOMMENDATIONS

The SDA hybrid methodology can be applied to any physical problem. The
example developed in this pilot study is improved correlation of crater volume.
For cratering and associated phenomena, the study should be extended to examine
and to improve correlation for crater radius and for crater depth. Preliminary
observations indicate that these two response variables are much more sensitive
to geological site and material properties than is the crater volume. Statis-
tical technigues beyond the scope of the present study that can be used to
improve and extend the utility of this method include the following.

6-1.1 More Predictive Variables

As more w-groups are considered, it becomes cumbersome to look at the
data. The software should be upgraded to allow for a variety of plots, such as
residuals and predicted values versus various quantities. This could be
accomplished using on-line-interactive graphics now available. Discussions of
various diagnostic plots are given by Fisher and vanBelle (1979). In addition
to more plotting methods, there are analytical means to test for outliers in the
residuals. These should be implemented for ease in locating data points that do
not appear to fit the model well. The normality assumption crucial to setting
up estimates of variability, such as confidence intervals, may also be examined
by test statistics and by looking at normal probability plots of the residuals.

6-1.2 Suitability Of Other Models

There are numerous other analytical models other than the models tested
to date that might be tried as fits to these data. As mentioned above, the
fewer the parameters in the model, the more confidence one has that the
extrapolation to other values will work. It is difficult to say precisely what
can be done in this area because model fitting is as much an art as a science
and therefore is best implemented through experience based upon physical models.
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6-1.3 Other Measures For Goodness Of Fit

A particular virtue of the current work is the emphasis upon using
similar experiments to relate small-scale laboratory data, high-gravity-
centrifuge data, and large-scale field data. This is done in terms of the
n-groups and has proved an efficient and valuable method of explaining varia-
bility in the data. Nevertheless, for certain purposes one may have an idea of
the loss associated with prediction in terms of data in original units rather
than in nondimensaonal groups. The predictions could be transformed back to the
“original" spaces for examination. Such plots would be useful in assessing the
potential gains and possible need for additional centrifuge data.

While variability methods are precise if the residuals are normally
distributed and all of the model assumptions hold, one is usually not willing to
assume that the model holds precisely. Variability and accuracy of prediction
can be better estimated by using the so-called jackknife method or the
subsampling method. In the former, one data point at a time is held out and the
estimates for the model are found based upon the remaining data. The accuracy
of the prediction when using the point left out is then assessed. (There is a
gain in looking at the accuracy of the model for each case, because the point
left out does not influence the curve fit and would be expected to be more in
error.) The subsampling method, which takes much less computer time than the
jackknife method (which reruns the problem a number of times equal to the number
of datapoints), selects a subsample, such as leaving out a third of the data
points at random. The remaining points are then used to get a fit to the model
and the accuracy of prediction for the points left out is observed. These
approaches can be automated in the software.

It is particularly easy to do this for 1linear models where the
computations are not prohibitive. For nonlinear models, considerable computer
time is needed to implement such approaches extensively.

Finally, for some purpose one may be willing to assign a loss function
to inaccuracies in prediction. The loss function may or may not be the Tleast-

squares model. If it does not correspond to least squares one may look for

st = m — ma m




3 predictive methods more accurate for the loss function considered. In this case
the statistical background is less well developed and there would be a need to
work on some methodological developments.

6-2 APPLICATION TO FREE-FIELD ENVIRONMENTS

In addition to crater environment, an obvious and important extension
of the SDA methodology is the application to free-field ground motions. The
practical feasibility for horizontal displacement has been demonstrated by
Holsapple et al. (1978) using simple functional dependences given by Cooper and
Sauer (1977). Vertical displacement, velocity, acceleration, and stress as a
function of range, geology, and source are not all presently well correlated.
The advantage of the SDA approach is that 1t quantifies the statistical
variability common to field geologies for all s'.ages in the model development.
This isolates the physical model from spurious data and allows a stepwise
construction of a complex statistical model which never exceeds two- or three-
dimenc<ional function space. As shown in the above model for crater volume, a
simple third-order polynomial with -five free coefficients provided a very good
fit for 226 data points. More importantly, the simpler the finai model, the
more reliable are predictions based upon it. It also provides a high degree of
confidence in estimating the uncertainty due to unexplained variability of the
data.

This method is a systematic, stepwise approach incorporating physical,
mathematical and statistical techniques to the development of scaling laws in
general. By iterating between the physical model and the statistical model
using dimensional analysis, one can always see the effect of modifications
incorporating additional variables or different mathematical forms.
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APPENDIX B

SUMMARY OF CRATER RUPTURE DATA COMPENDIUM FOR SDA

NUMBER

1D NUMBER OF SHOTS NAME DATE SIZE TYPE
101-124 24 Russian Data 1955-1960 3,06-9.18 GM TNT
201-230 30 Gravity Effects on 1965 6 GR SQuUIB(S-68)
Crater Formation
301 | Johnie Boy 1962 .5 KT Nuclear
302-311 10 Cratering in Pacific 1952-1963 ,0013-150 KT Nuclear
Atoll
Lo1-434 34 Centrifuge Cratering 1976-1977 .22-~.65 GM EV06
.46 GM E1A(6)
.64 GM E1A(8)
1.7 GM PBN6
.h-4 GM  PETN
501 ] Danny Boy 1962 .42 KT Nuclear
502 1 Mine Shaft 1969 100 ST TNT
503 1 Mine Ore 1968 100 ST TNT
504 1 Mine Under 1968 100 ST TNT
505 I Burst Charge 1963 20 ST TNT
506 | Mine Throw | 1971 118 ST ANFO
507-509 3 Surface Charge Explos.  1959-1961 5-100 ST TNT
510-587 78 Panama Canal Series 1946-1947 8-200 LB TNT
588-591 4 Pre-Gondola | 1966 18.2 ST NM
592-594 3 Diamond Ore 1973 10 ST NM
595-617 23 Sandia |, 1| 1958-1959 256 LB TNT
618-635 18 Little Ditch 1957-1958 2 LB TNT
636-648 13 Single Charge 1966-1969 64 LB TNT
649 ] Surface Burst 1961 100 ST TNT
650-656 7 Pre-Buggy | 1962-1963 1000 LB NM
657-680 24 Project Mole 1952-1954 256 LB TNT
681-702 22 Project Toboggan 1961 8 LB TNT
703 1 Shooter 1960 500 ST TNT
704-706 3 Project Stagecoach 1960 20 ST TNT
707-710 4 Calibration Series 1966 909 LB NM
711 1 Pre-Schooner 11 1965 85.5 ST NM
712-720 9 Pre-Mine Throw |V 1973-1974 256-1000 LB TNT
.5-102 ST NM
721-730 10 Operation Buckboard 1964 1000 LB TNT
731-739 9 DRES (SES Canada) 1959-1963 .25-500 ST TNT
740-802 63 Bureau of Mines 1956 .9-20.8 LB Dynamite
803 1 Sedan 1962 100 KT Nuclear
804 | Schooner 1968 35 KT Nuclear
805 1 Palanquin 1965 4,3 KT Nuclear
206 ) Cabriolet 1968 2,3 KT Nuclear
807-809 3 Flat Top I, 11, tiI 1964 20 ST TNT
810 | Jangle S 1951 1.2 KT Nuclear
81 | Jangle U 1951 1.2 KT Nuclear
812 ] Teapot Ess 1955 1.2 KT Nuclear
813 | Neptune 1954 115 KT Nuclear
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NUMBER

ID NUMBER OF SHOTS NAME DATE SIZE TYPE
814-816 3 Distant Plain 1967 20-100 ST TNT
817-8286 11 Mine Shaft Calibration 1968 .5 ST TNT
Series
827-830 4 Pre~Schooner 1964 20 ST NM
831-833 3 Operation Buckhoard 1960 20 ST TNT
834 1 Snow Ball 1964 500 ST TNT
835 | Prairie Flat 1968 500 ST TNT
836-857 22 Cratering in Loess and  1956-1957 .5-1 LB C-4
Clay
858 ] Dial Pack 1970 500 ST TNT
859-88) 23 Air Vent Series 1963~1964 .032-20 ST TNT
882-893 12 Operation Jangle 1951 .108-20 ST TNT
176 LB Pentolite
894-902 9 Multiple Cratering 1965 4Looo LB TNT
903-968 66 Underground Explosions  1949-195] 8-2560 LB TNT
969-982 14 Soil Rock Interface 1957-1958 20 ST C-4
54 LB Dynamite
256 LB TNT
983-986 4 Stemming Effects - HE 1957 20 ST C-4
Charges
987-1008 2] Stemming Underground 1957 20 ST C-4
Explosions
1009-1049 4 Partially Conf. Expl. 1955 20 ST C-4
54 LB Dynamite
1050 | Russian Event 1961 110000 ST Nuclear
1051-1069 19 Ammonium Nitrate 50 LB AN
Cratering 50 LB TNT
1070-1081 12 Cratering in Sand 1962 L LB TNT
1082-1102 2} WES Stem, Series 1957-1960 10 LB TNT
1103-1225 123 Colorado School of 1948-1949 .75-239 LB C-4
Mines (Underground 1.12-1080 LB TNT
Explosions)
1226-~1262 37 Spherical Charges 1953 .96-5.27 LB Pentolite
1263-1298 35 Fort Churchill Tests 1956 .75-14.89 LB C-4, C-3
1299-1379 81 Fort Churchill Charges 1957 2,65 LB Pentolite
1.98 LB Crk, C-3
1380-~1386 7 Project Trinidad 1973 2000 LB AN
1387-1397 11 Shell Explosions 1971 4~16 LB TNT
1398-1412 15 Railroad Voln, Program 1958 54-540 LB TNT
1413-143] 19 Project Zulu 1968 .75 LB C-4, c-3
1432-1436 6 Middle Gust ), ey, 1, 1971-1972 20-100 ST TNT
v, v
1437-1439 3 Mixed Co. |, 11, 11} 1972 20~500 ST TNT
1540-1458 19 Middle Gust-Mixed Co. 1971-1972 1000 LB TNT
1459-1463 5 Project ESSEX | 1973 1000 LB TNT
1464-1569 6 Cratering in Playa 1970-197) 8,1000 LB TNT
1470-1479 10 Cratering in Desert 1958-1959 256 LB TNT
Alluvium
9001 -9404 Lok A. J, Piekutowski~Sand 1977 1.7 GM  PBN6
J4-.5 GM PETN
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