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SECTION 1

INTRODUCTION

Various regression schemes have been used with limited success to
analyze empirical explosive cratering data and so define scaling relationships.
The objective of this study is to improve the precision of these scaling laws

using combined statistical and dimensional analysis techniques that result in
functional forms relating a simplified set of generalized variables.

The approach used herp is to first develop a set of independent

nondimensional parameters from the independent physical variables of the

phenomenon through dimensional analysis. For example, dimensional analysis of

recent centrifuge experimental data on cratering lead to the identification of a

charge size-parameter (Schmidt, 1977). A statistical regression analysis is

then performed to determine functional relationships among these parameters.

The common obstacle defeating previous attempts to unify this type of

data was an inability to correlate the large number of independent variables

necessary to describe the phenomenon. In this study, dimensional analysis
provides a method to systematically combine groups of variables, allowing a

common comparison of grossly different types of experiments, leading to
mathematical models for the statistical regression analysis. The combined

approach is a new technique incorporating recent scaling developments that allow
simpler functional forms based upon fewer generalized variables. This hybrid

methodology leads to improved confidence in prediction and quantification of

associated uncertainties.

One of the few comprehensive statistical approaches to correlating

different soil media is an earlier work by Dillon (1971). He tried to combine

data for various types of materials by using a large number of parameters to

relate soil properties. It is not totally clear how the regression was run, but

it is clear that his model was far too complex for any useful prediction.

Dillon states that every effort was made to keep the number of parameters to 40

or less (page 43). These are too many parameters for a problem of this type and

one would have little confidence in any extrapolation. It is not surprising

that his multiple correlation coefficient values are quite large when fitting a



model with 40 or so parameters. However, the values given appear even higher

than the quality of the data fit on the plots suggests. This along with the

fact that two of the values exceed 100, a theoretical impossiblity, indicates

either severe numerical problems or a programming error. Dillon's work is weak

statistically in the area of combining the different soil materials and very

little reliability can be placed upon that portion of the research.

The other limitation imposed by Dillon's approach was his ad hoc choice

of using a 5/16 yield scaling exponent for all linear dimensions. In the

present study, scaling laws are determined directly by the statistical

regression on the appropriate non-dimensional w-groups. These latter quantities

serve as a set of generalized variables and require no ad hoc scaling exponent;

but rather, as is shown in Section 3, theoretical analysis alone can assign

appropriate scaling exponents for various size reqimes (see Table 3 and Figs. 7,

8 and 9).

The study described here incorporates a particular material strength

theory developed under a concurrent DNA centrifuge experimental program (Schmidt

and Holsapple, 1979). This feature of the analysis significantly improved

correlation, greatly reducing the scatter for cratering events in different

med i a.
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SECTION 2

BACKGROUND ON STATISTICAL MODEL FITTING

2-1 THE "TRUE" RELATIONSHIP AND EXPERIMENTAL VARIABILITY

In Physics, other than atomic physics, it is assumed that if all
relevant information and appropriate physical laws were known, experimental

findings could be predicted without error. Thus, this must also be true in
relating explosions to craters. In point of fact, not all the relevant

relationships are known. The data are not only affected by measurement error
but also by inherent variablility in the explosive and in the cratering medium.

Further, it is presently beyond human capability, to measure every relevant

quantity. The "true" relationship between explosions and cratering dimensions

is consequently masked by variability in the data.

2-2 ESTIMATING THE UNDERLYING "TRUE" RELATIONSHIP

Because there is variability, investigators cannot hope to discover the
appropriate relationship and to fit all of the data points with complete

precision. Since a completely accurate prediction cannot occur, a model is
fitted to the data that explains much of the variation in the data. Statistical

model fitting is the science and art of finding a mathematical model to fit data
with random variability. An example of such data is the cratering data used in

this report.

In general, the mathematical model used to fit data will depend upon a

finite number of unknown constants called coefficients or parameters. The first
step is to estimate the unknown coefficients from the data. The second step is

to determine whether the model does give a reasonable fit to the data. The
model can then be used to predict observed values before additional data are

collected. The accuracy of the prediction depends upon the correctness of both
the mathematical model and the statistical model for variability. Checking the

fit of the model and the appropriateness of assumptions of random variability
allows quantification of the variability in a future prediction.

7 A I--



2-3 LEAST-SQUARES CRITERIA FOR FITTING DATA

Investigators want to fit the "best" possible curve to the data. To

find a best fit there is a need for some criterion with which to measure the

goodness of the fit, such as the method of least squares. First proposed by

Gauss, it is mathematically tractable in many situations and can be easily

calculated. If the variation about the true curve is distributed according to a

probability distribution (called the Gaussian, normal, or bell-shaped curve),

the method picks the curve which makes the probability of the observed data as

large as possible. This is also called the method of maximum likelihood.

To examine this method, consider Fig. 1 where some response (dependent

variable y) is observed whose value may fluctuate with the value of the

independent variable x. Consider now a family of proposed curves to model the

data y; the curves give y as some function of x and the parameter 8. Three

parametric curves are drawn corresponding to values of 6 = 1, 6 = 2, and 6 = 3.

The data points being fitted are given by the four triangles. Suppose the curve

corresponding to 8 = I were to represent these data. Corresponding to an x

value of xl, the appropriate y value on the curve is given by Y1 Similarly

corresponding to x2 , the y value on the curve is given by the value Y2. The

difference between the observed value yl and the value for Y1 predicted by x, is

the quantity yl minus 91. The principle of least squares directs us to examine

the sum of the squares of the deviations of the data points minus their

predicted values. In this case that sum is given by eq. 1.

^ 2 ^ 2 2 ^ 2

Sum of Squares = (yl - Yl ) + (Y2 - 92) + (Y3 - Y3 ) + (Y4  Y4 ) (1)

This sum of squares can be computed for each of the three curves given

in Fig. 1. Of course, as changes between the three curves are made, the value

yj predicted for Y, will change. Of the three, the curve corresponding to 0 = 2

would have the minimum value for the sum of squares. Thus according to the

least-squares principle, the curve with e = 2 is chosen in preference to 8 = 1

or 8 = 3. In general, the dependence of the family of curves upon the

parameters may be quite complex. Although the numerical problem of finding the

curve that minimizes the sum of squares may be difficult, the method is straight

8 B
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Fig. 1 Three possible curves, y - f(x,8)), for a
* least squares fit to four data points



forward. The difference between the observed y and the predicted . for the best

fit is called the residual. The differences are called residuals because this
term measures the amount of variability left over and not explained by the model

used to fit the data, i.e. residual variability.

2-4 POTENTIAL PROBLEMS WITH THE METHOD OF LEAST-SQUARES FITTING

Though the method of least-squares fitting has proved useful, it is not

a solution for all data analyses. In this section some of the problems that one

may encounter using the method of least squares fitting are briefly discussed.

One problem in model fitting is using the wrong model. For example,

consider Fig. 2, visually the data appear to consist of two clusters of points.

Within each of the clusters y decreases as x increases. If a straight line is

fitted to such a combined data set, the line would go through the centers of the
two groups but would predict y increasing with x. Checking the fit becomes more

difficult, however, when using many independent variables to predict a dependent
response variable due to human inability to visualize four (or more) dimensional

space. In addition to various mathematical methods for checking the fit of a

model, some of which are discussed later, a variety of two-dimensional plots can

be used to insure that the fit is reasonable. A common practice in higher

dimensions is to plot the residual value versus the predicted value. If the

prediction is off by a larger amount for larger (or smaller) predicted values,
such a plot would show the trend. Figure 3 gives another example of a wrong

model; fitting curvilinear data with a straight line.

A second problem is created by what are called outliers. A data point

is an outlier if in some sense it is separated by a considerable amount from the

rest of the data. Figures 4 and 5 illustrate what can happen if a data set has

an outlier. Figure 4 shows the body of data where the value of the dependent
variable y tends to decrease with the value of the dependent variable x. When

an outlier is added, a line of best fit has the form shown using the least

squares method, rather than reflecting the trend of y decreasing with

increasing x. Figure 5 shows a data point which is an outlier having an extreme

value for the dependent variable y. It causes a sizeable shift in the curve for

best fit. Other variations occar when using higher order curves for a model.
Occasionally outlying values result from poor experimental technique or values

10 __________i
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inappropriately measured. In other circumstances outliers may reflect some sort
of transitional or phase effect. In model fitting one should consider the

possibility of outliers and examine the affect that these data have on the model
fit.

2-5 GOODNESS OF FIT

It is useful to have a measure of how well the fitted model explains

the data. Suppose there are n data points and for each there is a dependent
variable y, whose variability is to be explained; and a vector of independent

variables xi, which will be used to explain the y variability. After performing
a least-squares fit to the data, how well has the explanation worked? Suppose

for the moment that the independent variable x is not used to predict y and only
a constant is to be used to predict the value for y. Equation 2 below shows how

to pick the constant using the principle of least squares.

n
minimum (Yi C)2 (2)

il

That is, C is chosen to minimize the sum of squares of the deviations of y about

the fixed constant value C. It can be shown that the value of C that minimizes
the sum of squares is the mean of the sample data, or Y.

= y + ., Y n

n yi/n (3)
i=l

Now, if a dependence on the variable x is used, there will be some residual
variability left even after fitting the model. The residual variability as
defined above is given by eq. 4.

n

(y ) 2 (4)
i=1

The residual variability is the sum of squares of the deviations of residuals,

the observed value yi minus its predicted value i Starting with the

13lkAA



variability of eq. 2 where C is equal to j the variability left is qiven by eq.

4. Thus, the fraction of the variability not explained is given by eq. 5.

n n(Yi _ Yi)2  (Yi _" ) (5)

i :l i =l

Hence, the fraction of the variability explained, called the multiple

correlation coefficient is one minus this quantity. It is usually denoted by 
2

and can be written

n
(Yi- _i)2

R= 1 -i(yl) (6)

i=l

If the y, values are not all the same so that the denominator is nonzero and if

the family of curves being fitted contains the constant function, the value of
R2R2 , lies between zero and one. This value will be equal to one if and only if

the curve has fit the data exactly; that is, every single datapoint lies on the

fitted model. This is almost never the case. The R2 value will be zero only if

the fitted model is a constant. Once again, this is usually not the case. Even

if d "true" R2 value is zero, (i.e. the family of predicted equations has no

more predictive ability than a constant), experimental variability will usually

allow some fitting of the data so that the observed R2 will be nonzero. The

multiple correlation coefficient R2 is a measure of the success of the least

squares fit -- it is the fraction of the variability in the dependent variable

explained by the fit of the model.

2-6 NONLINEAR STATISTICAL MODELS

Some differences occur in the least-squares method when the unknown

parameters are used linearly in the prediction of y and when they are not used

linearly. A model is called linear if the "true" model is such that the

14



expected value of y is equal to a linear sum. Each term of the sum may involve

an unknown coefficient times a know function of the independent variable x.

Examples of this are given in eqs. 7 below where the ai are unknown

y = a0 + aix (7a)

y = a0 + alx + a2x
2 + a3x

3  (7b)

y = a0 + a 1 eX (7c)

y = a0 sin x + a, cos x + a2 sin 2x + a3 cos 2x (7d)

y = a. e x + a I xe x + a 2x + a 3 e - x + a 4 xe- x  (7e)

x2 x 2

y = a0 ex + aI e 2  + + a4 e-x (7f)

In contrast when y is not a linear function of the a i , the models are called

nonlinear. Some examples are given in eqs. 8 below.

y= exp (a + ax +a 2 x
2) + a3x (8a)

y = ao + sin (alx) + cos (a2x) (8b)
i

a a2  a x2)

y = a0 + a 1x + a3 exp(-a 4x (8c)

Note that the mathematical model is linear when it is linear in the unknown

coefficients but not necessarily a linear function of the independent variables

xi , which may be treated as a generalized vector.

There are some important differences between linear and nonlinear

models. The least squares solution for linear models can be written explicitly.

Except possibly for the numerical analysis problems of inverting a near-singular

matrix, the least squares solution of a linear model may be found easily,

15



efficiently, and accurately. On the other hand, the nonlinear model is such

that it is more difficult to find a solution. Except for a few very special
cases, the variability is minimized by selectively varying the values of the

parameters to reduce the residual sum of squares. The result leads to a local
minimum; that is, if you move slightly in any direction by changing the

parameter values, the value of the sum of squares becomes larger. This,
however, does not assure that a global minimum over all possible values for the

parameter was determined.

An illustration of a sum of squares for a nonlinear model with one

parameter is shown in Fig. 6. A local minimum at 81 is not the overall minimum
which is at 82. If one tries to find a nonlinear least squares solution by

starting at e3, the answer would probably turn out to be 01; whereas if one

starts at 84. the answer would turn out to be 82. In general, there is no known

way to assure finding a true global minimum in nonlinear minimization. Having
some idea of the correct value, however, will usually lead to the global

minimum. In general, nonlinear optimization takes considerably more
computational time and has more numerical analysis problems than do linear least

square solutions.

2-7 THE DIFFERENCE BETWEEN PREDICTIONS USING MODEL FITTING AND THE

DEVELOPMENT OF "TRUE" MODELS FOR A PHYSICAL SITUATION

To fit a mathematical model for purposes of prediction, it is not

assumed that the model fitted is a "true" model with physically significant
parameters. Rather, it is a model descriptive of the overall pattern of the

data. Usually to develop a "true" model, there needs to be some physical
understanding of the problem which gives the appropriate form of the model to be

fitted. However for the purposes of prediction, a good fit to the data is

usually satisfactory.

2-8 GUIDELINES FOR LEAST-SQUARES MODEL FITTING

(1) It is dangerous to extrapolate very far beyond the range of

observed data for models fit for prediction purposes. This is not as true of

models developed where it is known that the model is correct and has physical

16
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significance. This is one of the advantages of the dimensional analysis

approach. Since the dimensional analysis is developed by modeling the physics

involved, by using similar experiments there is scientific reason to believe the

prediction will hold up better than a purely empirical fit.

(2) The more complex the model, the more precarious is the

extrapolation of predictions to other situations.

(3) Increasing the numbers of parameters is increasingly precarious

using nonlinear-least-square models and can result in great numerical

difficulties in finding the appropriate fit.

(4) Although theoretically one more observation than the number of

parameters is needed for the least-square fit, in practice the number of
observations for estimating the model should always be at least five (preferably

a minimum of ten) per parameter used.

1
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SECTION 3

DIMENSIONAL ANALYSIS FOR EXPLOSIVE CRATERING

An important aspect of cratering phenomena is the prediction of the

crater resulting from a given explosive in a given soil or rock medium. Often

direct experimentation is not possible. Alternatives include numerical

simulation (e.g., Knowles and Brode, 1977; Cooper, 1977; Maxwell et al. 1973;

Orphal, 1977; Swift, 1977 and others) or scaling the results of other

experiments or tests. Frequently, results of small laboratory or field tests

are scaled in some manner to predict the results of events many times larger in

magnitude. It is this scaling application that is addressed in this section.

The objective in this section is to examine the exact conditions under

which special scaling rules will hold and how the results depend on both the

number and the choice of independent variables. The difference between using

either the mass or the energy of the explosive is examined. It is shown that

the choice is immaterial, except in those cases when other variables are assumed

to be held constant. Under these conditions it is shown that varying the energy

as opposed to varying the mass are two very different hypotheses, leading to

different results. In the literature, differences in results, interpretations

and uncertainties over the applicability of various scaling rules are many times

due to a failure to distinguish between similar and nonsimilar experiments.

This distinction is discussed and scaling of both types is considered.

3-1 BACKGROUND

Two scaling rules are well known. In the traditional "cube-root"

scaling, all crater linear dimensions are assumed to vary with the cube-root of

either the energy or the mass of the explosive. Consequently, the volume of the

crater is proportional to the total energy or the mass of the explosive.

Likewise, for "quarter-root" scaling, all crater linear dimensions are assumed

to vary with the one-fourth root of the explosive energy or mass. This form is

sometimes referred to as gravity-scaling (e.g., Gault and Wedekind, 1977).

19



Which, if either, of these two scaling rules is appropriate has been

the subject of numerous papers dealing with cratering (Chabai, 1965, 1967, 1977;

Crowley, 1970; Gault and Wedekind, 1977; Killian and Germain 1977; Vortman,

1968, 1977; and others). It is commonly thought that cube-root scaling should

hold in a regime where soil material strength dominates the cratering

mechanisms. Conversely, when the stresses in the cratering process are much

larger than material strengths, quarter-root scaling is thought to hold.

Chabai's work (1965) implies that whether the energy or the mass of an explosive

is chosen as the size variable will determine which scaling rule will hold.

Vortman (1968, 1977) does not distinguish between similar and nonsimilar

experiments and consequently faults dimensional-analysis techniques as being

unable to predict the different observed dependences of radius and depth upon

yield for field-test results. White (1971) identified some of the shortcomings

of various approaches to scaling in a summary paper comparing the methods up to

that time.

3-2 FORMULATION

Consider the apparent crater volume V produced by a half-buried (zero

depth of burst) spherical explosive in a geological medium. Non-zero depth of

burst is considered later. The value of V is assumed to depend on the total

explosive energy E, the explosive specific energy Qe' the mass density of the

explosive 6, the mass density of the soil p, the "strength" of the soil Y, and

gravity g. For present purposes, the "strength" Y can be any material property

with the units of pressure. While other variables can be identified which may

influence V, their inclusion is not necessary for the arguments which follow in

this section, as will be discussed later.

Other choices of variables to characterize the explosive can be

interchanged with those in this list. For example, the mass W of the explosive

is related to the total energy E by the specific energy per unit mass of

explosive Qe as follows:

W = E/Qe .  (9)

The energy density per unit volume Qv is given by

20



Qv = 6Q e (10)

and the radius, r, of the explosive is determined by
I (4n/3) r3 6 = W. (11)

If the stress quantity, Y is taken to be the bulk modulus K, the sonic velocity

is given by v/T*

$ In all cases, three independent variables are used to characterize the

explosive. These include a measure of size, which can be one of W, E, or r, a

measure of specific energy Qe or energy density Qv' and the mass density 6.

(Nondimensional constants, such as the perfect gas constant of the explosive

products, occur in common theories for detonating high explosives. However, the

inclusion or omission of dimensionless constants will not affect any of the
following results. Additional dimensional constants, which may be required for

non-ideal explosives, can change the results as discussed in Section 3-5). Thus

together with the soil properties of strength Y and density 0 and with gravity

g, any dependent variable, such as volume V, is then a function of six

independent variables. These variables involve independent units of mass,

length, and time; hence, following standard methods of dimensional analysis,

they can be reduced to a set of four dimensionless ir-groups in a variety of

ways; see, for example, Buckingham (1914), Baker et al. (1973) or Chabai (1977).

One possible combination, based upon using W, Qe and 6 to characterize

the explosive, leads to a so-called mass set:

Vp (1 2a)

- j (W~/3
2 Q 6 ,(1 2b)2 e

3 Y--- (12c)3 6Qeae

1T4 6 * "(12d)

Another set based upon using E, Qv and 6 for the independent explosive

properties will be called the energy set:
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- Yg 11  (13c)V

1T4 
= -"(13d)

Alternatively using E, Qe and 6 for the explosive gives a third set

which can be referred to as the gravity set:

VIA3/ (I13a)

1 =V E"

- 1 q3 El/4
2 - (- - -- ) (I4b)

- y

Y (134c)

3 = '4

4 " (14d)

Any one of these sets can be converted into either of the other two by simply
multiplying products of powers of that set and using eqs. 9 through i. Other

combinations can also be developed.

For convenience of the reader, all the symbols and definitions are

summarized in Table 1. Also included is notation which will be used in the

analysis to follow.

3-3 SIMILARITY REQUIREMENTS

A given series of experiments are similar in the current context if

they all have the same numerical value for each of irl' 2' ir3 and iT4 , which
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Table 1. Symbols and definitions used in the analysis.

V apparent crater volume

W mass of explosive charge

E energy of explosive charge

r equivalent radius of explosive charge

a mass density of explosive charge

Qe specific energy of explosive charge

Qv energy density of explosive charge

Y "strength" of cratering medium, any material property with

dimensions of pressure

P density of cratering medium

g gravity field strength

h height of burst

s jexponents introduced in eq. 27
Y

a exponents defined in eq. 30
b=B J

J 1exponents introduced in eq. 39
d

1i "mass set"--dimensionless parameters defined in eqs. 12

"energy set"--dimensionless parameters defined in eqs. 13

7i "gravity set"--dimensionless parameters defined in eqs. 14
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implies that any other set of i-groups will also be constant for the series.

(Note, a more general definition of similarity for cratering experiments given

by Schmidt and Holsapple (1978a, 1980a) does not rest upon any assumptions about

the list of independent variables.) Assuming that V is determined by the six

independent variables given above, then itl must be determined solely by the

remaininq ir2 through w4 . Thus, if n2 through i 4 each have the same value for

different experiments, irl will also. From these sets of i-groups, certain

scaling rules for similar experiments are commonly deduced by the following

arguments.

From the mass set, since it 1 has the same value for such similar

experiments,

V - W. (15a)

Likewise, from the energy set, since il is constant,

V E. (15b)

And from the gravity set, since it1 is constant,

V E3 4  (15c)

Equations 15a and 15b are called cube-root scaling, while eq. 15c is

called quarter-root scaling because linear crater dimensions will then vary with

W or E to those powers. Thus, it can be said that the first two sets of

it-groups "imply" cube-root scaling, whereas the latter set "implies" quarter-

root. From this point of view it appears that different scaling rules are

obtained from different choices of dimensionless groups. This apparent pa 'adox

is, of course, specious and can be resolved by examining the exact conditions
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under which each scaling rule applies. In each case, the scaling rule holds

only for variations of the variables which preserve similarity. This means
that each -group must be held constant for the experiments under consideration.

This is achieved in a different way for each of the above cases as is now shown.

For the mass set, V is proportional to W only if p is constant. In
1 addition, i 2 , w3 and w4 must be constant. This gives

P = constant, (16a)

6 = constant, (16b)

g QW/ 3 
- constant, (16c)

e

Y = constant. (16d)

For the energy set, V is proportional to E only if Qv is constant. Also, i2, v3

and t4 are constant, requiring

Qv= constant, (17a)

P9 E1/3 = constant, (17b)

Y constant, (17c)

0 constant. (17d)

For the gravity set, V is proportional to the three-fourths power of E only if

Pg is constant. This, in addition to constant values of it 2 ' it3 and 7r4 ' gives

Pg= constant, (18a)

P0 = constant, (18b)

g3/4 E/ 4  Q e 61/4 (18c)

Y constant. (18d)6Q e
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These three sets of conditions are different and prescribe different

ways to preserve similarity involving changes in gravity, charge type and size,
and medium properties. Since they relate to different ways to preserve

similarity they each give a different dependence of volume on energy or mass.

Suppose similarity between experiments conducted in a fixed soil type

is desired. In this special case, both o and Y are constant for those
experiments, and it is assumed that Y is nonzero. Further restrictions on

experimental conditions can now be written. For the mass set, the similarity
conditions that would produce cube-root scaling are (from eqs. 16a through 16d)

Qe = constant, (19a)

6 = constant, (19b)

gWl /3 = constant. (19c)

Likewise for the energy set, the similarity conditions that would produce

cube-root scaling are (from eqs. 17a through 17d)

Qv constant, (20a)

= constant, (20b)

gE1 / 3 = constant. (20c)

In contrast, for the gravity set, eqs. 18a through 18d reduce to the following
similarity conditions that would give quarter-root scaling

c
Q= constant, (21a)

E constant, (21h)

= constant, (21c)
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q = constant. (21d)

Thus, similarity conditions leading to cube-root scaling from either the mass

set or the energy set in a qiven material are possible and require using the

same explosive, but gravity must be varied. At constant gravity, similarity

conditions leading to cube-root scaling cannot be satisfied by varying size.

From the gravity set, it can be concluded that there are no two different

experiments satisfying the similarity requirements which lead to quarter-root

scaling for experiments using a common explosive in a given material with

nonzero strength (note in particular equation 21b). Hence, quarter-root scaling

among similar experiments could only be realized by varying both the soil

properties and the explosive properties. It should be noted that these

statements do not imply that a choice of the gravity set rules out similar

experiments in their entirety in a fixed material and with a fixed explosive.

Only experiments that must give quarter-root scaling are eliminated and are

impossible (i.e., eq.14a, l = constant). Regardless of the choice of w-groups,

similar experiments in a fixed material with a fixed explosive are only possible

if qravity is varied as charge size is varied so that gE1 / 3 is constant, and the

volume must vary as the cube-root of energy or mass.

In the event that the soil has zero strength Y, other possibilities for

similarity between experiments exist. In this case, restrictions based upon the

material-strength w-group are not present. Hence, the mass set allows similar

experiments with cube-root scaling of size in a given strengthless material

whenever

6 = constant, (22a)

gw1 / 3 Qe-1 = constant, (22b)

whereby a fixed explosive is not required. However, for a fixed explosive, g

must be varied.

For the energy set, with a strengthless medium, the results are the

same as for a medium with strength, given above by eqs. 20a-20c.
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For the gravity set, eliminating the strength term gives, for a fixed

med ium,

g = constant, (23a)

E1/4 Qe = constant, (23b)

6 = constant. (23c)

Quarter-root scaling is possible in fixed soil having zero strength, but only

with different explosives.

All of these cases are summarized in Table 2. It is seen that the

reason that different scaling rules are generated from different choices of

ir-groups is because they require different constraints to achieve similarity.

Quarter-root scaling is only allowed among experiments with explosives having

different specific energy, as specified by eq. 23b. For a series of experiments

with both medium and explosive type fixed, similarity requires variations in )
gravity; and cube-root scaling results. This can be proved from any choice of

dimensionless parameters.

3-4 SCALING NONSIMILAR EXPERIMENTS

Scaling based upon experiments that are nonsimilar is determined by the

functional relationship among -groups given by

1 = F (1r2, 3 , t4), (24a)

2= ; 2 3' f4) (24b)

F : (2' 3' 4)"  (24c)

For a given medium and explosive, the last two "-groups are constant in each

set, and the first r-group reduces to a function of only the second:

Wl = G ( (25a)
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111 = G (12)' (25b)

72 =G (2)" (25c)

These functions cannot be deduced from dimensional analysis arguments, but must

be determined by experiments or other means; determination of any one function

will determine the others. Additional assumptions will now be introduced which

lead to scaling rules relating nonsimilar experiments. These assumptions are

that certain variables do not influence the volume V (at least over some given

range).

Consider the above energy set for the general case given by eq. 24b:

VQv P E1 Y P (26)

1 E ' Qv' (26)Qv

For some range of interest of the independent variables, assume that the

function F in eq. 26 can be represented by a product of powers having the form

l = k -a - -8 - -Y

i 1 =ki 2  1f3 14 , (27)

where k is a constant of proportionality. (Whenever the variables are bounded

away from zero, a linear Taylor series approximation of log 7r, as a function of

log 12, log w3 and log w4 will give this form. Thus this form can always be

assumed locally, except in the case of zero strength, which must be treated

separately. Whether or not such an approximation holds over any large range of

interest is actually immaterial; the restrictions on the exponents to be derived

below are bounds on the slopes of the function on a log-log plot. The

motivation for this power-law form is its common usage for crater scaling

rules.)

Using the definitions of the w-groups gives
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VQV [PgEq / iY
TQ4/3 k [ (28)

Qv

which can be rearranged giving

V Ea g3 (a-l)Q3-4a+b y-b (29)
V

with

a = 1 - a/3, (30a)

b =e, (30b)

and where the density terms have been omitted, since they do not contribute to

the analysis to follow.

Fundamental constraints on scaling brought about by restrictions on the

exponents follow from assumptions on the sign of the volume variation due to

changes in each independent variable. In particular, it is now assumed that, in

eq. 29, for all other variables held fixed, the volume will not decrease (i.e.,

it will increase or remain constant) as

• the total energy increases,

• gravity decreases,

• the energy density Qv decreases, or

. the strength Y decreases.

These assumptions are supported by experimental evidence and energy

balance arguments. As the energy increases, more energy is available to do

work. Both the gravity and material strength require work to be done during the

excavation. As the energy density decreases, the transmitted stresses are

lower, less energy is lost to internal energy in the cratered medium, and the

overall process efficiency increases. This point has been made by Burton, et

al. (1974). Note that all other variables in eq. 29 are assumed fixed in these

assumptions so that, for example, the assumption that V increases as Qv

decreases is for fixed energy, not fixed mass.
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The four assumptions listed above imply that

a > 0 (31a)

b > 0 (31b)

3(a - 1) < 0 (31c)

3 - 4 a 0b < . (31d)

Equations 31b and 31d can be combined as

0 < b < 4 a -3 (32a)

from which

a > 3/4 (32b)

which, used with eq. 31c, gives

3/4 < a < 1. (33)

Using eq. 9 and 10 in eq. 29, gives

V - Wa Y-b g3 (a-l) Qe3(l-a)+b (34)

Thus the above bounds provide limiting dependences upon both charge mass and on

energy. The case of a = 1 is cube-root scaling, while a = 3/4 gives quarter-

root scaling. Therefore, the above assumptions require that all scaling be

bounded by these two extremes. The exponent b is restricted by eq. 32a and

depends upon the value of a. For the limiting case of cube-root scaling, when

a 1,

0 < b < 1. (35)
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This permissible range on b is reduced as the value of a decreases; and for
quarter-root scaling, a = 3/4, h must be zero and there can be no strength

dependence.

Other special cases occur when the exponents take on particular values.

Note that certain combinations of the independent variables can be identified as
stress quantities. For example, the energy density Qv 6Q e determines the

Chapman-Jouguet (C-J) pressure of the explosive. Thus, 3 is proportional to
the ratio of the medium strength to the C-J pressure. Likewise ;2 (using eqs.

9 and 10) is

Qv4 /3 1/3 4 1/3 (36)

which is proportional to the ratio of the lithostatic pressure at the charge

base to the explosive C-J pressure.

If the lithostatic pressure is very much smaller than either the soil
strength Y or the C-J pressure, perhaps il is independent of i2 and the soil
strength dominates crater formation mechanics. (Holsapple and Schmidt (1979)
and Holsapple (1979a) have observed such a regime for cohesive materials. The

material strength Y used here can be taken to be the cohesion c in those

papers.) If l is assumed to be independent of 2 and hence independent of
gravity, the exponent a must be equal to one ( 0); cube-root scaling will
then hold, and the volume V is given by

V m EY-b Qb-l (37)

Assume alternatively that the soil strength Y can be neglected. Then
b = 8 = 0 and the exponent a is only restricted by eq. 33, allowing any scaling

between cube-root and quarter-root. If in addition, it is assumed that the
volume is independent of the enerqy density Qv' the exponent of Qv in eq. 29
must be zero. This along with b = 0 gives a = 3/4, resulting in quarter-root

scaling.
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Other combinations of dependence or independence of the variables under

consideration exist and lead to different results. A summary of these results is

given in Table 3 for each of the three choices of -group sets given above.

These were derived under the assumption that the functional dependences

indicated in eqs. 24a through 24c could be represented locally by a product of

powers of the pertinent -groups, as was done for the energy set in eq. 27.

(It might be noted that for dry sand such a power law dependence of w, on the n 2

variable has been shown to be valid both for explosive and for impact cratering

over a total range of eighteen orders of magnitude in scaled energy by Schmidt

and Holsapple, (1978a, 1978b, 1980a), Schmidt et al. (1979), Schmidt (1980) and

by Gault and Wedekind (1977). For other materials such a power law may hold

only locally as shown by Holsapple (1979a) and Holsapple and Schmidt (1979).

The volume dependence (or independence) is then considered for g, Y and

either Qe or Qv" Restrictions on the exponents given are based on the same

assumptions given above following eq. 30. Namely, that for all other variables

held fixed, the volume V must not decrease as g or Y decrease or as E or W

increase. Also for fixed energy (E = Q W) and all other variables held fixed,
e

the volume must not decrea-- as Qe (or Qv) decreases. In all these cases, five

independent variables are held fixed, including 0 and a.

The assumption that the volume is independent of Qe at fixed W,

included in cases 1.3, 1.4, and 1.5 (Table 3) leads to the further requirement

that the volume is independent of the total charge energy at fixed charge mass.

This is contrary to experimental evidence (Schmidt and Holsapple, 1978a, 1980a).

Nevertheless, these cases are included, since they relate to conditions

implicitly assumed by Chabai (1965) and others using mass scaling. If Qe is

omitted from the initial set of variables, a dependence on W alone is not a

meaningful assumption, as discussed by Divoky (1966).

The results presented in Table 3 can be shown graphically as a region

of permissible values for the various exponents governing the functional

dependences. Consider case number 3.0 of Table 3, shown in Fig. 7 as the

specific-energy exponent versus the energy exponent. All permissible pairs of

these exponents are contained within the bounds shown. Figure 8 is a

permutation of the same information, with the material-strength exponent shown
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lable 3. Summary of scaling laws relating nonsimilar cratering experiments.

Cr ter
Case Crater Volume V Volume V Resulting Scaling Rule Restrictions Remarks Concerning Crater

Number Depends on These Assumed for Crater Volume V, on Volume Dependence Upom
Specified Independent V .: Exponents Charge Energy (or Mass)
Variables of

1.0 None WAy-bg3(a-1) 3(1-a)+b 3/4 a1 a bounded by quarter-roOt end cube-root
e0 _b 4a.3 (quarter-root implies b-O)

1.1 WWQea " ' g ag3(-]) Qe  3/4< a <1 bounded by quarter-root and cube-root

1.2 (referred to as WYbQeb 0 - 1 results In cube-root scaling

1.3 the mass set Oeg 
0
Y
0  -I. b-0 results in cube-root scaling*

1.4 where E - WQe) Y. Qe 1 0 a-1. b=0 results in cube-root scaling*

1.5 g. Oe* WIYO a-1. b-0 results in cube-root scaling*
1.6 g, Y W1Q 0 a-l, b-O results in cube-root scaling

2.0 None Easybg3(a-l)Qv 3-4+b 3/4 a 1 1 bounded by quarter-root and cube-root

0'_ b <4a-3 (quarter-root implies b-0)

2.1 E. Qv 6, P. Y. . g ag
3
(a-l)Q 3-4a 3/4 < a c I bounded by quarter-root and cube-root

2.2 (referred to as g Ely-b 0 b-I a I results In cube-root scaling

2.3 the energy set) Qv Cg3(m-l),3-
4
a 3/4 < a < 1 bounded by quarter-root and cube-root

2.4 b-4a-3

.Y Ov E
3
/
4 3~1  a-3/4, b-O results in quarter-root scaling

2.5 g. Q, E l'
1  

a-1. b-I results in cube-root scaling

2.6 g. 
Y  

[EQv-I a-l, b-O results in cube-root scaling

3.0 None Ey-b g3(3-)Qe34a+b 3/4 < a • I bounded by quarter-root and cube-root
0 < b'_ 4e-3 1 (quarter-root implies b-O)

3.2 F, Oe
1  

6, P, Y, y V a3(a1)e 3-4a 3/4 c a < I bounded by quarter-root and cube-root

3.2 (referred to as Ely-b Qeb-1Ia = 11 results in cube-root scaling

3.3 the gravity set) Q. Ea 3(a-1)y3-
4
a 3/4 t a b 1 hounded by quarter-root and cube-root

b-4a-3

3.4 Y' Qe t
314

g-3/
4  

a-3/4, b-O results in quarter-root scaling

3 g. Oe  El
y
' a~l. bl results In cube-root scaling

3.6 9. y Elo e
"  

a-I, b-O results in cube-root scaling

*Included for completeness only, as it is physically unreasonable and inconsistent with observations (see text and rigure 9).
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V c Ea Y-b 3(a-1) Qe3-4a+b

(CASE 3. 0)

NO SPECIFIC ENERGY DEPENDENCE 3-4a+b : 0
>- ' PERMISSIBLE RE.GIME.

0
Zr

, o ~o<b<54a-3,,

U.1z
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U

C1 LLI
I
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under the condition of no specific energy dependence, 3-4a +b- o.
Note different horizontal and vertical scales.
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V c Ea y-b g3( a-) Qe3-4a+b

*(CASE 3.0 ALTERNATIVE PLOT)

1.0

I-,

xXZ 7
0 <-

I- t

-

,,-PERMISSIBLE REGIME Wz

uCJ-,"

Z"e y Vo.75<asi .o
, o s b < 4 a -3- - -

10NO STRENGTH DEPENDENCE b =0

ENERGY SCALING EXPONENT - a

Fig. 8 Admissible bounds on scaling exponents shown on plot of the
energy exponent a versus the material strength exponent b. Note
different horizontal and vertical scales.
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as the ordinate. These figures clearly show that quarter-root scaling requires
independence from both strength and specific-enerqy effects.

Figure 9 shows another example correspondi.' to case number 1.0 of
Table 3, where the mass of the explosive is the independent variable for charge
size. This illustrates the impossibility of having no dependence upon specific
energy for fixed explosive mass, unless there is also no gravity and no strength

dependence. As mentioned above, it is important to recognize the distinction
between this assumption and the assumption of no dependence on energy density
for fixed explosive energy. These two conditions give two entirely distinct

lines in Fig. 9.

The following statements are based on the results summarized in Table 3

and in Figs. 7 through 9. Although the apparent crater volume was used as a
representative crater-dependent variable, these results also apply to crater

radius, crater depth, true crater volume, and any other size variable of
interest that is assumed to be restricted by the given assumptions following eq.
30 listed above. These conclusions apply to the scaling of all nonsimilar

experiments.

1) Cratering dependence on energy is bounded by cube-root and

quarter-root scaling rules for fixed explosive type in a given

medium.

2) The additional assumption of no gravity dependence gives cube-root

scaling. Subsequent dependences on Y and Qe (or Qv) are related
as shown in cases 1.2, 2.2, and 3.2 of Table 3.

3) No dependence on strength Y does not imply quarter-root scaling.
A further requirement of no dependence on Qe or Qv at fixed energy

is necessary for quarter-root scaling to hold as shown by eq. 29.
4) The assumption of no dependence on Qe' when using the mass W as a

measure of explosive size, is entirely different from assuming no

dependence of Qe when using the energy E as the explosive-size I
measure. Furthermore, the former case is contrary to any known
experimental observations.
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5) In every case, the assumption of no dependence on any two of the

variables Y, g and either Qe or Q produces a specific

relationship between the energy dependence and the remaininq

variable.

Certain converse statements can also be made as follows:

6) If cube-root scaling holds, then the volume V is independent of

gravity g.

7) If quarter-root scaling holds, then the volume is independent of

not only the strength Y but also of the specific energy Q e and of

the energy density Qv at fixed energy. No dependence on the

strength is expected for certain size regimes; however, no

dependence on the specific energy is less certain.

This last statement may explain why quarter-root scaling is not observed in

practice. As identified in the foregoing discussion, three stress quantities

are included in the variables: the explosive C-J pressure, the lithostatic

pressure, and the strength of the medium. Even when the strength of the medium

can be ignored, the ratio of the other two can affect the results and the

scaling need not be quarter-root.

3-5 SCALING GENERALIZATIONS

Some of the differences between the results given here and those of

other authors are due to the choice and the number of independent variables on

which the crater characteristics are assumed to depend. For this reason, it is

important to determine exactly how restrictive the choice is, and if the

inclusion of additional variables would change the results.

The final crater formed by a given explosive is assumed to be

determined by the geometry and the initial conditions of the problem and by the

constitutive equations that describe the behavior of each of the three media:

the explosive, the cratering medium, and the overlying air. For a half-buried

spherical charge in an infinite half-space of soil, the only geometric parameter

is the charge radius, which is implicitly included in the above list of

40

'_ __.... .



variables. For buried or suspended charges one must include the depth or height

of burst dimension. The initial conditions include the initial densities and

pressures in the various media. Therefore, the atmospheric pressure and the

density of the air could be added to the list of independent variables.

Remaining variables would be those related to constitutive properties of each of

the three media. Many can be suggested, depending on the complexity of the

equations that fully describe the actual media behavior.

As a first generalization then, a more general constitutive description

of the cratering medium is considered. The crater excavation problem is

basically mechanical in nature. A very general mechanical constitutive equation

is one that relates the stress tensor at each point in the material, at a given

time, to the entire history of the deformation in some neighborhood of that

point. Within this context, the description of a material can depend on, at

most, the three independent dimensions of stress, time, and length. A subclass

of such materials called "simple materials" by Truesdell and Noll (1965), has

the stress at a point determined by the entire past history of the strain at

that point. These materials have no inherent length dimensions, but do have, at

most, units of stress and time. Dimensions of time can be eliminated in the

case of rate-independent behavior. This reduction still includes all types of

nonlinear elastic, rate-independent plasticity, fracture, porosity, and many

other diverse and complicated behaviors. For this group, all material constants

will be either dimensionless or have units of stress. Other than the

dimensionless 7-groups given above, the only additional 7-groups resulting from

these constitutive equations would be ratios of each of those with stress units

to the primary quantity Y and any dimensionless constants for the material as

i-groups themselves.

For example, suppose a bulk modulus K of the medium was included.

Then, in addition to the previous 1-group, a new group

K (38)

would occur. Additional material constants with dimensions of pressure, call

them YI, Y2,-" would add additional such groups. Then eq. 28 would include

powers of these ff-groups, so that eq. (29) would become
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v - Ea g3(a-1) Q3-4a+b Y-(b+c+d+...) Kc yd (39)
V 1

in terms of the original constants a and b and new powers c, d, etc.

Now, for a fixed medium, it is aqain plausible to assume that the

volume will not decrease as

. E increases at fixed g and Qv

. g decreases at fixed E and Qv

. Qv decreases at fixed E and g.

Therefore, from eq. 39

a > 0 (40a)

3(a-l) < 0 (40b)

3-4a+b < 0 (40c)

which gives

3 bT + 2< a < 1 (40d)

Hence, the scaling rule is bounded above by cube-root scaling, but cannot be

proven to be bounded below by quarter-root scaling without further assumptions

on the coefficient b.

Consider the special case with only the one additional variable, the

bulk modulus K. It may be plausible to assume that, among various cratering

materials, the volume will not decrease as

. The strength Y decreases at fixed K

or . The bulk modulus K decreases at fixed Y.

The former assumption is identical to that made earlier. The second

has been suggested by Chabai (1977). In this case,
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b + c> 0 (41a)

c < 0 (41b)

so thatb>(4c
b > 0 (41 c)

and thus eq. 40d gives

3 < a < 1, (41d)

and quarter-root again becomes the lower bound. Conversely, it is true that

there can be no dependence on either medium strength property Y or K, yet
quarter-root scaling need not hold. If quarter-root scaling does hold, then eq.

40d and eq. 41c are compatible only if b = 0, eqs. 41a and 41b then give c = 0,
and the volume must be independent of both material properties Y and K, as well

as the explosive energy density Qv"

If the additional parameters Yl' Y2, ... etc., are included, an

assumption that the volume would not decrease as any one of them decreased, for

all others fixed, would be sufficient to give the same result (41d). Whether

this assumption was plausible would depend on the specific case.

All of the above results depend strongly on the assumption that the

materials in question can be regarded as both rate- and scale-independent. In
materials such as rock, there is evidence that the characteristic strength

measures decrease as the size of the explosive increases and the resulting

crater also increases. This is attributed to the increased influence of fault

planes and crack nucleation sites as the size scale increases. As noted by

Chabai (1977) both this size effect and also rate effects can give scaling that

is in excess of cube-root (a > 1). This probably explains the results of

Vortman (1977) where the exponent a is in excess of 1 .0. However, it is not

expected that this trend would continue to ever-increasing sizes; see Schmidt

(1980).
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Additional variables that define the initial state of the overlying air

may include the atmospheric pressure P0. Indeed, there is evidence that for

buried bursts, increased P0 gives decreased volume for all other variables held

fixed, although this effect is not observed at zero depth of burst (Herr, 1970).

Recent experiments on impact cratering show results analagous to those for

buried explosives (Holsapple, 1979b). The atmospheric pressure has, of course,

pressure dimensions and therefore would occur in the theory exactly as one of

the material constants just considered for the soil. Furthermore, if the sign

of the variation of the volume is assumed to be the same for pressure Po as that

just considered for both Y and K of the soil, there is no need to repeat the

analysis, eq. 41d again holds. (In contrast, for above ground bursts, recent

data of the authors (Schmidt and Holsapple, 1980b) implies decreased volume for

decreased pressure P0. This is attributed to the decreased coupling of the

energy to the ground in this case.)

The last important variable to be considered is the depth or height of

the explosive for nonsurface-burst conditions. The additional n-group can be

taken to be

6 h ( )/3 (42)

where h is the distance from the ground surface to the charge center.

Inclusion of this variable will not affect any of the above arguments.

It is only necessary that it be constant throughout. Consequently, all

restrictions on scaling rules that have been derived at least insofar as the

stated assumptions are valid, hold for any fixed value of h/r.

3-6 DISCUSSION OF SCALING RESULTS

A discussion of the relation of these results to those of some previous )

references is appropriate. In a paper dealing with scaling of crater

dimensions, Chabai (1965) omits the specific energy Qe from his list of

independent variables. He then concludes: "When gravity field strength is

considered significant and is included in the dimensional analysis, crater

dimensions are scaled by cube-root rules with mass-gravity scaling and by
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fourth-root rules with energy-gravity scaling." The implication that the choice

of w-groups can lead to different resuts is a consequence of omitting the

specific energy Qe and by a failure to distinguish between the scaling of

similar and nonsimilar experiments. Divoky (1966) correctly noted the effect of

the omission of Qe" Chabai (1965) also considered scaling for nonsimilar

experiments, without explicitly noting that such an extension requires an

assumption of independence of certain i-groups.

In a later paper, Chabai (1977) includes the specific energy Qe in an

ancillary r-group. He recognized the requirement that specific energy must be

varied to preserve similarity; however, he states: "From dimensional analysis

we obtain cube-root scaling rules or quarter-root scaling rules depending on

whether or not gravity is considered unimportant or important in cratering."

The present analysis gives results that agree with only the first part of this

statement, regarding cube-root scaling. It is not true that dependence on

gravity alone requires quarter-root scaling for nonsimilar experiments.

Furthermore, his results based upon similarity need not apply to nonsimilar

experiments.

Usually, the scaling application of interest is not among similar

experiments but, rather, among nonsimilar experiments. As demonstrated above

with the choice of the mass, the energy, or the gravity set, similar

experiments, using the same explosive type in a given soil, always scale as the

cube root; but require variations of gravity. Scaling among such similar

experiments is moot in that it only verifies that the controlling variables have

been included in the analysis. Other scaling laws, e.g. quarter-root as shown

above for the gravity set, can be achieved for similar experiments in the same

soil only by varying the explosive and holding gravity constant and then only

for strengthless materials. In any case, the results depend only on which other

variables are held constant and not on the choice of r-groups.

Lastly, Chabai's statement (1965) that material properties must be

scaled in order to preserve similarity is only true for constant gravity or for

media which are dominantly strain-rate dependent or have inherent size

properties.
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The confusion surrounding the application of rules based upon

similarity to nonsimilar experiments can perhaps be traced to misinterpretation

of Sedov 1(959), who was one of the first to recognize that gravity must be

included in the analysis. His hypothesis was based upon using an incomplete set

of variables: depri of h.;ial h, soil density P,, charge energy E and gravity

g. This leads to a single -group,

E cSEDOV 4 onstant, (43)
O l gh

and is equivalent to sayinq that all cratering experiments are similar.

Equation 43 appears to be the origin of the concept of quarter-root

scaling, even though Sednv did recognize that his hypothesis was only an

approximation which ignored "the effects of atmospheric pressure as well as the

effect of internal elastic forces in identical materials." He did not, however,

identify a dependence on Qv or Qe and his results are subsequently represented

by cases 2.3 and 3.3 in Table 3. (Sedov's first Russian edition appeared in

1943, the third Russian edition in 1954 and the fourth Russion edition in 1956.

Haskell (1955) appears to have independently identified the role of gravity in

cratering and proposed a gravity modeling law which was simply (LI/L 2 ) =

(WI I W2 ) 1 4 .)

In summary, similar experiments serve to verify understanding of the

phenomenon. This includes the confirmation of a complete and consistent set of

independent variables. In addition, similar experiments can be used to simulate

other events. For example, by the use of a centrifuge small amounts of

explosive can be used to simulate very large field events, as indicated by eq.

19c. However, it must be stressed that scaling rules based upon similarity need

not apply to nonsimilar experiments, which is often assumed in the literature.

Rather, as discussed, a set of nonsimilar experiments, such as the Nevada Test

Site (NTS) series, will result in specific scaling rules based upon soil

properties, explosive properties, and geometry of burst. The form of these

scaling rules (e.g., the yield dependence) is determined by the analysis used to

derive the relationships in Table 3.
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SECTION 4

APPLICATION OF STATISTICAL-DIMENSIONAL ANALYSIS TO CRATER DATA

4-1 STATISTICAL MODEL DEVELOPMENT

In the previous section, various dimensionless groups and their

restrictions on functional dependences were derived based upon plausible

physical assumptions consistent with the experimental observation. The choice

of which dimensionless groups are used in a particular application is theoret-

ically arbitrary. The choice is ultimately based upon their utility and

simplicity for explaining the data. A useful check on the dimensional analysis

is to generate pi-groups based upon a statistical analysis of the original

variables. A linear form consisting of a product of powers can be fitted to an

n-dimensional array of n variables. The resulting powers can then be checked

against the requirements of dimensional homogeneity providing a check that all

variables have been included.

In recent laboratory scale experimental programs using a centrifuge, it

was found that the mass set (eqs. 12a through 12d) provided a very good

correlation for explosive crater formation at zero depth of burial.

To compare different soil types, the assumption of a Mohr-Coulomb

strength theory was used to define the soil failure envelope for various stress

states (Schmidt and Holsapple, 1979). The shear strengths at failure consist of

two parts: a constant cohesion c and a contribution due to confining pressure p

and the angle of internal friction 4.

S = c + p tan (44)

Therefore, the generic strength Y, used to define w3 in eq. 12c, is now inter-

preted to be the cohesion c

c (45)

The dimensionless quantity o can be conveniently included as an independent

7r-qroup
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5 tan 0 (46)

For cratering at depth of burial d, an additional group is necessary

76 = d (P/W) 1 / 3  
(47)

The complete set of ir-groups to be used to statistically correlate the
various data are given as follows:

1 V0  
(48a)

_ g ( 1/3
2 e W (48b)
2 Q e

- c (48c)

3 6Qe

I4 T (48d)

T 5 tan €(48e)

6= d ()I/3 (48f)

The ultimate goal is then to determine the dependence of the response variable

I as a function of the five independent variables71 H it2 T4, '1 (49) F
2 7t 3' 4' 5' 76(

In principle, if there were in existence a multitude of craterinq data
for a common range of all the variables '2 through 16' a regression analysis on
all five independent variables could be made. In the absence of such a J
multitude of data, restricted functional dependences based upon physical ideas

or the limited experimental data are examined.
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Consider, in particular, the special case of cratering at zero depth of

burial (d.o.b.), 0 0. For each combination of explosive type and soil' 6

medium, ff 3 4 and T6 are fixed. Thus, for each such combination there should

be a single curve of 1I versus 72.

Figure 10 shows a series of such results, with each symbol type

representing a fixed soil-explosive combination. There are a total of 91 points
on the curve, including both laboratory and field shots. All explosives used in

these shots were some type of chemical high explosive.

While each set of points for a given soil-explosive combination defines

a particular trend, the entirety of points shows a very large spread. This

indicates a need to account for a dependence on each of 73, i4 and "6.

Now it seems plausible that the ratio of the stress magnitude generated
by the explosive to the strength of the material is an important physical

parameter. The stress or pressure due to the explosive at any point in the
media is determined by the Chapman-Jouget (C-J) pressure PCJ which is a

characteristic of the explosive used. In terms of the properties defined

previously, this C-J pressure is given by

P = 2(Y-l)6Qe (50)

where Y is the perfect gas constant of the explosive products and has about the

same value for all common explosives. Thus,

PCJ , 6Q e (51)

and the ratio of strength S to PCJ is given by

S n c + ( tana (52)..... ) + ( -)(tan€) (2P CJ 6Q e6Qe Qe
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At this point, a measure of the confining pressure p is needed. It is
cormmonly thought that the predominant cratering motions and material failures

occur after the passage of the strong shock wave. The residual confining
pressure is then the lithostatic pressure which at any depth h is equal to Pgh.

Using this measure of confining pressure in eq. 52 gives

Y + (gh)((tan) (53)

The three terms in parentheses can each be written in terms of the previously

defined w-groups (eqs. 48). The first is exactly 7r3 and the last is exactly
7r5 " The other can be rewritten using eq. 11 as

hn=P _t)(31WI f) A (54)
e eQ rW11'

Now it is necessary to pick a characteristic dimension h, compared to

the charge radius r. Clearly, an average or characteristic value for h should
be a value between the charge radius r and the final crater depth d, which is

typically on the order of a few times r. Consequently, for all experiments
considered, the product of terms in square brackets in eq. 54 is on the order of
unity and is henceforth dropped as inconsequential. With this simplification,

S 73 +  2 I6 (55)

This combination of ir-groups is useful in correlating cratering in
materials with differing strengths. In this form, the gravity-size parameter
2 occurs because of the dependence of strength on confining pressure propor-

tional to size and gravity. In addition, the gravity-size parameter is
important in its own right as a measure of the work done against gravity in

excavating the crater. For a cohesionless material ('3 = 0), only this latter
dependence should remain. A new parameter formed in the simplest way as a

linear sum
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IT = 3  + 72 I + k f2 (5 6 )
2 3 2 6 2

= 3 + f2 (f6 + k)

will reduce to a constant times 12 when there is no cohesion. Data and

auxiliary arguments indicate that for typical granular materials such as dry

sand with tan 0 on the order of 0.5 to 0.7, the term k should be smaller in

comparison. A value of 0.1 has been found to work as well as any other for the

present purposes. Consequently, a strength-gravity-size narameter is defined

i2 =  
I3 + 72 (f6 + 0.1) (57)

which will prove to be useful in correlating a range of data for various

strength materials.

A plot of f1 versus 2 is shown in Fig. 11. All of the data points now

fall near a single curve, which is a straight line on this log-log plot. The

combined strength-gravity-size parameter has worked exceptionally well as a

parameter to correlate the large differences between various strength materials.

The implications of the use of this i2 parameter are given elsewhere (Schmidt

and Holsapple, 1979) and will not be duplicated here.

The Mohr-Coulomb-failure envelopes were constructed from static

triaxial test data. Values for cohesion and angle of internal friction are
based directly upon this measured data where available. Some of the data shown

in Figs. 10 and 11 are from the I-G laboratory-scale experiments performed by

Piekutowski (1974, 1975, 1978). These shots were all in dry sand at various

densities. For these, no direct measurements of soil-strength properties for

the various densities were made. It is apparent that those at lower bulk

density have less angle of internal friction. The approach taken was to

determine what variation of 0 with P would best correlate the shots, using the

theory given above, to see if the results were reasonable. Fig. 12 shows the

final choice of 0 versus 0 for these dry-sand events. The results seem

plausible.
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Once all of the zero-d.o.b. shots were correlated with the effects of

varying media and explosive properties, it was possible to consider the

extension to all values of the d.o.b. n-group r6 " For the zero w6 shots, the

final correlation was fit by the curve

Ia

I1 W2  = constant (58)

where the best choice for a is about 0.47. The parameter 2 incorporates all

effects of w2, w3, '4V 7 5, and 7%, at least for the zero d.o.b. shots (w6 = 0).

If on the plot of rl versus W2' the events with various w6 are plotted

while there is increasing scatter, the various w6 lines are essentially parallel

to the r6 = 0 line on the log-log paper. Consequently, the correction for

non-zero w6 is assumed to be independent of W2' and a total functional form is

given by

il W 2 =C( 6 ) (59)

This indicates the usefulness of a plot of 7r W 2  versus w6 for all available

shots.

Such a curve is shown in Fig. 13. It is seen that all 226 points, most

of which overlay to the extent that they cannot be distinguished from one

another, fall very close to the curve shown. Only at large d.o.b. is there much

scatter. This is scatter from field shots in desert alluvium that were

presumably reproducibility tests for identical shot configurations. No

significantly better fit to the results of these 226 points can be found using

this model. (Note that Fig. 11 is a cross plot of this curve at iT6 = 0.)

To characterize the behavior near zero d.o.b., a range of w6 from -2.0

to +2.0 is shown separately on an expanded scale in Fig. 14.

Alternative results using the same 226 points which should be compared

with Fig. 14 are given in Figs. 15 and 16. Figure 15 is a plot of wl versus w6

and therefore has no correction for size, strength or gravity. These

correlation parameters are essentially those used by Dillon (1971) and others
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with little success. Figure 16 has the size correction, and is thus a plot of
LW 1 f2 versus it5, but there is no strength correction. These two figures

demonstrate that there is significant reduction of scatter by incorporating the

strength-gravity- size parameter discussed above.

4-2 DETAILS OF STATISTICAL-DIMENSIONAL ANALYSIS

The above arguments indicate that a reasonable functional form for a

model to statistically correlate the data is

7I F2 = J (6' 2' ) (60)

Furthermore, trial and error showed that the data are well modeled by taking the

log of the left-hand side to be a polynomial in the parameter W6"2 as

n

log (.1 ,2c) = ai N W26
)i  (61)

i=O

The fit shown in Fig. 13 was based on a 4th order polynomial that reduced to a

lower order polynomial as shown. Higher orders up to 9th order were considered

but discarded at this stage for simplicity since they consistently provided no

additional terms. This will be discussed below. Equation 61 may be rewritten

as.

n

log W I -ci log F2 + E a i (76 W2
B) (62)

i=O

Note that the equation is linear in a and ai and nonline ,r in 8. An alternative

was to try a nonlinear fit using these seven coefficients. However, a nonlinear

optimization rarely works well with that many parameters. For this reason an

iterative procedure was used. First, a nonlinear fit was used for the power
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coefficients a and B to obtain a value which minimizes the sum of squares. A

linear regression was then run on the a,. After finding the ai which further

decrease the sum of squares, the nonlinear optimization for the a and the B was

rerun. Since at each step this will decrease the sum of squares and since the

sum of squares is non-negative, after a finite number of tries one must be

within a reasonable distance of a local minimum. This was non-productive, how-

ever, due to a paucity of depth-of-burial data at large *2 Consequently, B
was set to zero since it proved to be a totally insensitive parameter for this

limited data set. This may not be the general case and should optimum
excavation again be of interest, more data should be collected. This could be

done inexpensively by using a centrifuge.

The model was simplified as much as possible using what is called a

stepwise-multiple-regression program. First it was assumed that the

fourth-order polynomial has only a constant term. At each step an additional

coefficient was added if the coefficient was statistically significant when

added to the prediction equation. When no more terms can an be added, the

program terminates. In practice it gave a simpler model than the whole

ninth-order polynomial, usually a cubic.

This program is illustrated by the following discussion on the output

from the linear and nonlinear programs used for this study. The discussion will

proceed referencing the specific printed computer output (Appendix A) which is

annotated with large capital letters near the right margin. These letters

correspond to the followin g paragraphs so labeled.

A. This is the start of the computer run. There are a total of 226

observations, and the total number of variables is 5 of which the 5th variable

is the dependent or response variable; that is, the variable to be predicted.

Variable 6 would consist of a dummy code always taking the value 1 which would

be the constant term. The constant term is always in the regression. At each

step a new variable will be allowed to enter the regression only if the added

amount of prediction is statistically significant at the 0.05 level. If after a

certain number of variables are added to the predictive equation and a variable

already in the regression turns out to be no longer statistically significant at

the 0.15 level, that variable will be dropped from the equation. That is, the
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variable dropped has a significant level less than 0.15 for adding to the

regression equation.

B. The output then gives the means, standard deviations and the matrix

of correlation coefficients between variables. Recall that the square of the

correlation coefficient between two variables tells how much of the variability

in one variable can be explained linearly with the other variable. The

correlation coefficient has a plus sign if the variables increase together or a

minus sign if they tend to go in the opposite direction.

C. The only variable added here is the variable 6, or the constant

term. Thus, there is no prediction beyond prediction with a constant. Note

that in this case the R2 value or the square of the multiple correlation

coefficient is zero. The prediction is as good as it can be using a constant.

At each step the variables in the equation will be printed out along with the

value of the coefficient ai. Note in this case, predicting only with a

constant, the coefficient is -0.693. This, of course, is the mean of the

response variable, as can be checked above the mean of variable 5 is -0.6935.

D. At this point p rtial-correlation coefficients are computed for the

variables not in this equation. The following describes the meaning of the

partial correlation coefficient. At each step in the stepwise regression, some

variables, even if only the constant term, will already have been added. A

partial correlation is the correlation between the dependent or response

variable and the variable noted after the effect of the other variables in the

prediction has already been taken out. To compute a partial correlation one

subtracts the best prediction for both the dependent variable and the variable

considered in terms of the variables already in the predictive equation. For

example, variable 3 has a partial correlation with the dependent variable

-0.163. In other words, after subtracting out the best prediction for the

dependent variable and variable 3 in terms of a constant predictor, (i.e., their

means) the amount of variability left in the dependent variable that can be

explained by variable 3 is a square of this number. The minus sign shows us that

the dependent variable tends to decrease as variable 3 increases.
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E. At each step, the variable that adds the most to the predictioi,

(provided it is statistically siqnificant) is chosen to enter the equation. In

this case, that variable is variable I. Note, comparinq C and E that the

standard deviaton of the residuals (that is, the square root of the sum of

squares of the residuals divided by N minus the number of predictors being used)

has decreased. In addition, the fraction of variability explained has increased

from 0.00 to 0.08.

Following the "multiple-correlation coefficient squared" is a table

called an analysis of variance (ANOVA) table. The total sum of squares is the

sum of the squares of the observed, dependent variable minus the mean. Each

stage can be broken up into two sum-of-squares groups: the sum of squares of

residuals, discussed earlier, and the rest of the sum of squares which is the

part explained by the regression equation. If the errors are normally

distributed, these sums of squares may be used to calculate a statistic which

has a distribution called an F distribution. To get the F distribution, each

sum of squares is divided by its degrees of freedom, or DF. This is a term

indicating how many dimensions of the data pcints, or how many data points,

effectively contribute to the variability expressed in the sum of squares.

Dividing the sum of squares by the degrees of freedom qives a mean square. The

ratio of the two mean squares is the F statistic. The first number of the

degrees of freedom is the numerator degrees-of-freedom and the second number the

denominator deqrees-of-freedom. The statistical significance of the overall

prediction can be found in the F distribution tables. Following this, we once

again have the coefficients ai , using the fit with a constant variable and

variable 1. To the right of that are the standard errors of the estimated

coefficients.

F. Proceeding to the next line, a new set of partial correlation

coefficients is given. Note the great change in going from D to F. The

correlation of variable 2 that was quite small before (in the range of -0.34) is

now quite large. This occurs because variable 1 contained most of the

predictive information compared to the remaining variables. Once variable I is

in the equation, the remaining variables are about equally effective in

explaining the remaining variability in the dependent variable.
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G. The program proceeds step by step increasing the value of multiple-

correlation coefficient squared. Occasionally, when a variable is added, a

partial correl"ion coefficient increases because the variables left may not
have predicted as well before, but, when added to the predictive ability of the

variable just included, they help predict more of the remaining variability.

H. This is the last step, which added variable 3. The

partial-correlation coefficients printed below G indicate there are no values

large enough to be statistically significant. At this point, the nrogram again

writes out the coefficients and the dispersion matrix of the coefficients. The

dispersion matrix gives the estimated variances and covariances for the errors

in the coefficients. This gives some idea of the precision with which the

coefficients are estimated. It also helps to establish confidence intervals for

various quantities estimated in terms of the parameters ai

I. Finally the success of the prediction can be examined, as weil as

some idea of the appropriateness of the normal model, by looking at the observed
and predicted values and their residual values, which, of course, are the

difference between the two. The residuals will be approximately normally
distributed if the model is correct. The far right-hand column gives the

standardized residuals, which are the residuals divided by their standard
deviation. Values greater than 2.0 or, at most, 3.0 in absolute value will not

tend to occur if the sample is normal. Such values indicate that the data has

outliers which should be examined.

J. This is an example of the output using the nonlinear-least-squares

program used in this study. The program proceeds iteratively to try to find a
minimum for the residual sum of squares. As can he seen from the two lines

designated "residual sum of squares," the estimated residual sum of squares has
decreased a little. The values for a and B have gone from starting points of

0.5 and 0.167 to 0.499 and 0.1667. The sum of squares changes very little

because of the accuracy of the initial starting point.
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4-3 ESTIMATING FUNCTIONS FROM THE ESTIMATED MODEL INCLUDING A MEASURE OF
THE ACCURACY OF PREDICTION

Suppose that we wish to compute some function of our parameter values,

called 1 up to 0 at a datapoint x. Let the function be called y as in eq. 63.

y = f( l, 02 ..., 0 x) (63)

We would like to estimate the value at the true parameter value. Let these be
00 through e . 14e want to estimate yo as given in eq. 64.

1 p

0 0 0

Yo = f( s 2 .... , p9 x) (64)

The estimated parameter values, 01 through 0 , will not be the true values, but,

for a large sample size, they will be close. We may expand the function f about
the true parameter values in a Taylor series, taking the first order terms.

Thie leads to the approximate equality of eq. 65 below.

p
Y o (e ) af (65)

i=l 1

If we square both sides of this equation and take the expected value we are led
to eq. 66. Since the method of maximum likelihood in this case gives estimates

whose expected value is the true value asymptotically, eq. 67 follows.

p p

E[(y - y0 )
2] = E[(i- 1) (j 0 )]j (66)

i=l j=l i

Std. Dev. y p p f Covariance (0 0.) (67)

i=l j=l 1 3
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Thus, we see that we may get some idea of the variability in the estimate y from

knowing the partial derivatives of the function we are estimating and the

covariance of the parameters estimated.

This may be usefully employed to estimate the variability of various

predicted quantities.
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SECTION 5

RESULTS

From dimensional analysis alone, limits were derived on functional

dependences for crater scaling laws. The general results shown in Table 3 are

anplicable to the assumptions put forth in Section 3-4. These conclusions

reinforce the hypothesis that scaling should be bounded by quarter-root and
cube-root laws. More importantly, independence of certain variables is

necessary to achieve these limits. For example, as shown by case 2.4,
quarter-root scaling can only be achieved if the crater volume is independent of

both material strength and source specific energy. This latter independence has

not been demonstrated.

Seven generalizations leading to the results in Table 3 follow from the

analysis and are given in the text following eq. 30. Modifications attributable

to the inclusion of a more general class of material behavior are also given and

affect only three of the previous conclusions.

These results are general and can be used directly to approximate

limiting behavior for different regimes of charge size and soil type. More

importantly, for this study, they provide the framework for selecting a

statistical model. By virtue of the dimensional analysis alone, the number of
independent variables has been reduced to a set of independent xr-groups three

less in number. This simplification allows fitting a statistical model in two
or, at most, three dimensions permitting straight-forward model fitting using

graphical representation for further visual evaluation.

Figures 10 through 16 show how the role of the different governing

variables can be determined. This leads to combinations of w-groups which
themselves are also new, more complex r-groups. By successive combination of

appropriate w-groups, using statistical model fitting at each step, the total
dependence upon all the independent physical variables can be included. In the

present example, for the apparent volume dependence, the procedure went as

follows.
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Non-dimensional volume I in a given material for constant d.o.b. was

observe- to be a simple function of a gravity-scaled-size parameter Yr2 ' The

variability due to different material types was then correlated using a

strength-gravity-parameter W2' again at constant d.o.b. as shown in Fig 11.

Achieving this for constant d.o.b. gave a useful form for a scaled

volume 71 W2 , which was then correlated with a nondimensional d.o.b. as shown
in Fig. 13. A qeneral nonlinear form given by eq. 61 was tried first. However,

with the large proportion of the near-surface data base used in this study, no I
significant improvement in the fit could be found, and B was set to zero,

resulting in the final fit shown in Figs. 13 and 14. This zero correlation for

was due to a paucity of large-yield-explosive data.

Before this more elaborate non-linear d.o.b. correlation (B 0) is

tried further, the compendium of data must be further expanded to include all

available large-yield data, especially at depth. This could include the nuclear

data which was deliberately omitted in this pilot study to avoid additional

variability due to source characteristics. Once a reliable model for cratering

with conventional explosives is determined, it can be used to determine

appropriate nuclear source characteristics. It is better to formulate

statistical models from high-quality, well-characterized data. This helps to

identify trends due to material strength, size, gravity, etc., which can then be

eliminated from the total variability. Then the nuclear data can be added

leaving only the source variability to be characterized.

Foremost within the scope of this pilot program, the objective was to

demonstrate the utility of a combined statistical-dimensional analysis technique
using a well-defined, high-quality data base. In many cases, the experimental

test conditions and soil-site surveys are not properly documented or require

extensive search to recover some of the older documents. This is a serious

problem for any statistical correlation of cratering data or for free-field

environment. The scope of this program did not allow a totally comprehensive

search, although a compendium of more than 1500 cratering events was cataloged

and put on computer cards. A summary of this compendium is qiven in Appendix B.

From this master compendium, selected data were chosen and added in consecutive
groups to the working compendium. This permitted a controlled expansion of the
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data base, allowing a careful second screening of less obvious inconsistencies,

due to source or soil descriptions in particular, at each step. The working

compendium consisted of 226 events at the end of the study. Another advantage

of working with a characteristic, but high quality subset of data is efficiency

of computer cost and turn-around while sorting out fundamental forms for the

statistical model.

The SDA methodology is an iterative approach utilizing simple

statistical models to determine interdependences of various i-groups. From

these, more complex n-groups are developed and, again, statistically correlated.

The advantages of this method are manyfold. The dimensional analysis not only

reduces the number of independent variables, but provides nondimensional forms

allowing direct comparison among grossly heterogenous data. This includes very

small-scale laboratory and field data, centrifuge data, large-scale field

events, and, ultimately nuclear data. Source-type variations can also be

compared on a common basis allowing the utilization of impact data as well as

high explosives to further formulate nuclear parameters (Schmidt and Holsapple,

1978b).

At all stages, physical models can be used to formulate the statistical

model. This avoids the common problem of using a high-order polynominal in each

physical variable--all represented simultaneously in an n-dimensional space. In

addition to precluding any simple graphical representation, confidence in

prediction is reduced due to excessive dependence on a large number of

parametric coefficients. In contrast, the SDA hybrid approach optimizes the

functional form of the scaling relationships, thus, minimizing the number of

free coefficients. This is done 'hrough consecutive recombination of variables

using arguments of dimensional analysis prior to each statistical-regression

analysis.
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SECTION 6

RECOMMENDATIONS

The SDA hybrid methodology can be applied to any physical problem. The
I

example developed in this pilot study is improved correlation of crater volume.

For craterinq and associated phenomena, the study should be extended to examine

and to improve correlation for crater radius and for crater depth. Preliminary

observations indicate that these two response variables are much more sensitive

to geological site and material properties than is the crater volume. Statis-

tical techniques beyond the scope of the present study that can be used to

improve and extend the utility of this method include the following.

6-1.1 More Predictive Variables

As more r-groups are considered, it becomes cumbersome to look at the

data. The software should be upgraded to allow for a variety of plots, such as

residuals and predicted values versus various quantities. This could be

accomplished using on-line-interactive graphics now available. Discussions of

various diagnostic plots are given by Fisher and vanBelle (1979). In addition

to more plotting methods, there are analytical means to test for outliers in the

residuals. These should be implemented for ease in locating data points that do

not appear to fit the model well. The normality assumption crucial to setting

up estimates of variability, such as confidence intervals, may also be examined

by test statistics and by looking at normal probability plots of the residuals.

6-1.2 Suitability Of Other Models

There are numerous other analytical models other than the models tested

to date that might be tried as fits to these data. As mentioned above, the

fewer the parameters in the model, the more confidence one has that the

extrapolation to other values will work. It is difficult to say precisely what

can be done in this area because model fitting is as much an art as a science

and therefore is best implemented through experience based upon physical models.
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6-1.3 Other Measures For Goodness Of Fit

A particular virtue of the current work is the emphasis upon using

similar experiments to relate small-scale laboratory data, high-gravity-
centrifuge data, and large-scale field data. This is done in terms of the

w-groups and has proved an efficient and valuable method of explaining varia-

bility in the data. Nevertheless, for certain purposes one may have an idea of

the loss associated with prediction in terms of data in original units rather

than in nondimensonal groups. The predictions could be transformed back to the

"original" spaces for examination. Such plots would be useful in assessing the

potential gains and possible need for additional centrifuge data.

While variability methods are precise if the residuals are normally

distributed and all of the model assumptions hold, one is usually not willing to

assume that the model holds precisely. Variability and accuracy of prediction

can be better estimated by using the so-called jackknife method or the

subsampling method. In the former, one data point at a time is held out and the

estimates for the model are found based upon the remaining data. The accuracy

of the prediction when using the point left out is then assessed. (There is a

gain in looking at the accuracy of the model for each case, because the point

left out does not influence the curve fit and would be expected to be more in

error.) The subsampling method, which takes much less computer time than the

jackknife method (which reruns the problem a number of times equal to the number

of datapoints), selects a subsample, such as leaving out a third of the data

points at random. The remaining points are then used to get a fit to the model

and the accuracy of prediction for the points left out is observed. These

approaches can be automated in the software.

It is particularly easy to do this for linear models where the

computations are not prohibitive. For nonlinear models, considerable computer

time is needed to implement such approaches extensively.

Finally, for some purpose one may be willing to assign a loss function

to inaccuracies in prediction. The loss function may or may not be the least-

squares model. If it does not correspond to least squares one may look for
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predictive methods more accurate for the loss function considered. In this case

the statistical background is less well developed and there would be a need to
work on some methodological developments.

6-2 APPLICATION TO FREE-FIELD ENVIRONMENTS

In addition to crater environment, an obvious and important extension

of the SDA methodology is the application to free-field ground motions. The

practical feasibility for horizontal displacement has been demonstrated by

Holsapple et al. (1978) using simple functional dependences given by Cooper and

Sauer (1977). Vertical displacement, velocity, acceleration, and stress as a

function of range, geology, and source are not all presently well correlated.

The advantaqe of the SPA approach is that it quantifies the statistical

variability common to field geologies for all stages in the model development.
This isolates the physical model from spurious data and allows a stepwise

construction of a complex statistical model which never exceeds two- or three-

dimeneional function space. As shown in the above model for crater volume, a

simple third-order polynomial with five free coefficients provided a very good

fit for 226 data points. More importantly, the simpler the fina model, the

more reliable are predictions based upon it. It also provides a high degree of

confidence in estimating the uncertainty due to unexplained variability of the

data.

This method is a systematic, stepwise approach incorporating physical,

mathematical and tatistical techniques to the development of scaling laws in
general. By iterating between the physical model and the statistical model

using dimensional analysis, one can always see the effect of modifications

incorporating additional variables or different mathematical forms.
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1

,1 APPENDIX B

SUMMARY OF CRATER RUPTURE DATA COMPENDIUM FOR SDA

ID NUMBER NUMBER NAME DATE SIZE TYPEOF SHOTS

I10-124 24 Russian Data 1955-1960 3.06-9.18 GM TNT
201-230 30 Gravity Effects on 1965 6 GR SQUIB(S-68)

Crater Formation
301 1 Johnie Boy 1962 .5 KT Nuclear
302-311 10 Cratering in Pacific 1952-1963 .0013-150 KT Nuclear

Atoll
401-434 34 Centrifuge Cratering 1976-1977 .22-.65 GM E106

.46 GM EIA(6)

.64 GM EIA(8)
1.7 GM PBN6

.4-4 GM PETN
501 1 Danny Boy 1962 .42 KT Nuclear
502 1 Mine Shaft 1969 100 ST TNT
503 1 Mine Ore 1968 100 ST TNT
504 1 Mine Under 1968 100 ST TNT
505 1 Burst Charge 1963 20 ST TNT
506 1 Mine Throw I 1971 118 ST ANFO
507-509 3 Surface Charge Explos. 1959-1961 5-100 ST TNT
510-587 78 Panama Canal Series 1946-1947 8-200 LB TNT
588-591 4 Pre-Gondola I 1966 18.2 ST NM
592-594 3 Diamond Ore 1973 10 ST NM
595-617 23 Sandia I, It 1958-1959 256 LB TNT
618-635 18 Little Ditch 1957-1958 2 LB TNT
636-648 13 Single Charge 1966-1969 64 LB TNT
649 1 Surface Burst 1961 100 ST TNT
650-656 7 Pre-Buggy I 1962-1963 1000 LB NM
657-680 24 Project Mole 1952-1954 256 LB TNT
681-702 22 Project Toboggan 1961 8 LB TNT
703 1 Shooter 1960 500 ST TNT
704-706 3 Project Stagecoach 1960 20 ST TNT
707-710 4 Calibration Series 1966 909 LB NM
711 1 Pre-Schooner II 1965 85.5 ST NM
712-720 9 Pre-Mine Throw IV 1973-1974 256-1000 LB TNT

.5-102 ST NM
721-730 10 Operation Buckboard 1964 1000 LB TNT
731-739 9 DRES (SES Canada) 1959-1963 .25-500 ST TNT
740-802 63 Bureau of Mines 1956 .9-20.8 LB Dynamite
803 1 Sedan 1962 100 KT Nuclear
804 1 Schooner 1968 35 KT Nuclear
805 1 Palanquin 1965 4.3 KT Nuclear
836 1 Cabriolet 1968 2.3 KT Nuclear
807-809 3 Flat Top I, 11, III 1964 20 ST TNT
810 1 Jangle S 1951 1.2 KT Nuclear
811 1 Jangle U 1951 1.2 KT Nuclear
812 1 Teapot Ess 1955 1.2 KT Nuclear
813 1 Neptune 1954 115 KT Nuclear
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_R NUMBER

ID NUMBER OF SHOTS NAME DATE SIZE TYPE

814-816 3 Distant Plain 1967 20-100 ST TNT
817-826 I1 Mine Shaft Calibration 1968 .5 ST TNT

Series
827-830 4 Pre-Schooner 1964 20 ST NM
831-833 3 Operation Buckhoard 1960 20 ST TNT
834 1 Snow Ball 1964 500 ST TNT
835 1 Prairie Flat 1968 500 ST TNT
836-857 22 Cratering in Loess and 1956-1957 .5-1 LB C-4

Clay
858 1 Dial Pack 1970 500 ST TNT
859-881 23 Air Vent Series 1963-1964 .032-20 ST TNT
882-893 12 Operation Jangle 1951 .108-20 ST TNT

176 LB Pentolite
894-902 9 Multiple Cratering 1965 4000 LB TNT
903-968 66 Underground Explosions 1949-1951 8-2560 LB TNT
969-982 14 Soil Rock Interface 1957-1958 20 ST C-4

54 LB Dynamite
256 LB TNT983-986 4 Stemming Effects - HE 1957 20 ST C-4

Charges
987-1008 21 Stemming Underground 1957 20 ST C-4

Explosions
1009-1049 41 Partially Conf. Expl. 1955 20 ST C-4

54 LB Dynamite050 1 Russian Event 1961 O110000 ST Nuclear
1051-1069 19 Ammonium Nitrate 50 LB AN

Cratering 50 LB TNT1070-1081 12 Cratering in Sand 1962 4 LB TNT
1082-1102 21 WES Stem. Series 1957-1960 10 LB TNT
1103-1225 123 Colorado School of 1948-1949 .75-239 LB C-4

Mines (Underground 1.12-1080 LB TNT
Explosions)

1226-1262 37 Spherical Charges 1953 .96-5.27 LB Pentolite
1263-1298 35 Fort Churchill Tests 1956 .75-14.89 LB C-4, C-3
1299-1379 81 Fort Churchill Charges 1957 2.65 LB Pentolite

1.98 LB C-4, C-31380-1386 7 Project Trinidad 1973 2000 LB AN
1387-1397 11 Shell Explosions 1971 4-16 LB TNT
1398-1412 15 Railroad Voln, Program 1958 54-540 LB TNT
1413-1431 19 Project Zulu 1968 .75 LB C-4, C-3
1432-1436 6 Middle Gust I, II, III, 1971-1972 20-100 ST TNT

IV, V
1437-1439 3 Mixed Co. I, II, III 1972 20-500 ST TNT
1440-1458 19 Middle Gust-Mixed Co. 1971-1972 1000 LB TNT
1459-1463 5 Project ESSEX I 1973 1000 LB TNT
1464-1469 6 Cratering in Playa 1970-1971 8,1000 LB TNT
1470-1479 10 Cratering in Desert 1958-1959 256 LB TNT

Alluvium
9001-9404 404 A. J. Piekutowskl-Sand 1977 1.7 GM PBN6

.4-.5 GM PETN
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