
AD-A090 192 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION Sc--ETC F/ 6 /92
PARALLEL RECORD-SORTING METHODS FOR HARDWARE REALIZATION.U U

JUL 80 0 K HSIAO, M J MENON NODODN 75-C 0573

UNCLASLSIF lEO OU-C ISRCTR80-7

TECHNICAL REPORT SERIES

LEV~F
I,-

DIrIUTION ST .EMEM A

Approved for puAc release;
: OCT I. 4 1980 D, uo :.t

CIrI]sPLITEB i
I NFi ,g~TJl N

"),,.SCIE[NeE
i' FIHE EJFIlRCH C E TERi

~THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

.....to U., .:- -. . ,

(OSU-CISRC-TR-80-7) I

Parallel Record-Sorting Methods
for

Hardware Realization

by

David K. Hsiao & M. Jaishankar Menon

'4T14 980'

Work Performed Under
Contract N00014-75-C-0573
Office of Navial Research

Computer and Information Science Research Center
The Ohio State University

-* Columbus, Ohio 43210
July 1980

1 A
ArOv~d for public reose;

'IO
S7J

SlEffRIT"YFASSIFICATION Of THIS PAGE (When Does Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. Mntr (snd Subt..... S. TYPE OF REPORT & PERIOD COVERED

1 Paralle1 Record-sorting Methods for ia e t
ae0 Techniclept

7. AUTH4OR(#) S OTATO RN UBRs* \ ~~M. ais ankar/Menon iiIZ -i:* p5 7

Office of Naval Research AE OKUI iUBR

Infomatin Sstem Proram784115-Al

11. DOSTROIBUNG STATE MEN DtDsRESS

Scetii OfficerIN AGENC NewM Y"Donrklin Arfie S EUIYCAS.(f(ieot

ONR BRO ONR 437 f;CST 7 A
- -ACO ONR, BostonA

NRL 2627 ONR, Chicago J K .

ONR 0121P ONR, Pasadena
1.DISTRIB3UTION STATEMENT (of the abstract entered In Block 20, It different from Report)

I8. SUPPLEMENTARY NOTES

19 KEY WOROS (Continuo or revere side if neeney and identify by block number)

Database computer, parallel sorting methods, record ordering, sort on value.
post processing, post processing controller, odd-even sort, Stone sort,
mi mmtm sort.

0\X TRACT 1 ContImu" on ,avee aide It necessary and Identify h i x block number!
,/In this report, we demonstrate methods for implementing a fast hardware

sorter in Dec. Given the trend towards cheaper processors and block-oriented
access memories, we are especially interested In methods that utilize multiple
processors with large-capacity block-oriented access memories in a parallel
fashion.

Many parallel sorting methods are already available. Most of these methods

DD i Al 1 1473

- 1 ~* SECURITY CLASSIFICATION OF THIS PAGKIOemn Data E antIo)

be sorted in separate batches and then merged. Batching and merging defeats the
ST intent of parallelism for high performance. Our methods, therefore, attempt to

use P processors to sort more than P records without the need for batching and
merging. Furthermore, our methods employ block-oriented access memories (such
as magentic bubbles and charge-coupled devices).

Three sorting methods are described in this report. The first one, called
the odd-even sort, uses P processors, each of which utilizes its own block-accesE
memory to accomodate M records and has two processor-to-processor inter-
connections. This method sorts MP records in O(M log M + MP) time. There is

4 -no restriction on either P or M. More importantly, since each processor needs
to be connected to only two others, we can increase the number of processors in
the sorter without having to increase the number of'connections per processor.

The second method, called the modified Stone sort, uses P processors with "
block-access memory to sort MP records in O(M log M + H log 2p) time. However,'
P must be a power of two. This method also requires that each processor be
connected to a maximum of two others, one connection being a one-way link and
the other connection being a two-way link.

Fin fly, we discuss a specialized minimum-time sort method. This method
also uses P processors to sort HP records and completes the sorting in
O(M log M) time, but it is used only for specific values of P. In other words,
the method is individually tailored for a given number of processors. Once the
design is completed, the sorter will not work for different values of P. Al-
though the method so tailored is optimal for given values of P, the architecture
of these types of hardware sorters cannot be expanded, since the number of
processors is fixed for the original design and optimization.

In all the above methods, the number of records that can be sorted in a
batch is restricted only by the memory size of each processor and not by the
number of processors.

Acceir

'Dirt

VAL

SSCURITY CLASSIFICATION OF THIS PAGEIoIhn Data Entelw)

j PREFACE

This work was supported by contract N00014-75-C-0573 from the

- Office of Naval Research to Dr. David K. Hsiao, Professor of Computer

-- and Information Science, and conducted at the Computer and Information

.4 Science Research Center of The Ohio State University. The Computer

- .and Information Science Research Center of The Ohio State University

is an interdisciplinary research organization which consists of the

staff, graduate students and faculty of many University departments

and laboratories. This report is based on research accomplished in

cooperation with the Department of Computer and Information Science.

The research contract was administered and monitored by The Ohio
State University Research Foundation.

i

-

TABLE OF CONTENTS

1. BACKGROUND................... 1

2. OBJECTIVES 4

3. TERMINOLOGY AND PROBLEM STATEMENT. 4

*-4. THE PRINCIPLE OF OPERATION 6

5. METHOD I- THE ODD-EVEN SORT. 10

**5.1 An Illustration. 12
5.2 The Algorithm. 12

A. The Procedure Executed by the Post Processing
* Controller............ 19

B. Procedures Executed by a Procesor.. 19

5.3 Interconnection of Processors. 21
5.4 Analysis of Time Complexity. 21
5.5 Analysis of Processor Utilization. 23

6. METHOD II - THE MODIFIED STONE SORT 24

6.1 An Illustration. 26
6.2 The Algorithm. 26

A. The Procedure Executed by the Post Processing
Controller........... 32

B. Procedures Executed by a*Procesor.. 32

6.3 Interconnection of Processors. 33
6.4 Analysis of Time Complexity. 35
6.5 Analysis of Processor Utilization. 37

*7. METHOD III - THE SPECIALIZED MINIMUM-TIME SORT. 37

7.1 Motivation for Specialization. 37
7.2 Analysis of Time Complexity and Comparison with

Others 39
7.3 Processor Utilization and Lmitation...........39

8. CONCLUSIONS 40

REFERENCES. 41

1. BACKGROUND

In the previous technical reports and papers [1-10], we presented

various aspects of the design of a database computer known as DBC. In

this report, we intend to demonstrate three methods for implementing a

fast hardware sorter in DBC. The motivation for using a fast hardware

sorter in DBC and for introducing an early method is described in [8].

We shall not repeat the motivation here. The comparison of these methods

with the early one, however, constitutes a part of this report.

The architecture of DBC is shown in Figure 1. We are especially

interested in the portion of the security filter processor (SFP) known

as the post processor (PP). The post processor of DBC has the capability

for performing the relational join operation and for computing set func-

tions (maximum, minimum, average, counting and summation) [9]. Addition-

ally, it is capable of sorting records. Sorting methods which use a

single processor to sort N records have long been available. Some of

these methods employ random-access memories and others employ sequential-

access memories. Given the present trend towards charge-coupled devices

and magnetic bubble memories which are essentially block-oriented

sequential-access memories (or block-access memories), we are more

interested in sorting methods which use block-access memory. One such

method which commonly uses a single processor and a linear amount of

sequential memory, i.e., O(N) memory, to sort N elements in O(N log N)

time, is an adaptation of the merge-sort method of Knuth [11, pp. 159-

168].

It is becoming increasingly obvious that the cost of processors will

continue to fall in the future. Given this trend, it is natural that we

should try to exploit fairly cheap processors by designing a sorting

method that uses many parallel processors. Such sorting methods are

already available [8, 12, 13, 14, 15, 16, 17]. All these methods, with

the exception of [8, 16, 17], use P processors to sort P records. There-

fore, even though these methods are fast, they suffer from the fact that

groups of records larger than P in number will have to be sorted in sepa-

rate batches of P records and then be merged. Thus, these methods are

processor limited, i.e., the number of records that can be sorted is

limited by the number of processors.

The methods of [8, 16, 17] all use P processors, each with O(M)

- IN FORMATION PATH -2-
- - -CONTROL PATH

DBCCP: Data Base
Command

Control
Processor

Smi SmK XU: Keyword

Transform
f Unit

1 LOOP KXU SM: Stuur
Memory

SMIP: Structure
Memory

Ile Inf ormation
Processor

FROM HOST COMPUTERIne
.4 DBCCP XU: Trnslio

TO HOST COMPUTER Trnstio

/ \MM, Mass
/ Memory

/SFP: Security
L F-1 FIlter

/ Processor

/SCU: Security
/~ and

/DATA Clustering
Unit

LO PPP: Post
Processor

Figure 1. The Architecture of DEC

-3-

sequential memory, to sort MP records. The method of [161 uses P pro-

cessors, each with sequential memory of size M, to sort MP records in

O(M 2P) time. Also, the memory attached to a processor is a single loop

of magnetic bubble or charge-coupled device memory. Thus, M is restricted

by the size of a single loop which would probably be small. Hence, a

large number of records cannot be sorted in a batch.

The methods of [17] use P processors, each with sequential memory of

size 5M, to sort MP records in O(M log M) time. What makes these methods

unattractive is the need for a large amount of memory. This, even though

each processor memory holds only M records, it needs an additional 4M

memory as workspace. The amount of workspace needed may be reduced to 3M

with clever coding, though the ;.uthors do not point this out.

The method of [8] uses P processors, each with sequential memory of

size 2M, to sort MP records in O(M log M) time. However, this method has

the following limitations:

(1) As many as log P (all logarithms in this report are of base two)

direct interconnections are needed between processors. That is,

each processor needs to be connected directly to log P others.

(2) Once the number of processors, i.e., P is chosen, the hardware

structure is not extensible. Let us elaborate this limitation.

Consider that a hardware sorter is built using 16 parallel pro-

cessors, where each processor is connected directly to four,

i.e., log 16, others. Therefore, each processor memory is

designed to have four ports in order that it may be connected

to four other processors. Now, consider that, at a later time,

we wish to have 32 parallel processors in the hardware sorter.

Now, each processor must be connected to five other processors.

However, if there are not enough ports in the processor memories,

such interconnections are not possible.

(3) The -.umber of processors that need to be used in this method

must be a power of two.

The methods which we will describe in this report all use P processors,

each with block-access memory of size 2M, to sort MP records in O(M log M)

time. Thus, these methods are not processor limited. Furthermore, some or

all of the three limitations listed above are eliminated from these methods.

-' -_ _ __--- ._

-4-

2. OBJECTIVES

Our objectives are therefore to design a sorting method for hardware

realization using P parallel processors with the following properties:

(1) P, i.e., the number of processors, need not be a power of two.

(2) It can sort groups of records larger than P in number without

the need to sort them in separate batches for subsequent merges.

(3) It uses only block-access memory and does not need random-access

memory.

(4) It uses fewer than log P direct connections per processor.

(5) It has an extensible hardware structure.

We propose three hardware schemes in the subsequent sections of this

report. The first method meets all the five objectives listed above, but

is slower than the method suggested in [8]. The second method meets all

but the first objective listed above and is as fast as the method suggested

in [8]. The third method meets all but the last objective and is faster

than the other two methods.

3. TERMINOLOGY AND PROBLEM STATEMENT

To facilitate our discussion, we introduce some terminology. All the

sorting methods suggested in this report use P parallel processors, where

each processor has attached to it enough memory to accomodate M records.

An additional workspace of size M is needed per processor, but we will not

repeat this point anymore since it is not pertinent to the presentation of

the algorithms. Altogether there are MP records. The processors are

numbered 0 through (P-l) and the M records in Processor i's memory for

O < i f (P-l) are named R[i,l], R[i,2],..., R[i,M]. Figure 2 depicts the

record layout scheme. We make the simplifying assumption that records are

of fixed-length. Furthermore, let us suppose that one block of memory can

hold exactly one record. Thus, each processor's memory has M blocks in it

and there are MP blocks altogether. Each record is composed of a number of

attribute-value pairs. Whenever a record set is to be sorted, it is meant

that the records of the set are ordered on the basis of increasing (or de-

creasing) values of a certain attribute of the set. Thus, to sort a record

set, an attribute of the set must be designated first as the sort attribute.

The sort values are those attribute values of the sort attribute. The number

of sort values (not all of them being distinct) is equal to the cardinality

-5-

A7 ecord

P [0,11 R[0,21 .R 0 R[041

1 R[1,11 R[1,21

P-i R[2,13lIR[2-,21

R(P-1,111 R-P,1'2

Processor Block-access nemorv

FIPF 2. Record Layoiit Schere '-,hen There. Are
P Processors and M 'Records 'Per
Processor

-6-

of the record set. For example, in Figure 3, we illustrate a set of three

records each of which consists of attribute-values on rank, age, salary,

etc. We may sort these records on a number of attributes. If the chosen

sort attribute is Rank, then we may represent the records with their rank

values, namely, 5 for Record 1, 3 for Record 2 and 9 for Record 3. We do

not have to show other attribute values of the records in representation,

because these other attribute values are not in consideration. (See

Figure 3 again). Upon sorting, Record 1 should precede Record 3 and

follow Record 2, since this is the sequence of the sort values. On the

other hand, if we choose either Age or Salary as the sort attribute, the

sequence of sorted records will be different. More specifically, Record

1 will be last and Record 3 will be first in the sequence. This sequence

of records is dictated by either ages or salaries. (see Figure 3 once more).

This example shows that we represent records with their sort values. For

simplicity, we eliminate the other attribute values. In the following

sections, we shall use positive integers to represent the sort values of

the records. A large rectangle represents the memory attached to a processor

and a small rectangle a memory block. The integer within the block represents

a record. Furthermore, we shall use circles to denote the processors. In

Figure 4, there are two processors, namely, Processor 0 and Processor 1.

Their corresponding block-access memories are represented by rectangular box-

es. For example, initially there are five records in Processor O's memory

and another five records in Processor l's memory (one record to a block).

The sort values of the records in Processor O's memory are 3, 9, 8, 2 and 17

whereas the sort values of the records in Processor l's memory are 6, 2, 1,

3 and 5.

4. PRINCIPLE OF OPERATION

We would like to sort the 2M records in two processor memories on a

certain sort attribute in such a way that all M records that appear in

Processor O's memory have their sort values lower than any sort value of

the M records that appear in Processor l's memory. We shall now detail

the method.

First, find the largest record (i.e., the record with the largest sort

value for the sort attribute of those records in the same memory) in Pro-

cessor O's memory and also find the smallest record (i.e., the record with

smallest sort value for the sort attribute) in Processor l's memory. If

-7-

Same Records Represented by Different
Actual Records Sort Values
with Record #s
attached atthe upper left Sort Values on Sort Values on j Sort Values on

corners Rank Age Salary

1 Rank 5

Age 60

Salary 30,000 5 60 30,000

Job Professor

2 Rank 3

Age 35

Salary 21,000 3 35 21,000

Job Analyst

3 Rank 9

- Age 28

i Salary 18,500 9 28 18,500

Job ClerkI•

Prior to any sorting

I
FIGURE 3. Representing Records

by Sort Values.

I 4.
I T7

T-q7

A Block Access Memory

Processorj - -Note: A two-processor system.

Each processor has
0 - 3 8 2 17 enough block-access

3 Q 8 2memory to hold M records.
- :- - In this case, M= 5. Re-

cords are represented by

16 2 1 3 5 their sort values alone.
Other information of the
records are removed for
the sake of simplicity.

Step I
(localized sort within
respective memories)

0 2 3 91

O 6513 2 1

Step 2
(record-by-record comparison and
interchange between memories)

O2 3 3 2 1

1 6 5 8 9 17

FIrURF 4. A Two-Step Exchange Process

-9-

the largest record in Processor O's memory is less than or equal to the

smallest record in Processor l's memory, there is no need to exchange.

Otherwise, we exchange the record in one memory with the record in the

other memory. Next, find the second largest record in Processor O's

memory and the second smallest record in Processor l's memory and compare

the sort attributes of the two records. Once again, if the second largest

record in Processor O's memory is less than or equal to the second smallest

record in Processor l's memory, there is no need to exchange. Otherwise,

the records are exchanged. The process continues until no more exchanging

is needed. Thus, all M records in Processor O's memory are smaller in

sort values than the sort values of the M records in Processor l's memory.

The entire process of exchanging records may be done as follows.

First, Processor 0 sorts .the records in its own memory in ascending order

of the sort values. At the same time, Processor 1 sorts the records in

its own memory in descending order of the sort values. Now, Processors 0

and 1 compare and exchange, if necessary, corresponding records, i.e., the

first record of Processor 0 (the record with smallest sort value in Pro-

cessor O's memory) with the first record of Processor 1 (the record with

largest sort value in Processor l's memory), the second record of Processor

0 (the record with the second smallest sort value in Processor O's memory)

with the second record of Processor I (the record with the second largest

sort value in Processor l's memory), and so on. At the end of the exchange

process, the sort values of all the M records in Processor O's memory are

smaller than any sort value of the M records in Processor l's memory. The

aforementioned steps are illustrated in Figure 4. The idea is based on the

discovery by Alekseyev [181 that in order to select the largest t elements

out of 2t elements < xl, x2 ,..., x2 t >, we may first sort < xl, x2 ,...,x t >

and then sort < xt +i, xt+ 2 '''.' x2 t > and then compare and interchange x1

with x2 t, x2 with x 2t_ i'.' xt with xt + l. After records are exchanged

between the memories in the manner described above, let each processor do

a localized sort of records in its own memory on the basis of the sort values.

Now all 2M records will have been sorted on the basis of the sort values.

We now summarize the above discussion by adopting the following nota-

tion.

EXCHANGE [i,j] - This means the exchange of the records in Processors i and

li_ _ __ _ _ _

-10-

j in such a way that the smallest M records are in

Processor i and the largest M records are in Processor

J. This, as we know, is done in the following manner.

First, Processor i sorts its own records in ascending

order. At the same time, Processor j sorts its own re-

cords in descending order. Now Processors i and j com-

pare corresponding records and the smaller records are

placed in Processor i and the larger records in Processor

J.

We note, that, at the end of EXCHANGE [ij], we have a bitonic se-

quence in Processor i's memory and a bitonic sequence in Processor j's

memory.

A sequence S = (Sit S2 ... S m) is bitonic if there is an index k,

where I < k < m such that either

(1) Sl I S2 ... ' Sk - Sk+l ... Sm or

(2) S1 > S2
> ... > Sk S Sk < S. k+i ... m

The process EXCHANGE [0,1] has been shown, as a two-step process, in

Figure 4. In Figure 5, the effect of EXCHANGE [0,1] has resulted in two

bitonic sequences. The index record in Processor O's memory is the record

having the sort value 3. The index record in Processor l's memory is the

record having the sort value 5.

Let us now generalize the two processor-memory pairs to a sorter with

P processor-memory pairs. The sorter uses Processors 0, 1, 2, ..., (P-l)

to sort MP records (where M is the number of records that can be stored in

a processor's memory) in such a way that the smallest M records are in

Processor 0, the second smallest M records are in Processor 1, and so on.

This is accomplished by a number of EXCHANGE fi, JI's. Each processor is

then to sort the records in its own memory. Thus the entire MP records

are in sort order.

The sorting methods suggested in the following sections are varia-

tions of the above method. They all use P parallel processors,.where

each processor has enough memory to accomodate M records. None of these

methods are processor limited.

5. METHOD I - THE ODD-EVEN SORT

The method is a generalization of the odd-even transposition sort

.... V

-11-

Block Access Memory
Processor

3 9 8 2 17

6 2 1 3 5

I EXC1ANE 0 0, 1 1

2 3 3 2 1

6 5 8 9 17

Localized Sort

2 3 3

5 6 8 9 17

Figure 5. Sorting 10 Records Using Two Processor-Memory Pairs.

L u . l _ lmm_ _...... .. _ __

-12-

(11, pg. 2411 and is illustrated in Figure 6, which needs more explanation.

Consider, for illustration, the case where P, the number of the processors,

is 4. We may imagine that the records enter at the left side of the dia-

*gram. The records in the memory attached to Processor 0 enter at the line

marked 0, the records in the memory attached to Processor 1 enter at the

line marked 1, and so on. The records then go through four steps as shown

in the figure, and emerge at the right end. The vertical lines in each

step, represent an EXCHANGE operation. A vertical line from i to j re-

presents EXCHANGE [i, J]. The four steps are as follows. The first step

consists of parallel operations of EXCHANGE [0, 1] and EXCHANGE [2, 3].

The second step consists of an EXCHANGE [1, 2). The third step is similar

to the first step, and the fourth step is similar to the second step.

Finally, each processor performs a localized sort (this is not shown in

the figure). Looking at Figure 6, we see that the number of steps is

exactly equal to the number of processors used. That is, the method uses

P steps followed by a final stage where each processor performs a localized

sort.

5.1 An Illustration

The manner in which the P parallel processors sort MP records is

illustrated by means of an example developed in Figure 7. In this case,

P - 4 and M = 5. The initial configuration of records (represented by sort

values alone) is shown in Figure 7a. Four steps plus a localized sort

are involved in the process.

Step 1: EXCHANGE [0,1], EXCHANGE [2,3]

Step 2: EXCHANGE [1,2] (See Figure 7b.)

Step 3: EXCHANGE [0,1], EXCHANGE (2,3] (See Figure 7c.)

Step 4: EXCHANGE [1,21 (See Figure 7d.)

Step 5: Each processor sorts its own records in non-decreasing order.

(See Figure 7e.)

5.2 The Algorithm

- The parallel odd-even sorting algorithm is coordinated by a post

processing controller (PPC). It broadcasts commands to all the pro-

cessors. The following variables are used in the procedures that con-

womb

EXCHANGE fi,.j] is represented

Processor #
as__

Step I Step 2 Step 3 Sten 4

case where P-= 4

Processor #

2I

3 I____
4

case where P = 5

Processor #*

o

2
3 1 -- __
4 1- 7 1f

case where P- -6

rIGURE 6. The ODD-EVIEN Sort

Processor Memory

1. Initial configuration
03 9 8 2 17 of records are repre-

- -- - -sented by sort values
alone.

1 ~~~ 6 . Each FXCFAN(W (i,j]

- -- -is accomplished by

28 12 0 19 5 parallel operations
of localized sort In

- -- - -i-th and I-t meo
3 5 9 13 4 2 ries and by record-

by-record comparison
- - -and interchange be-

I tween i-th and j-th

I memories.
(Localized Sort)

o2 3 8 9 17

1 - 6 5 3 2 1

0 50 21

313 9 5 j4

(Record-by-record
comparison and interchange)

16 5 8 9 17

Q o 0 5 5 4 2

31319 8 12 19

FIGURE 7a. Step 1: EXCHANGE 10,1] and FXC!HANrF (2,31

-15-

Processor Memory

2 3 3 2 1

1 - 6 5 8 9 17

2 0 5 5 4 2

13 9 8 E 19i1

ILocalized sort of

processors
1 and 2

2 3 3 2 1

- 5 6 8 9 17

-- 5 54 2 0

5 5

3 13 9 8 1l2119

I Record-by-record
comparison and interchanges
I between processors 1 and 2

FIURE 7b. Step 2: EXCHANGE [1,2]

0- 1 _

-16-

Processor Memory

402
3 3 2 1

4 5 5 4 2 0

1 15 6 8 9 17

13 9 8 12)19

Localized Sort

1 2 2 3 3

5542 0

19 13 121

Record-by-record
Icomparison and interchange

®13]

1 - 5 5 4

0 it9z1 12J9 17

FIGURE 7c. Step 3: EXCHANGE [0,1] and EXCHANGE [2,3]

-17-

Processor Memory

0 2 2 2 0

5 5 4 3 3

2 - 5 6 8 9 8

- 19 13 12 9 17

Localized Sort of
Processors 1 and 2, respectively

1 3 3 4 5 5

O- 9 8 8 6 5

0 19 13 12 9 17

I 7FIGURE 7d. Step 4: EXCHANGE (1,2]

-I -

r: L. -WW

-18-

Processor Memory

0 1 2 2 2 0

3 3 4 5 5

29 8 8 6 5

3 9 13177 17

Localized Sort

'I1-0 12 2 2

1 334 5 5

5 6 8 8 9

~:I~li-9 12 13 17 19

3 FIGURE 7e. Final step: Localized Sort in non-decreasing order

-19-

stitute the parallel sorting algorithm. P is the number of processors,

M is the number of records per processor and Step is a variable for the

step number.

A. The Procedure Executed by the Post Processing Controller

Step = 1
while Step - P
do

Broadcast ('Exchange', Step)
Step = Step + 1

end
Broadcast ('localized sort')

In the algorithm, there are P exchanges and one localized sort. When the

PPC broadcasts an Exchange command to the P processors, it includes, as

argument, the step number.

B. Procedures Executed by a Processor

Processor i executes an 'Exchange' command as follows.

Procedure Exchange (Step) /* as executed by Processor i */
If Step is even and i = 0 then stop
If Step is even and P is even and i = P-1 then stop
If Step is odd and P is odd and i = P-I then stop
If Step is odd then

do if i is even then j=i+l else j=i-i
end

If Step is even then
do if i is even then j=i-l else j=i+l
end

If j = i+l then
do sort all M records in non-decreasing order

Send (j)
end

else
do sort all M records in non-increasing order

Receive (J)
end

end Procedure xchange

The procedures Send and Receive are defined as follows.

Procedure Send (j) /* as executed by Processor i */
Count = 1 /* count of records in Processor i or j */
while Count f M

I
I

. _ _ " " , * ,

-20-

do send the next record R[i, Count] to Processor j
wait for the return record from j

call this record R[i, Count]
Count = Count + 1

end
end Procedure Send

Procedure Receive (j) /* as executed by Processor i */
Count = 1
while Count : M
do wait for the next record R[j, Count] from Processor j

compare this record with own next record R[i, Count]
If the sort value of R[i, Count] is smaller, then

interchange R[i, Count] with R[j, Count]
send R[j, Count] back to Processor j

Count = Count + 1
end

end Procedure Receive

Whenever Processors i and j need to exchange records, then the one

which ought to keep the smaller records executes its Send procedure after

sorting its own records in non-decreasing order. The other processor

executes its Receive procedure after sorting its own records in non-

increasing order. If Processor i ought to keep the smaller records, then

it sends its records, one at a time, to Processor j. Processor j then

keeps the bigger records (after record by record comparison) and sends the

smaller ones back to Processor i.

Procedure Localized Sort
Sort all M records in non-decreasing oroer

end Procedure Localized Sort

This is the procedure executed by each processor in response to the

'localized sort' command from the PPC. Localized sorting is also needed

during the execution of the Exchange procedure. Localized sorting in the

first step of the algorithm may be accomplished by using the merge-sort

method in [11, pages 159-168]. This method requires 2M memory to sort M

records. Localized sorting during any other step involves sorting a

bitonic sequence, and this can be done by simply merging records starting

at the two ends.

- .

-21-

5.3 Interconnection of Processors

It is easy to see that, in this algorithm, each Processor i, for

1 5 1 5 P-?, interacts directly only with Processors i+l and i-1. Pro-

cessor 0 only interacts with Processor 1, and Processor P-1 interacts

only with Processor P-2. Therefore, for each processor, we need only

connect directly to a maximum of two other processors, the one 'in front

of' it, and the one 'behind' it. Figure 8 shows the nature of inter-

connections for various numbers of processors. We note, at this point,

that there is no restriction on the number of processors, i.e., the value

of P. P can be any positive number. Also, since each processor needs to

be connected directly only to two others, we have a hardware structure

which is easily extensible.

5.4 Analysis of Time Complexity

Let r represent the amount of time required to route a single record

from one processor to another. Let c denote the time taken by a processor

to compare (and interchange, if necessary) two records. There are P pro-

cessors and M records.

The algorithm consists of P exchange steps followed by one localized

sort. The amount of time required by a processor to do localized sorting

of a non-bitonic sequence is (M log M)c. The amount of time required by

a processor to do localized sorting of a bitonic sequence is Mc, since

sorting can be done by simply merging the records from the two ends.

An EXCHANGE is a two-step process. The first step is a localized

sort. The second step consists of 2M record-routing operations and M

comparisons (and interchanges, if necessary). Therefore, the second step

takes 2Mr + Mc time units. The time taken for the first exchange step is

(M log M)c + 2 Mr + Mc time units since it involves sorting a non-bitonic

sequence. The time taken for each of the other (P- i) exchange steps is

2Mr + 2Mc time units. The time taken for the final localized sort is Mc

time units. Hence, the total time taken by the algorithm is

(M log M)c + 2Mr + Mc + (P-i)(2Mc + 2Mr) + Mc

= c(M log M) + (2c + 2r) (MP)

Hence, the order of time is given by

O(M log M + MP)

A

. I -22-

IP
P- 4

P-4P.7 / 2.

0 4-A Processor

0 3

01 0

2/

3/
,,2

/1/ 3

7)PPC : Post Processing Controller

: Processor-to-Processor Connection

-6 -- : Con~trol Line

-- - 7 P Number of Processors

9

-P \14

2

FIGURE 8. Interconnection of Processors for odd-even sort.

.:-4

-23-

In our design, we expect that M >> P, so that log M >> P. Therefore, the

sorting time approaches O(M log M), and this is the best that can be ex-

pected from P processors.

5.5 Analysis of Processor Utilization

We shall use the concept of efficiency as defined in [8j. The effi-

ciency of a processor in the execution of a given task is defined as the

ratio between the share of the work H actually performed by the processor

in unit time and the work W it would have performed in unit time if it

were acting alci e.

In the context of sorting algorithms, let us say that a single pro-

cessor, acting alone, can sort MP elements in cMP (log (MP)) units of time,

where c has already been defined before. That is, the processor performs

I/(cMP log (MP)) units of work in unit time. That is,

W = l/(cMP log (MP)).

Our sorting algorithm sorts MP elements using P parallel processors

in a time given by

cM log M + dMP

where d = (2c + 2r). Thus, the amount of work performed by any one of the

P processors in unit time is given by

H = (I/P)(l/(cM log M + dMP))

Hence, the efficiency E of a processor in this algorithm is

E = H/W = (cM log (MP))/(cM log M + dMP).

For clarity, this may be rewritten as

E = (cM log M + cM log P)/(cM log M + dMP).

From the above equation, it is clear that the efficiency becomes very close

to one for large values of M.

I
II

_ 24-

6. METHOD II - THE MODIFIED STONE SORT

This is based upon the method used by Stone [151 to sort P elements

in log2 time using P processors. His method sorts P elements, where P

is a power of two, using P processors in the following manner. The sort-

ing proceeds in log P stages of log P steps each. Each step consists of

a perfect shuffle followed by an operation performed on P/2 pairs of ad-

jacent elements. We will describe the perfect shuffle and the operation

that follows it, in turn.

Remember that the number of processors is P, and that P is a power

of two. The processors are numbered 0, 1, 2, ..., (P-1). To represent

the processors in binary notation, it requires log P bits. Thus, if P=4,

the processors may be represented as Processor 00, Processor 01, Processor

10, and Processor 11 in binary notation, or as Processor 0, Processor 1,

Processor 2 and Processor 3 in decimal notation. Let ibin be the binary

representation of a decimal number i. Also, let ibin' be the result of

left circularly shifting by one bit the binary number ibin. Thus, if

ibin = 001, then ibin' = 010. On the other hand, if ibmn = 111, then

ibin = 111. It is also true that ibin = ibin' = 000. Now, we say that

P processors perform a perfect shuffle if, Processor i, for 0 ! i ! (P-1),

moves the contents of its memory to the memory of Processor j such that

ibin' = jbin. We shall say that Processor j is the shuffle processor of

Processor i. Also, Processor i is the reverse shuffle processor of Pro-

cessor j. Therefore, in a perfect shuffle, each processor moves its con-

tents into its shuffle processor, and receives the contents of its reverse

shuffle processor. A perfect shuffle operation involving four processors

is shown in Figure 9.

Each perfect shuffle is followed by an operation performed between

pairs of adjacent processors, say, i and J. The operation may be one of

the following three: (1) no operation. (2) A comparison of the element

stored in Processor i's memory with the element stored in Processor j's

memory and the storing of the smaller of the two elements in Processor i's

memory and the larger of the two elements in Processor J's memory. This

operation will correspond to an EXCHANGE [i,j] in our modified parallel

sort, or (3) a comparison of the element stored in Processor i's memory

with the element stored in Processor J's memory, and the storing of the

larger of the two elements in Processor i's memory and the smaller of the

-25-

Indicates that j is the shuffle processor of i

Processor # Processor #
decimal binary @ contents of

0 00 processor 0 0 00

10 1 010

2 10 2 10

3 11 3 11 1

Contents of processors before Contents of processors after
the perfect shuffle the perfect shuffle

Processor # Shuffle Processor # Reverse Shuffle Processor #

L0 0 0

12 2

2 11

3 3 3

FIGURE 9. An example of a perfect shuffle

operation involving four processors.

I
A

r

.26-

two elements in Processor i's memory. In our terminology, operation (2)

is written as EXCHANGE [ij] and operation (3) as EXCHANGE [j,i]. The

final step in our modified algorithm is a localized sort performed by all

the processors.

6.1 An Illustration

The manner in which the P parallel processors sort MP records is

illustrated by means of an example developed in Figure 10. The initial

configuration of records and the configuration at the end of each step

are shown in these figures. As can be seen, P-4 and M= 5. The process

consists of two stages, where each stage consists of two steps. A final

localized sorting step is also involved.

STAGE 1

Step 1: Perform the perfect shuffle, i.e., each processor sends the re-

cords in its memory to the memory of its shuffle processor.

(See Figure 10a).

Step 2: Perform the perfect shuffle.

EXCHANGE [0, 1], EXCHANGE [3, 2]. (See Figure 10b).

STAGE 2

Step 1: Perform the perfect shuffle.

EXCHANGE (0, 11, EXCHANGE (2, 3]. (See Figure lOc).

Step 2: Perform the perfect shuffle.

EXCHANGE [0, i, EXCHANGE [2, 3]. (See Figure lOd).

Final Step: Perform localized sort in all processors in non-decreasing

order. (See Figure lOe).

6.2 The Algorithm

Once Again, the algorithm is coordinated by the post processing con-

troller (PPC) which broadcasts commands to all processors. In the pro-

cedures, P is the number of processors, M is the number of records per

5 processor, Step is a variable for the step number, and Stage is a variable

for the stage number.I

-27-

3 9 8 2 17

Q -62 1 3 5Initial c figuration

of record1s\ (represented
2D 8 112 O195by sort value alone)

5 9 j13 14 2

A Perfect Shuffle

0 3 .9 8 2 17

01--8 i12 0 191 5

C2~ 612 1 3 5

5 34 2

FIGURE 10a: An Illustration of the Modified Stone Sort-
Step 1 of Stage 1

- 28-

0 3 9 8 2 17

1 8 12 0 19 5

2 62 1 3 5

3 5 9 13 4 12.

A Perfect Shuffle

3 39 8 2 17

6 j2 1 3 5

2 8 12 0 19 5

3 5 9 13 4 2

EXCHANGE [0,11
EXCHANGE [3,2]

0 23 3 2 1

6 658 9 17

2 19 12 8 9 13

3 24 5 5 0

FIGURE 10b: An Illustration of the Modified Stone Sort-I Step 2 of Stage 1

-29-1

0 23 3 2 1

1 65 8 9 17

2 19.12 8 9 13

A Perfect Shuffle

(~-2 3 3 2 1

(-19 i12 8 9 13

(D- 6 L58 9 17

(D-2 45 5 0

EXCHANGE [0,11
IEXCHANGE 12,31

0 12 2 3 3'

10 -19113 12 9 8

2- 5 5 4 2 10

(D- 5 16 18 91

FIGURE 10c: An Illustration of the Modified Stone Sort-
Step 1 of Stage 2

0e - 30-

12123 3

2 51 5 4 2 0

O 19 13 12 9 8

3 5 689 1?9T

EXCHANGE [0,11
1EXCHANGE 12,31

I
Step 2 ofSag

1I

,1 "" .31-

II

(j_. 1l22 2 0

3 171 9 12 13 119

A Parallel localized sort

@ 0 1 2 21 2

Final sorted sequence

-- 5 6 8 8 9

0 - 9 12 1l3 1719

FIGURE lOe: An Illustration of the Modified Stone Sort -

Final localized sort step.

'I

-32-

A. The Procedure Executed by the Post Processing Controller

Stage = 1
while Stage <log P
do Step = 1

while Step ! log P
do Broadcast ('Shuffle')

Broadcast ('Exchange', Stage, Step)
Step = Step + I

end
Stage = Stage + 1

end
Broadcast ('localized sort')

2
The algorithm consists of log P 'Shuffle' and 'Exchange' commands

and one 'localized sort' command. Step and Stage are passed as argu-

ments of the 'Exchange' command.

B. Procedures Executed by a Processor

Processor i executes an 'Exchange' command as follows.

Procedure Exchange (Stage, Step)
If Stage < log P

Then do
If Step (log P - Stage)

then Stop /* the '0' process */
else do q = Step - log P + Stage

r = i Mod (2
q + 1)

if r is even and r < 2
then do sort the M records in

non-decreasing order.
Send (i + 1)

end
else if r is odd and r > 2

q

then do Sort the M records
in non-decreasing order.
Send (i -1)

end
else if r is even

then do Sort the M records
in non-increasing
order
Receive (i+l)

end
else do Sort the M records

in non-increasing
order
Receive (i - 1)

end
end

end

~-33-

else do
If i is even

then do Sort the M records in non-decreasing order.
Send (i + 1)

end
else do Sort the M records in non-increasing order.

Receive (i - 1)
end

end

end Procedure Exchange

The procedures Send and Receive have been defined earlier.

Procedure Shuffle /* as executed by Processor i */
ibin binary equivalent of i
ibn' = ibin after left circularly shifting by one bit
ibin" = ibin after right circularly shifting by one bit
j = decimal equivalent of ibin'
k = decimal equivalent of ibin"
Count = 1 /* Count of records in Processor i or j */

while Count 5 M
do send the next record RIi, Count) to Processor j

wait for next record from Processor k and call. it
R[i, Count]

Count Count + I
end

end Procedure Shuffle

In procedure Shuffle, each processor places the records that were in its

memory into the corresponding location of the shuffle processor's memory

and receives the records that were in the memory of the reverse shuffle

processor.

Procedure Localized Sort
Sort all M records in non-decreasing order

end Procedure Localized Sort

This is the procedure executed by each processor in response to

the 'localized sort' command from the PPC. Localized sorting in the

first stage of the algorithm is done by using a merge-sort method [11,

pages 159-1681. Localized sorting during any other step involves sort-

ing a bitonic sequence, and can be done by simply merging records start-

ing at the two ends.

6.3 Interconnection of Processors

From the algorithm, it i easy to see what kind of interconnections

-34-

are needed between processors. First, to be able to provide the per-

fect shuffle, each processor must be connected directly to its shuffle

processor. We have already indicated how to find the shuffle processor

of a particular processor. The procedure is indicated below.

Let ibin = binary notation of decimal i,

ibin' = ibin after left circular shift by one bit, and

j - decimal equivalent of ibin'. Then

connect Processor i to Processor j.

For P = 8, we have the following interconnections.

Processor 0 is connected to no other processor

Processor 1 is connected to Processor 2

Processor 2 is connected to Processor 4

Processor 3 is connected to Processor 6

Processor 4 is connected to Processor I

Processor 5 is connected to Processor 3

Processor 6 is connected to Processor 5

Processor 7 is connected to no other processor.

These connections need only be one-way connections. That is, for exam-

ple, Processor 6 needs to be able to send records to Processor 5, but

Processor 5 need not be able to send records to Processor 6.

Also, to provide for the exchange operations, we need that Proces-

sor i, 0 5 i 5 (P - 1), be connected to Processor (i + 1) if i is even,

or to Processor (i - 1) if i is odd. These connections, unlike the

previous ones, are two-way connections. The algorithm needed to decide

on all interconnections (so as to be able to provide for both Shuffles

and Exchanges) is shown below.

i=0
while i < P
do ibin i in binary

ibin' ibin after left circularly shifting by one bit
j = decimal equivalent of ibn'
connect Processor i to Processor j

(if J is different from i)
by using a one-way connection

- ~4.L~NAI-

-35-

if i is even
then connect Processor i to Processor (i + 1)

using a two-way connection

I else connect Processor i to Processor (i-i)
using a two-way connection

Ii= i +
end

The layout of processors and their interconnections for various values

of P are shown in Figure 11.

6.4 Analysis of Time Complexity

Once again, let r represent the amount of time required to route

a single record from one processor to another. Let c denote the time

required to compare (and interchange, if necessary) two records by the

same processor. There are P processors and M records.

The algorithm consists of log2 P shuffles. It also contains one

exchange step in the first stage, two exchange steps in the second stage,

etc., and log P exchange steps in the final stage. Finally, one local-

ized sort is performed by all the processors.

A shuffle operation consists of M record routing operations. There-

fore, the entire time spent in shuffling is rM log2 P.

From the calculations in the previous algorithm (the odd-even sort),

we know that the time taken for the first exchange step is

c(M log M) + 2Mr + Mc

The time taken for each of the other exchange steps is

2Mr + 2Mc

Hence, the total time spent in exchanging is

(M log M)c + 2Mr + Mc + (2Mr + 2Mc)(2 + 3 + ... + log P)

= Mc(log M - 1) + (Mr + Mc)(log 2 + log P)

The time taken for the final localized sort is Mc. Therefore, the total

time for sorting is

Mc(log M) + (2Mr + Mc) log2 P + (Mr + Mc) log P

Hence, the order of time is given by

O(M log M + M log2 P)

In our design, we expect that M >> P, so that log M >> log P. There-

fore, the sorting time approaches O(M log M).

. .. -A%-.... I i ...

0 Pi 0~~i

PZ 4lc-c'esmmr

S i-h7ocso

O 3otpoesn
4otole

6 Ploce-aoreor memory

On-way processor

Processoreslin

F1GUR~~~~~vowa Procsso tecnetino rcesr o

sorting using Modified Stone sort

-37-

6.5 Analysis of Processor Utilization

Once again, we use the fact that the efficiency of a processor

is the ratio between the share H of the work actually performed by the

processor in unit time and the work W it would have performed in unit

time if it were acting alone.

A single processor can sort MP records in cMP log (MP) units of

time. That is,

W = I/cMP log (MP)

Our sorting algorithm sorts MP elements using P parallel processors in

a time given by

c(M log M)+dM log2 P

where d is a constant. That is,

H = (l/P) (i/(cM log M + dM log2 P))

Hence, the efficiency E of a processor in this algorithm is

E = H/W

=(c log (MP))/(c log M + d log2 P)

=(c log M + c log P)/(c log M + d log2 P)

Once again, we observe that the efficiency approaches unity as M becomes

larger and larger.

7. METHOD III - THE SPECIALIZED MINIMUM-TIME SORT

So far we have considered two different parallel sorting methods.

The odd-even sort is general in that it is applicable for all values

of P (the number of processors in the sorter). The modified Stone sort

is not so general in that it is applicable only for values of P which

are powers of two. Similarly, the method suggested in [8] was also not

so general, since it is also applicable only for values of P which are

powers of two. In this section, we shall consider a specialized parall-

el sorting method which is applicable only for specific values of P.

In Figure 12, we have shown two specialized sorting schemes, one

of which is applicable only if P = 12, and the other of which is appli-

cable only if P - 16. These schemes cannot be generalized to hold for

all values of P.

7.1 Motivation for Specialization

The reader might then wonder why we wish to talk of such special-

ized sorting schemes. Our motivation is as follows. The two methods

hi __ _

j-..

Processor #
-38-

6 , 1 ' I I
P

5I
6 I
7I

11

Stage 1 2 3 4 5 6 7 8

Processor # =1 ECAG [i~j is represented as .

1P

13
14

P6I

• FIGURE 12: Specialized minimum-time sorts

_ _7

8'

S-39-

discussed in previous sections and the method discussea in [8] are not

optimal for all values of P. For example, in the case where P = 16,

the sorting scheme described by the network in Figure 12 is the optimal

one [11, pages 230-231] and will perform better than either of the two

methods suggested in this report or the method suggested in [8]. There-

fore, if we are going to design our parallel sorter with 16 parallel

processors, and we have no intention of increasing the number of pro-

cessors at a later time, then we would wish to implement the algorithm

described by the network in Figure 12.

7.2 Analysis of Time Complexity and Comparison with Others

The network shown in Figure 12, for the case of P = 16, consists

of nine stages of exchanges followed by a final localized sort which is

not shown in the figure. For example, the first stage consists of

EXCHANGE (0, 1], EXCHANGE [2, 31, EXCHANGE [4, 51, EXCHANGE [6, 7],

EXCHANGE [8, 91, EXCHANGE [10, 11], EXCHANGE [12, 13], and EXCHANGE

(14, 15]. We have already shown that the first stage of exchanges takes

(M log M)c + 2Mr + Mc time units. The remaining eight stages each take

2Mr + 2Mc time units. The final localized sort takes Mc time units.

Therefore, the total time taken for sorting is

cM log M + 18Mr + 18Mc

time units. Compare this with the

cM log M + 32Mr + 32Mc

time units taken by the odd-even sort, or the

cM log M + 36Mr + 20Mc

time units taken by the modified Stone sort. Thus, the network in

Figure 12 is optimal for P - 16.

7.3 Processor Utilization and Limitation

Given a value of P, it will be often possible to develop a special-

ized algorithm which gives better performance than any of the three gen-

eralized methods suggested so far. The trouble with this specialized

scheme is, of course, that the value of P cannot be increased at a

later time without redesigning the sorting algorithm.

1 __

-40-

8. CONCLUSIONS

Three sorting methods have been described in this report. The

j first one, called the odd-even sort, uses P processors, each of which

utilizes block-access memory to accommodate M records and two intercon-

nections, to sort MP records in O(M log M + MP) time. There is no re-

striction on either P or M. More importantly, since each processor

needs to be connected to only two other processors, we can increase the

number of processors in the sorter without having to increase the number

of connections.

The second method, called the modified Stone sort, uses P processors

with block-access memory to sort MP records in O(M log M + M log2 P)

time. However, P must be a power of two. This method also requires

that each processor be connected only to a maximum of two others, one

connection being a one-way link and the other connection being a two-

way link.

Finally, we discussed a method, known as the specialized minimum-

time sort. This method also uses P processors to sort MP records and

completes the sorting in O(M log M) time, but it can only be used for

specific values of P. That is, the algorithms of the method are special-

ized, and individual algorithms will not work for different values of

P. Although algorithms are optimal for given values of P, the architec-

ture of these types of hardware sorters cannot be expanded, since the

number of processors is fixed for the original design and optimization.

In all the above methods, the number of records that can be sorted

in a batch is restricted only by the memory size of each processor and

not by the number of processors.

.1
!1

I!

S-41-

REFERFNCES

[1] Banerjee, J. and Psiao, D. K., "Performance Evaluation of a Database
Computer in Supporting Relational Databases," Proceedings of the
Fourth International Conference on Very Large Data Bases, Rerlin,
Federal Republic of Germany, September 1978, pp. 319-329: and Baner-
lee, J. and Hsiao, D. K., "The Use of a Database Machine for
Supporting Relational Databases," Fourth Workshop on Computer Arch-
itecture for Non-numeric Processing, Syracuse, New York, August
1978, pp. 91-98: Also available in Banerjee, J. and Hsiao, D. K.,
"DBC Software Requirements for Supporting Relational Databases,"
Technical Report OSU-CISRC-TR-77-7, The Ohio State University,
Columbus, Ohio, November 1977.

[2] Banerjee, J., and Hsiao, D. K., "A Methodology for Supporting Exist-
ing CODASYL Databases with New Database Machines," Proceedings of
the ACM '78 Conference, December 1978; Also available in Banerjee,
J., Hsiao, D. K., and Kerr, D. S., "DBC Software Requi'ements for
Supporting Network Databases," Technical Report OSU-CIlRC-TR-77-4,
The Ohio State University, Columbus, Ohio, June 1977.

[3] Banerjee, J., Hsiao, D. K., and Ng, F. K., "Data Network - A Com-
puter Network of General-Purpose Front-end Computers and Special-
Purpose Pack-end Database Machines," Proceedings of the Inter-
national Symposium on Computer Network Protocols, (Danthine, A.,
Editor), Liege, Belgium, February 1978, pp. D6-1 to D6-12; Also
available in Hsiao, D. K., Kerr, D. S., and Ng, F. K., "DBC Software
Requirements for Supporting Hierarchical Databases," Technical
Report OSU-CISRC-TR-77-1, The Ohio State University, Columbus, Ohio,
April 1977.

[4) Banerjee, J. and Hsiao, D. K., "Concepts and Capabilities of a
Database Computer," ACM Transactions on Database Systems, Vol. 3,
No. 4, December 1978, pp. 347-384. Also available in Baum, R. I.,
Hsiao, D. K. and Kannan, K., "The Architecture of a Database
Computer -- Part I: Concepts and Capabilities," Technical Report
OSU-CISRC-TR-76-1, The Ohio State University, Columbus, Ohio, Sep-
tember 1978.

[5] Kannan, K., Hsiao, D. K., and Kerr, D. S., "A Microprogrammed Key-
word Transformation Unit for a Database Computer," Proceedings of
the Tenth Annual Workshop on Microprogramming, October 1977, Niagara
Falls, New York, pp. 71-79; and Hsiao, D. K., Kannan, K., and Kerr,
D. S., "Structure Memory Designs for a Database Computer," Pro-
ceedings of ACM '77 Conference, October 1977, Seattle, Washington,
pp. 343-350; Also available in Hsiao, D. K. and Kannan, K., "The
Architecture of a Database Computer -- Part II: The Design of
the Structure Memory and its Related Processors," Technical Report
OSU-CISRC-TR-76-2, The Ohio State University, Columbus, Ohio,
October 1976.

(6] Banerjee, J., Hsiao, D. K., and Ng, F., "Database Transformation,
Query Translation and Performance Analysis of a New Database Compu-
ter in Supporting Hierarchical Database Management," IFEE Trans-
actions on Software Engineering, SE-6,1, January 1980, pp. 91-109.

-42-

[7] Kannan, K., "The Design of a Mass Memory for a Database Computer,"
Proceedings of the Fifth Annual Symposium on Computer Architecture,
April 1978, Palo Alto, California, pp. 44-50; Also available in
Hsiao, D. K. and Kannan, K., "The Architecture of a Database Com-
puter -- Part III: The Design of the Mass Memory and its Related
Processors," Technical Report OSU-CISRC-TR-76-3, The Ohio State
University, Columbus, Ohio, December 1976.

[8] Banerjee, J. and Hsiao, D. K., "Parallel Bitonic Record Sort - An
Effective Algorithm for the Realization of a Post Processor," Tech-
nical Report OSU-CISRC-TR-79-1, The Ohio State University, Columbus,
Ohio, April 1979.

[9] Menon, M. J. and Hsiao, D. K., "The Access Control Mechanism of a
Database Computer (DBC)," Fifth Workshop on Computer Architecture
for Non-numeric Processing, Asilomar, California, March 1980; Also
available in Banerjee, J., Hsiao, D. K., and Menon, M. J., "The
Clustering and Security Mechanisms of a Database Computer (DBC),"
Technical Report OSU-CISRC-TR-79-2, The Ohio State University,
Columbus, Ohio, April 1979.

[10] Hsiao, D. K. and Menon, M. J., "Design and Analysis of Update IMech-
anisms of a Database Computer (DBC)," Technical Report OSU-CISRC-TR-
80-3, The Ohio State University, Columbus, Ohio, June 1980.

[11] Knuth, D. F., Sorting and Searching, The Art of Computer Program-
ming, Vol. 3, Addison-Wesley, Reading, Massachusetts, 1973.

[12] Chen, T. C., Lum, V. Y., and Tung, C., "The Rebound Sorter: An
Efficient Sort Engine for Large Files," Proceedings of the Fourth
International Conference on Very Large Data Bases, West Berlin,
Germany, September 1978, pp. 312-318.

[131 Nassimi, D. and Sahni, S., "Bitonic Sort on a Mesh-Connected Parallel
Computer," IEEE Transactions on Computers, Vol. C-27, No. 1, January
1979, pp. 2-7.

[14] Thompson, C. D. and Kung, H. T., "Sorting on a Mesh-Connected
Parallel Computer," Communications of the ACM, Vol. 20, No. 4, April
1977, pp. 263-271.

[15] Stone, H. S., "Parallel Processing with the Perfect Shuffle," TEFE
Transactions on Computers, Vol. C-20, 1971, pp. 153-161.

[16] Edelberg, M. and Schissler, L. R., "Intelligent Memory," AFIPS
Conference Proceedings, Vol. 45, 1976, pp. 393-400.

[17] Baudet, G. and Stevenson, D., "Optimal Sorting Algorithms for
Parallel Computers," IEEE Transactions on Computers, Vol. C-27, No. 1,
January 1978, pp. 84-87.

[18] Alekseyev, V. E., Kibernetica, Vol. 5, No. 5, 1969, pp. 99-103.

