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1. Introduction and Suamary.

Trees in a forest, stars in a galaxy and bacteria on a petri dish are a

few examples wherein there is interest in the spatial distributions of indi-

viduals over regions. In pursuit of better understanding of these distribu-

tions, attempts have been made to use probabilistic and statistical tools

(Eberhardt (1967), Pielou (1969), Pollard (1971), Patil and Stiteler (1974),

Cox (1976), Cox and Lewis (1976)]. Very little effort has been made to develop

coherent statistical structures for the locations of individuals in a region.

The main purpose of this paper is to propose such structures in order to

avoid inconsistencies that can be found in the literature, to provide a sound

probabilistic basis for a variety of inference procedures that are used, and

to permit the development of better and consistent statistical methodology in

the area.

We show that, under certain conditions, the collection of random variables

representing the nimbers of individuals in subsets of a region can be regarded

as a stochastic process. The models presented have a stationarity property. In

Section 2 we present simple random models which have, in addition to stationarity,

a property of independent increments. We prove that simple models lead to a

compound Poisson process. In a number of the references cited above, Poisson

and negative binomial distributions have been used to describe the numbers of

individuals in subsets of a region. Our formulation shows that these two

distributions arise as marginal distributions in special cases of simple random

models.

In Section 3 we introduce models that are stationary, but do not

necessarily have the property of independent increments. We show that a negative

binomial distribution proposed by Eberhardt (1967) to characterize the random

behavior of the numbers of individuals in subsets of a region is a marginal
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distribution resulting from two different stochastic models that do not have

independent increments. Section 4 is devoted to the development of several

different stochastic models when the region under consideration has finite

Lebesgue measure. It is shown that the binomial distribution suggested by

Eberhardt (1967) can be derived from all of these models.

2. Simple Random Models.

Some basic notation is needed to define spatial stochastic models.

Throughout the paper, R will denote a Euclidean space, I will be the Lebesgue

measure on R, X(A) will be the number of individuals in a subset A c R, and

E will represent the set of all Borel subsets of R with finite Lebesgue

measures.

Definition 2.1. Individuals are said to be located in R in a simple random way if

the following conditions hold:-

(i) Stationarity: For every set A e E, the distribution of the random

variable X(A) depends only on A (A).

(ii) Independent increments: If A,,*, (m > 1) represent any m disjoint

sets in E, the random variables, X(AQ, ... , X(Am), are independent.

The objective of this section is to show that, under conditions (i) and (ii),

the collection, {X(A), A c ), is a stochastic process determined by a positive

number and a sequence of numbers in [0, 1) sumning to unity.

For any two sets , A2 in Z and nonnegative integers 3, k2 , we have

clearly

PLX(AI) k, X(A2 ) - k21 = P[X(An A2) = j, X(A1 n K2) = r, X(K1 n A2 ) =j+r kI

2 (2.1)
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Now let q be an arbitrary point in R and Y (t), the number of individuals
q

in a sphere centered at q having Lebesgue measure t a 0, Y (0) 0. Then,
q

using (i), (ii), we can write

P(X(A.1) = I, X(A2) -- k2] = PLY (t 1 ) = jJP[Yq(t2 ) = rJP[Yq(t 3 ) = 1, (2.2)

j+L=k2

where t., t 2 and t3 are I(A, n A2), LA1 n and A(A1  A2) respectively.

Without difficulty, equations (2.1) and (2.2) can be extended to any finite

number of sets in E. The general result is stated in the following theorem.

Theorem 2.1. For individuals located in R in a simple random way, the joint

distribution of any finite collection of random variables from (X(A), A c E)

is determined uniquely by a joint distribution of a finite collection of

random variables from {Y q(t), t t 0).

The proof is omitted. It remains to show that, under (i) and (ii), the

collection Y q(t), t 2 0) is a stochastic process determined by a positive

number and a probability sequence.

Conditions (i) and (ii) respectively insure that the process Y (t)

has stationary and independent increments. That is, for real rambers

0 ;. t 1 : t 2 : .. tm (m a 2), the random.variables

Yq(t1), Yq(t2) Yq(tl), -I Yq(tm) - Yq(tm-1 ) are independent and, moreover,

Y(t Y(t has a distribution depending only on t t ,L=, ... ,m(t 0 .0).

Upon application of a well known characterization of such processes, it follows

[see, for example, Khintchine (1960), p. 36) that Yq(t) is the compound Poisson

proccss represented as

Yq(t) = zI  + Z 2 +.. ZNt)'

.................sII
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where {N(t), t 2 0) is a simple Poisson process and {Zi, i z 1) is a sequence of

i.i.d. random variables on the positive integers, independent of N(t). If

Z. 1, then Y Ct) =- N(t), whereas if Z. has a logarithmic distribution, Y (t) has
1q I q

a negative binomial distribution, as is well known. These two marginal distribu-

tions of X(A) have been frequently used in the literature.

3. A Generalization of the Simple Random Models.

In this section we present two methods of developing a general stationary

stochastic structure for the random quantities (X(A)}. This is done in two steps.

Firstly, for m > 1, we present the joint distribution of X(Al), ... , X(Am), where

A,, ..., Am are any m disjoint sets of z. We then show that this set of finite

dimensional distributions determines uniquely the stochastic structure of {X(A)}.

For this purpose we introduce some notation. Let {M(t), t > 0) be a

stochastic process on the nonnegative integers, stochastically increasing in t,

that is, M(t) < M(s) for 0 < t ! s,and {Wi, i 2 1), a sequence of random variables

with positive integer values, independent of {M(t)l. We assume that 0(t), t > 01

and (W., i z 1) depend on the parameters 81 and 82 respectively, ranging in

parameter spaces PI and A , where is a collection of infinite sequences,

P, and P2 being probability spaces with F and G the respective probability measures.

Definition 3.1. Let A, ... , Am be disjoint sets in E with respective Lebesgue

measures t 1, ... , t., and let k1 , ... , km be nonnegative integers. We define the

joint distribution of {X(Ai), i = 1, ..., m) as

• m Met.)

PCX(A) = ki, - 1, ,. - " Pil .) "k=dPCe, ) .(2 (3.1)
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Definition 3.2. With the same notation as above, we define

r.
f f P[ W. = k., i -- 1, ... , m~dF(01)dG(02),
PIxP2 j=r. 1 +l J' 1(32

i

where ri = qM(tq), i = 1, .... m, r0 = 0.
q=1

The consistency of the set of joint distributions of finite collections of

random variables from {X(A), A c Tl, generated by disjoint sets and defined by

(3.1) or (3.2), follows from the stochastic structure imposed on {(t),

t > 0, Wi, i > 11. The stationarity condition (i) is clearly satisfied, since

definitions (3.1) and (3.2) vary only with the Lebesgue measures of the re-

spective sets. The generalization of equation (2.1) to any finite number of

sets in E, not necessarily disjoint, provides a way to extend definitions (3.1)

and (3.2) to any such sets. These extensions preserve the required consistency

and stationarity of fX(A), A E E). We have proved the following:

Theorem. 3.1. If the joint distributions of every finite number of random

variables in {X(A), A f E} are given by the extensions of (3.1) or (3.2), then

{X(A)}, A c K) is a stationary stochastic process.

It is important to note that (3.1) and (3.2) yield the same marginal distributions

for X(A), A e z, but they define different processes. Statistical methodologies

based on the two models may be quite different and this has been ignored in the

literature.

In Section 2, we proved that simple random models depend on a positive number,

say 1, and a probabilistic sequence, say (Pip i 2 1U. Now we show that those models

are particular cases of the stochastic processes presented by (3.2). To do so, let

(M(t), t k 0) be a Poisson process with parameter V, and fW i, i 11 be an i.i.d.

sequence of random variables given by P(W1 = i) = Pi (i > 1). In addition we

take P1 and P2 to be sets containing only p and the sequence (Pi respectively.

Now the extension of (3.2) reduces directly to a simple random model.

*d: '4' JX&, .SI&OZ VAda"A
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Let us assume that the sequence of discrete random variables [i} is

degenerate at 1, P, is E0, -), P is only the sequence (1, 0, 0, ... ),

(M(t)) is Poisson, and F is given by

fc x - >0YQ-
r f e" ya-dy x > 0

F(X) =0 a, 0 > 0. (3.3)
0 x<!50

Then the marginal distribution of X(A), A e r, computed by (3.1) or (3.2), is

negative binomial with a = a and b x - (A). This marginal distribution for X(A)

was assumed by Eberhardt (1967) and by Patil and Stiteler (1974).

4. Models for Finite Regions.

In the previous two sections, we presented stochastic models when individuals

were randomly located in an infinite region. In this section, five different models

are developed for situations wherein individuals are located in a Borel set R : R

of finite .Lebesgue measure.

Let F be the set of all Borel sets contained, in Rf and Xf(A), the number of

individuals in set A, A c Ef. Our objective is to develop a stochastic structure

for the collection (Xf(A) , A e Ef}- One way to achieve this objective is to

select a stochastic process developed in Section 3 for the infinite region R, say

(X(A), A c Z), and condition it by an event related to the random variable X(Rf).

Specifically, let A,, ..., Am be sets in Ef and let k, ... , km be nonnegative

integers. We define the desired probability as

P[Xf(Ai) = ki, i = 1, ..., m] = P[X(Ai) = ki, i = I, ..., mIX(Rf)]. (4.1)

The consistency and stationarity of the process OYf(A), A c Ef) defined in (4.1)

are self-evident.
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For the four remaining alternative ways of developing a stochastic structure

for {Xf(A)), we refer to the process {M(t)1,the sequence .lWi},the setsP 1 and P2 "

and the probability measures F and G,which were introduced in Section 3. lie

define first the joint distribution of Xf(A1), ..., Xf(A.), where A1 , ..., Ai

are disjoint sets in Ef and m m 1, then extend these definitions to any finite

collection of sets in Ef. Since the extension technique has been used twice, it

is omitted from our present discussion. Now let Al, ... , A be disjoint subsets

of Rf, I(Rf) = t o , I(Ai) = t i , i = 1, ... , m, and let k1 , ... , km be nonnegative

integers. We define the desired probability in the following four ways:

m Mt.) M(t)
PCXf(Ai) = ki, = 1] -- I j P( 1 W. k.IY 0 W-dF(eIdG(2). (4.2)P~xP2 i j=l 3 j=" 3 (ld(2) .2

r M(t O)
P[Xf(Ai) = ki, i 1 , M.. f] fPX2 P(Jrill W. ki i = 1, ... , m I  ~-J)

P, XP2 3=r 1 1 +Il j=l I
dF e 1)dG62) °

(4.3)

m M(t.)
P[Xf(Ai) = ki, i = 1, ... , m J P( 13- W. = k. IM(to))dFCOI)dG(e 2). (4.4:I 2 i =l  j--- 3

r.1
PkXf(Ai) ki, i = 1, ... , m] f I P( I W.-- ki, i = 1, ... , mjM(t0))

P[X CPi I x1 2 j=r i l 3 dF (e 1)dG (E 2) -

where r0 , ... , r m are as in definition 3.2. (4.5'

The stochastic processes determined by (4.2)-(4.5) have been constructed to be both

consistent and stationary. Definitions (4.2) and (4.3) or (4.4) and (4.S), yield

identical marginal distributions for Xf(A), A c Ef, but define different processes.

2•TS p
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If we let M(t) be a Poisson process, (Wi 1, a sequence of random variables

degenerate at 1, P1 and P2 singleton sets, then the marginal distribution of

Xf(A), A c Ef, according to each of the definitions (4.1) - (4.5) is binomial

with X(Rf) corresponding to the number of Bernoulli trials and ) (A)/X(Rf)

corresponding to the probability of success in a single trial.

S. Concluding Remarks. I
The selection of models for stochastic processes for particular applications

and the development of pertinent statistical methodologies have not been addressed

in this paper. We have demonstrated that models proposed may be used to yield

marginal distributions assumed in the literature; they may also be used to avoid

unwarranted assumptions and inconsistencies that arise. We propose in subsequent

work to use the general models of this paper to devise improved statistical

methodologies for problems involving the location of individuals in a habitat.

• i

____•______ )
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