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1. Introduction and Summary.

Trees in a forest, stars in a galaxy and bacteria on a petri dish are a
few examples wherein there is interest in the spatial distributions of indi-
viduals over regions. In pursuit of better understanding of these distribu-
tions, attempts have been made to use probabilistic and statistical tools
(Eberhardt (1967), Pielou (1969), Pollard (1971), Patil and Stiteler (1974),
Cox (1976), Cox and Lewis (1976)1. Very littie effort has been made to develop
coherent statistical structures for the locations of individuals in a region.
The main purpose of this paper is to propose such structures in order to
avoid inconsistencies that can be found in the literature, to provide a sound
probabilistic basis for a variety of inference procedures that are used, and
to permit the development of better and consistent statistical methodology in
the area.

We show that, under certain conditions, the collection of random variables
representing the numbers of individuals in subsets of a region can be regarded

as a stochastic process. The models presented have a stationarity property. In

Section 2 we present simple random models which have, in addition to stationarity,

a property of independent increments. We prove that simple models lead to a

compound Poisson process. In a number of the references cited above, Poisson
and negative binomial distributions have been used to describe the numbers of
individuals in subsets of a region. Our formulation shows that these two
distributions arise as marginal distributions in special cases of simple random
models.

In Section 3 we introduce models that are stationary, but do not
necessarily have the property of independent increments. We show that a negative

binomial distribution proposed by Eberhardt (1967) to characterize the random
behavior of the numbers of individuals in subsets of a region is a marginal




distribution resulting from two different stochastic models that do not have
" independent increments. Section 4 is devoted to the development of several

different stochastic models when the region under consideration has finite

Lebesgue measure. It is shown that the binomial distribution suggested by

Eberhardt (1967) can be derived from all of these models.

2. Simple Random Models.
~Some. basic notation is needed to define spatial stochastic models.
Throughout the paper, R will denote a Euclidean space, A will be the Lebesgue
measure on R, X(A) will be the number of individuals in a subset Ac R, and

£ will represent the set of all Borel subsets of R with finite Lebesgue

measures.

Definition 2.1. Individuals are said to be located in R in a simple random way if
the following conditions hold::

(i) Stationarity: For every set A ¢ I, the distribution of the random i
variable X(A) depends only on A(A).

(ii) Independent increments: If Al’ ceey 1-\n (m > 1) represent any m disjoint

. sets in I, the random variables, X(Al)’ cesy xo\n), are independent.

The objective of this section is to show that, under conditions (i) and (ii),

the collection, {X(A), A ¢ I}, is a stochastic process determined by a positive
number and a sequence of mumbers in [0, 1] summing to unity.
For any two sets Ai, A2 in ¢ and nonnegative integers kl’ kZ’ we have
clearly
PIX(A)) = k), X(A)) =k = ] PIX(Ajn A)) =j, X(4) nK)) =1, X(A 0 A,) = 1)

jr=k
j+e=k

1
2

(2.1)




Now let q be an arbitrary point in R and Yq(t), the number of individuals
in a sphere centered at q having Lebesgue measure t 2 0, Yq(O) z 0. Then,
:? using (i), (ii), we can write L
PIX(A)) = Ky X(Rp) = k1= ] PLY () = JIPCY (t)) = TIPLY (ty) = 21, (2.2)

jor=
) + "=k2

where t, t, and t; are A(A.‘l n Az), A(A1 n Kz) and A(A-l n AZJ respectively.
Without difficulty, equations (2.1) and (2.2) can be extended to any finite

number of sets in I. The general result is stated in the following theorem.

Theorem 2.1. For individuals located in R in a simple random way, the joint
distribution of any finite collection of random variables from {X(A), A € I}
is determined uniquely by a joint distribution of a finite collection of

ranlom variables from {Yq(t), t 2 0}.

The proof is omitted. It remains to show that, under (i) and (ii), the
collection '{Yq(t), 't 2 0} is a stochastic process determined by a positive
nunber and a probability sequence.

Conditions (i) and (ii) respectively insure that the process Yq(t)

has stationary and independent increments. That is, for real mumbers

0x st ..ty (m 2 2), the random .variables

Yq(tl)’ Yq(tz) - Yq(tl), ceey Yq(tm) - Yq(tm_l) are independent and, moreover,
Yq(tn.) - Yq(tl.-l) has a distribution depending only on t,-t, ys2=1,...,m (to=0). i
Upon application of a well known characterization of such processes, it follows

[ [see, for example, Khintchine (1960), p. 36] that Yq(t) is the compound Poisson

proccss represented as

Yq(t) = Zl + Zz + s.0 Z.N(t)’




where {N(t), t > 0} is a simple Poisson process and {Zi, i 21} is a sequence of

i.i.d. random variables on the positive integers, independent of N(t). If
Zi = 1, then Yq(t) = N(t), whereas if Zi has a logarithmic distribution, Yq(t) has
a negative binomial distribution, as is well known. These two marginal distribu-

tions of X(A) have been frequently used in the literatures.

3. A Generalization of the Simple Random Models.

In this section we present two methods of developing a general stationary
stochastic structure for the random quantities {X(A)}. This is done in two steps.
Firstly, for m 2 1, we present the joint distribution of X(Al), ceey X(I\,n), vwhere
Al’ -++s A are any m disjoint sets of £. We then show that this set of finite
dimensional distributions determines uniquely the stochastic structure of {X(A)}.

For this purpose we introduce some notation. Let {M(t), t 2 0} be a
stochastic process on the nonnegative integers, stochastically increasing in t,
that is, M(t) < M(s) for 0 < t < s,and {wi, i 2 1)}, a sequence of random variables
with positive integer values, independent of {M(t)}. We assume that {M(t), t = 0}

and {Wi, i 2 1} depend on the parameters 8 and 6, respectively, ranging in

2
parameter spaces P, and B where B is a collection of infinite sequences,

P and P, being probability spaces with F and G the respective probability measures.

Definition 3.1. Let Al’ ceey Am be disjoint sets in I with respective Lebesgue

measures tl.’ ceny tm’ and let kl, ceey ]Sn be nonnegative integers. We define the

joint distribution of {X(Ai)’ i=1], ..., m}as

L m M(ti) . ‘
PIXA) = Ky 1= 1, ey md = [ J’z JP T RIEEEG). 6D
1 I




Definition 3.2. With the same notation as above, we define

Ir.

1
[ JrL} W, =k, i=1, ..., mldF(e;)dG(s,),
Poxp, jer, ,+17 1
12 i-1 (3.2)

i
where 1, = ZM(tq), i=1, ..., mry=0.
q=1
The consistency of the set of joint distributions of finite collections of

random variables from {X(A), A € I}, generated by disjoint sets and defined by
} (3.1) or (3.2), follows from the stochastic structure imposed on {M(t),
t>0, Wi, i > 1}. The stationarity condition (i) is clearly satisfied, since

definitions (3.1) and (3.2) vary only with the Lebesgue measures of the re-

spective sets. The generalization of equation (2.1) to any finite number of

sets in I, not necessarily disjoint, provides a way to extend definitions (3.1)

and (3.2) to any such sets. These extensions preserve the required consistency

and stationarity of {X(A), A € £}. We have proved the following:

Theorem 3.1. If the joint distributions of every finite number of random

variables in {X(A), A e I} are given by the extensions of (3.1) or (3.2), then

{X(A)}, A € £} is a stationary stochastic process. i

It is important to note that (3.1) and (3.2) yield the same marginal distributions
for X(A), A € I, but they define different processes. Statistical methodologies ! |

based on the two models may be quite different and this has been ignored in the

A literature.

it

In Section 2, we proved that simple random models depend on a positive mmber,
say u, and a probabilistic sequence, say {Pi’ i 21}. Now we show that those modelsj

are particular cases of the stochastic processes presented by (3.2). To do so, let
{M(t), t 2 0} be a Poisson process with parameter u, and ., i 21} be an i.i.d.
sequence of random variables given by P(W1 = i) = Pi (i 21). In addition we

take P, and B, to be sets containing only p and the sequence {Pi} respectively.

Now thc extension of (3.2) rcduces directly to a simple random model.
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Let us assume that the sequence of discrete random variables {Wi} is
degenerate at 1, P1 is [0, =), B, is only the sequence (1, 0, 0, ...),

‘ {M(t)} is Poisson, and F is given by

8° T By a-1
fay Je vy dr x>0
Fx) = {Fle} ¢ «, 8 > 0. (3.3)

0 x<0

Then the marginal distribution of X(A), A ¢ £, computed by (3.1) or (3.2), is
negative binomial witha =a and b = ;—‘ A(A). This marginal distribution for X(A)
was assumed by Eberhardt (1967) and by Patil and Stiteler (1974).

4. Models for Finite Regions .

In the previous two sections, we presented stochastic models when individuals
were randomly located in an infinite region. In this section, five different models |
are developed for situations wherein individuals are located in a Borel set R. < R

of finite Lebesgue measure.

Let Le be the set of all Borel sets contained in Rf and Xf(A), the mumber of
/individuals in set A, A € Z¢. Our objective is to develop a stochastic structure
for the collection {Xf(A) » A e zf}. One way to achieve this objective is to
select a stochastic process developed in Section 3 for the infinite region R, say

" {X(A), A € £}, and condition it by an event related to the random variable X(Rf) .
Specifically, let A,, ..., Am be sets in Lg and let k.l’ oo km be nonnegative

1
integers. We define the desired probability as

b A K AR P AR A 8 R s 141 ¥ e

P[Xf(Ai) = ki’ i=1, ..., ml= P[X(Ai) = ki’ i=1, ..., mIX(Rf)J. 4.1)

The consistency and stationarity of the process {Xf(A), A ¢ zf) defined in (4.1)

are self-evident.




For the four remaining alternative ways of dcveloping a stochastic structure

for (Xf(A)}, we refer to the process {M(t)l},the sequence {Wi},the sets Py and P),
and the probability measures F and G,which were introduced in Section 3. We
define first the joint distribution of xf(Al), cees xf(Am)’ where Al’ cees Am
are disjoint sets in I and m > 1, then extend these definitions to any finite
collection of sets in E £ Since the extension techniqhe has been used twice, it

is omitted from our present discussion. Now let Al’ cees ﬁ“ be disjoint subsets

of Re, A(RE) = tg, AA)) =, i=1, ..., m, and let k;, ..., k_be nonnegative !
1ntegers. We define the desired probability in the following four ways:
] Mftl) . M(t 0)
PIX.(A.)) =k.,i=1, ...,md=f [ @ P( } W =k | W. )dF(e )dG(e.,). (4.2) !
fV i i P.xp 2] ) 1 2
1Py 171 J° i
M(t,)
PIX.(A)) =k., 1 =1, ..., fJ'P(Z W.=k.,i=1,...,m|.z W.)
f( 1 1 Plez J rl 1 1 J 1 J=1
dF (0,)dG(e,),
4.3) |
1
. m Mtl) :
P[Xf(Ai) =k, i=1, ..., m =15 an( gl W, kiIM(to))dF(el)dG(ez). 4.4
12 1 3=
. .
= i = = W, = -,-=1, esay M(t
PIXc(A) = kyy =1, ...y m] J‘1 IZP(JZ ) k;, 1 m{M(ty))
dF (9,)dG(0,) -
(4.5

where Tgs ---» Iy are as in definition 3.2.

The stochastic processes determined by (4.2)-(4.5) have been constructed to be both

consistent and stationary. Definitions (4.2) and (4.3) or (4.4) and (4.5), yield

identical marginal distributions for Xf(A), A e Les but define different processes.




If we let M(t) be a Poisson process, {Wi}, a sequence of random variables
degenerate at 1, P1 and P2 singleton sets, then the marginal distribution of
Xf(A), A e Les according to each of the definitions (4.1) - (4.5) is binomial
with X(Rf) corresponding to the number of Bernoulli trials and x(A)/A(Rf)

corresponding to the probability of success in a single trial.

5. Concluding Remarks.

The selection of models for stochastic processes for particular applications
and the development of pertinent statistical methodologies have not been addressed
in this paper. We have demonstrated that models proposed may be used to yield
marginal distributions assumed in the literature; they may also be used to avoid
unwarranted assumptions and inconsistencies that arise. We propose in subsequent

work to use the general models of this paper to devise improved statistical

methodologies for problems involving the location of individuals in a habitat.
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