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The finite segment modelling of a long flexible cable is

discussed. An equivalent force system representing the fluid and

gravitational forces exerted on a typical cable segment is determined.

The fluid forces include inertia, drag, and hydrostatic (bouyancy)

forces. Application of the results in computer algorithm development

is also discussed.
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INTRODUCTION

The objective of this report is to develop expressions for the

fluid forces on a submerged segment of a finite segment cable model.

It is expected that these expressions, when used with the computer

algorithms of a chain link model, will provide a comprehensive yet

efficient simulation of submerged cable dynamics.

There has been an increasing interest recently in the dynamics of

submerged cables. This interest is due to the significant, and often

deleterious, effects of the fluid forces on cable motion and cable

dynamics in a wide range of towing and mooring configurations.

This interest, in turn, has stimulated the development of a number of

procedures for modelling and studying cable dynamics for a variety

of applications. References [1-35]* provide a brief summary of

some of these procedures. In a review of these procedures, Choo and

Casarella 1101 suggest that a promising approach to obtaining an

accurate analysis of large displacement, unsteady, three-dimensional

motion, is the finite segment (that is, rigid link) modelling of the

cable.

Independent of these modelling procedures in cable dynamics,

there have also been many recent significant advances in finite seg-

ment modelling of other mechanical systems -- particularly "multibody

systems." A multibody system or "chain system" (sometimes also called

*Numbers in brackets refer to References at the end of the report.
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"open-chain" or "open-tree" systems) is defined as a set of rigid

bodies arbitrarily assembled such that adjacent bodies share a common

point and such that no closed loops are formed. Figure 1. presents a

sketch of such a system.

The interest in general chain systems stems from the fact that

they are excellent models of many physical systems such as manipulators,

cranes, robots, biodynamic systems (for example, human body models),

chains, and cables.

The advances in the modelling and analysis of such systems are

due to a large extent to corresponding advances in computational

technology and in computer hardware. But, beyond this there have also

been significant advances in the procedures for developing the

governing dynamical equations of motion of these systems. One of the

most promising of these procedures is based on using Lagrange's form

of d'Alembert's principle to obtain the equations of motion (See

References 136-40].). This principle, as exposited by Kane and others

(42-441 is similar to Lagrange's equations in that non-working internal

constraint forces between the bodies of the system, are automatically

eliminated in the analysis. Also, the principle leads directly to

the correct number of governing equations (that is, one equation for

each degree of freedom). However, unlike Lagrange's equations, the

principle does not require the differentiation of lengthy scalar

energy functions. Instead, it uses vector derivatives which can be

calculated by vector multiplication. Such calculations are ideally
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Figure 1. A General Chain System



suited for conversion into computer algorithms. Indeed, in References

[36-40],explicit expressions and algorithms for obtaining the coefficients

of the governing dynamical equations are presented.

This approach is directly applicable in the modelling and analysis

of cable dynamics. However, to develop a cable model, that is, a link

or finite-segment cable model, it is necessary to have expressions

for the fluid forces acting on the cable segments. Hence, the emphasis

of this report is the analysis of these fluid forces and the develop-

ment of analytical expressions for them -- in a format suitable for

their direct incorporation into multibody computer models as described

in References [38-40,45,46].

The balance of the report is divided into six sections. The

first of these provides the assumptions and the basis of the analysis

used in the sequel. The next section describes the fluid inertia

forces transmitted to the cable and generated by acceleration of the

cable segments. This is followed by two sections describing the normal

and tangential drag forces and the weight and bouyancy forces on the

segments. The final section contains some concluding remarks.



PRELIMINARY CONSIDERATIONS

NOTATION

a,b,c - Coefficients defined by Equations (32), (33), and (34).

aG - Acceleration of the mass center G of a cable segment in
an inertial reference frame R.

aGN - Acceleration of the fluid relative to G in R and normal tothe cable segment axis.

aN - Normal component of the acceleration of the fluid relativeto the cable segment.

aP  - Acceleration of a typical point P of a cable segment in an
inertial reference frame R.

a - Acceleration of the fluid in an inertial reference frame R.

a W/G - Acceleration of the fluid relative to the cable segment at G,
the mass center of the segment.

aW/P - Acceleration of the fluid relative to the cable segment at
a typical point P.

A,B,C - Fluid force coefficients of Equations (1), (2), (3), and (4).

B - Bouyancy force on a submerged right circular cylinder.

- Component of B normal to the cable segment axis.

- Component of B parallel to the cable segment axis.

CM - Added mass coefficient.

CN - Normal drag coefficient.

CT  - Tangential drag coefficient.

d - Diameter of the cylindrical cable segment.

f - Fluid force per unit length exerted on a cable segment.

EM - Resultant added mass force passing through the mass center of
a cable segment.
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F - Resultant fluid and gravitational force passing thr'ugh the
mass center G of the cable segment.

N - Resultant normal drag force passing through the mass center G
of the cable segment.

ET -Resultant tangential drag force passing through the mass
center G of the cable segment.

g - Gravity constant.

G - Mass center of a typical cable segment.

k - Vertical unit vector.

L - Length of a typical cable segment.

n - A unit vector parallel to the cable segment axis.

P - A typical point on the cable segment (See Figure 3.).

R - An inertial reference frame.

Re  - Normal Reynolds number (See Equation (8)).

ReT - Tangential Reynolds number (See Equation (9)).

T - Torque of the couple of the equivalent fluid and gravitational
force system.

IM - Torque of the couple of the equivalent added mass force system.
1N - Torque of the couple of the equivalent normal drag force system.

!T - Torque of the couple of the equivalent tangential drag force

system.

V - Cable segment volume.

YG - Velocity of the mass center G of a cable segment in an inertial
reference frame R.

YGN - Velocity of the fluid relative to G in R and normal to the
cable segment axis.

YN - Normal component of the velocity of the fluid relative to the
cable segment.

V - Velocity of a typical point P of the cable segment in an
inertial reference frame R.
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VP/G - Velocity of the fluid relative to the cable segment at G,
the mass center of the segment.

YT  - Tangential component of the velocity of the fluid relative

to the cable.

V W  - Velocity of the fluid in an inertial reference frame R.

W - Resultant weight force on the cable segment.

x - Coordinate of P relative to G.

X - Defined by Equation (40).

- Angular acceleration of a typical cable segment.

. - Viscosity of the fluid.

P - Mass density of the fluid.

PC - Mass density per unit length of the cable.

T - Angular velocity of a typical cable segment.

It.,



CABLE MODELLING

Consider a finite segment model of a cable as shown in Figure 2.

The segments are rigid cylinders connected at their ends with spherical

pins. The model is thus a chain simulation of the cable. As mentioned

earlier, recent developments in the analysis of multibody system

dynamics has led to computer formulations of the governing equations

of motion of such chain systems. These formulations have the option

of accomodating models with segments of different and varying lengths.

The shorter segments can then be used to model the cable in those

regions where the cable has a small radius of curvature. This can be

accomplished by computing the angle between the cylinder axis of the

segment and the direction of the resultant force vector transmitted

across the segment joint. If this angle exceeds an arbitrarily selected

value, the segment length can be reduced. (Recall that for a light

flexible cable, the resultant force at a cross section is nearly

tangent to the cable.) This scheme can also be used to optimize the

number of segments in the model.

FLUID FORCES ON THE CYLINDRICAL SEGMENTS

Consider a typical segment of the cable model as shown in Figure

3. Using results of Webster [35], the fluid force f per unit length

at a typical point P may be expressed as:

= A + B1VNI N + CIVTIT (1)

N NIV + T
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Figure 2. A Finite Segment Cable Model



Figure 3. A Typical Cylindrical Cable Model Segment



where VN is the normal component of the fluid velocity relative to

the cable segment at P, aN is the normal comoonent of the fluid accelera-

tion relative to the cable segment at P, VT is the tangential component

of the fluid velocity relative to the cable segment at P, and the coef-

ficients A, B, and C are:

A = CMp(?r/4)d 2  (2)

B = CNP(d/ 2) (3)

and

C : CTPw(d/2) (4)

where p is the fluid mass density and d is the diameter of the cylindrical

segment. CM, CN, and CT are coefficients dependent upon the Reynolds

number of the fluid flow past the cable segment. These are usually

determined experimentally and the reported results may vary slightly.

Webster 135], for example, records them as:

CM 1.0 (5)

0.0 for Re < 0.1

0.45 + 5.93/(Re)0 .33 for 0.1 < R < 400.

CN - (6)
1.27 for 400. < Re < l O5

0.3 for Re lO15



'I

and

1.88/(ReT )0 .74 for 0.1 < ReT < 100.55
CT = (7)

0.062 for ReT > 100.55

where the Reynolds numbers ReN and ReT are defined as

Re = pd IVNI/u (8)

and

ReT = PdIVTI/ (9)

where u is the viscosity of the fluid.

Of these coefficients CN, the normal drag coefficient is undoubt-

edly the most significant in affecting cable motion. It is also the

most widely studied in the literature (See for example, References

[47-54].) The variation of CN with ReN is often depicted graphically as

in Figure 4. A linear curve fit of this graph leads to the expressions:

1.45 + 8.55 (Re )0.40 for 1 < Re < 30

1.0 + 4(R e)1/2 for 30 < Re < 100

2.25 - 0.45 log(R ) for 100 <_ Re < 1000

CN 0.90 for 1000 < Re < 4000 (10)

1.05 + 0.54 log(R ) for 4000 < Re < 15000

1.21 for 15,000 < Re < 150,000

0.3 for 150,000 < Re
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Figure 4. Normal Drag Coefficient (References [47-54]).



As mentioned above, these expressions are of slightly different form

than those in Equation (6).

In Equation (1), the first term is due to the acceleration of the

fluid relative to the cable segment. It is sometimes called the "added

mass force" (See References [55-57]). The second term is the "drag force."

The third term, the "tangential drag force," is tangent to the cable

segment and it is generally smaller than the other fluid forces. The

effects of each of these forces is examined in more detail in the

following sections of the report. It is assumed throughout the analysis

that the coefficients A, B, and C of Equation (1) are constant, or at

least "slowly varying" along the length of the cable segment. Also,

the fluid is assumed to be incompressible.

4I
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ADDED IMASS FCRCES

RELATIVE ACCELERATION OF THE FLUID NORMAL TO THE CABLE

To determine the force system exerted on a cable segment due to the

added mass forces, it is necessary to develop a description of aN, the

normal component of the fluid acceleration relative to the cable segment

in terms of the ambient motion of the fluid and in terms of the motion

of the cable segment. To do this, let G be the mass center of a typical

cable segment as shown in Figure 3. Let x locate a typical point P

relative to G and let L be the length of the cable segment. Finally, let

n be a unit vector parallel to the axis of the segment as shown. Then

x is positive if the vector GP has the same sense as n.

Let aW represent the acceleration of the fluid in an inertial

reference frame R. (Usually aW will be zero.) Then, at point P the

acceleration of the fluid relative to the-cable segment may be written as:

aW/P = aW -a (11)

where a Is the acceleration of P in R. ap may be expressed in terms of

aG, the acceleration of G in R, as:

aP = aG + aP/G (12)

where a P/G is the acceleration of P relative to G in R. However, since

both P and G are fixed on the cable segment, aP/G may in turn be written as

I'.



a P/ G = cX(xn) + wx[wx(xn)] (13)

where a and w are the angular velocity and the angular acceleration

of the segment in R. Since aN9 in Equation (1), is the component of aW/P

perpendicular to n, it may be written as:

aN = WIP - (4W/P . n)9 (14)

By substituting Equation (13) into (12), (12) into (11), and finally

(11) into (14), aN becomes

N = aW/G _ xaXn - xwX(wXn) - ( W/G . n) + x(* • n) 2 n - xw 2n (15)

where aW/G is aW - aG, the acceleration of the fluid relative to the
2.

cable at G in R, and w is w • w. Let aGN be the acceleration in R of

this fluid relative to G perpendicular to the segment axis. Then, aGN is

a= W/G - (aW/G n)n (16)GN " "--

Hence, from Equations (15) and (16), aN may be written as

NnGN -xXn- xwX(wXn) + x(w • 2 2 xn (17)
-N !GNI.



RESULTANT ACCED MASS FORCE AND MOMENIT

The added mass force at a typical point P of the cable segment is

A N . Let the set of added mass forces acting on 
the entire cable segment

be represented by an equivalent force system consisting of a single force

FM passing through G together with a couple with torque TM. Then FM and

TM are given by

L/2
FM  f LAaN dx (18)

-LI/2

and

L/2
TM =fxnxAa,,dx (19)

By assuming that A is independent of position along the cable segment

and by substituting from Equation (17) into Equations (18) and (19),

M and TM become, upon integration

M - ALaGN (20)

and

-A(L- ( • n)n + (w • n)nXw] (21)

Mp



DRAG FORCES

RELATIVE VELOCITY OF THE FLUID NORMAL AND TANGENT TO THE CABLE SEGMENT

To determine the drag forces exerted by the fluid on the model

segments, it is necessary, from Equation (1), to have expressions for VN

and VT, the normal and tangential components of the fluid velocity

relative to the segment at a typical point P. These velocities may be

obtained by using the same procedures outlined in the foregoing section

of the report. Specifically, let VW represent the fluid velocity in R.

Then, at P the velocity of the fluid relative to the segment may

be expressed as

VW/P . VW - VP (22)

where VP is the velocity of P in R. VP may be expressed in terms of VG,

the velocity of G in R as

Vp - VG + VP/G (23)

where VP/G is the velocity of P relative to G in R. However, since P

and G are both fixed on the cable segment, VP/G may be written as

VP/G - wXxn (24)

where, as before, w is the angular velocity of the cable segment in R.

Since VN is the component of VW/P perpendicular to n, it may be written as,I



, = , (VW/P . n)n (25)

By substituting Equation (24) into (23), (23) into (22), and finally

(22) into (25), vN becomes

YN = VW/G - (VW/G • n)n - Xxn (26)

where VW/G is V- VG, the velocity of the fluid relative to G in R.

Let YGN be the velocity of the fluid relative to G in R perpendicular

to the cable segment axis. Then VGN is

VGN =VW/G _ (VW/G . n)n (27)

Hence, from Equations (26) and (27), V finally becomes

VN = VGN - wXxn (28)

Similarly, since VT is the component of VW/ P parallel to n, it

may be written as:

YT = (VW/P n)n 
(29)

Using Equations (22), (23), and (24), this may be written as

YT= (VW/G . nn = VGT 
(30)



where VGT is the velocity of the fluid relative to G in R parallel to

the cable s.egment axis.

Finally, in Equation (1), it is necessary to have expressions for

the magnitudes of VN and VT ' From Equation (28) the magnitude of VN

may be written in the form

IYNI = (a + bx + cx2) (31)

where a, b, and c are

a = VGN *VGN = (VGN)2 (32)

b = -2V GN • xn (33)

and

c = (wxn) • (wxn) = (wxn)2  (34)

Similarly, from Equation (30), the magnitude of VT may be written as

IVTI= IVGTI (35)

- -z



NORMAL CRAG FORCE AND MOMENT

The normal drag force at a typical point P of the cable segment is

BIVNIVN. Let the set of normal drag forces acting on the entire cable

segment be represented by an equivalent force system consisting of a

single force FN passing through G together with a couple with torque

!N . Then, F N and TN are given 
by:

L/2

= B f IVNIVN dx (36)

-L/2

and

L/2
!N =B f IVN xnXVy dx (37)

-L/2

Consider first F From Equations (28) and (31), FN may be

written as:

L/2

N B f (a + bx + cx2)(V Xx)dx (38)
-L/2

or

L/2 L/2

EN =BYGN f (a + bx + cx
2 ) dx Bwxn f x(a + bx + cx2 ) dx (39)

-L/2 -L/2

The integrals in Equation (39) may be evaluated in closed form. In

[57] it is found that by letting X be defined as

----------------------------



X = a + bx + cx2  (40)

the first integral may be evaluated as

L/2

f X x = [(cL + b)/4clX I + [(cL -b)/4c]X .L2

-L/2 L/2 -L/2

I +Lc b
2 31/2 + 1 T- + n _. (41)+ [(4ac - b2)/8c3/2 og( b L12

-L/2 2 +r7;*

Similarly, the second integral in Equation (39) may be evaluated as:

L/2

xX dx = (I/3c)X3/2f - (1/3c)X3/21 - [b(cL + b)/8c2 ]X I

-L/2 L/2 -L/2 L/2

+ [b(b - cL)/8c2]X 1
-L/2

- [b(4ac - b )/16c ]log( x I L 2 +  b (42)

2 2L/2- T 2c2

Finally, for the purpose of evaluating TN, it is useful to also record

the result:

L/2

x2X dx = (I/4c)[(L/2) - (5b/6c)]X 3/2 + (1/4c)[(L/2) + (5b/6c)]X
3/2 1

-L/2 L/2 -L/2

+ [(5b 2  4ac)/16c21{[(cL + b)/4c]X 1 + [(cL - b)/4c]X
L/2 -L/2

Lcu. + b

+ [(4ac- b 2)/8c3/2]log( L/2+ b (43)

-k L/ 2HL/2 F y 2tc

Hence, from Equations (39), (41), and (42), F N may be written as I



FN B{wxn(l/3c)(X3/2 1 - X3/2 1 )[(b/2c)wxn
- " - -L/2 L/2

+ VGNI ((L+b)Xl (cL- b)Xi
4c L/2 4c -L/2

2 x C b
(4ac - b )o X'L/2 + + T . (44)

+ 8c3/2 X ' Lc'i +b (4
XIL/2 - 2 C

Next, consider TN. From Equations (37), (28), (31), and (40),

1N may be written as:

L/2

1N : B f xx nX(VGN - wXxn)dx (45)

-L/2

By expanding the vector product TN becomes:

L/2 L/2

N nxV,, f xX dx - B[W - (W.n)n] J x2 X dx (46)
" -L/2 . ...- L/2

By using Equations (42) and (43), TN takes the form

1N  BnxVGN[(1/3c)X3/2 1 - (1/3c)X3/ 2 1
L/2 -L/2

b(cL + b) X 1 + b(-cL + b) Xh

8c 2  L/2 8c2  -L/2

2 Lc/2 b b2
b(4ac 5 b2) loq.( Lc + 2C: ]

XIL/ 2 - T 2c2

+ B[(w-n)n - ,]{(l/4c)[(L/2) - (5b/6c)]X 3/2 , (47)

+ (1/4c)[(L/2) + (5b/4c)]X
3/21 + [(5b 2 - 4ac)/16c2 cL X 1

-L/2 L/2
h 2 + Lc bI.]

+ +b jacb2 log --. L/ c + '7

4c L/2 8c3/2  -/2 - :C2 2c

232 
c



TANGENTIAL DRAG FORCE AND MOMENT

The tangential drag force at a typical point P of the cable segment

is given by the third term in Equation (1) as: CIVTIVT. Hence, let the

set of tangential drag forces acting on the entire cable segment be

replaced by an equivalent force system consisting of a single force FT

passing through G together with a couple with torque TT. Then FT and

TT are given by

L/2

FT  C L/2 VTIVT dx (48)

and

L/2

mT = -L/2 IVT!XnxVT dx (49)-L/2

Consider first FT. By substituting for VT from Equation (30),
becomes

FT = CLI VGTIVGT (50)

Consider next TT . From Equation (30) it is seen that VT is

parallel to n. Hence, the vector product is zero and therefore TT becomes:

iT 0 (1

r}m 1A__o__ ____



WEIGHT AND BOUYANCY FORCES

Consider finally the weight and bouyancy forces acting on the cable

segment. The weight forces* may be represented simply by the single

vertical (downward) force W passing through the mass center G as shown in

Figure 5. If p c is the mass density per unit length of the cable segment,

then W may be expressed as

W -gLk (52)

where k is a vertical unit vector and g is the gravity constant.

The bouyancy forces are not quite as simple as the weight forces.

The bouyancy forces are due to the hydrodynamic pressure forces exerted

on the cable segment. These forces are normal to the surface of the

segment and they increase in magnitude linearly with the depth. For a

submerged cylinder, the bouyancy forces may be represented by the single

vertical force B passing through the geometric center G of the cylinder

as shown in Figure 5. However, since the cable segment represents a

finite segment modelling of a continuous cable, the ends 1 and 2 of

the segment are not exposed to the fluid. That is, they are "shielded"

from the fluid forces by the adjacent joining cable segments. Therefore,

the hydrostatic forces on the cable segment are all normal to the segment

axis. If the force B is represented by components BN and B T perpendicular

*These are the only non-fluid forces considered in the analysis. They

are included in the analysis because of their close association with

bouyancy forces.
25-- --



Figure 5. Weight and Bouyancy Forces
Acting on the Cable Segment
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and parallel to the cable segment, then the resultant, equivalent hydro-

static force on the cable segment may be represented by the single

force BN passing through G. (This is also seen by noting that the

hydrostatic forces on the ends of a submerged right circular cylinder

are parallel to the axis of the cylinder and, hence, may be represented

by the component BT*) The vertical force B of Figure 5. may be expressed

in the form (See, for example, Reference [491.)

B = -pgVk (53)

where p is the mass density of the fluid and V is the volume of the

submerged segment. Hence, since BN is the component of B perpendicular

to the segment axis, it may be represented as:

B = B " (B " n)n = nx(Bxn) (54)

or

B = -pgpx(kxn) (55)

if|



CONCLUSIONS

To summarize the foregoing results, the force system exerted on a

segment of a finite segment cable model by the fluid inertia, drag, and

hydrostatic forces, together with the gravitational forces, may be

represented by a single force F passing through the mass center of the

cable segment together with a couple with torque T"T F and T are

given by the expressions

fm + FN+  + BN + W (56)

and

1T = TM + TN (57)

where FM' N' T' N' ' IM' and TN are given by Equations (20), (44),

(50), (55), (52), (21), and (47) respectively.

Equations (56) and (57) are in a format which may be directly converted

into subroutine algorithms for use in finite segment computer codes

(such as UCIN-SUPER [46]) written specifically for multibody dynamics

analyses. That is, given suitable initial conditions for the kinematics

of the cable segments together with the segment physical and geometrical

parameters, and the fluid properties, the Reynolds numbers and drag

coefficients can be determined. This, in turn, determines F and T

which may then be used in the governing equation algorithm. Upon



-

numerical integration, the kinematics at the end of a short time

interval is determined. The above process can then be successively

repeated until the time history of the cable motion and dynamics is

known.

Reports on the development, validation, and application of such

computer algorithms and codes are currently being planned and prepared.
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