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1. Preliminaries

Let le""'xNN s N2 1 be independent random variables

with continuous distribution functions FNl""'FNN’ and let

R;i be the rank of |X.,| among llel""'lxunl . We shall

be concerned with the asymptotic distribution of the statistic
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Sy = 1Z1CN1 ay(Ry,) sgn X, (1.1)

where Cnps---'Cyn Aare known regression constants; aN(l),....aN(N)
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also Dupal and Hajek (1969).

We assume that the cui's satisfy the Noether condition
N
. 2 2
lim max ¢ 1 cyy = 0 (1.2)

Now 1cich Nof j=1

and the scores are generated by a function ¥(t) , 0 <t <1,

either by interpolation

or by a procedure satisfying

N
I lag(s) = v/ o)) | = o) (1.4)
1:
Set
N
Hy(x) = N2 .IIF;i(x) (1.5)
i=

*
where F.. is the distribution function of 1% |

H;-l(t) = inf {x :H;(x) >t} , 0<t<1 (1.6)
Lg; (8) = Fy (BoH () L 0 <<l (1.7)
My (t) = -FNi(—H;-l(t)) , 0<t<1 (1.8)
Gy (£) = Py (HLTH(E)) = L (£) + MU (£) , O<t<l (1.9)




It is easy to check that

N
N1 G, (t) =t , 0ctcl , N>l (1.10)
i=)
The price for allowing discontinuous scores is the following
differentiability conditions:
Let v denote a jump point of the score generating function j
3
vV ; v e©0,1) . Then, for every K>0 , K' >0 , we impose the fol- ;
lowing conditions:
max - Sup %k Lyi (€)= Lyg (v)l =0(1)
1<i<N KN "< |t-v] <K'N "'Lg' N t-v i
(1.11) 1
max : up | %k IMNi(tl::Ni(V) = o(1) 1
l<i<N KN 4_<_|t"’?i"' N gt w | (1.12)
:
Furthermore, we assume that there exist real numbers
fiv) o mg . (v) , (1 <i<N) such that for every K>0 ,
]
max Sup % 'Lﬂi (t) -I.Ni (v) - tt -v) "Ni (v)| ='o(l‘“")
1<i<N |t-v|<KN™ *
N |e-vixn (1.13)
max Sup _y |u“. (t) =M .(v) - (t ~v) By (v)] =o(N-") 1
1<i<N |t-~v|<K N~ : Ni ;
- . (1.14)
From (1.11) - (1.14) it follows that GNi(t) satisfies the

S p—

same type of conditions with Ini (V) = L. (V) + me (V) . Also it

is casy to see that w.ithou't loss of generality one can assume

that "Ni(v) > 0', mNi(v) >0, and

oL —r - n -
y o o d - YT ey e e 4 ae T o



-1?:!.“() 1 ‘1'{:5,()
. (V = = N v
jmp M j=1 M

Finally, note that the numbers "Ni (v) , Myai (v) considered
as function of (i{,N) , 1 <i <N , are bounded. Another condition

concerning the G“i's that we use is

N
. -1
11:‘i?f N 121 Gui(v)(l-Gni(V)) >0 (1.15)

Some times, mainly for purposes of applicatons, we replace
(1.11) - (1.15) by more feacible conditions easier to verify:

N
such that for some a , (0<a<«) , we have

Suppose, for example, that each F i has a density fNi

(a) fui(x) =0 for x {(~a,0) if a is finite,

(b) f‘u (x) is continuous on every compact sub interval of (-a ,0)

uniformly in (x, N, 1) ,

(1.16)

(c) for every compact interval C c¢(0,a) there exists an €.>0

such that for all N>1 ,

-1 . *
N~ Card {l1<i<N :?g £ai(X¥)>c ) > e

s L *
where f, . 1is the density of ‘Pui .

(d) 0 <lim inf HM(t) ¢ lim Sup H;-l(t)< a for all t ¢(0,1) .

N+ N+eo

We will see that the condition (1.16) is satisfied in par-

ticular if




-d -d..

Ni

(a) fm._(x) = e f(xe

(b) f is uniformly continuous and positive on (-o o)

(1.17)

(c) Sup max |d < w

;|
N 1<isy M

The last gondition that we require concerns the nondegeneration

of Var Ss in the form

L + /¥ 2
lim inf Var(sgy)/ 1 cy,

N +o i=l

>0 (1.18)

2. Main Theorems.

Theorem 2.1. Consider the Statistic (1.l1l) with scores satisfy-

ing (1.4) , where

0 if 0< t< v
v(t) =

1 if v<t<l

+ . .
Then . SN is asymptotically normal with natural parameters

(E(S;) » Var (S;)) if any of the following sets of conditions is

satisfied:

(13

(1-2), (1011)' (1.12)' (1013)' (1014)0 (1.15)' (1.18)

(1.2), (1.16), (1.18)

(1.2), (1.17), (1.18)
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Proof. We show that s; is asymptotically equivalent to its
~d

projection s“ onto the space of linear statistics and then

that 's‘; is asymptotically equivalent to a sum of independent

random variables to which the Lindeberg Central Limit theorem

applies. (For the ease of convenience we shall from now sup-
press the first subscript N from xNi ' Rﬁi . etc).
First we would like to derive an upper bound for the re-

sidual variance E(S;l' -§§)2 , where

to ) E(sT]X;) - (N-1)E(S)) R
gu i-);l N' i N’ ° i

By the Residual Variance Lemma (see Hijek (1968)), we have

N .
+ A+ 2 2 + + 2
E(Sy =Sy " < 121 c] E(a(R;) -E(a(R)) [x,))

+ i;j ;¢4 {E(sgn xilgnxj Cov(a(RI), a(R;)Ixi,xj))

+ E{sgn X; sgn X, [s(a(n‘.;)|xi,xj) -E(a(rR}) ] X))

+ +
x (E(a(Rj) lxi.xj) -E(a(kj) Ixj)l}

+ +
L, _ k’hzh’_jCov{E(sgn X, a(Ry) X)) E( sgn X, a(nj”xk)}}

We investigate each term in the above inequality. We begin

by assuming that the scores are defined by (1.3) and that (C'{)

holds. The proof is divided in several steps:




Lemma 2.1. The functions LNi(t) ’ MNi(t) R GNi(t) satisfy

the following relations:

II.“i(t) -I-Ni(s)l < N|t-s] ,

Mg () -My  (8)] < N[t -s|

and

IA

|GNi(t)-Gni(s)l N|jt-s|; 0<s,t<1

Prooi: It follows from the definitions and the fact that for

u>v>0 we have:

* ®
F,a) ~F;(v) < F;(u) =F,(v) , F,(-Vv) -F. (-u) < F;(u) -F;(v)

*o) ®_)
where we set u = H (t) , v=H (s) .

N
, Denote V = [(N+1)v] , D” = N1 ] 6, (v) (1 -G, (v))
i=1 .

({-] = integer part)

Lemma 2.2. let x,ye¢R . Then to each k1> 2 there exist a

k2> 1 such that for all N >N0 (kl) we have:

. -5 % ~k
(1) v-Hy(lxD)>k, N " Lg "N = P(R:_>v|xi=x,xj=y)<n 2

¥ 0% -k

: * ' - +
i (1) v-Hu(x <=k ¥ T 1g TN => PRTCVIX; =x, X, =y) < N 2




T T T Ty

Purthermore, (i) and (ii) remain true even when the con-

dition xj =y is ommited.

® - 1,
Lemma 2.3. Suppose that |[v-H ({x|)]|< ky N !‘LgéN. Then,

for sufficiently large N , we have

N ® ] 1
@ L P IxD) (1 -F (|x|)) - ND%| <k, N¥Lg¥N

(i) Je (v h{F'(l 1) t{ir"'(l QA -=F:(|x]))
11 H s X ’ : X ~-r, X
TN i= * i

N« 2 -1, %
-¢(Nv;-lei(|x|),ND)| < kgN " Lg*N
1=

N N ®
(iii) Jev; I Foxl) . I Fo(IxD@-F. (Ix]))
i=1 i=1 1

N . _1 1
-e(w; ] F (]x]) ,N0%)| < kN gt

i=1l

N
where ¢(x; u,oz) s P(x; u.oz) denote the normal density, resp.
the normal distribution function with parameters (u,oz) .

The proofs of lemmas 2.2 and 2.3 are analogous to those of

Lemmas 5 and 6 of Dupad and Hijek (1969),and are therefore omitted.
Lemma 2.4. For N+« , we have
+ + 2 _
E(a(R;) -E(a(Ry) |X;))% = o(1)

uniformly in 1<i <N .

- ravw;',«- - A TER YU AT B ARt 3 s




+
Proof: Let '(X,) = E(a(R})|X,) - ((E(a(R})]x,)1?

Then, by conditioning we obtain:
+ + 2 +
E[a(Ri) - E(a(Ri”xi” = B(Q (xi))
Now, by definition:
+ +
E(a(R;) |X; = x) = P(R; >V[x; = x) .

Thus

+ + +
Q (X, =x) = P(Ri>V|xi=x)°P(Ri f_VlXi=x)
* -
Let I = {x||H (|x])-v] <Xk; N * Lg"N}
By Lemma 2, if x¢I we have:
+ ’kz
Q (xi=x)< N , for every N:No(kz) . k2 >1

On the other hand, if x eI , then since P(RI=k|xi = x)
4 * ®
B (k, Fl(lxl),...FN(lxl)) (in the notation used by Dupad and

Hajek (1969)), we obtain using Lemmas 2.2 and 2.3, that

+ _ i * *
a*(x; =x) = {kgvn (k, Fy(lxhy, . FytlxIn}

x { ] B, E (%)), .. Fgtixi)
L<v

— At
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* ®
= ... = Q(Lﬂ.’il}_‘.’_!) {1_0(§_(.m_‘)_;".} + GIN-"' Lg!‘N
DN ¥ DN ¥

for sufficiently large N , [8,|< k,

We observe that the last equality remains true even if we

enlarge I to

* ~%y
I' = {x:|H (|x]) -VlgngN Lg* N}

where k, is such that kg = k1/2k8 with k8 <D <% and

k9> 2 . (Here we use Condition (1.15)).

A o o v v g g st

Now using (1.11) and (1.12) it is easy to show that

N 1g¥N I 6, dF; (x) = o(1)
Il

and

*® ®
H (Ix]) -v _ s H_Ux]) -v -
J 0(——1—);!;:5——) {1 - o —l;!L':r-)} dFi (x) o(l)

I'
Hence E(o*(Xx;) = o(l) uniformly in 1<i<N and the

proof follows.

Lemma 2,5. For N +> we have:

B A it e ——————

+ .
E{sgn X, sgn X, [E(a (RDX;, X;) ~E(a(R{) |X,)]-[E(a (R;) | X5« %)



11
- E(aRH %)) = o(n’})
J J
uniformly in 1l<i, j<N .

The proof of this Lemma is similar to that of Lemma 2.4

and is therefore omitted.
Lemma 2.6 For N+« we have:

Ef{sgn xi sgn x:i Cov(a(RI) ’ a(R})] xi v xj)]

= N"l D.2 (zi(v) -mi(v)) (zj(v) -mj (v)) + O(N-l)

uniformly in 1<i,j<N.

Proof: We have:

+ +
a" = cov(a(R}), a(Ry)|X; =x, X =y) 1

+ | - - + .

+ + ,
( j° VIX; =x, xj‘” * P(R; ilej =X, xj’” if |x|2]y|
Let k] >2 . Denote:

* - -
1= {0,y |8 (x|) = v| <k N7F pg® | m" (ly]) - v| <k, N ¥ Lg¥ N}

By considerations as used in the derivation of (4.11)

and (4.12) in Dupad and Hajek (1969), we obtain




e R a3

12 [

(82 for (x,¥) ¢ I, N >N, (k)
’ ’ o 2

*® ®
- H ( ) -V % .. %
= o UXD V) 1y - g J;:_,‘ » + o, N 1oty

DN

for N sufficiently large, (x,y)e I, |x| <]y,

+
A <
(x,¥) and |6,| <k;, (2.1)
*® L]
By -v _a B x]) v, <% . %
= 0(——-|-§;l::1i——) {1-9t D—L-}'g—)} "‘93N Ig* N
i
for N sufficiently large, (x,y)e I, |x|> Iyl
L and |6y |<_k11 :

We note that the equality in (2.1) remains true even if we en-

large I to I° 3

I'= {(x,y) ¢ max Uu" (Ix) -vI, 18" dyh -vi} < k'l'nf"r.g"n}

] H . [] .
where ki is such that kl = k1/2k8, k8 <bh<k , kl >2 ‘kl coin-

cides, with k9 in the notation of Lemma (2.4)).

We have, using (2.1) that

+ +
E(sgn X, sgn xj Cov(a(Ri) ’ a(Rj)l X;o xj))

* 3
= J )[ sgn X 8gn Y 0(—‘;‘)‘#—‘) {1-¢ (——%—i—,l_-,‘——)} dF, (x) dl-‘j (y)

I {|x|<]y|}

* *
+ ”sgn Xsgnyo (H—(J-XDJ&%-EX){I - ¢(H——L1§-l£)_—,:—v)}dl-‘i (x) dFj(y)

1l x| >lyl} ‘g
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- -k
+ N % Lg,‘“ J Isgnxsgny 0‘(x,y) dri(x)drj (y) +05u
I (2.2)

2

with [8,]< ky,0 l8g] <1 .
The last two terms. are o(N 1) uniformly in i,j as follows

by using (1.11), (1.12) and k,> 1 . It reamains to estimate the

first two terms.
Denote the first term by 7T . Consider:

T, = ” %){1 o(“——‘Y’—g——)} aF; (x) &F, (y)

x>0
{(x,y): ¥y>0 , max(ln (x) -v|, ln (y) -v}) < leN "Lg"N}
x<y
®
Set p = }_l_i%—v—— M)_!.‘_ and
DN DN

= {(p,q) : max(|p|, |al) <_k; Lg"N} . Then

T, = ([ ¢(p) (1 - ¢(q)) AL, (v + DN-!‘ p)d I‘j (v +DN_!‘ q)
P

<q}

v ..
As in the proof of Lemma 7 of Dupac and Hajek (1969) one can

easily show that

7y =yN1p2 4 (V) 250 +oNY

2.
uniformly in 1<i, j <N (2.3)

Let

* *
1, = ”- “u;_:)__,‘-_vm -o (o) ar (x) ar, (y)
DN

. %<0 . - R -" k
{(x,y) : ¥y>0 , max {|H (-x) -v|,|H (y) - W)= kIDN Lg" N}
_x<y
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L g

Then
T -% -%
2 " ¢(p) (1 - o)A, (v + DN p)dLj(V*Dll q)
I*n{p<q} ‘
pivide I" into J and 1I°\J where: ;
4
[} 3
J= {(p,q) :max(|pP] . |9]) ikl) . ]
. 1
and in J make use of the expansions:
M,(v+DN %p) = M (v) +m (v)DN fp + 0, (p) ¥
i i i p+i;ip ;
-% -
D - + D
Lj(v+ N *q) Lj(v) zj(v) N q+Aj(q) 4
where Qi(p) and ltj (q) are absolutely continuous and are of order
- " "
otN" % inl-k; ,k,] . This follows from (1.13) and (1.14).
Then considerations similar to the ones used in the derivation
of (2.3) lead to:

T, = Jm“n’:»i (v) '~j (v) +o(N"!) uniformly in 1<i,J<eN.

Consider now

. .
T, - [ ..(n“__x_-s;zh:.z, (- oYL=V gr () ARy () i
DN

x<0

{(x,y) : o , * - e ‘DN~ :
y -z:-y max(|H ¢x) -v| , |H (~y) -v]|) 5_k1DN % Lg“N}

i
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] ]
=] -e (MD:-’.T'!)u-o(“;u-—Lﬂ_T'ln ar, (x) aF, (y)

x>0

{(x,y) 3 y<0 / nx(lﬂ'(x) -vi, lu*(-y) v <kg Du"‘x.q"u}
x<=y

Proceding as before, (omitting the details of computations)
it follows that

T, =wlo?a (Vimg(v) + on"}) uniformly in 1<i, j <N
1, = - lp? L (vim, (v) + o) uniformly in 1<i, I <N .
Thus,

TaT eT 4T 4T, = 8! p? (4 (V) =m, (V) (£, (V) = m (V)

1

+ Oo(N"") uniformly in 1 <i, j<N. (2.4)

Proceding as above, it can be shown that the second term of (2.2)

is the same as (2.4). The proof follows.

Lesma 2.7. Por N-+=, we have (for i ¢ 3J)

Cov {E(sgn X, a(R[)Ix,) , E(sgnx, a(r])|x)} =

k+§,j

N1 0? (£, (V) ~m (v)) (& (v) = my (v)) 4 @(n7H)

uniformly in 1 <i, j <N .
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Proof: By Lemma 3.2 in Hijek (1968) we have:

E(a(R}) sgn X;| X, = x, X, =2) -E(a(R]) sgn X,| X, =x)

= sgn x{u(|x|-{z Fr(|x )] P(R] = V+1|x; =x, | X] =]x|-D
where u(t) =1 for t >0 , and u(t) =0 for t«<O0 .

From Lemma 2.2, we have

PRI =Vellx, =x, [X |= k|-1)<n 2 (2.5)

for some k,>1 and all |H.(|x|) -vl_{k1 N* Lq" N

Furthermore Lemmas 2.2 and 2.3 imply

PRY =v+1|x, =x , |x | =|x| -1) =¢ (Nv; SF'(IxI).sz)
i a 3 j=1 3j

+o Nt Lgf N L
for some |68.| <k,, and all l8* (I xl) - vl <k N-"Lgku .
As before, the last equality remains true even if
18" (xl) -vl < kj DNT¥ Lg¥ N

"Lg"n} .

Let I' = {x:|H (|x|)-v| <kjDN
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. -qunx[u(lxl -|z]) -P;(lxl)lP(RI‘ V41X, =x,|X | = |x]-1)dF, (x)

-, Ceaareo s [ enar oo
IO
R\I'

The second integral is o(N-l) by (2.5), while the first is

equal to

N
J sgn x[u(|x|~|z | -P;(|x|))¢(uv. ) r'.'(lxl), NDz)dFi(x)
IO jgl J

+ I sgn xu(|x] - |z]) -F;(lxl)] P N”ng,‘N dF; (x)
Ii

In the last expression, let us denote by Ts the first term

and T6 the second.

Then, we have

*
Ts--D-l N ¥ !' sgn x[u(|x| - [z]) -F;(lxl)lﬂw—“—i‘-)ﬂf‘!) aF; (x)

Using the fact that

"p) <b(p)dl.i (v + DN"‘ P)

p-ly¥ G, (v + DN”
|p|<k{LgkN

%

= p} N_‘i ,Gk (v) &(p) dLi (v+DN "p) + o{N-l)

lpl<kiLg ‘N

uniformly in i and k (which follows from (1.11)), we can show that
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-1 -’gI H*(x) - v
D" N (u(x - |2]) - PE(x)) 0(—(—)1;—) dF, (x)
k DN~ i

(x>0 : |H*(x)-v|sk; DN™¥Lg¥N}

=Nl (il - @ - 6 v + o)

B ([z]) - v
DN" ¥
Similarly we estimate the integral over {x < 0:|H" (-x) - v| s

uniformly in 2 , 1 s i < N, where g =

kiDN-qukN} and we obtain

E(a(R]) sgn X |X, = z) - E(a(R]) sgn X,)

1

=81 - 8@ - G WM V) - m (V) + oY) (2.6)

uniformly in - < gz < = ,

Thus, denoting
Ky = Cov{!(a(RI) sgn xilxk) ¢ E(a(R;) sgn lexk)} (2.7
we obtain

K [E(a(R]) sgn X |X, = 2) - E(a(R]) sgn X,)]

k.

U

x (!(a(n;) sgn lexk -g) - B(I(R;) sgn xj)] ar, (z)

= N2, ) - (v (V) - m(v))
(1-v) /DN"¥
x I}l - ¢(q) ~ Gk(v)lz 4G, (v + nn’*q) + o(N"2)
-v/DN"¥




Note that

(1-v) /DN"%
J'(l - ¢(q)) 4G, (v + DN~
-v/DN'*

%q) = 6, (v) + o)

and
(1-v) /DN *
j (1 ~ Nq)]zdck(v + DN-!iq) = Gk(v) + o(l)
~v/DN"%

Hence: ?

Ky = N72(2,(v) = £5(M) (mg (V) = my(V)) (G (V) (1 = Gy (v))]
+ 202, (v) - 245(V) (my(v) = my(v))o(L) + o(N2) ;

Summing over 1< k< N, k #i,3 (i # j), we finally

obtain:

K

e =N W) - L) @) - mv)D? + o)

k#i,J
uniformly in 1 < i # j < N . The proof follows.

Using the Residual Variance Inequality and Lemmas 2.4 - 2.7,

we obtain

Lemma 2.8. For N +» o , we have

A N
E(sy - 892 =o( ] ch . (2.8)

i=1

A
Now from the definition of S; + we have

A+ At N N + +
Sy -~ E(Sy) = [ 1 cj{E(a(Rj) sgn xj|xi) - E(a(R;) sgn xj)}

i=1l j=1

N
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Set

N
W= jzl 01{3(0(85) sgn lexi’ - E(a(R;) sgn xj)} s, 1 <isN

and note that the Yi +r 1 51 s N are independent random vari-
ables with E(Y;) = 0 and Vat(su) - 121 var Y, .
Define
-1 N »*
2, =N (jzlcj(zj(v) - nj(v)»[u(v = H (|x;[)) = 6,(v)]
i
+ c,[E(sgn X,a(R{) |X,) - E(sgn X,a(R{))] , 1 5 i < N

and note that the zi, 1l <i < N are independent random variables
with 3"1’ =0,1<icsN.

Now for j ¥ 4i , 1< i,J s N we have

E(sgn X a(R))|X;) - E(sgn X, a(R)))
N v -8 (x|
= §lt() - mymie -———,;—- - Gy(M] + n;

vhere the n; are random variables such that |n;| < eg

N for some

sequence of constants eé satisfying Neﬁ +0.

Now proceeding as in the derivation of (5.4) in anaé and
H&jek (1969), we obtain
E(Y, - 3,)% = om~? ? c?) (2.9)
1 1 1.1 i ° ¢
Using

N N A
var(sp - § 2,0 s2 [ E(¥Y, -30% 4+ 285y - 502,
i=1 =]
(2.8) and (2.9), we obtain

Lemma 2.9. Var(s; Z z2;) = o { c
j-
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Lemma 2.10. (1.18) holds if and only if

o 2, ¥ 2
lim inf o/ J ¢ > 0 (2.11)
N-+oo i=1l ‘
where
2 ?
oL = Vvar(z.)
N L i

In this case, lim Var(sg)/og =1,

N-+oo

Proof. It follows from the Minkowski inequality that

((Var(Ul)/Var(Uz)) - 1)

< Var(U1 - Uz)/Var(Uz) (2.12)

+
lzi ’ U2 = SN in

e~

Let (1.18) be satisfied, then putting Ul =
i
(2.12) and using Lemma 2.9, we obtain (2.11). Let (2.11) be

N

satisfied, then putting Ul = S§ ' U2 = 3 zi , and using Lemma
i=l

2.9, we obtain (1.18).

N
Lemma 2.11. The random variables | Z; are asymptotically normal
i=1

with parameters (0,03) .

Proof. Since zi(v) R mi(v) are bounded as functions of (i,N) ,
1l sizc< N, it follows that

|zi| < C max |°j| for some constant C > 0 . (2.12')
1<j<N

Now (1.2) and (2.11) along with (2.12") imply

max |2.|/0y = 0o(1) ,
1sisN * N




which by the Markov inequality, implies the Lindeberg condition

for asymptotic normality.

Finally, since we have proved that

N D + + N 3
.zlzi/°n —>N(0,1) , (S - E(Sy) - zlzi)/oN —o0 , (2.13)
i= i=
and Var(sg)/os -1,
we obtain
12
(s; - E(S;))/(Var s;) 2, n(0,1) (2.14)

Remark 1. Suppose we want to relax the condition (1.3) to (1.4).

Let us denote the statistic corresponding to (1.3) by S; and the
+t
N L
+ + N
(1.4), it follows that Var(Sy - Sg*) = o( |
i=

statistic corresponding to (l1.4) by S Then using (1.2) and

ci) . Consequently,
1
the asymptotic normality of S;* follows by using (2.11), (2.12),

(2.13) and (2.14).

Remark 2. We have proved Theorem 2.1 under condition (CI) . It
remains to show that this set of conditions is implied by the
conditions (C;) and (C;) . The proofs of these facts are similar
to the implications (C;) =>(C;) and (C,) =>(C;) in Dupa& and
Hijek (1969, Section 5), and are therefore omitted.

The following theorem based on Theorem 2.1 and on Lemma 2 of

Hufkov4 (1970) combines unbounded c with a class of bounded

Ni
score generating functions. The proof of this theorem is similar

to that of Theorem 3 in Dupaé and Hajek (1969) and is omitted.

N
+ +
Theorem 2.2. Let Sy = } cyi2y(Ryi) 890 Xy; where

i=1

At AR aea

pevsy

dialxh

) g aya
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aN(i) = ¢(i/(N + 1)) . Assume that y = ¥ + ¢2 . where wl

is constant but for a finite number of jumps, and wz has a

bounded second derivative. Assume that any one set of the

conditions (cI) , (c;) , (c;) holds along with (1.2). Then

S; is asymptotically normal with natural parameters (Es;, vVar s;) .

We now show that under slightly strengthened assumptions
concerning the regression constants, S; is asymptotically

normal with (simpler) parameters (u;,og) where

N
u§ = .ZlciE[sgn Xgv (B* (X)) (2.15)
1=
and
2 ? (
Oy = Var 2, 2.16)
R 5 i

Theorem 2.3. Consider the statistic S+ given by (1l.1) with scores

N
u(t-v) . Assume that (cI) or (c;)

or (C;) holds. Then S; is asymptotically normal with parameters

given by (1.4) where y(t)

(ugro2) defined in (2.15) and (2.16) if

N
max ci / . c? = 0(

1<i<N i=1 %

_6_1/2
N ) for some &§ > 0 . (2.17)

Proof. Define

+ +
Ai(xi) = {E(sgn Xia(Ri)IXi) - E(sgn xia(Ri))}

- {sgn X;¥(H*({X,;[)) - E(sgn X, ¢(H*(|X;])))}

Proceeding as in Dupaé (1970), it can be shown (omitting the details

of computation) that

Y2

2 = =
E(Ai) = O(N ) . where Ai Ai(xi) .
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This, together with (2.17) entails
N
2 2, _ -1 2
cf E(Ai) o(N iglci)

Now, using the inequality,

N N
(B(sy) - uh? < (iglci)(igltztsgn X;a(R}))

- E(sgn x b (1x, 1%,

we obtain

N

+ + 2
(E(sy) - uN)2 =o( ] e .
i=1
Now writing
N N
+ + 2 + + 2
E((Sy = My - ilei)/oN) < 2E((Sy - E(S)) - ilei)/oN)

+ 2(B(s) - u)2/02

P

and proceeding as in Theorem 2.1, the proof follows.

. . . + . .
Theorem 2.4. Consider the statistic SN given by (1.1) with

the scores given by (1.3). Assume that ¢ = wl + wz where

e

k
¥y = jz Ajwvj where ¥, (t) =ul(t -V, , j=1,...,k, and

]

b koYY { 1
v, has a bounded second derivative. Let 2, =z,° + lzlklzi , -
where { ]
by 1 ’
2 PO ey e) = myly)) Gty = BRUX D) - G y)
jAi

+ c,[E(sgn xia(R;)|xi) - E(sgn X, a(RI))] ’

1$iSN'£.1'nol'k
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and
22 2y 1Y e stul]x] - |x:1) - F*(lxD vz B (1x]))aF, (x)
i = 541 i sgn Xy 1 0x wz X j X

+ c,;[sgn xiwz(ﬂ*(lxil)) - E(sgn Xiwz(H*(lxil)))],
l<i<N
(cf£. Hufkovad (1970), p. 310)

+ +

Assume that (CI) or (C2) or (C3) holds. Then the
condition (2.17) implies the asymptotic normality of Sy with

parameters (u;,oﬁ) where u; and 02 are given by (2.15)

N
and (2.16) respectively with Zi given by (2.18).

The proof follows by combining Theorem 2.3, lemma 2 of

HuSkova (1970) and going through routine mathematical details.

PP
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