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20. (cont.)

C N""'C NNare known regression constants, sgn x = 1 if

x ;t 0 , sgn x = -1 if x < 0 ,and a N(l)I...Ia(N) are scores

generated by a function 4'(t) ,0 < t < 1 which in contradis-

tinction to the earlier literature is no longer assumed to be

continuous. The results obtained are generalizations of the

earlier results on limit theorems due to Ha'jek (1968, Ann. Math.

Statist. 325-346) and Huskova (1970, Z. Wahrscheinlichkeits-

theorie. Verw. Geb. ,308-322), among others.
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Asymptotic normality of signed rank statistics with

discontinuous score-generating function.

By Madan L. Puri

Indiana University, Bloomington

Dedicated to Professor C.R. Rao on the occassion of his 60th

birthday.

__ , The object of this paper is to derive the asymptotic

distributions of simple linear signed rank statistic considered

by Htjek (1968) and Huskov&' (1970) for the case when the score

generating function is discontinuous.

1. Preliminaries

Let XNlI...,XNN , N k 1 be independent random variables

with continuous distribution functions F N,...,FNN; and let

Ribe the rank of IXN il among IXNll,...,IXNNI W We shall

be concerned with the asymptotic distribution of the statistic

+ N
SN -N

where cNl,...,cNN are known regression constants; aN(l),...,aN(N)

are scores, and sgn x - 1 if x k 0 , sgn x - -1 if x <0 . The

results that we obtain are derived using the projection method to-

gether with a separate study of the case of the score generating

function which has just one jump and is constant otherwise (see

Work partially supported by the Air Force Office of Scientific
Research, AFSC, USAF, under Grant No. AFOSR-76-2927. Reproduction
in whole or in part permitted for the purpose of the United States
Government. d f pb " l!100O
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also Dupat' and Hkjek (1969).

We assume that the cH'S satisfy the Noether condition

lim max c 2 1j 2 N 2  (1.2)

and the scores are generated by a function *(),0 Ct < 1

either by interpolation

a N~ - C/(N+1)) 1 1~i <N (1.3)

or by a procedure satisf ying

N

set

N N F.(x)H.(x) N i(1.5)

where F*N is the distribution function of lxii

H-(t) - inf {x %H (x) > t) 0 Otl< (1.6)

L(t) F F Hi(H (t)) 0 0t 1 (1.7)

l4.~(t -F Fi(-HN- (t)) , oti (.

G (t) =F* (H* (t)) L (t) + M M(t 0 < tl1 (1.9)
Ni Ni N Ni Ni
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It is easy to check that

-1 N
N IGNi (t) - t , 0 <t , N >1 (1.10)

The price for allowing discontinuous scores is the following

differentiability conditions:

Let v denote a jump point of the score generating function

' ; v 9(0,l) . Then, for every K >0 , K' >0 , we impose the fol-

lowing conditions:

max - Sup NL _ Ni_(t) - i(v) 0)
l<i<N KN <It-vj(K' N% -Lg if ° ( 1 )

(1.11)

max p rNi i(v)= 0(1)
S K N (1.12)

Furthermore, we assume that there exist real numbers

Ni(v) , toNi(v) , (1 <_i < N) such that for every K >0 ,

max SuS LNi (t) -LN(V) - (t-v) Nit(v) (N'

(1.13)

max Sup Ii (t) -M Ni (v) - (t - V) (v) o(N)
<i< It-vl<N -

(1.14)

From (1.11)- (1.14) it follows that G Ni(t) satisfies the

same type of conditions with g~i(v) - INi (v) ni (v) . Also it

is easy to see that without loss of generality one can assume

that Iti(v) >0, toNi(v) !0 ,and
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I N~ l) -1 -  N
N !,wi~v - 1M N m~ (v)

i-i i i

Finally, note that the numbers LN(v) •Ni(v) considered

as function of (iN) , 1 <i <N , are bounded. Another condition

concerning the GNi's that we use is

i. inf N %i G (v) (1 - GNi (v)) >0 (1.15)

Some times, mainly for purposes of applicatons, we replace

(1.11) - (1.15) by more feasible conditions easier to verify:

Suppose, for example, that each FNi has a density fNi

such that for some a , (0 <a <m) , we have

(a) fNi(x) - 0 for x 4 (-a.,a) if a is finite,

(b) fni(x) is continuous on every compact sub interval of (-a ,a)

uniformly in (x, N, i)

(1.16)

(c) for every compact interval C c (0O,a) there exists an c> 0

such that for all N> *2

N "1 Card _1< i :i Ni(X)W> c > C

where fNi is the density of FNi
NI -. -I

(d) 0 < li inf H I(t) Slim Sup HN (t) < a for all t e (0,1)
N..

We will see that the condition (1.16) is satisfied in par-

ticular if



5
IP • dNi -d Ni

(a) f Ni (x) - e f (x e

(b) f is uniformly continuous and positive on (- a)

(1.17)

(c) Sup max IdNil .< 1
N l<i<N

The last condition that we require concerns the nondegeneration

of Var SN in the form

lira inf Var (Sc> 0 (1. 18 )

2. Main Theorems.

Theorem 2.1. Consider the Statistic (1.1) with scores satisfy-

ing (1.4) , where

f0 if 0< t< v

*(t)

1.1 if v< t<1

Then. S is asymptotically normal with natural parameters
N

(E(S+) , Var(S~) if any of the following sets of conditions is

satisfied:

(C:) : (1.2), (1.11), (1.12), (1.13), (1.14), (1.15), (1.18)

(C+) : .2 , 1. ), ( .8

(C.+  12,(.7,(.8
2
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Proof. We show that SN is asymptotically equivalent to its

projection SN onto the space of linear statistics and then

that is asymptotically equivalent to a sum of independent

random variables to which the Lindeberg Central Limit theorem

applies. (For the ease of convenience we shall from now sup-

press the first subscript N from XNi + i etc).

First we would like to derive an upper bound for the re-

sidual variance E(S -S where

N

i (S- +I

By the Residual Variance Lemma (see Hajek (1968)), we have

N N

+ i cc. {E(sgnXi agnX Cov(a(Rh), a(R.)IX.,X))

+ E{sgnX sgnXJ [E(a(R+)IXiX ) -E(a(R)IXi)]

x E~(R) (ax ()j.,) IXD112

" I Cov{E (sgn Xi a(R.)IXk)#E(sgnX a(R+)Ixk )l )

k41,j

We investigate each term in the above inequality. We begin

by assuming that the scores are defined by (1.3) and that (C)

holds. The proof is divided in several steps:



Lemma 2.1. The functions LN(t) , M~1 (t) , GNi(t) satisfy

the following relations:

l i(t) - LNi(s)I ' It-si 1

IMNi(t) -Ni(s)i Nit-si 1

and

IG NL(t) - GNi (a) I N< I t - s 1 0 <s, t< 1

Proo It follows from the definitions and the fact that for

u>v>O we have:

F i (u) -F i (v) < F i (u) -F I v) , F i (-v) -F i (-u) < F u) -F. (v)

where we set u H t) , v = H (S) .
Denote V - [(N+l)v) , D = N-  Gi (v) (-G i (v))

i=1
([4 - integer part)

Lemma 2.2. Let x, yc i R Then to each k1 2 there exist a
k > 1 such that for all N >N0 (k1 ) we have:
201

(i vH(-i>k 14 N => P(R + > J i x j <N k

M v-SN(Ix1) > k, N> x X X= y)<N

(ii) v-H(Ix I)<-klN L9 M => P(Ri <VX =x, xj =y) <N
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Furthermore, Mi and (ii) remain true even when the con-

dition X. y is ouvuited.

Lemma 2. 3. Suppose that IV H X)I k3 N-4g1 4. Then,

f or sufficiently large N *we have

N xl (1 -* ( j N2 I kNkL94

N N

(ii) 1 - *(N1 F (xI ,NDl F jx ) Fi <kNj g
1=1l

NN

j=l 1i=l11

N

where *(x ; 11,2) (x PCyo2) denote the normal density, resp.

the normal distribution function with parameters (11,0 2

The proofs of leummas 2.2 and 2.3 are analogous to those of

Lemmas 5 and 6 of Dupac and H~jek (1969) and are therefore omitted.

Lemma 2.4. For N- we have

+ 2

uniformly in 1<i < N
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Proof: Let fn+(X i ) - E(a(R) IX.) -[(E(a(R+)IX.)] 2

Then, by conditioning we obtain:

E[a(R+) - E(a(RI)xi)J 2  E(A+(x

Now, by definition:

E(a( .) x x) = 1, >vlx

Thus

S(x x) PIS > VIxi .X ) - P (e  < Vixi--)

Let I= {x H *(Ixi) -vl < k. N- k Lg N)

By Lemma 2, if x 4 I we have:

N-k2

A+ (X.i=x)< N 2 for every N>N 0 (k 2 ) , 2 >1

On the other hand, if x c I , then since P(R+=klXi=x) =

Bi(k, Fi(Ixe),...FN(xl)) (in the notation used by Dupa and

Hajek (1969)), we obtain using Lemmas 2.2 and 2.3, that

(X inx) X B(k, F(ltxl),-.F (Ixl)))
k>V

L<W

x ( ................. .. ,SI))
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.. 2r Hv H - xl) -v,- + if

DN DO

for sufficiently large N j ell! k7

We observe that the last equality remains true even if we

enlarge I to

I' - x- IH(Ixl)-vI <k k DN4L N)"-9

where k is such that k 9 = k1/2k with k < D < j and
9r8 8

k > 2 . (Here we use Condition (1.15)).

Now using (1.11) and (1.12) it is easy to show that

N- 4 L AN [j e1 dF i x) = o(l)

and

,H *XI) v) { (HdF(x) = o(l)

fDN~ DN 14 d
II

Hence E(+ (Xi)) = o(i) uniformly in 1< i< N and the

proof follows.

Lemma 2. For N - we have:

E (sgn Xi sgn Xj [E (a (R+) IX., -X.) E (a (R+) IX I). JE (a (R+) Xi , xj



E(a(R .)IX)J} = o(N1

uniformly in 1< i, j <N

The proof of this Lemma is similar to that of Lemma 2.4

and is therefore omitted.

Lemma 2.6 For N we have:

E Isgn xi sg Xj ov (a (R, a (j l xi. x X

-1 2

= N- D2 (1.(v) -m.(v)) (U(v) -m.(v)) + o(N -1)

uniformly in I <i ,j< N

Proof: We have:

A+ = Cov(a(R+), a (R+) I X xj =Y)

PR I X XXjIY)P(<Vl =,XY) if Ixiljyl

P(R >vl iX X, xj=y) P(R+VX i =x, X.sy) if Ix1 lyl

Let k 1 >2 . Denote:

I{(xY): H*(Ixl) -vi <-k1 N-4 L9 NI H*(ly l ) -vi Lk N'4L9 N }

By considerations as used in the derivation of (4.11)

and (4.12) in Dupa and Hajek (1969), we obtain

. ~~~~~~ ~ ~ t .. ......l w
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-k2
N for (x,y) 1, N >N0 (k2 )

= H +I ) H YI) + 2 NLg N
DN - DN - 2

for N sufficiently large, (x,y)'6 If lxi < lYI

A+(xj.y)
and 1e2 1.Skjo (2.1)

0 (.H ly 1Y ,,) , (H *x v + 6 Ne V
DN 4 1 DNIg3

for N sufficiently large, (x,y) I 6x1 lyl

and 103 ISkll

We note that the equality in (2.1) remains true even if we en-

large I to '

V= I' (x,y) : max {1[1*(lxl) -VI, IH*(lYl) -vl} <) k' DN- %L9%

whr k i k / k8  c ~,'>

where k is such that k 1/2k8 , k8 1D< k1 >2 (k1  coin-

cides, with k in the notation of Lemma (2.4)).
9

We have, using (2.1) that

E (sgn X sgn X Cov(a(R ), a(R;)1X i. Xi))

j f s gn xsgn y 4,(*xl),- -V') {1_-f (*(yl)- - d) d(x) dF (y)

I'I(Ixl<lyl I

jsgn x sgn y H (I y v)(1. O(H Ix1v)) dF. (x) dF (y)
+ DN- DNd(
.II'lX[ >JYI
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+ N- L %N J Js g nxs g n y 6(xy) dFi(x)dF(Y) +5 N-I 2

I' (2.2)

with 1041< k 1 2 ' 1851 < 1

The last two terms. are o(N- ) uniformly in i,j as follows

by using (1.11), (1.12) and k 2> 1 . It reamains to estimate the

first two terms.

Denote the first term by T . Consider:

T . (x) -v){l (y)) dF.(x) dF.(y)
DN- jf DN- j*

x>O

{(x,y): y>O , max(IH (x) -vi, IH (y) -vj) < k IDN-fLg'N}
x<y

* H*

H lx) -V , q H (y) -v andSet p q DNnDd_
DN D1

= {(p,q) :max(IpI, Iqi) < k1 Lg % ) Then

T1 - 0 (p) (1 - $(q)) dLi (v + DO p)d L (v + DN-i q)
in 1p<q)

V

As in the proof of Leluna 7 of Dupac and Hajek (1969) one can

easily show that

T1 =%N- 1 D2 it(v) I.(v) + O(N- 1 )

uniformly in 1 <i, J <N (2.3)

Let

T2- HJ ( x -v({ 1 - ( Y) V1 ) dF i(x) F (y)
DN DNI1 j

x < O i -

((x,y) :y>O , max (IH(-x) -vI1H (y) - vl)_ k DN- N)
-x<y 9N
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Then

-T2 - J *(p)(IL- 0V)d)(v+ON % )dL (v+MN- q)

"n p< q)

Divide I* into I and Z\J wheres

3. {(pq) :max(IpI , Iq1) <k 1 )

and in 3 make use of the expansions:

K iv+D--p) - 14i(v) +ai(v)D- p + I(P)

L (v+DN-q) - L (v) + (v)DN-q+ Aj (q)

where Ql (P) and Aj (q) are absolutely continuous and are of order

o(N-% in I-k; , k 1] . This follows from (1.13) and (1.14).

Then considerations similar to the ones used in the derivation

of (2.3) lead to:

T2 W _%N-1 D2Ni j(v) +oN )- uniformly in l<i ej<N

Consider now

DN-4 DN" dfix

x<O
{(x,y) y<O max(I H (M) -vI IH*(-y) -vi) kDLq L- N)

-X<-Y LgN
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T4~ ~ W #t V.0tex-v(-(e- ) v

T4 - - DNN dl(x) dFj (Y)

x>O
((x,y) : y<O ; max(IH x) -vI, IH*(-Y) -vl)<k. D3-L' N

x<-y

Proceding as before, (omitting the details of computations)

it follows that

T3 = %1N'1D2  i (V)a (v) + o( - 1  uniformly in 1 <i, J <N

T4 - - - i D2  L (v)m(v) + o(N- 1) uniformly in 1 <i, J.IN

Thus,

T = T I +2+13+ T4 m N D2 (itLiV - mmv)) (0 I) - m (v))

+ o(M- 1) uniformly in 1 ci, J<!N . (2.4)

Proceding as above, it can be shown that the second term of (2.2)

is the same as (2.4). The proof follows.

Lemm 2.7. ror if- ,a.tL (for i + J)

C ov (Sgn X, a(R+)Ix E(agnX aCR) I Xk) -

k1 i i k j
.f -1 " D 2 (it, 1M i ( v ) ) (t(v -m i v ) ) + O(N- 1 )

uniforaly in I<i, j <N.
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Proof: By Lemma 3.2 in Hijsk (1968) we have:

E(a(R +) ugn XJX x X, Xk - ) - E( a(Rt) sqn Xil XM ix)

- sn XuqX-Iz)-F(IxI)I Put+ - V+lix, X j Ixt-

where u(t) -1 for t, and u~t) -0 for t<0.

From Lezuna 2. 2, we have

P+-V1X -kc (2.5)
1 i -lkIll'<

for some k 2 >1 and all 1 (l) -vj!k 1 N ALg N

Furthermore Leummas 2.2 an~d 2.3 imply

P(Rt'EhV+lX'x IXj "lxi' 1) -',Nv PlID 2)

+Oe..N Lg N

for some le6 .k1 n l *(Ilxi -vj IRN i Lg N.

An before, the last equality remains true even if

IH (Iiil) -vi <. ki DN-%L% It

Let V' - (x- IH*(Ili) -VIj kl' DO~ L N)
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Then

E(a(R) sgnXiXk-Z) -E(a(R) sgnX )-

I sqn xtuClxi -I1: -) ~k( xl)lp, -( v ltxi -x Xk -ix i-l)dFi (x)

"I, ("".)dF(x) + J (''"dF (x

The second integral is o(N- 1) by (2.5), while the first is

equal to

sgn x[u(IxI-Iz 1) -jFzj(IX1)]Nv, Fj*zx)), ND2lldF) W

+ J sgn x[u(ljxj - Jz) -FkliXI)] e6 N- 1 Lg4N dF x)

In the last expression, let us denote by T. the first term

and T6  the second.

Then, we have

-l.M-.' sn xtu(xi -izi) -F*(Ixl)]#(U*(Il) dF.(x)
Tk" DN-

Using the fact that

D- 1 N'1  1 Gk (v + DN- ' P) * (P) dLi (v + DO p)
I pjk Lg4N.

D"1 DN-to <_! G k(V)#(P) dLt(v+DN- p) + o (N
1

I pi1.k 1Lg 4 N

uniformly in i and k (which follows from (1.11)), we can show that



1 N-4 rl(X - 1:) - F(X) ) dF W)

(xO :IH*(x)-vIsk, DN ~L9~N

-it (v)[1 - *(q) -Gk(v)I + 0(11 )

uniformly in z , 1 !s i s N ,where q - !JJA1?.Z.v
DN

Similarly we estimate the integral over {x <O:IH*(-x) -vi s

k'DN-4 L9 -N) and we obtain

Z(a(R+) sgn XIk -Z) - 3(a(R+) sgn X)

- 1 (1 - *(q) G- M G )(v) - M (v)) + o(Nf 1 ) (2.6)

uniformly in <- z <

Thus, denoting

Kk W Cov(3(a(R)+ sgn Xi~ * (a(R +) sgn X lxk) (2.7)

we obtain

Kk m [(a(R+) sgn XiIXk - x) - (a(R+) sgn Xi)J

x [E(a(R +) agn xjIk-3 - E(a(R+) *gn X~) dFk(Z)

N -2 (1if)i(v))(jt j() mi(v))

JP I #*(q) - G v 2 dkv+DN-4q) +O(1-2)Gkvv) 

dNkk
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Note that

(1i - t(q))dG k(v + DN-%q) - G k(v) + ol

-v/DN4

and

(1-v) /DN 14

Jc(1 - A$(q) 9dG k(v + DN-Yq) = G k(v) + o (1)

-v/DN1h

Hence:

K k - (L(v) - I L(v)) (m (v) - m (v))[G k(v)(l - G (vfll

+N2. L v) ()i (v) k v)~l (

-2 2 -
K N(LN. ( i(v) - iti(v))(mi(v) - m (v)) + (N

unifrm1 in 1 rJi#jsN Tepofflos

Using the Residual Variance Inequality and Lemmas 2.4 - 2.7,

we obtain

Lemma 2.8. For N oowe have

A+S-S) 2 N 2(28

Now from the definition of SN , we have

A+ A+ N N- +

S N -E(S N) I I c.{E(a(Rj) sgn XjIXi) E(a(Rt) sgn Xj)}
i=1 j=i 3
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Set

- c c(B(a(R*) agn X lXi)- E(a(R*) sgn Xj)} 1 4 N

and note that the Yi , 1 s i s N are independent random vari-
(A+

able. with E(Yi) - 0 and VarlS) - Var Yi
i-i

Define

Z - N( I. c.(I (v) - mj (v)))(u(v - H*(Ixii)) - Gi(v)J

Ji

+ Co[B(sgn Xia(Rx) x ) - E(mgn x a(R))j , 15 i !5 N

and note that the Zi, 1 ! i s N are independent random variables

with Z(Z i ) - 0 , 1 S i S N .

Now for j 1i , 1 s iJ s N we have

E(sgn xja(R;lxi) - E(,gn xj ,a(R,
. .,,v,,,,(:- "'(x1.X,,,,

lt(v) aMHO i- G(v)] +

where the n are random variables much that sr c for some

sequence of constants c' satisfying Ncj -, 0

Nov proceeding as in the derivation of (5.4) in Dupac and

N&Jeik (1969), we obtain

Z( i - - o(3 N c ) (2.9)

Using

+ N N 2 +YA + 2Var(SN - I Zi) ! 2 1 Yi - i + 2-(S - s 2)
iI i-I

(2.8) and (2.9), we obtain

Lezuna-2.9. zi (Var(S~ c (2.10)
_____N z)-o CJ
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Lemma 2.10. (1.18) holds if and only if

lim inf a 2 c2 > 0 (2.11)
Wt.- i=l

where

2 N
aN = Var(Z.)i=1

In this case, lim Var(S)/+ - 12

Proof. It follows from the Minkowski inequality that

12 2
((Var(U 1 )/Var(U2 )) - 1) 2 Var(U1 - U2 )/Var(U2) (2.12)

N
Let (1.18) be satisfied, then putting U1 = ijZi I U2 = SN+ in

(2.12) and using Lemma 2.9, we obtain (2.11). Let (2.11) be
+ N

satisfied, then putting U1 = SN , U2 = i , and using Lemma
i=1

2.9, we obtain (1.18).

N
Lemma 2.11. The random variables Zi are asymptotically normal

with parameters (0o 2
'N

Proof. Since Ii(v) , mi(v) are bounded as functions of (i,N) ,

1 5 i 5 N , it follows that

Jzij 5 C max IcjI for some constant C > 0 . (2.12')
1sj!N

Now (1.2) and (2.11) along with (2.17) imply

max IZill/ = (1) ,

lsi
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which by the Markov inequality, implies the Lindeberg condition

for asymptotic normality.

Finally, since we have proved that

2N D N L
- >N (0,l1) , (' - E'(S' I z Z O )/0(213'N '-ii1 o (2.13)

i~l

and Var(S+)/a 1 2

N N

we obtain

(S+ - E(SN))/(Var S+ )V2 D N(0,1) (2.14)

SN N~ N(~

Remark 1. Suppose we want to relax the condition (1.3) to (1.4).

++Let us denote the statistic corresponding to (1.3) by SN and the

statistic corresponding to (1.4) by SN* Then using (1.2) andN*

(1.4), it follows that Var(SN - S *) = N c2) . Consequently,
N+ NIl

theasymptotic normality of SN* follows by using (2.11), (2.12),

(2.13) and (2.14).

Remark 2. We have proved Theorem 2.1 under condition (C) it

remains to show that this set of conditions is implied by the

conditions (C ) and (Ct) . The proofs of these facts are similar

to the implications (C3 ) - (C1 ) and (C2 ) > (C1 ) in Dupa6 and

Hfjek (1969, Section 5), and are therefore omitted.

The following theorem based on Theorem 2.1 and on Lemma 2 of

Hugkovd (1970) combines unbounded cNi with a class of bounded

score generating functions. The proof of this theorem is similar

to that of Theorem 3 in Dupac and H~jek (1969) and is omitted.

Theorem 2.2. Let SN  cNiaN(i ) sgn XNi-- i=l
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aN(i) * i(i/(N + 1)) . Assume that = + 2 where *1

is constant but for a finite number of jumps, and *2 has a

bounded second derivative. Assume that any one set of the

conditions (CI) , (C) , (C ) holds along with (1.2). Then

SN is asymptotically normal with natural parameters (ESN , Var SN )

We now show that under slightly strengthened assumptions

concerning the regression constants, SN is asymptotically

normal with (simpler) parameters (VN+,a 2 ) where

N (
+ N

PN = . ciE[sgn Xi.,(H*(jxij))j (2.15)
i=l 1 X))

and

N
a 2 VarZ. (2.16)

il'

Theorem 2.3. Consider the statistic S+ given by (1.1) with scores

given by (1.4) where (t) = u(t-v). Assume that (CI) or (C2 )

+(C+ holds. Then S+ is asymptotically normal with parameters
or 3 - - N
(1+, 2 defined in (2.15) and (2.16) if

2a N 2 =ON

cax c . = O(N ) for some 6 > 0 . (2.17)
li_ i-l

Proof. Define

Ai(X i ) = {E(sgn Xia(R - E(sgn X1a(R+))}

- (sgn xi *(H*(IXil)) - E(sgn Xi*(H*(lXiI)))}

Proceeding as in Dupac (1970), it can be shown (omitting the details

of computation) that

E(A2 ) = 0(N -Y 2  where A. = A(X iE(A.) , ~*
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This, together with (2.17) entails

c 2 E( 2 o(N-1  c 2?1 1 i=l

Now, using the inequality,

+ N 2 N +
(E(SN) - l N ( ci) Il [E(sgn X.a(R.))N N i 1

- E(sgn Xi *(H*(IX i)))]2)

we obtain

+2 N 2
) - IN) o( ci.)

Now writing

+ N N
N NN - Zi)oN)i=l 1~

+. + 2 2
+ 2(E(S ) - 2) /2N

and proceeding as in Theorem 2.1, the proof follows.

+Theorem 2.4. Consider the statistic SN  given by (1.1) with

the scores given by (1.3). Assume that 1 = 1'i + *2 where

k
i = ljv. where iv (t) = u(t - vj) , j = l,...,k, andj=l vj - vi) '

v
2 has a bounded second derivative. Let Zi = Zi + I xIZ i

where

Zi N cj (Pjlv)) - mj(v£)) (u(v£ - H*(IXi)) - Gi(v£))
j=lj#i

+ ci[E(sgn Xia(R+) IX) - E(sgn X a(Ri))]

i 1,...,k
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and

_N- I cIjsgn xtu(lxl - Ixil) - FI(jx)1*V(H*(IxI))dFW(x)
Sj=l j 2

+ ci[sgn x iP 2 (H*(Ixil)) - E(sgn xi,42 (H*(IXi1)))],

_<i !5 N

(cf. Huvkova (1970), p. 310)

Assume that (CI) or (C2 ) or (C3 ) holds. Then the
1+-

condition (2.17) implies the asymptotic normality of SN with

parameters (vN,+ ) where P and a 2 are given by (2.15)

and (2.16) respectively with Z. given by (2.18).1

The proof follows by combining Theorem 2.3, lemma 2 of

Huskov& (1970) and going through routine mathematical details.
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