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Abstract

-

Radiation and scattering problems are formulated as optimal
control problems in which either a current or surface impedance
is sought from a class of admissable functions which optimizes a
functional of the scattered far field. 1In both cases the existence
of an optimal solution is proven. In the linear (radiation) case
constructive algorithms for finding the optimal solution are

presented.
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Jewark, Delaware

Dedicated to Professor Lamberto Cesaril on the occasion
of his seventieth birthday.

1, LiITRODUCTIO:

In this paper, we review results obtained by the author

in close collaboration with R.Z. Xleinman [ 1], [ 2], [ 37, [ &4 7.

The c¢lass of problems referred to in the title arise in the
study of time harmonic electormagnetic and acoustie radiation
and scattering. As such, these problems are problems in exterior
domains in contrast to the more common problems with bounded
domalins usually encountered in the literature of distributed
parameter control systems. 3uch probleams reguire, in addition
to the usual boundary condition, a so-called "radiation
condition” 1n order to guarantee that the problem has a uaigue
solution. Thls condition at inflinity can then be used, as in
classical potential theory, to recast the problem which is
orizinally stated in differential form, into a problea iaveolving
integral operators acting on appropriate spaces of functions
defined on the boundary of the scattering obsticle or radiating
structure, It 1s thls formulation of the control problems in
teras of boundary intezral equations that we will use in our
discugssion of the scattering problen.

First, hovever, we will coansider a simpler linear radlatlicon
problea with Dirichlet conditions under the assumption that we

have avallable a 3Green'’s function appropriate to the exterior
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domain, Tnis will help to focus the nature of the boundary
coatrol problems we consider and will allow us to mention

some numerical results for the control of radiation patterns,

In the last section, we will turn to the more coamplicated

non llnear optimization problem with a Hobla boundary condition
and without the assumption that the appropriate Greean's fuaction
i1s available, In our treatment of tails non linear problem

of optimal control, we will use a palr of boundary integral
equations derived in [3 ], the uaique solution to which affords

a solution of the exterior boundary value problem, That we

deal with a pair of houndary intezral equations rather than

a singzle equation is a resglp of the well-iknown aon-uniqueness
of solutions of the firstiof tH;se equatlions at Interior
elgenvalues of the homogeneous Dirichlet problea, It aust

be emphasized that these exceptional values of the wawve nuaber
do 20t correspond to exceptional wvalues for the exterion

scatterinzg problem but are the result of the particular

reformulation of the exterior boundary wvalue problem in teras

of integral equations. 7Various ameans have been proposed to
circumvent this difficulty (see e.g. (6 ] and [ 71), Here,

we follow [8 ] by iantroducing a second equation involviaz the
normal derivative of the double layer potentlal which restores

unijueness for real wave numbers.,

2, ZC2. ULATIO. OF . LiIui2AR P303Luil
Let " be a siaple closed curve, sufficlently smooth (22
1s more than sufficleat for our purposes) in :2, let Ll he the

unbousnded rezion deterained by [ and let 0 senote the

coaplenentary rezion. In particular, the surve ' #%ill have a
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a unit normal ﬁ(q) which wvaries coat inuocusly on r . e
enpnasize that we shall take a(q) to be the outward drawn normal
with respect to L . Further, we whall write ¥/d n; and /9 n;
to denote the normal derivative when P=»pel® from N and O
respectively.

i@ choose the orizin of a rectanzular coordinate system
12 the interior of Lfand let (r, &) be poolar coordinates of
and arbitrary point Pcfl . The three classical ooundary value
probleas, Sirichlet (D), Meumann (i), and 3iobin (i} problenms
for the delmholtz equation in the exterior domain L% coasist of
finding a function u , defined in L1 , satisfying (1,1) and (1,1i1)

below as well as the appropriate oboundary conalition in (1,1ii) :

(1) <v2+ kz) u=9 in Ll
(D) u=nh
(1) (11) Q (4) dyuw/dn = hn on I
(R) sSu/9n +eu=nh
2
(111) lim, \3!1/31‘ - 1Ku\ ds = 0
Tt

[~ ]
r
where Sr is a circle of radius r 1lying entirely in £} . This

last condition i1s the radiation condition referred to above,

For the problem of Dirichlet (D) the 5reen's function
nas the form

(1)
(2) 3(P,Q) = (1/4) 4 (&1P=Q)) + &(P,2)

where g(?,; € CZ(SI) and H(i) is the dankel function of the
first kiand, the fundamental solution of the Helmholtz equation
consistent with tne radiation condition, Since ' is bounded
one may eaploy the asyaptotic properties of G for large r

712, C(P,.) = (eiir/r’) 3(0 y«) +0(1/r) to represent the

solution u in the far field as




(3) u(25n) = (e¥F/28) I
r

n(a) ¥/a nqﬁ(o Q) dr + 0(1/r).

-

The regularity of ﬁ allows us to define the far field pattern
£gL°'0,2%) 1in terms of the dilbert-3chmidt integral operator
X : L3(P)=>12(0,2) generated by the kernel ¥/d a %(0,2)

(4) (@) := Sn(q) 2/3n E(O.q) ae .

Two of the problems commonly discussed in the engineering
literature of antenna theory fit naturally iato the present

context., Je refer to them as the ideatifi<c=tion vroblea

and the syathesis problem. In the former, we are gilwvea an
actual far field pattera and are asiked to fiad the dboundary

data n wWhose assoclated solution nas f as its far fileld,

In the latter, we are glilven a desired far fileld pattera ¢

and are asked to find the boundary data h producing a far

field closest to the desired pattern in the L2 sense, In tercs
of the integral operator i 1atroduced above, the first of

these is the problem of solving the integral eguation of the

first kind sh=f with f given in the range of &, while

the second 1s that of finding an absolute minlimum for the fora
N.h - sl . 3o0th of these problems fall into the class of
problems called 1ll-posed in the sense of Zadamard, The
interested reader may refer to the paper of Angell and :lasned [5 ]
for a coaplete dlscussion of these probleams as they arise in
antenna tneory.

Eere, 1t is our purpose to present a different optiamization

vroblem in which the quantity to be optimized is the power

railated ianto a specified portion of the far fleld., 3pecifically,
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3pecifically, we define the far field power in a aeasuratle
seteec 0,29 by
2w 2 2 2
(5) g, (h) :=j & (8) lf‘(&)l ie =[0¢(9) \inl “(6) 4 8
0

where o (@) 1is the characteristic function of the set o,
Having introduced this quadratic functional, we may pose a2
aeaningful optimization problenm,

Let Ue LZ(T‘) be a3 c¢losed, bounded, convex set,

I
i
’
!
;
%

Je Will refer to the elements of U as admissible controls,
The optlmal control problea is aow to find an h, € U giviang
the functional < (h) 1ts maximum value 1i.2. find h eV
such that 4, (h5) ¥ Qu(hj, for all he U.

Siance the form Q‘(h) = (etih,.n),_ is both

2
L7(0,2m)
convex and weakly coatinuous, 1t iz 2asy to prove the followlaz.

Tneorem 1l: If UeLZ(O,Z‘w) is closed, bounded and convex

thea there exists an element h,¢ bdy U which 1is optimal

with respect to the performance index Qg defined by (5).

de remarl that this statement not only asserts the
existence of an optimal solution, but also gives an additional
condition which leads to a "baang=-bang" result for certain
special cholces of the class U of aimissible controls
(see the appendix 1a [ 1 ] for detalls). The requireaents th-t
tne set U bve a closed, convex and bounaed set 1in Le(0) st111

allows enough flexibility to allow us to model =2 auaber of

coastraints suzzested by physical or desiza consizerations.

Za the enzineering literature, tne forzer are usually referred i




to a5 reallzabllity conditioans, aad include coastralnt sets of

ne following foras:

{he LZ(F ) \ 'hnsl} (iaputs with vounded znergy);

A
W
[}

]

——~
[¢2
<
<
il

.1 \ . . .
ih ed (M) \ nhW:l} (inputs with bounded energy
and oscillation};

(i T {hst(f’ N\ \'O(G.)sh(QJs '\Pl(Q). 2e8., ‘\I'o. Y, e z(f Yo

inile desizn ccasideratlions 1ay lead to control domaians asfined

Dy State coastralats, =2.3.

;
(¢ U = “nt&i‘("‘)\ K1 ~x(@) } £(8)|¢ } (bounded sice lotes).

4e remarit that it is case (c) for wnich we can show that there

exists a maxlializiag sequence of '"baag-vang'" controls since £h

[0]

extreze poiats of the set U 1ia (¢} are functions of the

," »y -é-‘*l wnere a.-'; yo } is a measuradble partition
(o] >0 -1 C 1

L)

orm

of P . Tor full proofs tne reader is referred to i 1 I.

In tne case that U 1is the unit sphere in Lz(r'), shae
observation that tne functional dJa can be 2xpressed ia terams
of the syametric operator 23:= _¥e &, Where % 1s the adjoiat
ef a, leaas to the following result.

Taeorez 2: If )() i1s the largest elgenvalue of the crerator

and no is a corresponding normalize? =!zeavector, then

Sup_ . da(n) = sup (an,n)p2(p) = A, =

(i)
2= 1 Ann= 1 °

Q;

tne may now luaplezent constructive methods to coampute

tne optiaoal ccatrol oy consldering a family of subspaces xq
.2 , , . '

of L"(('), ultiaately cdense in this fuaction space, and con-
siderinz tne finite alzensional probleas Pq(\Ll- Zu) = 0,

n=1,2,,.., Wnere Pq i1s tne projection assoclated with the




subspace Jn. Standard estinates for the rate of co.averzeace

are available e.g. one has the estimate

(&) 2gmd, N7 M -7 )30

where a%nn is the eigenvalue for the finite dimensional
problem and l()is the true eigenvalue (see iikhlia | 9 ).

This method has bee implemented on the 3nrrouch's A200 at the
Imiversity of Delaware using standard I3 L eizenvector-eigenvalue

routines to preduce hizhly directed siagle and cougle beam

patterns for a clrcular antenna of radius a for various

values of ka from 1 to 20,

3. TIHz ICHLIJEAR PRO3L.I!

A ——————

In this section, we will consider, not a radiation

problemn, but a problem in scattering wherein we assume that an f

object, again wilth a sufficlently regulzr boundary, in 42,

interacts with a known iacident field, u1 » to produce 2
scattered field uS, 1In this case, 1 1s a solution of the
Felanholtz equation in the unbounded region L) uhich satisfies
the radiation condition, while ui is assumed to be a solution
of the Helmholtz equation in J\?.

The aonlinear character of the problem arises from the

form of the boundary condition, Under sultable restrictions
on the geoaetry of the scatterer and constitutlive parameters,

among which is the requirement that the radius of curvature be

et a s e

large relative to the skin depth (see e.g. [10]) the transition

e st S

conditions at the surface of an lmperfectly conductinzg scatterer
may be replaced by what 1s usually called an lapecence boundary

condition, Here, such a condition takes the foram of the

e e R i R i S R e
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2obin boundary condition 3u/d¥n +@& u = 0, where rcL"(l")
represents the surface impedence, It is this surface impedence
which we ta.ie as the control and, by requesting that o lie in
a preassizaed closed, bounded and convex (and hence weak¥-
sequentially compact) subset of :?(v), ve 177 agaln consider
the constralaed coptiamization prorlem of findiaz that adanissible
control whicn affords an absolute maximua to the functional

4 e defined by (35).

Ia this problea, the expression for the far field devends
explicitly on the vroduct of the control and the scattered field
and 1t is here that the nonlinearity arises. Cur treatment is
more complicated than that followed in the previous case anot only
due to this nonlinearity but also in that we do not assume that
we rave explicit knowledge of the Green'!s function for the
region, Iastead, we rely on the Helmholtz representation,
knowing the fundamental solution ¥(P,2) =(-1/2) E(i) (k | P=x)),
to derive boundary integral equations whose unique solution uay
then be used to construct the scattered field in the exterior
domaln LU.

The scattered and incident fields beling rezular solutions
of the Helmholtz equation in £l and O respectively, we may
urite

(7) u = s(d3u/3n) - D(u°) and u1=D(u -S(%ui/a n)

-

where S and D are the usual single and double layer operators
with kernels ¥ (P,3) and bf/bnq(P.Q) respectively., If i

denotes tne integral operator with iernel ®¥ /2 nD(p,.;,). then
2% 1s tine 1intezral operator for 2 and the usual juzp relatlions

L IO
Wi v

NPy
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for the normal derivative of the single layer and for the

double layer with density,;. nanely

pa(3p)(p) = (I X) uip)
Y (Spiip) = (-1 + &) ulp)
(8) P ,‘( _ F'(
lia (Dp) (P) = (< + E¥)p (p)
Pepp U,‘ r'

liz_(Dp)(P) = (I + E*),,. (p)

together with the relation (7) and the boundary coaditioa
lead easily to a palr of integral equations which may be
Written as

(I +3Se + Z*)u = 2ul

(9) - .
(-l + Z¥%@ + Dq)u = 23%%/3n

where the operator Dq is defined by

(10) (D, u)(p) 5= /pa J p@ 3Vaa (n,3) P
r

jote that the integral operators all depend on the wave number
£ althouzh we have not explicitly indicated such devendence.
Tne values of the wave nuamber for which there exist non-trivial
solutions of W+ aw = 0 will be called characteristic values
of (-4) and a classical result is that &k 1is such a character-
istic value 1f and only if it 1s an eigenvalue of the interlor
nomogeneous Dirichlet problem, As described above, while the
exterior 20bin problem has a unlque solution, at interior
elzenvalues of the Dirichlet problem the first of these boundary
intezral equations has a nultiplliclty of solutions and it is for
this reason that we consicder the pair of eqatlions (9).

-

The analysis in | 3 7 czhows that, for appropriate cholces

of k, and in particular for k real, the system (9) has a

etk b ok i ol

i ,‘
¥
5
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unigue solution which can thean be used to construct a solution

of the original scattering problea, J3pecifically, we have

the following result | J J:

Theorem 3: Let & £ L*(M) and suppose that &k satisfles the

conditions Iam k30, Ia(ke) 20, Then there exists a uailque

solution ﬁtLZ(f‘) of the vair of boundary integral equations

S

(9). ioreover, the function u = ul+ u is a solution of the

exterior Robin problem

(1) uwecd(Q), u, w/aatlim);

2

(11) (9 +%) o° =0 1n Q,
1

2
(v2+i;)u =0 in Q%

ol

(111) 1lim I | 2u/ar - 1xu®| " es_ =0 ;
Tr=y® °S
r
(1v) dM/dn +¢u =0 a3,:, onl;
if and only if
W = %S(-Bui/an -el) - 30(0 - ui)

where fi 1s the unique solution of the systea of boundary

integral equasioas (9).

Returning to the optimization problem, 1t is possible

to represent the far scattered field in the form
(1) £(8) = K (duten +euw) - Ku®

wnere :\‘1 and K?_ are compact operators from Lz(f‘) to L2(0.21r).
Jsing the cost functlonal given in (5), we can pose the
following optimization probleam:

Given UeL™(f) a closed, bounded, convex set, find
o,¢Y for which Q_“(e'o) 2.,(e) for all U,

.iote that the results described above zuarantee that,

3iven eg¢’) there exists a unique solutlon uw)of the system (9).
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If we let A be the set of all palrs {er, u(f)} s, ®EU, we
may prove the following theorems (see [ 4 | for complete
details).

2

Theorem 4: The set A€L”(M;x L°(P) 1is bounded in the product

tovology.

Theorem 3: The set A 1s closed relative to wealk¥-converzence

of the & and strong converzence of the u .

Theorem é: The amape waf 13 continuous fro1 the wealft-topology

2

of I”(M) to the strong tonolozy of LS(0,24¢r¢),.

Theorem 7: There exists an element e e U (and consequently

a nair {e-o,u.( vo)}gA ) such that Q‘(eo) ] Q.‘(o') for all e g .

Clearly, this last theorea follows immediately froa
Tneorea 5 1f one takes into account the form of the cost
functional, The techniques used to establish Theoreas 4, 5,
and A are similar and we conclude our discussion with a sketen
of the proof of Theorem 4 in the hope that 1t will zive the
reader sufficleat 1lnsight.

Proof of Theorem 4: Suppose that tne set A were not

bounded., Then, since U 1is bounded, we may choose a sequence

{ (cm, um)} € A for which the set {cmt is bounded but \Iu'ntl-»-

H

Let Y := u /8u w , and choose a subsequence for waich

Wi W W 2
(»elabeling) cm—-vw ’ ‘kn-—b 4’, and c’m'{lm — P Ly,

Thea the functions ‘*_ satisfy the latezral egquation

[0

T 4 3 e DY) = 1
(12) (I 4 Se 4 .)'*m 2ut/ llum\\ .

dow the richt-hand meaber conve:r 2s stronzly to 0O 1in LZ([‘)

ik ahales seded

Py

i
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since the lncident fleld ui is fixed, while tr= z>upactaess

of the operators 2 and 3 iasure that ° 'Pn —y 0¥ and
- S = \

D’m¢m —» 3p . 3ut then, the relatioa (12} can be
rewritten as

(13) ’wm = 2ut/1 umu -3 v 4)!! - J'I’

a

wnich shows that *rn <S> 1’ . .oreover, thls strong convergence

of the ‘%:n is enouzh to insure that the products aa?m -ﬂ-o o

in Lz(f‘) and, consequently, that the function "psatisfies
(14) (I +5% +D)¥ = 0.

..owW, consider the second boundary integral equation
(15) (-®I + Z¥e + Dn) us=2 Bul/)n

and look at the sequence

) i = 2l -1 - (= P )
(16) D, "Pm 2( 2 u-/2a) wu M (&, + %o ) 4‘51 .

Since the #‘m converze to 4’ stroagly and the products & \&m
converse to v‘¢ weakly in LZ(V), the functions Dn‘\l'm defined
by (16) must converge weakly in thls space to c¥- i*c'"{’ .
This fact, together with the estimates which appear in [3 :‘,
shows that the function 4‘ . AS a solutlion of the first equation
(12), must 1lie in the domain of the operator D, =and must satisfy
the nomozeneous equation '

(17) (-eI +T¢e +D)Y = 0.
jence the function '{' » as the strong limit of elements of nora
l, aust be a non=-trivial solution to the homogeneous system of
bouadary intezral equations, which contradicts the unigue

30lvability of the system (9).
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