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Abstract

Radiation and scattering problems are formulated as optimal

control problems in which either a current or surface impedance

is sought from a class of admissable functions which optimizes a

functional of the scattered far field. In both cases the existence

of an optimal solution is proven. In the linear (radiation) case

constructive algorithms for finding the optimal solution are

presented.
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1. IFTB.ODUCTIOI!

In this paper, we review results obtained by the author
in close collaboration with R.E. Xleinman 1], 2], . 3] [ 4 ].

The class of problems referred to in the title arise in the

study of time harmonic electormagnetic and acoustic radiation

and scattering. As such, these problems are problems in exterior

domains in contrast to the more common problems with bounded

domains usually encountered in the literature of distributed

parameter control systems. Such problems require, in addition

to the usual boundary condition, a so-called "radiation

condition" in order to guarantee that the problem has a unique

solution. This condition at infinity can then be used, as in

classical potential theory, to recast the problem which is

orLtinally stated in differential form, into a problem involving

integral operators acting on appropriate spaces of functions

defined on the boundary of the scattering obsticle or radiating

structure. It is this formulation of the control problems in

terms of boundary integral equations that we will use in our

discussion of the scattering problem.

First, however, we will consider a simpler linear radiation

problem with Dirlchlet conditions under the assumption that we

have available a Green's function appropriate to the exterior
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domain. This will help to focus the nature of the boundary

control problems we consider and will allow us to mention

some numerical results for the control of radiation patterns.

In the last section, we will turn to the more complicated

non linear optimization problem -with a Robin boundary condition

and without the assumption that the appropriate Green's fuaction

is available. in our treatment of this non linear problem

of optimal control, we will use a pair of boundary Integral

equations derived in -3 ], the unique solution to which affords

a solution of the exterior boundary value problem. That we

deal with a pair of boundary integral equations rather than

a single equation is a result of the well-known non-uniqueness
/ I

of solutions of the first of these equations at interior

eigenvalues of the homogeneous Dirichlet problem. it must

be emphasized that these exceptional values of the wave number

do not correspond to exceptional values for the exterion

scattering problem but are the result of the particular

reformulation of the exterior boundary value problem in terms

of Integral equations. Various means have been proposed to

circumvent this difficulty (see e.g. L-6 ] and L ? ). Here,

we follow [8 ] by introducing a second equation involving the

normal derivative of the double layer potential which restores

uniqueness for real wave numbers.

2. ?C2?ULATIOJ O :-" Liai'AR PRO3.

Let r be a simple closed curve, sufficiently smooth (2

2
is more than sufficient for our purposes) in - 2 , let CL be the

unbounded region determined by r and let d denote the

complementary region. in particular, the curve r will have a



a unit normal 411(q) which varies cont inuously On * 'Ie

emphasize that we shall talce r~(q) to be the outward drawn normal

with respect to A'.Further, we whall write 11/b n- and 1h/16-1
P p

to Idenote the normal derivative when P-4#at' from .L1'and J1fl

respectively.

.ie choose the ori~gin of a rectangular coordinate system

In the interior of M1 and let (r, 9) be polar coordinates of

and arbitrary point Pafl The three classical boundary value

problems, DirIchlet CD), Neumann (Jand iobin C)problems

for the Helmholtz equation In the exterior domain AL consist of

findinig a function u , defined In~l , satisfying (1,I) and Cl,iii)

b3elow as well as the appropriate boundary condition In (1,ii)

Ci) (V 2+ ~2) u a '. inA

(D) u =

Cl Cii) % )u/b n -h on r

(RC?) iku/!) n +r u = h 2

Ciii) -6n bu/ tr - ilcul dS 0

rS

last condition is the radiation condition referred to above.

For the problem of Dirichlet CD) the *a3reen's function

has the form

(2) (1,~ -C/4) '1 OCk1P-Q1 ) + 90-1.4)
w te re 9 C 2 SX and H Cl) is the -ankel function of the

0

first krind, the fundamental solution of the Helmholtz equation

consistent with the radiation condition. Since r' Is bounded

on-e nay employ the asymptotic properties of 5 for large r

Viz. (aP,. *C 1.,r rt) ~(S,)+ 0 C1/r) to represent the

solution u In the far field as



(3) u(,;h) (e Ir/ h(q) /a ( q) d r' + O(1/r)nqQ

The regularity of t allows us to define the far field pattern

fi L2'O,2I) in terms of the Hilbert-Schmidt integral operator

L2( )-L2(O,21r) generated by the kernel b/en G( ,q
nq

(4) f(n) - (q) n/ nq G(6,q) d q
r q

-wo of the problems commonly discussed in the engineering

literature of antenna theory fit naturally into the present

context. '.1e refer to them as the identif!rtion oroblem

and the synthesis proble. In the former, we are given an

actual far field pattern and are asked to find the boundary

data h whose associated solution nas f as its far field.

In the latter, we are given a desired far field pattern F

and are asked to find the boundary data h producing a far

2field closest to the desired pattern In the L sense. In terms

of the integral operator .: introduced above, the first of

these is the problem of solving the integral equation of the

first kind ih = f with f given in the range of iE, while

the second is that of finding an absolute minimum for the form

- * 3oth of these problems fall into the class of

problems called ill-posed in the sense of :Hadamard. The

interested reader may refer to the paper of Angell and ±ashed I 5

for a complete discussion of these problems as they arise in

antenna theory.

Here, it is our purpose to present a different optimization

problem in which the quantity to be optimized is the power

radiated into a specified portion of the far field. Specifically,



Specifically, we define the far field power in a measurable

set eer- 0,2fr]

(5) 1 (h) :=1- 6) = f(I)I 29d9 j

where *(O) is the characteristic function of the set G.

Having introduced this quadratic functional, we may pose a

meaningful optimization problem.

2
Let UCL2(i) be a closed, bounded, convex set.

ie will refer to the elements of U as admissible controls.

The optimal control problem is now to find an hoa U giving

the functional Q(h) its maximum value i.a. find hoE U

such that 4 (ho) Qg(h), for all he U.

Since the form 4 (h) - (2 .h,-h))L2, is both

conve and weakly continuous, it is easy to prove the following.

Theorem 1: If UL 2(O,2q) is closed, bounded and convex

then there exists an element hot bdy U which Is optimal

with respect to the performance Index QO defined by (5).

We remark that this statement not only asserts the

existence of an optimal solution, but also gives an additional

condition which leads to a "bang-bang" result for certain

special choices of the class U of admissible controls

(see the appendix in [.1 ] for details). :he requirements that

the set U be a closed, convex and bounded set in L2 ( ) still

allows enough flexibility to allow us to model a number of

constraints suT-ested by physical or desi;n consideratio2s.

-n the engineering literature, the former are usually referred

A
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to as realIzability conditions, and include constraint sets of'

the following forms:

(a) U = JhE L2 (r ) c l (inputs with bounded energy);

(b) U = Jh %l(i )r Ithill41 (inputs -lth bounded energy
and oscillation);

(C).T = J hrLz( r %( -()hq$() o , * E C(r I1

wjhile design considerations :aay lead to control domains aefined

bs state constraints, e.g.

(Qj U = .J(P) I 1(l -c(e) f(e1% (bounded siae lobes).

.e remark that it is case (c) for which we can show that there

exists a maxicizing sequence of "bang-bang" controls since the

extreae points of the set TJ in (c) are functions of the form

.- C, l where is a measurable )artition

of r . :or full proofs the reader is referred to 11.

In the case that U is the unit sphere In L2 (r), .
'-

.

observation that the functional QN can be expressed in terms

of the symmetric operator 2:= .r ., where X* is the adjoint

of -%, leacs to the following result.

Theorem 2: If X is the largest eizenvalue of th- cp-erator

and -1 is a corresponding normalize ei1zenvector, then~0
sup 6 (h) = sup (h.h)L2() =o = ()
os= 1 Wh-= 1

cne may now iaplement constructive methods to compute

tne optimal control oy considering a family of subspaces n

-2Of Lult), utimately dense in this function space, and con-

siderinz tne finite .imensional problems P ( u - Au) = 0,
n

r' = 1,2,..., whnere P is the projection associated with t~e



subspace I . Standard estimates for the rate of co.;erencen

are available e.g. one has the estimate

where is the eigenvalue for the finite dimensional
o,n

problem and is the true elgenvalue (see ,iikhlin I9).
0 

-9

This method has bee implemented on the 3urrough's 6900 at the

University of Delaware using standard I.,L eizenvector-eizenvalue

routines to produce highly directed single and dougle beam

patterns for a circular antenna of radius a for various

values of ka from 1 to 20.

. TH JONLI,,IEAR P303LI!

In this section, we will consider, not a radiation

problem, but a problem in scattering wherein we assume that an

object, again with a sufficiently regular boundary, in L ,

i
interacts with a known incident field, u , to produce a

scattered field us . In this case, u is a solution of the

Helmholtz equation in the unbounded region A which satisfies

the radiation condition, while ui is assumed to be a solution

of the Helmholtz equation in .

The nonlinear character of the problem arises from the

form of the boundary condition. Under suitable restrictions

on the 7eometry of the scatterer and constitutive parameters,

among which is the requirement that the radius of curvature be

large relative to the skin depth (see e.g. L10]) the transition

conditions at the surface of an imperfectly conducting scatterer

may be replaced by what Is usually called an impedence boundary

condition. Here, such a condition takes the form of the



7obin boundary condition bu/brn +c u = 0, where rcL (F)

represents the surface impedence. It is this surface impedence

which we ta-:e as the control and, by requesting that c- lie in

a preassi z.ed closed, bounded and convex (and hence weak*-

sequentially compact) subset of L"(r), we a: - again consider

the constrained optimization problem of finding that admissible

control whicn affords an absolute maximum to the functional

w defined by (5).

in this problem, the expression for the far field depends

explicitly on the product of the control and the scattered field

and it is here that the nonlinearity arises. Cur treatment is

more complicated than that followed in the previous case not oriy

due to this nonlinearity but also in that we do not assume that

we o'ave explicit knowledge of the Green's function for the

region. Instead, we rely on the Helmholtz representation,

knowing the fundamental solution 0(P, ) =(-/2) ( ) P

to derive boundary integral equations whose unique solution Lay

then be used to construct the scattered field in the exterior

domain .

The scattered and incident fields being regular solutions

of the Helmholtz equation i n and Cl respectively, we may

write
i i

(7) us = S( uS/ n) - D(us) and u = D(u i ) - S( bui/b n)

where S and D are the usual single and double layer operators

with kernels If(P,q) and b9/bn,(P,q) respectively. If K

denotes the integral operator with .:ernel Y/n 1(6,V then

-* is the inte.gral operator for D and the usual jump relations



for the normal derivative of the single layer and for the

double layer with densityp, namely

p= (.) p(p)

(8) / n ,(3 ,^ = ( = + ) .(p)

lim.+(D.t) (P) = (-I + l (p)P -+lp

lim_(ior.)(P) = (I +*) (p)

together with the relation (7) and the boundary condition

lead easily to a pair of integral equations which may be

written as

(I + Sr + K*)u =2u
(9)

(-rI + K* a, + D )u = 21ui/-n

where the operator ID nis defined by

(10) (On p(p) =b/anp (tt(q) 16/'an (1),q) dn pq- q

Jote that the integral operators all depend on the wave number

k although we have not explicitly indicated such dependence.

The values of the wave number for which there exist non-trivial

solutions of w + ?w = 0 will be called characteristic values

of (-A) and a classical result is that k is such a character-

istic value if and only if it is an eigenvalue of the interior

homogeneous Dirichlet problem. As described above, while the

exterior Robin problem has a unique solution, at interior

eigenvalues of the Dirichlet problem the first of these boundary

integral equations has a multiplicity of solutions and it is for

this reason that we consider the pair of eq'ations (9).

The analysis in [ 3 :hows that, for appropriate choices

of k, and in particular for k real, the system (9) has a
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unique solution which can then be used to construct a solution

of the original scattering problem. Specifically, ,ie have

the following result :

Theorem .: Let dr t L(r) and suppose that 1c satisfies the

conditions Im kcO, I=(kc) 30. Then there exists a unique

solution o LL2(r) of the pair of boundary integral equations

(9). 7!oreover, the function u = ui+ us  is a solution of the

exterior Robin problem
Wi u C C 2(A), u, "bu/-an t L 2(M)

(ii) ( 2 + It2) uS = 0 in .0,2 +2 i
(2 + 2) u = 0 in

(iii) 1r J 'bus/ar - ik 3 l -12s r = 0
r- F#4 i rr

(iv) bu/bn +r u = 0 a. . on r;

if and only if

US = is(-au i/-# n w -* D( "- u

where u is the unique solution of the systen of boundary

integral equations (9).

Returning to the optimization problem, it is possible

to represent the far scattered field in the form

(11) f(0 ) = K (ui/bn +au) - K2 us

where K/i and X2 are compact operators from L2 (r) to L 2(0,2,).

Using the cost functional given in (5), we can pose the

following optimization problem:

Given UcL ( ) a closed, bounded, convex set, find

W oZ Ufor which Q, ( ) for all a ,U.

.ote that the results described above guarantee that,

given vgJ there exists a unique solution ui)of the system (9).



If we let A be the set of all pairs 1W, u(r)l , &- EU, we

may prove the following theorems (see [4 1 for complete

details).

Theorem 4: The set ACL( x L2 (') is bounded in the product

topology.

Theorem J: The set A is closed relative to nealr-conver-ence

of the a and strong convergence of the u .

Theorem 6: The map r t-*f is continuous fro) the weai:-topology

of L (P) to the strong topology of L2 (0,21).

Theorem 7: There exists an element m- 0 U (and consequentl-

a pair 1roo,u( vo)IcA ) such that Q(a- 9 Q C( ) for all r C'.

Clearly, this last theorem follows immediately from

Theorem 6 if one takes into account the form of the cost

functional. The techniques used to establish Theorems 4, 5,

and 6 are similar and we conclude our discussion with a s.zetch

of the proof of Theorem 4 in the hope that it will give the

reader sufficient insight.

Proof of Theorem 4: Suppose that the set A were not

bounded. Then, since U is bounded, we may choose a sequence

( m' ur)j C A for which the set 1 ic Is bounded but INu 9-- .
m

Le t tl :- UM/N , and choose a subsequence for which

w*w I w 2
(relabellng) 4w r, , and C e L,(

Then the functions satisfy the intezral equation

(12) (1 + 33 + ) 2u'/ uM

-Tow the riaht-hand member conve-_ss strongly to 0 in L2 (p
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since the incident field ui  is fixed, while t?- 3 -npactness

of the operators D and 3 insure that D - ad

S cr* *i - S . ut then, the relation (12) can be

rewritten as

(13) A 2u/II - s 3 4+ - D

wvhich shows that Ak _, *P :oreover, this strong convergence

of the is enou.gh to iLsure that the products c mim

in L 2(P) and, consequently, that the function "satisfies

(14) (1 + S1 + D) 0.

_.ow, consider the second boundary integral equation

(15) (W 51 + c*r + D ) u = 2 6ui/ n
n

and look at the sequence

(16) D f 2(bui/In) tlml - (-ire +:m

Since the conver-e to * strongly and the products V

converge to 0 weakly in L2 (r), the functions Dn1 m  defined

by (16) must converge weakly in this space to q4r- *o.

This fact, together with the estimates which appear in i.3 ,

shows that the function # , as a solution of the first equation

(12), must lie in the domain of the operator Dn and must satisfy

the homogeneous equation

(17) (-I + * + Dn)A : 0.

7 ence the function P, as the strong limit of elements of norm

1, must be a non-trivial solution to the homogeneous system of

boundary integral equations, which contradicts the unique

solvability of the system (9).

A .ZO -D..: This work was supported by the U.S. Air Force
under grant A.O3R 79-0085.
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