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A Reinvestigation of Transients in the Cyclopropane Isomerization

System by the Variable Encounter Method#

M. C. Flowers, t F. C. Wolters, D. F. Kelley, and B. S. Rabinovitch

Department of Chemistry BG-l0, University of Washington

Seattle, Washington 98195

Abstract

The isomerization of cyclopropane to propene has been reinvestigated

in three different reactors using VEM under conditions identical to those

used in a previously reported study on cyclobutane [3]. The simultaneous

reaction of cyclobutane was also studied in the largest reactor. Some

details of the method are amplified; the distribution functions for numbers

of collisions in each reactor are displayed as are the contributions to

reaction R(n) as a function of the number of consecutive collision n. The

present data are in essential agreement with those obtained by Kelley et al.

[2], although the average size of an internal energy down transition (<AE'>)

for cyclopropane molecules colliding with a hot surface is a little lower

than previously estimated. The increasing efficiency of the surface in

deactivating energized molecules as the surface temperature decreases is

confired (<AE'> - 2550 cm- at 900 K, on a gaussian model for energy trans-

fer, and <AE'> a 2000 cm I.at P 1100 K). The surface acts as a somewhat

stronger collider for cyclopropane than for cyclobutane and is also a more

efficient collider for cyclopropane than are gas-gal cyclopropane collisions.

* - - . .
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Introduction

The Variable Encounter Method (VEM) is a new and simple technique whereby

studies can be made of energy transfer between a hot surface and gaseous mole-

cules in the transient region.

Studies of the isomerizatlon of cyclopropane to propene by Barton et al.

[1] gave average probabilities of reaction per collision with the hot surface

somewhat higher than those previously reported by Kelley et al. [2] for 1,1-

cyclopropane-d2 using this same technique; the disagreement was most pronounced

at lower temperatures (900 K). In addition, a VEM study of the decomposition

of cyclobutane using the same reactor as was employed in ref [1] has been

reported [3] in which the average energy transferred per collision with the

wall for down transitionsof cyclobutane was somewhat less than that found for

cyclopropane-d2 at a similar temperature (e.g., 1850 cm"1 and 2600 cm"1 at 1100 K

for cyclobutane and cyclopropane, respectively, with use of a gaussian model for

the energy transfer probabilities).

In order to clarify the situation with respect to the above observations,
it was felt worthwhile to re-study cyclopropane in the same reactor and under

the same conditions of seasoning and of surface as had been used for the cyclo-

butane study and, if possible, to study the two systems simultaneously. This

was deemed especially useful because of our concurrent efforts to extend our

work on transients to homogeneous systems where cyclopropane is a natural

candidate in the choice of a suitable substrate. The results of the study are

reported here.
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Experimental

The entire reaction and analytical system was similar to that described

previously [3]. The reactors used provided mean numbers of collisions, m

that a gas molecule suffered with the wall per encounter with the reactor,

of 27.2, 8.5, and 2.6.

Cyclopropane (99.9% with 0.08% propene as the major impurity) and cyclo-

butane (99.8% with propene and butene-l the major impurities) were thoroughly

degassed before use.

Before all kinetic runs, a reaction vessel was aged by pyrolysing

cyclopropane (or cyclopropane plus cyclobutane) at a pressure between 3x10
4

and 3x1 -3 torr for prolonged periods at a temperature equal to the highest

temperature used for that reactor. Aging of the m = 27.2 reactor occurred

readily; reproducible rates resulted from aging for 24 -48 hours. Cyclopropane

formed no products other than propene and trace amounts of methane in this reac-

tor. Aging of the 8.5 and 2.6 reactors proved more difficult. In the latter

instance, up to 1-2 weeks was required before reproducible rates were obtained;

the reaction rate slowly declined during the aging period. At the highest

temperatures investigated in this reactor, the formation of acetylene was also

observed. Aging also continuously reduced acetylene yields. The rate of for-

mation of propene converged to a constant rate faster than the rate for acetylene

and the rate constant for propene formation was found to be independent of the

rate of formation of acetylene. The relative amount of acetylene formed

decreased rapidly with decrease of temperature and at 1000K in a seasoned

reactor acetylene yields had already dropped to less than 3% of the propene

yields.
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The reaction rate was measured by adding aliquots of either cyclopropane

(initial pressure n. 1.6x0 4 torr) or an equimolar mixture of cyclopropane and

cyclobutane (total initial pressure %, 3.2x10 4 torr) to the reaction vessel

for known times, and quantitatively trapping reactants and products which

were then analysed by gas chromatography on a 6 ft x 1/8 inch diameter 28%

squalane on 60-80 mesh Chromosorb P column at room temperature with use of

fid. A trapping time correction (n. 10 sec) was added to the measured pyrol-

ysis time used to calculate rate constants.
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r Results and biscusslon

Although the isomerization of cyclopropane to propene has Leen one of

the most widely studied unimolecular reactions, and, in conventional thermal

studies, appears to be a homogeneous reaction without significant contributions

from surface reactions, the present study suggests that in addition to the

homogeneous reaction, a minor wall reaction that produces acetylene also occurs

at the higher temperatures used. Fortunately, the reaction giving rise to

propene was unaffected by this side process. The continuing slow decline in

acetylene yields with further aging (while propene yields remained constant)

indicates that these products result from different processes.

The isomerization of cyclopropane to propene was investigated over the temper-

ature range 786 K to 1141 K. In the m - 27.2 reactor, which closely approaches

steady-state conditions (m--), it was possible to study the cyclopropane and cyclo-

butane reactions simultaneously. However, because of the higher rate of cyclo-

butane decomposition compared to cyclopropane isomerization in the transient regime,

coupled with the formation of small amounts of propene from cyclobutane, it was

not possible to study the two molecules simultaneously in the smaller-m reactors.

At each temperature, first-order plots for loss of cyclopropane were

accurately linear and passed through the origin; for runs in the m = 27.2

reactor with cyclopropane-cyclobutane mixture, a small propene correction was

made for known amounts that arose from cyclobutane. The extent of reaction

at not less than five different reaction times was determined at each temperature.

The average probability, c(m), for isomerization of cyclopropane to propene

per collision with the hot wall was calculated from the apparent first-order

rate constants with use of simple kinetic theory and the known reactor dimensions.

Values of Pcm) are shown In Table I, and values of log P() vs temperature
c c

are plotted In Fig. 1.
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The distribution function for numbers of collisions and hence the fraction

of molecules f(n) remaining after n collisions, was determined by Monte Carlo

calculation of a large number (5-20xl03 ) of individual molecular trajectories

(Fig. 2). This distribution was then used in an iterative simulation of the

encounter process. The details of these calculations are given in ref 2.

Two different models for the probability of a down transition AE were used:

(exponential): PAE = Aexp(-AE/<AE>) for 0 S AE s 9000 cml; I -- 0 for

AE > 9000 cm 1 ; (gaussian): PAE - A'expf-(AE'AEmp) /22 } for

0 s AE s 9000 cmI" P AE 0 0 for E > 9000 cm-1 . Here, A and A' are normaliza-

tion constants; <AE>, AEmp (mp signifies most probable) and a are parameters

of the model; <&E>, AEmp were taken as constant, independent of the initial

energy level ("flat" models), and a was set equal to 0.7 AE mp. The trunca-

tion, AE < 9000 cm is a practical computational feature to limit the transition

probability matrix to more tractable dimensions. Detailed balance and complete-

ness were maintained. It should be noted that because of the truncation at

9000 cm-1 , and also at zero energy in the case of the gaussian model, the effec-

tive average down transition size, called <AE'>, is not equal to <AE> or AEmp,

except when the latter quantities and a are small; <E'> may be significantly

different from <AE>.

The mice'oscopic rate constants, k1 , for the isomerization of cyclopropane

to propene, which are required in the computer simulation, were calculated from

RRKM theory. The molecular and transition state frequencies, reaction path

degeneracy and critical energy of the reaction were the same as previously

adopted for this reaction [4].

The results of the computer simulation are included in Fig. 1 for both

models. In each case, a value of <AE'> was found that produced a fit to the

experimental data for the smallest (m a 2.6) reactor. The curves for two

larger reactors were then calculated using the same values for <,E'>. This



7

approach was adopted since the value of P (m) for the reactor with the smallest
C

mean collision number is the most sensitive to changes in <AE>.

One may also define a relative collisional efficiency similar to the quan-

tity used in steady state thermal unimolecular systems, as

Sc = Pc(steady state)/Pc (strong collider)

The values of $c found in this study are given in Table II.

As noted in ref. 2, very little reaction takes place in the first few

collisions, i.e., P(n), defined as the probability of reaction per collision

per remaining molecule, after n collisions, is approximately zero for n 5 4

(Fig 3). Hence, in the small m reactors, it is only those molecules which

experience a number of collisions significantly greater than m that make a

nun-negligible contribution to the amount of reaction R(n) = f(n)P(n) (Fig. 4)."

Data obtained in this study for m - 27.2 and 8.5 give comparable (just

slightly lower) values of P c(m) to those obtained in the earlier study [2] of

l,l-cyclopropane-d 2 in reactors of closely-like m values (m = 22 and 10.5).

However, values for the m = 2.6 reactor were lower than those obtained earlier

in a m = 2.3 reactor. The consequence of this is that the values of <AE'>

that fit the experimental data are somewhat lower than those reported in ref [2],

e.g., for a "flat" gaussian model at 6 1100 K, <AE'> = 2030 cm l Iin this work,

but <AE'> - 2580 cm-l previously; and at %, 900 K, <AE'> = 2510 cm 1, and was

3100 cm-l previously. However, the values for <AE'> found in the present study

are still higher than those found for cyclobutane using this same experimental

system and, In the case of data for the 27.2 reactor, than was found for cyclo-

butane in experiments in which cyclopropane and cyclobutane were pyrolyzed

together. (This latter finding, especially, assures us that the difference in

wall efficiency found here between cyclopropane and cyclobutane is real and is
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not an artifact due to a difference in experimental conditions.) For the

gaussian model, <AE'> is mu 1850 cm-1 and 2125 cm-l at 1123 K and 900 K,

respectively, for cyclobutane (Table II). We are presently engaged in the

study of methyl cyclopropane and will postpone discussion of the origin of

the differing behavior.

The gaussian model fits cyclopropane data

somewhat better than the exponential model. At the lowest temperature inves-

tigated in each case, values of P c(m) in all three reactors were higher thancI
would be expected on the basis of extrapolation of the data obtained at higher

temperatures (Fig. 1). This is particularly evident for them= 2.6 reactor. It

would seem that surface reactions begin to contribute significantly to the

reaction rate at the lowest temperature. Such behavior was absent for cyclo-

butane [3]. We conclude that the variations between the present study and that

of Kelley et al. are minor in character and that both reveal substantially the

same behavior. The study by Barton et al. gave higher values of Pc(m), and

hence of <AE'>, especially at 900K (AE' - 4900 cm"I (gaussian)); nonetheless,

it also reveals the same basic characteristic features of this new data on the

transients in energy transfer. The reason for the high values by Barton, et al.

was, undoubtedly, insufficient appreciation of the need for more prolonged

aging of the reactor.

Finally, the general trend of a increasing efficiency for deactivation

of energized molecules by surface collisions as the temperature is decreased,

observed previously in YEM studies of both the isomerization of dideutero-

cyclopropane [2] and of the decomposition of cyclobutane [3]. is borne out In

this study; the value of <AE'> rises to 3600 cm-l at % 800 K, on a gaussian

model, from the value of 2030 cm l at 1100 K (Table II). It also accords with

the decrease in efficiency with increase of temperature found previously in

homogeneous bath gas studies on cyclopropane-d2 I5]. •4 "



The latter comparison also confirms [1-3] that the wall is a stronger

collider than is the parent substrate molecule. Thus, the value at 973 K

measured here for gas-wall collisions is <AE'> = 2275 cm- , on a gaussian

model. By comparison, the gas-gas value for neat cyclopropane-d2 measured
at the same temperature by Klein and Rabinovitch [5] is 1850 cm- and by

Krongauz, et al. [6] is 1625 cm-1. This relative behavior accords with the

general increase of collision efficiency that attends increase of molecular

complexity (increasing chain length) in gas-gas collisions [7].

QI
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Table 1. Probabilities of reaction of cyclopropane (and cyclobutane)

per collision (P C(in)).

Reactor Temp. (K) 1080 1034 959 890 843 789

mn = 27.2 P (m)X10 7  42.4 15.7 2.56 0.47 0.090 0.021

745a 31a 5. a 13.8 a 3.53 a 0.51a

Temp. (K) 1080 1033 959 880 842 786

m =8.5 P(m)xlO 7 17.9 7.52 1.47 0.30 0.074 0.021

Temp. (K) 1141 1078 999 928 852

mn 2.6 P (m)XIO 7 1.06 0.35 0.095 0.021 0.0072

a. Cyclobutane values



Table II. Values of a in the cyclopropane VEM system.

T(K) 790 890 980 1123

Oc0.79 0.64 0.54 0.43
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Table III. Values for <AE'> in recent VEM studies a (cm
" )

molecule modelb Temperature (K)

825 900 1000 1100 Reference

V. gaus. -- 4900 3275 2700C 1

V-l,l-d2  gaus. 3500 3100 2875 2580 2

exp. - 6500d  3035 2750 2280

V gaus. 2950 2500 2200 2040 this work

0 exp. 2020 1780 1600 1480 3

gaus. 2420 2125 1925 1875

a) Some values by slight interpolation

b) Probability distribution model given is the one that fits the data better;

behavior is intermediate between gaussian and exponential in ref. 2;

exponential is better for cyclobutane (ref. 3) but gaussian model values

are also given for easier comparison with cyclopropane values.

c) 250 extrapolation

d) Large magnitude suggests strongly that the exponential model is not

physically realistic for describing the more efficient transfer

behavior observed at lower temperature; this value calculated with

truncation of probability matrix at 18000 cm"1.

. . . .. . . . .. . .
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Figure Captions

Fig. 1 Plots of experimental values of log F (m) versus T(K) for each of
c

the three reactors. Also shown are curves calculated on the basis

of gaussian (G) ...... , and exponential (E) - models.

The values of down jumps <&E'> required to fit the m - 2.6 (or m - 8.5

at 790 K) curve are given for gaussian and exponential models.

Fig. 2 Calculated histograms of the fraction of molecules remaining in the

reactor after n collisions, f(n), versus n , for the three reactors.

Fig. 3 Histograms of the calculated sequential reaction probability P(n)

versus n , the number of consecutive collisions. Calculations were

performed with a gaussian model at (a) 890 K and (b) 1123 K.

Fig. 4 Histograms of the sequential reaction probability R(n) = P(n)f(n)

versus n , the number of consecutive collisions. Calculation for

the different reactors was performed with a gaussian model at

(a) 890 K and (b) 1123 K.
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