MVAL POSTSRADUA?E SCHOOL MONTEREY CA 6 9/2
TECHNIQUES AVAILABLE FOR IMPROVING THE MAINTAINABILITY OF DOD '—-ETC(U)
JUN 80 R D PILCHER

UNCLASSIF1ED

.
-,

ADAO090159

T

~

\
‘l«-

———

cn..
(-]
()
[N |
=
U
Cud
=2
=

I’n 2" v ’
g W/
Py iiﬁ < - {
v i S .
x 2 .
[#) y

NAVAL POSTGRADUATE SCHOO

Monterey, California

_THESIS

- --~-(_JECHNIQUES AVAILABLE FOR _JIMPROVING THE ;

// ,HAINTAINABILITTGOF,DOD HEAPOszYSTEH‘gﬂFTWARE,.
* e = =

l/; L " Russell t/ Pilcher ‘ Tf oo

IR

N e A S o 0 5 457

Thesis Advisor: N. F, Schneidewind

Approved for public release; distribution unlimited

= mpeey

Lty s 5. Sy g

SECUMTY CLASSIFICATION OF TS PAGE (Whan Dets Enteved)

REPORT DOCUMENTATION PAGE BEFORE COSPLETING FORM
' SRY nuN 2. GQVT ACCESSION NG 3. RECIPIENT'S CATALOG NUMBER |
ABAP T 457
4. TITLE rand Subditle) o 8. TYPg OF REPOAT & PEMOO COVERED
Techniques Available for Improving the Master's Thesis;
June 1980

Maintainabllity of DoD Weapon System Software 6. PEAPORMING ORG. REPORT NUNBER

Li_m_rfo-m §. CONTRACT OR GRANT NUMBER(S)
Russell Dean Pilcher

8. PERAFORMING ORGANIZATION NAME AND AODRESS / 10. ::ggnau (1% 1

Naval Postgraduate School
Monterey, California 93940

ENT. PROJECT, TASK
MT NUMBENRS

MR Y R e, - oo Sainr .

11 CONTROLLING OFFICE NAME AaND ADDRESS 12. REPORT DATE
Naval Postgraduate School - June 1980 .
Monterey, California 93940 "ia"‘:"'"" of saceEs :
YT MONITORING AGENCY NAME & ACDRESS/II i ff trom C. iling Office) | 16. SECURITY CLASS. (of this ropert) ;
Naval Postgraduate School Unclassified i
Monterey, California 93940 T8e GHCL ARIFICATION] GORNGRADING %
e GISTRIBUTION STATEMENT (of ihie Nepert) r
3

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT 7of the saarract entored in Bleck 20, Il dilfecent ivam Report)

© e ISR
ol

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverss side It y and identily by blesk number)

Software Maintenancej; DoD Softwares; Tactical Software; Software Management;
Software Quality

e i

20. ABDSATRACT (Conttnue en reverse side it ary and identify by block manber)

Problems associated with the production and operational support of DoD
weapon systea software are examined, Emphasis is placed on identifylng
techniques that are currently available for improving the maintainability
of this software. A discussion of the software life cycle, structured
programaing methodologies~. use of high order languages, and.documentation

DD .5’y 1473 eoirion oF 1 wav 6813 ousoLETR

s .018- .
‘pa‘e b 7N 0102-014- adai 1 SECURITY CLASSIFICATION OF THIS PAGE (When Dete Snieveq)

i A L BI ke B Pm—

e S
CUMMTPY CLASNPICATION OF Tuil PAGE/Yan Nete Butesnd:

requireaents for software is included with a review of applicable ﬂ
DoD policies, Among the conclusions is that thers exists a critical
need to recognigze maintainability as a primary design objective

for DoD weapon system software,

_————-—————-———J

DD ﬁrms 1473 2
/N 01d4°014-0601 g~ Ty~ e~y

N o) .) PR o Y 12 ¥4 = g
il " . e TN i3 g © e -l B) N i i)

N i o1

BRIk RE TP TR .V

-~ - -

Approved for public release; distridbution unlimited

Techniques Availadble for Improving the
Maintainability of Dol Weapon System Software

by
Russell D. Pilcher
Major, United States Marime Corps
B.S., Utah State University, 1969

Submitted ip Partial Fulfillment of the
Reguirements for the Degree of

MASTER OF SCIENCE IN COMPUTEFR SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1982

Approved dby:

WJ%M&J _____

Thesis Advisor

Second Reader

B O 5 . PR~ " PR k- o LRREEEe IR = IICHER e a o d o S R

smtn .

mcasitant.

S aemifhn

oa

ok

..

ABSTRACT

‘ﬁroblems associated with the production and operatioral

support of DoD weapon system software are examined. Emphasis
i1s placed on identifying techrniques that are currently
availabdle for improving the maintainadility of this
software. A discussion of the software 1ife cycle,
structured programming methodologles, use of high order
languages, and documentation requirements for software |is
included with a review of applicable DoD policies. Amorg the
conclusions is that there exists a critical need to
recognize maintainadbility as a prirary design odjective for

DoD weapon system software.

\

TABLE OF CONTENTS

o it e e o el —

e

. INTRODUCTION . eeueoeveesnconsancnnessesnossnonessennnessl

| A. NEED FOR IMPPOVED SOFTWARE MAINTENANCE.......e.o...8 ;
B. PURPOSE AND APPROACH e eveveevaenuonennreennennenssll ;
Co DEFINITIONS..eeesnesonensnnsenenncensennenncocenssld

I1. THE SOFTWARE LIFE CYCLE..ueveenseeonseenneencnnersness2d
A. SOFTWARE LIFE CYCLE MODTLS evuevnevneenseneenonness20
3. MANAGING THE SOFTWARE LIFE CYCLE.eeu.veeenennens.o26

1. General.icececscscescsossnscssssccsnscosccenscsssseell
2. DoD Management Policies.....ceveevenceacacess 32 ;
a. Design ReviewS.uieeeevsoseosscscosaccaoscanestl
b. Configuration Management....cceccecccanacedl
Z. Software vs Fardwar€.c.eevesesscccccccnsansessdd
III. DEVELOPMENT ISSUES FOR IMPROVED MAINTENANCE......e0s..37
A, GENERAL...eeceeceeccroscoccssceasoncsssssoccccnsncedl

B. STRUCTURED PROGRAMMING...............I.I’10000000.37

F. 1. TOP"dOVu Designo..QQ.!...OOloc..oco.l.otu.onoose :
5. 2. Modular Design.o.o.‘o'.'.o'...!l...oo.o‘oo.'..41 §
:: 3. structuPEd codingo.....-o.ot.-.oo...o5000.000044 ;’

c- LANG’UAGE CONSIDEE.‘.TIONSoo--o...-.o..o..-.--s-.....sz

TR

1. FHigh Level vs Assemdly Level Language.........50 ;
2. DoD’s Use of High Level Lancuage..............55

& | a., Standard High level languages..c..icessesess9D

BEPTAS CTETTR A M e R T TR e

ke,

e Y Yo

- - | l

'r b' ADA.".............I..O..‘.‘..........'...55

C. Navy’s Use 0f CMS=2..c0iceevssacvccnccasosad?

3. Patchin@eccecccecscscccscesncccosscscssccscsascsse et

D, AUTOMATED AIDS.ccccovoocscassessssocacaroscsscaseE8

IV. DOCUMENTATINON FOR MEETING MAINTENANCE® REQUIREMENTS....61
A, GENERAL. .i.ceeecececoccosccosscseosscscsesesssssssbl

R, MAINTENANCE DOCUMENTATION STANDARDS.c.ccccoccoceseB3

1. Program Maintenance, MarBal.cecsocccossosseces .63 1

2. Combat System Program Description Tocuments...€4

C. ALTERNATIVES FOR REPRESENTING PROGRAM STRUCTURE...64

1. FIOHChartSDODQOOUO00.....‘.l...'oooo.A.0.00~0064

2. Bierarchy Plus Input-Process-Output (EIPC)....73

3. DPecision TableS.eeeeecesscccescssosscsccscocsses?b

4., Nassi-Shneiderman Charts....cceceecvcercccceces .80

5. Program ListingsS.eccccececcscscccccacecncsconeseBd

6. SUMMArYeecoccsocsescscscsssocscoscrsssscscsncesnesed?

V. SOFTWARE MAINTENANCE POLICI®S WITHIN DOD....eveceess..89
A, PACKGROUND.eeevecesccnconcsascocacccncscsenonssnsssED
B, CURRENT POLICIFS..iccecsoesesosssacccancensossosessIf
1. MIL=STD=483 (USAF) .t eesssasceocacssscnnnsesesalO

2. MIL=STI=52779 (AD)..evietcesoscnsacsscncseseselB

B, SECNAVINST 3E€0.1...00cececccccsnsscassoscssassIl

4. DODDIR 50P30.29.,.cc i vscctssecscscscssscssscessssdl

5. MIL-STD-1521 (UsAr) o O & 5 06065 0" P 00 b OO e S P s e DS .91
e. DODINST 50@”.31.........'.........0....'......92
7. MIL-STD-ISVQ (NAVY).....-.....................92 J

C. SURVEY OF DOLC MAINTENANCE ORGANIZATIONS...cces.e..82

1.
2.

6.

Pacific Missile Test Center....ceereeseccceesedC
Naval Ocean Systems Center..ccecascaccnssacasefd
Naval Surface Weapons Center.....ceeceoccesecs9¢
Naval Alir Development Center..c.cccccccccseneaaf6
TACFPIRE Software Support GroUD.c.cesccecoasscse3?

#arine Cerps Tactical System Support Activity.99

D. RESEARCH T0 IMPROVE SOVTWARE MAINTENANCE.........10€

VI. CONCLUSIONS ANT RECOMMENDATIONS..eececvececcsranseassld?

APPENDIX A -~ Program Main;gnance MAPURl s e ceoscvaosasseseslld

APPENDIX B ~ Combat System Program Description Grour.....1l1l4

APPENDIX C - Standards ard Conventions for Use of the

CMS—Z Language..........o..........-........152

APPENDIX T — Program Planning Summary..cecceccoceceeceess1??

LIST OF REFERENCES......'...". -ono..oo...o'oo-oo.oooco.l-l'?e

INITIAL DISTRIBUTION I‘ISTO.QO..o-..ooa.ol...o-..ooo.-.0.0184

£
¢
H
*
l

i a1 e U s ey A AMI S Lagrts Ll

RN ORI .

I. INTRODUCTION

A. NEED FOR IMPROVED SOFTWARF MAINTENANCE

On 9 November 1979 the North American Air Lafense
Command Headquarters in Colorado received ar alert of a
Soviet missile attack [1]. Fortunately, wi‘thin € minutes it
was determined to be an apparert computer malfunctior dHut
not bdefore 12 U.S. and Canadian interceptors took off from
their bdases. While not trigeerirg the nuclear holocaust that
looms over the modern world, such an event at least shatters

the confidence ¢f many individuvuals ir Department of Defense

(DoD) computer systems. P

Articles, such as the one appearing in the San Francisco i;
Sunday Examiner [2], which highlight a wide variety of large P
scale, expensive DoD computer system failures anrnd refer to
Federal Computer Systems as a multi-billion-dollar
quagrire” do 1ittle to corvince the public that ToD
personnel are capabdle of desiening, developing or
maintaining complex computer systems.

Ample examples illustrate that software in DoD computer
systems is the main culprit ©behind these highly visibdble
fallures. Since it appears unlikely that complex, weapon
system software will bYe ©produced error-free i the

foreseeable future, the maintenance of thls software takes

on a critically importart role.

Besides the ramifications that non-raintainadble software

brings, the cost asscciated with the software life cycle {is
cause for increasingly serious corncern. In fact, a Defense
Science Board Task Force on Technology Bass Strategy (3],
composed of members from industry, medicine, goverrment and
universities, concluded that the cost of software has bdecome
a national probdlem and is of particular concerrn to DoD.

When costs associated with weapon system software are
more tlosely analyzed, it is fourd that maintenance
activities account for a 1large percentage. The Rore Air
Developmernt Center gives the figure of up to seventy percert
{4). Actual projects can be used for illustration. For
instance, SAGE, a military defense system, had an averaze
software maintenance cost of approximately 22 million
dollars per year after 1¢ years of operation, compared to ar
initial develooment cost of 252 million dollars [5]. De Roze
[€] explains that Air Force Aviorics software costs arourd
$75 per instruction to develop, bdbut the maintenance for this
software costs around $4,2¢¢ per instruction.

These large percentages for software mainterance costs
can be confirmed by examples from industry. Mills [?] points
out “in only 25 years 75 percent of data processing
personnel are already taken up with maintenance, not
developmert.” On the IBM operatirg system, I3M Z6¢ O0S,

approximately four times as much time was spent on

maintenance as on development [8]. Boehm [9] reports that "a

Co T TN TR e T e

P s S st < ¢ = -

recent analysis of software activities at General Motors
indicated that about 75 percent of GM’'s Software effort gces
into maintenance, and that GM 1is fairly tyvoical irn this
respect of industry at large.”

There are indications. that maintenance problems are
compounded for real-time system software. Daly [121, for
example, fourd that programmers were adle to maintain orly
one-fourth to one-third as many instructions of on-line,
real—-time programs as other type software.

The study of software maintenance becomes so 1important
because of the need to keep Dol real-time, weapon system
software operating as error-free as possible ard the need to
check the escalating cost associated with modifying this
software that the study of software mainterarce bdbecomes so
important.

The software associated with the U. S. Navy’s new
TRIDENT class subrarine, known as the TRIDENT Corrard anrd
Control System (TRIDENT CC3), is a curreat, real-time weapon
system software project that provides an 1interestirgz arnd
beneficial example for 1illustrating the 1need for weapon
system software mairntenance activities.

The original source code was written in the Navy’'s high
order 1language (ECL), CMS-2. Ever though this code was
generated by highly experienced software ergirneers and,
according to Oxman ([11]), “was of a very high calibver arnd

quality”, the maintainadility of the CCS software has becore

1¢

TV S PRI AR AT RTINS oryreine W

STV S T by e FRER

a matter of concern. Ir part, this is a result of the way
software errors fourd during the 1integratiorn test and
evaluation stages were corrected. Logic fixes were applield
directly via the object code rather than by using the source
code, Now the TRIDENT CCS has over thirty-five thousand
words of object level only code. An effort is currently

underway to improve the maintainability of the TRITENT CCS.

B. PURPOSE AND APPROACH

The ©purpose of this thesls 1is to evaluate avallabdle
mairtenarce techniques that are applicable for use with Dol
weapon system software such as the TRIDENT CCS. This
evaluation is based uporn the current state of the art as
discussed in the technical 1literature and existing Tol
policies. Where possible, actual TRIDENT CCS software has
been used to provide a realistic example for comparirng
various maintenance technigues.

The approach wused will ©bve to presert in the nrext
chapter, Chapter II, a discussion of the overall software
life cycle illustrating the relationship mairnterarnce hes to
the various 11ife cycle phases. Software 1ife cycle
management methodologies useful for obtaining improved

software maintainadility will be ircorporated, such as the

use of design reviews and configuraiion management. Some

significant differences between software ard hardware

acquisition will also be included.

Chapter III covers the techniques that must %»e applied
during the development nhase of the software life cycle, for
odbtaining more maintainable software, specifically, the use
of structured prograrming methodologies, use of high order
languages, and automated aids.

Chapter IV addresses the 4important issue of software
documentation. A full set of applicable Dol 4documents used
to support the mainterance of weapon system software is
{dentified. Fmphasis, however, is placed on corparinzg those
techniques that are currently available for representing the

program 1lozic to the meintenance programmer: flowcharts,

hierarchy vlus irput-process-output (BIPO) diagrams,

decision tables. Nassi-Shneiderman charts, and program
listinegs.

Chapter V concerns specific software maintenance
policies within DoD. This includes an identification of the
curreat directives, instructions, and standards that {imrpact
on weapon sSystem software maintenance; the results frem a
l1imited survey of some DoD organizations that are 1involvel
in software maintenance activities; and trends that exist
for research In the area of software maiatenance technology.

Finally, Chapter VI contains conclusions ani

recomrendations.

C. DEFINITIONS

Pefore any further discussion, exactly what is meant by
the terr "software maintainadility” should be rade clear.
Gnfortunately, there is no universally accepted definitior;
therefore, some perceptions from various authors will be
preserted.,

Myers {5] 1lists maintairabdility as one of tean major
categories of software objectives: generaliy, human
factors, adaptability, maintainadility, security,
documentation, product cost, schedule, efficiency ani
reliability. It is impoertant to understand the relationshipns
among these categories so that appropriate tradeoffs cen be
made during the process of software development. Ee explains
that maintainadility and adaptadlility are <closely related
and that Yoth are compatible with obtaininege software
reliability. The defirition presected for “mairtainability’
1s that 1t "is a measure of the cost and time required to
fix software errors 1in an operational system.” The
associated term, ~adaptability”, 1s defined as ~a measure
for the ease of exterdirg the product, such as adding new
user functions to the product.’

More formalized definitions are offered by Tausworthe
(12]):

Maintenance: alterations to software during the ©post

delivery period ir the form of sustaining erngineering or

rodification not requiring a reinitiation of the
software development cycle.

13

I3
7
)
¥

o

Sustaining Engineering: Software related activities ir
the post-delivery perioed, ovrincipally supportive in
form, which keep that software operational within 1its
functional specifications. . , The holding or keeping of
software in a state of efficiency or validity desvite
interface fluctuations in system, subsystem or
applications capadilities,

Adaptation: Modification of existing software in order
that it may bYe used as a module in a program
developmert, as opposed to developing another module for
that same purpose.

Modification: The process of altering a program and its

specification so as to perform either a rew task or a

different dbut similar task. In all cases, the functional

scope of a program under mecdification changes.

Tigure 1-1 [13] s a chart that brings many of these
similar terms together as they are related to the more
general concept of software quality. It illustrates what
attridbutes are assoclated with each of three factors of
software quality (operatior, revision, ard trarcsitior).
Notice that maintainadility 1s 1listed as an attribdbute

associated with product revision,

PORTABILITY - WILL I BE ABLE 7O USE I

MAINTAINABILITY -
ON ANGTHER MACHINE?

CAN I FIX IT?

FLEXIBILITY - REUSABILITY - WILL [BE ABLE TO REUSE
CAN I CHANGE [T? SOME OF THE SOFTWARE?
TESTABILITY - INTERQPERABILITY - WILL I BE ABLE TO
CAN T TEST IT? INTERFACE [T WITH

ANOTHER SYSTEM?

PRODUCT OPERATIONS

CORRECTNESS - DOES IT DO WHAT 1 WANT? EFFECIENCY - WILL [T RUN OV Y MARDMARE AS
RELIASILITY - DOES IT DO IT ACCURATELY ALL THE TIME? ”";'T- :: ‘:E, N?
USABILITY - CAN I RUN IT? INTEGRITY - IS CURE?

Pigure 1-1, Software Quality [13]

14

L e e

mpor

Moo

T e

G e g

Yet another attempt to provide a relationship among the
various factors in quality software is given in Figure 1-2
(14]. The factors are categorized 1into two classes: (1)
measuremert of what is quality ard (2) control over software
production to ensure that quality 1is obdbtained. Note that
maintenance falls under flexibility which ir turn falls

under the measurement of what is quality.

15

[1] eexy exemyzog £37remy oy *2~1 eandty

eouezeTO]
01Xy Puyyveg
seSendueg

Sseu oL
o— eoUBURUTRY " %0

Sumpizon | uoyyeonpy

43 pxetnpoy uoyyeotrIoedg
uotesTURII) uorIwETIey < £3711q%3x04 uotjeIUeNNOOg WeTqOIg
/\

nbjuyoey sx0j0wey

»iln-ﬁ:ioﬁéim AtTtametd frrraerTey £yzxer) 83«52

‘TOYINOD

é&

JYUVALJOS ZITIVAD

1€

Swansor [1%5]) has attempted to provide a basis for an
understanding of the “dimensionality” of the maintenance
problem, Be feels it is 4important to distirguish Vbvetweer
types of software maintenance activitiess. He categorizes
maintenance into three major types: corrective mainterarnce,
adaptive maintenance, and perfective maintenance. Corrective
maintenarce is performed in response to failures such as the
abnormal termination of a vrogram or the failure in meetinz
performance criteria. Adaptive maintenance is rperformed in
response to chaanges in ervironments such as the installation
of a new generation of system hardware. Perfective
maintenance is performed to make the program a more perfect
design implementation such as to improve vprocessing
efficlency or to add new features.

It {s interasting to note that there are proponents for
drooping the termirology software maintenance altogether.
The FDP Analyzer [16] suggests a better name for
“maintenance” type activities would be “precduction:
programming.” The cortention being this would help alleviate
the stigma that malintenance is technician level rather than
professional level work. Kline (17)]) areues that
misconcentions arout software reliadility ani
maintainadility have been, to some extent, due to
inappropriate terminology. In order to mirimize confusion

with hardwvare maintainabdility, he suzgests replacing the

17

R ——_

term “software maintainability” with the more descriptive
term "software configuration management.

It 1s evident that ro stardard terminology exists for
thlis area. Rather than pursue the search fcr even more
defipitions it will simply ©be stated that software
maintainability, as wused in this thesis, will refer to the
degree a software prcduct facilitates wupdating to satisfy
new requirements or modification to <correct mistakes
(adapted from [4]).

The toocls and techrniques that currently exist for
producing more maintainable software are addressed next.
Throughout the remairing chapters it should be kert in mind
that, while specifically addressing software raintenarnrce,
the principles presented are gererally applicadble to the
many other nuances of successfully accommodating changes to
software (e.g., portabdility, flexidility, adavtabtility).

Also, 1t is extremely important to be aware that there
are a variety of parameters which can be used tc measure the
quality of a software product, as the previous discussior
has 1llustrated. An attempt to optimize one ©parameter 1is
often at the -expense of other parameters. For example,
optimizing the maintainadility of software may bde at the
expense of davelorment schedule or, coanversely, and what
appears to have bdbeen a common pitfall of past projects, to
optimize development schedule may bde at the expense of

sudbsequent maintainadility. These opposing obdjectives must

18

oy

be understood and appreciated by all levels

refore tradeoff decisiorns are made,.

19

of managerent

I1. THE SOFTWARE LIFF CYCLE

A, SOFTWARE LIFE CYCLE MOLELS

The first step 1in studyirg techriques associated with
raintainradility of weapon syéter software is to exarire all
the phases through which scftware transitions prior to and
including the operational point where maintenance is
performed. This 1s commonly called the scftware life cycle.
It 1s 1important that this 1{is understood, because the
decislions made throughout the earlier phases will ultirately
affect the software’s maintainadility. Unfortunately, as
ovposed to hardiware, there is no universal agreerent on the
phases of the software 1life cycle, with well-defined
bourdaries, so several models will be discussed irn order to
provide a droader understandine.

The first software 1life cycle model discussed will bde
one proposed by Manley [18]. This model is only a slight
modification of the already well-understood Dol system life
cycle, as presented in DOD INST 5002.1, and as shown {in
Pigure 2-1,

One advantage of using this model 1s that the
termirology appearing in existirg LoD documerts reed not Dbe
replaced dbut simply modified. A disadvantage 1s that it does
little to i1llustrate the {nterrelationships that exist amore

the various phases.

29

oy ey e

An interesting conclusion reached in Manley’s report is
that one software life cycle model applies equally to all
types of software. This includes both weapon system software
as well as automated data processing software. The report
recommends that further research bde conducted in order to
add conceptual detail to the individual 1ife cycle subphases
and further recommends that research efforts should be
concentrated on the support ©phase where maintenance \is

verformed.

DEFENSE STSTEM SOFTWARE
LIFE CYCLE LIFE CYCLE
MAJCR PHASE SUPPHASE
Reguirements
Definition
Conceptual
Reguirements
VYalidation
Validation Validation
Full-Scale Full-Scale
Development Development
Production Productior
Debugging
Deployment
Fine tuning
Maintenance
Support
Modification

Figure 2-1. Software Life Cycle Model [1€&]

21

Brown [19) provides a good contrast of two views of the
software life cycle, One view as a fixed sequernce of the
following events &ard the other, more accurate view, as a
complex and highly dynamic 1interaction of the followirng
events (see Figure 2-2):

1. Concept (Requirements) Definition
2. Detailed Requirements Specification
3. Preliminary lesign

4. Detailed Design

5., Code and Debdug

€. Checkout

7. Test plarning

8. Test execution

9. Test evaluation

1@. Acceptance and Use

11. Maintenance (Modification) and Re-test

W¥hile Figure 2-2 represents the interrelationships among
the ©phases of the software life cycle, 1t overly sirplifies
the importance of the maintenance phase (rode 11). This
bottom 1loop really i1llustrates what should be considered as
a mini-life cycle which would 1include many of the same

phases and interrelationships shown by the previous nodes.

)

22

L VO

Figure 2-2. ‘Sequential’ View ard a ‘More
of Software Production [165]

Sequential

Concept Definition

Specification

Preliminary Design

Detailed Design

Code and Debdug

Checkout

Test Planning

Test Execution

Test Evaluation

B—(—(D—(De—()e—{)e—(De—(D)e—)

Acceptance

Maintenance

€

23

Accurate’ Tiew

More Accurate

B ey

A WA -,

McHenry [20] aescribes weapon system software life cycle

management from a contractor’s perspective. He states that
today’s procurement processes still use the traditioral life
cycle model consistirg of the sequential steps of “define,
design, develop, integrate, test, and operate. After
evaluating four different procurement strategies being nused
for the procurement of weapon system software tcday, he
concludes that this is not a satisfactory way to envisior or
to manage the software development process. The deployment
and operation phases of the software 1life cycle, where
maintenance bdecomes a key issue, are said to be often
overlooked or neglected decause of the pressures ard crises
wkich occur during the develooment phases. To compound this
prodlem, there {is a tendency to epply low skill persons to
"maintenance” tasks.

Fe recommends more emphasis be placed on software design
so that the product is less costly to maintain and advocates
the use of, what he terms, readiness management (planning
for change) by doing such things as conductirng exercises
vhere simulated modifications occur.

The software life cycle model described by the Rome Air

Development Center [4] seems to accurately model the

software life cycle (Figure 2-2).

e i e @k iR

e et e mee s

SYSTER SPEC CHANGES TO SOFTMARE PART-1 SPECS '

FTWARE

SOFTWARE
AMALYSTS CHANGES TO SOFTWARE PAAT-IT Specs’
A
PART-1 SPECS
DESTGN
*
PART-1 SPECS'
CHECKED ouT TEST AND
INTEGRATION
DELIVERED SOFTWARE
CHANGES TO TASTALLAT (ON
WOOULE WARDWARE | (PRODUCTION)
INSTALLED PROGRAMS
FAULT |
OETECTION ey .
EPORT OEFENSE SOFTUAR
RECUIREMENTS
NARDWARE JISTEM FALT W
FAWLT CHANGES TO SOFTWARE
ISOLAT 10N PART-{ SPECS
CHANGE TO SOFTMARE SOFTWARE 1 CHANGES TO SO
PART- SPECS L AMLYSIS OART.I1 SPECS
SOFTWAE
PART-[SPECS
CHANGES TO SOFTWARE |
PART-[1 SPECS
SOFTWARE PART-[! SPECS
CHANGES TO PROGRAMS | CODING & |
s 1o HECOUT |] | warouane
/ '
CHECKED QUT MODULE]
bl ST AND
INTEGRATION
CHARG OFLIVERED
£ SOFTWARE
g DEVELOPMENT } + ——
k TR OPERATION AND SUPPORT
A A a a A A A A a
o eon’ con' rart fea rart ron” con” rqr
© MAY NOT BE FORMALLY HELD

* EACH CPCL MAS A SEPARATE SET OF SPECIFICATIONS AND SEPARATE REYIEWS

Figure 2-3. Software life Cycle [4)

il

aduan

Figure 2-3 shows that the process of software
development 1s highly 4interactive, as 1indicated by the
feedback arrows to accommcdate new software requirements and
changes to software specifications. More significantly, it
highlights the impertance of the operation and support phase
where rmaintenance is performed through a series of
subphases. Note that these subphases incorporate the same
interactive steps shown for software development: software
analysis, software design, coding and checkout, and test ani
integration. |

A variety of models have been presented in an effort tc
better urderstand how mairnternance relates to the overall
software life cycle. It must be erphasized that even though
maintenance appears chronologically last it must be properly
considered and thoroughly planned for early in the 1life
cycle.

B, MANAGING THE SOFTWARE LIFE CYCLE
1, General

Now that a conceptual framework has been presented
for envisioning the 1life cycle of software and highlighting
the importance of the phase where maintenance 1s perforred,
attentior 1is turned to software management considerations.
This is important because the decisicns made dby managers of
veapon system software projects will oftern mean the
difference between whether the final product is maintairabdle

or non-maintainabdle.

26

fopron

—— _—r

There has been some argumenrt that regardless of what

management techniques are erployed, successful developrent
of large, complex software projects is not always possidvle.
For example, ar Air Force assessment [21] of why its 1larze,
complex computer system, the Advanced Loglistics System
(ALS), failed concluded that “,..the ALS 1is Ydeyond the
software state-of-the-art.’

This view is contrasted to oce offered by Cave [22].
In an article which descrides project management methods
used for controllirg the life cycle of larpe-scale software
systems, he states "...proJect failures are generally the
result of improper or inexperiernced manazement and not the
lack of technical ability." The article goes on to conclude
that successful development of large software systems car be
achieved in a consistent manner.

This thesis is based or the premise that Cave’s view
is correct. It further assumes that software rmalntenance
problems can be largely avoided if knowledgeadbl=s projact
management is applied.

Cooper [23] explains that, in the past, one of the
common plitfalls 1in project management has been that it was
development-oriented and, therefore, managerent attempted to
optimize the’development process in trying to meet Dbudget
and schedule constraints. This tends to create ar iritial

design with 1ittle documentation, resulting in increased

e e oA o S — , -
. - e sakiisasamui) it . -

difficulty in maintaining the software and a corresponding
increase in overall 1ife cycle costs.

Another probdlem with manazement’s ability to produce
maintainadle software identified by Cooper was that high
level decision makers 1lack computer-related experierce.
This, undoubtedly, results froem the fact that, as a
discipline, software maragement is still in its infancy.

While there 1is no sirple series of steps for
managers to follow which will ensure successful developmert
of maintainadle software, experience has revealed sore
general policies that appear to help. For example, Daly [19]
has reported on his experience in managing developments.
Table II-1 provides a comparison of two approaches. Method 1
is the preferred approach to producing a rore
cost-effective, more maintainadble software product. Note
that he recomrends the application of strict maragement

odbjectives to guide development.

28

"

Table II-1. Software Design Methods (1)

Method 1
High level language
Structured Code

Composite design (hierarchy
of small segments)

Parallel, top-down, bottom
up design all optionally
used

Simple data structures and
work areas (not) tightly
packed

Team approach to design
(egoless programmirg)

IMB’s structured walk
through for reviewing
detall design and code

Three separate teams
one team design, one
tests one evaluates

Complete set of hierarchy
charts, sequence charts
data maps and narratives,
well commented listings

Detailed test plans for all
test phases

Program maintained by 302
senior programmers

Only commercial documenta-
tion generated during
development

Strict management
objectives established
to guide developmert

29

Method 2
Assembly language
Tight Complex Code

Large blods of code

Bottom-up design

Tight, efficient, data
structures and work areas
(every bit used, ro data
duplicated)

One program - One man
concept

No detailed techrical
review of desigr or code

Original coder tests,
integrates and helps
evaluate his vrogram

Detailed flow charts and
gereral narratives,

no consistency listing
comments

No formal test plans
Program maintained by
inexperienced programrers
or technicians

Extensive, noncommercial
technical remorandum gener-
ated and placed in lidrary

No management objectives

2. DoD Management Policlies

Within ToD the need <for 4improving weapon system
software management has bdeen recognized and actior has beer
initiated. On 3 December 1974 a DoD Software Steering
Committee was estadblishea with a charter to identify
critical weapon system software problems and to recommend
policies for their solution.

In support of the first phase, the MITRE Corporation
in conjuction with The Applied Physics Llabdoratory of Johas
Bopkins Urniversity [24, 25), conducted a study of weapor
syster software ranagement. The study concluded "The major
contributine factor to weapor system prodblems is the lack of
discipline and engineering rigor applied to the weapons
system acquisition activities.”

Incorporatineg recommendations from this study, the
Software Management Steering Committee formulated a
comprehensive plan comprisirg policy, practice, procedure
and technology initiatives. This plar was released in March
1976 ard 1is availadle through the Defense Techrical
Information Center ([26]. Part III of this plan recommends
managemert ©policy with the purpose of supplementing
principles put forth 1in DoD Directives 52¢Q0.1 and 5200.2.
The first managemert policy 1listed states, Ease of
maintenance and modification will be a major corsideration

in the inittal design.”

32

The volicies provided in this plan have the effect
of establishing visidility acd management control to weapon
system software. Two important techniques used to rrovide
visidbility and management control are design reviews ard
configzuration management.

a. Design Reviews

MIL-5TD-1521 (USAF) prescrides the requirements
for the corduct of the following techniral reviews and
audits on computer programs:

Systems Requirements Review (SRE)
System Design Review (SDR)
Preliminary Desigr Review (PTR)
Critical Design Review (CDR)
Functional Configuration Audit (FCA)
Physical Configuration Audit (PCA)
Formal Qualification Review (FQR)

For detailed definitions and spacific
requiremernts for these reviews the reader is referrea to tae
standard. It should be noted that the standard fails to list
requirements to be specifically considered for optimizirg
the maintainadility of the software. An avallable software
maintenarce guiaebook [27] does, however, provide as a
supplement to MIL-STD-1521, <checklists of maintenance
considerations for use with the various reviews ard audits.

b. Configuration Management

The elements of software configuration
management are configuration 1identification, configuration

control, configuration status accounting and configuration

auditing. Configuration identification involves specifically

31

identifying and labeling the configuration items at selectel

baselines during the software 1life cycle. Cenfiguration
control provides the means to manage changes to the
(software) configuratior items and 4involves three Ddasic
ingredients:

-Documentation (such as administrative forms and
supporting techrical ard admirnistrative material) for
forrmally precipitating and defining a proposed change to
a software systam,

-Ar organizatioral DYocdy for formally evaluatireg and
approving or disapproving a vproposed change to a
sof tware system.

~Procedures for controlling the actual <changes to a
software system

Software configuration status accounting provides the
mecharism for mairtaining a record of how the software
evolved and where the software 1s at any current stage of
implementation. Software configuration auvditing prevides &
means to determine how well the software product matches 1ts
associated documentation,

DoD Directive 5000.29, Management of Comgputer
Resources in Major Defense Systems, states:

Defense system computer resources, including Yoth
computer hardware ard computer software will be
speclifled and treated as configuration items.

As part of the proposed requirements assigned to
contractors for the development of weapon system software,
MIL~-STD~1€79, Weapon System Software Development, states:

The contractor shall establish and implement the

disciplines of configuration managements; namely
configuration identification, cornfiguration control, and

32

configuration status accounting. The contractor shall be
coznizant of the requiremert <for 1long-term 1life-cycle
support of <the weapon system software. The appropriate
degree of configuration management shall be applied to
ensure completely accurate correlation between
descriptive docurentation and the program 1in order to
facilitate pcst-delivery maintenance by software support
personnel.

MIL-STD-52779(AD), Software (Cuality Assurance
Program Requirements, further requires that the contractor
provide audits by independent personnel to ensure that the
objectives of the configuration control oprogram are Ddeing
attained.

This need for software configuration management,
as reflected in current standards and directives, has bheen
only recently recognized in DoD. Fortunately, it 1is now
accepted as an essertial task if software mairtenance is to
be successfully performed. In fact, as previously mentiored,
Kline [17] proposes replacire the term software
maintenance” with the term “software configuration
management. This highlights the central role 1t plays 1in
the mainterance of software.

As Bersoff (28] points out, the probler with
configuration management of software in the past has been
that it fell under the umbrella of configuration maragement
of the entire system (Figure 2-4). Hardware, bdeirng more
visible, has been treated 1in great detail, but software,

belng less mature as well as less visible from a total

syster viewpnolint, has been largely neglected.

33

Military Systems

Pudlished §
CM §| —————— - Hardware Software re————- ?

Directives/ i
Procedures

A System Consists of:
Hardware Item 1
Hardware Item 2

Bardware Item N
and
Software

Figure 2-4. Cornfiguration Management Umbrella [28]

There 1s prodabdbly no aspect more important to

software maintenance than managing change sirce software
maintenance i1s really a matter of correctly applying
changes. Clearly, software configuration management must bde
applied to disciplire thnis procesé. A word of caution,
however, is that the same change control prccedures do0 not
apply equally to all software projects; fherefore,
configuration management must be properly tallcred to tae
orgarization vperforming malntenance and to the software
product itself.

2. Software vs Hardware

The theme pervading the evolving {initiatives for
managing software 1s to elevate it from arn artistic
enterprise to a true engineeripe discipline, or--to put it
another way-—t0 treat software more like hardware throughout
its complete 1life cycle (1@, 22, 29]. There are, however,
differences between software and hardware that merit
corsideratior.

A rajor difference is in the malirtenance
requirements. Eardware is maintained primarily by
replacerent of worn or falled corponents with new ones
meeting ¢the original specification. Sof tware, unlike
hardware, requires that the product specification ard desizgn
be changed when maintenance 1is performed (22].

Amorg the differences Schreidewind [3¢) has poirnted

out are: (1) the passage of time 1s an {mportaant paramater

in predicting hardware failure, but has little significance

in predicting software failures and (2) hardware is usually
assumred to have & <constant failure rate duricg 1{its
operational phase as compared to software’s variadle failure
rate.

Kline f17] has also identified many significart
differences between software and hardware in the area c¢f
reliadility arnd maintainadility. Among his conclusions are
that there exist well-estabdlished statistical relationships
for hardware reliabdility ard mairctainadility which 1is not
yet the case for software.

Because there are many differences between hardware

and software, caution should be applied in usirg the seme

techniques which have tYeemn successful for developing
maintairable hardware to development of maintairable
softvare.

Selectively, however, some hardware management
techriques can be successfully employed for improvirng
software. Significant examples are the use of design reviews §
and configuration management as described in the previous

sections.,

ITII. DEVELOPMENT ISSUES FOR IMPROVED MAINTENANCE

A. GENERAL

As mentioned 1in chapter 11, decisions made during the
development phases of the software life cycle will have a
significant impact on how maintainabdle the software is
during its operatioral phase. There is 1little disagreemert
on the observation made by Mills [?] that better devalopment
procedures can reduce the need for mainterarce. Ttis chapter

s concerned with briefly discussing those “better

s

development procedures.

B. STRUCTUREL PROGRAMMING

Structured programmirg 1is Dhecomire one of the Trore
promising approaches to reducing the ever increasing cost of
producing and maintaining software. Meyers [5] states that

structured programming will prodadly be recorded in history

as one of the great steps forward in programming technology.

The Naval Surface Weapons Center [Z1] and The Naval Air

Development Center [22] are two Navy R & I centers that have
odtained successful results in producirg dirpreved guality
weapon system software by using structured prcgramming | 3
techeiques.

Professor E. W. Diljkstra, of the University of

Eindhoven, Netherlands, is credited with beirg one of the

37

SN & ok deaniia &

F‘.‘_W‘ -

(R na s B A A et A

first to advocate structured programming princirles ﬁltn his
1965 paper [33]. Since 19€5, many bookLs have been published
covering the topic of structured programming (5, 24, 28, 36,
37, 38, 29]). A complete review of these works will not be
attempted here, but the following selected items provide a
general overview,

As with the term " software mairtenarnce”, no specific,
widely accepted definition exists for "structured
programming." Jensen [42] surveys many definitiors and
concludes that one proposed by Wwirth [41] 1is the rmost
accurate: Structured programming 1s the formulation of
programs as hierarchical, nested structures of statements
and objects of computation. ™Meyers [5] gives his favorits
definition of structured programming as the attitude of
writing code with the intent of communicating with peopl=
instead of machires.’

A goal of structured prograrming 1is to crganize and
discipline the program desigzn and coding process in crder to
reduce logic type errors {8l. Three importart
characterisitcs of structured precgramming will serve as the
frahework for further explanation: top-down deslgr, modular
design, and structured coding. |

1. Top-down Design

One characteristic of structured prograrming is the
use of top-down design. In a very general sense, this

involves first specifying a program ir the Dbroedest terrs

38

ard {n a step-wise fashion gradually refining the structure
to £i1ll1l in details. At each step, major ~functions to be
accomplished are 1identified, a given task is broken into a
cumber of subtasks until the subtasks are simple enough to
be coded into modules. If a module requires more than a line
or short paragraph to descridbe, then the module shculd)e
redefined.

The rationale behind this aporoach is that the mind
i1s capadble of comprehending only so much at a time arnd most
problems are too large to be attacked all at once.

Top-down design is illustrated in Figure 3-1 [27]
where successive levels of desizn provide additional detalls
of the eventual solution. This approach will ©provide
visibility to the design wnich is an important need of <the
maintenance programmer.

Top-down development has been described as perhaps
the least appreciated area of rmoderrn software technclogy
{42] and includes much more than the simplified descripticn
Just presented. It i1s a rich and powerful techrigue for
project irplementation and for system irntegration.

It 1is interesting to rnote that an adaptation of tne
top-down aporoach, conceived by 0°Neill in 1972, was used
for the TRILENT CCS [42, 43, 44])]. This was the first time a

top-down design was specified for use on a Navy weapor

system software development project [25].

e)

LEveL 2

(8419]

P

QPEPATING
Se5Tem

E2ECyTIve L]
Clhteng LEVEL
LAGUAGE CooE

SI9exee
)e
| 1 I T 1
—_—
EYAL UATION ATTACK nissioy Fopce
SOF uAE GEVEATOR TS 5Ny aienE EXECUTION
STLTEM STUR SYSTEM SaiEn i | svsioe
i [|
ALLOCATION 5TUB TOAJ. GENERATION TIiNG $TuB EXECUTION STUB Stwsea
. stuB POCIIBILITY OF: SIMULATION
ALLOCATE: TINING OF LAUNCA careiL : vea
@ YENICLE TYPE TRAJ. TRACC FOR AND TR, POINT SIMLATE
® LAUNCH FARM EACH VEMICLE CETERMINAT [ON OPERATIOMAL
o TARGETED 20INT ALLOCATED SENSCRS
— - T
[T T !
NEh
SENSCR 1 SENSOR 2 sewsar 3 | LS.
) stus sTus sTup
SENIR EPM[F[FIVIS‘ fov
STATUS ENVIRONENT LOCATION OBJECTS
 LOCALIZFD 7O (SOE JuST AOED LOW LEveL Cooe
DEBUGEING o A SIMPLE LOGIC OR INTERFACE PROBLEM

® MO SIMULTANIOUS [NTERFACES TO ADJUST
AGALN .

ANO TRY

40

Figure 3-1. Top-down Design [27]

ETC

o T o, s -

2. Modular Design

Another characteristic of structured programming is
modular design. A good description of oprinciples ani
practices for mocdule design is provided by Meyers [5). The
first step, Meyers explains, 1in designing a module 1{is
definirg 1its external characteristics. This is information
needed by interfacing rodules, nothing more, and incluies:
module name, function, varameter 1list, inputs, cutputs, aand
external effects, It 1s recommerded that this inforration oe
located in comment statements at the beginaning of the source
code. Orly after defirine the module’s exterral
characteristics, 1is design and coding of the internal logic
accomplished.

No hard and fast rules exist for what constitutes
the optimum size for a module. Van Tassel [B] states as a
general rule that modules should contain between 12 and 1@@
high 1level language 1instructions. Meyers [5] gives as a
commonly used limit 6€ lines of code. The main point is that
a module should be easy to ke2p in mind and comprshend. It
should bYbe noted, though, that ovrograms can increase in
complexity as the number of modules increases.

A goal it using modules 1is to reduce corplexity,
which improves maintainabdility. Complexity car aris= from
three sources: functional complexity, distridbuted corplexity
and connection complexity. Functional complexity ocrurs when

a module {is made to do too many things. Distriduted

41

N e b

complexity occurs when a common function has not deen
properly identified and separated, resulting in 1its Dbeing
accomplished by many different modules. Connection
complexity occurs when modules irnteract or commor data in
unexpected ways.

Tausworthe [12] describes two important measures for
modularity (originally defired by Meyers [45]1): module
coupling and module strength. An optimal design for improved
maintairability mirimizes the relationships between modules
(minimal connectiors) and maximizes relationships arorz
components within each module (maximum strengtn).

Table II11-1 [46] shows the various categories of
both module coupling and module strength and ranks these

categories from the best situatior to the worst.

42

Data:

Stamp:

Control:

External:

Common:

Content:

Functional:

Clustered:

Sequential:

Communicational:

Procedural:

Temporal:

MODULE COUPLING

all communicatiors between them is via
argumerts that are data elemerts

their communication includes an argurent
that references a data structure (some
of whose fields are not needed)

an argument from one knowingly
influerces the flow-of-control of the
other, e.g., flag

they reference an externally declared
data element

they reference an externally declared
(L.2., common) data structurs {some
of whose fields are not needeaq)

one referances the contents of the other

MODULE STRENGTH

modules perform a single specific
function -- "write a record to output
file

module is a group of functions sharing
a2 data structure usually to hide its
representation from the rest of the
system..only cne function is performed
per invocatior~—="symbol table with
insert and look-up function

module action comprises several
functions that pass the data along--
update and write a recori

module action cornsists of several
logical functions operating on somre
data-~ print and purch a file

module elements are grouped for"
algorithmic reasons--"loop bdody

module functions are all related
in time~~"initialization

Table III-1. Module Characteristics [4€]

43

3. Structured Coding

A third cparacteristic of structured pregrarring 1is
the use of structured coding. Structured coding is a method
of writing programs which are more easily urderstood and
maintained. It is based on the fact that arditrarily large
and complex programs car be written using a small set of
Yasic programming structures.

Bohm arnd Jacopini [47] demornstrated that three bdasic
control structures were sufficient for expressing any
flowchartable program logic (Figure 3-2): “sequence”,
selection ("if then else”), and 1iteratior ("do while").
These three control structures are ofter exparnded to include
"ao until” and “case” type constructs (Figure 3-3).
MIL-STD-1679, for example, limits control structures used in

programming to these five basic types.

44

SEQUENCE

PROCESS A

PROCESS 8

-

SEQUENCE

Figure 3-2.

IFTHENELSE
F T
“ELSE"” “THEN"
PROCESS PROCESS
L o1

I¥ THEN ELSF

DOWHILE

LO WEILE

Basic Control Structures

e

DOUNTIL

“UNTIL”
PROCESS

DO UNTIL

CASE

PROCESS A PROCESS Bleee PROCESS N

~1—

CASE

Figure 3-3. Additional Control Structures ;

46

Meyers [5] provides a list of seven basic elements of a
structured program which should be applied to help reduce
program complexity, promote <clarity of thought by the
programmer, and enhance readadility of the program:

-The code is constructed from sequences of three basic
elements.

-Use of the GOTO statement s avoided wherever possible.

~The code 1is written 1in an acceptatle style {(e.g. use
mearingful variable names, avoid statement ladels, avoid
language tricks)

~The code 1is properly indented on the 1listing so that
breaks 1ir executior sequence can be easily followed
(e.2. a DO staterent can be easily matched with the
statement ending the loop)

-There 1s ornly one point of entry and one point of exit
in the code for each module,

-The code is physically segmented on the 1listing to
enhance readability. The executable statemerts for a
module should fit on a siagle page of the listing.

~-The code represents & simple and straightforward
solution to the probdblem.

Often, a vprogram is written with a clear structure bdut
is eventually modified by unstructured constructs. Fven if a
bit exaggerated, Van Tassel [e] offers a graphic
illustration showing how a program’s origiral logic can
become completely obscured as the need for changes or
corrections develops (Figure 3-4). Clearly, the maintenance
of such a programr would be extremely difficult.

This 1llustrates the point that not only the 1initial

source code shoula be structured bdbut subsequent charges to

47

the code must also follow structured constructs. TRITDENT CCS
software provides an example of a project that followed a
structured development approach dbut eventually lost some of
the benefits of structured prograrming by application of

noa-structured techaiques (e.g., use of patches) [111].

—

labvel
lavel

labdel

label
ladel
label
label
labvel

B L At S e LA b A P

labdel

label

label
labdel

Lo TN 3

Unstructured

IF p GOTO label gq

IF w GOTO ladel m

L function

GOTO label k

M furction

GOTO labdel k

IF q GOTO labdel t

A furctioro

B function

C function

IF NOT r GOTO label s
D function

GOTO label r

IF s GOTO labdel f

E function

IF NOT v GOTO ladel k
J function

X function

END function

F function

GOTO label v

IF t GOTO labYel a

A function

B function

GOTO label w

A furction

B function

G function

IF NOT u GCTO label w
H function

GOTO label u

IF NOT t GOTO label y
I function

IF NOT v GOTO labdel k
J function

GOTO label k

Structured

IF p THEN
A function
B furction
2 IF g THEN
3 IF t THEN
G function
4 DOWHILE u

H function

4 FENDDC
I function
(RLSE)
ENDITF
LSE
C function
DOWEILE r
I function
ENDIO
I® s TEEN
F function
ELSE
¥ functior
ENDIF
ENTIF
IF v TEEN
J functicn
(ELSE)
ENDIF
LSE
IF w TEEN
M function
2 ELSE
L furction
2 ZEINDIF
FNDIF
X function
END function

ted O (A

“U L L W

NN NN

Figure 3-4. Examples of Unstructured and
Structured Coding [8)

TR | v oTee e

C. LANGUAGE CONSIDFRATIONS

No single develcpment decision affects the
maintalrability of a prosrar more than choosize what
language 1t will be written in. Some aspects that shouli
fefluence that choice are discussed in tris section.

1. High Level vs Assemoly Level Language

Bopkins (48], ir discussire software quality, made
i1t <clear where he stood concerning the use of high level
languages when he stated "The higher level the language used
in programming the better.’

Lang (28] provides a bdrief list pointirg out “the
very grave disadvantages of assembly larngueges:

—Apart from the few who delight in such intricaciss, most
people fird assembly larczuage programs harder to write,
read, urderstand, debug and maintain than high level
language programs,

~It provides the poorest conceptual framework for the
prograrmer to express the corputing operations he wants
performed.,

-~It 1is <completely machine deperdent, thus requiring arny
rachinre language program to be completely rewritter when
i1t 1s transferred to a different machine.

Glass [49] talks about the erormous benefit of
programming 1in high order 1languages bdoth in terrs of
productivity and reliadility. He points out that hizh 1level
language code requires rany fewer staterents than asse~bly
language; thus, there are many fewer chances for errors.

Also, the high level language prograrmer is screened fror a

whole <class of potential error situations related to

50

S T T

i

hardware intricacy since the compiler accomplishes the task
of making hardware dependent choices.

To 1llustrate some advantages in using a high level
language vs an assembly level language, a simple algorithm
has bYeen coded 1in both the high 1level language Pascal
(Fizure 2-5) and the Intel 3@#8¢ assemdbly 1language (Figure
3-6). The vprogram 1is designed to read an irteger from a
corsole ard maintair a runnirz total; when a @ is
presented then the oprcgram is to print out the total.
Although, most programs are more complex than these simple
exarples, they are helpful in making comparisons between the
use of high level language and assembly language., Nc¢ claim

is made concerning the elegance of the solutions cr for that

matter the utility of their function.

-

Program ADD;
Var Number, Total:Irnteger;
Begin

Total :=2;

Repeat
Read (Number);
Total:=Total + Number;
Until Number = @3

write (’Total= “,Total)
End.

Figure 3-5. Inteser Addition Program Writter Ir Pascal

52

TOTAL:
NUMBER:

INIT:

START:

DISPLY:

Figure 3-6.

DB)
DR e
CRG 10¢E
MVI C,E2F
MVI B,60F
MVI A,20F
STA TOTAL
INR C

CALL POSCUR
CALL RFAD
ANI @FE

STA NUMBER
LDA TOTAL
LXI H,NUMBER
ADD M

DAA

STA TCTAL
LDA NUMBFR
CPI 29H

JZ DISPLY
JMP START
CALL POSCUR
MVI A,°S’
CALL PRINT
INR C

CALL POSCUR
MVI A,°U°
CALL PRINT
INR C

CALL POSCUR
MVYI A, M’
CALL PRINT
INR C

CALL POSCUR
MYI A, ="
CALL PRINT
INR C

CALL POSCUR
LDA TOTAL
RRC

RRC

RRC

RRC

POSCUR:

READ:

PRINT:

END

ANI 2FE

ORI Z¢E
CALL PRINT
INR C

CALL POSCUR
LDA TCTAL
ANI 2FH

CRI C@E
CALL PRINT
RST 27

MVI A,2CH
CALL PRINT
MOV A,C
CALL PRINT
MOV 4,3
CALL PRINT
RET

PUSE B

PIISH D

PUCH E

MYI C,@1E
CALL 25E
POP H

POP D

POD &

RET

PUSH 2

PUSE D

PUSH E

PUSH PSW
MVI C,22E
MOV Z,A
CALL @3H
POP PS¥

POP
POP
POP
RET

td o |

Integer Addition Program Written In
Intel B@E0 Assemdly Code

Perhaps the most striking difference 1is 1in the

program 1length., For the aigh level lansuage program orly 12
statements were used. This compares with 82 statements for
the assembly language program, Arother sigrificant
difference 1is ir readabdility. The high 1level language
statemerts are more English-likxe (e.g., Begirn, Frnd, Repeat,
Until, Read, Write) and, hence, more comprehensidle, wnile
the assembly larguage instructiors (e.g., LXI, MVI, INK} are
generally more abbdbreviated, reguiring increased effort for
understandine.

Another notable difference 1s that the details
assoclated with the hardware interfaces are hidden from tn2
high 1level 1language vprogrammer. Items such as TEerory
location of the program, register usage allccation,
conversion of ASCI1 code to binary coded decimal and Dback
again, and cursor control for the terminal display are all
items that have to be cornsidered and accounted for irn the
assembly language program, This increased 1level of
complexity provides sigrificant opporturities for
programming errors, thus increasing the difficulty of
maintaining the program.

Firally, cornsider the degree of difficulty that
would exist for correcting an error in this simrple rrograr
or the amount of effort that would Dd»e required to add

enhancements (e.g., to obtain the average value). C(Clearly,

the high level language prograr 1is more suited to this
"mainterance” type work.

2. DoD’s Use of Figh Level Language

a. Standard Figh Leval languages

DoD is takircg action to reduce the preliferation
of programming languages in an effort to 1improve the
maintainability of future weapon system software ard to
increase the transfer of avelladle software amrong new
systems [29].

Under Dol Instruction £20¢.31, weapoer system
development programmers are restricted to the use of one cf
the followine high level larguasges: TACPOL, (MS-2, SPL-1,
JOVIAL, FORTRAN, and COBOL.

A contiruirg effort is underway to standardize
even further, to adopt one common high level language. A set
of techrical requirements for the commor lacguage was
developed, and during 1976 twenty-three existirg languages
were evaluated against these requirements. The findings were
that no language completely satisfied the requirarerts, that
several languages could be sufficiently medified to rproduce
an acceptable 1language, and that it would be rossible to
produce a language that would satisfy essentially all the
requirements [5€].

b, ADA
DoD “has subsequently adopted a common

prograrring language based on the language PASCAL to use as

55

its future high 1level 1language for embedded corputer

scftware [51]. It has been named ADA, after Ada Augusta who
became the first prograrmer as an assistant to Charles
Babbage.

Oz the surface, it appears that one cofrmorn
programming language for DoD embedded tactical software
would greatly improve maintainablility through
standardization and increased familiarity by a larger number
of programmers. Alsec, a naw language could be <desiegned to
incorporate the latest language methodologies for improved
program clarity.

ADA is not, despite these apparent advanteges,
universally acrcepted in its present form. Cijkstra [32], for
example, has the opirioz "that it is neither complete, ror
concise” and expresses concern over its size by pointing out
that ADA’s reserve word 1ist amounts to more than tern
percent of Dbasic Fnglish.” Also, he states raintainability
is hampered by the multiple ways that exist for dcine the
same thing.

Regardless of this 1lack of universal support,
the ADA project is going forward ard the Army plans to have
a compiler ready during 1981. The Navy seems somewhat less
aggressive in pursuing this <common high 1level 1larguage

effort (51, 53].

5€

e

c. Navy’s Use of CMS-2

The Navy 1is reluctant to accept ALA partially
because it has already standardized to CMS-2 which was
designed primarily for real-time, command and control
applications. It comdbines features of TFORTRAN, COBOL and
JOVIAL and has had continuous modifications, corrections and
enhancements over several years of actual wuse. This is
contrasted with ADA which is completely new and has had nc
previous use.

3. Patching

Before leaving the sudbject of programming languages,
the use of patches must be addressed because of their
detrimental effect upon software maintainadbility.

A patch 1s a charge made to the object program after
it is assembled or <compiled. Patching is generally
acknowledged to be a bad programming practice yet {t
continues to occur. Its use is encouraged by rigid testing
schedules since it provides expedient solutions [54].

Both TADSTAND 9 and MIL-STD-167S lirit the tctal
number of patch words to 1less thar @.0€85 of the total
machine 1instruction words in the program, but despite such
attempts at 1limiting its use, patching can quickly get out
of control. A small sample of the TRIDENT CCS software was
taken and found to have five times the current 1limits

allowved by the new MIL-STD-1679. This 1is one resson

57

why the maintainability of this software has become a matter
of corncern.
D. AUTOMATED AIDS

There 1s 1little disagreement that, in order to rroduce
maintainpadle software, the development must vproceed in an
orderly, flexidle and measurable manner, with all phases
clearly traceable fror system requirements to rachine
readable code,

This entire process 1is extremely labdor intensive ani
subject to errors of commission and omission. It 1s not a
novel 1dea to suprose such an effort could benefit from
automation. Many automated tecols have, in fact, been
desigred and employed with varying degrees of success.

It 1is ©Dbeyona the scope ¢f thls thesis to include a
comprehensive study of the strengths and weaknesses of such
tools, bdut a few methodologies are presented to serve as
examples of this trend because of the significant influence
it might have on the way software Is maintaired in the
future.

A prodlem statement language (PSL) and a prodblam
statement analyzer (PSA) are two tools developed at the
University of Michigan tc aid systems design. PSL and PSA
are used by a numder of large commercial orgenizatiorns.
Chase Manhattan Bank is one example and it feels that by

using these methodologles, 1its software is now easier to

maintain [S5].

TRW, workirg for the U.S. Army Ballistic Missile Defense
Advanced Technology Center has developed a sof tware
requirements engineering methodology (SREM) which applies
specifically to large, real-time weapon systems [4€]. SREM
is desizned to generate clear and complete requirements ard
to facilitate their modification. Since incorrect or rissirg
requiremerts account for a large portion of errers in large
software projects, the use of SREM should irprove
maintainability.

A highly ambitious software development and nNainterance
support system (SDMSS) 4s ©being designed to autormate the
various activities for large scale software. It iIs comprised
of several subsystems, including requirements engirna2sring,
desigen, documentation, software error Mmaragement, and
maintenance. Reference ([3€6] contains a rore complete
description of this system.

The source code control system (SCCS) is designed for
controlling changes to files of text such as source code ard
software docurmentation and alds raintenance efforts
considerabdly. The current version has been operatioral at
Bell Telephone Laboratories sirnce 1977 [57].

A lidrary control program (SYSM) has been developed by
Magnavox and 1s currently bdeing used to control a total of
200,292 lines of code. It aids maintenance by coatrolling

changes in a secure and traceadle manner [%8].

59

PSL/PSA, SREM, SDMSS, SCCS, and SYSM are only a limitel
set of automated tools being developed which will support
maintenance activites. DoD must conrntinuously study and
evaluate these and similar methodclogies for rossible

applicatiorns to its weapor system software.

€0

B

Er—————

IV. DOCUMENTATION FOR MEETING MAINTENANCE RECUIREMENTS

A. GENERAL

The “Documentation Standards, Volume VII, of IBMs
Structured Prograrming Series (58] states that
"documentation in some form should be acquired for all
software developed irn order to support the future needs of
software maintenarce.” It is obvious that a corputer rrograr
stored ir machine readadle form on a media such as tape is
not adecuate to meet the requirements of the maintenance
programmer. The questicn decomes what typs and how much
documentation is sufficient. This question must »e correctly
ansvered if maintenance activities are going te be
successful.

In determining what specific documentatior should bde
produced and maintained concurreatly with weapon system
programs, sore general guidelines should be kept in rind.

First, documentation must provide for complete
traceadlility fror the user’s operatioral requirements to the
actual lines of code so that if a requirement changes thern
the approprilate code car be correctly modified, cor,
conversely, if an error 1s found in a sectior of code the
full impact on the user’s requirements can be determined.

Second, the documentation must be easily modifled. As

requliremernts or programs are changed ther correspondicg

61

charges must be made to the documentation. If this is not

done, ther the documentation soor becomes outdated. This
ceed for corcurrent maintenance of documentatior with the
software makes those documentation forms that can be
computer generated oreferred.

Tinally, because of the high cost of documerntatior, the
arount produced should bYe kept to the absolute minimum
required. Tausworthe [12] provides a graphic example showing
the relationship ©between prograr costs and the level of
documentation (Figure 4-1). Note that there 1is an optimum

level that must be strived for.

DEVELOPMENT
{$/LINE OF CODE)

MAINTENANCE
($/ALTERATION)

SOFTWARE COSTS ($)

! :
|
l !

0 ? ?
PROGRAM DOCUMENTATION LEVEL (PAGES/LINE OF CODE)

Figure 4-1. Program Costs vs Documentation level [12]

AT T

In this chapter some examples of formal standards are
identified which have been developed within DoD concerning
the vproduction of decumentation for use in the maintenence
of software, Also, available forms of documentation are
discussed which are specifically used for representing
program design, ar important need of the mairterance

programmer.,

B. MAINTENANCE DOCUMENTATION STANLARDS

A 1lirited set of standards have been develoved at
various levels within Tol! which specify the content and
format of documentation to be wused to suvport software
maintenance activities. Examples of these are provided in
order to derornstrate the nature and extent of these

standards.

1, Program Maintenarce Marnual

DOD STANDARD 7935.1-S, “Automated Data Systems
Documentation Standards, 13 September 1877, provides
guidelines for the development of a Pregram Malnternance
Manual. The purpose of this manual 1is to provide the
maintenance programmer with the 1information necessary to
effectively mairtair a system. A copy of the format of the
Program Maintenance Manual {s given in Appendix A. Note that
it is oriented towards documenting data base systems rather

than weapon systems.

63

2. Cerrat Svster Program [escription Documents
SZCNAVINST 25%6¢.1 1s one of the most ~orplete Seis
of documentation standards specifically for weapor <cystem

software, Withirn this Navy standard three docurents are

—

identified which <svpport the meirnterance of tactica

software, Categerized under the general “eading Ccerbat

Srvstem Program TIescriptiorn Grovp, thery are called: the

Program Tescripticr Tocurert (?PL), Pata Ease Tesisr (TIT,
and Froegram Parkage (PPY, A description of their jpurjose &rid

a ceay c¢f thelir forrat is provided ir Arvendix Z.

5]

C. AITEFNATIVTS ZCR E

ta

-
-
-

tey
[<J]

NTING PRCG

23}

‘v

Am

m

UCTTUE

'1'
[£>]

(93]

-~
SO

s the previous section illustrates, tnere has teer scme

47

standardizatior for rmaicztenance dccurentatiorn te follow. The
remairder of this chapter is deveted to a discussicen ¢f

these teocols availa®le for representine a proesrar’s internal

‘D
)]
.

structure. This is an &area *tnat hes not been <stanfardi-

S

[y

In fact, there is considerable disaegrecerant as tc what too

are the test to use.

1. Flewcharts
The flowchart 1is a eraphic representetion of &
prograr logic, Its purpose is to rake it easy tc see tiae
relationsktips and flow of control amoneg the various desien
elements, It i< a technique that has teen <so widely vszd
since it was develcped by veon Neuman in 1947 that a se* of

national standards exists far flowcharting symiole [f2].

64

Many individuals, however, are opposed to the use of
flowcharts. Brooks [61] calls the tecanigue an obsolete
nuisance, and "a most thoroughly oversold piece of program
documentatior. Aron [€2] feels that flowckarts are useless
to a programmer when diagrosing errors. Weinberg [€2] states
“we fird no evidence that the original coding plus flow
clagrams is ary easler to understand thar the original
codirg 1itself-—except to the ocriginal prozrarmer. These
comments bdring into question the value flowcharts have for
the mainterance programmer,

Schneiderman, et.al. [64] decride a series cf
controlled experimernts which test the utility of flowcharts
as an aid to the full range of programming activities:
composition, debugging and modification. Although treir
original intent was to determine when flowcharts were most
helpful, the erperimental results led them to corclude that
flowcharts are a redundant presentation of the informration
contained in the programming language statements. Their
conjecture 1is that flowcharts mway even be a hindrance
because they are not as complete (omittineg declarations,
staterent lables and input/output formats).

To provide ar example for 1llustrating some points
to consider when usine flowcharts as a rainterarce tool, a
series of four pages of flowcharts which represent the logic
fr a TRIDENT C(CCS module will bde used (Figsures 4-~2 through

4-5). For simplificaticn, the labels used in the flowcharts

€8

N

- —

have bdeen changed usirg the convention: (Ti) for termirals,
(D) for decision points, (Ci) Por connectors, and (Pi) for
processes.

These flowckharts were chosen as exarples because
they represept a small, loglcally clear section of cede.
Accordirg to the flowcharts, this section of code can be
entered only through Tl, Figure 4-2, ard exited only through
T2, Tigure 4~-4, A stopping condition exists at T3, TFigure
4-5.

The first poirt to be illustrated corcerns the use
of connectors. The conrnectors used in the original TRITENT
flowcharts are statement labels and could be used as entry
voints from other portions of the nrogram. The use of single
conrnectors embedded ir a sequence of code such as Cl, Fisure
4-2, 1s unnecessary since no additional entry voints are
desigrated. By checking the actual code, through the use of
the cross-reference listings, it was determined that this
label was, however, used by a subsequent dranch point. A
modified version of the flowchart in Figure 4-2, which more
accurately represents the programs 1logic, is provided in
Figure 4-€. The point is that all possible entries to a
program shculd be <clearly desigrated. If rno entry poirt
exists then labels are not needed and should de eliminated.
Not to do so creates the possiblity for potential errors.

A second vpolnt to consider is the ability to trace

through a section of logic. Goirng from beginrirneg to end 1is

€6

relatively easy, but consider tracing through the reverse
directior. Cften, the maintenance programmer is left with a
specific program state, and his job is to determine what
conditions created it. For example, using TFigures 4-2
througzh 4-2, 1f the maintenanrce programmer needed o
determine what sequence ¢f contrecl could have 1led to the
stoppirg condition (T2), Pigure 4-5, it would be recessary
to trace backwards through &ll four peges of flowckarts.
This problem is corpounded when dealine with rnumerous pages
of flowcharts and multiple branch points.

A third point to consider 1is the difficulty of
making charges to the documentation. Note that substitutinz
a decision bdlock (L2A) for a procedure dhlock (P2) in Figure
4-2, 1in order to more accurately represert the prograrms
logic, required that a completely new flowchart be
constructed, Wigure 4-€,

It should te noted that the Software Acguisition
Maracement Guidebook, Software Mainterance Volume [27],
recomrends that Tel net procure flowcharts with delivered
software, and MIL-STD-1679 states that ~there is no
requiremeat that flcwcharts be a deliverable item.”

Ic contradictior to this ~guidance, SECNAVINST
3562.1, when descriding the Program UDescripticn Tecument,
states a flowchart shall be 1included for each major
procedur2 or subroutine tkat depicts detailed overatiocns

performed by the subprceram.”

€7

BEEIR SN T L G e o

- e agg

o T N Gl Swms e b

e

Y
T
P
D2 >—1 =
N
P2

=

&

Figure 4-2. Exarple Flowchart, part 1 of 4

€8

Figure 4-3.

Example Flowchart, part 2 cf 4

€3

Figure 4-4.

PO T2

RTN

Example Flowchart, part 3 of 4

79

'U
N

T{gure 4-5. Example Flowchart, vart 4 of 4

71

r e e £ fma b A e M ek % am et Naian

Figure 4-€. Modified Flowchart

72

2. HBierarchy Plus Input-Process=Output (EIPO)

EIP0 was develoved as a design eid and documentation
technique by IBM and is descrived in [65]. It attempts to
provide more than just representing the prograr 1logic as
flowcharts do. It emphasizes the functional aspect e¢f the
program and its data flow. Malntenance efforts are said to
be facilitated by making it easier to trace a function that
needs to be modified from the documerntation to the actual
code.

4 HIPO package consists of three k%inds of dlasrams:
a visual table of corntents, overview diagrams and detail
diagrams. Thes=2 diagrams provide a graphical description of
the proegram’s functior from the zeneral to a detailed level.

Flgure 4-7 shows the structure of a typical BHIPO
package, Note that the visual table of contents shows the
structure of the dlagram package and relationships o¢f the
functions in a hierarchical fashien. The overview and detail
HIPO dlagrams contain the 1inputs, processes, outputs and
extended descriptions at =2ach stage of the successive
decompositior of a progran.

AIPO does not enjoy universal support as a
maintenance tool. In a survey by Anderson and Shumate [€6],
conducted to find out what docurentation tools were founi
useful by maintenance programmers, HIPO was ranked as the
least preferred form when compared to the programr listings,

English language narratives, flowcharts, hierarchy diagrams

73

NPy

and the data base design documerts. The authors felt that
EIPO documentation is an important design tool but seers to
have a lesser value for maintenance activities.

Meyers [5] contends that while HIPQ diagrams are
superior tc the flowchart because they show data flow as
well as control flow, ZIPO diaszrams are not reeded for the
same reasons that flowcharts are not needed for maintenance
type work. Basically, he feels bYoth merely duplicate
information that 1is already contained 1in the trogram

listings.

74

P> R AINA S £ -ty Y, gy e L PR R TR

a

1 A Vst Tabie of Contenn

|
Dy
[OO Ed .3

=>—'—

2 Overvew Dusgrame.

#rocem Outmut

I

o = LT R VI

*
// ‘ %
i - ~

P Outowt

[=
1]
L]

@Uré
Nol0

L]
E >
I
~
L]

i

[

Entendug Osutrptow

]
(]
[N

"

2 [

Figure 4-7. HEIPO Documentation [€5]

75

¢

R e

. Decisior Tadles

Decision tabdbles provide a tabular forr of
representing program design and have been used as a
maintenance tool. Generally, decisiorn tables are made up of
a set of conditions, each of which may be evaluated as true
or false at ary given time. The truth or falsity of these
conditions ray be combdined in various ways, alorg with e
series of acticns, to form what is called a decision rule
(1.e., a set of conditions that must be satisfied 1in order

that a series of actions be taken).

CONDITION STU3 l CONDITION ENTRY

ACTION STUE l ACTION ENTRY

Tadle IV-1, UTecision Table Structure

As illustrated in Table 1IV-1, it is divided into
four quadrants, The upper 1left quadrant, called the
condition studb, contains all the conditions beirg consldered
for a particular decision rule. The condition entry, in the
upper right quadrant, combines with the condition stud to
form the condtion that is to be tested. The action stud, in
the lower left quadrant, contains actions resulting from the

conditions tested above, Actlon entries, in the lcwer right

76

A W A A TS T R AR T T

quadrant, serve to 1indicate responses to the indlcated
combination of conditions.

I? a condition in the condition stub is true, a 'Y
is entered for that varticular rule in the conditlor erntry;
1f the condition 1s false, an N would be entered. Ir a
sftuation where a particular condition 1is 1irrelevart a
don’t-care would be indicated by use of a dash, "-". An X"
specifies actions to be executed. An example of a decisiorn
table for renresenting a sirple process of

approving/disapproving 1loan recuests is presented in Tadle

1v=-2.
LOAN TABLE Rl R2 RE R4
Satisfactory
credit 1limit Y N N N
Favorabdle
Payment History - Y N N
Spectal Clearance
Cbtaired - - Y N
Approve Loan X X X
Reject Loan X

Table 1V-2. Example Decision Tadle [€7]

Cre advantage of usine decision tables is that it ts
possidle to convert ther into corpilable source code via a
preprocessor {67, €8). The additional computer time required
for compilatior can bYe offset by reduced effort for

programming both during the initial vorogremring phase and

a4

T Y R QTR ORI 10~ e R A\ IO

T i

the malnterance phase. Another big advantage of decision

tables is that their concept and structure causes the rnumber

of overlooked situations and program inconsistencies to Dbe
reduced.
The B. F. Goodrich Chemical Company is orne proporernt

on the wuse of dacision tadles. Reference [1€] reports that

Goodrich has used them extensively ard finds that complex
logic becomes clearer and there 1s 1less chance of
overlooking a logical path. Goodrich estimates that overall
productivity for amalysts and programmers in raintairing its

COBOL-based systems has bee=n at least doudble what it would

have bdeen without decision tables.

Another successful example concerning the use of

decision tables 1is reported by Fisher [69]. Ar extremely

complex file mainterance problem arose at the USAF Automatic
Resupply Lozistic System at Nortor AF3. Almost sever
map-years had been spent trying tc define the problem using
rarrative descriptions ard flowcharts, but to little avail.

A crash program usirg decision tadles was then implemented. 1

Four analysts spert one week establishirg the decision tabdle ;
format. Three weeks later the probler was solved. %}
To help determire whether the use of decision tables .
is avpropriate for documenting programs such as the TRITFNT
CCS, a section of logic was translated into a decisior tabdle i
format (Table 1IV-3). The logic represented is the same as

that shown {n Flgures 4-2 throueh 4-E. Note that 1identical

7e

A e B dachsiiieddaiindn i

"

logic corntained in four pages of flowcharts has been reduced
to a clear, concise table taxing less that one page. This
points out, also, that revision of decision tables reouires
less work than modifying flcwcharts. This i1s an important
consideration for maintenance activities where revisions are

expected.

R1 R2 R3 Re RS

D1 Y N N N N
L2 - Y N N N
D2 - - Y N N
D4 - - - Y N
Pl X X X X
P2, P2 X X X
P4, PS X X
PE-P9 X
RETURN X
P19-P12 X X X X

SToP X X X X

Table IV-3. Example Program Logic

Two disadvantages of decision tabdles are: (1)
possible ambiguities may arise when don’t care conditions
are presented and (2) decision tadles are of 1ittle help
when the program logic involved 1is not decision-raking

oriented.

79

|

- s i

While decision tables may not always be avpplicable,

. a4 L

the previous discussion 1llustrates that they serve as an
alternative form of docurent;tion that should be considered.
Federal Information Processing Standards Pubdlication 3E,
"Guidelines for Documentation of Computer Programs ard

Autormated Data Systems, 15 February 1976, states that

either flowcharts or decision tables, whichever is more
approvriate, can be included or appended to docurentation

for software. Jowever, SECNAVINST 25€€.1 makes no mentlion of

thelr use.

4, Nassi-Shneiderman Charts

With the advent of structured prozrammine technology
a form of structured flowcharts has emerged. Leveloped bdy I.
Nassi and B. Shreiderman in 1972, they can serve as a
graphic representation of a modules logic desizn and provide
a malntenance prcgrammer with a quick reference fer finding
the <code performing any logical function. The advantages
clairmed for these charts include:
-The scope of IF THEN ELSE clauses 1is well-defined ard
visidle; moreover, the <conditions or ©process boxes

embedded within comoound conditions can be seen easily
frem the diagram.

~The scope of local and global variables is imrediately
obvious.

-Arbitrary transfers of control are impossibdle.

-Complete thought structures can and should fit on orne :
page (i.e., no off-page connectors). .3

Yoder [7¢) provides a thornugh description of the

use of N-5 charts. Briefly, the charts are constructed by
comdinirg ard nestirg the basic structures shown in Tizure
4-8, An example shcwing an extension of the use of the dasic
symbols, which illustrates a N-S chart to <calculate ard
print an FICA report, is shown by Flgure 4-9.

N-S charts are strorgly 1linked to structured
pregramming constructs, thus, it may be difficult to arply
this form of documentation to rnon-structured portions of
program logic.

The methed of N-5 charts has not been fully
exploited in actual practice and little information exists
in the technical literature advocatirg their use. They are,
nevertheless, an alternative form of documentation that may
be coensidered for use as a maintenance tool.

The section of logic previously represented by
Figures 4-2 through 4-5 ard by Table 1IV-3 has teen
represerted using %-S charts (Figure 4-10). Thls illustrates
the potential of using N~S charts as a maintenance tool for

software such as the TRIDENT CCS.

81

PROCESS
STATEMENT

ELSE
CLAUSE

THEN
CLAUSE

Process Symbol Decision Symdol

DO WHILE CONDITION

UNTIL
PROCESS

WHILE
PROCESS

DO UNTIL CONDITION

DO WRILE Symbdol DO UNTIL Symbel

! DO CASE | n

1=1 1=2 l=n
PROCESS PROCESS PROCESS

CASE Symbdbol

Figure 4-8. PFive Basic Structures of N-S Charts [72]

ez

o T

et e

READ THE FIRST PAYROLL RECORD

DO WHILE THERE IS MORE DATA TO PROCESS

NO

YEAR - TO - DATE FICA LESS THAN

MAXIMUM ?

YES

CALCULATE FICA
DEDUCTION

YEAR - TO - DATE FICA PLUS

DEDUCTION >

NO MAXIMUM ? YES
SET FICA

DEDUCTION

TO ZERO SET DEDUCTION

SO YEAR - TO - DATE
WILL NOT EXCEED
MAXIMUM

ADD DEDUCTION TO
YEAR - TO - DATE FICA

SET NET PAY TO CROSS PAY MINUS FICA DEDUCTION

PRINT NAME, GROSS PAY, FICA DEDUCTION, YEAR - TO - DATE

FICA, NET PAY

READ NEXT PAYROL. RECORD

Figure 4-9.

Exariple N-S Chart [70]

YOI
P
| 024,
| P2
| NOEA
P3
P4
YN
P5
P10 P&
P I P7
P12 P8
STOP RTN
Pleure 4-10. Nassi-Shpelderman Chart For TRIDENT
"

5. Program Listings

It would bYe highly desirable if proerams could be
made self-documerting, theredy, elimiratine the recessity of
maintaining multiple forms of docurentation representing the
same loglc. Many authors advocate such an approach through
structurirg program 1listirgs. Meyers [®], for -examrple,
states:

Sirce we already have the code, why not let it serve as
the logic documentation? . . . additional documentation
such as a flowchart would ©bte vundesirabls ©because it
would be redundent with the code. Redurdanecy in any type
of documrentation should be avoided because it increases
the chances of conflicts. Furthermore, wunless care 1is
taken to update the documentation (which 1is rore
difficuit 1if the logic documentation Lis ©physically
separated from the code), redundant documentaticn cften
becomes totally useless after the code is modified a few
times.

In his 1974 ACM Turing Award Lecture, Xauth [71]
addressed the importance of program listings when he stated:
There are many senses in which a program can be "good"
of course. In the first place, it’s especially good to
have a program that works correctly. Seconrdly it is
ofter good to have a program that won’t be hard to
change, when the time for adaptation arises. Both of
these goals are achieved wher the pregrar 1Is easily
reaiavle and understandable to a person who knows the
appropriate language.
Anderson’s study [66], discussed previously, has
illustrated the importance of prcgram listings as compared
to other forms of documentation for maintenance work. Again,

this study fourd listings were the mainterance programmer’s

“"most useful tool.”

What

constitutes a self-documenting pregram?

SFCNAVINST 3562.1 states that the listing will dbe an exact
duplicate of the delivered card decks cr magnetic tape. It
further states that each compiler source statement will be
annotated with comments, or, 1f the source is asserbly
level, ther a comment shall be 1listed for each assembly
level 1line or function group of lires with not less thar an

average of one comment per five statements. No mertion 1is

made of the tyne or form of comments.

MIL-STD 1679 provides much more explicit direction.
It states, iz part, that:

A narrative description shall describde the
history and identify the functions of each hierarchical
component of the weapon system software,

Each component shall include at the beginning of
the executadle codirng a textual description of 1its
inputs, outputs, function or task, and algorithms; a
1ist of other components called; and a 1ist of all
calline components, In addition to general explanations,
to assist understanding, ©precise references to the
appropriate statement labels and data-names shall bde
ircluded ic each module, procedure and routirne
descriptive abstract. The descriptive abstract shall
define the allowed and toleradble range of values for all
inputs and shall defire the allowed and expected range
of values for all outputs. A history of the original and
updating programmer names, the activity or commercial
company nrame and the activity or compary divisior coce

or dillet 1identifier with dates comrpleted shall be
included.

'd

In order to facilitate program comprehersiorn,
comment statemerts shall be used throughout the program
code. Comment statements are pon-executable (i.e., they
have ro effect or program executions) ard are used to
provide documentation and clarification of the loglc,
data, variabdbles, and algorithms. Each source statement
shall be self-defined or defired by a comment phrase to
a level understandable by a person not assoclated with

8€

the original development effort. Logical grourps of
comment phrases may be 1included ir a sinele comment
statement. General comments on groups of source
statements performing 1logical functions shall be
included on separate comment statements.

The Tactical System Programming Supvort Pranch of
the Marire Corps Tactical System Support Activity,
responsidle for maintaining the Marine Corps’ tactical
software, considers the computer program listing to be “the
sinzle most important tool for software maintenance. It has
develeoped a set of standards to ensure listings are properly
designed ard coded. This standard serves as a possible
example for other mainterance organizations to follow. See
Appendix C.

BPoth MIL-STD-1E€9 and SECNAVINST 35€60.1 address the
use of cross-reference listings which are included here as a
portion of self-documentation since they can be
automatically generated from the program listirngs. They are
considered a necessary maintenance tool since they 4identify
every place an item (e.e., variables or subroutines) appears
in the program, so when the item is changed or modified the

impact or the remaining portions of the pregram can bYe

quickly determined.

5. Summary
This section has illustrated a variety of techniques

used for representing program design to the maintenance

programmer, Clearly, no one form completely represents all

aspects of program desigr. As programming methodolosies
become more structured, the trend towards ircreased emphasis
on the use of porecgram listings should continue, reducing the
need for supplemental forms of program documertation.
Although, it seems unlikely the need for some type of

graphic representation will be totally elimirated. There |is

an 1important psychological aspect of conveying meaning

throush pictures that cancot be duplicated with narratives.
No dourt, a varlety of documentation tools will always be

necessary.

V. SOFTWARF MAINTENANCE POLICIES WITHZIN TOD

A. BACKGROUND

This chapter provides an overview of policies and
methodologies existirg in DoD which affect weapon system
software maintenance. TFirst, the publications that contain
applicadle pelicy guidance are reviewed. Next, the results
from a 1limited survey of agencies involved with weapon
system software maintenance are presented. Finally, there is
a discusston of pertinent research ard developrent work.

It is important to realize that the policies and
methodologies for procuring weapon system software have beern
different thar that used for ©procuring automatic data
processing equipment (ADPE). The distinctior made Dbetween
these two categories of autcmated systems i1s a result of the
1965 "Brooks Act” (Public Law 89-3@6, 4¢, U.S.C. 789).

The Office of Management and 3Budget (OMBR) and the
General Services Administratiorn (GSA) admirister the 3Brooks
Act guidelines. ATPE 1s controlled by this act and falls
under the purview of the Assistant Secretary of Defense
(Controller). Weapon system sofiware, however, is excluded
from the provisions of this Act and fall under the
jurisdiction of the Office of the Undersecretary of Tefense

for Research and Engineerine.

89

cihiig

e AR kel A~ . 5kl o 22 e At T

B. CURRENT POLICIES

There has been ro centralized source of guidance with
respect to weapon system software maintenance for DoD
organizations to follow. Many directives, regulations,
specifications, and stapdards have, however, {influenced
weapon system software maintenance to varying degrees. The
most significant of these are listed ir thls section. Tven
though most of these have ©been introduced 1ir previous

chapters, they are consolidated here for ease of reference.

1., MIL=-STD-4£3 (USAF)

MIL-STL-483 (USAF) “Configuration Managemert
Practices for Systems, Equioment, Munitions, and Computer
Programs, 1 June 1971, defines the entire spectrur of
activities assoclated with controlling chanzes (a criticel

need for malntenance work) to computer programs.

2. MIL-5-52779 (AD)

MIL-S-52779(AD), "Software Quality Assurance Proeram
Requirererts, 5 April 1974, requires that a GCuality
Assurance Program (QAP) be implemented specifically for the
development of computer programs and related docurertation.
Even thousgh this stardard is concerned with the developmert
phase, 1t is 1importart to software maintenance because it

directly affects th2 quality of the saftware.

90

3. SFCNAVINST 3E€0.:

SECNAVINST 35€@8.1, "Department of the Navy Tactical
Digital Systems Documertation Stardards,” 8 August 1974,
identifies, names, and descrides that set of documents
necessary to support both the developmernt and maintenance of

tactical software.

4. DODDIR 506£€92.29

PODDIR 5¢¥W@.29, "Management of Computer Resources in
Major TLefense Systems, 26 April 1976, establishes Dol
policy for the management and control of comruter resources
during system acquisition. Maintainability of software is
called out as a major consideration during initial design.
It also directs that support 1items required for «cost

effectlve maintenance be specfied as deliveradle items,.

5. MIL-STD-1521 (USAF)

MIL-STD-1521 (USAF), "Technical Reviews and Audits
for System, Equipment, and Computer Precgrams, 1 June 1976,
prescribes the requirerents for the conduct of technical
reviews and audits in conjunction with the documents defined
ir MIL-STD-483. Directior is provided concerning the review
and audit of computer programr configuration 1ters ard their
assoclated documentation. EFach type of review or audit is
described in an appendix to the standard and can serve as a
basls for checking compliarnce with mairtairadbility

requirerents. !

91

calis b Sinia

6. DODINST 5000.31
CODINST S5@¢@¢.31, " Irterim List of ToD Approved High

Order Prograrming Languages (HOL)," 24 Noverber 1976,
specifies the HOLs which are approved for use ir corjurnctiorn
with DOLDIR 5000.29. Although this instruction eallows for
certain exceptions, it attempts to reduce proliferation and
ensure control of BOLs in defense systers by 1liriting new
developmrent to six approvea languages: CMS-2, SPL-1, TACPOL,

JOVIAL, CCRCL, and FCRTRAN.

7. MIL-STD-1679 (NAVY)

MIL-STD-1679 (NAVY), “Weapon System Software
Development,” 1 Decemder 1978, establishes uniform
requirements for the development of weapon system software
within CoD. Strict adherence to the provisions of this
standard will help ensure that the tactical software so
developed will be improved over current versicns of tactical

software.

C. SURVEY OF DOD MAINTENANCFE ORGANIZATIONS

An informal survey was taken of personrnel from five
different DoD organizations involved with the maintenance of
weapon system software, While not orovidine cfficial policy,
the results can be used to derive a general understanding of
the environment in which they have operated, such as what
probdlems have been erperienced and what methodologlies were

used in performing maintenance activities.

92

o

1. Pacific Missile Test Center

The Weapons Control and Software Systems Tivision of
the Pacific Missile Test Center 1is 1involved with Fleet
support of tactical software ¢for selected weapon systems
such as the F-14,

The software, developed largely under contract, was
being maintained by in-house resources. Maintenance
functions rperformed included configuration accountirg,
problem validation, training, analysis, design, change
implementation, documentation, verification ard tape
generation. The greatest amount of work has ©been
necessitated by software enhancements which required varyine
degrees of redesign. New tape versions were releaseld
approximately every 18 months.

Correting with oprivate industry °for recruiting
professional versonnel has bYbeen a significent problen;
Another problem has been inadecuate software docurentation
from contractors. Concern was expressed that documentation
has historically been ore of the first items to be cut fror
software development dudgets, a decision that has seriously
degraded the subseguent Maintairnability of software.

A large effort has dbeen made to correct the probtlem
of inadequate documentation. Guidance was beirg formulated
which goes beyond the requirements defined in SFCNAVINST
35€¢.1 and MIL-STD~1€679 by improving the traceadility from

one level of syster description to another.

93

e 2t e e e

The importance c¢f usine actual operational equipmert

for program debugginrg and veriflicetion after meintenence
changes were made was stressed.

Ar effort to keep methodologies current is evidernt,
but this effort 1is belng strained by increased werk loads

arnd oversonrel shaortages.

2. Naval Ocean Systers Center

The Software Quality Control Oreanizetion at Naval
Ocean Systems Center 1is not directly responsibdble for
maintaining tactical software., It did, however, perforr a
critical function that greatly irproves software
malntalinadility. Activiti=ss 1include document 1inspection,
configuratior management and test and evaluation during all
phases of the acqguisition cycle in order to assist procurire
orgarnizatlions ir acqguirine hisher quality and rore
maintainable software.

One of the Dbiggest problems encountered has been
convirncirg managers that software requires the sare degree

of engincering ccntrels as hardware,

&. Naval Surface Weapons Center

The TFleet Fallistic Missils Geoballistics Division
of Naval Surface Weapors Certer 1is responsibvle for ©botk
development and maintsnance of Fleet ballistic missile type
software such as the TRILCENT-I Tire Control System. Most of

its werk is accomplished in-house with very 1ittle

94

contracting. There 1is 1nc separate orgzanizational group

dedicated solely to the maintenance of software. Malrtenance
activities are intepgrated with developmert activities.

As expected, when software products were iritially
released to the fleet the vast majority of maintenarce was
accorplished in order to correct errors, but the ratio of
improvements to error corrections increased as the time from
initial release increased. One software product which head
been released for two years was exp=ariencing maintenance cf
aprroximately 50 percent for improvements and £¢ percent for
error corrections.

Changes to software are made according to a
formalized <configuration contrecl plan. Releases o0f new
versiors have beer made or the average of once per year.
Patches were discouraged bdut used wunder restricted angd
tightly controlled circumstances such as to correct critical
errors between major program releases.

Actual fleld eoulpment 1is wused te test oprceram
changes with the capability ~f usirz some real inputs. Most
inputs, however, are simulated.

A hardware ronitor Is used and found very useful for
analyzing the performance of software. Another wuseful tool
used 1s the abllity to take core dumps which are analyzed
via computer whenever prcgram crashes ocecurred.

A specially desiened H0L called Trident High Level

Language (TPILL), sald to be even more structured than CMS-~2,

95

A090 159 NAVAL POSTGRADUATE SCHOOL MONTEREY CA 6 972
TECHNIQUES AVAILABLE FOR IMPROVING THE MAINTAINABILITY OF DOO I'-ETC(U)
JUN 80 R D PILCHER

UNCLASSIFIED

2vd
ADA
02 a

was bdeing used., Program 1listings are maintained in a
structured form, and a program design 1language (°DL), a
pseudo high 1level 1language, 1is used to help document
programs.

The actual process of making changes to software has
posed nro siznificant prodlems, bdut understanding and
verifying reported software errors from the Fleet 4id, at

times, present difficulties.

4. Naval Alr Development Center

The Software ard Computer Directorate of the Naval
Alr Tevelopment Center functiorns as the software support
agency for selected avionics software such as that 1in the
P-3C Orion.

The maintenance of the P-3C software is complicated
by the fact ¢that it is bvelng converted from a tage
configuration system to a drum configuration system. While
the functionral requirements remained the same, the details
of implementation differed. ZRBoth configurations must be
simultaneously maintained.

The {importance of defining to a fine detail
maintenance requirements early in the developrent of
software was stressed. The concepts of structured

programmirg was advocated, bdut trying to implement the

constructs of MIL-STr-1679 oun existing software that

s A S < Cobha " P sl A s 10

was originally unstructured presented many difficulties and
was not recommended.

New program versions were DYeing relesased oa the
average of every 18 to 24 months and patches were bdeing
used. It was stated that patches will always bde required to
some extent because of <constrainrnts such as delivery
schedules.

while ¢the program listing was the cheapest form of
program documentation, detailled flowcharts were considered
useful as a maintenance tool. It was suggested that the

autorated process of producing and updating flowcharts would

be helpful. '
One of the bigeest prodlems beirng experienced was ? 1

the 1large personnel turnover rate that exists in the

services. Mairntenance of software would be an easier task if

there were greater stabllity of personnel.

5. TACFIRE Software Support Group 1 H

The TACPIRE Software Support Group is responsible 4
for maintaining the software for the Army’s automated
Artillery Tactical Fire Direction System (TACFIRE), a system
whose software was developed under contract. Maintenance of
the software is still using contractor support.

The group uses configuration control procedures much
like the other organizations contacted with a corfiguration

control board setting priorities for approved software

97

Yo o T D e, 0T iy
Ny : YT X WRY UT-AOR TR T e x

changes. Approximately 75 percent of the changes experienced
were the result of program erhancements arnd 2% percent
necessitated by program errors. New program versions were

being released about every 12 months. Patches were

discouraged dut practically every release had contalped a

limited number.

Both a oprograrmming support system (PCP 11/35) and
actual TACFIRE hardware were used for program debuggirg and
testing procedures.

The code for the software is writter in the EOL
TACPOL. Somre code in the programs 1is assembly level. The
ratio of BEOL lines of code to assembly level lines of code
averaged roughly nine to one.

The support group 1is Ybeglinning to do software
development work for a multiple rocket system. The software
for this system is being designed to fit an existing set of
hardware. The 1larguage used for this new software 1{is
assemdly level, called Symbolic Iaterpreter Routine (SIR).
The use of an assemdly level laneuace 1s rnecessitated by
both hardware contraints and a desire to share previously
wvritten software modules.

The only general probdlem mentioned in mainteining
weapon System software concerned the difficulty of
interpreting software troudble reports submitted by using

units in the field.

[Py, P - S e e e

€. Marine Corps Tactical System Support Activity

The Marine Corps tactical software 1is developed
largely by contractors. Software maintenance of fielded
systems, however, is centralized ard accomplished 4irn-house
by the Tactical Systems Programrming Supvort Rranch of the
Marine Corps Tactical System Support Activity.

The software is written in CMS~-2 and kept highly
structured using the conventiors outlined in Appendix C.
Listings provided dccumentation for the program’s 1lcgic
eliminating the need for detailed flowcharts. The software
is refined to the point that no major operational errors are
observed. The majority of mainterance was bdeing necessitated
by program enhancements not error corrections.

Software configuration management is strictly
applied to all changes. New tape versions have been released
adout every 9 months. Patches had not been used in over two
years and are considered contrary to good mainterance
practices.

Two tools found useful ¢to support maintenance
activities are the CMS-2 librarian to control coding changes
and a hardware monitor to measure system performarnce.

Actual field systems are availadle for prograr
testing and dedugging with the capadility of using doth

actual and sirulated real-tire inputs.

99

——— - o e -

e " sl iz i A 80 % Sl Sl AP B3 0t o . g s

Personnel were in favor of adopting the programmirg

language ADA and have been involved with the Departrent of
Defense High Order language Commonality Program sircce 1977.
Problems mentioned included attracting and retaining
qualified vpersonnel and educating top level managers about
the nature of software. The techrnical aspects of mairtairing

software presented nc significant prodlem,

D. RFSEARCE TO IMPROVE SOFTWARF MAINTENANCE

Wegner [72) states:

Software maicterarce has onrnly recently been recognized

as a key area for software research. Research needs

include the development of tools to allow understanding

(readadility) of software, modifiadility of software and

revalidation of modified software.

Not 1listed 1in the previous statement is the reed for
3a11dating claims that nev software englnecsring
methodologles significantly 1improve the maintainabvility of
large, complex, real-time weapor system software., Sirnce
claims have not bheen demonstrated, there has been reluctance
from some system developers to 1incorporate their use on
actual system projects.

An amditious, exvloratory research project has been
initiated by the Naval Research Laboratory and tke Naval
Weapons Center in order to correct this situation. The
project involves completely redesigning ard irplermenting the
operational ¢flight program (OFP) for the A-7 aircraft using

many of the new software engineering principles. The

100

ry " PP PR 5 T

T T

N

redesigned program will bYde functionally identical to the
existing A-7 OFP so a direct comparision between the two car
be made in areas such as software maintainabdbility.

It successful, tke final product could serve as a useful
engireering model for subsequent weapon system software
developments. For further information the reader is referred

to the program summary, Appendix D.

121

VI. CONCLUSIONS AND RECOMMENDATIONS

DoD orgarizations are becoming more awvare of the

significance that maintenance plays in the overall 1life

WA, e v

cycle of weapon system software, Even as this software
becomes more error-free, the relative importance o?f
! maintenance activities wlll continue bdecause of fregquent
enhancements made to existing systems and increasirg

complexity of applications.

To ensure that future weapon systam software car bde
easily and accurately modified ¢to correct errors or
accommodate changes in user requirements, maintainadilitcy
must be comrsidered as a primary desigrn objective.

The organization which will eventually bde responsibdle
for maintairing the software of a veapor system must be
alloved to participate in the developmert process, including 4
the formulation of specifications and subsequent technical
design reviews.

The importance of programming standardization must de
stressed because of the lorng life of weapon system software
and the relatively high rate of personnel turn-over within
LoD software maintenance organizatiors. Althourk software
standards have not yet reached the refinement or level of
detail that exist for hardvare, MIL-STDP-1€79 represents a

good starting point. If complied with, this standard shouldl

102 ?

W vin et ICHERDY T s g R e

significantly improve the maintainadility c¢f weapon system
software.

How much and what kind of documentatior will be
delivered with weapon system software are among the most
important management decisions affecting - the software’s
maintainabdillity. Decisions must be dased on the size arnd
complexity of software produced and what techniques are usei
by the organization performing the maintenance. This thesis
has {llustrated a small portior of availadble types.

Institutions such as the Naval Postgraduate Schcol are
in a position to improve the education of future computer
sclentists on the pnature of software maintenance. This coulld
be done by establishing computer science program 1libdraries
consisting 02 student developed computer programs. Programs
in these libraries would thean be availadble for projects
emphasizing program maintenance in addition to the
traditional approach of emphasizirg only program
developrent. Grades based on how easilvy a student’s rvrogram
1s understood and correctly modified dy other students would
provide an incentive for improving software maintenance
skills.

As a final thought, consider the findings of a study on
software maintenance by Lientz and Swanson [?3]. Their study
"supports the propesition that an increase ir the agze of a
system tends to lead to an increase in the level of effort

in maintenance.” This indicates that Dol must continually

103

P 1 ST s e cemy L nreim pr R AT i

AP RN A e e

e O A s o

face a difficult question: when is it more ecoromical to
dispose of and redesign an existing system thar to go on

maintaining it?

104

L om o e daieid R TS SN i3 T N T PR R sy

APPENDIX A - Program Maintenance Manual

from: DOD STANDARD 7935.1S, “Automated Data Systems
Lccumentation Standards, 13 Septemdber 1877

PROGRAM MAINTENANCE MANUAL
TABLE OF CONTENTS

SECTION 1 GENERAL DESCRIPTION

1 Purpose of the Program Maintenance Manual
2 Project References

3 Terms and Abbreviations

SECTION 2. SYSTEM DESCRIPTION-

.1 System Application
.2 Security and Privacy
.3 General Description
4 Program Description
SECTION 3. ENVIRONMENT
.1 Equipment Environment

.2 Support Software

.3 Data Base

.3.1 General Characteristics

.3.2 Organization and Detailed Description
SECTION PROGRAM MAINTENANCE PROCEDURES

1 Conventions

2 Verification Procedures

3 Error Conditions

4 Special Maintenance Procedures
S Special Maintenance Programs

6 Listings

E R X ¥ W W WWWWwWww NNNNN ol ol o
LR RS RS R RN RN | VOB BBRG DNV NN o s = B

195

e At e dasie o et e 1

o s =,
e Coarr

[

S

e ey - e

o e

SECTION 1. GENERAL DESCRIPTION

1.1 Purpose of the Program Maintenance Manual. This paragraph
shall describe the purpose Of the MM (Program Maintenance Manual)
in the following words or appropriate modifications thereto:

The objective for writing this Program Maintenance
Manual for (Project Name) (Project Number) is to provide
the maintenance programmer personnel with the information
necessary to effectively maintain the system.

1.2 Project References. This paragraph shall provide a brief
summary of the references applicable to the history and develop-
ment of the project. The general nature of the system (tactical,
inventory control, war-gaming, management information, etc.)
developed shall be specified. A brief description of this sys-
tem shall include its purpose and uses. Also indicated shall

be the project sponsor and user as well as the operating center(s)
that will run the completed computer programs. A list of appli-
cable documents shall be included. At least the following shall
be specified, when applicable, by author or source, reference
number, title and security classification:

a. Users Manual.
b. Computer Operation Manual.
¢. Other pertinent documentation on the project.

1.3 Terms and Abbreviations. This paragraph shall provide a
1ist or include 1in an appendix any terms, definitions or
acronyms unique to this document and subject to interpretation
by the user of the document. This list will not include item
names or data codes.

SECTION 2. SYSTEM DESCRIPTION

2.1 System Apolication. The purpose of the system and the
functions it performs shall be explained. A particular appli-
cation system, for example, might serve to control mission
activities by accepting specific inouts (status reports, emer-
gency conditions), extracting items of data, and deriving other
items of data in order to produce both information about a
specific mission and information for summary reports. These
functions shall be related to paragraphs 3.1, Specific Per-
formance Requirements, and 3.2, System Functions, of the FD
(Functional Description).

2.2 Securitv and Privacy. This paragraph shall describe the
classified components of the system, including inputs, outputs,
data bases, and computer orograms, It will also prescribe any
privacy restrictions associated with the use of the data.

2.3 General Description. This paragraph will provide a com-
prehensive description of the system, subsystem, jobs, etc.
in terms of their overall functions. This description will
by accompanied hy a chart showing the interrelationships of
the major components of the system.

2.4 Program Description. The purnose of this paraqraph is

to supply details and characteristics of each program and sub-
routine that would be of value to a maintenance programmer in
understanding the orogram and its relationship to other pro-
grams. (Special maintenance programs related to the specific
system being documented will be discussed under paragraph 4.4,
Special Maintenance Procedures.) This paraqraph will initially
contain a list of all nroarams to be discussed, followed by

a narrative description of each program and its respective
subroutines under separate paragraphs starting with 2.4.1
through 2.4.n., Information to be included in the narrative
description is reoresented by the following items:

a. Identification - program title or tag, including
a designation of the version number of the program.

b. Functions - description of program functions and the
method used in the program to accomplish the function.

¢. Input - description of the input. Descriptions used
here must include all information pertinent to
maintenance programming, including:

(1) Data records used by the program during opera-
tion.

(2) 1Input data type and location(s) used by the
program when its operation begins.

(3) Entry requirements concerning the initiation
of the program.
2

% et o YT NV T

d.

g.

Processing -~ description of thc processing performed by
the program, including:

(1) Major operation: - the major opecrations of the
program will be described. The descripticn
may reference chart(s) which may be included
in an appendix. This chart will show the general
logical flow of operations, such as read an input,
access a data record, major decision, and print
an output which woulld be rerresented by seagments
or subprograms within the program. Peference
may be made to included charts that present each
major operation in more detail.

(2) Major branching conditions provided in the program.

(3) Restrictions that have heen designed into the
system with respect to the operation of this
program, or any limitations on the use of the
program.

(4) Exit requirements concerning termination of the
operation of the program.

(5) Communications or linkage to the next logical
program {(operational, control).

(6) Output data type and location(s) produced by
the program for use by related processing
seqments of the system,

(7) Storage - Specify the amount and tyne of stor-
age required to use the program and the broad
parameters of the storaqge locations needed.

Qutput - description of the outputs produced by the
program. While thig description may reference out-
put described in the Users Manual, any intermediate
output, working files, etc. should be described for
the benefit of the maintenance programmer.

Interfaces - description of the interfaces to and
from this program

Tables and Items - provide details and characteristics
of the tables and items within each program. Items
not part of a table must be listed separately. Items
contained within a table may be referenced from the
table descriptions. If the data description of the
program provides sufficient information, the program
listing may be referenced to provide gom- of the

198

) - i o S N St s R b Sl

necessary information. At least the following will
be included for each table:

(1) Table tag, label or symbolic name.
{2) Pull name and purpose of the table.
(3) oOther programs that use this table.

(4) Llogical divisions within the table (internal
table blocks or parts - not entries).

(S) Basic table structure (fixed or variable
length, fixed or variable entry structure).

(6) Table layout (a graphic presentation should
be used). 1Included in supporting description
should be table control information, details
of the structure of each type of entry, unique
or significant characteristics of the use of
the table, and information about the names and
locations of items within the table.

(7) Items - the term "item” refers to a specific

category of detailed information that is coded
for direct and immediate manipulation by a
program. Used in this sense, the definition of
an item is machine- and program-oriented rather
than operationally oriented. Of primary impor-
tance is an explanation of the use of each item,
Qt least the following will be included for each
tem:

{(a) Item tag or label and full name.
1 (b) Purpose of the item.

(¢) Item coding, depending upon the item type,
such as integer, symbolic, status, etc.

h. Unique Run Features ~ description of any unique features
of the running of this program that are not included
in the Computer Operation Manual,

129 ;

et Aty e e A T =4 S b e e

SECTION 3. ENVIRONMENT
3.1 Eguipment Environment. This paragraph shall discuss the

equipment configuration and its general characteristics as
they apply to the system. .

3.2 Support Software. This paragraph shall list the various
support software used by the system and identify the version
or release number under which the system was developed.

3.3 Data Base. Information in this paragraph shall include
a complete description of the nature and content of each data
base used by the system.

3.3.1 General Characteristics. Provide a general description
of the characteristics of the data base, including:

a. Identification - name and mnemonic reference of the
component (e.g., data basey. List the programs
utilizing the component and explain the use of the
component in the system,

b. Permanency - note whether the component contains static
data that a program can reference, but may not change,
or dynamic data that can be changed or updated during
system operation. Indicate whether the change is
periodic or random as a function of input data.

€. Storage - specify the storage media for the data base
(e.g., tape, disk, internal storage) and the amount
of storage required.

d. Restrictions - explain any limitations on the use of
this component by the programs in the system.

3.3.2 Organization and Detailed Cescrintion. This paragraph
will serve to define the internal structure of the data base.

A layout will he shown and its composition, such as records

and tabkles, will be explained. If available, computer-generated
or other listings of this detail information may be referenced
or included, herein. The following items indicate the type of
information desired:

a. Layout ~ show the structure of the data base including
record and items.

b. Sections ~ note whether tr.» physical record is a
logical record or one of several that constitute a
logical record. 1ldentify the record parts, such
as he;der or control segments and the body of the
record.

110

c. Pields ~ identify each field in the record structure
and, if necessarv, explain its purpose. Include for
each field the following items:

{1) Tags/labels - indicate the tag or label assigned
to reference each field.

(2} Size - indicate the length and number of bits/
characters that make up each data field.

(3) Range - indicate the range of acceptable values
for the field entry.

d. Expansion - note provisions, if any, for adding
additional data fields to the record.

e - A ATt _ S i " o) !

SECTION 4. PROGRAM MAINTENANCE PROCEDURES

Section 4 of the manual shallhprovide information on the specific
procedures necessary for the programmer to maintain the programs
that make up the system.

4.1 Conventions. This paragraph will explain all rules, schemes,
and conventions that have been used within the system. Informa-
tion of this nature could include the following items.

a. Design of mnemonic identifiers and their application
to the tagging or labeling of programs, subroutines,
records, data fields, storage areas, etc.

b. Procedures and standards for charts, listings, seriali-
zation of cards, abbreviations used in statements and
remarks, and symbocls appearing in charts and listings.

¢. The appropriate standards, fully identified, may ke
referenced in lieu of a detailed ouzline of conveatiors.

d. Standard data elements and related features.

4.2 vVerification Proccdures. This paragraph will include thosec
requirements and procedurcs necessary to check the performance
of a program section following its modification. Included may
also be procedurcs for periodic verification of the program.

4.1 Error Conditions. A description of error conditions, not
previously docurernted, may also be included. This description
shall include an explanation of tho source of the error and
recommended methods to correct it.

4.4 Special Maintenance Procedures. This paragraph shall
contain any special procedures recuired which have not been
delineatcd elsewhers in this section. Specific information
that may be appropriate for presentation would include:

a. Requirements, proccdures, and verification which may
be necessary to maintain the system input-output com-
ponents, such as the data base.

b. Requirements, procedures, and verification methods
necessary to perform a Library Maintenance System
run.

4.5 Special Maintenance Programs. This paragraph shall contain

an inventory and description of any special programs (such as

file restoration, purging history files) used to maintain the system.
These programs should be described in the same manner as those de-
scribed in the paragraphs 2.3 and 2.4 of the M.

112

v v ———kin

-

a. !nEgt-Outout Reayirements - included in this paragraph
shall be requirements concernlng the ecuipment and
materials ncedoed to support the nccessary maintenance tasks.
Materials may, for example, include card decks for loading a
maintenance program and the inputs which represent the changes
to be made. When a support system is being used, this para-
graph should reference the appropriate manual.

b. Procedures ~ the procedures, presented in a step-by-
step manner, shall detail the metnod of preparing-the inputs,
such as structuring and sequaencing of inputs. The operations
or steps to be followed in setting up, running, and terminating
the maintenance task on the equipment shall be given.

4.6 Listings. This paragraph will contain or provide a reference to
the location of the program listing. Comments appropriate to parti-
cular instructions shall be made if necessary to understand and
follow the listing.

st mi

dacie

113 4

APPENDIX B - Combat System Program Description Grouv

from: SECNAVINST 356@¢.1, "Tactical Digital Systems
Documentation Standards, 8 August 1974

C. COMBAT SYSTEM PROGRAM DESCRIPTION GROUP

1. POD - PROGRAM DESCRIPTION DOCUMENT
2. DBD - DATA BASE DESIGN
3. rP - PROGRAM PACKAGE

E;,

T mom T AT

PROGRAM DESCRIPTION
DOCUMENT

1.0 Purpose. The Program Description document shall pro-
vide a complete technical description of all digital processor;
subprogram functions, structures, operation environments,
operating constaints, data base organization, source and
object code listing, and diagrammatic/narrative flows. Each
subprogram or function shall be described in its own volume
with referenced appendixes as digital processor printout
listings. Each Program Description document shall be

directly responsive to the Program Design Specification and

to any appropriate software and/or program specification.

The Program Description document shall be specifically
oriented to programming logic and programmer's language. The
aim should be to describe and completely define the basic
subprogram logic and program procedures for each application
subprogram and for each system control subroutine. As a
detailed compendium of the subprogram structure, the Program
Description document will serve as the essential instrument
for subsequent use by operational, maintenance, and contractor
personnel diagnosing troubles, making adaption changes,
designing and implementing modifications to the system,

and in introducing or adding new subprogram functions to

the completed program.

Figure 2-8. Program Description Document (Page 1 of 16)

wre

{ NOTE

System subroutines are to be con-
sidered in the same light as
subprograms and require complete
documentation as described for
subprograms. However, in the

i interest of ease of handling, it
may be convenient to group related
; subroutine descriptions into one

‘ volume of the Program Description
document, e.g., executive program.
This should be dorne only when

] separation of the subroutines

into different volumes severely :
hinders understanding due to the i
interdependence of the subroutines.

2.0 Requirements. The Program Description document shall : ;
be structured according to the format and description which
is contained in figure 2-8 (pages 3 of 16 through 15 of 16)
and are mandatory for use as a minimum. }

Figure 2-8. Program Description Document (Page 2 of 16)

116

{
'

TABLE OF CONTENTS

SCOPE 1
Purpose 1
Scope 1
1

1

SECTION

Identification
Subprogram Tasks

.
N NN
. .
N

SECTION 2. * APPLICABLE DOCUMENTS 1

SECTION

w
.

REQUIREMENTS 2

Subprogram Detailed
Description

Subprogram Flow Diagrams
Subprogram Data Design
Tables
Variables
Flags
Indexes
Common Data Base Reference

w
.
[

« .
L BN e

Input/Output Formats

LY B B 7 B R VR 7 R R 7 R 7)
. -

VNt W N

G O AT WY B AW

Required System Library
Subroutines

Conditions For Initiation 8
Subprogram Limitations 8

e
VB W w

- e
w ~3 O

Interface Description
SECTION 4. QUALITY ASSURANCE PROVISIONS 9

SECTION 5. PREPARATION FOR DELIVERY 9

i iii]

Figure 2-8. Program Description Document (Page 3 of 16)

117

TABLE OF CONTENTS (Continued)
Page
SECTION 6. NOTES 9
APPENDIXES 11
LIST OF FIGURES
Figure
3-1 Sample Input/Qutput Word 7
Format Description
3-2 Sample Block Diagram of Sub- 10
program D Interface Relation-
ship
;
1
1
i
iv [
‘ Figure 2-8. Program Description Document (Page 2 of 16) :

b
!
b
}
i
}
:

SECTION 1. SCOPE

This section shall contain a summary description of the
structure and functioning of the subprogram in total. All
major functions described in the Program Design Specification
must be presented and briefly annotated. This section shall
include, but not be limited to, the following paragraphs.

1.1 Purpose. This paragraph shall describe the purpose,
background, and intent of the Program Description document.

1.2 Scope. This paragraph shall describe the scope and
objectives that are intended by this document. Included
herein shall be identification and subprogram tasks.

1.2.1 Identification. This subparagraph shall contain the

subprogram nomenclature, including its abbreviations and
assigned designator.

1.2.2 Subprogram Tasks. This subparagraph shall consist of

a detailed list with accompanying narrative of each function
(e.g., the responsibilities) to be performed by the sub-
program.

SECTION 2. APPLICATLE DOCUMENTS

This section shall list those tactical publications,
instructions, specifications, standards, and other documents
applicable to the preparation of the Program Description
document. All cited documents shall list title, identifi-
cation or serial number, exact date of issue, and publisher.

1

Flgure 2-8. Program Description Document (Page & of 1€)

119

Bt et S TP .

T e 3 - -

1

The list of applicable documents may also be appendix A, and
referenced as such within this section. In addition, if
required, a glossary may be employed to list abbreviations
and/or terms with definitions and shall be contained in
appendix B. -

SECTION 3. REQUIREMENTS

This section shall contain a comprehensive description
of the structure and functioning of the digital processor
subprogram in total. All major functions described in sub-
paragraph 1.2.2 "Subprogram Tasks'", must be presented and
fully amplified. This document shall completely describe ;
all program logic. The minimum content shall consist of
detailed information as follows.

3.1 Subprogram Detailed Description. This paragraph shall

describe the detailed design of each subprogram. It shall
describe completely the processing capability of the sub-
program. When combined with a program listing, flow chart,
and data base description, this portion of the Program
Description document shall fulfill the requirements of
individuals whose responsibilities include program production,
maintenance, and modification. This paragraph of the Program)
Description document shall con-ist of a textual development .
of the operations performed by the subprogram. It shall be j
organized by subprogram tags (mnemonic labels) and shall
completely describe each section of code as it appears in
the subprogram listing. This, in essence, will describe
the processing operations performed at each branch of the
subprogram and the results obtained by following each branch.
2

| Figure 2-8. Prograr Description Document (Page € of 1€)

120

S e)] L T £, P A Y L T S

Those subprogram tags that are common branch points from

several sections of code (or text) need only be described
once, and thereafter need only be referenced.

During the discussion of subprogram segments, if common
system subroutines are used, they shall be identified by
their function and mnemonic label with a reference to the
document where they are described in detail.

The level of detail for this portion of the Prograh
Description document amplifies the information provided in
the subprogram flow diagrams described in section 4. Since
the usual flow diagram presents a limited amount of infor-
mation, flow diagrams are useful only as pictorial adjuncts
to the required text description. The same subprogram tags
specified in the text description shall be shown in the
appropriate blocks of the related flow diagrams.

3.2 Subprogram Flow Diagrams. A flow chart shall be included

for each major procedure or subroutine that depicts detailed
operations performed by the subproéram. The flow chart shall
specify all operations performed and include all equations
used in mathematical computations. Comments in the program
printout listing shall be used in conjunction with this
section to relate the text, flow charts, and code. Flow
diagrams shall show annotated logic flow among and between
each program subdivision level down te, but not including,
each compiler source statement, or to that source level
containing comments if a compiler is not used. Source listing
comments shall be brief narrative phrases, one for each cem-
piler source statement; or, if a compiler is not used, then

3

Figure 2-8., Program Description Document (Page 7 of 1€)

a comment for every logical switch or branch statement, and
i for an average of at least every 10 assembly level language

! statements.

3.3 Subprogram Data Design. This paragraph shall contain a
general summary description of the subprogram data base. The
overall format selected for this section shall be designed to
facilitate the rapid retrieval of data base information. |
Throughout the Program Description document references shall i
be made to subroutines, constants and control-registers, input ;
] buffers and tables, output buffers and tables, priority/
interrupt tables, etc. Since many of these tables and
control-registers contain data that are referenced by more
than one subprogram, it is sufficient that the detailed
description of this common data base be a part of the Data
'Base Design document, which is used as a central source of
reference for subprogram data. The following subparagraphs
specify the level of detail that is required for this

Program Description document section.

3.3.1 Tables., This Program Description document subparagraph
shall contain the detailed description of each table used

only in the subprogram data base. Each table shall be
described individually, where the descriptions are presented
according to the alphabetical ordering mnemonic table name..
The content of the subprogram table descriptions shall be as
defined for describing common data base tables in the Data
Base Design document. The minimum content of the subprogram
table descriptions shall be: -

a. Table Name
b. Purpose and Type

Figure 2-8, Program Descriptior Documert (Page 8 of 1€)

122 ﬂ

c¢. Size and Indexing Procedure
d. Structure and Bit Layout.

3.3.2 Variables. This Program Description document sub-
paragraph shall contain the detailed description of each pro-
gram included only in the subprogram data base. Each variable
shall be described individually where the descriptions are
presented according to the alphabetical ordering of the
mnemonic names of the variables. The content of the subpro-
gram variable descriptions shall be as defined for the Data
Base Design document. The minimum content of this Program
Description document subparagraph shall be:

a. Constant Name

b. Purpose
¢. Structure and Bit Layout.

3.3.3 Flags. This Program Description document subparagraph
shall contain the detailed description of each flag includcd
only in the subprogram data base. Each flag shall be
described individually, where the descriptions are presented
according to the alphabetical ordefing of the mnemonic names
of the flags. The content of the subprogram flag descriptions
shall be as defined for common flags in the Data Base Design
document. The minimum content of this subparagraph shall be:

a. Flag Name

b. Purpose and Status

¢. Structure and Bit Layout.

3.3.4 Indexes. This subparagraph shall contain the technical
description of each index included only in the subprogram data
base. Each index shall te described individually, where the

5

Filgure 2-8. Prograr Description Document (Page 9 of 16)

123

descriptions are presented according to the alphabetical
ordering of the mnemonic names of the indexes. The content of
the subprogram index descriptions shall be as defined for
common indexes in the Data Base Design document. The minimum
content for this Program Description document subparagraph
shall be:

a. Index Name

b. Purpose.

3.3.5 Common Data Base Reference. This Program Description
document subparagraph shall provide a complete list of all
references to local and common data base items and the loca-

tion of each reference. The list also provides a cross
reference to the Data Base Design document which provides
the technical description of the common data base items.
If a Navy approved compiler is used, a cross reference
obtained from the compiler may be substituted with written
Navy approval by the procuring activity.

3.4 Input/Output Formats. This Program Description document

paragraph shall contain a brief deécription and graphic
(sample) representation of each input and output message,
card format, tape format, etc., processed by the subprogranm.
If the Program Description document volume concerns a common
system subroutine, a detailed explanation and graphic repre-
sentation of the input and output registers to and from the
subroutine shall be provided. This shall include scaling and
bit-position information (see figure 3-1).

Flgure 2-2, Program Descripticn Document (Page 1¢ of 16)

124

U B B A AR S St oz, S

FiELO . DESCRIPTION UNITS | SCALING

” Test larget « Interprat as @ non -tactical rack

ELEVATION (33) | A voue enprasiing the sievation angle ot which the rodor is SAMS 1
te conduct its Sector Search. Minimum value is | degree.
Manimum volue is 85 degrees. MSB = X, LSB =Y.

| 1] Sacter | Dignking ~ Interpret ot first sector in which the rodar
it blonked during Herizon Search Mode .

L 14 Sector 2 Stanking - Inferpret oy vecond sector in hich the
reser is blonk ed during Harizon Search Mode .

At Al Air Torger - Interprat ot order to wlect alternete
air fuzing for the appropriate missile type when the LS iy
anigned 1 the approgriote MR,

HR Harizon Seorch Reauest - interoret gy order 1o alert the conole
anecinted with the approgriate MIl 1o o Horizan Search
Request,
p1e] Sector saorch Order - interpret o1 alace as ropriote MR in
L Sector Search Made. Aswcioted with Elevetion (55).
3 L Minile Radar 2 ~ Interpret o a modifier.
My Mimile Radar J ~ Interpret o o rvdifier .
G Gun Rodar | - Interpret as @ modifier,
n T0T=1 = Interprat v o modifier 1o any date igted o indl

ote wurce of data.

12 TOT-2 « Interpret on o wadifler 10 any doto ossociated to indi-
eate wwce of date.

™ T Engeg « interpra? oy Bewok Track on euecioted
M2/GR and proceed 10 any wirsequent shgogement require]
ments. Subject to legality chacks,

FA Fice Again ~ Fire agoin on epprosriate track. Subject te
fegolity checks.

[} Gun Torget = lnterpret o @ GR=) funcifon nd revte statn e
GR-1,

(43 Fout Target = interprot o evncioted with fleid HR with oppre-
priste MR. Does net epply te GR-1,

m Ratowse MR/GR + interprut m Breck Track with ne huther

ongogement requirements and returm MA/GR 1o Alr Recdy
~ode .

Figure 3-1 Sample Input/OQutput Word Format Description
7

Figure 2-8. Program Description Document (Page 11 of 16)

3.5 Required System Library Subroutines. This Program

Description document paragraph shall list, in alphabetical
order, all system library subroutines used by the digital
processor subprogram. It shall describe the area of the
functional description where use is made of the system
library subroutine and the document number where the sub-
routine can be located. For example:

System Subroutine Name Used Document Reference
RTN (Arc Tangent) 373 Computer Subprogram
Design Document :
Volume 10
SQS (Square Root) 3.2.1 Computer Subprogram
Design Document
3.2.3 Volume 10

3.6 Conditions for Initiation. This Program Description
document paragraph shall identify system conditions that must
be met for this subprogram to be initiated for processing.

For those subprograms that are always initiated for processing
regardless of system conditions, the word UNCONDITIONAL shall
be shown. For those subprograms that are initiated due to one
or more unique conditions, each possible condition or set of
conditions shall be described. If the conditions are based

on the setting of certain items of information, each item, its

required value, and a definition (or reference) of that value
shall be shown. '

3.7 Subprogram Limitations. This Program Description docu-
ment paragraph shall summarize any known or anticipated 1limi-
tations of the subprogram. A list of all restrictions and
constraints that apply to the subprogram shall be provided
including timing requirements, limitations of algorithms and

8

Figure 2-8. Program Description Document (Page 12 of 16)

formulas used, design limits of input and output data,
associated error condition sensing provided, and the error or
reasonableness checks that are programmed into the various
routines.

3.8 Interface Description. This Program Description document
paragraph and an associated block diagram shall show the
sequential and functional relationship of the subprogram with
the other subprograms and system subroutines or executive.
with which it interfaces. Figure 3-2 illustrates the block
diagram showing the relationship between subprograms.

SECTION 4. QUALITY ASSURANCE PROVISIONS

This Program Description document section shall reference
all applicable test plans and test procedures that have been
used for verification of this digital processor subprogram.

SECTION 5. PREPARATION FOR DELIVERY
This section is not applicablé'to this document,
SECTION 6. NOTES

This Program Description document section shall contain
supplementary information. The information shall include
but is not limited to:

a. Information of particular importance to the procuring
agency in using these documents.

b. Administrative and background information.

Figure 2-8. Program Description Document (Page 12 of 16)

127

N

drysuorieray aoswjiajuj
a weidoadqns jo weaBerqg Yoorg arduweg

H o
WYEOO0UINS WYY OONdINS

AN

qQ
WYY O0¥dINS

9
§Onuv- 4ONS WY O0¥4INS

2-¢ dandyy

3
WY O0uNS

v
WYIOOudeNs

10

*1Te2 10 95u3axayaxr werdoxdqns 93eITpUT SMOIIY :93ION

Figure 2-8. Program Description Document (Page 14 of 16)

128

¢. Ordering instructions for technical data pertaining
to the digital processor subprogram.

This Program Description document section shall also .
list any documents necessary for use or understanding of this
subprogram but not contained within the document.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

In addition, the Program Description document appendixes
shall include separate sections for information and data which
are required for completeness in describing a variety of
aspects of the structure and functioning of the subprogranm.
This data may be bound separately for convenience or may be
published after the other sections have been issued in initial
form.

11

Flgure 2-8. Program Description Document (Page 15 of 16)

129

Content Check List

a. Instructions with annotations, listings
(1) Binary {(tape, cards)
(2) Machine, Assembly, Compile
(3) Comments

b. Procedures/Subroutines
(1) Procedure Diagrams - Logic
(2) Procedure Data Design-
(3) Subroutine Flow Charts
(4) Narrative, Index to Procedures, Subroutines

¢. Program Data Map
(1) Common
(2) Unique - Function
(3) Index to Data
d. Checkout (Validation)
(1) Component Tests - I/0
(2) Subprogram Tests
(3) Diagnostics Specification and Description
e. Technical Program Checkout Operation
(1) Check Point Entry, Exit
(2) Test Data Standards
(3) Program Preset for Checkout
f. Program Deviations from Technical Program Design
(1) Subprograms
(2) Equipment Utility
(3) Operator Actions
(4) Allocations, with Deviations from Planned Budget
(5) Timing Revisions - Priority Deviations
g. Addendum to Tech. Program Designs
(1) System Program
(2) Operator and Equipment Support Subprograms
(3) Technical Subprogiéms.

Figure 2-8. Program Description Document (Page 1€ of 1€)

DATA BASE DESIGN
DOCUMENT

1.0 Purpose. The Data Base Design document shall provide a
complete detailed description of all common data items
necessary to carry out the functions of the digital processor
program. Common data is that data required by two or more
subprograms. Examples of common data include constants,
indexes, flags, variables, and tables. The Data Rase Desigﬁ
document shall be based on the Program Performance Specifi-

cation. It shall be developed in accordance with the Program |
Design Specification and concurrently with the Subprogram
Description document. The terminology employed in the Data
Base Design document shall conform to the programming guide- I
lines in the Program Design Specification and the programming l
language employed for production of the digital processor
program.

2.0 Requirements. For convenience in describing the minimum
essential content, figure 2-9 (pages 3 of 11 through 11 of 11}
shows a normal format for presentation of the material. How-
ever, the paragraph headings and numbers indicate the general
nature of the topic, and are mandatory for use as a minimum.

R ——

Flgure 2-9. Tata Base Design (Page 1 of 11)

131

TABLE OF CONTENTS
Page
SECTION 1. INTRODUCTION 1 !
Purpose 1
1.2 Scope 1 :
SECTION 2. APPLICABLE DOCUMENTS 1]
SECTION 3. TABLES : 2
SECTION 4. VARIABLES 3
SECTION 5. CONSTANTS 5
SECTION 6. FLAGS 5
SECTION 7, INDEXES 6
SECTION 8. SUBPROGRAM REFERENCE (SET/USED) 6
SECTION 9. NOTES 7
APPENDIXES 7
iii

Fileure 2-9. Data Base Desizr (Paze 2 of 11)

f 132

EEE T e S A ke

ety s -

LIST OF FIGURES

Figure Page
3-1 Sample Structure and Bit 4

Layout Diagranm

LIST OF TABLES

Table
8-1 Sample Subprogram Reference 11

List (Set/Used)

iv

Figure 2-9, Data Base Design (Page 3 of 11)

133

SECTION 1. INTRODUCTION. 1

This section shall introduce the document and summari:ze
the labeling conventions observed in the formation of mnemo-
nics that identify data items for this program as defined in
the Program Design Specification.

1.1 Purpose. This paragraph shall describe the purpose and

intent of the Data Base Design dgcument.

1.2 Scope. This paragraph shall describe the scope and
objectives that are intended by the document.

SECTION 2. APPLICABLE DOCUMENTS

This section shall 1list all documents which apply to
the preparation of this document and to the utilization of
the digital processor system to which this document pertains.
This section shall include, but not be limited to, references
to the appropriate Program Performance Specification, Program
Design Specification, and any additional documents that apply
to the design or use of the Data Base Design document. All
cited documents shall list title, identification or serial
number, date of issue, and publisher. The list of applicable
documents may also be appendix A and referenced as such within
this section. Further, if required, a glossary may be employed
to list-'abbreviations and/or terms with definitions and shall
be contained in appendix B.

Figure 2-9. Data Base Design (Pags 4 of 11)

134

rrvwret

SECTION 3. TABLES

This section shall contain the detailed description of
each table used in the common data base. Each table shall be
described individually where the descriptions are presented
according to the alphabetical ordering of the mnemonic name
of the table. The minimum content of this section shall be:

a. Table Name. The title of the table with the assigned
mnemonic label in parenthesis, e.g., Common Track Table
(CDTRK) .

b. Purpose and Type. The table type (e.g., fixed or

variable length, table structure) and the explicit use of the

table.
¢. Size and Indexing Procedure. The number of items in

the table and the number of digital processor words required
by each item. It shall also define, in precise terms, the
method used to index through the various items of the table
and any special conditions pertaining to the referencing of
an included item.

Following the description of the table, the subitems
(fields) making up each item shall be defined. The minimum
content of these descriptions shall be:

a. Field Name. The title of the field with the assigned
mnemonic in parenthesis.

b. Purpose and Type. An explicit description of the use
of the field that indicates its type (e.g., alphanumeric
integer, fixed point, or floating point).

ekl

Figure 2-9. Data Base Desigr (Pace £ of 11)

oy

¢. Size. The size of the field in words or bits (if
numeric) or number of characters (if alphabetic).
d. Binary Point. This information shall be included

for all numeric type fields except floating point, and shall
indicate the bit position of the binary point (scaling) of
the variable. '

e. Range of Values and Initial Condition. The minimum

and maximum values that are valid for the field, and the
initial condition of the field if it is preset. For alpha-
numeric types the data code (e.g., ASCII, BCD) shall also
be given.

f. Static/Dynamic., The changeability nature of the

field (e.g., unchanging value is static, changing field
values are dynamic).
g. Structure and Bit Layout. A diagram for each digital

processor wovd required by the field, as shown in figure 3-1.
SECTION 4. VARIABLES

This section shall contain the detailed description of
each variable included in the common data base. Each variable
shall be described individually where the descriptions are
presented according to the alphabetical ordering of the
mnemonic names of the variables. The minimum content of this
paragraph shall be the following information and shall be in
accordance with the requirements defined in section 3 of this
document:

a. Variable Name

b. Purpose and Type

Flgure 2-9. Tata Rase Design (Page € of 11)

wexderq Inofe 11q pue axnydniyg ardueg [-¢ Indty

4|

“sepiw [oONNOY
00" 9CZ S! ®N[0A wRuIXTW °I8jIW [O31NOU G PNISA WLy

-pm e “s8|1w {021nou 980y sy Bf e3P ey Burttasdee enjoa v (ONY) 39NVY

* 8pow yps0eg LOT1IOY Burnp peNuD|q 81 pa ey
Py Ut S48 pUO3s 10 10dieiu (1 @ o Z 410) - Buppolg ey

* spoy tPIOsC vozysoY Bunanp pexyo)q 3t Py
S PIY U} 04088 iy 10 sesdiniy (1 e, T 41) - Burpolg | soieg

*A =951 X = gSW “ssesbep g 3y
0n0A wnwXDW 383D | 33 BNIDA WAL YIDIG 30, I8G LY

4]

swvi $37puDd 04 §1 DPOI B UDIYM (0 9{6uD WOBAR|S By Burtesdxe snjoa v | (SS' NOLLYAIT)

WoON [@31304-Uou © 0 serdieiy (1 = o2 11F) - $98) Be)

i

ONNYIS

S1INN

[+Q} F]

of |

(ONW) 39NN _ : _ .__ (S5) NOIYATH
)

Figure 2-9, Data Base Design (Page 7 of 11)

B e e e

137

e - rT— Ay T A e n ma s

¢. Size - number of bits and sign (if numeric) or
number of characters (if alphanumeric)

d. Binary Point (not applicable to floating point
numeric or alphanumeric types)

e. Range of Values and Initial Condition

f. Static/Dynamic

g. Structure and Bit Layout

SECTION 5. CONSTANTS

This section shall contain the detailed description of
each constant included in the common data base. Each constant
shall be described individually where the descriptions are
presented according to the alphabetical ordering of the
mnemonic names of the constants. The minimum content of this
paragraph shall be the following information and shall be in

~accordance with the requirements defined for section 3 of this

document:
a. Constant Name

Purpose
Initial Condition
Structure and Bit Layout

a n o

SECTION 6. FLAGS

This section shall contain the detailed description of
each flag included in the common data base. Each flag shall
be described individually where the descriptions are presented

Figure 2-9, Data Base Desigr (Page 8 of 11)

138

TR ORI PRI EIPPR PRP L APOAC T P35> W

according to the alphabetical ordering of the mnemonic names
of the flags. The minimum content of this paragraph shall be
the following information and shall be in accordance with the
requirements defined for section 3 of this document:

a. Flag Name

b Purpose

c. Initial Condition

d Structure and Bit Layout

SECTION 7. INDEXES

This paragraph shall contain the detailed description
of each index included in the common data base. Each index
shall be described individually, where the descriptions are
presented according to the alphabetical ordering of the mnemo-
nic names of the index. The minimum content of this paragraph

shall include the following information and shall be in
accordance with the requirements defined for section 3 of this
document:

a. Index Name

b. Purpose

SECTION 8. SUBPROGRAM REFERENCE (SET/USED)

This section shall include a complete list of all common
data base items with a cross reference which includes all
referencing subprograms. The 1list shall be presented in the
form of a matrix, where the rows are used for names of the
items and the columns used for names of the subprograms. To

6

Figure 2-9. Tata Base Design (Page 9 of 11)

139

facilitate its use, the items and subprograms shall be listed
alphabetically with S, U, or B utilized to indicate Set,
Used, or Both (Set and Used), respectively. An example of a
subprogram reference matrix with Set/Used is shown in table

8-I.
SECTION 9. NOTES

This section shall include a list of all subprograms by
text name and mnemonic. The order of the list shall be in an
alphabetical arrangement based upon the identifying subpro-
gram mnemonic labels. Further information such as Subprogram
Description document reference for each listed subprogram
shall be included as required to facilitate the use of the
Data Base Design document.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

In addition, any information which is too bulky to be
placed in the body of the document, such as further data
description material or applicable support system listings
from the assembler or compiler, (e.g., a common data or pro-
gram data summary) shall be included as an appendix.

7

Figure 2-9, Data Base Design (Page 12 of 11)

140

1
COMMON
OATA ITEM SUBPROG RAMS
SPGMA | SPGMB | SPGMC | SPGMD | SPGME | SPGMF | SPGMG | sPGmm
(TABLES)
1 TABI(FLO1) s ’ -] s - H -
TABI(FLD2) H - S,] - H s]
TABI(FLDI)) u]] v v -]
(VARIABLES)
vreL) v v] - $] s -
Va2 v - (] H - s s -
vasLy] s H u v v s]
(CONSTANTS)
CONST?] - 1] v v - e 1]
CONST2 1] 1] - - U v - u
(FLAGS)
AGI $] $ - v u] s i
fLG2 s] v] v - ’]
(INDEXES) {
INDY v s] v s - 1} -
IND2 v v H L] H L]] -~ 5
Th— , - i
’ Figure 8-1 Sample Subprogram Reference List (Set/Used)

o

Figure 2-9. Data Ease Design {Page 11 of 11)

141

TUENCIE L a2 R Ty

PROGRAM PACKAGE
DOCUMENT

1.0 Purpose. The Program Package document shall consist of
all the program material items necessary for the procuring
agency to produce, maintain, and update the digital processor
program. These items shall include, but not be limited to,
the digital processor program source card deck listing, an
error-free source/object listing produced by an assembly or
compilation of the source decks, a complete cross-

reference listing produced by a compilation of the source
decks, and any data which are necessary to cause programs

to run properly (e.g. adaptation data, data file contents,
set up data, program parameter values.)

2.0 Requirements. The Program Package document shall be

structured according to the format and description contained
in figure 2-10 (pages 2 of 10 through 10 of 10). However,
the paragraph headings and numbers indicate the general
nature of the topic and are mandatory for use as a minimum,
with the exception of cross-reference and miscellaneous
listings when not provided by the supporting compiler or
assembler system.

Figure 2-10. Program Packaze (Page 1 of 1@)

142

TABLE OF CONTENTS

SECTION INTRODUCTION
Purpose
Scope
SECTION 2. APPLICABLE DOCUMENTS
SECTION SOURCE DIGITAL PROCESSOR PROGRAM
SECTION OBJECT PROGRAM TAPE
SECTION 5. SOURCE PROGRAM LISTING
SECTION SOURCE/OBJECT LISTING

SECTION 7. CROSS-REFERENCE LISTING

SECTION 8. MISCELLANEOUS LISTINGS

APPENDIXES

Figure 2-2¢. Program Package (Page 2 of 12)

T) it et o, 21

] LIST OF FIGURES §
|
Figure Page H
6-1 Sample Source/Object Listing 4 g
! 7-1 Sample Cross-Reference Listing 5
8-1 Sample Procedure Summary Data
Listing
3
f
]
f iv
J
‘ Figure 2-20. Program Package (Page 3 of 1@)

144

SECTION 1. INTRODUCTION -

This section shall briefly define each of the required
items in the digital processor program package. Within these
definitions, general terminology is used to describe those
items, and the requirements herein should not be construed
to mean that each assembler or compiler system used for pro-
gram generation must provide the explicit items called for
in this section.

1.1 Purpose. This paragraph shall describe the purpose,
background, and intent of the Program Package document.

1.2 Scope. This paragraph shall describe the scope and
objective intended by this document,

SECTION 2. APPLICABLE DOCUMENTS

This section shall list those tactical publications,
instructions, specifications, standards, and other documents
applicable to the preparation of the Program Package document,
All cited documents shall 1ist title, identification or serial
number, exact date of issue, and publisher. The list of
applicable documents may also be appendix A and referenced as
such within this section. 1In addition, if required, a glos-
sary may be employed to list abbreviations and/or terms with
definitions and shall be contained in appendix B.

SECTION 3. SOURCE DIGITAL PROCESSOR PROGRAM

This Program Package item shall be the complete source
form of the digital processor program, suitable for assembly
or compilation. The physical form of the source program may

1

Figure 2-2¢. Program Packare (Page 4 of 1¢)

145

be card decks, or equivalent magnetic tapes. In either case
the form of the source program shall be compatible with the
production facility to which the program is delivered. For
example, card readers may differ in their interpretation of
the physical punches on a card for certain alphanumeric
symbols. If this is the case, it .is the contractor's respon-
sibility to conform to production facility formats.

SECTION 4. OBJECT PROGRAM TAPE

This Program Package item shall be the complete object
form of the digital processor praogram, suitable for loading
and execution in the operational digital processor. The
object program shall be obtained from an assembly or compile
of the source digital processor program containing no fatal
errors and be completely free of patches. The physical form
of the object program shall be on either magnetic or paper
tape. In either instance, the object program tapes shall
be compatible with the production facility to which the
program is delivered.

SECTION 5. SOURCE PROGRAM LISTING

This Program Package item shall be a listing of the
source digital processor program as delivered. The listing
shall be an exact duplication of the delivered card decks
or magnetic tape. Each compiler source statement will be
annotated with comments or if the source is assembly level,
then a comment shall be listed for each assembly level line
or function group of lines with not less than an average of
one comment per five (S5) statements.

2

Figure 2-23. Program Packaze (Page 5 of 19)

146

‘cross-reference table of each mnemonically labeled statement in

SECTION 6. SOURCE/OBJECT LISTING

This Program Package item shall be a listing of the com-
bined source statements and resulting object machine instruc-
tions generated during an assembly or compile of the delivered
source programs. Figure 6-1 illustrates a typical source/
object listing. The source/object listing shall be free from
fatal errors and be an exact presentation of the delivered
source and object program. If the supporting compiler or
assembler system does provide source/object listing, then the
minimum requirement is the object listing.

SECTION 7. CROSS-REFERENCE LISTING
This Program Package item shall be a listing showing a

the digital processor program and each statement in the digital
processor program that references the labeled item. The table
shall be ordered alphabetically according to the mnemonic labelg
and shall be generated as the result of an assembly or compile
of the delivered source digital processor program. Figure 7-1
illustrates a cross-reference listing where the labels are
alphabetically listed on the left side of the page and the
address of each reference to the label is listed across the
remainder of the page.

SECTION 8. MISCELLANEOUS LISTINGS

These Program Package items shall be included, as avail-.
able, from the assembler or compiler system used in the
digital processor program production. The Program Package

3

Figure 2-28. Program Package (Page € of ie)

147

s o e N EN Ry T " , X L TR

R

Butist 303(qQ/9ninog ardues [-9 a1nd1y

08501153 0100 $Z586 001y sgi8c ITeLe i
00SQImaS? 2. 00 fwte___ '
$o01°Wiessy 13¢ LEr0S GTBOT i85 OTef0 *
INE W1ISINOBY 43S 39 ..odovee_ ¢
P2L0C 100 R0MOG
.- LA ML X TRIT VRS PRI VE I E 1 00500 oI ZELES _ 900L8 L

LTI { IR T ¥ 17

Yeode(@I’ENIOILY 43S wsOlwS) (950E SZerT Jlqbg
at 13 Js vsaluis)
LTLYS] LX) .
LELAlZ] LA TS

LETALEAEIL IR E O PO PV YR T

SRS MRl _MCu0S

3

o 0e0aInSEAS ageinde *orge s
A im3u=3ev2 OuindN J¢ Lucee .
Se03emousun 438 T 81003 22405 eisKP .
LA X LETPTLU S 1 Oghet 32:0¢ gqgt0 .
- . S2V10K1 BEInITaMn OuY Bulydtd wv2L Js. - O 7 1\ { EEL A
[{T{I I F 71 T3
TSCIUAE 010001000 00 0 uns. 4t BOOLY L3206 L4780 ..
$8010183°Ine0388320ud 1830020 YVT Iy 0361W;33 3] .
0e03ezen A3F 01891 elsbg LLLES L
nNI0NE ¥Ivewn g3V 3, ouste .
I . - [LTTT IS 73 14
ER LITTRE ST TY L ITY TP LT R TR TRy Y DL S P S T RPT Y 1171 § 0zeIT OV20¢ g9580 .
s 4sImasd - S 4 o3 1 W VLI
o I86.C (B4 §9CC8 ’
b sogts o
n eI w0106 guife .
. vIVE dlng 805 250038 Bivu BTRYD D4 N3RIBIRR ecte L
or0el cOuNg
—— . L SoQioiB 2ans8143 AN SEALMIER (96ES 0192l ofsle__deEed e
Sz8ce 08¢
BYLON, OS duiy LIYEA N 1 TR TS | 7 { R
LI LAYLCAREEET SPTY TERNNE 1 otgel 108 gasEe .
93006 08¢ e —
Co®0t grong
. - Mt o e - Cepi°iNi*ABwIIBm] 23R — SUOLT_meolg _ogRRR ¢
*
{1 —_—
L]
—_— 190210 T Inua8o08c (Do) A 0NDIPu) 1Y . SEEEN ¢
L L OB

To0Deinun-sBwlrInd 3% 10000 B898T LUNNS oSEEe .
— R WLONMIS T ANJWed Iy .. . RO |)¢ U -
AU00NIYI BomYN) Iy 26820 .
e = _ 008 . g
! Ty seves
SN Guv APuBATIS TV IPEVY 4 E 2] o N o av

I Y- T

Program Package (Page 7 of 1¢)

Figure 2-20.

L aa

T

148

Jut3sty aduaiajay-ssoay ardwes 1-4 aandty

LY 199 SCoen S1%e L1900 009v0 915%0 250 2550 .
'”nm.Jmﬂ.lljquﬂmqllldﬂma (2117 e 1 1Y) Lound oavd [$217)
¢00C0 TAIN1150d onoce
(77821 Taind 1354 prvein
12429 90«inl1S04 SLL20
[401 mumanr 114] T 8ainii304d LTt g
[YZ{Y] Teige 01060 92420 din11504 §9L20
Tttt & 821368 “tH3004 IRy
*cI50 23004 1Z150
o 22140 TH804 1T1¢E
15150 €0200 H00d 11958
(3813 LT TN (3N
CInZo 41990 SOX 3TN 15820
oo T vt 220 T WU pivel
) aLsze 11900 JO019IN 2520
- —_— 7o — 1IN0 OOWIN T YIISK
150 9nino N0 wzoge oIvco 241550 928
0¥ YTIT §T927 U L3324 TSI ALY 92 18220
cSveo ety (1111 seele iste wels *x 10 otcio €900 SORmred 2vz08
T = — - E Ll] ORI FICIUIN — S0YT0
. 95920 1SAIN €500
- IS920 ITITY wZuzy SUHH VOTT
08220 X2ViSin 20110
LT Eamaaar 20 £ 44 KIZ0 TYISIN TIIOT
<oigo 0701 adan 0210
—_— T T T T T T T T TR T T U R RIS TN
Lcito 2001941m *T1C0
- IOTY ———YOWICAAR ™ XTIKY
Lrice WISy 11050
R4 T WIT N TRy
S50 3 S0 D0 UM 15250
T WISy T SYRU T UYNRT T T WNT TT SIIUR T IR
€087 S00¢n T84 2O vl o S2300 WASINYAM £LE00
——— — — - - - T e Imw INTIN T XTO00
1uEce 290¢0 05050 19220 05120 sCL20 €e920 [T] 0200
11111 T L1711] SURY $II20 WISWOIW Ry
Sel1c0 AS0) 1w Zv900
-~ td — T RNsT TSOSSH \aril
15920 0320 COSHIVH 2v9z20
—_—— = Te920 TOSH” VN KW
22920 19Twovie 52920
112414 L1443 NN i YSRIVN LE521d
*5980 26940 Ca9e0 [1eil) 2948 L) tee0 520 11909 0z200
— TITLE CIFTUTOOR R2a{1
94900 93470100m 191¢0
R . [Ry ¥ F 20 {1 T R
9”ice +4900 94 400100m 1910
T80 TIaWT00m &
(133 2391000 Peige

Program Package (Page £ of 1¢)

Figure 2-2¢.

149

items may include such listings as automatically generated
subprogram flow charts, data base summary listings, and pro-
gram summary data listings. Each of these items may be
generated as a result of an assembly or compilation of the
delivered source program. Figure 8-1 illustrates a procedure
summary data base listing which describes the environment and
parameters of each routine in the digital processor program.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

Figure 2-29, Program Package (Page 8 of 19)

Surasyy vieq L1vwung oinpaloxd ofdueg -8 2indtyg

NInvon 0¢11SS UAUHTRIY SONNN
IR] A - REERSREEEE 1} ¢ > > EEENEMSRENE B X > Aa UKIUY RO TRIIWT UuvYeIe T STITNTEYE
i) o T T - 00 T SINJORT
e S 7 =/ € {2
E L] RXAFIS LT
STt - - IOV N
IO o0X V4
== e - - e A e— 4! 2 ¢ S 2) -
xing X4 Ron $309) ~

W v T 5 STRITT

. JETTVY Snd 13dAd 21ind NOHINNG 2I0HNd L aada') wur:auve.t MM WIS
Lkt Y YHIIdAL A0HSJIYNS d03dAL 2N O VIIN 11040 A _03M3¥I4 STUNA3I0ud
() v:.-.. 20 WIGWN 8 SINGLNG 20 Y] . 0 _SiNndnl 0 W

_NOLAVIWOME JOVIei])

" e st Sl 17 40 ¥IINNN (Y34 QIVINEIN AWOuIN SMNOX34 ¥0J VIVO AUISYS JWnaI0ud

Program Package (Page 1€ of 19)

Flgure 2-2¢.

151

-y

APPENDIX C - Standards and Conventions for Use of
the CMS-2 Language

Developed by: Tactical System Programming Support Branch,

Marine Corps Tactical System Support Activity,
Camp Perdleton, Califorria 92¢5E

I. Rackgrourd. While CMS~2 is not the nost modern, state-of-the-art
computer language Iin existence, it 1is nevertheless a powerful High Order
Programming Language (HCL) which permits the development of well-designed,
structured computer rrograms. When properly designed and coded, QMS-2
programs can be readily maintainéd. The purpose of this document is ¢o
provide guidance for the design and coding (programminz) of CMS-2

programs. SECNAVINST 3530.1 (Tactical Digital Systems Dccumentation

Standards) and MIL-STD-1679 (NAVY) (Weapon System Software Development),

although excellent in many respects, provide little specific guidance with
regard to the computer program itself, The computer program listing is
the single most impor;an; tcol for software maintenance. Since guidance
for computer programs is highly language-dependent at the coding (or
listing) level, tiais dccument provides zuidance in terms of tae CMS-2
language. These standards must de complied with. Use of the words
"shall® and "must" mean strict adherence is required. Section II defines
terns which are used throughout tae document. Section IIX provides
guidance cn the design and structuring of CMS-2 programs. Section IV
gives specific guidance on the standards and conventions for ¢cding CMS-2

programs.

II. Qefinition of Tarms. The purpose of this section is to define sev-

eral programming terms in relaticn to specific CMS-2 constructs. This
will serve to eliminate much of the semantical comfusicn which has pre-

vailed. A mcdule, as uysed iz SECUATINST 358Q.1 azd in this stardard,

152

!
)
s
§

shall te a SYS-PRCC oé collection of functionally related SYS-PRCC's.
Where possible, one zodule as dafined in ﬁhe Program Design Specification
(PDS) shall be mapped into cne SYS-PROC in the CMS-2 program. However,
vhere size becomes large, a collecticn of functionally related SYS-PRCC's
may constitute a moduls. A routine, as used in SECNAVINST 3560.1 and in
this standard, is a Q4S<2 PROCEDURE or QMS-2 FUNCTION. A4ll routines shall
be PROCZDURES or FUNCTICMS; there shall be a one-to-cne correspondence
between them, The use of non-called, "in.line” routines is prohibited. A
prologue is defined as the lengthy set of comments found at the beginning
of each PRCCEDURE or FUNCTICN. Section IV.D provides extensive guidance

on prologues,

I1T. . a bwyatyma ve_o o A,
A. Prom PPS tgo Progmam, The performance functicnal requirements
described in the Program Performance Specification (PPS) shall be zapped
ihto program mnodules which are documented in the Program Design
Specification (PDS). The modules of the PDS are then mapped into
SYS-PRCC's (or lcgical groups of SYS-PROC's) of the CMS-2 program. These
SIS-PRGC'S are further refined into individual PRCCEDURE's ¢~ FUNCTION's
using the top-down methed., The SYS-PRCC's and their subordinate
PROCEDURES or FUNCTICN's aust then be documented in the Progranm
Descripticn Document (PDD). It is important that the PDD contain the
English name 3s well as the (QMS~2 mnemonic {(or code name) of every
SYS-PRQC (module), PROCEZDURE, and FUNCTION. Once this has been done, the
computer program may be coded., The entire process is characterized as a

sumber of successive refinements; moving frcm higher to lower (more

153

detailed) levels of abstraction; going from the general to the specific;

progressing from functional requirements to the modules to the
manifestation of the requirements in SYS-PROC's, PRCCEDURES and
FUNCTION's.

B. Data Deeion Considermations, The global data base requirements
of the computer program should resi&e in one SYS-DD. One SYS-DD should
be used. However, if more than one SYS-DD is used, it must be for a
logical design consideraticn such as regienAL data pools (for large
programs) or COMPCOL's for efficient compilation reasons. Under no
circumstances will SYS-DD's be allowed to proliferate as desired by indi-
vidual programmers. Ccomputer programs having o SYS-DD's for a programmers
is prohibited. In an analogous manner, each SYS-PRCC shall have only one

.LOC-DD to describe its regional (local) data. The documentaticn of data
base information shall be done in the computer program listing. A Data
Base Design document (DBD) is neither desired nor required. Guidance cn
how data base informaticn is to be implemented ia the program listing Is
given in Section IV.

c. ara 21 Steustyra,

Hierarchical structure is important in a program. 7This struc-
ture nust be documented by means of a hierarchy dizgram which shows the
strﬁctural relationship between parts of the program. The PLCD shall show
program structure within a module by zeans of a complete hierarchy
diagram, The PDS shall show part of this structure by zeans of a
bierarchy diagram which describes thke ;-cgram down to the module
(SYS-PROC) level diagram. Figure B-1 i3 an example hierarchy diagraa

which 1llustrates a number of desirable attributes of CMS-Z2 progran

154

Kyoawvaeyy wesaSouad (|-g IUNDIA

IJSVNIAD
RIGIJSYVD
TO4LUVD
14v21049
Jnd714o
NISD

S00

#4204 dHOD
$S3Wnga00Ud
V1YGHHOD dd-301
S3UNA330Ud NOWHOD
J0UdHKOD
J04d-51S

J0108VLD
NISI
S0J
DNO1D
NISO
§00
AR MH)
J04.1LHVD
13S0
14vI1042
00147350
wdHVHDOID
$S3UNA3o0Ud
Viv3godo aa-901
t T3A31

Hdva0039
JOHd-SXS

oanpaooad owtuad sajouap,

dHYIANTH
14v¥317049 NOLINGW
T04LMY) IOSVNIAD
dUINIOIS 43na11130
ANILOIS LNOLUIH
anamrao NIGTOSVD)
1N4NIDIS NILYOH
2dJ0UdOIS udDVHNVH
!S94NA3I0U4 :S34UNa3dond
ViIVaoIsS dd-201 YiVaW ad-2071
t T3A31 1 13A37
J04d901S HIVHNVH
J0Ud-SiS J0Ud~SKS

JINIA

- QNVILINIS
120103
QNVIOIAR
nasysvia
2dJ3X3

$S3NNGIJ0U4
v1vadaxa aa-2o01
0 TIAN
Jax3
J0Ud-Sk8

vivadao1o

aa-sxs

{ design. Thers ars five SYS-PRCC's (EXEC, MANMACH, SICPRCC, GECGRAPH, and

COMMPROC) which comprise the major mecdules of the system. The hierarchie

cal structure of the program is shown by physical location on the chart ;
and by the designation of levels. Iﬁ this example, the executive

1 SYS=PROC, EXEC, is at the highest level of control and is at level 0. 1
l Only cne module (SYS-PRCC), the executive, should be at level 0. Only one
SYS-PRCC should provide overall comtrol. All other acdules (applications
modules) are subordinate and are at level 1 or below. Where standard
executives such as SDEX-7 or SDEX-20 are used, they will be at level 0.
The SIS~-PROC's shown at level 1 are the applications modules cf the (Q4S-2 1

pregram. MANMACE provides the aan-machine i{nterface and ccnsists of the

k PROCEDURES MANMACZP (which is the prime PRCCEDURE), MCRTIN, MCARTCUT,

MBUTTON, and MINDLAMP. DlNotice that, within each SIS-PRCC, the calling

hierarchy is shown by indentation. For exaxaple, each prime PROCZDURE is

to the left of all others; and in SYS-PRCC GZOGRAPH, for exanple,

PROCEDURE CARTPOL is to the right of GRESECT. This shows that CART?CL is

subordirate to GRESECT. The following walkthrouzh is given fer further i
clarification: SYS-PRQC EXEC is at hierarchy level 0, SYS-PRCC GECGRAPH ;

is at level 1, (PRIME) PROCEDURE GECGRAPHP is at level 2, PRCCIDURE

GRESECT is at level 3, and PROCEDURE CABfPOL is at level 4, In a large
prograz there would be even more levels. SYS-PROC's (modules) are at
levels 0 and 1; PROCEDURES (and FUNCTICN's) are at levels 2 or =zore.
Although the CMS~2 language permits only two levels of hierarchy frca an
adainistrative or syntactical view, it is possible to achieve many |

structural levels as dictated by the progranm design by the use of a

calling hierarchy.

Common PROCEDURES fram the commea SYS-PROC, CCMMPROC, are called from
MANMACH and are thus shown in the hierarchy diagram where they are called
even though they actually exist in SYS-PRCC CCMMPRCC. Using this conven-
tion, a commcn PROCEDCRE may appiar in several application SYS-PRCC's
wvhere invoked. For example, CFILLRUF is shown in SYS-PROC MANMACT and
SYS-PROC SIGPROC since it is invoked from botk places. The actual loca-
tion of CFILLBUF and all other ccmmon PRCCEDURES is in SYS-PRCC CCMMPROC,
which serves to administratively group the common PROCEDURES. From the
total system viewpoint, CCMMPROC can be considered to e part of the
cxccuﬁivc program, although functicnally separate. Note that figure 31
also skows the global data design, SYS-CD GLCBDATA, which conmtains all
global data items in one place.

There shall be no direct calls between SYS-PRCC's. Contreol between
SYS-PROC's shall be passed throuzh the executive medule. PRCCEDURES
within a SYS-PRCC shall not call PROCEDURES in apother SYS-PROC except in
the case ot.couaan PRCCZDUAES which shall be zrouped in ozme SYIS-PROC.
PROCZDURES within the same SYS-PROC shall call only those PRCCEDURES whics
are subordinate, e.g., a PROCEDURE at level 3 shall call only PRCCZDURES

at level 4, 5, § ... n.

Iv. apming Q vant ¢
A, Gessral. The computer program listing is the most important
toal for the maintanance programer. The iaportance of this Section
cannot be.overempnasized. The prizary purpose of this Section is to
saximize the maintaipability of CMS-2 program listings. Since maine

tainability is parazount, it is crucial to realize that clarity takes pre-

157

BB Pt e

o Y PR 0

Ch i L e A A v Al e e s bl ol S

cedence over efficiency; readability takes precedence over writeability.
The life-cycle of tactical computer program will see a large fraction of
tatal system costs devoted to software maintenancs. It is important that
CMS=2 programs be clear, concise, structured, well-designed, modularized,
and straightforwvard - even at the expense of a few words of ccuputer
memory. '
B. o} 4~apia
Figure B=-2 1llustrates the physicél organization of a well-

designed oMs-2 pregram. As required by the compiler, the MAJCR HEADER

comes first. When only one MAJOR EEADER is required, all ccapile-time
controls shall be located in this MAJCR HEADER. SHowever, there are tizes
when a program should be compiled several different ways to generate
object code for different target computers. When this is required, MINCR
HEADERS shall be used with each one containing different C-SWITCHES,
HEAN?, and EQUALS stataments to zZenerate different object preograms. Then
by use of the librarian, the desired object program zay be generatad at
ccupile time. The next program element after the various headers is the
SIS~DD. Where practicable, all zlcbal data iteans should be declared in
one SIS-DD. The restrictions of paragraph III.B of this Eaclosure apply.
Next, the various SYS~PROC's of the QMS-2 preogram appear, and, of course,
there will normally be many more than shown in Figure B-2. Each SYS-PRCC
should contain a LOC-DD (if required) which is physically located at thé

bcginqing of the SYS-PRCC. After the LCC-DD, the varicus PRCCZDURES of

the SYS~PROC will appear, and each PROCZDURZ shall contain LOC-INDEX'es

(as required) at the physical beginning of the PRCCEDURE, immediately

) after the prolcgue. Where prime PRCCZIDURES are used (and their use is

e

EXAMPLE SYSTEM
MAJOR HEADER

MINGR HEADER 1
MINOR EHEADER 2 ,

-
E

MINOR HEADER DOCUMENTATION

SYS-DD-

SYS-PROC 1
LOC-DD ,

PROCEDURE 124
LOC-INDEX

PROCEDURE 1B
LOC-INDEX

SIsS-PRCC 2
LOC-DD

PROCEDURE 24
LOC-INDEX

PRCCEDURE 2B
LOC-INDEX

.

. i
. !
!
i

END-SYSTEM EXAMPLE
#This MINOR EEADER contains the overall program description and prologue.

Figure B-2 QVS-2 Program Physical Organization L

159

LR TR or an, < Lo fitry SR LA OF Vo R

encouraged), they shall de the first PROCEDURE in the SYIS-PROC. The use

of LOCREF to preclude the necessity for forward referencing requirements
at compile tize is encouraged. The LOCREF operator permits PROCEDURES to
be physically laid out in the listing in a top-down order which
corresponds to the program calling hierarchy. When CMS-2 FUNCTICNS are
used, they should appear in a lcca§ion analogous to PRCCEDURES.
c. Haadar

CSWIICHES are used to selectivelylvary object code generated at
compile time. They are particularly useful when it is desirable to gener-
ate different object programs for different (but similar) target coaputer
configuraticns. When this is done, the C-SWITCH control statements that
control the turning on and off of CSWITCHES will be located in a separate
.HINOB HEADER, and all of these MINCR HEADERS will be included on the
lidrary tape. Of course, at ccmpile time, those required will be selected
by the librarian to generatz object code for a desired target ceanfigura-
tion. However, by placing all MIDIOR HEADERS on the library tape, all
C~SWITCH settings will be available for inspection by maintenance prosram- ?
pers. Each CSWITCH setting in each MINCR HEADER will be well documented
with a clear, detailed cocmment explaining the purpose of the switch, the
conditions when it should be used, and all unique aspects of the target
configuration it is used for. Then, in the body of the program, CSWITCH ?
brackets will be aighlighted by use of a blank line, a line of asterisks,
a ccmsent containing the CSWITCY title, another line of asterisks, and $

another blank lire. For example:

160

ST P e TR RIBUF, o, w2
S o Toakced M

1t SEA00A8R 0338000 ERRR0RRARTRFAIRRRVINERTARAARBIFRAIVER vy

*? CSWITCH TAOC IS USED TO GENERATE TARGET CODE FCR THE TACTICAL '

'* AIR OPERATICNS CENTER CONFIGURATICN b
11 0SRR84S 00340 83BN N RN NNERNIRHARRRINEDNRNRNINDNSRNUNNAE 11

CSWITCE TAOC $

e « o » (program code)

¢ = o =

! S833RRERSRNERARANESBRERNNRIE DA BRI HBE IR LR RIRNSRARNERER 02

*v END TACTICAL AIR OPERATIONS CEINTZR CCNFIGURATICN CODE v
19 SRSSEBNRHSEE NN A VRN ST RR ARSI R VNGB RSH BRI LBERIF IRV BINBDIRR 11

END-CSWITCS TaCC $

Tae use of nested CSWITCHES, while not prehibited, is discouraged. Whez
MEANS and EQUALS are used for parameterizaticn ard to achieve different
target computer configurations, they will be included in separate MINCR
HEADERS as appropriate. They will be physically grouped tcgether within
each header, oot aixed with CSWIICH controls and other coampiler optioams.
Furthermore, every MEANS and EQUALS declaration will contain a comaent

which describes the purpose and use of the statement. For example:

'* IN THE TacC CCNFIGURATION, TEE MAG TAPE DRIVE IS CABLED TO '

** CHANNEL 4. THIS ZQUALS STATEZMENT IS USED IN CCNJUNCTICN WITH '* .
** CSWITCH TACC. CHANGING THIS CNT STATEMENT WILL PERMIT 7= B _
'' PRCGRAM TO IMTERFACZ WITH MAG TAPE DRIVES CN CTHER C¥ “_as e

MTCHAN EQUALS 4 $
Finally, teaders should be logically organized so that ccmpiler controls.
CSWITCHES, MEANS statements, EQUAL statements, and other 1tema are T
physically grouped together.
D. PErolggues
Prologues, or narratives as they are scmetimes called, are one
of the most importaznt aspects of ccamputer program documentation. Good

prologues are essential to the understanding of a program by maintenance

161

e e
EAI z

programaers. They are defined as the lengthy set of comments found at the
beginning of each PRCCZDURE in a well-documented program. Prologues are
required at the beginning of every element of a Q4S-2 program. Every
prologue shall be clearly delizited frcm executable code by use of lines
of asterisks. 4 prolcogue is required at the beginning of the MAJCR
HEADER, every MINOR HEADER, every SYS-DD, every SYS-PRCC, every LCC-DD,
every PROCEDURE, and every FUNCTION in a Q4S-2 prcsrém. The larger and
nore ccmplex the program element, the Zore éxtensive the prolcgue should
be. In addition, there shall te a large MINOR HEADER wnich contains a
prologue describing the purpose and function of the entire program located
before the first SYS-DD (refer to Figure B-2). The program prologue shall
describe the cverall purpose and functicning of the progranm, the cemputer
used for coapilation, the target computer (cr csmputers), the naze of the
chief programmer, the ccmpany respoasible for the program's development,
the date the program was delivered to the soiernment, the ncmenclature of
the tactical system in which the program executes, applicable references
and standards (such as the Program Performance Specification and standards
which deal with data links, for example), and other pertinent data. In
additicn{ each module of the program will be listed, a brief description.
of each module will be given and the functicnal relationships of the
oodules will Be triefly stated. The crder of execution, to include the
sequence in which the modules are invoked, will be explained in general
teras.

- The MAJOR EEADER and each MINCR EEADER shall contain a prologue.
Wherever different headers are used to generate different object code, tle
prolcgue will desceribe the purpose of the header and specifically ideatify

the target ccmputer and equipment ccafiguraticen. .

162

e Ty

The SIS~DD (or SYS-J0's, of =he program stall contain a prologue
wvhich describes the global 2ata ze3.:3n o ‘nclude a description of how the
SYS-DD is organized. Specilfically, “EANS and ZQUALS declaraticecs, TABLE
declaraticns, and VRBL declarat:ccs sza’l de segregated and zgrouped
according to type. This snall de exjlaired in the SYS-UD prologue. As
much as pessible, the SYS-DD prologue small furmction as an index to the
SIS-DD . Special naming conventicns lYeyeond those described in this stand=
ard shall be explained in tke prolcgue.

Each SIS-PROC in the computer pregram shall have an extensive
prologue. If a program module consists of more than one SIS-?RCC, then
there will be a prologue at the medulas level as well as cne for each
SIS-PROC within the mecdule. This mcdule level prolcgue shall describe how
the module functions, shall be physically located at the top of the
module, and shall list all SYS-PRCC's which beleng to the nzcdule, Wwren a
module is equivalent to a SYS-PRQC, the Todule prologus requirement is
satisfied by the SYIS-PRCC prologue. In either case, mcdule name,
programmer(s), contractor, and delivery date shall be ziven first. The
SYS-PRCC prologue shall centain an extensive, detailled deseription of the
SIS-PRCC's purpose and functicn. The sequence of processing shall be
described in chronolegical order to include the calling sequence of
control. The hlerarchical structure of the SYS~PRCC shall be described,
with the name of every PRCCZDURE and FUNCTION given. Finally, all iasputs
and cutputs should be listed. Ths following example illustrates the

structure of a good SYS-DD prolcgue:

1€3

TS SR R

MSMODULE SYS-PRCC &
COMMENT # ® # # 8 & 8 & # 2 B & 8 3 3 2 3 43 8583 3338808080

MSMODULE - M-SERIES MESSAGE PROCESSING MODULE

PROGRAMMERS: I.M. CODER, 7. R. BACXER

COMTRACTOR: SCFTWARE UNLIMITED, INC.

DELIVERY DATE: 30 MARCHE 1980

PURPOSE: TO PROVIDE TEE JOINT SERVICEZ INTEZRAGENCY MESSAGE PRCTCCCL
REQUIRED CF THIS CCMPUTER PRCGRAM BY RESPONDING TO RECZIVED
M=SERIZS MESSAGES AND TRANSMITTING APPRCPRIATE M-SERIES MESSAGES
AS REQUIRED 2Y TEE TECXENICAL INTSRFACE DESIGN PLAN (TIDP).

LEVEL: LZVEL ONE MCDULE.

DETAILED DESCRIPTION: (This portion of the prologue shall conmtaizn all of

the items discussed in She paragraph above. In the case of large, ccmplex

modules, it may extend for five or six pages, or =cre. Processing should

be discussed in caronological order.)

SUPERORDINATZ SY5-PROCS:

(ete.)
SUBORDINATE PRCCEDURES:

(ete.)
FUNCTICNS:

(ete.)
INPUTS:

(ete.)
QUTPUTS:

(ete.)

[B NE BN RN NENE BN K NE I BE 2R BN 2R 20 20 0N Bk 2N B Bk N BN BE BE AR BN BN BN AR 2R AR B AR O BN

The prologue for each PRCCEDURE and FUNCTION shall be sizilapr to
that for each SYS-PRCC except that these prologues will deal with the par-
ticu{ar PROCEDURE or FUNCTION.

Each LOC-DD and LOC-INDEX in the prograz shall have a brief pro-
logue describing the purpose and organization (if necessary) of these data

design elements, The use of asterisks and single quote zarks to aighlight

key comments 1s encouraged.

E. apard .

AS specified in this standard, the Data Base Design (DBD)
requirements of SECNAVINST 3560.1 and MIL-STD=1679 are to be zet in the
computer program listing. Consequently, it is very important that the
data design elements of a3 CMS-2 program, the SYS-DD's, LCC-DD's, and ;
LOC-INDEX's, contain the informaticn found in tae DED.

Where possible, all global data elements should be contained in
cne SIS-DD. The use of EXTREF and EXTDEF tér variables and tables should
be avoided. If these elements are global, they should de in the SIS-DD.
If the SIS~DD beccmes toc large, in teras of Q1S-2 symbol tabdble capacity, 3
then scme use of CCMPOCLS may be rsquired. Local data elements belong in

a LOC-DD, and not in a SYS-DD. The S¥S-DD should be organized to contain

first the prologue described in paragraph III.D, then all MEANS and EQUALS

declarations (logically grouped), 21l VRBL declarations (logically

grouped), all TABLE (arnd array) declarations (logically grouped), and all

P-SWITCH declarations.

All MEANS and EQUALS declarations should be contained in the
SYS-DD unless it is necessary to place scze of them in MINCR HEADERS so
that the progran may be compiled differently for different equipment
configuraticns. The use of MEANS and EQUALS declarations in locations i‘
other than MIDNCR EEADERS or SYS-DD's is prohibited. The Qse of the

EXCHANGE primitive is forbidden. The use of MEANS and EQUALS declarations

to increase readability of the program is encouraged. For example, the
statements

TRUE MEANS 1 & |

FALSE MEANS O § D

-

increase the readapility of the program. The use of MEANS and EQUALS
primitives to reduce typing work, such as

PROC MEANS PRCCIDURE $
is forbidden. The use of MEANS and EQUALS primitives to corrupt the QiS-2
language such as,

REPEAT MEANS GOTO §
is forbidden. The purpose of each MEANS cor EQUALS declaration shall be
documented with a meaningful comment as shown in paragraph IV C?

VRABL declarations shall contain zeaningful coaments which
describe the purpose, initial value, range, and related data structures of
tae VRBL. The use of short, cryptic comments is forbidden. Every VREL,
no matter how simple, must have the above atiributes explained. An exan-
ple of a good VREL declaration is:

** MSGQPTR IS THE MESSAGE QUEUE POINTZR WRICH ALWAYS POINTS TO *!

'' TEE LAST MESSAGE WHICH HAS BEZEN IMNSERTED INTO TABLZ MSGQUEUE. '
't IT IS INITIALIZED TC ZERO (WEEN TEE MESSAGZ QUEUZ IS 2M4PTY '

'' AMD ITS RANGE IS FRCM 0 TO 25 (WHEN THE MESSAGE QUEUE IS 'Y
** FOLL). IF IT IS EVER GREATZR THAN 25, AN ERAOR CCNDITION e
** (QUEUE OVERFLOW) WILL RESULT, AND TEE QUEUE WILL BE FLUSHE:ED 't
*' WITH MSGQPTR RESEZT 70 0. .

VRBL MSGPTR I 16 TP C 8
TABLE declarations are siamilar to VRBL declarations when it
comes to documentation requirements. Because TASLZIS can be very ccmplex
data structures, they zust be explained in detail. Eaech TABLE, SUZ-TAELE,
LIKE-TABLE, and FIZLD will be described as to purpose, initial value,
range, and related data structures, if any. The following example illus-

trates these ccncepts:

16€

-

COMMENT

TABLE ACCOUNTS IS USED TO STORE INFORMATICN ON 400 BANK ACCOUNTS.
EACH ITEM (CR ACCCUNT) CCNTAINS AN ACCOUNT NAME (FIELD ACCTNAME) WHICH i
CAN CONTADN UP TO 40 ASC11 CHARACTERS, AN ACCOUNT NUMBER (FIELD :
ACCTNR) WHICH CAN RANGE FRCM ZERQ TO $999, A BALANCE WRICH CaN RANGE :
FROM -9999.99 DOLLARS TC +3999.99 DOLLARS, AND AN ACTIVE/NON-ACTIVE]
FLAG (BOOLEAN FIZLD ACTIVE) WEICE WEEN TRUE (=1) MEANS ACTIVE iND

NON-ACTIVE WEEN FALSE (=0). AT PRCGRAM INITIALIZATICN TIME, TEE

ENTIRE TABLZ IS FLUSBED (SET TO ZZRCES). INDICES (CR POINTERS)

" RELATED TO THIS TABLE ARE VRBLS LASTACCT, NEXTACCT, AND NEWACCT. $

SNPAN

TABLE ACCOUNTS ¥ DENSE 400 $

FIELD ACCTINAME B 20 $

FIELD ACCTNR I 4 U $

FIELD BALANCE A 2 S 7 $

FIELD ACIIVE B $
END-TABLE ACCCUNTS $
Note that the FIZLD declarations are indented two columns in from the
TABLE declaration to show asubordination. Also, that H, I, A, and B and
20, 14 and 22 are vertically aligned. Where possible, TABLES and VRBLS
shall be declared in alphbabetical order.

Local data items found in LOC-UD's and LOC-INDEX's shall be
grouped and commented as shown above for SIS-DD's. The importance of
placing data elements which are required by ¢mly cne SIS«PROC into the
LOC-DD cannoct be coveremphasized. This practice prcmotes information kid-
ing and permits different programmers to work ocn different SYS-PRCC's
witbout concerning themselves with the names and details of other
SYS-PROC's.

P-SWITCH's shall be declared in the SYS-DD i{f the PRCCZDURE's

.used are zlobal in scope. P-SWITCH's shall be declared inm a LOC-0D Lif the
PBOCEDURS': used are of local scope., The declaration of a 2-SWITCE

qutside a SIS-DD or LCC-DD is forbidden. They shall be well.ccmmented as

shown in the example below:

s . s <
- L e e e mme———

COMMENT
BASED ON THE VALUE CF CLOBAL VARIABLE TRIGINDX (RANGZ: 0-5), THIS
P-SWITCH WILL CALL THE APPROPARIATE PRCCZDURE WHICE WILL RETURN THE
VALUE FOR CNE CF THE SIX TRIGONCMETRIC FUNCTICNS: SINE, COSINE,
TANGENT; COTANGENT, COSECANT, CR SECANT. THE INPUT ANGLE MUST EE AN
ANGLE EETWEEN PLUS OR MINUS 360 DEGREES, AN A-TYPE VREL (A 24 S 18)
WITB FRACTIONAL ACCURACY TC ONE PAET IN 16,384. OQUTPUT TRIGANS
RETURNS AN ARITEMETIC VALUE IN TEE RANGE PLUS OR MINUS 262,144 WITH
FRACTIONAL ACCURACY TO ONE PART IN 8,192 (4 32 S 13). CERTAIN
TRIGONOMETRIC FUNCTIONS, SUCH AS TANGENT (90 DEGREES) HAVE INFINITE
VALUE. IN THESE CASES, A VALUE CF 262,144 IS RETURNED.

P-SWIICH TRIGFUNC INPUT ANGLE CUTPUT TRIGANS $
Te

SINE e CiSE ¢ . $
CCSINE ' CASE 1 'y $
TANGENT " CASE 2 v $
COTANGNT ' CASE 3 ' $
COSECANT ' CASE & " $

$

SECANT " CASE 5 '
END-SWITCHE TRIGFUNC $:

The use of the P-SWIICH operator fc; multipath branching is preferred over
the use of the FOR cperator in most cases. However, there are instances
when the FOR cperator is preferable; for example, when two or more values
cause branching to the same procedure or when the range of values is zot
saquential, In the latter case, the FOR statement avoids the need for
dummy procedures. In other computer languages, FOR is used for iterative
looping. Cnly in CMS-2 is it used for =multipath branching. Since
P-SWITCH declaratiop: are physically separated frcm their invocation, a
meaningful comment at the point of invocation shall be provided for
clarity.
F. Size of Elaments,

There is no limit (other than those imposed by the compiler) to
the size of a SYS-DD or LOC-DD. PRCCEDURE's and FUNCTIONS's are limited
to 100 lines of (MS-2 source ccde, exclusive of ccmments., This is an

absolute limit which may be exceeded only upon pricr approval by the

168

goverzment cn a case-by-case basis, Where PROCEDURE's and FUNCTICN's

contain direct code, they are limited to 50 lines of code, exclusive of
comments. The average size of all PROCZDURE'sS shall be S0 lines.,
Exceptions to these size restricticms are not permitted. Programs with
overly large PROCZIDURE's indicate poor desizn and a lack of partitioniag
the program into functicnally independent parts of manageable, maintain-
able size. The use of "ineline routines” is expressly forbidden.

Every procedure shall have cae and cnly cne entry point. This
i3 an absolute restriction. Every procedure should have only one REIURN
or exit point, although this is not an absolute requirement.

G. 4 ant$
In the naminz of program elements such SYS-PROC's, VREL's,

TABLE's, and PRQCZDGRE'S, the CMS-2 language leaves zuch to be desired.

Names are limited to eight characters and the underscore character is not

peraitted. This inhibits the readability of names. EHowever, within the
constraints of the compiler, muchk can be done to emhance readability arnd
maintainability, which is the subject of this section.

Every module, or SYS-PROC, in a QYS-2 program shall have a
unique prefix consisting of one or twe characters. If less than 26 mod-

ules comprise the program, then one letter will suffice as the module

- prefix. If more than 26 modules are used, or if the program designer

- believes that it will enhance maintainability, then two characters shall

be used. These two characters shall be two letters or a lecter followed
by a number., Examples of crne-letter prefixes are U for UTILMCD, a utili-
ties module and M for MMIMOD, 2 man-machine {nterface moduls. Examples of

two=letter prefixes are M3 for M3IMCODULE and IO for IOMCDULE.

169

s Tk e

oty

Once a prefix has been established for each SYS-PROC (module),

then every subordinats element of that module shall use the module prefix
as the first cne or two characters of every name. For example, ICMODULZ
might have as subordinates PROCZDURE's ICMTAPE (a magnetic tape handler),
IOTTY (the teletype handler), and ICCRT (the computer-CRT interface).
Every PROCEDURE, VRBL, FUNCTICN, TABLZ, ete. of a module snall contain its
prefix as an identifying mark. Commoa (global) data elements are not
subject to these restrictions, but will be named witk a prefix starting
with the letter C.

All names within a QIS-2 program shall be descriptive. Taey
aball attempt to describe the itsm they represent. Names such as
IOBUFFER, USINE, and MSGFLAG have innerent meaning and are easier for a
nain;euance programuer to remember while tracing through a program. Names
such as A, X, N, or 38X are 2eaningless, and their use is forbidden. Rela-
ted data elements should have related names which show tpeir intarrela-
tionship. For example, a TABLS called IOBUFFER aight logically have an
index or pointer which is called ICEBUFPTR. Appiying the above rules and
common sense will increase the maintainability of a (MS-2 progranm.

H. Commentizg.

Without gocd commenting, even a well-designed program can be
extremely difficult to maintain. The use of meaningful ccm=ents to
increase the understandability of a program cannot be oversmphasized.
Additionally, it is almost impossible to overcomment. It is better to
overccmment than to undercocment. This section deals with ineline ccae
ments which serve to explain and supplement scurce code rather than

PROCEDURE and module prologues which are discussed in section D. There

179

o —

are three kinds of comments: stand alone, which are on a2 separats line
from any source code; terminating, which fallgu: source code on the same
line; and embedded, which are embedded within a2 source code line. More
will bBe said about these three types later. For consistency, all stand
alone comments shall precede the code they explain.
Comments should explain, amplify, and supplement source code
rather than echo the code. For example the statement and comment
SET N TON + 1 '" INCREMENT N '' §

does nothing to explain why N is being incremented. It is also an example
of a terminating comment. Termirating comments are prohibited, except
with direct cocde and to amplify data declarations. A better method of
commenting would be:

‘' A MESSAGE HAS JUST 2EEN INSERTED IN MSGQUEUE. INCREMENT v

'? MSGQPTR SO TEAT IT PCINTS TC THE LOCATICN WHEZRE TEE NEXT MSG ''

'* MAY BE INSERTED. "

SET MSGQPTR TO MSGQPIR +1 &
Another exanmple ot an L.lun.tnat.ng comment is:

+' THE MESSAGE QUEUE CAN ONLY HOLD 25 MSGS. TZUS, IF ‘EGQPT‘-‘{ oT AN

¥? 25 QVERFLOW HAS RESULTZID--FLUSH THE MESSAGE QUEUE. " '' - AR

IF MSGQPTR GT 25 THEN FLUSHQ $ R
In Q4S=2, tn;re should be, cn the average, no less than one line of
commenting for every two lines of source code. In direct code, there
should bte, on the average, zo less than one corment for ever'y line of
direct ccds. These averages pertain to amplifying cocments, exclusive of
prologue comments. These averages are ainimum requirements. The use of

@ore comments is encouraged.

The following example illustrates zood terminating comments for direct

code:

Feoree

e b i Tt Lt L et el e 5. Al S

L R3,CQPIR LCQPTR POINTS TO ITEMS IN

LX R4,6 .4 CIRCULAR QUEUE OF SIZE 7
.AND SHOULD RANGE FRCM O TO 6
.IN VALUE - SO INCREMENT IT OR
.ZERO IT DEPENDING CN ITS VALUE

.COMPARED TO 6

CR B3, R4 .IF CQPTR LESS THAN 6 THEN

JLS INCRMT .GO TO INCREMENT

LL B3, 0 -ELSE SET CQPTR TC ZERQ

S 83, CQPTR .AND SAVE IT

J BYPASS .BYPASS INCREMENT CCDE
INCRMT. IROR R .SET CQPTR=CQPTR+1

S R3, CQPTR .AND SAVE IT
BYPASS. .CONTINUE

The above comments do not echo the code, they explain it. The ccuments,
in effect, translate the assembly language into high level code. Contrast

this with the following cocments that merely ecko the code:

L R3, CQPTR +PUT CQPTR IN REG 3

LX R4, 6 .PUT 6 IN REG 4

CR R3, R4 .COMPARE REGS 3 AND &
These comments are worse than none at all, for they insult the maintenance
programmer by insinuating that he does not now the assembly lanzuage
instruction set.

In addition to echoing the code, there are several cther pit-
falls that scme commenters fall intc., Cne of these is the "80 column
mentality” where the programrer crowds terminating comments into the same
line as the code at the expense of abbreviating the ccmment into an income

prehensidble line of zarble. For example the statement and corment

SET MSGQPTR TO MSGQPTR+1 '' INCR MSGQPTR PT NXT MSG *'' &

would have been better as,

"' INCREMENT MSGAPTR TO POINT 7O THE NEXT MESSAGE IN TEE QUEUE
SET MSCGQPTR TO MSGQPTIR +1 §

Another commen pitfall is the embedded comment., For example the statement
IF '* THE MSG QPTR '' MSGQPTR GT 25

'* MAX SIZE CF THE QUEUE '' THEN

'* FLUSE THE QUEUE '* FLUSHQ $

embeds s0 Zany comments into the cade, it is difficult to distinguish
betwesn the code and the comments. Embedded comments are proaibited. The

preferred zethod is to place ccmments cn separate lises, and, where

appropriate, separats them frem the code by indenting, using blank lines,
and blocking comments with asterisks. '
I. Bhyaical Lavous
Good physical layout is defined as that property of a coaputer
program listing which makes it capable of beirg read arnd understood by a
programier not familiar with the program. Good physical layout implies
ease of under;tanding and gZood readibility. Good readability may be
achieved by a variety of techniques, some of which are separation of
logical elements of code, separation of comments and code, blocking (by
using lires gf asterisks) lengthy comments or prologues, the appropriate
use of blank lines, logical indentation, and the lining up of BEGIN-ZND
and IF-gLSE pairs. '
Separation of locgical elements and the use of blank lines go
hand in hand. The practice of beginning PRACCEDURES on a new page serves
to separate these logical elements and prcmote readability. The use of
blank lines to separata prolcgues and lengtby comments frcm executable
code also promotes readability. Prologues and lengthy comments should be !
boxed by asterisks to make them stand out and be separated frcm the code. !
Blank lines should be used freely to prevent crowding and to separate ‘

logical entities.

1?3

At

Indentation is a key part of physical layout. Indentation is
defined as the physical indeating of logically subordinate and nested pro-
gram constructs. A truly structured program is structured in two ways.
First, it is structured with regﬁrd to the flow of control of the program.
Second, it is physically structured by the use of indentation.

Indentation shall be used so that program logical pairs are lized up and
stand out. Every BEGIN shall be pnysically indented to line up with its
corresponding END. The nested level of the BEGIN-END block shall be
denoted by a nunber in a terminating comment. The following example
{llustrates the gocd use of indentation to ackieve readability.

BEGIN ' 1 ' 3

;

BEGIN ll3" 3

m |'3ll s
ELSE
BEGIN ''ur' §

END **4'r §
END *2'' $
m '01" 3
In the above example, it is clear which EEGIN belongs with which 2D. The
practice of "hiding"™ BEGIN's as follows

IF THEN EEGIN $

is prohibited.

rn n

QMS-2 bas two drawbaciks which make indenting difficult. First,
the code must begin in column 11 or later; Columns 1-10 are nct available
for indenting. Second, the fact (in (MS-2Y at least) that side-by-side
object cocde begins in column 28 ccmplicates the problem. If the
programer indents too much, the socurce QYS-2 code gets mixed up with the
generated object code. The situaticn calls for case-by-case judgements on
the part of the programmer. As a rule, two columns per indentation level
is preferred when there are eight or less levels of indentation. Waea
more than eight levels of indentaticn or nesting occur, the programmer
should use one column of indentation per level to avoid aixing the source
and object cade.

A final rpote on readability: All PROCEDURES shall begin at the top of a
new page by use of the page eject function. (SYS-PRCC's and SYS-DD's zre
placed at the top of the page automatically by tke compiler.)

J. RDirect Coda

Direct code should be used only to achieve input or output, work
around ccapiler problems, or t0 optimize frequently executed code.
Optimization will be dore cnly after testing of the fully loaded running
system proves that optimizaticn is required. The latter reason for using
direct ccde is permitted only when prior appreval is ziven by the
cognizant government agency. This will be donme cn a case-by-case basis.
Direct code shall be used to work around campiler'problema only when it is
pot possible to work arcund them in higzh-level code. Whenever diract cocde
is used, it -shall be clearly separated from the high level code by the use
of blank lines, lines of asterisks, and a prolcgue, similar to the pro-

logue required at the beginning of each procedure. This prologue shall

1?75

T

desacribe the reascn for the section of direct code. Within the section of

S

direct code, the use of ccmments is important (3ee Section H on commenting
direct code).
K. IE Clausea

The use of complex IF clauses can cause logical problems with
the flow of control of a CMS-2 program. IF clauses should be siple, such
as

IF IOFLAG EQ 10 TEEN ...

Complex IF clauses are difficult to understand and lead to iagic 2laws.
The use of more than one AND or cne QR per IF clause is discouraged.

Where coaplex IF statements are used, they shall be generously comménted.

The use cf the CCMP operator is forbidden.

Available from:

ARk D=

APPENDIX D - Program Planning Surmary

Lefense Technical Informatiorn Center

1 astaly allimme 4 Balg o jvumaens

REIZAPON 44D GEYELOPMINT PLANMING SUMMART MAY 79 ‘-"wr GOwTROL §rws0.
» 40 0F Swamasv o clven 07 tuamane L sy pacumry * Sqesam ae T 11

D-CHANGE TASK AREA U N/A J]

wJala o 8844 eunaa s 4. FOSDAN FOEE0LE CLlnia ! M UBCT/ Tasr ANEL mmess

627218 2F21-242-001 RF21-242-401
"0 VIO0E (Pves awie ond Jemwa 17 O Gasclis anon oaw)

(U) SOFTWARE COST REDUCTION

(Y 'Y 'Y I Y I) 1 4ta8T PavE 10 ComP gL Tom paTE
Sam - NAVAL RESEARCH LABORATORY 1 0CT 78 1 OCT 82
somne WASHINGTON, DC 20375 T s]f wret [e reom
ramre I Xt
. : Cwaeea? rv 19 lis

. ma DR. BRUCE WALD CODE 7500 aweeat v 80 JolU i)
*eLemuent v 202-767-2903 Muoeay » [529 40

" SaATICINe Vroa 15 Susme seMCTIve

Q04200 Computers; 015700 Computers and relaied
programming (Control, guidance, and navigation)

PrenverTEan

" tmhovee 14,

17. (U) OBJECTIVE AND APPROACH: Reduce the life cycle cost of Naval software
by conducting a critical experiment to assess the value of software
engineering (SE) innovations to assure that a) technology base funds are spent
only on potentislly useful techniques, and b) software acquisition managers
are made avare of the value of these gtechniques. In the experiment, an
existing flight software package for the A-7 aircraft is being redesigned in
accordance with new SE priaciples and the efficiency, real-time performance
end flexibility of the new software will be coumpared with the perforwmance of
softvare produced by more conventional methods.

18. (U) PLANS. FY 80: 1laitiate redevelopment of A7 Onboard Flight Program
(OFP) in accordance with the following softvare engineering techniques:
Information Hiding Modules, Abstract Interfaces, Cooperating Sequential
‘Processes, Process Synchronization Primitives, Uses Hierarchy, Resource
Monitor Modules, Formal Specifications, Disciplined Programming and Program
Verification.

FYB0: Continue redevelopment and begin to assess advantages and coscs of
these techniques. FY81 milestones: Cowplete deaign documentation, Dec 79;
coaplete implementation of a kernel of softvare to perform a selected subset ;
of functioans, June 80.

19. (U) PROGRESS AND ACCOMPLISHMENTS. This project was initiated with NRL

Technology Base funding; a Software Requirements document was produced under

that project. The document has been reviewed by MWC personnel for accuracy -

and sufficiency. It describes the principal interfaces between the software

and the other systeam components and all the functions to be performed by the

softvare. This document will serve as a reference for the remainder of the

project, and is being used by MWC for other purposes. A paper has been

published about the techniques developed to document softwvare requirements. .
The major software modules sad patterns of intersction have been identified)
and described. ;

177

LIST OF REFERENCES
1-—-"Computer Snafu Falsely Siznals Soviet Attack ; Monterey
Beralds; Nov 10, 1979.

2---Greve, F. "Pentagon Calls Its Computer ‘A Disaster’ i S,
F. Sunday Examiner & Carcnicle; Nov 4, 1879,

3-—-Defense Science Board; Revport of the Task Force orn
Technology Rase Strategyy ©v. <l Octcber 1%7€.
(TLSIE Accession No.: LT 2E€184%)

4---Coppola, A. and Sukert, A. N.; GTGeliability and
Maintainability Management Manual: Rome Air
Developmer? Center Report RADC-TR-7S-20C:
pp.127-151; July 187¢E.

§--=Myers, G. J.; Software Reliapility Prirciples ard

Practices; John Wiley & Sons; 1976.

€---I2 Roze, B .C.; Special Pr=s=2ntation, Proceedings of the
Managing the Developmernt of wWesrvons System
Scftware Conference;j pp.4-2 - 4~12; May 187¢.

7---=M111s, H. D.; "Software Developmert”; IEEE Trarsactiors
orn Software Engireering; Lecember 187€.

g---Van Tassel, D.! Program Stvle, Tesign, Ffficiercy,
Debugging and Testing; Prentice-Halli 1978,

9---Boehm, B.; “Software Enginesring Education, Some
Industry Needs , Software Tregineering ¥Fducations’
Wassermarn, A, and Freerar, P. (Faitors);s
Sprirger-Verlag; New York, 16€7.

12--Daly, E. B.; "Maragement of Scftware Developreni ; ITEE

Transactions on Software Engineering’ pp. 228-24Z2;

May 1977,

11--0xman, S. %.; The Testing of the TRIDENT Command and
Corntrol System ; Ligest for the Workshop on Software
Testing and Test Docurentations TD. 284-298;

December 1978,

12--Tausworthe, R. C.; Standardized Development of Computer
Software (Part [T Fetnods; Part II, standards); Jet
Prooulsion Laboratory, Californiea Institute cf
Techrnology; Part I, 1976: Part II 1G78.

13--McCall, J. A.; "The Utility of Software Quality Metrics
in Large-Scale Software System Levelopments. Secord
Software Life Cyzcle daragement Workshori ©pD.
191-194; August 21-22, 197€.

l4--Stewart, S. L. (Fditor); Corcepts in Quality Software
Design 3 NBS Techrnical Note £&42; U.S. Governrent
Printing Office; 1974,

18--Swanson, 2. 3.5 “The Dimensions of Maintenance';
Proceedings 2nd Irternatiornal Conference or Softwars
“rneineering? pp. 492-4Q7; 197€.

16--Cannirg, 1R. G., (Fditor); "That Maintenance ‘Icebdere’’;
ELP Analyzer’ Qctoper 1972,

17--X1ine, M. 3, "Software §& Fardware BR&M: VWhat ars the
Differences? § Proceedings Annual Reliability and
Maintairability Symposium; I®EE; pr. 175-185; 1950.

18--Marley, J. H.; “Sortware Life Cycle Managemant: Dynamics
Theory 5 Seccnd Software Life Cycle Manazemernt
Workshops pp. 7-23;5 August 2i-22, 1378.

19--Brown, J, R.; "Mcdeling, Measuring and Managing Software
Cost 3 Second Software Life Cycle Managerent
¥orkshop; pp. 47-51; August 21-22, 1978,

2@--tcHenry, R. C. ard Walston, C. E.; "Software Life C(Cycle
Management: Weapons Process Tevelotver ITER
Transactions or Software Engineering; pp. 334-344;
July 1978.

21--U.S. General Accounting Office; Report to the Cecngresss
Problems ir Developine the Advanced Logistics
System. Report Number LCL-75-121; 17 June 1576,

22--Cave, W. C. and Salisbury, A. B.: "Controlling the
Software Life Cycle - The Project Management Task ;
IEEE Transactions on Software GEngineering; pp.
X26-334; July 1978, -

23--Cooper, J. D.; "Corporate Level Software Management';
IEEE Transactions on Software Engineerirg;: pp.

519-3255; July 1978,

e e e
V. i

24--MITRE Corporation. DoD Weapons Systems Software

Acquisition arnd Manazement Study ; MTHR-€ECQE; Vo. 1}
June 1975. (TLSIE Accession No.: LD 38652A)

25--Xossiakoff, A., etal.; Dol Weapor System Scftware
Management Study ;5 Avplied Physics Lavoratory, rne
Johns Hopkins UnTversity; Report SR-75-3; June 1575.
(DTIC Accession Number: AT-Ag22160)

26--Assistant Secretary of Defense; Tefense System Software
Management Plan ¢ Mar 197€. (DTIC Accession No.: AD
A@225E88)

27--Stanfield, J. R. and Skrukrud, A, M.; Software
Acquisition Maragement Guidebook, Software
Maintenance Vvolume § Systems Developrent Corp.;
TM=-B772/004/02; Nov 77. (DTIC Accessiocn Number:

AD-APS32240)

28--Bersqrf, E. H.; FHenderson, V. D.; and Siegel, S. G,
Software Configuration Marnagemert: A Tutorial
Computer; pp. 6-14; January 1679.

-e we

29--De Roze, B. C. and Nyman, T. E.; "The Scftware Life
Cycle: A Management and Techrological Challerge 1in
the Department c¢f Defense ; IEEF Transactions on
Software Engineeringi Vol SE-4, No. 4; pp. 309-216;
July 1978,

30--Schneidewind, N. F.; 'The Applicavility of Eardware
Reliability Prirciples to Computer Software ;
Scftware Quality Management; Petrocelli Pooks; pp.
171-181% 1979,

Zl--Fein, R.; Survey of Software Development Technology at
the Naval Surface Weapons Centery lahlgren
Laboratory, Dahleren, Va.; July 1976. (LTIC
Accession No.: AD A227451)

32--Pariseau, R. J.} Improved Software Productivity for
Military Computer Systems Through Structured
Programming » Repert NADC-7€444-57; Naval Air
Development Center; 12 March 1976.

33--Di jkstra, E. W.; Programmirg Considered as & FHurmen
Activity ; PFProceedings of the 1IFIP Corgress: pp.
213-217; 18€%.

o) A Fiscivoline of Prozgrarrinz;
v 1976.

34--T1 jkstra, K. 3
Prentice-Hall

1g0

y Lozical Construction of Prozrars
Nostrand ReinhclId Co.7 13974.

3E-=-Warnier, J.
(L.C.P.) Va

D.
r

3€--Jackson, M. A.; Prirciples of Progrem Tesipgni Academic
Press; 1875.

3?-=Yourdor, E.; Technicues of Prozram Structure anc [esign’
Prertice-Hall; 1397%.

38--Lanl, €. J., Tijxstra, E. W., anéd Boare, C. A. R.}
Structured Prozrarminz; Academic Press; 1272.

39--McGewan, C. L. and Kelley, J. R.:; Touv-Down Structurei
Programming Techriguess; Fetrocelli/Charter; 13975,

4¢2--Jensen, R, W, and Tonies, C, C.? Softwar2 Fngireering;
Prentice-Eall, 1979.

41~-¥irth, N.; "On the Composition of Well-Structured
Programs 7 ACM Computinz Survevs; Tecember 1674,

42~-McHenry, R. C. ard Rand, J. A.; "Software Technolozy and
System Integration 3§ 2nd Software Life (Cycle
Managemernt VWorkshops pp. 77-80; 20-22 August 1578,

43--McHenry, R. C. and Rand, J. ALy Intesgraticn
Eregineerine: Ar Approach to Rapid Syster
Teployrent ; FSD 77-0179; 1BM; 1377.

44~-McHenry, R. C. ard Rand, J

. Software Technelogy and
Integration ¥ngineerine

AT
3 ¥SD 78-g¢34; I3M; 1377,

45~-Meyers, G. J.7 Compcsite Design: The Design of Medular
Programs; Technical Report TRZ0.24865 1BM; January
29, 1973.

46--McGowan, C. L.; and McHenry, R. C.i Software
Managerent ; Research Directiors in Software
Technologyy» MIT Pressy np. <87-2557 1979.

47--%ohm, I. and Jacopini, G.; "Flow TLiasrams, Turirng
Machines and Langueges With Only Two TFormation
Rules ; Communications of the ACM; May 19€€.

48--Buxton, J. N.. and Randel 3, (Editors); Software
Fngireering Technigques’; Revort on a Conference
Sponsored by the Nato Science Committee, Rome,
Italy; 27-31 October 1963,

49--Glass, R. L. Sof tware Reliability Cuidebcok;
Prentice-Hall; 1979.

)

5@--Fisher, D. A.; The Interaction Retween the Prelimirary
Designs and the Techrnical Requirements for the Dol
Common High Order Language 3 Proceedings «c¢f 3rd
International Conference on Software Engineering;
PP. 82-83; 12-12 May 1978,

51--Glass, R. L.; From Pascal to Pebblemar arnd ©PReyond ;
Latamation; ppr. 146-15@; July 1979Y.

¥.; 'On the Green Larguage Sutmitted to the

52--TLi jkstra .
IGPLAN NOTICES; pp.16-21% October 1978,

, ¥
Dol 3 S

53--Hurwitz, J. and Xlnucan, P.; "ADA"; Mini-Micro Systems;
Tecember 1979.

S54--Bowen, J. B.; A Survey of Standards ard Propesed

Metrics for Software Quality Testing § Cemputer; pp.
I7-4237 August 1876,

55~--Canning, R._ G., (Fditor); “The Productior of Better
Software ; EDP Analyzer?! Fedbruary 1979.

56--Miyaroto, I.; "Rellability Evaluation and Managerert for
an Entire Software Life Cycl2 ; Second Scftware Life
Cycle Management Workshop?! Ppp. 185-2¢8; August
21-22, 1578,

57--Glasser, A. L.; "The Evclution ¢f a Source Code Control
System ; Procesdings of the Software Quality and
Assurance Workshops; ACM; pp. 122-122; 1576&.

58--Josephs, ¥. E.; "A Mini-Computer Based Library Corntrol
System ; Proceedings of the Software Quality ard
Assurance Workshop; ACM; pp. 128-1227 1I57E,

59--1BM Federal Systems Center; Documentation Starndaris ;
Structured Preogramming Series; Vol. VII ;7 USATFT RAIDCS
July 1972, (LTIC Acrcession Numbers: AIL-AQCSE39 arnd
AD-AQ16414)

6¢--Chapin; "Flow Charting with the ANSI Standard: A
Tutorial, ACM Computirng Surveys; Jure 13872.

61--Rrooks, F. P. Jrh The Mythical Man-Mcnth ¢
Addison-Wesley; 1875.

€2--Aron, J3 The Program Pevelopment Precess, The
Individual Proerammer; Addison-Wesley; 1974,

63--Weinberz, G. M.; The Psyzhology cf Corputer Prograrming;
Varn Nostrard Reinhold Co.3 1971.

182

SO

cieabhia

iR o ekl L ekl A

PPN

64--Schneiderran, Mayer, McKay and Heller; “Experirental
Investigation of the Utility of Detailed Flow Charts
in Programring ;5 Communications of the ACM; June
1977.

65--1BM Ccrp.; HIPO - A TDesign Aid and TCocumentation
Technique; GC2¢-1851-1; 1974.

€6--Anderson, G. E. and Shumate, K. C.; "Dogumentation Study
Proves Utility of Program Listings § Computerworld;
May 21, 1979.

67--Pooch, U. W.; “Translation of Tecision Tebles’; ACM
Computing Surveys; pp. 128-1F1; Jure 1974.

68--Xeller, J. F. and Roesch, R. ¥W., Jr.; A Tecision Logic
Tadble Preprocessor Masters Trhesis, Naval
Postgraduate Schocl, Monterey California; June 1877.

69--Fisher, D. L.; "Data Documentation ard Lecisior Tabdbles ;
Cormunications of the ACM; pp. 26~31; January 1986.

7¢--Yoder, C. M. and Schrag, M. L.j "Nassi-Shreidermar
Charts = An Alternative to Flowcharts for Design ;
Proceedings of the Software Quality and Assurance
Workshopsy ACMy pp. 79-867 1978,

71--Knuth, D. E.; ~Computer Programming AS an Art }
Communications of the ACM; pp. 667-67Z; Tecember
1974,

72--Wegner, P.; “Introduction and Overview"; PResearch
Directions in Software Technolcogy?! MIT Press; vp.
1-367 1973.

73--Lientz, B, P. and Swanson, E. R.; Software Maintenance
Maregement; Addison-Wesley'! 198¢.

183

i

T I v] 7ttt S 9 AP b2 I RV a0 ‘g —— - v

INITIAL LISTRIZUTION LIST

Ne. Cepies

o

1. Tefense Technical Information Center
Cameron Station !

Alexandria, Virginia 22314

2. library, Code 2142 2
Naval Fostgraduate School
Monterey, Talifornia 3893%4¢

3. Lepartment Chairman, Code E2 2 i
Computer Science Department :
Naval Posteraduete Schoonl]
Monterey, California 93394¢

4, Trofessor Norman F. Schneidewind, Code E4Ss 1
Computer Science Department
Naval Fosteraduate School
vonterey, California 93947

5. Professcr Melvin B. Kline, Colde 54Yx 1
Adrinistrative Sciences lepartment
Naval Posteraduate Schonl
Monterey, California 333492

6. Asscciate Professor E. J. Carey, Code 52Ck 1
2 Computer Science Depertment
Naval Fostgraduate School
vonterey, California 9394¢

7. Assistant Prcfessor 1. Cox, Code £2C1 1
Computer Science DPeparirment
Naval Postgradvate School
Monterey, California 93348

8. Major Russell! D. Pilcher, USMC 5
128 South 2nd East
Faysville, Utan £4¢2Z7

9. 1Iieuterant Mark Moranville, USN 1
Naval Electronics Systems Erzineering Center
Sar Diezn, California 2Q21¢1

