
159l~ NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 9/2
TECR NIQUS AVAILABLE FOR IMPROVING THE MAINTAINABILITY OF DOD M-ETC(U)

. A JN S0 R D PILCHERUNCLASSIFIED llffflll lf lll
Sl SFlfffflllllffffmhElllEEEllll hE
IIIIIIIIIIIIIu
-EEIIIIIIIE-E
IEEE---III
-- El..-lI~

NAVAL POSTGRADUATE SCHO4
Monterey, California

T-1

7.!. THESIS
• I QUrS VAI.ADL3 FOR MPOVING TI ,

/?AINTAIA BILIT.T-OF DOD WEAPON SYSTMOFTWARE,

Russell %/Pilcher 1- • ' -'

//Jun980

Thesis Advisors N. F. Schneldewind

Approved for public release; distribution unlimited

C-)
14_

C-3

Cm~ /

SCCuUIT'v CLASSIFICATION or THIS 0409 (Who 0404 Efseee

NEM~f DM ENTAIOM ACERZAD INSTRUCFTiOnS

iREPORT MU11911 12 G ACCESSIONM ISO 11 RCIVI9NYS C -ATALOG NUMBER

4. T TLEa (And S"414111) I. TYPE or REPORT & PERIOD COVERED

Techniques Available for Improving the Master's Thesis;

Mantainability of DoD Weapon System Software June 1980
4 0. 11FmpNINsmONG. REPORT kuMOER

7. AUTHsOR(@) 4. CONTRACT 00 GRANT NMUER901(d

Russell Dean Piloher

S. PERFORMING ORGANIZATION NAKE AND ADDRE8S 1 0. PROGRAM CLEMENT. PRO1JECT. TASK

Naval Postgraduate School AREA 6 WORK UNIT sUM09RS

Monterey, California 93940

I I C110TROLLg110 OFFICE MNA ND ADDRESS 12. REPORT DATE

June 1980Naval Postgraduate School I.NMSRO AE
MotryICaliforia 93940 184UNE P AE

14, MOITORIG AGECY "&a IORt SI 110fisoferam foono CosnseMooj 0#0410) IS. CUIYLAS(ainooot

Naval Postgraduate School Ucasfe
Montereyp California 93940 IS& 11 gcAUG$, ICATION/ DOWNGRADING

16. DISTRUTION STATE9MENT (of oft$@ Report)

Approved for public release; distribution unlimited

17. OgSTRINUTION STATEMENT (ofth IAbsrat.pe sofoue InI Moll 20, it ofeuil0011 upees01)

t*. SUPPLEMNHTARY NOTES

19. KEY WORDS (Cesue"u. an Fee a ide of Me0Wand usE eeefep or kf.44 nm.) It

Software Maintenance; DoD Software; Tactical Software; Software Management;

Software Quality

20. A8%TRACT (Coen, an Meme aide of "04000dry f id as,5'V oh 1660

Problm associated with the production and operational support of DoD

weapon system software are examined. Emphasis is placed on identifying

techniques that are currently available for Improving the maintainability

of this software* A discussion of the software life cycle, structured

programnming methodologie. use of high order languages, and.-documentation

DD 1473 Ets Ti ON OP I NOV 68 IS OISSOLETER

(Page 1) S/n 0103-014- 0401 SECURITY CLASSIFICATION OF TIS WAGE (M40 oe ... 5.e

...

requirements for software is included with a review of applicable

DOD policies. Among the conclusion. is that there existsa &ocitical

need to recognize maintainability as a primary design objective
for DOD weapon system software.

-C C- -

DD 1173K

__________________GP ___________&Wefftfftd

MEW~6*~6YO ~y~ a6~m o oed

Approved for public release; distribution
unlimited

Techniques Available for Improving the
Maintainability of DoD Weapon System Software

by
Russell D. Pilcher

Major, United States Marine Corps
B.S., Utah State University, 1969

Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1980

Author: e

Approved by:

Thesis Advisor

Second Reader

_r t of Computer Science

Dean of Informat n and Policy Sciences

3

ABSTRACT

Problems associated with the production and operational

support of DoD weapon system software are examined. Emphasis

is placed on identifying techniques that are currently

available for improving the maintainability of this

software. A discussion of the software life cycle,

structured programming methodologies, use of high order

languages, and documentation requirements for software is

included with a review of applicable DoD policies. Among the

conclusions is that there exists a critical need to

recognize maintainability as a prirary design objective for

DoD weapon system software.

4

TABLE OF CONTENTS

I. INTRODUCTION *..............

A. NEED FOR IMPROVED SOFTWARE MAINTENANCE S

B. PURPOSE AND APPROACH 11

C. DEFINITIONS 13

II. T3E SOFTWARE LIFT CYCLE 20

A. SOFTWARE LIFE CYCLE MODELS 20

B. MANAGING THE SO TAR LICF CYCLEF 26

1. General 26

2. DoD Manapement Policies 30

a. Design Reviews I.............. . 31

b. Configuration Management 31

3. Software vs Hardware 35

III. DEVELOPMENT ISSUES FOR IMPROVED MAINTENANCE 37

A A. GENERAL 37

-1. STRUCTURED PROGRAMMI NG 37

1. Top-down esg.........3

2. Modular resign41

3. Structured Coding 44:

C. LANGUAGE CONSIDERATIONS.......................... 50

1. High Level vs Assembly Level Language 50

2. DoD's Use of High Level Lanruae 55

a. Standard High Level Languages 55

5

b. A DA e........ .e...a.e 55

c. Navy's Use of CMS-2 9-57
C7

3 Pa t c go.... o 6 e 0 4 • 6 6 e o e o a o * 6 * 4-3. Patching* ***** ". 5?

D. AUTOMATED AIDS..... ... o *.............. 58

IV. DOCUMENTATION FOR MEETING MAINTENANCE ROUIPIEMENTS....61

A. GENERAL 61

P. MAINTENANCE DOCUMENTATION STANDAPDS 63

1. Program Maintenance, anual 63

2. Combat System Program Description Documents...64

C. ALTERNATIVES FOR REPRESENTING PROGRAM STRUCTURE...64

1. Flowcharts 64

2. Hierarchy Plus Input-Process-Output (EIPO) 73

3. Decision Tables 76

4. Nassi-Shneiderr.an Charts 80

5. Program Llstings............... 85

6. Summary.. 87

V. SOFTWARE MAINTENANCE POLICIES WITHIN DOD 89

A. ACKGROUND 89

3. CURRENT POLICIFS 90

1. MIL-STD-483 (USAF) 90

2. MIL-STI-52779 (AD) 90

3. SECNAVINST 3560.1.91

4. DODDIR 5000.29 91

5. MIL-STP-1521 (LSAF) 91

e. DODINST 5000.31 * 92

7. MIL-STD-16?9 (NAVY).. 92

• oo o o e oo o • eooe •oo 6

C. SURVEY O DOD MAINTENANCE ORGANIZATIONS 92

1. Pacific Missile Test Center 93

2. Naval Ocean Systems Center 94

3. Naval Surface Weapons Center 94

4. Naval Air Development Center 96

5. TACFIRE Software Support Group 97

6. Marine Corps Tactical System Support Activity.99

D. RESEARCH TO IMPROVE SOFTWARE MAINTENANCE 10e

VI. CONCLUSIONS AND RECOMMENDATIONS 1Z2

APPENDIX A - Program Maintenance Manual 105

APPENDIX B - Combat System Program Description Grour 11

APPENDIX C - Standards and Conventions for Use of the
CMS-2 Language 152

APPENDIX D - Program Planning Summary 177

LIST O RE EREACES 178

INITIAL DISTRIBUTION LIST 1P4

I. INTRODUCTION

A. NEED FOR IMPROVED SOFTWARE MAINTENANCE

On 9 November 1979 the North American Air Defense

Command Headquarters in Colorado received an alert of a

Soviet missile attack [1]. Fortunately, wilhin 6 minutes it

was determined to be an apparent computer malfunction but

not before 10 U.S. and Canadian Interceptors took off from

their bases. While not triggering the nuclear holocaust that

looms over the modern world, such an event at least shatters

the confidence of many individuals in Department of Defense

(DoD) computer systems.

Articles, such as the one appearing in the San Francisco

Sunday Examiner [2], which highlight a wide variety of large

scale, expensive DoD computer system failures and refer to

Federal Computer Systems as a "multi-billion-dollar

quagmire" do little to corvince the public that DoD

personnel are capable of designing, developing or

maintaining complex computer systems.

Ample examples Illustrate that software in DoD computer

systems is the main culprit behind these highly visible

failures. Since it appears unlikely that complex, weapon

system software will be produced error-free in the

foreseeable future, the maintenance of this software takes

on a critically important role.

8

.......

Besides the ramifications that non-maintalnable software

brings, the cost associated with the software life cycle is

cause for increasingly serious concern. In fact, a Defense

Science Board Task Force on Technology Base Strategy [31,

composed of members from industry, medicine, government and

universities, concluded that the cost of software has become

a national problem and is of particular concern to DoD.

When costs associated with weapon system software are
more closely analyzed, it is found that maintenance

activities account for a large percentage. The Rome Air

Development Center gives the figure of up to seventy percent

[4]. Actual projects can be used for illustration. For

instance, SAGE, a military defense system, had an averaRe

software maintenance cost of approximately 20 million

dollars per year after 10 years of operation, compared to an

initial development cost of 250 million dollars [5]. De Roze

[6] explains that Air Force Avionics software costs around

$75 per instruction to develop, but the maintenance for this

software costs around $4,000 per instruction.

These large percentages for software maintenance costs

can be confirmed by examples from industry. Mills (71 noints

out "in only 25 years 75 percent of data processing

personnel are already taken up with maintenance, not

development." On the IBM operating system, IBM 36e OS,

approximately four times as much time was spent on

maintenance as on development [8]. Boehm [9] reports that "a

9

recent analysis of software activities at General Motors

indicated that about 75 percent of GM's Software effort goes

into maintenance, and that GM is fairly typical in this

respect of industry at large.

There are indications, that maintenance problems are

compounded for real-time system software. Daly [101, for

example, found that programmers were able to maintain only

one-fourth to one-third as many instructions of on-line,

real-time programs as other type software.

The study of software maintenance becomes so Imnortant

because of the need to keep PoD real-time, weapon system

software operating as error-free as possible ard the need to

check the escalating cost associated with modifying this

software that the study of software maintenance becomes so

important.

The software associated with the U. S. Navy's new

TRIDENT class submarine, known as the TRIDENT Co~n'and and

Control System (TRIDENT CCS), is a current, real-time weapon

system software project that provides an interesting and

beneficial example for illustrating the need for weapon

system software maintenance activities.

The original source code was written in the Navy's high

order language (HOL), CMS-2. Even though this code was

generated by highly experienced software engineers and,

according to Oxman [ii], "was of a very high caliber and

quality", the maintainability of the CCS software has becor-e

10

a matter of concern. In part, this is a result of the way

software errors found during the integration test and

evaluation stages were corrected. Logic fixes were appliel

directly via the object code rather than by using the source

code. Now the TRIDENT CCS has over thirty-five thousand

words of object level only code. An effort is currently

underway to improve the maintainability of the TRIDENT CCS.

B. PURPOSE AND APPROACH

The purpose of this thesis is to evaluate available

maintenance techniques that are applicable for use with DoD

weapon system software such as the TRIDENT CCS. This

evaluation is based uDon the current state of the art as

discussed in the technical literature and existing DoD

policies. Where possible, actual TRIDENT CCS software has

been used to provide a realistic example for comparing

various maintenance techniques.

The approach used will be to present in the next

chapter, Chapter IT, a discussion of the overall software

life cycle illustrating the relationship maintenance has to

the various life cycle phases. Software life cycle

management methodologies useful for obtaining improved

software maintainability will be ircorporated, such as the

use of design reviews and configuration management. Some

significant differences between software and hardware

acquisition will also be included.

11

Chapter III covers the techniques that must be applied

during the development phase of the software life cycle, for

obtaining more maintainable software, specifically, the use

of structured programming methodologies, use of high order

languages, and automated aids.

Chapter IV addresses the important issue of software

documentation. A full set of applicable Dor documents used

to support the maintenance of weapon system software is

identified. Emphasis, however, is placed on comparing those

techniques that are currently available for representing the

program logic to the maintenance programmer: flowcharts,

hierarchy plus input-process-output (HIPO) diagrams,

decision tables. Nassi-Shneiderman charts, and program

listings.

Chapter V concerns specific software maintenance

policies within DoD. This includes an identification cf the

current directives, instructions, and standards that impact

on weapon system software maintenance; the results from a

limited survey of sore DoD organizations that are involved

in software maintenance activities; and trends that exist

for research in the area of software maintenance technology.

Finally, Chapter VI contains conclusions and

recommend at ions.

12

...........-, --

C. DEFINITIONS

.efore any further discussion, exactly what is meant by

the term "software maintainability" should be made clear.

Unfortunately, there is no universally accepted definition;

therefore, some perceptions from various authors will be

presented.

Myers (5) lists maintainability as one of ten major

categories of software objectives: generality, human

factors, adaptability, maintainability, security,

documentation, product cost, schedule, efficiency and

reliability. It is important to understand the relationships

among these categories so that appropriate tradeoffs can be

made during the process of software development. Ee explains

that maintainability and adaptability are closely related

and that both are compatible with obtaining software

reliability. The definition presented for "maintainability"

is that it "is a measure of the cost and time required to

fix software errors in an operational system. The

associated term, "adaptability", is defined as "a measure

for the ease of extending the product, such as adding new

user functions to the product."

More formalized definitions are offered by Tausworthe

(121:

Maintenance: alterations to software during the post
delivery period in the form of sustaining engineering or
modification not requiring a reinItiation of the
software development cycle.

13

Sustaining Engineering: Software related activities in
the post-delivery period, principally supportive in
form, which keep that software operational within its
functional specifications. . . The holding or keeoinR of
software in a state of efficiency or validity despite
interface fluctuations in system, subsystem or
applications capabilities.

Adaptation: Modification of existing software in. order
that it may be used as a module in a program
development, as opposed to developing another module for
that same purpose.

Modification: The process of altering a program and its
specification so as to perform either a new task or a
different but similar task. In all cases, the functional
scope of a program under modification changes.

Figure 1-1 [131 is a chart that brings rany of these

similar terms together as they are related to the more

general concept of software quality. It illustrates what

attributes are associated with each of three factors of

software quality (operation, revision, and transition).

Notice that maintainability is listed as an attribute

associated with product revision.

MAINTAINABILITY- PORTABILITY - WILL I BE ABLE TO USE IT
CAN I FIX IT? ON ANOTHER MACHINE?

FLEXIBILITY - ? REUSABILITY - WILL I BE ABLE TO REUSE
CANI CHANGE IT? Po SOME OF THE SOFTWARE?

TESTABILITY "I NTEROPERABILITY - WILL I BE ABLE TO
CAN I TEST IT? / INTERFACE IT WITH

/ ANOTHER SYSTEM?

PRODUCT OPERATIONS

CORRECTNESS - DOES IT 00 WHA I WANT? EFFECIENCY - WILL IT RUN ON MY HARDWARE AS
RELIABILITY -DOES IT 00 IT ACCURATELY ALL THE TIME? WELL AS IT CAN?

USABILITY - CAN I RUN IT? INTEGRITY - IS IT SECURE?

Figure 1-1. Software Quality [131

14

Yet another attempt to provide a relationship among the

various factors in quality software is given in Figure 1-2

[141. The factors are categorized into two classes: (1)

measurement of what is quality and (2) control over software

production to ensure that quality is obtained. Note that

maintenance falls under flexibility which in turn falls

under the measurement of what is quality.

15

0
"4

*1I
"4

fj* 0

6.

8 ii
L~J

"4

1 0 I
S

*1
S

q4
A

- 0U 0~

"4 s~ 4 s
"4
"4
.0

"4 I
N

= "4 14
"4 ".4

011w 35.4

0
"4

3

~ g

Swanson (151 has attempted to provide a basis for an

understanding of the "dimensionality" of the maintenance

problem. He feels it is Important to distinguish between

types of software maintenance activities. le categorizes

maintenance into three major types: corrective maintenance,

adaptive maintenance, and perfective maintenance. Corrective

maintenance is performed in response to failures such as the

abnormal termination of a program or the failure in meeting

performance criteria. Adaptive maintenance is performed in

response to changes in environments such as the installation

of a new generation of system hardware. Perfective

maintenance is performed to make the program a more perfect

design implementation such as to improve processing

efficiency or to add new fedtures.

It is interesting to note that there are proponents for

dropping the terminology "software maintenance" altogether.

The TDP Analyzer [161 suggests a better name for

maintenance type activities would be production-

programming." The contention being this would help alleviate

the stigma that maintenance is technician level rather than

professional level work. Kline (17] arues that

misconceptions about software reliability and

maintainability have been, to some extent, due to

inappropriate terminology. In order to minimize confusion

with hardware maintainability, he suagests replacing the

17

term "software maintainability" with the more descriptive

term "software configuration management."

It is evident that no standard terminology exists for

this area. Rather than pursue the search for even more

definitions it will simply be stated that software

maintainability, as used in this thesis, will refer to the

degree a software preduct facilitates updating to satisfy

new requirements or modification to correct mistakes

(adapted from [41).

The tools and techniques that currently exist for

producing more maintainable software are addressed next.

Throughout the remaining chapters it should be kert in mind

that, while specifically addressing software maintenance,

the principles presented are generally applicable to the

many other nuances of successfully accommodating changes to

software (e.g., portability, flexibility, adaDtability).

Also, it is extrerely Important to be aware that there

are a variety of parameters which can be used to measure the

quality of a software product, as the previous discussion

has illustrated. An attempt to optimize one parameter is

often at the expense of other parameters. For example,

optimizing the maintainability of software may be at the

expense of develorment schedule or, conversely, and what

appears to have been a common pitfall of past projects, to

optimize development schedule may be at the expense of

subsequent maintainability. These opposing objectives must

18

be understood and appreciated by all levels of irianagerent

b tefore tradeoff decisions are m'ade.

.1.9.

II. TE! SOFTWARE LIFE CYCLE

A. SOFTWARE LIFE CYCLE MODELS

The first step in studying techniques associated with

raintainability of weapon syster software is to exarine all

the phases through which software transitions prior to and

including the operational point where maintenance is

performed. This is commonly called the software life cycle.

It is important that this is understood, because the

decisions made throughout the earlier phases will ultimately

affect the software's maintainability. Unfortunately, as

opposed to hardware, there Is no universal agreeirent on the

phases of the software life cycle, with well-defined

boundaries, so several models will be discussed in order to

provide a broader understanding.

The first software life cycle model discussed will be

one proposed by Manley (le]. This model is only a slight

modification of the already well-understood DoD system life

cycle, as presented in DOD INST 5G00.1. and as shown in

FIgure 2-1.

One advantage of using this model is that the

terminology appearing in existing DoD documents need not be

replaced but simply modified. A disadvantage is that it does

little to illustrate the interrelationships that exist among

the various phases.

20

An interesting conclusion reached In Manley's report is

that one software life cycle model applies equally to all

types of software. This includes both weapon system software

as well as automated data ?rocessing software. The report

recommends that further research be conducted in order to

add conceptual detail to the individual life cycle subphases

and further recommends that research efforts should be

concentrated on the support phase where maintenance is

performed.

DEFENSE SYSTEM SOTWARE
LIFE CYCLE LIFE CYCLE

MAJOR PHASE SUIPHASE

Requi rements
Definition

Conceptual

Requirements
Validation

Validation Validation

Full-Scale Full-Scale
Development Development

Production Production

Debugging

Deployment

Fine tuning

Maintenance

Support

Modification

Figure 2-1. Software Life Cycle Model (1E1

21

Brown (191 provides a Pood contrast of two views of the

software life cycle. One view as a fixed sequence of the

following events and the other, more accurate view, as a

complex and highly dynamic interaction of the following

events (see Figure 2-2):

1. Concept (Requirements) Definition
2. Detailed Requirements Specification
3. Preliminary Design
4. Detailed Design
5. Code and Debug
6. Checkout
7. Test planning
8. Test execution
9. Test evaluation
10. Acceptance and Use
11. Maintenance (Modification) and Re-test

While Figure 2-2 represents the interrelationships among

the phases of the software life cycle, it overly si.rplifies

the importance of the maintenance phase (node 11). This

botto looD really illustrates what should be considered as

a mini-life cycle which would include many of the same

phases and interrelationships shown by the previous nodes.

22

Figure 2-2. "Sequential' View and a 'More Accurate' View
of Software Production [191

Sequential More Accurate

1 Concept Definition 1

2 Specification 2

3 Preliminary Design 3

4 Detailed Design 4

5 Code and Debug 5

6 Checkout 6

7 Test Planning 7

8 Test Execution 8

9 Test Evaluation 9

10 Acceptance 10

11 Maintenance 11

23

McHenry (20] describes weapon system software life cycle

management from a contractor's perspective. He states that

today's procurement processes still use the traditional life

cycle model consisting of the sequential steps of "define,

design, develop, integrate, test, and operate. After

evaluating four different procurement strategies being used

for the procurement of weapon system software today, he

concludes that this is not a satisfactory way to envision or

to manage the software development process. The deployment

and operation phases of the software life cycle, where

maintenance becomes a key issue, are said to be often

overlooked or neglected because of the pressures and crises

which occur during the development phases. To compound this

problem, there is a tendency to epply low skill persons to

maintenance" tasks.

Ee recommends more emphasis be placed on software design

so that the product is less costly to maintain and advocates

the use of, what he terms, readiness management (planning

for change) by doing such things as conducting exercises

where simulated modifications occur.

The software life cycle model described by the Rome Air

Development Center (4] seems to accurately model the

software life cycle (Figure 2-3).

24

• - ,

NEW SO WRE
SDTM RJ[QU It METS

STSiO m uOmm.s To swvlMuK Pm.T-I Spes

AIMLYSIS CPMAIES TO SOFTWAE PART-l SPECS'

PRT-I Spes,

SOFTWARE)4U~ T 5

PU-5ARIl S

CODING A

CHECKOUTi AR

SR ED r CT rPT MC

DELIVERED SOFTWARE

CyUS To I STALLATION
HA RDWARhE (PRODUCTIONI

I MSTALLED PROGRAM

DETECTION

REPERT DEFENSE RDE SOFTWANRE
HARDWAR FAD r REQIREMENTS

IAN WNE PILT HARGS TO SOFTWARE
ISLTION PATISPECS

045" TO SOPe1AA[T SOFTWARE CHACES TO SOFTWARE
PAR1'-I SPECS AALYSIS NART-1I SPECS

SOPIHINE

PART- SPCS
CHANIGES TO SOFTWIARE SOFTWARE

PART-Iu SPECS DESIGN
P~lR PR-it SPECS

CANAGES TO PROGRAMS CODIS£
ChCOUT I HAMM4AE

RNt4ATION~

2ED

_OERATION AND SUPPORT- - -
INSTALLAT ION

A A A A A a A AA
SON PON CODt 0T PCA PEA' PON coo* PQT

POT NO? It PONIIALLY NELD

f*0 EAH CI HAS A SEPARATE SET EF SPECIFICATIONS hA SEPARATE REVIESS

Figure 2-3. Software Life Cycle (41

25

Figure 2-3 shows that the process of software

development is highly interactive, as indicated by the

feedback arrows to accommodate new software requirements and

changes to software specifications. More significantly, it

highlights the importance of the operation and support phase

where maintenance is performed through a series of

subphases. Note that these subphases incorporate the same

interactive steps shown for software development: software

analysis, software design, coding and checkout, and test ani

integration.

A variety of models have been presented in an effort to

better understand how maintenance relates to the overall

software life cycle. It must be emphasized that even though

maintenance appears chronologically last it must be properly

considered and thoroughly planned for early in the life

cycle.

B. MANAGING THE SOFTWARE LIE CYCLE

1. General

Now that a conceptual framework has been presented

for envisioning the life cycle of software and highlighting

the importance of the phase where maintenance is performed,

attention is turned to software management considerations.

This is important because the decisicns made by managers of

weapon system software projects will often mean the

difference between whether the final product is maintairable

or non-maintainable.

26

There has been some argument that regardless of what

management techniques are erployed, successful development

of large, complex software projects is not always possible.

For example, an Air Force assessment [211 of why its large,

complex computer system, the Advanced Logistics System

(ALS), failed concluded that "...the ALS is beyond the

software state-of-the-art."

This view is contrasted to one offered by Cave [221.

In an article which describes Droject management methods

used for controlling the life cycle of larpe-scale software

systems, he states ...project failures are generally the

result of improper or inexperienced management and not tne

lack of technical ability." The article goes on to conclude

that successful development of large software systems can be

achieved in a consistent manner.

This thesis is based on the premise that Cave's view

is correct. It further assumes that software rairtenance

problems can be largely avoided If knowledgeable project

management is applied.

Cooper (23] explains that, in the past, one of the

common pitfalls in project management has been that it was

development-oriented and, therefore, rranagerent attempted to

optimize the development process in trying to meet budget

and schedule constraints. This tends to create an initial

design with little documentation, resulting in increased

27

difficulty in maintaining the software and a corresponding

increase in overall life cycle costs.

Another problem with management's ability to produce

maintainable software identified by Cooper was that high

level decision makers lack computer-related experierce.

This, undoubtedly, results from the fact that, as a

discipline, software management is still in its infancy.

While there is no simple series of steps for

managers to follow which will ensure successful development

of maintainable software, experience has revealed some

general policies that appear to help. For example. Daly [10

has reported on his experience in managing developments.

Table II-1 provides a comparison of two approaches. Method 1

is the preferred approach to producing a more

cost-effective, more maintainable software product. Note

that he recommends the application of strict maragement

objectives to guide development.

28

Table IT-1. Software Design Methods (11

Method 1 Method 2

High level language Assembly language

Structured Code Tight Complex Code

Composite design (hierarchy Large blobs of code
of small segments)

Parallel, top-down, bottom Bottom-up design
up design all optionally
used

Simple data structures and Tight, efficient, data
work areas (not) tightly structures and work areas
packed (every bit used, no data

duplicated)

Team approach to design One program - One man
(egoless programming) concept

IMB's structured walk No detailed technical
through for reviewing review of design or code
detail design and code

Three separate teams Original coder tests,
one team design, one integrates and helps
tests one evaluates evaluate his program.

Complete set of hierarchy Detailed flow charts and
charts, sequence charts general narratives,
data maps and narratives, no consistency listing
well commented listings comments

Detailed test plans for all No formal test plans
test phases

Program maintained by 30% Program maintained by
senior programmers inexperienced prograir.ers

or technicians

Only commercial documenta- Extensive, noncommercial
tion generated during technical remorandum, gener-
development ated and placed in library

Strict management No management objectives
objectives established
to guide development

29

2. DoD Management Policies

Within DoD the need for Improving weapon system

software management has been recognized and action has been

initiated. On 3 December 1974 a DoD Software Steering

Committee was established with a charter to identify

critical weapon system software problems and to recommend

policies for their solution.

In support of the first phase, the MITRE Corporation

in conjuction with The Applied Physics Laboratory of Johns

Hopkins University (24, 25], conducted a study of weapon

syster software management. The study concluded "The major

contributine factor to weapon system problems is the lack of

discipline and engineering rigor applied to the weapons

system acquisition activities."

Incorporatine recommendations from this study, the

Software Management Steering Committee formulated a

comprehensive plan comprising policy, practice, procedure

and technology initiatives. This plan was released in March

1976 and is available through the Defense Technical

Information Center [261. Part III of this plan recommends

management policy with the purpose of supplementing

principles put forth in DoD Directives 5000.1 and 5000.2.

The first management policy listed states, Ease of

maintenance and modification will be a major consideration

in the initial design."

30

The policies provided in this plan have the effect

of establishing visibility and management control to weapon

system software. Two important technioues used to ;rovide

visibility and management control are design reviews and

configuration management.

a. Design Reviews

MIL-STD-1521 (USAF) prescribes the requirements

for the conduct of the following technical reviews and

audits on computer programs:

Systems Requirements Review (SRE)
System Design Review (SDR)
Preliminary Design Review (PMDR)
Critical Design Review (CDR)
Functional Configuration Audit (FCA)
Physical Configuration Audit (PCA)
Formal Qualification Review (FQR)

For detailed definitions and specific

requirements for these reviews the reader is referrea to tne

standard. It should be noted that the standard fails to list

requirements to be specifically considered for optimizing

the maintainability of the software. An available software

maintenance guidebook [27] does, however, provide as a

supplement to MIL-STD-1521, checklists of raintenance

considerations for use with the various reviews and audits.

b. Configuration Management

The elements of software configuration

management are configuration identification, configuration

control, configuration status accounting and configuration

auditing. Configuration identification involves specifically

31

identifying and labeling the configuration items at selecte,

baselines during the software life cycle. Configuration

control provides the means to manage changes to the

(software) configuration items and involves three basic

ingredients:

-Documentation (such as administrative forms and
supporting technical and administrative material) for
formally precipitating and defining a proposed change to
a software system.

-An organizational body for formally evaluating and
approving or disapproving a proposed change to a
software system.

-Procedures for controlling the actual changes to a
software system

Software configuration status accounting provides tne

mechanism for maintaining a record of how the software

evolved and where the software is at any current stage of

implementation. Software configuration auditing provides a

means to determine how well the software product matches its

associated documentation.

DoD Directive 5000.29, Management of Commuter

Resources in Major Defense Systems, states:

Defense system computer resources, including both
computer hardware and computer software will be
specified and treated as configuration items.

As part of the proposed requirements assigned to

contractors for the development of weapon system software,

MIL-STD-1679, Weapon System Software Development, states:

The contractor shall establish and implement the
disciplines of configuration management; namely
configuration identification, configuration control, and

32

configuration status accounting. The contractor shall be
cognizant of the requirement for long-term life-cycle
support of the weapon system software. The appropriate
degree of configuration management shall be applied to
ensure completely accurate correlation between
descriptive documentation and the program in order to
facilitate pcst-delivery maintenance by software support
personnel.

MIL-STD-52779(AD), Software Quality Assurance

Program Requirements, further requires that the contractor

provide audits by independent personnel to ensure that the

objectives of the configuration control program are being

attained.

This need for software configuratior ranagerrent,

as reflected In current standards and directives, has been

only recently recognized in DoD. Fortunately, it is now

accepted as an essential task if software maintenance is to

be successfully performed. In fact, as previously mentiored,

Kline [17] proposes replacing the term "software

maintenance" with the term software configuration

management." This highlights the central role it plays in

the maintenance of software.

As Bersoff [281 points out, the Droblerr with

configuration management of software in the past has been

that it fell under the umbrella of configuration management

of the entire system (Figure 2-4). Hardware, being more

visible, has been treated in great detail, but software,

being less mature as well as less visible from a total

system viewDoint, has been largely neglected.

33

ago"

Cmm

Mi litary, Syst ems

PublishedCM 1 Hardware Software ?

Directives/.
Procedures

A System Consists of:
Hardware Item 1
Hardware Item 2

Hardware Item N
and

Software

Figure 2-4. Configuration Management Umbrella [281

34

There is probably no aspect more important to

software maintenance than managing change since software

maintenance is really a matter of correctly applying

changes. Clearly, software configuration management must be

applied to discipline this process. A word of caution,

however, is that the same change control procedures do not

apply equally to all software projects; therefore,

configuration management must be properly tailored to the

organization performing maintenance and to the software

product itself.

. Software vs Hardware

The theme pervading the evolving initiatives for

managing software is to elevate it from an artistic

enterprise to a true engineering discipline, or--to put it

another way--to treat software more like hardware throughout

its complete life cycle (10, 22, 29]. There are, however,

differences between software and hardware that merit

consideration.

A major difference is in the a-air.tenance

requirements. Eardware is maintained primarily by

replacerent of worn or failed coirponents with new ones

meeting the original specification. Software, unlike

hardware, requires that the Droduct specification ard desigr

be changed when maintenance is performed 12e].

Among the differences Schneidewind [3e] has pointed

out are: (1) the passage of time is an important parameter

35

in predicting hardware failure, but has little significance

in predicting software failures and (2) hardware is usually

assumed to have a constant failure rate during its

operational phase as compared to software's variable failure

rate.

Kline 17] has also identified many significant

differences between software and hardware in the area of

reliability and maintainability. Among his conclusions are

that there exist well-established statistical relationships

for hardware reliability and maintainability which is not

yet the case for software.

Because there are many differences between hardware

and software, caution should be applied in using the same

techniques which have been successful for developing

maintainable hardware to development of maintainable

software.

Selectively, however, some hardware management

techniques can be successfully employed for improving

software. Signif-icant examples are the use of design reviews

and configuration management as described in the previous

sections.

36

III. DEVELOPMENT ISSUES FOR IMPROVED MAINTENANCE

A. GENERAL

As mentioned in chapter I, decisions made during the

development phases of the software life cycle will have a

significant impact on how maintainable the software is

during its operational phase. There is little disagreement

on the observation made by Mills [71 that better development

procedures can reduce the need for maintenance. This chapter

is concerned with briefly discussing those "better

development procedures."

B. STRUCTUREr PROGRAMMING

Structured programming is becoming one of the more

promising approaches to reducing the ever increasing cost of

producing and maintaining software. Meyers [5] states that

structured programming will probably be recorded in history

as one of the great steps forward in programming technology.

The Naval Surface Weapons Center [31] and The Naval Air

Development Center [32] are two Navy R & L centers that have

obtained successful results in producirg imprcved quality

weapon system software by using structured prcgramming

techniques.

Professor E. W. Dijkstra, of the University of

Eindhoven, Netherlands, is credited with being one of the

37

L._.-

first to advocate structured programming principles with his

1965 paper [33]. Since 1965, many boors have been published

covering the topic of structured programming [5, 34, 35, 36,

37, 38, 391. A complete review of these works will not be

attempted here, but the following selected items provide a

general overview.

As with the term "software maintenance", no specific,

widely accepted definition exists for structured

programming. Jensen [40] surveys many definitions and

concludes that one proposed by Wirth [411 is the most

accurate: Structured programming is the formulation of

programs as hierarchical, nested structures of statements

and objects of commutation." Meyers [51 gives his favorite

definition of structured programming as "the attitude of

writing code with the intent of communicating with peoDle

instead of machines."

A goal of structured programming is to organize and

discipline the program design and coding process in order to

reduce logic type errors [8] . Three important

characterisitcs of structured programming will serve as the

framework for further explanation: top-down design, modular

design, and structured coding.k,

1. Top-down Design

One characteristic of structured programming is the

use of top-down design. In a very general sense, this

involves first specifying a program in the broadest terms

38

. .. , - - ~~~~*. * ..----------.. ,- , =

and in a step-wise fashion gradually refining the structure

to fill in details. At each step, major functions to be

accomplished are identified, a given task is broken into a

number of subtasks until the subtasks are simple enough to

be coded into modules. If a module requires more than a line

or short paragraph to describe, then the module should be

redefined.

The rationale behind this approach is that the mini

is capable of comprehending only so much at a time and most

problems are too large to be attacked all at once.

Top-down design is illustrated in Figure 3-1 [27]

where successive levels of design provide additional details

of the eventual solution. This approach will provide

visibility to the design which is an important need of the

maintenance programmer.

Top-down development has been described as perhaps

the least appreciated area of modern software technology

[421 and includes much more than the simplified description

just presented. It is a rich and powerful technique for

project implementation and for system integration.

It is interesting to note that an adaptation of tne

top-down approach, conceived by O'Neill in 1972, was used

for the TRIDENT CCS [42, 43, 44]. This was the first time a

top-down design was specified for use on a Navy weapor

system software development project [25].

39

OPERATING

1:7
EI VAl0 T I

S ~ ~ ~ ~ P NOSINJSAEIJ I*IRVCS O DJSJAIL A ~ ~ ~ ~ 05 T0RY 5AGEAIN.3 SU S4

LiVE I '. -lLT' O SIULAT V ET

Fiur s-i. T'.Wo D SCCES 1271 TIN

TARGTEDPOIT Na~i$E"40t

2. Modular Design

Another characteristic of structured programming is

modular design. A good description of principles and

practices for module design is provided by Meyers [5]. The

first step, Meyers explains, in designing a module is

defining its external characteristics. This is information

needed by interfacing modules, nothing more, and includes:

module name, function, Darameter list, inputs, outputs, and

external effects. It is recommended that this information oe

located in comment statements at the beginning of the source

code. Only after defining the module's external

characteristics, is design and coding of the internal logic

accomplished.

No hard and fast rules exist for what constitutes

the optimum size for a module. Van Tassel (81 states as a

general rule that modules should contain between 10 and 10

high level language instructions. Meyers [5] gives as a

commonly used limit 60 lines of code. The main point is that

a module should be easy to keep in mind and comprehend. It

should be noted, though, that arograms can increase in

complexity as the number of modules increases.

A goal in using modules is to reduce corplexity,

which improves maintainability. Complexity car arise from

three sources: functional complexity, distributed complexity

and connection complexity. Functional complexity occurs when

a module is made to do too many things. Distributed

41

complexity occurs when a common function has not been

properly identified and separated, resulting in its being

accomplished by many different modules. Connection

complexity occurs when modules interact on common data in

unexpected ways.

Tausvorthe [12] describes two important measures fcr

modularity (originally defined by Meyers [451): module

coupling and module strength. An optimal design for improved

maintainability minimizes the relationships between modules

(minimal connections) and maximizes relationships arrong

comDonents within each module (maximum strength).

Table 111-i [46] shows the various categories of

both module coupling and module strength and ranks these

categories from the best situation to the worst.

42

MODULE COUPLING

Data: all communications between them is via
arguments that are data elements

Stamp: their communication includes an argurent
that references a data structure (some
of whose fields are not needed)

Control: an argument from one knowingly
influences the flow-of-control of the
other, e.g., flag

External: they reference an externally declared
data element

Common: they reference an externally declared
(i.e., common) data structure (some
of whose fields are not needed)

Content: one references the contents of the other

MODULE STRENGTH

Functional: modules perform a single specific
function -- write a record to output
file

Clustered: module is a group of functions sharing
a data structure usually to hide its
representation from the rest of the
system..only one function is perforried
per invocation-- symbol table with
insert and look-up function"

Sequential: module action comprises several
functions that pass the date along--
update and write a record

Communicational: module action consists of several
logical functions operating or some
data--"print and punch a file"

Procedural: module elements are grouped for
algorithmic reasons-- loop body"

Temporal: module functions are all related
in ti.e--" initialization

Table III-i. Module Characteristics [461

43

3. Structured Coding

A third cnaracteristic of structured prograrring is

the use of structured coding. Structured coding is a method

of writing programs which are more easily understood and

maintained. It is based on the fact that arbitrarily large

and complex programs can be written using a small set of

basic programming structures.

3ohm and Jacopini [47] demonstrated that three basic

control structures were sufficient for expressing any

flowchartable program logic (Figure 3-2): "sequence",

selection ("if then else"), and iteration ("do while").

These three control structures are often expanded to include

"do until" and "case" type constructs (Figure 3-3).

MIL-STD-1679, for example, limits control structures used in

programming to these five nasic types.

44

SEQUENCEFT

SEQUE NCE IF THEN ELSE

DOW I LE

O"WHILE"
-PROCESS

T

F

£0 WHILE

Figure 3-2. Basic Cotrol Structures

45

DOUNTIL

PROCESS

F

T

DO UNTIL

CASE

Figure 3-3. Addit'ional Control Structures

46

Meyers [51 provides a list of seven basic elements of a

structured program which should be applied to help reduce

program complexity, promote clarity of thought by the

programmer, and enhance readability of the program:

-The code is constructed from sequences of three basic
elements.

-Use of the GCOTO statement Is avoided wherever possible.

-The code is written in an acceptable style (e.g. use
meaningful variable names, avoid statement labels, avoid
language tricks)

-The code is properly indented on the listing so that
breaks in execution sequence can be easily followed
(e.g. a DO statement can be easily matched with the
statement ending the loop)

-There is only one point of entry and one point of exit
in the code for each module.

-The code is physically segmented on the listing to
enhance readability. The executable statements for a
module should fit on a single page of the listing.

-The code represents a simple and straightforward
solution to the problem.

Often, a program is written with a clear structure but

Is eventually modified by unstructured constructs. Fven if a

bit exaggerated, Van Tassel [a] offers a graphic

illustration showing how a program's original logic can

become completely obscured as the need for changes or

corrections develops (Figure 3-4). Clearly, the maintenanre

of such a program would be extremely difficult.

This illustrates the point that not only the initial

source code should be structured but subsequent changes to

47

t it .--

the code must also follow structured constructs. TRIDYNT CCS

software provides an example of a project that followed a

structured development approach but eventually lost some of

the benefits of structured prograrming by application of

non-structured techniques (e.g., use of patches) [ii].

48

I
Unstructured Structured

IF p GOTO label q 1 IF p THEN
IF w GOTO label m A function
L function B function
GOTO label k 2 IF q THEN

label m ! function 3 IF t THEN
GOTO label k G function

label q IF q GOTO label t 4 DOHILE u
A function H function
B function 4 ENDDC
C function I function

label r IF NOT r COTO label s 3 (ELSE)
D function 3 ENDIF
GOTO label r 2 ELSE.

label s IF s GOTO label f C function
E function 3 DOWEILE r

label v IF NOT v GOTO label k D function
J function 3 ENDDO

label k K function 3 IF s TEEN
END function F function

label f F function 3 ELSE
GOTO label v F function

label t IF t GOTO label a 3 ENDIF
A function 2 ENrIF
B function 2 IF v THEN
GOTO label w J function

label a A function 2 (ELSE)
B function 2 ENDIF
G function 1 ELSE

label u IF NOT u GCTO label w 2 IF w THEN
H function M function
GOTO label u 2 ELSE

label w IF NOT t GOTO label y L function
I function 2 ENDIF

label y IF NOT v GOTO label k 1 ENDIF
J function I function
GOTO label k END function

Figure 3-4. Examples of Unstructured and
Structured Coding [81

49

C. LANGUAGE CONSIDFPATIONS

No single develcpment decision affects the

maintainability of a proorarr more than choosine what

language it will be written in. Some aspects that shoull

influence that choice are discussed in tris section.

1. High Level vs Assembly Level Language

Hopkins [48], in discussing software quality, made

it clear where he stood concerning the use of high level

languages when he stated "The higher level the language used

in programming the better."

Lang (481 provides a brief list pointing out "the

very grave disadvantages of assembly languages:

-Apart from the few who delight in such intricacies, most
people find assembly language programs harder to write,
read, understand, debug and maintain than high level
language programs.

-It provides the poorest conceptual framework for tnbe
prograrmer to express the computing operations he wants
performed.

-It is completely machine dependent, thus requiring any
rachine language program to be completely rewritter when
it is transferred to a different machine.

Glass (49] talks about the enormous benefit of

programming in high order languages both in terrms of

productivity and reliability. He points out that high level

language code requires many fewer staterents than asse-bly

language; thus, there are many fewer chances for errors.

Also, the high level language prograrmer is screened fro! a

whole class of potential error situations related to

50

hardware intricacy since the compiler accomplish-s the task

of makine hardware dependent choices.

To illustrate some advantages in using a high level

language vs an assembly level language, a simple algorithm

has been coded in both the high level language Pascal

(Figure 3-5) and the Intel 9080 assembly language (Figure

3-6). The program Is designed to read an integer from a

console and maintain a runninz total; when a "0" is

presented then the Drcgram is to print out the total.

Although, most programs are more "complex" than these simple

examples, they are helpful in making comparisons between the

use of high level language and assembly language. No claim

is made concerning the elegance of the solutions cr for that

matter the utility of their function.

51

Program ADD;
Var Num~ber, Total:Inte-qer;
Begin

Total :=O

Repeat
Read (Nutrner);
Total:=Total + Num'ber;

Until Number = 0;

Write ('Total= ',Tozal)
End.

Figure 3-5. Intezer Addition Programr Written In~ Pascal

52

TOTAL: DB 0 ANI 01H
NUMBER: DB 0 ORI 0H

ORG 10eH CALL PRINT
INIT: MVI C,60F INR C

MVI B,60E CALL POSCUR
MVI A,00H LDA TCTAL
STA TOTAL ANI OFH

START: INR C ORI 30F
CALL POSCUP CALL PRINT
CALL READ RST 07
ANI OFE POSCUR: MVI A,OCH
STA NUMBER CALL PPINT
LDA TOTAL MOV A,C
LXI H,NUMBER CALL PRINT
ADD M MOV A,3
DAA CALL PRINT
STA TOTAL RET
LDA NUMBFR READ: PUSH B
CPI OOH PTSH D
JZ DISPLY PUSH H
JMP START !VI C,0I1H

DISPLY: CALL POSCUR CALL 05H
MVI A,'S' POP H
CALL PRINT POP D
INR C POP B
CALL POSCUR RET
MVI A,'U' PRINT: PUSH B
CALL PRINT PUSH D
INR C PUSH E
CALL POSCUR PUSH PSW
MVI A,'M' MVI C,e2F
CALL PRINT MOV E,k
INR C CALL 05H
CALL POSCUR POP PSW
MVI A,=' POP H
CALL PRINT POP D
INR C POP B
CALL POSCUR RET
LDA TOTAL END
RRC
RRC
RRC
RRC

Figure 3-6. Integer Addition Program Written In
Intel 8080 Assembly Code

53

Perhaps the most striking difference is in the

program length. For the nigh level lanzuaze program only 10

statements were used. This compares with 82 statements for

the assembly language program. Another significant

difference is in readability. The high level language

statements are more English-like (e.R., Begin, End, Repeat,

Until, Read, Write) and, hence, more comprehensible, while

the assembly language instructions (e.g., LXI, MVI, INR) are

generally more abbreviated, reouiring increased effort for

understanding.

Another notable difference is that the details

associated with the hardware interfaces are hidden from the

high level language programmer. Items such as merrory

location of the program, register usage allocation,

conversion of ASCII code to binary coded decimal and back

again, and cursor control for the terminal display are all

items that have to be considered and accounted for in the

assembly language program. This increased level of

complexity provides sienificant opportunities for

prograrming errors, thus increasing the difficulty of

maintaining the program.

Finally, consider the degree of difficulty that

would exist for correcting an error in this simple rrograr

or the amount of effort that would be required to add

enhancements (e.g., to obtain the average value). Clearly,

54

the high level language program is yore suited to this

maintenance type work.

2. DoD's Use of Eigh Level Language

a. Standard High Level Languages

DOD is taking action to reduce the proliferation

of program.ing languages in an effort to improve the

maintainability of future weapon system software and to

increase the transfer of available software among new

systems [291.

Under Dor Instruction 5000.31, weapon syster

development programmers are restricted to the use of one of

the following high level languages: TACPOL, C(S-2, SPL-1,

JOVIAL, FORTRAN, and COBOL.

A continuing effort is underway to standardize

even further, to adopt one common high level language. A set

of technical requirements for the common language was

developed, and during 1976 twenty-three existing languages

were evaluated against these requirements. The findings were

that no language completely satisfied the requirererts, that

several languages could be sufficiently modified to produce

an acceptable language, and that it would be possible to

produce a language that would satisfy essentially all the

requirements [59)

b. ADA

DoD has subsequently adopted a common

programmring language based on the language PASCAL to use as

55

its future high level language for embedded computer

software [511. It has been named ADA, after Ada Augusta who

became the first programmer as an assistant to Charles

Babbage.

On the surface, it appears that one common

programming language for DoD embedded tactical software

would greatly improve maintainability through

standardization and increased familiarity by a larger number

of programmers. Also, a new language could be designed to

incorporate the latest languape methodologies for improved

program clarity.

ADA is not, despite these apparent advantages,

universally accepted in its present form. rijkstra [521, for

example, has the opinion "that it is neither complete, nor

concise" and expresses concern over its size by pointing out

that ADA's reserve word list amounts to more than ten

percent of basic English." Also, he states maintainability

is hampered by the multiple ways that exist for doing the

same thing.

Regardless of this lack of universal support,

the ADA project is going forward and the Army plans to have

a compiler ready during 1981. The Navy seems sornewhat less

aggressive in pursuing this common high level language

effort [51, 531.

56

c. Navy's Use of CMS-2

The Navy is reluctant to accept ADA partially

because it has already standardized to CMS-2 which was

designed primarily for real-time, command and control

applications. It combines features of FORTRAN, C030L and

JOVIAL and has had continuous modifications, corrections and

enhancements over several years of actual use. This is

contrasted with ADA which is completely new and has had no

previous use.

3. Patching

Before leaving the subject of programming languages,

the use of patches must be addressed because of their

detrimental effect upon software maintainability.

A patch is a change made to the object program after

it is assembled or compiled. Patching is generally

acknowledged to be a bad programming practice yet it

continues to occur. Its use is encouraged by rigid testing

schedules since it provides expedient solutions £54].

Both TADSTAND 9 and MIL-STD-1679 limit the total

number of patch words to less than 0.005 of the total

machine instruction words in the program, but desnite sunh

attempts at limiting its use, patching can quickly get out

of control. A small sample of the TRIDENT CCS software was

taken and found to have five times the current limits

allowed by the new MIL-STD-1679. This is one reason

57

why the maintainability of this software has become a matter

of concern.

D. AUTOMATED AIDS

There is little disagreement that, in order to produce

maintainable software, the development must proceed in an

orderly, flexible and measurable manner, with all phases

clearly traceable from system requirements to rrachine

readable code.

This entire process is extremely labor intensive and

subject to errors of commission and omission. It is not a

novel idea to suppose such an effort could benefit from

automation. Many automated tools have, in fact, been

designed and employed with varying degrees of success.

It is beyond the scope of this thesis to include a

comprehensive study of the strengths and weaknesses of such

tools, but a few methodologies are presented to serve as

examples of this trend because of the significant influence

it might have on the way software is maintained in the

future.

A problem statement language (PSL) and a problem

statement analyzer (PSA) are two tools developed at the

University of Michigan to aid systems design. PSL and PSA

are used by a number of large commercial organizatiors.

Chase Manhattan Bank is one example and it feels that by

using these methodologies, its software is now easier to

maintain (55].

58

TRW, working for the U.S. Army Ballistic Missile Defense

Advanced Technology Center has developed a software

requirements engineering methodology (SREM) which applies

specifically to large, real-time weapon systems 146]. SREM

is designed to generate clear and complete requirements and

to facilitate their modification. Since incorrect or missing

requirements account for a large portion of errors in large

software projects, the use of SREM should improve

maintainability.

A highly ambitious software development and raintenance

support system (SDMSS) is being designed to autoate the

various activities for large scale software. It is comprised

of several subsystems, including requirements engineering,

design, documentation, software error management, and

maintenance. Reference [561 contains a more complete

description of this system.

The source code control system (SCCS) is designed for

controlling changes to files of text such as source code and

software docurentation and aids maintenance efforts

considerably. The current version has been operational at

Bell Telephone Laboratories since 1977 [57].

A library control program (SYSM) has been developed by

Magnavox and is currently being used to control a total of

200,000 lines of code. It aids maintenance by controlling

changes in a secure and traceable manner [58].

59

PSL/PSA, SREM, SDMSS, SCCS, and SYSM are only a li!'4ite,

set of automated tools being developed which will support

maintenance activites. DoD must continuously study and

evaluate these and similar methodologies for rossible

applications to its weapon system software.

IV. DOCUMENTATION FOR MEETING MAINTENANCE RECUIREMENTS

A. GENERAL

The "Documentation Standards," Volume VII, of IBMs

Structured Programming Series [59] states that

documentation in some form should be acouired for all

software developed in order to support the future needs of

software maintenance." It is obvious that a computer prograrr

stored in machine readable form on a media such as tape is

not adeouate to meet the requirements of the maintenance

programmer. The question becomes what type and how rruch

documentation is sufficient, This question must be correctly

answered if maintenance activities are going to be

successful.

In determining what specific documentation should be

produced and maintained concurrently with weapon system

programs, some general guidelines should be kept in mind.

First, documentation must provide for complete

traceability from the user's operational requirements to the

actual lines of code so that if a requirement changes then

the appropriate code can be correctly modified, or,

conversely, if an error is found in a section of code the

full impact on the user's requirements can be determined.

Second, the documentation must be easily modified. As

requirements or programs are changed then corresponding

61

changes must be made to the documentation. If this is not

done, then the documentation soon becomes outdated. This

need for concurrent maintenance of documentation with the

software makes those documentation forms that can be

computer generated preferred.

'Finally, because of the hih cost of documentation, the

arount produced should be kept to the absolute minimum

required. Tausworthe [12] provides a eraphic example showing

the relationship between prograr costs and the level of

documentation (Figure 4-1). Note that there is an optimum

level that must be strived for.

DEVELOPMENT _

(S/LINE OF CODE)
C')
I,-

0

<{ MAINTENANCE

(S/ALTERATION)

0 i
0

PROGRAM DOCUMENTATION LEVEL (PAGES/LINE OF CODE)

Figure 4-1. Program Costs vs Documentation Level [121

62

In this chapter some examples of formal standards are

identified which have been developed within DoD concerning

the production of documentation for use in the maintenance

of software. Also, available forms of documentation are

discussed which are specifically used for representing

program design, an important need of the maintenance

programmer.

B. MAINTENANCE DOCUMENTATION STANDARDS

A limited set of standards have been developed at

various levels within roD which specify the content and

format of documentation to be used to support software

maintenance activities. Examples of these are provided in

order to demonstrate the nature and extent of these

standards.

1. Program Maintenance Manual

DOD STANDARD 7935.1-S, "Automa ted Data Systems

Documentation Standards," 13 September 1977, provides

guidelines for the development of a Program Mainter.ance

Manual. The purpose of this manual is to provide thqe

maintenance programmer with the information necessary to

effectively maintain a system. A copy of the format of the

Program Maintenance Manual is given in Appendix A. Note that

it is oriented towards documenting data base systems rather

than weapon systems.

63

i ----I

?. Combat Syste r Program Descriptlon Docu-"--ts

S?7CNAVINST 7562.1 is one of the frost or-plpte sets

of docurentation standards specifically for weapon syvter

software. 4ithin this Navy standard three docu,-ents are

identified which support the maintenance of tactical

software. Categcrized under the ;eneral heading Ccrbat

System Proiram rescription Group, the- are called: the

Program escrioticr Documert (rDD), Data iase resipr (DP,

and Proram Package {P?' A description of their ijuro~e arA

a co7v cf their format is provided ir Annendix

C. AITFNIATIS . 7CRF. ::.,NTI SG BOG.A. STEBLCTT,

ks thp Drevious section ill'istrates, there has b eer scne

standardization for maintenance docurentation t: follow. The

remainder of this chapter is devoted to a discussicn cf

those tools available for representinr a pro-rarr's ir.ternal

structure. This is an area that has not been stanardi-ed.

In fact, there is considerable disapreerent as tc what tools

are the best to use.

1. Flowcharts

The flowchart is a ,raphic representation cf a

program lofi. . Its purpose is to rak0 it easy tc see the

relationships and flow of control arror the various desion

elements. It is a technique that has been so widelyr 5 sed

since it was developed by von Neuman in 1947 that a se+ of

national standards exists for flowchartine sylols [.].

64

Many individuals, however, are opposed to the use of

flowcharts. Brooks [61] calls the technique an "obsolete

nuisance," and "a most thoroughly oversold piece of program

documentation." Aron [621 feels that flowcharts are useless

to a programmer when diagnosing errors. Weinberg [631 states

we find no evidence that the original coding plus flow

lia~rams is any easier to understand than the original

codirg itself--except to the original pro-ra!rrer. These

comments bring into question the value flowcharts have for

the maintenance programmer.

Schneiderman, et.al. [641 decribe a series of

controlled experiments which test the utility of flowcharts

as an aid to the full range of orcgramming activities:

composition, debugging and modification. Although their

original intent was to determine when flowcharts were most

helpful, the eyperimental results led them to conclude that

flowcharts are a redundant presentation of the information

contained in the programming language statements. Their

conjecture is that flowcharts ray even be a hindrance

because they are not as complete (omitting declarations,

statement lables and input/output formats).

To provide an example for illustrating some points

to consider when usine flowcharts as a maintenance tool, a

series of four pages of flowcharts which represent the logic

in a TRIDENT CCS module will be used (Fizures 4-2 through

4-5). For simplificaticn, the labels used in the flowcharts

65

have been changed using the convention: (Ti) for terminals,

(Di) for decision points, (CI) for connectors, and (Pi) for

processes.

These flowcharts were chosen as examples because

they represent a small, logically clear section of cede.

kccording to the flowcharts, this section of code can be

entered only through Ti, Figure 4-2, and exited only through

T2, Figure 4-4. A stopping condition exists at T3, Figure

4-5.

The first point to be illustrated concerns the use

of connectors. The connectors used in the original TPIrENT

flowcharts are statement labels and could be used as entry

points from other portions of the program. The use of single

connectors embedded in a sequence of code such as C1, Firure

4-2, is unnecessary since no additional entry roints are

designated. By checking the actual code, through the use of

the cross-reference listings, it was determined that this

label was. however, used by a subsequent branch point. A

modified version of the flowchart in Figure 4-2, which more

accurately represents the programs logic, is provided in

Figure 4-6. The point is that all possible entries to a

program should be clearly designated. If no entry point

exists then labels are not needed and should be eliminated.

Not to do so creates the possiblity for potential errors.

A second point to consider is the ability to trace

through a section of logic. Going from beginning to end is

66

-I1

relatively easy, but consider tracing through the reverse

direction. Often, the maintenance programmer is left with a

specific program state, and his job is to determine what

conditions created it. For example, using Figures 4-2

through 4-5, if the maintenarce programmer needed to

determine what sequence of control could have led to the

stopping condition (TZ), Figure 4-5, it would be necessary

to trace backwards through all four pages of flowcharts.

This problem is corrpoundea when dealing with numerous pages

of flowcharts and multiple branch points.

A third point to consider is the difficulty of

making charges to the documentation. Note that substituting

a decision block (D2A) for a D~ocedure block (P2) in Figure

4-2, in order to more accurately represent the programs

logic, required that a completely new flowchart be

constructed, 'igure 4-6.

It should te noted that the Software Acouisition

Manarement Guidebook, Software Maintenance Volume [27],

recommends that DoD not procure flowcharts with delivered

software, and vIL-STD-1679 states that "there is no

requirement that flowcharts be a deliverable item."

In contradiction to this guidance, SECNAVINST

3560.1, when describing the Program Description rocument.

states a flowchart shall be included for each rajor

procedure or subroutine that depicts detailed operations

performed by the subprcgram."

67

(TI)y

Fiue -. xrrl Frwcatprt1Nf

68

P3

P4

Figure 4-3. Example Flowchart, part 2 cf 4

69

P5I

4

Fiur -4 xape lwcatprt3oN

P6 *

P10

P 12

'?I~ure 4-5. Examiple Flowchart, Dart 4 of

71- - --

Tl

P1

D2

2. Hierarchy Plus Input-Process-Output (HIPO)

FIPO was developed as a design aid and documentation

technique by IBM and is described in [65]. It attempts to

provide more than just representing the progra' logic as

flowcharts do. It emphasizes the functional aspect of the

program and its data flow. Maintenance efforts are said to

be facilitated by making it easier to trace a function that

needs to be modified from the documentation to the actual

code.

A HIPO package consists of three kinds of dia-rams:

a visual table of contents, overview diagrams and detail

diagrams. These diagrams provide a graphical description of

the program's function from the Reneral to a detailed level.

Figure A-7 shows the structure of a typical HIPO

package. Note that the visual table of contents shows the

structure of the diagram package and relationships of the

functions in a hierarchical fashion. The overview and detail

HIPO diagrams contain the inputs, processes, outputs and

extended descriptions at each stage of the successive

decomposition of a program.

'IPO does not enjoy universal support as a

maintenance tool. In a survey by Anderson and Shumate [66],

conducte! to find out what documentation tools were found

useful by maintenance programmers, HIPO was ranked as the

least preferred form when compared to the prograir listings,

English language narratives, flowcharts, hierarchy diagrams

73

.. _ •. . . . ' " : . --- •- , ,',

and the data base design documents. The authors felt that

HIPO documentation is an important design tool but seems to

have a lesser value for maintenance activities.

Meyers (51 contends that while HIPO diagrams are

superior to the flowchart because they show data flow as

well as control flow, HIPO diagrams are not needed for the

same reasons that flowcharts are not needed for maintenance

type work. -asically, he feels both merely duplicate

information that is already contained in the program

listings.

74

p. --

I A V-41 T^%.fEC..wm

3 Wm OW

Figure 4-7. HIPO Documentation CC651

75

3. Decision Tables

Decision tables provide a tabular forr of

representing program design and have been used as a

maintenance tool. Generally, decision tables are made up of

a set of conditions, each of which may be evaluated as true

or false at any given time. The truth or falsity of these

conditions ray be colrbined in various ways, alorg with a

series of actions, to form what is called a decision rule

(i.e., a set of conditions that must be satisfied in order

that a series of actions be taken).

CONDITION STU3 CONDITION ENTRY

ACTION STUB ACTION ENTRY

Table IV-1. Decision Table Structure

As illustrated in Table IV-I, it is divided into

four quadrants. The upper left quadrant, called the

condition stub, contains all the conditions being considered

for a particular decision rule. The condition entry, in the

upper right quadrant, combines with the condition stub to

form the condtion that is to be tested. The action stub, in

the lower left quadrant, contains actions resulting from the

conditions tested above. Action entries, in the lower right

76

quadrant, serve to indicate responses to the indicated

combination of conditions.

If a condition in the condition stub is true, a

is entered for that Darticular rule in the condition entry;

if the condition is false, an "N" would be entered. Ir a

situation where a particular condition is irrelevant a

don't-care would be indicated by use of a dash, "-. An "X"

specifies actions to be executed. An example of a decision

table for representing a sirple process of

approving/disapproving loan recuests is presented in Table

IV-2.

LOAN TABLE R1 R2 RZ R4

Satisfactory
credit limit Y

Favorable
Payment History T N N

Special Clearance
Obtained - Y N

Approve Loan X X X

Reject Loan X

Table IV-2. Example Decision Table r671

One advantage of usine decision tables is that it is

possible to convert them into corrpilable source code via a

preprocessor [67, 681. The additional computer tire required

for compilation can be offset by reduced effort for

programming both during the initial progremring phase and

77

the maintenance phase. Another big advantage of decision

tables is that their concept and structure causes the number

of overlooked situations and program inconsistencies to be

reduced.

The B. F. Goodrich Chemical Company is one proponent

on the use of decision tables. Reference [161 reports that

Goodrich has used them extensively and finds that complex

logic becomes clearer and there is less chance of

overlooking a logical path. Goodrich estimates that overall

productivity for analysts and programmers in maitaining its

COBOL-based systems has been at least double what it would

have been without decision tables.

Another successful example concerning the use of

decision tables is reported by Fisher [69]. An extremely

complex file maintenance problem arose at the USAF Automatic

Resupply Logistic System at Norton AF3. Almost seven

man-years had been spent trying tc define the problem using

rarrative descriptions and flowcharts, but to little avail.

A crash program using decision tables was then implemented.

Four analysts spent one week establishing the decision table

for.mat. Three weeks later the problem was solved.

To help determine whether the use of decision tables

Is anoropriate for documenting prograTs such as the TRIrFNT

CCS, a section of logic was translated into a decision table

format (Table IV-3). The logic represented is the same as

that shown in Figures 4-2 through 4-5. Note that identical

78

logic contained in four pages of flowcharts has been reduced

to a clear, concise table taking less that one page. This

points out, also, that revision of decision tables reouires

less work than modifying flcwcharts. This is an important

consideration for maintenance activities where revisions are

expected.

R1 R2 R3 R4 R5

DI Y N N N N

D2 - Y N N N

D- - Y N N

DA- - Y N

PI X X X X

P2, P3 X X X

P4, P5 X X

P6-P9 X

RETURN X

PIO-PI2 X X X X

STOP X X X X

Table IV-3. Example Program Logic

Two disadvantages of decision tables are: (1)

possible ambiguities may arise when "don't care" conditions

are presented and (2) decision tables are of little help

when the program logic Involved is not decision-making

oriented.

79

While decision tables may not always be applicable,

the previous discussion illustrates that they serve as an

alternative form of documentation that should be considered.

Federal Information Processing Standards Publication 36,

Guidelines for Documentation of Computer Programs and

Automated Data Systems, 15 February 1976, states that

either flowcharts or decision tables, whichever is more

appropriate, can be included or appended to docurentation

for software. However, SECNAVINST 2560.I makes no mention of

their use.

4. Nassi-Shneiderman Charts

With the advent of structured proeramminR technology

a form of structured flowcharts has emerged. Developed by I.

Nassi and B. Shneiderman in 1972, they can serve as a

graphic representation of a modules logic desien and provide

a maintenance programmer with a quick reference for finding

the code performing any logical function. The advantages

claimed for these charts include:

-The scope of IF THEN ELSE clauses is well-defined and
visible; moreover, the conditions or process boxes
embedded within compound conditions can be seen easily
from the diagram.

-The scope of local and global variables is immediately

obvious.

-Arbitrary transfers of control are impossible.

-Complete thought structures can and should fit on one
page (i.e., no off-page connectors).

ea

Yoder (701 provides a thorough descriotion of the

use of N-S charts. Briefly, the charts are constructed by

combining and nesting the basic structures shown in .igure

4-8. An example shcwing an extension of the use of the basic

symbols, which illustrates a N-S chart to calculate and

print an FICA report, is shown by Figure 4-9.

N-S charts are strongly linked to structured

programming constructs, thus, it may be difficult to apply

this form of documentation to non-structured portions of

program logic.

The method of N-S charts has not been fully

exploited in actual practice and little information exists

in the technical literature advocating their use. They are,

nevertheless, an alternative form of documentation that may

be considered for use as a maintenance tool.

The section of logic previously represented by

Figures 4-2 through 4-5 and by Table IV-3 has been

represented using N-S charts (Figure 4-10). This illustrates

the potential of using N-S charts as a maintenance tool for

software such as the TRIDENT CCS.

81

PROCESSELETN

STATEMENT CLAUSE CLAUSE

Process Symbol Decision Sprbo 1

DO WHILE CONDITION

UNTIL
PROCESS

WHILE
PROCESS

00 UNTIL CONDITION

DO WRILE Symbol DO UNTIL Symbol

P ESPROCESS PROCESS

CASE Symbol

?igure 4-e. Five Bastc Structures of' N-S Charts [7e?]

22

READ THE FIRST PAYROLL RECORD

DO WHILE THERE IS MORE DATA TO PROCESS

YEAR-TO-DATE FICA LESS THAN
MAXImum?7

NO YES

CALCULATE FICA

DEDUCTION

YEAR - TO . DATE FICA PLUS
DEDUCTION >

NO MAXIMUM, YES

SET FICA

DEDUCTION
TO ZERO SET DEDUCTION

SO YEAR • TO - DATE
WILL NOT EXCEED
MAXIMUM

ADD DEDUCTION TO
YEAR - TO - DATE FICA

SET NET PAY TO CROSS PAY MINUS FICA DEDUCTION

PRINT NAME, GROSS PAY, FICA DEDUCTION, YEAR - TO- DATE
FICA, NET PAY

READ NEXT PAYROL. RECORD

Figure 4-9. Exarlole N-S Chart [701

Lo3

YD2 N

P2

YN

P 5

_____10 _ P6

p I IP7
P 12 P8

STOP RTN

Fieure 4-10. Nassi-Shneiderman Chart For TRILENT

84

5. Program Listings

It would be highly desirable if proprams could be

made self-documenting, thereby, eliminating the necessity of

maintaining multiple forms of docurentation representing the

same logic. Many authors advocate such an approach through

structuring program listings. "eyers [], for example,

states:

Since we already have the code, why not let it serve as
the lozic documentation? . . . additional documentation
such as a flowchart would be undesirable because it
would be redundant with the code. Redundancy in any type
of documentation should be avoided because it increases
the chances of conflicts. Furthermore, unless care is
taken to update the documentation (which is rore
difficult if the logic documentation is physically
separated from the code), redundant documqntaticn often
becomes totally useless after the code is modified a few
times.

In his 1974 ACM Turing Award Lecture, Knuth [71]

addressed the importance of prograrl listings when he stated:

There are many senses in which a program can be good
of course. In the first place, it's especially good to
have a program that works correctly. Secondly it is
often good to have a program that won't be hard to
change, when the time for adaptation arises. Both of
these goals are achieved when the program is easily
readable and understandable to a person who knows the
appropriate language.

Anderson's study [66], discussed previously, has

illustrated the importance of prcgram listings as compared

to other forms of documentation for maintenance work. Again,

this study found listings were the maintenance programmer's

most useful tool.

85

What constitutes a self-documenting proprarr?

SFCNAVINST 3560.1 states that the listing will be an exact

duplicate of the delivered card decks cr magnetic tape. It

further states that each compiler source statement will be

annotated with comments, or, if the source is assembly

level, then a comment shall be listed for each assembly

level line or function group of lines with not less thar an

average of one comment per five statements. No mention is

made of the ty7,e or form of comments.

MIL-STD 1679 provides much more explicit direction.

It states, in part, that:

A narrative description shall describe the
history and identify the functions of each hierarchical
component of the weapon system software.

Each component shall include at the beginning of
the executable coding a textual description of its
inputs, outputs, function or task, and algorithms; a
list of other components called; and a list of all
calling components. In addition to general explanations,
to assist understanding, precise references to the
appropriate statement labels and data-names shall be
included in each module, procedure and routine
descriptive abstract. The descriptive abstract shall
define the allowed and tolerable range of values for all
inputs and shall define the allowed and expected range
of values for all outputs. A history of the original and
updating programmer names, the activity or commercial
company name and the activity or company division code
or billet identifier with dates completed shall be
included.

In order to facilitate program comprehension,
comment statemerts shall be used throughout the program
code. Comment statements are non-executable (i.e., they
have no effect on program executions) and are used to
provide documentation and clarification of the logic,
data, variables, and algorithms. Each source statement
shall be self-defined or defined by a comment phrase to
a level understandable by a person not associated with

86

the original development effort. Logical groups of
comment phrases may be included in a single comment
statement. General comments on groups of source
statements performing logical functions shall be
included on separate comment statements.

The Tactical System Programming Support ?ranch of

the Marine Corps Tactical System Support Activity,

responsible for maintaining the Marine Corps' tactical

software, considers the computer program listing to be the

single most important tool for software maintenance." It has

developed a set of standards to ensure listings are properly

designed and coded. This standard serves as a possible

example for other maintenance organizations to follow. See

Appendix C.

?oth MIL-STD-1569 and SECNAVINST .560.1 address the

use of cross-reference listings which are included here as a

portion of self-documentation since they can be

automatically generated from the program listings. They are

considered a necessary maintenance tool since they identify

every place an item (e.,., variables or subroutines) appears

in the program, so when the item is changed or modified the

impact on the remaining portions of the program can be

quickly determined.

6. Summary

This section has illustrated a variety of techniques

used for representing program design to the maintenance

programmer. Clearly, no one form completely represents all

87

........ ~~ .

aspects of program design. As programming methodoloeles

become more structured, the trend towards ircreased emphasis

on the use of program listings should continue, reducing the

need for supplemental forms of prograr documentation.

Although, it seems unlikely the need for some type of

graphic representation will be totally eliminated. There is

an important psychological aspect of conveying meaning

through pictures that cannot be duplicated with narratives.

No doubt, a variety of documentation tools will always be

necessary.

88

V. SOFTWARE MAINTENANCE POLICIES WITHIN rOD

A. BACKGROUND

This chapter provides an overview of policies and

methodologies existing in DoD which affect weapon system

software maintenance. First, the publications that contain

applicable policy guidance are reviewed. Next, the results

from a limited survey of agencies involved with weapon

system software maintenance are presented. Finally, there is

a discussion of pertirent research ard developrent work.

It is important to realize that the policies and

methodologies for procuring weapon system software have been

different than that used for procuring automatic data

processing equipment (ADPE). The distinction made between

these two categories of automated systems is a result of the

1965 "Arooks Act" (Public Law 89-306, 40, U.S.C. 759).

The Office of Management and Budget (OM?) and the

General Services Administration (GSA) administer the Brooks

Act guidelines. ADPE is controlled by this act and falls

under the purview of the Assistant Secretary of Defense

(Controller). Weapon system software, however, is excluded

from the provisions of this Act and fall under the

jurisdiction of the Office of the Undersecretary of Defense

for Research and Engineering.

89

B. CURRFNT POLICIES

There has been no centralized source of guidance with

respect to weapon system software maintenance for DoD

organizations to follow. Many directives, regulations,

specifications, and standards have, however, influenced

weapon system software maintenance to varying degrees. The

most significant of these are listed in this section. Even

though most of these have been introduced In previous

chapters, they are consolidated here for ease of reference.

1. MIL-STD-453 (USAF)

MIL-STr-483 (USAF) Configuration Management

Practices for Systems, Equiprnent, Munitions, and Computer

Programs, 1 June 1971, defines the entire spectrum of

activities associated with controlling changes (a critical

need for maintenance work) to computer programs.

2. MIL-S-52779 (AD)

MIL-S-52779(AD), "Software Quality Assurance Program

Requirements, 5 April 1974, requires that a Quality

Assurance Program (QAP) be implemented specifically for the

development of computer programs and related documentation.

Even though this standard is concerned with the development

phase, it is important to software maintenance because It

directly affects the quality of the siftware.

90

3. SFCNkVINST 35€E.:

SECNAVINST 3560.1, "Department of the Navy Tactical

Digital Systems Documentation Standards," 8 August 1974,

Identifies, names, and describes that set of documents

necessary to support both the development and maintenance of

tactical software.

4. DODDIR 5000.29

PODDIR 5.00.29, "Management of Computer Resources in

Major Defense Systems, 26 April 1976, establishes DoD

policy for the management and control of cornvuter resources

during system acquisition. Maintainability of software is

called out as a major consideration during initial design.

It also directs that support items required for cost

effective maintenance be specfied as deliverable items.

5. MIL-STD-1521 (USAF)
MTIL-STD-1521 (USAF), "Technical Reviews and Audits

for System, Equipment, and Computer Programs, 1 June 1976,

prescribes the requirements for the conduct of technical

reviews and audits in conjunction with the documents defined

in MIL-STD-483. Direction is provided concerning the review

and audit of computer program configuration items ard their

associated documentation. Each type of review or audit is

described in an appendix to the standard and can serve as a

basis for checking compliance with maintainability

requl rerents.

91

6. DODINST 500.31

DODINST 5000.31, "Interim List of roD Approved High

Order Programming Languages (HOL)," 24 November 1976,

specifies the HOLs which are approved for use in conjunction

with DOEDIR 5000.29. Although this instruction allows for

certain exceptions, it attempts to reduce proliferation and

ensure control of HOLs in defense systems by limiting new

development to six approvea languages: CMS-2, SPL-1, TACPOL,

JOVIAL, COBCL, and FORTRAN.

7. MIL-STD-1679 (NAVY)

MIL-STD-1679 (NAVY), Weapon System Software

Development, 1 December 1978, establishes uniform

requirements for the development of weapon system software

within DoD. Strict adherence to the provisions of this

standard will help ensure that the tactical software so

developed will be improved over current versions of tactical

software.

C. SURVEY OF DOD MAINTENANCE ORGANIZATIONS

An informal survey was taken of personnel from five

different DoD organizations involved with the maintenance of

weapon system software. While not providinp official policy,

the results can be used to derive a general understanding of

the environment in which they have operated, such as what

problems have been experienced and what methodologies were

used in performing maintenance activities.

92

......- ---

1. Pacific Missile Test Center

The Weapons Control and Software Systers rivision of

the Pacific Missile Test Center is involved with Fleet

support of tactical software for selected weapon systems

such as the F-14.

The software, developed largely under contract, was

being maintained by in-house resources. Maintenance

functions performed included configuration accounting,

problem validation, training, analysis, design, change

implementation, documentation, verification and tape

generation. The greatest amount of work has been

necessitated by software enhancements which required varying

degrees of redesign. New tape versions were released

approximately every 18 months.

Com.peting with private industry for recruiting

professional personnel has been a significant probler.

knother problem has been inadequate software docurentation

from contractors. Concern was expressed that documentation

has historically been one of the first items to be cut from

software development budgets, a decision that has seriously

degraded the subsequent maintainability of software.

A large effort has been made to correct the problem

of inadequate documentation. Guidance was being formulated

which goes beyond the requirements defined in SECNAVINST

3560.I and MIL-STD-1679 by improving the traceability from

one level of systeir description to another.

93

The importance of usinz actual operational equipment

for program debugging and verification after maintenence

changes were made was stressed.

An effort to keep methodolozles current is evident,

but this effort is being strained by increased work loads

and personnel stortages.

2. Naval Ocean Systers Center

The Software Quality Control Oreanization at Naval

Ocean Systems Center is not directly responsible for

maintaining tactical software. It did, however, perform a

critical function that greatly irproves software

maintainability. Activities include document inspection,

configuration management and test and evaluation during all

phases of the acquisition cycle in order to assist trccuring

organizations in acquiring himher quality and more

maintainable software.

One of the biggest problems encountered has been

convincing managers that software requires the sare degree

of engineering ccntrols as hardware.

3. Naval Surface Weapons Center

The Fleet Fallistic Missile Geoballistics Division

of Naval Surface Weapons Center is responsible for both

development and maintenance of Fleet ballistic missile type

software such as the TRIDENT-I vire Control System. Most of

its work is accomDlished in-house with very little

94

contracting. There is no separate organizational group

dedicated solely to the maintenance of software. Maintenance

activities are integrated with development activities.

As expected, when software Droducts were initially

released to the fleet the vast majority of maintenance was

accormplished in order to correct errors, but the ratio of

improvements to error corrections increased as the time from

initial release increased. One software product which had

been released for two years was experioncing maintenance cf

approximately 50 percent for improvements and 50 percent for

error corrections.

Changes to software are made according to a

formalized configuration control plan. Releases of new

versions have beer made on the average of once per year.

Patches were discouraged but used under restricted and

tightly controlled circumstances such as to correct critical

errors between major program releases.

Actual field eaulpment is used to test prcgram

changes with the capability nf usirg some real inDuts. Most

inputs, however, are simulated.

A hardware monitor is used and found very useful for

analyzing the performance of software. Another useful tool

used is the ability to take coredumps which are analyzed

via computer whenever prcgram crashes occurred.

A specially designed HOL called Trident High Level

Language (TFLL), said to be even more structured than CVS-2.

95

- * "* ~~~~~~~~~ g-.... ' ' iI F

A90 159 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/B 9/2
TECHIQUEg6S AVAILABLE FOR IMPROVING THE MAINTAINABILITY OF 000 W--ETClUl
JUN 80 R D PILCHER

ND

EOEEL

was being used. Program listings are maintained in a

structured form, and a program design language (PDL), a

pseudo high level language, is used to help document

programs.

The actual process of making changes to software has

posed no siznificant problems, but understanding and

verifying reported software errors from the Fleet did, at

times, present difficulties.

4. Naval Air Development Center

The Software and Computer Directorate of the Naval

Air Development Center functions as the software support

agency for selected avionics software such as that in the

P-3C Orion.

The maintenance of the P-3C software is complicated

by the fact that it is being converted from a tape

configuration system to a drurm configuration system. While

the functional requirements remained the same, the details

of implementation differed. Both configurations must be

simultaneously maintained.

The importance of defining to a fine detail

maintenance requirements early in the developirent of

software was stressed. The concepts of structured

programming was advocated, but trying to implement the

constructs of MIL-STD-1679 on existing software that

96

was originally unstructured presented many difficulties and

was not recommended.

New program versions were being released on the

average of every 18 to 24 months and patches were being

used. It was stated that patches will always be required to

some extent because of constraints such as delivery

schedules.

1'hile the program listing was the cheapest form of

progra l ocumentation, detailed flowcharts were considered

useful as a maintenance tool. It was suggested that the

automated process of producing and updating flowcharts would

be helpful.

One of the bigRest problems being experienced was

the large personnel turnover rate that exists in the

services. Maintenance of software would be an easier task if

there were greater stability of personnel.

5. TACFIRE Software Support Group

The TACFIRE Software Support Group is responsible

for maintaining the software for the Army's automated

Artillery Tactical Fire Direction System (TACFIRE), a system

whose software was developed under contract. Maintenance of

the software is still using contractor support.

The group uses configuration control procedures much

like the other organizations contacted with a confieuration

control board setting priorities for approved software

97

changes. Approximately 75 percent of the changes experienced

were the result of program enhancements and 25 percent

necessitated by program errors. New program versions were

being released about every 12 months. Patches were

discouraged but practically every release had contained a

limited number.

Both a programming support system (PrP 11/35) and

actual TACFIRE hardware were used for program debugging and

testing procedures.

The code for the software is written in the EOL

TACPOL. Some code in the programs is assembly level. The

ratio of HOL lines of code to assembly level lines of code

averaged roughly nine to one.

The support group is beginning to do software

development work for a multiple rocket system. The software

for this system Is being designed to fit an existing set of

hardware. The language used for this new software is

assembly level, called Symbolic Interpreter Routine (SIR).

The use of an assembly level languare is necessitated by

both hardware contraints and a desire to share previously

written software modules.

The only general problem mentioned in maintaining

weapon system software concerned the difficulty of

interpreting software trouble reports submitted by using

units in the field.

98

6. Marine Corps Tactical System Support Activity

The Marine Corps tactical software is developed

largely by contractors. Software maintenance of fielded

systems, however, is centralized and accomplished in-house

by the Tactical Systems Programming Support ?ranch of the

Marine Corps Tactical System Support Activity.

The software Is written in CMS-2 and kept highly

structured using the conventions outlined in Appendix C.

Listings provided decumentation for the program's lcgic

eliminating the need for detailed flowcharts. The software

is refined to the point that no major operational errors are

observed. The majority of maintenance was being necessitated

by program enhancements not error corrections.

Software configuration management iS strictly

applied to all changes. New tape versions have been released

about every 9 months. Patches had not been used in over two

years and are considered contrary to good maintenance

practices.

Two tools found useful to support maintenance

activities are the CMS-2 librarian to control coding changes

and a hardware monitor to measure system performance.

Actual field systems are available for progra"

testing and debugging with the capability of using both

actual and simulated real-time inputs.

99

Personnel were in favor of adopting the programr.ig

language ADA and have been involved with the Department of

Defense Hizh Order Language Commonality Program since 1977.

Problems mentioned included attracting and retaining

qualified personnel and educating top level managers about

the nature of software. The technical aspects of maintaining

software presented no significant problem.

D. RESEARCH TO IMPROVT SOFTWARE MAINTENANCE

Wegner [721 states:

Software maintenance has only recently been recognized
as a key area for software research. Research needs
include the development of tools to allow understanding
(readability) of software, modifiability of software and
revalidation of modified software.

Not listed in the previous statement is the reed for

validating claims that new software engineering

methodologies significantly improve the maintainability of

large, complex, real-time weapon system software. Since

claims have not been demonstrated, there has been reluctance

from some system developers to incorporate their use on

actual system projects.

An ambitious, exploratory research project has been

initiated by the Naval Research Laboratory and the Naval

Weapons Center In order to correct this situation. The

project involves completely-redesigning and implementing the

operational flight program (OFP) for the A-7 aircraft using

many of the new software engineering principles. The

100

redesigned program will be functionally identical to the

existing A-7 OFP so a direct comparision between the two can

be made in areas such as software maintainability.

If successful, the final product could serve as a useful

engireering model for subsequent weapon syster software

developments. For further information the reader is referred

to the program summary, Appendix D.

VI. CONCLUSIONS AND RECOMMENDATIONS

DoD organizations are becoming more aware of the

significance that maintenance plays in the overall life

cycle of weapon system software. Even as this software

becomes more error-free, the relative importance of

maintenance activities will continue because of frequent

enhancements made to existinR systems and increasing

complexity of applications.

To ensure that future weapon system software can be

easily and accurately modified to correct errors or

accommodate changes in user requirements, maintainability

must be considered as a primary design objective.

The organization which will eventually be responsible

for maintaining the software of a weapon system must be

allowed to participate in the developmet process, including

the formulation of specifications and subsequent technical

design reviews.

The importance of programming standardization must be

stressed because of the long life of weapon system software

and the relatively high rate of personnel turn-over within

toD software maintenance organizations. AlthouRh software

standards have not yet reached the refinement or level of

detail that exist for hardware, MIL-STD-1679 represents a

good starting point. If complied with, this standard should

102

significantly improve the maintainability of weapon system

software.

How much and what kind of documentation will be

delivered with weapon system software are among the most

important management decisions affecting the software's

maintainability. Decisions must be based on the size and

complexity of software produced and what techniques are used

by the organization performing the maintenance. This thesis

has illustrated a srall portion of available types.

Institutions such as the Naval Postgraduate School are

in a position to improve the education of future computer

scientists on the nature of software maintenance. This could

be done by establishing computer science prograr libraries

consisting of student developed computer programs. Programs

in these libraries would then be available for projects

emphasizing program maintenance in addition to the

traditional approach of emphasizing only program

developrent. Grades based on how easily a student's program

is understood and correctly modified by other students would

provide an incentive for improving software maintenance

skills.

As a final thought, consider the findings of a study on

software maintenance by Lientz and Swanson 1731. Their study

supports the proposition that an increase in the are of a

system terds to lead to an increase in the level of effort

in maintenance." This indicates that DoD must continually

103

face a difficult question: when is it more economical to

dispose of and redesign an existing system than to go on

maintaining It?

104

APPENDIX A - Program Maintenance Manual

from: DOD STANDAPD 7935.1S, "Automated Data Systems
rDcumentation Standards, 13 September 1977

PROGRAM MAINTENANCE MANUAL
TABLE OF CONTENTS

Page

SECTION 1. GENERAL DESCRIPTION I
1.1 Purpose of the Program Maintenance Manual 1
1.2 Project References 1
1.3 Terms and Abbreviations 1

SECTION 2. SYSTEM DESCRIPTION 2
2.1 System Application 2
2.2 Security and Privacy 2
2.3 General Description 2
2.4 Program Description 2

SECTION 3. ENVIRONMENT 5
3.1 Equipment Environment 5
3.2 Support Software 5
3.3 Data Base 5
3.3.1 General Characteristics 5
3.3.2 Organization and Detailed Description 5

SECTION 4. PROGRAM MAINTENANCE PROCEDURES 7
4.1 Conventions 7
4.2 Verification Procedures 7
4.3 Error Conditions 7
4.4 Special Maintenance Procedures 7
4.5 Special Maintenance Programs 7
4.6 Listings a

105

SECTION 1. GENERAL DESCRIPTION

1.1 Purpose of the Program Maintenance Manual. This paragraph
shall deserbe the purpose or the MM (Program Maintenance Manual)
in the following words or appropriate modifications thereto:

The objective for writing this Program Maintenance
Manual for (Project Name) (Project Number) is to provide
the maintenance programmer personnel with the information
necessary to effectively maintain the system.

1-2 Pro~ectReeences. This paragraph shall provide a brief
suary fereerences applicable to the history and develop-
ment of the project. The general nature of the system (tactical,
inventory control, war-gaming, management information, etc.)
developed shall be specified. A brief description of this sysa
tem shall include its purpose and uses. Also indicated shall
be the project sponsor and user as well as the operating center(s)
that will run the completed computer programs. A list of appli-
cable documents shall be included. At least the following shall
be specified, when applicable, by author or source, reference
number, title and security classification:

a. Users Manual.

b. Computer Operation Manual.

C. Other pertinent documentation on the project.

1.3 Terms and Abbreviations. This paragraph shall provide a
list or include in an appendix any terms, definitions or
acronyms unique to this document and subject to interpretation
by the user of the document. This list will not include item
names or data codes.

106

SECTION 2. SYSTEM DESCRIPTION

2.1 S ystem Apolication. The purpose of the system and the
fu'Ctions it performs shall be exolained. A particular appli-
cation system, for example, might serve to control mission
activities by accepting specific inputs (status reports, emer-
gency conditions), extracting items of data, and deriving other
items of data in order to produce both information about a
specific mission and information for summary reports. These
functions shall be related to paragraphs 3.1, Specific Per-
formance Requirements, and 3.2, System Functions, of the FD
(Functional Description).

2.2 Security and Privacy. This paracraph shall describe the
ca~s--- n of the system, including inputs, outputs,
data bases, and computer programs. It will also prescribe any
privacy restrictions associated with the use of the data.

2.3 General Descriotion. This paragraph will provide a com-
prehensive description-f the system, subsystem, jobs, etc.
in terms of their overall functions. This description will
by accompanied by a chart showing the interrelationships of
the major components of the system.

2.4 Program Description. The purpose of this paraqraph is
Eo supplydetails and characteristics of each program and sub-
routine that would be of value to a maintenance programmer in
understanding the program and its relationship to other pro-
grams. (Special maintenance programs related to the specific
system being documented will be discussed under paragraph 4.4,
Special Maintenance Procedures.) This paragraph will initially
contain a list of all prorams to be discussed, followed by
a narrative description of each program and its respective
subroutines under separate paragraphs starting with 2.4.1
through 2.4.n. Information to be included in the narrative
description is represented by the following items:

a. Identification - program title or tag, including
a designation of the version number of the program.

b. Functions - description of program functions and the
method used in the program to accomplish the function.

c. Input - description of the input. Descriptions used
here must include all information pertinent to
maintenance programming, including:

(1) Data records used by the program during opera-
tion.

(2) Input data type and location(s) used by the
program when its operation begins.

(3) Entry requirements concerning the initiation
of the program.

2

.............

d. Processing - description of the processing performed by
the program, including:

(1) Major operationa - the major oporations of the
program will bo described. The description
may reference chart(S) which may be included
in an appendix. This chart will show the general
logical flow of operations, such as read an input,
access a data record, major decision, and print
an output which would be represented by segments
or subprograms within the program. Reference
may be made to included charts that present each
major operation in more detail.

(2) Major branching conditions provided in the program.

(3) Restrictions that have been designed into the
system with respect to the operation of this
program, or any limitations on the use of the
program.

(4) Exit requirements concerning termination of the
operation of the program.

(5) Communications or linkage to the next logical
program (operational, control).

(6) Output data type and location(s) produced by
the program for use by related processing
segments of the system.

(7) Storage - Specify the amount and tyne of stor-
age required to use the program and the broad
parameters of the storage locations needed.

e. Output - description of the outPuts produced by the
program. While this description may reference out-
put described in the Users Manual, any intermediate
output, working files, etc. should be described for
the benefit of the maintenance programmer.

f. Interfaces - description of the interfaces to and
from this program

g. Tables and Items - provide details and characteristics
of the tables and items within each program. Items
not part of a table must be listed separately. Items
contained within a table may be referenced from the
table descriptions. If the data description of the
program provides sufficient information, the program
listing may be referenced to provide som, of the

3

108

necessary information. At least the following will
be included for each table:

(1) Table tag, label or symbolic name.

(2) Full name and purpose of the table.

(3) Other programs that use this table.

(4) Logical divisions within the table (internal
table blocks or parts - not entries).

(5) Basic table structure (fixed or variable
length, fixed or variable entry structure).

(6) Table layout (a graphic presentation should
be used). Included in supporting description
should be table control information, details
of the structure of each type of entry, unique
or significant characteristics of the use of
the table, and information about the names and
locations of items within the table.

(7) Items - the term 'item" refers to a specific
category of detailed information that is coded
for direct and immediate manipulation by a
program. Used in this sense, the definition of
an item is machine- and program-oriented rather
than operationally oriented. Of primary impor-
tance is an explanation of the use of each item.
At least the following will be included for each
item:

(a) Item tag or label and full name.

(b) Purpose of the item.

(c) Item coding, depending upon the item type,
such as integer, symbolic, status, etc.

h. Unique Run Features - description of any unique features
of the running of this program that are not included
in the Computer Operation Manual.

4

SECTION 3. ENVIRONMENT

3.1 Equipment Environment. This paragraph shall discuss the
equipment configuration and its general characteristics as
they apply to the system.

3.2 Support Software. This paragraph shall list the various
support software used by the system and identify the version
or release number under which the system was developed.

3.3 Data Base. Information in this paragraph shall include
a complete description of the nature and content of each data
base used by the system.

3.3.1 General Characteristics. Provide a general description
of the characteristics of the data base, including:

a. Identification - name and mnemonic reference of the
component (e.g., data base. List the programs
utilizing the component and explain the use of the
component in the system.

b. Permanency - note whether the component contains static
data that a program can reference, but may not change,
or dynamic data that can be changed or updated during
system operation. Indicate whether the change is
periodic or random as a function of input data.

c. Storage - specify the storage media for the data base
(e.g., tape, disk, internal storage) and the amount
of storage required.

d. Restrictions - explain any limitations on the use of
this component by the programs in the system.

3.3.2 Organization and Detailed Descrintion. This paragraph
will serve to define the internal structure of the data base.
A layout will be shown and its composition, such as records
and tables, will be explained. If available, computer-generated
or other listings of this detail information may be referenced
or included, herein. The following items indicate the type of
information desired:

a. Layout - show the structure of the data base including
record and items.

b. Sections - note whether tI. physical record is a
logical record or one of several that constitute a
logical record. Identify the record parts, such
as header or control segments and the body of the
record.

5

110

c. Fields identify each field in the record structure
and, if necessary, explain its purpose. Include for
each field the following items:

(1) Tags/labels - indicate the tag or label assigned
to reference each field.

(2) Size - indicate the length and number of bits/
characters that make up each data field.

(3) Range - indicate the range of acceptable values

for the field entry.

d. Expansion - note provisions, if any, for adding
additional data fields to the record.

11

SECTION 4. PROGRAM MAINT4ANCE PROCEDURIS

Section 4 of the manual shall provide information on the specific
procedures necessary for the programmer to maintain the programs
that make up the system.

4.1 Conventions. This paragraph will explain all rules, schemes,
and conventions that have been used within the system. Informa-
tion of this nature could include the following items.

a. Design of mnemonic identifiers and their application
to the tagging or labeling of programs, subroutines,
records, data fields, storage areas, etc.

b. Procedures and standards for charts, listings, seriali-
zation of cards, abbreviations used in statements and
remarks, and symbols appearing in charts and listings.

c. The appropriate standards, fully identified, may be

referenced in lieu of a detailed outline of convcntions.

d. Standard data elements and related features.

4.2 Verification Proccdures. This paragraph will include those
requirements and procedures necessary to check the performance
of a program section following its modification. Included may
also be procedurcs for periodic verification of the program.

4.3 Error Conditions. A description of error conditions, not
previously docu-ertd, may also be included. This description
shall include an explanation of tho source of the error and
recommended methods to correct it.

4.4 Special Maintenance Procedures. This paragraph shall
contain any special procedures re,:uircd which have not been
delineated elsewhere in this section. Specific information
that may be appropriate for presentation would include:

a. Requirements, procedures, and verification which may
be necessary to maintain the system input-output com-
ponents, such as the data base.

b. Requirements, procedures, and verification methods
necessary to perform a Library Maintenance System
run.

4.5 Special Maintenance Programs. This paragraph shall contain
an inventory and description of any special programs (such as
file restoration, purging history files) used to maintain the system.
These programs should be described in the same manner as those de-
scribed in the paragraphs 2.3 and 2.4 of the nf.

112

...

a. Input-Outut ttonuiremonts -included in this paragraph
shall be the requirements concerning the eauipment and
materials needed to support the necessary maintenance tasks.
Materials may, for example. include card decks for loading a
maintenance program and the inputs which represent the changes
to be made. When a support system is being used, this pars-
graph should reference the appropriate manual.

b. Procedures - the procedures, presented in a step-by-
step manner, shall detail the method of pcepernq-the Lnputs,
such as structuring and sequencing of inputs. The operations
or steps to be followed in setting up, running, and terminating
the maintenance task on the equipment shall be given.

4.6 Listin qs. This paragraph will contain or provide a reference to
the location of the program listing. Comments appropriate to parti-
cular instructions shall be made if necessary to understand and
follow the listing.

113

APPENDIX 2 - Combat System Program Description GrouD

from: SECNAVINST 3560.1, "Tactical Digital Systeims
Documentation Standards," 8 August 1974

C. COMBAT SYSTEM PROGRAM DESCRIPTION GROUP

1. POO - PROGRAM DESCRIPTION DOCUMENT
I. DO0 - DATA BASE DESIGN

3PP PROGRAM PACKAGE

114

PROGRAM DESCRIPTION

DOCUMENT

1.0 Purpose. The Program Description document shall pro-

vide a complete technical description of all digital processor,

subprogram functions, structures, operation environments,

operating constaints, data base organization, source and

object code listing, and diagrammatic/narrative flows. Each

subprogram or function shall be described in its own volume

with referenced appendixes as digital processor printout

listings. Each Program Description document shall be

directly responsive to the Program Design Specification and

to any appropriate software and/or program specification.

The Program Description document shall be specifically

oriented to programming logic and programmer's language. The

aim should be to describe and completely define the basic

subprogram logic and program procedures for each application

subprogram and for each system control subroutine. As a

detailed compendium of the subprogram structure, the Program

Description document will serve as the essential instrument

for subsequent use by operational,'maintenance, and contractor

personnel diagnosing troubles, making adaption changes,

designing and implementing modifications to the system,

and in introducing or adding new subprogram functions to

the completed program.

Figure 2-8. Program Description Document (Page 1 of 16)

115

NOTE

System subroutines are to be con-
sidered in the same light as
subprograms and require complete
documentation as described for
subprograms. However, in the
interest of ease of handling, it
may be convenient to group related
subroutine descriptions into one
volume of the Program Description
document, e.g., executive program.
This should be done only when
separation of the subroutines
into different volumes severely
hinders understanding due to the
interdependence of the subroutines.

2.0 Requirements. The Program Description document shall

be structured according to the format and description which

is contained in figure 2-8 (pages 3 of 16 through 15 of 16)

and are mandatory for use as a minimum.

Figure 2-8. Program Description Document (Page 2 of 16)

116

TABLE OF CONTENTS

Page
SECTION 1. SCOPE 1

1.1 Purpose 1

1.2 Scope 1

1.2.1 Identification 1

1.2.2 Subprogram Tasks 1

SECTION 2. APPLICABLE DOCUMENTS 1

SECTION 3. REQUIREMENTS 2

3.1 Subprogram Detailed 2
Description

3.2 Subprogram Flow Diagrams 3

3.3 Subprogram Data Design 4

3.3.1 Tables 4

3.3.2 Variables S

3.3.3 Flags S

3.3.4 Indexes S

3.3.S Common Data Base Reference 6

3.4 Input/Output Formats 6

3.5 Required System Library 8
Subroutines

3.6 Conditions For Initiation 8

3.7 Subprogram Limitations 8

3.8 Interface Description 9

SECTION 4. QUALITY ASSURANCE PROVISIONS 9

SECTION S. PREPARATION FOR DELIVERY 9

iii

Figure 2-8. Program Description Document (Page 3 of 16)

117

TABLE OF CONTENTS (Continued)

P age

SECTION 6. NOTES 9

APPENDIXES 11

LIST OF FIGURES

Figure
3-1 Sample Input/Output Word 7

Format Description

3-2 Sample Block Diagram of Sub- 10
program D Interface Relation-
ship

iv

Figure 2-8. Program Description Document (Page 4 of 16)

118

SECTION 1. SCOPE

This section shall contain a summary description of the

structure and functioning of the subprogram in total. All

major functions described in the Program Design Specification

must be presented and briefly annotated. This section shall

include, but not be limited to, the following paragraphs.

1.1 Purpose. This paragraph shall describe the purpose,

background, and intent of the Program Description document.

1.2 Scope. This paragraph shall describe the scope and

objectives that are intended by this document. Included

herein shall be identification and subprogram tasks.

1.2.1 Identification. This subparagraph shall contain the

subprogram nomenclature, including its abbreviations and

assigned designator.

1.2.2 Subprogram Tasks. This subparagraph shall consist of

a detailed list with accompanying narrative of each function

(e.g'., the responsibilities) to be performed by the sub-

program.

SECTION 2. APPLICA"LE DOCUMENTS

This section shall list those tactical publications,

instructions, specifications, standards, and other documents

applicable to the preparation of the Program Description

document. All cited documents shall list title, identifi-

cation or serial number, exact date of issue, and publisher.

i

Figure 2-8. Program Description Document (Page 5 of' 16)

119

The list of applicable documents may also be appendix A, and

referenced as such within this section. In addition, if

required, a glossary may be employed to list abbreviations

and/or terms with definitions and shall be contained in

appendix B.

SECTION 3. REQUIREMENTS

This section shall contain a comprehensive description

of the structure and functioning of the digital processor
subprogram in total. All major functions described in sub-

paragraph 1.2.2 "Subprogram Tasks", must be presented and

fully amplified. This document shall completely describe

all program logic. The minimum content shall consist of

detailed information as follows.

3.1 Subprogram Detailed Description. This paragraph shall

describe the detailed design of each subprogram. It shall

describe completely the processing capability of the sub-

program. When combined with a program listing, flow chart,

and data base description, this poi'tion of the Program

Description document shall fulfill the requirements of

individuals whose responsibilities include program production,

maintenance, and modification. This paragraph of the Program

Description document shall con-ist of a textual development

of the operations performed by the subprogram. It shall be

organized by subprogram tags (mnemonic labels) and shall

completely describe each section of code as it appears in

the subprogram listing. This, in essence, will describe

the processing operations performed at each branch of the

subprogram and the results obtained by following each branch.

2

Figure 2-8. Prograr Description Document (Page 6 of 16)

120

Those subprogram tags that are common branch points from

several sections of code (or text) need only be described

once, and thereafter need only be referenced.

During the discussion of subprogram segments, if common

system subroutines are used, they shall be identified by

their function and mnemonic label with a reference to the

document where they are described in detail.

The level of detail for this portion of the Program

Description document amplifies the information provided in

the subprogram flow diagrams described in section 4. Since

the usual flow diagram presents a limited amount of infor-

mation, flow diagrams are useful only as pictorial adjuncts

to the required text description. The same subprogram tags

specified in the text description shall be shown in the

appropriate blocks of the related flow diagrams.

3.2 Subprogram Flow Diagrams. A flow chart shall be included

for each major procedure or subroutine that depicts detailed

operations performed by the subprogram. The flow chart shall

specify all operations performed and include all equations

used in mathematical computations. Comments in the program

printout listing shall be used in conjunction with this

section to relate the text, flow charts, and code. Flow

diagrams shall show annotated logic flow among and between

each program subdivision level down to, but not including,

each compiler source statement, or to that source level

containing comments if a compiler is not used. Source listing

comments shall be brief narrative phrases, one for each com-

piler source statement; or, if a compiler is not used, then

3

Figure 2-8. Program Description Document (Page 7 of 16)

121

a comment for every logical switch or branch statement, and

for an average of at least every 10 assembly level language

statements.

3.3 Subprogram Data Design. This paragraph shall contain a

general summary description of :the subprogram data base. The

overall format selected for this section shall be designed to

facilitate the rapid retrieval of data base information.

Throughout the Program Description document references shall

be made to subroutines, constants and control-registers, input

buffers and tables, output buffers and tables, priority/

interrupt tables, etc. Since many of these tables and

control-registers contain data that are referenced by more

than one subprogram, it is sufficient that the detailed

description of this common data base be a part of the Data

Base Design document, which is used as a central source of

reference for subprogram data. The following subparagraphs

specify the level of detail that is required for this

Program Description document section.

3.3.1 Tables. This Program Description document subparagraph

shall contain the detailed description of each table used

only in the subprogram data base. Each table shall be

described individually, where the descriptions are presented

according to the alphabetical ordering mnemonic table name.

The content of the subprogram table descriptions shall be as

defined for describing common data base tables in the Data

Base Design document. The minimum content of the subprogram

table descriptions shall be:

a. Table Name

b. Purpose and Type

4

Figure 2-8. Program Description Document (Page S of 16)

122

c. Size and Indexing Procedure

d. Structure and Bit Layout.

3.3.2 Variables. This Program Description document sub-

paragraph shall contain the detailed description of each pro-

gram included only in the subprogram data base. Each variable

shall be described individually where the descriptions are

presented according to the alphabetical ordering of the

mnemonic names of the variables. The content of the subpro-

gram variable descriptions shall be as defined for the Data

Base Design document. The minimum content of this Program

Description document subparagraph shall be:

a. Constant Name

b. Purpose

c. Structure and Bit Layout.

3.3.3 Flags. This Program Description document subparagraph

shall contain the detailed description of each flag included

only in the subprogram data base. Each flag shall be

described individually, where the descriptions are presented

according to the alphabetical ordering of the mnemonic names

of the flags. The content of the subprogram flag descriptions

shall be as defined for common flags in the Data Base Design

document. The minimum content of this subparagraph shall be:

a. Flag Name

b. Purpose and Status

c. Structure and Bit Layout.

3.3.4 Indexes. This subparagraph shall contain the technical

description of each index included only in the subprogram data

base. Each index shall be described individually, where the
S

Figure 2-8. Prograr Descriotion Document (Page 9 of 16)

123

descriptions are presented according to the alphabetical

ordering of the mnemonic names of the indexes. The content of

the subprogram index descriptions shall be as defined for

common indexes in the Data Base Design document. The minimum

content for this Program Description document subparagraph

shall be:

a. Index Name

b. Purpose.

3.3.S Common Data Base Reference. This Program Description

document subparagraph shall provide a complete list of all

references to local and common data base items and the loca-

tion of each reference. The list also provides a cross

reference to the Data Base Design document which provides

the technical description of the common data base items.

If a Navy approved compiler is used, a cross reference

obtained from the compiler may be substituted with written

Navy approval by the procuring activity.

3.4 Input/Output Formats. This Program Description document

paragraph shall contain a brief description and graphic

(sample) representation of each input and output message,

card format, tape format, etc., processed by the subprogram.

If the Program Description document volume concerns a common

system subroutine, a detailed explanation and graphic repre-

sentation of the input and output registers to and from the

subroutine shall be provided. This shall include scaling and

bit-position information (see figure 3-1).

6

Figure 2-8. Program Description Document (Page ie of 16)

124~

II I- 1E A 1.1 1 I 1t

P11,EOSCIIPTION UP41TS SCALING

It T-. 7-g. - nwl.I..- o,.a

ILEVAIION (S$) A -6-. ..pi.. 'h. -91.9. "qe 0 .h51 t. '.d. .I* AM 12
to co-wc9 its S*Cs .wh. MAini-9 . "i"5 is I 4q,"..

Mh..sd.il IS 4.q.. MS4 - X, LS- Y.

11I SooN, I I.&s-lm,# sI,,. C.N, mlsch on. '.d.
is bf.,&d dw.. Hwbw. S.-,h #M.d.

02 Soot. 2 11-.9 -s in I.., t .. d s.. .' d.A
"Sw is blanhed dwi. H.1aan S-,%. Med.

At Alhq.ss* Al, T.,ye - I..w 5 s,.. Nd t..I. h.,

*i. k.ai..gf *s 1. www,O~. issi I. A. A Ls

.w~ 1. A. www;P hi.

me Hei..en S0., As., - I5nm.. .d. MN 1~. . s.nw
ds..N a1 1. 0*-piak M11n .o IMstw S-Ch

so MelN O..dw . - tovnsytt en im*. ^W.eei~s MIt in
S-9-. S..c Med.. Awjistd .;p% I Eo.. (SS).

M2 ~Mi-ii. C...- 2~p. -wow "ins..

9.3 Mile Re.. I - Ws..o 0. 5dfi

01 Os. Gun A. I - kts,.#9. eii

TI t~~t-I h~nw.y. .. -dinl. N. -, 4.9. .ssfa Nt jdi-

o . f 4.,..

12 TDT-2 1.
1

.e os, so.. N-V deft .McEtd N* Indi

non". Sbg.. Nt 13 .11ty sks,

VA Fin Agai -Ph Five inan qpri.9o frs. swobe
wi~glty shook.

Pt ~ ~ h P. .,tbtepe .fN adh field N hkA P.yp

In lo61~ MR/OR - W..pvs -&.4 T,.A4 i*5.lad

.. 1 e 1 ..- s ,oeIe.os. d oo MI/OR ft Al, .4d

Figure 3-1 Sample Input/Output Word Format Description

7

Figure 2-8. Program Description Document (Page 11 of 16)

125

3.5 Required System Library Subroutines. This Program

Description document paragraph shall list, in alphabetical

order, all system library subroutines used by the digital

processor subprogram. It shall describe the area of the

functional description where use is made of the system

library subroutine and the document number where the sub-

routine can be located. For example:

System Subroutine Name Used Document Reference
RTN (Arc Tangent) 3T2"3 Computer Subprogram

Design Document
Volume 10

SQS (Square Root) 3.2.1 Computer Subprogram
Design Document

3.2.3 Volume 10

3.6 Conditions for Initiation. This Program Description

document paragraph shall identify system conditions that must

be met for this subprogram to be initiated for processing.

For those subprograms that are always initiated for processing

regardless of system conditions, the word UNCONDITIONAL shall

be shown. For those subprograms that are initiated due to one

or more unique conditions, each pos'sible condition or set of

conditions shall be described. If the conditions are based

on the setting of certain items of information, each item, its

required value, and a definition (or reference) of that value

shall be shown.

3.7 Subprogram Limitations. This Program Description docu-

ment paragraph shall summarize any known or anticipated limi-

tations of the subprogram. A list of all restrictions and

constraints that apply to the subprogram shall be provided

including timing requirements, limitations of algorithms and

8

Figure 2-8. Prograir Description Document (Page 12 of 16)

126

formulas used, design limits of input and output data,

associated error condition sensing provided, and the error or

reasonableness checks that are programmed into the various

routines.

3.8 Interface Description. This Program Description document

paragraph and an associated block diagram shall show the

sequential and functional relationship of the subprogram with

the other subprograms ahd system subroutines or executive,

with which it interfaces. Figure 3-2 illustrates the block

diagram showing the relationship between subprograms.

SECTION 4. QUALITY ASSURANCE PROVISIONS

This Program Description document section shall reference

all applicable test plans and test procedures that have been

used for verification of this digital processor subprogram.

SECTION 5. PREPARATION FOR DELIVERY

This section is not applicable to this document.

SECTION 6. NOTES

This Program Description document section shall contain

supplementary information. The information shall include

but is not limited to:
a. Information of particular importance to the procuring

agency in using these documents.

b. Administrative and background information.

9

Figure 2-8. Program Description Document (Page 14 of 16)

127

0. M

CS

-4-

00

100

Fiur 2-.PormDscito ouet.Pg 4o 6

12

'UA

c. Ordering instructions for technical data pertaining

to the digital processor subprogram.

This Program Description document section shall also

list any documents necessary for use or understanding of this

subprogram but not contained within the document.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

In addition, the Program Description document appendixes

shall include separate sections for information and data which

are required for completeness in describing a variety of

aspects of the structure and functioning of the subprogram.

This data may be bound separately for convenience or may be

published after the other sections have been issued in initial

form.

11

Figure 2-8. Program Description Document (Page 15 of 16)

129

Content Check List

a. Instructions with annotations, listings

(1) Binary (tape, cards)

(2) Machine, Assembly, Compile

(3) Comments

b. Procedures/Subroutines

(1) Procedure Diagrams - Logic

(2) Procedure Data Design-

(3) Subroutine Flow Charts

(4) Narrative, Index to Procedures, Subroutines

c. Program Data Map

(1) Common

(2) Unique - Function

(3) Index to Data

d. Checkout (Validation)

(1) Component Tests - I/0

(2) Subprogram Tests

(3) Diagnostics Specification and Description

e. Technical Program Checkout Operation

(1) Check Point Entry, Exit

(2) Test Data Standards

(3) Program Preset for Checkout

f. Program Deviations from Technical Program Design

(1) Subprograms

(2) Equipment Utility

(3) Operator Actions

(4) Allocations, with Deviations from Planned Budget

(5) Timing Revisions - Priority Deviations

g. Addendum to Tech. Program Designs

(1) System Program

(2) Operator and Equipment Support Subprograms

(3) Technical Subprograms.
12

Figure 2-8. Program Description Document (Page 16 of 1C6)

130

DATA BASE DESIGN
DOCUMENT

1.0 Purpose. The Data Base Design document shall provide a

complete detailed description of all common data items

necessary to carry out the functions of the digital processor

program. Common data is that data required by two or more

subprograms. Examples of common data include constants,

indexes, flags, variables, and tables. The Data Base Design

document shall be based on the Program Performance Specifi-

cation. It shall be developed in accordance with the Program

Design Specification and concurrently with the Subprogram

Description document. The terminology employed in the Data

Base Design document shall conform to the programming guide-

lines in the Program Design Specification and the programming

language employed for production of the digital processor

program.

2.0 Requirements. For convenience in describing the minimum

essential content, figure 2-9 (pages 3 of 11 through 11 of 11)

shows a normal format for presentation of the material. How-

ever, the paragraph headings and numbers indicate the general

nature of the topic, and are mandatory for use as a minimum.

Figure 2-9. Data Base Design (Page 1 of 11)

131

TABLE OF CONTENTS

Page

SECTION 1. INTRODUCTION 1

1.1 Purpose 1

1.2 Scope 1

SECTION 2. APPLICABLE DOCUMENTS 1

SECTION 3. TABLES 2

SECTION 4. VARIABLES 3

SECTION S. CONSTANTS S

SECTION 6. FLAGS S

SECTION 7. INDEXES 6

SECTION 8. SUBPROGRAM REFERENCE (SET/USED) 6

SECTION 9. NOTES 7

APPENDIXES 7

iii

FlRure 2-9. Data Base DeslRr (Page 2 of 11)

132

LIST OF FIGURES

Figure Page
3-1 Sample Structure and Bit 4

Layout Diagram

LIST OF TABLES

Table

8-I Sample Subprogram Reference 11

List (Set/Used)

iv

Figure 2-9. Data Base Design (Page 3 of 12)

133

SECTION 1. INTRODUCTION.

This section shall introduce the document and summarize

the labeling conventions observed in the formation of mnemo-

nics that identify data items for this program as defined in

the Program Design Specification.

1.1 Purpose. This paragraph shall describe the purpose and

intent of the Data Base Design dqcument.

1.2 Scope. This paragraph shall describe the scope and

objectives that are intended by the document.

SECTION 2. APPLICABLE DOCUMENTS

This section shall list all documents which apply to

the preparation of this document and to the utilization of

the digital processor system to which this document pertains.

This section shall include, but not be limited to, references

to the appropriate Program Performance Specification, Program

Design Specification, and any additional documents that apply

to the design or use of the Data Base Design document. All

cited documents shall list title, identification or serial

number, date of issue, and publisher. The list of applicable

documents may also be appendix A and referenced as such within

this section. Further, if required, a glossary may be employed

to list-abbreviations and/or terms with definitions and shall

be contained in appendix B.

1

Figure 2-9. Data Base Design (Page 4 of 11)

134

SECTION 3. TABLES

This section shall contain the detailed description of

each table used in the common data base. Each table shall be

described individually where the descriptions are presented

according to the alphabetical ordering of the mnemonic name

of the table. The minimum content of this section shall be:

a. Table Name. The title of the table with the assigned

mnemonic label in parenthesis, e.g., Common Track Table

(CDTRK).

b. Purpose and Type. The table type (e.g., fixed or

variable length, table structure) and the explicit use of the

table.

c. Size and Indexing Procedure. The number of items in

the table and the number of digital processor words required

by each item. It shall also define, in precise terms, the

method used to index through the various items of the table

and any special conditions pertaining to the referencing of

an included item.

Following the description of the table, the subitems

(fields) making up each item shall be defined. The minimum

content of these descriptions shall be:

a. Field Name. The title of the field with the assigned

mnemonic in parenthesis.

b. Purpose and Type. An explicit description of the use

of the field that indicates its type (e.g., alphanumeric

integer, fixed point, or floating point).

2

Figure 2-9. Data Base Design (Pare 5 of 11)

135

c. Size. The size of the field in words or bits (if

numeric) or number of characters (if alphabetic).

d. Binary Point. This information shall be included

for all numeric type fields except floating point, and shall

indicate the bit position of the binary point (scaling) of

the variable.

e. Range of Values and Initial Condition. The minimum

and maximum values that are valid for the field, and the

initial condition of the field if it is preset. For alpha-

numeric types the data code (e.g., ASCII, BCD) shall also

be given.

f. Static/Dynamic. The changeability nature of the

field (e.g., unchanging value is static, changing field

values are dynamic).

g. Structure and Bit Layout. A diagram for each digital

processor word required by the field, as shown in figure 3-1.

SECTION 4. VARIABLES

This section shall contain the detailed description of

each variable included in the common data base. Each variable

shall be described individually where the descriptions are

presented according to the alphabetical ordering of the

mnemonic names of the variables. The minimum content of this

paragraph shall be the following information and shall be in

accordance with the requirements defined in section 3 of this

document:

a. Variable Name

b. Purpose and Type

3

Figure 2-9. Data Base Design (Page 6 of 11)

136

.' ..

0I

z ft 4

i

Figure 2-9. Data Base Design (Page 7 of 11)

0 6137

c. Size - number of bits and sign Cif numeric) or

number of characters (if alphanumeric)

d. Binary Point (not applicable to floating point

numeric or alphanumeric types)

e. Range of Values and Initial Condition

f. Static/Dynamic
g. Structure and Bit Layout

SECTION 5. CONSTANTS

This section shall contain the detailed description of

each constant included in the common data base. Each constant

shall be described individually where the descriptions are

presented according to the alphabetical ordering of the

mnemonic names of the constants. The minimum content of this

paragraph shall be the following information and shall be in

accordance with the requirements defined for section 3 of this

document:

a. Constant Name

b. Purpose

c. Initial Condition

d. Structure and Bit Layout

SECTION 6. FLAGS

This section shall contain the detailed description of

each flag included in the common data base. Each flag shall

be described individually where the descriptions are presented

5

Figure 2-9. Data Base Design (Page 8 of 11)

138

according to the alphabetical ordering of the mnemonic names

of the flags. The minimum content of this paragraph shall be

the following information and shall be in accordance with the

requirements defined for section 3 of this document:

a. Flag Name
b. Purpose

c. Initial Condition

d. Structure and Bit Layout

SECTION 7. INDEXES

This paragraph shall contain the detailed description

of each index included in the common data base. Each index

shall be described individually, where the descriptions are

presented according to the alphabetical ordering of the mnemo-

nic names of the index. The minimum content of this paragraph

shall include the following information and shall be in

accordance with the requirements defined for section 3 of this

document:

a. Index Name

b. Purpose

SECTION 8. SUBPROGRAM REFERENCE (SET/USED)

This section shall include a complete list of all common

data base items with a cross reference which includes all

referencing subprograms. The list shall be presented in the
form of a matrix, where the rows are used for names of the

items and the columns used for names of the subprograms. To

6

Figure 2-9. Data Base Design (Page 9 of 11)

139

facilitate its use, the items and subprograms shall be listed

alphabetically with S, U, or B utilized to indicate Set,

Used, or Both (Set and Used), respectively. An example of a

subprogram reference matrix with Set/Used is shown in table

8-I.

SECTION 9. NOTES

This section shall include a list of all subprograms by

text name and mnemonic. The order of the list shall be in an

alphabetical arrangement based upon the identifying subpro-

gram mnemonic labels. Further information such as Subprogram
Description document reference for each listed subprogram

shall be included as required to facilitate the use of the

Data Base Design document.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

In addition, any information which is too bulky to be

placed in the body of the document, such as further data

description material or applicable support system listings

from the assembler or compiler, (e.g., a common data or pro-

gram data summary) shall be included as an appendix.

7

Figure 2-9. Data Base Design (Page 10 of ii)

140

. .

COMMON
DATA ITEM SUBPROGRAMS

SPOMA SPGMS SPGMC SPGMO SPGME SPGMF SPGMG SPGMM

(TAILES)

TABI(FLOI) S I a S - S-

TABI(FLD2) S -- S. B -- S S a

TAB1(FLD3) S U B 1 U U -

(VARIABLES)

VKBLI U U IB - S I S-

VRBL2 U -- I S -- S S -

VRBL3 a B s u U U S a

(CONSTANTS)

CONSTI U -- U U U - U

CONST2 u U - - u U -- U

(FLAaS)

P1.0I S a S - U U BS

71.02 5 I U S U -

(lNOEXESij

INDI U S B U S B -

-IND2 *U U S B J1 B

Figure 8-1 Sample Subprogram Reference List (Set/Used)

Figure 2-9. Data Base Design (Page 11 of 11)

PROGRAM PACKAGE

DOCUMENT

1.0 Purpose. The Program Package document shall consist of

all the program material items necessary for the procuring

agency to produce, maintain, and update the digital processor

program. These items shall include, but not be limited to,

the digital processor program source card deck listing, an

error-free source/object listing produced by an assembly or

compilation of the source decks, a complete cross-

reference listing produced by a compilation of the source

decks, and any data which are necessary to cause programs

to run properly (e.g. adaptation data, data file contents,

set up data, program parameter values.)

2.0 Requirements. The Program Package document shall be

structured according to the format and description contained

in figure 2-10 (pages 2 of 10 through 10 of 10). However,

the paragraph headings and numbers indicate the general

nature of the topic and are mandatory for use as a minimum,
with the exception of cross-reference and miscellaneous
listings when not provided by the supporting compiler or

assembler system.

Figure 2-10. Program Packaze (Page 1 of 10)

142

TABLE OF CONTENTS

Page

SECTION 1. INTRODUCTION 1

1.1 Purpose 1

1.2 Scope 1

SECTION 2. APPLICABLE DOCUMENTS 1

SECTION 3. SOURCE DIGITAL PROCESSOR PROGRAM 1

SECTION 4. OBJECT PROGRAM TAPE 2

SECTION S. SOURCE PROGRAM LISTING 2

SECTION 6. SOURCE/OBJECT LISTING 3

SECTION 7. CROSS-REFERENCE LISTING 3

SECTION 8. MISCELLANEOUS LISTINGS 3

APPENDIXES 6

iii

Figure 2-20. Program Package (Page 2 of 10)

143

LIST OF FIGURES

Figure Page
6-1 Sample Source/Object Listing 4
7-1 Sample Cross-Reference Listing S
8-1 Sample Procedure Summary Data 7

Listing

iv

Figure 2-20. Program Paecage (Page 3 of le)

144

SECTION 1. INTRODUCTION-

This section shall briefly define each of the required

items in the digital processor program package. Within these

definitions, general terminology is used to describe those

items, and the requirements herein should not be construed

to mean that each assembler or compiler system used for pro-

gram generation must provide the explicit items called for

in this section.

1.1 Purpose. This paragraph shall describe the purpose,

background, and intent of the Program Package document.

1.2 Scope. This paragraph shall describe the scope and

objective intended by this document.

SECTION 2. APPLICABLE DOCUMENTS

This section shall list those tactical publications,

instructions, specifications, standards, and other documents

applicable to the preparation of the Program Package document.

All cited documents shall list title, identification or serial

number, exact date of issue, and publisher. The list of

applicable documents may also be appendix A and referenced as

such within this section. In addition, if required, a glos-

sary may be employed to list abbreviations and/or terms with

definitions and shall be contained in appendix B.

SECTION 3. SOURCE DIGITAL PROCESSOR PROGRAM

This Program Package item shall be the complete source

form of the digital processor program, suitable for assembly

or compilation. The physical form of the source program may
1

Figure 2-20. Program Package (Page 4 of le)

145

be card decks, or equivalent magnetic tapes. In either case

the form of the source program shall be compatible with the

production facility to which the program is delivered. For

example, card readers may differ in their interpretation of

the physical punches on a card for certain alphanumeric

symbols. If this is the case, it is the contractor's respon-

sibility to conform to production facility formats.

SECTION 4. OBJECT PROGRAM TAPE

This Program Package item shall be the complete object

form of the digital processor program, suitable for loading

and execution in the operational digital processor. The

object program shall be obtained from an assembly or compile

of the source digital processor program containing no fatal

errors and be completely free of patches. The physical form

of the object program shall be on either magnetic or paper

tape. In either instance, the object program tapes shall

be compatible with the production facility to which the

program is delivered.

SECTION 5. SOURCE PROGRAM LISTING

This Program Package item shall be a listing of the

source digital processor program as delivered. The listing

shall be an exact duplication of the delivered card decks

or magnetic tape. Each compiler source statement will be

annotated with comments or if the source is assembly level,

then a comment shall be listed for each assembly level line

or function group of lines with not less than an average of

one comment per five (5) statements.

2

Figure 2-20. Program Package (Page 5 of 10)

146

SECTION 6. SOURCE/OBJECT LISTING

This Program Package item shall be a listing of the com-

bined source statements and resulting object machine instruc-

tions generated during an assembly or compile of the delivered

source programs. Figure 6-1 illustrates a typical source/

object listing. The source/object listing shall be free from

fatal errors and be an exact presentation of the delivered

source and object program. If the supporting compiler or

assembler system does provide source/object listing, then the

minimum requirement is the object listing.

SECTION 7. CROSS-REFERENCt LISTING

This Program Package item shall be a listing showing a

cross-reference table of each mnemonically labeled statement in

the digital processor program and each statement in the digital

processor program that references the labeled item. The table

shall be ordered alphabetically according to the mnemonic labels

and shall be generated as the result of an assembly or compile

of the delivered source digital processor program. Figure 7-1

illustrates a cross-reference listing where the labels are

alphabetically listed on the left side of the page and the

address of each reference to the label is listed across the

remainder of the page.

SECTION 8. MISCELLANEOUS LISTINGS

These Program Package items shall be included, as avail-.

able, from the assembler or compiler system used in the

digital processor program production. The Program Package

3

Figure 2-20. Program Package (Page e of 1C)

1 JA?

I I'I •

*U ,

I
am

..) z .. 4. . . I•
I~ • • - I~mo o a

aee. . a -8 .w am -J a e . w m

-r -a- .I . mn

z ~ ~ -z=. UZ Z

am-.~~~~.E g . aZrta '; ~ *

.

.. . 3,, a - Z

a. p i' " "". ta a a "' - ,

Fiur 2o-20.eooo~ P og a Package e e(Pae 7e of1 ,le) O"

4*- -
"14

8 * .

am a... ,";..a.

* a a.. a-at a rrr ~ m rr.r4

aixur 2-2.aogra .akg (Pa e ma ofa a

a- -- - - - - - - - - - - - - -

IIu

z*I; -IE

A 04

a, 1 -1 0, z ,
eel . 0 . .c

Figue 220. Progam ackge (ageS o 10

I 149

items may include such listings as automatically generated

subprogram flow charts, data base summary listings, and pro-
gram summary data listings. Each of these items may be
generated as a result of an assembly or compilation of the
delivered source program. Figure 8-1 illustrates a procedure
summary data base listing which describes the environment and
parameters of each routine in the digital processor program.

APPENDIXES

The following appendixes may be included:

a. Appendix A. See section 2.

b. Appendix B. See section 2.

6

Figure 2-20. Progra Package (Page 9 of 10)

150

4- -

II-
U

I -J

a
~ ;
- a

I-
a

Ii .1
I I

- hi* 4)
- UI C
C

4)
U

0

- a I 4)I N
1

-, -l

I N
I I

I 0
I! -

4)
I I-g I
U j
I
4 * [

''ill ig:~I
7

Figure 2-2w. Program Package (Page 10 of 10)

151

APPENDIX C - Standards and Conventions for Use of
the CMS-2 Language

Develoned by: Tactical System Prograrmming Support Branch,
Marine Corps Tactical SysteM Support Activity,

Camp Pendleton, California 9205E

1. Papckgrour. while "AS-2 is not the most modern, state.-of-the-art

computer language In existence, it is nevertheless a powerful Sigh Order

Progra m=ing Language (HCL) which permits the development of well-designed,

structured computer programs. When properly designed and coded, CiS-2

programs can be readily maintained. The purpose of this document is to

provide guidance for the design and coding (programing) of 04S-2

programs. SECNAVINST 3560.1 (Tactical Digital Systems Docucentation

Standards) and MIL-STD-1679 (NAVY) (Weapon System Software Development),

although excellent in many respects, provide little specific guidance with

regard to the computer program itself. The computer program Listing is

the single most important tool for software maintenance. Since guidance

for computer programs is highly language-dependent at the coding (or

Listing) level, this document provides guidance in terms of the CA--2

language. These standards must be complied with. Use of the words

*shall" and "must" mean strict adherence is required. Section II defines

terms which are used throughout the document. Section I= provides

guidance on the design and structuring of CX.S-2 programs. Section I-V

gives specific guidance on the standards and conventions for coding C.3-2

programs.

11. oehnlion of "-'. The purpose of this section is to define sev-

eral programning terms in relaticn to specific Ci-2 constructs. This

will serve to eliminate much of the semantical confusion which has pre-

vailed. A module, as used in 35 4CA7.ST 350.1 and in this standard,

152

____ 4

shall be a STS-PROC or collection of functionally related S!S-PRCC's.

Where possible, one module as defined in the Program Design Specification

(PDS) shall be mapped into one SYS-PROC in the C AS-2 program. However,

where size becomes large, a collection of functionally related STS-PRCC'3

may constitute a nodule. A routine, as used in SECIAVINST 3560.1 and in

this standard, is a M'S-2 PROCEDURE or CAS-2 F.UNCT:ON. All routines shall

be PROCEDURES or FUNCTICNS; there s3hall be a one-to-one correspondence

between them. The use of non-called, "in-linen routines is prohibited. A

prologue is defined as the lengthy set of comments found at the beginning

of each PROCEDURE or FUNCTICN. Section IV.D provides extensive guidanee

on prologues.

A. Fr m POS to ?rcx*m. The performance functional requirements

described in the Program Performance Specification (PPS) shall be napped

into progream modules which are documented in the Program Desig-

Specification (PDS). The modules of the PDS are then mapped into

SYS-PRCC's (or logical groups of SYS-PROC's) of the CIS-2 program. These

SIS-PROC's are further refined into individual PRCCEDURE's e- FUNCTION's

using the top-down method. The SYS-PRCC's and their subordinate

PROCEDURES or FNICTION's must then be documented in the Program

Descripticn Document (PDD). It is inportant that the PDD contain the

English name as well as the C.S-2 mnemonic (or code name) of every

STS-PROC (module), PROCEDURE, and FUNCTION. Once this has been done, the

computer program may be coded. The entire process is characterized as a

number of successive refinements; moving from higher to lower (more

153

detalled) levels of abstraction; going from the general to the specific;

progressing from functional requirements to the modules to the

anestation of the requirement.s in SZS-PROC's, PROCEDURES and

VUCTON'3.

3. flzta De~in 4 der'~taris. The global data base requirements

of the compute- program should reside in one SYS-DD. One SYS-DD should

be used. However, if more than one SYS-DD is used, it must be for a

logical design consideraticn such as regional data pools (for large

programs) or COMPCOL's for efficient compilation reasons. Under no

circumstances will SYS-DD's be allowed to proliferate as desired by indi-

vidual programmers. Computer programs having n SYS-DD's for n programmers

is prohibited. In an analogous manner, each SYS-PRCC shall have only one

LCC-DD to describe its regional (local) data. The documentation of data

base information shall be done in the computer program listing. A Data

Base Design document (DBD) is neither desired nor required. Guidance on

how data base information is to be implemented in the program listing Is

given In Section IV.

Hierarchical structure is important in a program. -his struc-

ture must be documented by means of a hierarchy diagram which shows the

structural relationship between parts of the program. The PDD shall show

program structure within a module by means of a complete hierarchy

diagram. The PDS shall show part of this structure by =eans of a

hierarchy diagram which describes the ;-cgram down to the nodule

(S S-PROC) level diagram. Figure E-1 is an example hierarchy diagram

Which illustrates a number of desirable attributes of CMS-2 program

154

=d .4
c a U2* I" zCCCe-3 "-

- -3

-4 j 0-3
.CJ QI Z'

ca -3 6C

u 4 ,

ow c =a~ :4 ~ .L6.

Ia. Cal_ _ _ __ _ _ _

49 -4

.4i C6. -

wo wQ 6 CA
:0. 04r

@3W3

030

ok..6 V3 .

M-0 IO U C C.. 4

155

design. There are five SYS-PROC's (E=C, MANMACH, SIGPROC, GECOGRAPH, and

COIWROC) which comprise the major Modules of the system. The hierarchi-

cal structure of the program is shown by physical location on the chart

and by the designation of levels. In this example, the executive

ST-PROC, EXEC, is at the highest level of control and is at level 0.

Only ce Module (SYS-PRCC), the executive, should be at level 0. Only one

SYS-PRCC should provide overall control. All other modules (applications

modules) are subordinate and are at level I or below. Where standard

executives such as SDEX-7 or SfDEX-20 are used, they will be at level 0.

The SYS-PROC's shown at level 1 are the applications Modules of the QIS-2

program. MA!.LCH provides the =an-machine interface and consists Of the

PROCEDURES &NMACEP (which is the Prime P.CCEDURE), MCT1, OC2TCUT,

MBUTTON, and ,INIDLAMP. 'otice that, within each SYS-PROC, the calling

hierarchy is shown by indentation. For example, each prime PROCEDURE is

to the left of all others; and in SYS-PRCC GEOGRAPH, for example,

PROCEDURE CARTPCL is to the right of GRESECT. This shows that CARTCL is

subordinate to GRESECT. The following walkthrough is given for further

clarification: SYS-PROC EXEC is at hierarchy level 0, STS-?.CC GECGRAPI

is at level 1, (PRLlE) PROCEDURE GEOGRAPEP is at level 2, PRCC=DQE

GRESECT is at level 3, and PROCEDURE CARTPOL is at level 4. In a large

program there would be even more levels. SYS-PROC's (modules) are at

levels 0 and 1; PROCEDURES (and FUNCTICN's) art at levels 2 or more.

Although the QMS-2 language permits only two levels of hierarchy from an

administrative or syntactical view, it is ossi0ble to achieve many

structural levels as dictated by the program design by the use of a

calling hierarchy.

156

Comn PROCEDURES from the co-on ST5-PROC, CCMPROC, are called from

I4A1AIC3 and are thus shown in the hierarchy diagram where they are called

even though they actually exist in S'YS-PRCC CCNMPRCC. Using this conven-

tion, a common PROCEDURE may appear in several application S!S-PRCC's

where invoked. For example, CEILL.UF is shown in SYS-PROC MANMACH and

SS-PROC SIGPROC since It is invoked from both places. The actual loca-

tion of CFMUUF and all other comon PROCEDURES is in SYS-PROC CCZIMPROC,

which serves to administratively group the comon PROCEDURES. From the

total syst viewpoint, CC!Y.PROC can be considered to be part of the

executive program, a1though fnctiona17 separate. 'iote that figure B-1

also shows the global data design, SYS-1D GLCBDATA, which contains all

global data items in one place.

There shall be no di.-ect calls between SYS-PRCC's. Control between

STS-PROC's shall. be passed through the executive module. PRCCEDRES

within a SYS-PRCC shall not call PROCEDURES in another SYS-PROC except in

the case of comon PRCCEDURES which shall be grouped in one SYS-PROC.

PROCEDURES within the same SYS-PROC shall call only those PRCCEDURES which

are subordinate, e.g., a PROCEDURE at level 3 shall call only PRCCMURES

at level 4, 5, 6 ... n.

A. G . The computer program listing is the most important

tool for the maintenance prograer. The importance of this Section

cannot be overemphasized. The primary purpose of this Section is to

maximize the maintainability of CfS-2 program listings. Since main-

tainability is paramount, it is crucial to realize that clarit7 takes pre-

157

cedence over efficiency; readablty takes precedence over writeabilit7.

The Life-cycle of tactical co=puter program will see a large fraction ot

total system costs devoted to soatvare maintenance. It is Important that

01S-2 programs be clear, concise, structured, well-designed, modularized,

and straightforw-ard - even at the expense of a few words of computer

memory.

Figure B-2 illustrates the physical organization of a well-

designed OCS-2 program. As required by the compiler, the MAJCR HEADER

comes first. When only one MAJOR HADER is required, all coapile-time

controls shall be located in this MAJCR HEADER. However, there are times

when a program should be ccmpiled several different ways to generate

object code for different target computers. When this is required, MINOR

ADERS shall be used with each one containing different C-WITC-S,

MEANS, and ECUALS statements to generate different object programs. Then

by use of the librarian, the desired object program may be generated at

compile time. The next program element after the various headers is the

STS-DD. Where practicable, all global data items should be declared in

one STS-DD. The restrictions of paragraph UI.B of this Enclosure apply.

Next, the various SYS-PROC's of the C0S-2 program appear, and, of course,

there will normally be many more than shown in Figure 2-2. Each SYS-PRCC

should contain a LOC-DD (iL required) which is physically located at the

beginning of the SYS-PROC. After the LOC-DD, the various PRCCEDURES of

the 515-PROC will appear, and each PROCEDURE shall contain LOC-INDEX'es

(as required) at the physical beginning of the PROCEDURE, inediately

after the prologue. Mhere prime PRCC-DURES are used (and their use is

15e

MIAPLE SYSTD

MLJOR EWER

MINOR HEADER 1

NOB HEADER 2

M33OR HEADER DOCUM1TATION
S

S'S-PROC 1

LOC-DD

PROCEDURE 1A
LOC-IIDEX

PROCEDURE 1B
LOC-INDEZ

SYS-PROC 2
LOC-DD

PROCEDURE 2A
LOC-INDEZ

PROCEDURE 2B
LOC-INDEX

END-STSTE4 EXAMPLE

*This MNqOR HEADER cotain3 the overall program de=criptiou and prologue.

Figure B-2 0-5-2 Program Phyaical Organization

159

encouraged), they shall be the first PROCEDURE in the SYS-PROC. The use

of LOCREF to preclude the necessity for forward referencing requirements

at compile time is encouraged. The LOCREF operator permits PROCEDURES to

be hysically laid out in the listing in a top-doun order which

corresponds to the program calling hierarchy. When C!S-2 FUNCTIONS are

used, they should appear in a location analogous to PROCEDURES.

C. CSwitches and genders

CSWITCHES are used to selectively vary object code generated at

compile time. They are particularly useful when it is desirable to gener-

ate different object programs for different (but similar) target computer

conflgurations. When this is done, the C-SWITCH control statements that

control the turning on and off of CSWITCHES will be located in a separate

MINOR HEADER, and all of these MINOR HEADERS will be included on the

library tape. Of course, at compile time, those required will be selected

by the librarian to generate object code for a desired target configura-

tion. However, by placing all MIOR HEADERS on the library tape, all

C-SWITCH settings will be available for inspection by naintenance program-

mers. Each C3WITCH setting in each MINCR HEADER will be well documented

with a clear, detailed coment explaining the purpose of the switch, the

conditions when it should be used, and all unique aspects of the target

configuration it is used for. Then, in the body of the program, C.VITCH

brackets will be highlighted by use of a blank line, a line of asterisks,

a comment containing the CXWITCH title, another line of asterisks, and

another blank line. For example:

160

it *e~g4eeeieitiQeeee.4te.te iC*4*****.*etI*i44#e**C* OitC4.4****4ee* 9

" CSWITCH TAOC IS USED TO GLNEIRATE TARGET CODE FCR THE TACTICAL "
'' AIR OPERATICNS CL Tr CONFIGURATICN

CSWTCH TAOC o

. . .. (pragram code)

.,e eee4C*e*4*ee**C4*4**444OU4e44*****44C44CCCI*4CCO**CO4d4C*e*C 9,

'' END TACTICAL AIR OPERATIONS CENTER CCOIFIGURATION CODE

END-CSWITC TACC $

The use of nested S'wICHES, while not prohibited, is discouraged. When

MEANS and EQUALS are used for parameterizaticn and to achieve different

target computer configurations, they will be included in separate MIlNOR

SEADERES as appropriate. They will be physicaLly groUped together within

each header, not mixed with CS'ITCE controls and other compiler options.

Furthermore, every MEANS and EQUALS declaration will contain a coment

whlch describes the purpose and use of the statement. For example:

'' IN THE TACC CCNFIGURATICN, THE MAG TAPE DRIVE TS CABLED TO
'' CHANNEL . THIS EQUALS STATEM-4T IS USED Z1 CNCJUNCTICN WIT. 'H

' CSWITCH TACC. CHANG2.G THIS CVE STATL4NT WILL PERMIT ''

'' PRCGRAM TO MITERFACE WITH MAG TAPE DRIVES CN GTHER CrEA:NLS
HTCHAN EQUALS 4 $

Finally, headers should be logically organized so that compiler controls,

CSWITCHES, MEANS statements, EQUAL statements, and other items are

physically grouped together.

0. lZlg2uz&

Prologues, or narratives as they are sometimes called, are one

of the Most important aspects of computer program documentation. Good

prologues are essential to the understanding of a program by maintenance

161

programmers. They are defined as the lengthy set of coments found at the

beginnin of each PROCEDURE in a well-documented program. Prologues are

required at the beginnin of every element of a CMS-2 program. £very

prologue shal. be clearly delimited frcm executable code by use of lines

of asterisks. A prologue is required at the beginning of the MAJOR

HEADER, every MINCR HEADER, every SYS-DD, every SYS-PRCC, every LCC-DD,

every PROCEDURE, and every FUNCTION in a CIS-2 program. The larger and

more complex the program element, the more extensive the prologue should

be. In addition, there shall be a large MINOR iMADER bcih contans a

prologue describing the purpose and function of the entire program located

before th~e first SYS-DD (refer to Figure 2-2). The progra-m prologue shall

describe the overall purpose and functioning of the program, the computer

used for compilation, the target computer (or computers), the name of the

chief programmer, the company responsible for the ;ror-m's development,

the date the program was delivered to the Sovernment, the ncmenclature of

the tactical system in which the program executes, applicable references

and standards (such as the Program Performance Specification and standards

which deal with data links, for example), and other pertinent data. :..

addition, each nodule of the program will be listed, a brief description

of each module will be given and the functional relationships of the

modules Will, be briefly stated. The order of execution, to include the

sequence in which the modules are invoked, will be explained n general

terms.

.The MAJOR HEADER and each MINOR HEADER shall contain a prologue.

Wherever different headers are used to generate different object code, t-e

prologue will describe the purpose of the header and specifical!7 ident'fy

the target computer and equipment ccnf!guraticn.

162

The STS-DD (or ST=-CD' sof te ;rcgram small contain a prologue

which describes the global iat-a :es 4 -- .nclude a description of how the

S3YS-DD is org.aized. Specifla.2. 7, %M"S and -CJALS declar-aticns, TABL

declarations, and 7RBL decla cos 2a. ,) segregated and grouped

according to type. This sthall be ex;.l-ed =n the SYS-DD prologue. As

much as possible, the STS-DD prologue snal function as an index to the

ST!-DD . Special naming conventions beyond those described in this stand-

ard shall be explained in the prolcgue.

Each STS-PROC in the computer program shall have an extensive

prologue. If a program module corsists of more than one SYS-PRCC, then

there will be a prologue at the module level as well as one for each

SIS-PROC within the nodule. This module level prologue shall describe how

the module functions, shall be physically located at the top of the

module, and shall list all SYS-PROC's which belong to the module. ihen a

module is equivalent to a SYS-PROC, the module prologue requirement is I

satisfied by the SYS-PRCC prologue. In either case, module name,

programer(s), contractor, and delivery date shall be given first. T1he

!3S-PRCC prologue shall contain an extensive, detailed description of the

S3S-PRGC's purpose and function. The sequence of processing shall be

described in chronological order to include the calling sequence of

control. The hierarchical structure of the SYS-PROC shall be described,

with the name of every PRCC=URE and FUNCTION given. Finally, all inputs

and outputs should be listed. The following example illustrates the

structure of a good SYS-DD prologue:

163

A A

14SHODULE SYS-PROC $
COK40T 9 0 * * * * * * * I I * I I I I I I I I I 0 0 I * I * I I I I I

MSHODOLE - M-SERIES IMESSAGE PROCESSING MODULE

PROGRAMMERS: I.M. CODER, rl. R. HACXER

CONTRACTOR: SCFTARE UNL=MITED, INC.

DELIVERY DATE: 30 MARCH 1980

PURPOSE: TO PROVIDE THE JOINT SERVICE INTERAGENCY MESSAGE PRCTOCOL
EQUIRED CF THIS CCM.PUTER PROGRAM BY RESPONDING TO RECEIVED

M-SERMIE MESSAGES 1ND TRANSMITTING APPFCPRhATE M-SERIES MSSAES
AS REQUIRED BY T1H TEC-NICAL INTERFACE OESIGN PLAN (T=P).

LEVEL: LEVEL ONE MODULE.

DETAILED DESCRIPTION: (This portion of the prologue shall contain all of
the items discussed in the paragraph above. In the case of large, complex
modules, it may extend for five or six Pages, or =re. Processing should
be discussed in chronological order.)

SUPERORDINATE SYS-GROCS:
(etc.)

SUBORDINATE PROCEDURES:
____________________ (etc.)

FUNCTICNS:
(etc.)

INPUTS:__________________

(etc.)

OUTPUTS:
(etc.)

The prologue for each PROCEDURE and FUNCTION shall be similar to

that for each SYS-PRCC except that these prologues will deal with Whe par-

ticular PROCEDURE or FUNCTION.

Each LOC-DD and LOC-INDEX in the program shall have a brief pro-

logue describing the purpose and organization (if necessary) of these data

design elements. The use of asterisks and single quote marks to hig!light

key comments is encouraged.

16 4

KData

As specified in this standard, the Data Base Design (DOD)

requirements of SECNANST 3560.1 and MIL-STD-1679 ar to be met in the

computer program listing. Consequently, it is very important that the

data design elements of a CS-2 program, the SYS-DD's, LOC-DD's, and

LOC-3IDEX's, contain the information found in the DOD.

Where possible, all global data elements should be contained in

one SXS-DD. Vne use of ETIEF and EIDEF for variables and tables should

be avoided. If these elements are global, they should be in the STS-DD.

If the SYS-DD becomes too large, in terms of C(5-2 symbol table capacity,

then some use of C0MPOCLS may be required. Local data elements belong in

a LOC-DD, and not in a SYS-DD. The SYS-DD should be organized to contain

first the prologue described in paragraph 11I.D, then all MEANS and EQUALS

declarations (logically grouped), all VPBL declarations (logically

grouped), all TABLE (and array) declarations (logically grouped), and all

P-SWITCH declarations.

All MEANS and ECUALS declarations should be contained in the

3YS-DD unless it is necessary to place sune of them in MINCR HEADERS so

that the program may be compiled differently for different equipment

configurations. he use of MEANS and EQUALS declarations in locations

other than MMCR EEADERS or SYS-DD's is prohibited. The use of the

EXCHANGE primitive is forbidden. The use of MEANS and EQUALS declarations

to increase readability of the program is encouraged. For example, the

statements

TRUE MEANS 1 $

FALSE MEANS 0 $

165

increase the readability of the program. The use of MEANS and EQUALS

primitives to reduce typing work, such as

PROC MEUMS PROC=-UE $

is forbidden. The use of MEANS and EQUALS primitives to corrupt the C4S-2

language such as,

REPEAT .MNS GOTO $

is forbidden. The purpose of each MEANS or ECQALS declaration shall be

documented with a meaninful coment as shown in paragraph IV C,

VRBL declarations shall contain meaningful comments which

describe the purpose, initial value, range, and related data structures of

the VRBL. The use of short, cryptic ccmments is forbidden. Every VREL,

no matter how simple, must have the above attributes explained. An exam-

ple of a good VREL declaration is:

MSGQPTR IS .IE MESSAGE QUEUE POINTER WHICH ALWAYS POLNTS TO "

TE LAST MESSAGE WHICH HAS BEEN nISERT= INTO TAELE MSGQUEUE. ''
IT IS IITIALIZED TO ZERO (WHEN THE MESSAGE QUEUE IS -PTT) ''
AND ITS RANGE IS FRCM 0 TO 25 (WHE TM.E5 SAGE QUEUE IS
FULL). IF IT IS EVER GREATER THAN 25, AN ERROR CCHDIT:.ON
(QUEUE OVERFLOW) WILL RESULT, AD T-A:- QUEUE WILL BE FLUSH=
WITH vSGQPTR RESET TO 0.

VR.L MSGQPTR I 16 U P 0 $

TABLE declarations are similar to VRBL declarations when it

comes to documentation requirements. Because TABLES can be very ccmplex

data structures, they must be explained in detail. Each TABLE, SUE-TABLE,

LIKE-TABLE, and F..D will be described as to purpose, initial value,

range, and related data structures, L' any. The following example illus-

trates these concepts:

166

TABLE ACCOUNTS IS USED TO STORE INFORMATICN CN 400 $An ACCOUnTS.
EACH ITEM (OR ACCOUNT) CCNTAINS AN ACCOUNT NA.M (FIELD ACCTNA E) WHICH
CAN CONTAIN UP TO 40 ASC1I CHARACTERS, AN ACCOUNT NUMBER (FIELD
ACCTNR) 'ICH CAN RANGE FRCM ZERO TO 9999, A BALANCE WHICH CAN RANGE
FROM -9999.99 DOLLARS TO +9999.99 DOLLARS, AND AN ACTIVE/NON-ACTIVE
FLAG (BOOLEAN FIELD ACTIVE) WHICH WHEN TRUE (=I) MEANS ACTIVE AD
VON-ACTIVE WHEN FALSE (z0). AT PROGRAM INITIALIZATICN T=.E, THE
ENTIRE TABLE 13 FLUSHED (SET TO ZEROES). INDICZS (OR POINTERS)
RELATED TO TBIS TABLE ARE VRBLS LASTACCT, NEXTACCT, AND NrdACCT. $

TABLE ACCOUNTS V DENSE 400 $
FIELD ACCTNAME H 20 $
FIELD ACCTNR I 14 U $
FIELD BALANCE A ' S7 $
FID ACTIVE B $

DM-TABLE ACCOUNTS $
Mote that the FIELD declarations are indented two coltns in from the

TABLE declaration to show subordination. Also, that H, I, A, and B and

20, 14 and 22 are vertically aligned. Whiere possible, TABLES and V.iLS

shall be declared in alphabetical order.

Local data items found in LOC-DD's and LOC-INDEX's shall be

grouped and coented as shown above for SYS-DD's. The importance of

placing data elements which are required by only one SYS-PROC into the

LOC-OD cannot be overemphasized. This practice promotes information hid-

ing and permits different prora=ers to work on different SYS-PRC's

without concerning themselves with the names and details of other

S3S-PROC's.

P-SITCH's shall be declared in the SYS-DD if the PROCEDURE's

used are global in scope. P-SWTTCH's shall be declared in a LOC-OD if the

PROCEDURE's used are of local scope. The declaration of a P-SWITCH

outside a SYS-OD or LC-DOD is forbidden. They shall be well-cemented as

shown in the example below:

16?

BASED ON THE VALUE OF GLOBAL VARIABLE TRIGINDX (RANGE: 0-5), THIS
P-SWITCH WILL CALL THE APROPRIATE PRCC'URE WEICH WILL RETURN THE
VALUE FOR ONE OF THE SIX TRIGONCMETRIC FUNCTICNS: SINE, COSINE,
TANGENT; COTANGENT, COSECANT, OR SECANT. TE IIPUT ANGLE MUST BE AN
ANGLE BETWEEN PLUS OR MINUS 360 DEGREES, AN A-TYPE VREL (A 24 3 14)
WI=H FRACTIONAL ACCURACT TO ONE PAT IN 16,384. OUTPUT TRIGANS
RETURNS AN ARITEmeTIC VALUE IN THE RANGE PLUS OR MINUS 262,144 WITH
FRACTIONAL ACCURACY TO ONE PART IN 8,192 (A 32 S 13). CERTAIN
TRIGONOMETRIC FUNCTIONS, SUCH AS TANGENT (90 DEGREES) HAVE INFINITE
VALUE. IN THES CASES, A VALUE OF 262,144 IS RETURNED. $

P-SWITCH TRIGFUNC INPUT ANGLE OUTPUT TRIGANS $
SINE '' CISEO 'a' $
COSINE " CASE 1 It $
TANGENT " CASE 2 It $
CON2T " CASE 3 "1 $
COSECANT '' CASE 4 '' $
SECANT '' CASE 5 '' $

END-,SWITCH TRIGFUNC $

The use of the P-SWITCH operator for multipath branching is preferred over

the use of the FOR operator in most cases. However, there are instances

when the FOR operator is preferable; for example, when two or more values

cause branching to the same procedure or when the range of values is not

sequential. In the latter case, the FOR statement avoids the need for

dummy procedures. In other computer languages, FOR is used for iterative

looping. Only in CMS-2 is it used for multipath branching. Since

P-SWITCH declarations are physically separated from their invocation, a

meanln ful comment at the point of invocation shall be provided for

clarity.

F. Si~ ag_ een

There is no limit (other than those imposed by the compiler) to

the size of a SYS-DD or LOC-DD. PRCCEDURE's and FUNCTIONS's are limited

to 100 Lines of M-2 source code, exclusive of comments. This is an

absolute limit which may be exceeded only upon prior approval by the

168

governent on a case-by-case basis. Where PROCEDURE's and FUNCTICN's

contain direct code, they are limited to 50 lines of code, exclusive of

coments. The average size of all PROCZDURE's shall be 50 lines.

Exceptions to these size restrictions are not permitted. ?roMrams with

overly large PRCZURE's indicate poor design and a lack of partitioning

the program into functionally independent parts of manageable, maintain-

able size. The use of "in-line routines" is expressly forbidden.

Every procedure shall have one and only one entry point. This

is an absolute restriction. Every procedure should have only one RETU

or exit point, although this is not an absolute requirement.

0. Nifir Conventirnn.

In the naming of program elements such SYS-P.OC's, VL's,

TABLE's, and PROCeDURE's, the 043-2 language leaves much to be desired.

Mames are Limited to eight characters and the underscore character is not

permitted. This inhibits the readability of names. However, within the

constraints of the compiler, much can be done to enhance readability and

maintainability, which is the subject of this section.

Every module, or SYS-PROC, in a C4S-2 program shall have a

unique prefix consistig of one or two characters. If less than 26 mod-

ules comprise the program, then one letter will suffice as the module

prefix. If more than 26 modules are used, or If the program designer

believes that it will enhance maintainability, then two characters shall

be used., These two characters shall be two letters or a letter followed

by a number. Examples of one-letter prefixes are U for UTILMCD, a utili-

ties module and M for MfIACD, a man-machine interface module. Examples of

two-letter prefixes are M3 for M3MC0DLE and .0 for ICMCDULE.

Once a prefix has been established for each SYS-PROC (module),

then every subordinate element of that module shall use the module prefix

as the first one or two characters of every name. For example, ICMMDULE

might have as subordinates PROCEDURE's ICMTIPE (a magnetic tape handler),-

IOTTY (the teletype handler), and IcCRT (the computer-CRT interface).

Every PROCEDURE, 7RBL, FUNCTICN, TABLE, etc. of a module shall contain its

prefix as an identifying mark. Common (global) data elements are not

subject to these restrictions, but will be 6amed with a prefix starting

with the letter C.

All names within a C43-2 program shall be descriptive. They

shall attempt to describe the item they represent. Names such as

IOBUFFER, USINE, and ISGflAG have inherent meaning and are easier for a

maintenance programmer to remember whille tracirg through a program. Names

such as A, X, N, or BX are meaningless, and their use is forbidden. Rela-

ted data elements should have related names which show their interrela-

tionship. For example, a TABLE called IOBUFFER might logically have an

index or pointer which is called ICBUFPTR. Applying the above rules and

common sense will increase the maintainability of a CI.S-2 program.

Without good commenting, even a well-designed program can be

extremely difficult to maintain. The use of meaningful ccents to

increase the understandability of a program cannot be overemphasized.

Additionally, it is almost impossible to overcomment. it is better to

overcomment than to undercomment. This section deals with in-line ccm-

ments which serve to explain and supplement source code rather than

PROCEDURE and module prologues which are discussed in section D. There

170

are three kinds of coments: stand alone, which are on a separate line

frm any source code; terminating, which foiloew source code on the same

line; and embedded, which are embedded within a source code line. More

will be said about these three types later. For consistency, all stand

alone QCents shall precede the code they explain.

Cements should emlain, amplify, and supplement source code

rather than echo the code. For example the statement and coment

SET N TO N 4e 1 " 1NCRENT N "

does nothing to explain =z N 'i being incremented. It is also an example

of a terminating comment. Terminating ce-ents are prohibited, except

with direct code and to amplify data declarations. A better method of

comenting would be:

" A MESSAGE HAS JUST BEEN LNSERTED IN MSGCUEUE. LNCREMENT
'' MSGQPTR SO THAT IT PC:TNTS TO THE LOCATICN WIEEBE TH NEXT M-G ''

'M' HA BE ISERTED.
SET MSGQPTB TO MSGQPTR .1 $

Another example of an Illuminating coment is:

•'' THE MESSAGE QUEUE CAN ULr O.LD 25 MSGS. THUS, IF MSGQPT R OT '"
" 25 OVERFLOW HAS RESULTED-FLUSH THE MESSAGE QUEUE. '
17 MSGQPTR GT 25 T='N FLUSHQ $

In 04S-2, there should be, ca the average, no less than one line of

cementing for every two IX-s of source code. In direct code, there

should be, on the average, no less than one coment for every line of

direct code. These averages pertain to amplifying comments, exclusive of

prologue cements. These averages are minimum requirements. The use of

more cements is encouraged.

The fol.lowing example illustrates good terminating comments for direct

code:

171

L R3,CQPTR .CQPTR POINTS TO ITEMS IN

L R4,6 .A CICULAR QUEUE OF SIZE 7
.AND SHOULD RANGE FRCM 0 TO 6
.IN VALUE - SO LNCREMENT IT OR
.ZERO IT DEPENDING CN ITS VALUE
.COMPARED TO 6

CR R3, R4 .1F CQPTR LE THAN 6 THEN
JLS INCRMT .GO TO INCREMENT
LL R3, 0 .ELSE SET CQPTR TO ZERO
S33, CQPTR .AND SAVE IT

4 BYPASS .BYPASS INCRE eNT CODE
INCIMT. fOOR R .SET CQPTR=COPTR,.1

3 R3, CQPTN .AND SAVE IT
BIPA3SS. • CONTINUE

The above comments do not echo the code, they explain it. The coments,

in efect, translate the assembly iguage into high level code. Contrast

this with the following ceoents that merely echo the code:

L R3, CQPTR .PUT CQPTR IN REG 3
LK R4, .PUT 6 IN REG 4
CR R3, R14 .COMPARE REGS 3 AND 4

These coments are worse than none at all, for they insult the maintenance

9rospraer by insinuating that he does not ',mow the assembly language

Instruction set.

In addition to echoing the code, there are several other pit-

falls that some cc enters fall into. Cne of these is the "80 column

mentality* where the programrer crowds terminating comments into the same

line as the code at the expense of abbreviating the cement into an incom-

prehesible Line of garble. For example the statement and comment

SET MSGQPTR TO MSGQPTR- '' InCR xSGQPTR PT NIT msG - $

would have been better as,

" INCREMET mZGQPTR TO POINT TO IM NEXT MESSAGE IN THE QUEUE "

SET ISGQP.R TO .ASGQPTR .1 $

172

Another common pitfall. is the embedded comment. For example the statement

IF TH MS1'G CPTR " MSGqTR GT Z5
" MAX SIZ CF THE qUEUE '"

" FLUSH E qUEUE " FLUSEQ $

embeds so many coments into the code, it is difficult to distinguish

between the code and the comments. Embedded comments are prohibited. The

preferred method is to place comments on separate lines, and, where

appropriate, separate them from the code by indenting, using blank lines,

and blooking c ants with asterisks.

Good. physical layout is defined as that property of a computer

program listing which makes it capable of being read and understood by a

programmer not familiar with the program. Good physical layout implies

ease of understanding and good readibility. Good readability may be

achieved by a variety of techniques, some of which are separation of

logical elements of code, separation of ca-ents and code, blccking (by

using Lines of asterisks) lengthy comments or prologues, the appropriate

use of blank lines, logical indentation, and the lining up of BEGIN-LD

and IF-ELSE pairs.

Separation of logical elements and the use of blank lines go

band in hand. The practice of beginning P.CCEDURES on a new page serves

to separate these logical elements and promote readability. The use of

blank lines to separate prolcgues and lengthy coments frcm executable

code also promotes readability. Prologues and lengthy coments should be

boxed by asterisks to make them stand out and be separated from the code.

Blank lines should be used freely to prevent crowading and to separate

logical entities.

173

Indentation is a key part of physical layout. Indentation is

defined as the physical indenting ot logically subordinate and nested pro-

gram constructs. A truly structured program is structured in two ways.

first, it is structured with regard to the flow of control o the program.

Second, It is Physically structured by the use of indentation.

Undentation sh.al be used so that program logical pairs are lined up and

stand out. Every BEGIN shall be physically indented to line up With its

corresponding END. The nested level o the BEGIN-END block shall be

denoted by a nu=ber in a ter inating comment. The following example

illustrates the gocd use of indentation to achieve readability.

BEGIN " 1 "

37 TUREN
BEGIN '"2" #

IF___ _ TME
BEGIN 1'3'' 3

END "31' $

ELSE
BEG33 ''14'' $

END 1"4' $
END ''2''DD " " $

Zn the above example, it is clear which BEGIN belongs with which MD. The

practice at "hiding" BEGIN's as follows

.F_ _ THEN BEGIN *

is prohibited.

174

CH5-2 has two drawbacks which make indenting difficult. First,

the code must begin in column 11 or later; Columns 1-10 are not available

for indenting. Second, the fact (in ='S-2T at least) that side-by-side

object code begins in column 28 complicates the problem. If the

programmer indents too much, the source CIS-2 code gets mixed up with the

generated object code. The situation calls for case-by-case judgements on

the part of the programmer. As a rule, two columns per indentation level

is preferred when there are eight or less levels of indentation. When

more than eight levels of indentation or nesting occur, the programner

should use one column of indentation per level to avoid mixing the source

and object code.

A final note on readability: All PROCEDURES shall begin at the top of a

new page by use of the page eject function. (SYS-PRCC's and SYS-DD's are

placed at the top of the page automatically by the compiler.)

J. bireet Code

Direct code should be used only to achieve input or output, work

around compiler problems, or to optimize frequently executed code.

Optimization will be done only after testing of the fully loaded running

system proves that optimization is required. The latter reason for using

direct code is permitted only when prior approval is given by the

cognizant government agency. This will be done on a case-by-case basis.

Direct code shall be used to work around compiler problems only when it is

not possible to work around then in high-level code. Whenever direct code

is used, it shall be clearly separated from the high level code by the use

of blank lines, lines of asterisks, and a prologue, similar to the pro-

logue required at the beginning of each procedure. This prologue shall

175

describe the reason for the section of direct code. Within the section of

direct code, the use of coents is important (see Section H on comenting

direct code).

The use of complex 37 clauses can cause logical problems with

the flow of control of a Q4S-2 program. ZF clauses should be simple, such

as

I? ZOFLAG EQ 10 TEN ...

Complex IF clauses are difficult to understand and lead to logic .lawrs.

The use of more than one AND or one OR per IF clause is discouraged.

Where complex 1F statements are used, they shall be generously commented.

The use of the CC'.? operator is forbidden.

176

APPENDIX D - Program Planning Surrmary

Available from: Lefense Technical Information Center

I tASg m &ND GIUIlAPUMIET PIAlNIW UJAIWT MAY 79 4cw a s.

Ib amle IN ,. al .. m. L Qi rn-.-4 lta.., a .. USH ~,
D-CHANCE TASK AREA U N/A U

.. 6 W... . 1.

6272111 ZF21-242-001 RF21-242-401

(U) SOFTWARE COST REDUCTION

NAVAL RESEARCH LABORATORY I OCT78 I OCT 82
WASHINGTON, DC 20375 ' --g" .

[i.- ... 79 1 i.4

DR. BRUCE WALD CODE 7500 o 30 '1 3 70 7
l~a,-*- 202-767-2903 __.- __" 81 F 5:0 I 40

004200 Computers; 019700 Computers and related r.i m...eaeist.,u

programming (Control, guidance, and navigation)

'I iOga II.

17. (U) OBJECTIVE AND APPROACH: Reduce the life cycle coot of Naval software
by conducting a critical experiment to assess the value of software
engineering (SE) innovations to assure that a) technology base funds are spent
only on potentially useful techniques, and b) software acquisition managers
are made aware of the value of these techniques. In the experiment, an
existing flight software package for the A-7 aircraft is being redesigned in
accordance with new SE principles and the efficiency, real-time performance
and flexibility of the new software will be compared with the performance of
software produced by more conventional methods.

18. (U) PLANS. FY 80: Initiate redevelopment of A7 Onboard Flight Program
(OFM) in accordance with the following software engineering techniques:
Information Hiding Modules, Abstract Interfaces, Cooperating Sequential
*Processes, Process Synchronization Primitives, Uses Hierarchy, Resource
Monitor Modules, Formal Specifications, Disciplined Programming and Program
Verification.
TY80: Continue redevelopment and begin to assess advantages and coscs of
these techniques. FY81 milestones: Complete design documentation, Dec 79;
complete implementation of a kernel of software to perform a selected subset
of functions, June 80.

19. (U) PROGRESS AND ACCOMPLSIHENTS. This project was initiated with NRL
Technology Base funding; a Software Requirements document was produced under
that project. The document has been reviewed by NWC personnel for accuracy
and sufficiency. It describes the principal interfaces between the software
and the other system components and all the functions to be performed by the
software. This document will serve as a reference for the remainder of the
project, and is being used by NWC for other purposes. A paper has been
published about the techniques developed to document software requirements.
The major software modules and patterns of interaction have been identified
and described.

177

LIST OF REFERENCES

l---"Computer Snafu Falsely Siznals Soviet Attack"; Monterey
Herald; Nov 10, 1979.

2---Greve, F. -Pentagon Calls Its Computer 'A Disaster'": S.
F. Sunday Examiner & Chrcnicle; Nov 4, 1979.

3---Defense Science Board; Renort of the Task Force on
Technology !ase Strategy; p. 41; October 1976.
(rLSIE Accession No.: LD 3614A)

4---Coppola, A. and Sukert, A. N.; Reliability an!
Maintainability Management ranual Roe Air
Development Center Report RADC-TR-79-270:
pp.127-151; July 1979.

5--- Myers, G. J.; Software Reliability Principles ar

Practices; John Wiley & Sons; 1976.

6---De Roze, B .C.; Snecial Presentation, Proceedings of t'e"Managing the Develonment of Wearons System
Software Conference; pp.4-2 - 4-12; May 197F.

7---Mills, H. 1 "Software Development ; IEEE Trarsact iors
on Software Engineerine; December 1976.

8---Van Tassel, r.: Proram Style, Design, Efficiency,
Debugging and Testing; Prentice-Hall; 197.

9---Boehm, B.; "Software Engineering Education, Some
Industry Needs", Software nineerlng Fducaton;
Wasserman, A. and Freeman, P. (Editors);
Springer-Verlag; New York, 1967.

10--Daly, E. B.; "Management of Software Develop-ent"; I7EE
Transactions on Software Engineering; pp. 22P-242;
May 1977.

l--Oxman, S. W.; "The Testing of the TRIDENT Command and
Control System" Eigest for the Worshop on Software
Testing and Test Documentatlon; pp. 284-295;
December 1978.

178

12--Tausworthe, R. C.; Standardized Develoment of Computer
Software (Part I, Vetaods; Fart I, Standards); Jet
ProDulsion Laboratory, California Institute cf
Technology; Part I, 1976: Part II 1978.

13--McCall, J. A.; "The Utility of Software Quality Metrics
in Large-Scale Software System revelopments. Second
Software Life Cycle Maragement Workshot; pp.
191-194; August 21-22, 197E.

14--Stewart, S. L. (Fditor); Concepts in Quality Software
Design ; NPS Technical Note 42; U.S. Government
Printing Office; 1974.

15--Swanson, F. 3.; "The Dimensions of raintenance";
Proceedings 2nd International Conference on Software
Fneineering; pp. 492-497; 197C.

16--Canning, R. G., (Editor); "That Maintenance 'Iceberg';
EDP Analyzer; Octooer 1972.

17--Kline, M. B. "Software & Hardware R&M: What are the
Differences? ; Proceedings Annual Roliability and
Maintainability Symposium; IEEE; pr. 179-185; 1950.

18--Manley, J. *R.; Software Life Cycle Management: Dynamics
Theory ; Second Software Life Cycle Management
Workshop; pp. 7-20; August 21-22, 1978.

19--Brown, J. R.; "Mcdeling, MeasurinR and Yanaging Software
Cost" ; Second Software Life Cycle Manaeent
Workshop; pp. 47-51; August 21-22, 1972.

20--McHenry, R. C. and Walston, C. E.; "Software Life Cycle
Management: Weapons Process reveloper" ; E
Transactions on Software Engineering; pp. 334-344;
July 1978.

21--U.S. General Accounting Office; Report to the Ccngress;
Problems in Developing the Advanced Logistics
System. Report Number LCD-75-101; 17 June 1916.

22--Cave, W. C. and Salisbury, A. B.: "Controlling the
Software Life Cycle - The Project Manazement Task";
IEEE Transactions on Software Xngineerinp; pp.
326-334; July 1978.

23--Cooper, J. D.; "Corporate Level Software Management";
IEEE Transactions on Software EngineerinR; pp.
319-3255; July 1978.

179

24--MITRE Corporation. DoD Weapons Systems Software
Acquisition and Mana.-ement Study ; MTR-6oOF; Vo. i;
June 1975. (DLSIE Accession No.: LD 38652A)

25--Kossiakoff, A., etal.; Dor Weapon System Software
Management Study ; Applied Physics Laooratory, The
Johns Hopk:ins University; Report SR-75-3; June 1975.
(DTIC Accession Number: Ar-Ae22160)

26--Assistant Secretary of Defense; Defense System Software
Management Plan : Mar 1976. (DTIC Accession No.: AD
A022558)

27--Stanfield, J. R. and Skrukrud, A. M.; Software
Acquisition Management Guidebook, Software
Maintenance Volume ; Systems Development Corp.;
TM-5772/004/02; Nov 77. (DTIC Accession Number:
AD-A0530 40)

28--Bersoff, F. H.; Fenderson, V. D.; and Siegel, S. G..;
Software Configuration Management: A Tutorial

Computer; pp. 6-14; January 1979.

29--De Roze, B. C. and Nyman, T. H.; "The Software Life
Cycle: A Manaaement and Technological Challenge in
the Department of Defense"; IEEE Transactions on
Software Engineering; Vol SE-4, No. 4; pp. 309-218;
July 1978.

30--Schneidewind, N. F.; "The Applicability of Hardware
Reliability Principles to Computer Software";
Software Quality Management; Petrocelli Rooks; rp.
171-181; 1979.

31--Fein, R.; Survey of Software Development Technology at
the Naval Surface Weapons Center; Dahlgren
Laboratory, Dahlgren, Va.; July 1976. (DTIC
Accession No.: AD A027451)

32--Pariseau, R. J.; Improved Software Productivity for
military Computer Systems Through Structured
Programming ; Report NADC-7ti4-5b4; Naval Air
Development Center; 12 March 1976.

33--Dijkstra, E. W.; "Programming Considered as a Human
Activity"; Proceedings of the IFIP Congress; pp.
213-217 ; 1965.

34--Dijkstra, E. W.; A Discipline of Prograirming;
Prentice-Hall; 1976.

1ee

35--Warnier, J. D.; Lozical Construction of Progrars
(L.C.P.); Van Nostrand Reinhold Co.; 1974.

36--Jackson, M. A.; Principles of Program Design; Academic
Press; 1975.

37--Yourdon, E.; Technioues of Program Structure ana resign;
Prentice-Hall; 1975.

3p--rahl, C. J., riJkstra, -. W., and Hoare, C. A. R.;
Structured Pro7rarrin.; A'ademic Press; 1972.

39--McGcwan, C. 1. and Kelley, J. R.; Top'-Down Structurel
Prozrammine Techniques; Petrocelli/Charter; 1975.

40--Jensen, R. W. and Tonies, C. C.; Software Fngireering;
Prentice-Eall, 1979.

41--Wirth, N.; "On the Composition of Well-Structured
Programs ; ACM Computing Surveys; recemuber 1974.

42--McHenry, R. C. and Rand,,J. A.; "Software Technology and

System Integration ; 2nd Software Life Cycle
Management Workshop; pp. 77-90; 20-22 August 1978.

A3--McHenry, R. C. and Rand, J. A.; Integraticn
Engineering: An Approach to Rapid Syster
Deployment ; FSD 77-0179; IBM; 1977.

44--McHenry, R. C. and Rand, J. A.; Software Technology and
Integration Fngineering ; FSD 78-034; IBM; 1977.

45--Meyers, C. J.; Composite Design: The Design of Modular
Programs; Technical Report TR?0.2406; IB.M; January
29, 1973.

46--,"cGowan, C. L.; and McHenry, R. C.; Software
Ma na gement ; Research Directions in Software
Technology; MIT Press; pp. 207-253; 1979.

47--Bohm, r. and Jacopini, . ;"Flow tiamrars, Turing

Machines and Languages With Only Two Formation
Rules ; Communications of the ACM; May 1966.

48--Buxton, J. N. and Randel B. (Editors); Software
Fngineering Techniaues; Renort on a Conference
Sponsored by the Nato Science Comrrittee, Rome,
Italy; 27-31 October 1969.

49--Glass, R. L.; Software Reliability Guidebook;
Prentice-Hall; 1979.

1e -1

50--Fisher, D. A.; "The Interaction Between the Preliminary
Designs and the Technical Requirements for the DoD
Common High Order Language"; Proceedings cf 3rd
International Conference on Software Engineering
pp. 82-83; 10-12 May 1978.

51--Glass, R. L.; "From Pascal to Pebbleman and Beyond";
Datamation; pp. 146-150; July 1979.

52--rijkstra, Y. W.; "On the Green Language Submitted to the
for; SIGPLAN NOTICES; pp.16-21; October 1978.

53--Hurwitz, J. and Klnucan, P.; "ADA"; Mini-Micro Systems;
december 1979.

54--Bowen, J. B.; "A Survey of Standards and Propcsed
Metrics for Software Quality Testing"; Computer; pp.
37-42; August 1979.

55--Canning, R. G., (Editor); "The Production of Better
Software"; EDP Analyzer: February 1979.

56--Miyamoto, I.; "Reliability Evaluation and Management for
an Entire Software Life Cycle ; Second Scftware Life
Cycle Management Workshop; pp. 195-209; August
21-22, 1978.

57--Glasser, A. L.; "The Evolution cf a Source Code Control
System"; Proceedings of the Software Quality and
Assurance Workshop; ACM; pp. 122-125; 19T6.

58--Josephs, W. H.; A Mini-Computer Based Library Control
System Proceedings of the Software Quality and
Assurance Workshop; ACM; pp. 126-132; 1978.

59--IM Federal Systems Center; "Documentation Standards";
Structured Programming Series; Vol. VII ; USAF RADC;
July 1975. (DTIC Accession Numbers: AL-Aee$539 and
AD-A016414)

6e--Chapin; Flow Charting with the ANSI Standard: A
Tutorial, ACM Computing Surveys; June 1972.

61--Brooks, F. P. Jr; The Mythical Man-Vcnth :
Addison-Wesley; 1975.

E2--Aron, J.; The Program revelopment Process. The
Individual Programmer; Addison-Wesley; 19(4.

63--Weinberg, G. M.; The Psychology of Comnuter Programming;
Van Nostrand Reinhold Co.; 1971.

182

.. n i- :. , , .. . ,

64--Schneiderman, Mayer, McKay and Heller; "Exverir-ental
Investigation of the Utility of Detailed Flow Charts
in Programning ; Communications of the ACM; June
1977.

65--IPM Corp.; HIPO - A Design Aid and Documentation
Technique; GC20-1851-I; 1974.

66--Anderson, G. E. and Shumate, K. C.; "Documentation Study
Proves Utility of Program Listings"; Computerworld;
May 21, 1979.

67--Pooch, U. W.; "Translation of Decision Tables"; ACM
Computing Surveys; pp. 125-151; June 1974.

62--Keller, J. F. and Roesch, R. W., Jr.; A recision Logic
Table Preprocessor ; Masters Thesis, Naval
Postgraduate School, Monterey California; June 1977.

69--Fisher, D. L.; "Data Documentation an Decision Tables";
Communications of the ACM; DD. 26-31; January 1966.

70--Yoder, C. M. and Schrag, M. L.; 'Nassi-Shneiderman
Charts - An Alternative to Flowcharts for Design";
Proceedings of the Software Quality and Assurance
Workshop; ACM; pp. 79-8; 1975.

71--Knuth, D. E.; "Computer Prograr-mming As an Art";
Communications of the ACM; pp. 667-673; December
1974.

72--Wegner, P.; "Introduction and Overview"; Research
Directions in Software Technology; MIT Press; pp.
1-36; 1979.

73--Lientz, ?. P. and Swanson, E. P. Software Maintenance
Management; Addison-Wesley: 1980.

183

INITIAL rISTIB-UTION lIST

No. Copies

1. refense Technical Information Center
Cameron Station
Alexandria, Virpinia 22314

2. library, Code Z142 2
Naval Postgraduate School
"onterey, 7alifornia 939,O

3. Lepartment Chairman, Code 52 2
Computer Science Department
Naval Postpraduate School
Monterey, California 93940

4. .rofessor Norman F. Schneidewind, Code 54Ss 1
Computer Science Department
Naval Postgraduate School
Monterey, California 9394

5. Professor Melvin B. Kline, Code 54Kx 1
Administrative S-1ences Department
Naval Postgraduate School
Monterey, California 93940

6. Pssociate Professor 1. J. Carey, Code 52Ck 1
Computer Science Department
Naval Postgraduate School
monterey. California 93940

7. Assistant Professor I.. Cox, Code 52C1 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93940

8. Major Russell D. Pilcher, USMC 5
12q South 2nd Ea.t
Taysville, Utah 8E4e4

9. lieatenant Mark Woranville. USN 1
Naial Electronics Systems Engineering Center
Sat Diep, California 921e1

184

