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.xa ct Al .q .r', .T h ms

In this s.ection it will be assuMed that the letter n is

a positive integer. If k rCO,1,2,...,n), let Bkn denote the

graph on n vertices whose vertices are numbered C1,2,.,.,n "

and whose edge set is C{a,b):la-bl(k). Given a graph G on n

vertices we can deterMine its bandwidth as follows

(See [10].):

Step 1. Set M <= 0

Step 2. If G is a subgraph of Bmn then stop, M

is the bandwidth

Step 3. Se-t M <= M + 1 and return to Step 2

Unfortunately, this algorithm has little practical sig-

nificance since deler.mining whether or not a graph is a sub-

graph of another graph takes a prohibitive amount of time.

In 1976, Papadimilriou [11] was able to prove that the band-

width iniization problem is (in general) NP-coplete. In

1978, Carey, GrahaM, Jo, nson, and Knuth [7] were able to

prove NP-coMpleteness in a sharper forM. In the same paper

they give a linear algorithm for determining whether or not a

graph has bandwidth 21. Gibbs and Poole [10] and Fulkerson

and Gros;s (6] had previously presentcd linear time algorithms

for bandwidth 1. The only gap now is the question of whether

or not -the p'rbicM of
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Is bandwidth(G) ( 3 NP-coplete for arbitrary C?

Prducyt.on Al qorjit h j

Large sparse matrix problems arise in a variety of

application areas, such as structural engi.neering, fluid

dynamics, and network analysis. Although out of vogue for a

while, band solvers which solve sparse linear systems of

equations directly using Gaussian elimination have been used

increasingly on vect or processing machines such as the Cray

and the CDC Star, (See [15J.) Pure Gaussian elimination

requires o(n 3 ) operations for an n x n Matrix. The time

required to solve the system using a band solver is o(nb )

where b is the bandwidth, (If A is an n x n matrix its band-

width is max li-jl.) The problem then becomes how to reduce
aiiO

b as much as possible. Apparently people became adept at

labeling by hand the grids (graphs) which the matrices repre-

sented. The Motivation then existed for the creation of

automatic production programs which (hopefully) reduced band-

width.

In a 1979 survey paper by Everstine (5], 49 "reduction"

algorithms are referenced, This list is by no Means exhaus-

tive and it is safe to as-itMe that bttwepn 50 and 100 reduc-

tion a]hiorithms haue been de-,iqnE;d to date. AMthough most

applicat:ions programmers working in the area were. not famil-
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iar with the results on NP-corpleteness, huerislic reduction

algorithms were cdeveloped. Most were designed with the goal

of obtaining acceptable (rather than exact) bandwidth.

Alway and Martin published the first bandwidth reduction

algorithM in 1965 [1], The Main idea of the algorithm was to

examine many row and corresponding colur'n perMutations with

some rather complex criteria use.d to disc:ard certain perMuta-

tions. The authors adMit in the paper, that -the algorithm

takes Too Much tiMe even for graphs of Moderate size.

Nevertheless, they created an algorithm which was effective

for their use in reducing bandwidth of sMall Matrices and

stimulated further research.

The first widely used production algorithm was published

by Rosen [19] in 1968. The idea behind the algorithm is to

first compute the bandwidth of the matrix (graph). The end-

points of the edges which cause the bandwidth to be attained

are then examined to see if their vertex labels can be inter-

changed with other vertex labels. When such row and corres-

ponding column permutations are perforMed, the bandwidth is

recomputed to see if an iMprovem'ent was made. The entire

process iterates until no improvement to bandwidth is made.

The algorithm uses a local stra egy in terms of the entire

structure of the associated graph, and is time consuming

This algorilhM was published along with ils iMp.eMl nlation as

a FORIRAN prograM. Perhaps The Most interesting as pect of
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the algorithM is that people were still using it in

production Mode in the late 1970's.

A Major breakthrough occurred in 1969 when the famous

Cuthill-McKee algorithm [3] was published and subsequently

incorporated into NASTRAN (See [4].). To understand the Cut-

hill-McKee algorithm and the algorithm which follows, it is

necessary to define a few terms, The definitions and the

next two algorithm descriptions are taken from [11]. A level

structure L(G), of a graph G is a partition of the vertices

of the graph into levels L ,L 2 , ... ,.ksuch that

1. all vertices adjacent to vertices in level Ll ,

are in either level L or L2 ,

2. all vertices adjacent to vertices in level L

are in either level Lkor, Lk.

and

3. for 1(i(k, all vertices adjacent to vertices

in level Liare in either level L = or L

To each vertex v of the graph there corresponds a parti-

cular level structure L:(: ) called the 1.evel. strucure r o.oted.

at v. Its levels are determined by

I. i (v), arid

2. for i0I, L.iis the s.;et of all those uertices which are

not yet a.signed to a level, hilt are adjacent to ver-
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tices of level L.

In any level structure L(G) , rooted or not, wi (L) =

I L I is called the width of level i, and w(L) = maxCw.) is
.. . 1

the width of The level s-tructure L(G), It is easily observed

that for any level structure, L, a numbering of C which

assigns consecutive integers level by level, first to the

vertices of level L1 , then to those of level L2 , and so

forth, gives a bandwidth which is less than or equal to

2w(L)-I, Furthermore, if the level structure is rooted, then

the bandwidth of the numbering is greater than or equal to

w(L). The depth of a level structure is -the number of lev-

els, k.

For discussion purposes assume all graphs are connected,

The Cuthill-McKee algorithm begins by generating a level

structure rooted at each vertex of low degree. See [3] for

their definition of low degree, For each rooted level struc-

ture of minimal. width generated in the first step the graph

is numbered level by level with consecutive positive integers

by first assigning the integer I to the root, For each suc-

cessive level, starting with level 2, the vertices adjacent

to the lowest numbered vertex in the previous level are num-

bered accordinJ to int.re ing de(nrge with ties broken arbi-

trarily. The remaining vertires adjacent to the next lower

numbered v.rtex of the preceding level are numbered next,

again in order of incretasing dpqre. Th- proc.rss continues



PACE 7

until all vertices of the current level are numbered. This

numbering process is repeatedly applied in order to subse-

quent levels until all vertices have been numbered. The nuM-

bering which gives the best bandwidth of any of the rooted

level structures of Minimaal width is selected. This algor-

ithm was the Most widely used bandwidth reduction algorithm

during the 1970's.

In 1976 Gibbs, Poole, and StockMeyer published a series

of related papers (See [113, [2,] and E12].) describing a new

bandwidth reduction algorithm which overcame what they per-

ceived to be major shortcomings of the Cuthill-McKee algor-

ithM. The algorithm has three phases, finding a pseudo-diaM-

eter, MiniMizing level width, and numbering a level structure

(not necessarily rooted).

The Cuthill-McKee algorithm is inefficient because of

the time consumed perforMing an exhaustive search to find

rooted level structures of MiniMal width. A second problem

is that the graph is renuMbered and the corresponding band-

width recoMputed, for every level structure found of miniMal

width. A third problem is that the bandwidth obtained by a

Cuthill-McKee numbering can never be less than the width of

the roo-ted level struciure used, although the bandwidth of a

graph can be less than the width of any rooted level struc-

ture. The first two shorlcoMings, are overcome by carefully

select:i.ng a starting vertex after generating only a rela-
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tively small number of l.evel structures. The graph is

renuMbered, and corresponding bandwidth com)puted only once.

The third problem is resolved by utilizing a more general

type of level structure.

Gibbs, Poole, and StockMeyer observed that level struc-

tures of small width are usually among those of MaxiMal

depth. Clearly, increasing the number of levels always

decreases the average n..mber of vertices in each level, and

tends to reduce the width of the level structure as well,

Ideally, then one would like to generate level structures

rooted at endpoints of a diameter. Since there is no known

efficient procedure which always finds such vertices, the

following algorithM is used -to -Find the endpoints of -3 pseu-

do-diaMeter, that is, a pair of vertices that are at nearly

maxiMal distance apart. For a large class of graphs, includ-

ing all trees, the pseudo-.diaMeter is actually a real diaMe-

ter.

Finding the endpoints of a pseudo-diameter

A. Pick the smallest nuMbered vertex of Minimal degree and

call it v.

B. Generate a level structure Lu rooted at vertex v. Let S

be the set of vertices which are in the last level of L

(i.e.) those vertices which are furthest away from v).

C. Generate level structures rooted at vertices s c S

selected in ordor of incre7;sinq dregree. If for soee s c S the
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depth of L is greater Than the depth of L , then set v(=sS "V

and return to step B.

D. Let u be the vertex of S whose associated level structure

has smallest width. The algorithm terMinates with u and v

the endpoints of a pseudo-diameter.

In the proces"..s of' f:i.nding a pseudo-diameTer, this al.gor-

ithm constructs level structures L and L rooted at the end-

points u and v, respectively. It is possible to combine

these two level structures into a new level structure whose

width is usually less than that of either of the original

rooted ones, using the following algorithm.

Minimizing Level Width

A. Using the rooted level structures L= (L .. ,L ) and

Lu = MlM 2 ,...,Mk obtained from -the algo.rithm for finding a

pseudo-diameter, associate with each vertex w of C 'the ord-

ered pair (i,j), called -he associa...reqtd 1l,.. pair, where i is

the index of the level in Lv that c.on-tains w, and k+1-j is

the index of The level in L. that contains w. Thus the pair

(ijj) is associated with a vertex w if and only if

we L.flMk+lj , Note that -he pair (1,1) is associated with

the vo.,rtex v, while The pair (k,lk) is associated with u,

B. Assign the vertices of G to :levels in a new level struc-

ture L (N1 ,N2 , ... ,N k ) as follows:

1. If thc associatc.I level pair of a vertex w is of 'the

form (ii), then verlex w is plkc(.;d in N. . The vertex

1
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w and all edges incident to w are removed from The

graph. If V(G) is empty, stop.

2. The graph 0 now consists of a set oF one or more

d isoint connected components C1 ,C 2 , .. ,C t ordered so

that IV(C 1i ) IIV(C 2 ) I>, . ) IV(C t ) , I

3. For each connec ted component ('taien in The order C1,

C2 ,...,C t ) do the following:

211
a. Compute the vector (nl,n 2,..,n k )  where .

n i  = I Ni  I.

b. Compute the vectors (hl,h 2 ,. . .,h k ) and

(1,12,. 1.. Ik ) where h. n.i + (the number of ver-

tices which would be placcd in N. if the first1

element of the associated level pairs were used)

and 1. = n. + (the number of vertices which would

be placed in N. if the second element of the asso-1

ciated level pairs were used),

c. Find h = max Chi :hi-"n >0) and

10 = max Cli:li-ni)0).

i. If h0 (10, place all the vertices of the

connected component in the levels indicated hi'

the first elements of the associated level

pairs.

ii. If lo<ho, use the second elements of the

level pairs to place the vert ices in the

levels.

iii, IF h 0 lothen use the elements of the

level pairs which arise .from the roo-ted level
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s t r u ct re rof s malIo r, w id-t h. t th wij.d ths a rec

eq(1ual3, use-. th fi rs to . e PI( I

The al)gor ithmi terminate--swe each vetex of C

has been assigqned a level. :in the evlStructure L.

The nlumber'ing procedure, is simtiilar -to tha-t of -the Cut-

h ill1McKee alg orithm in that is assigrins corisecutiYe positive

integers to the vertices of G level by level. A~ few mod if:[--

cata on5 were ne(:-cessary) howe-_ver, since the le...ve'L struc tures

obtained by -the a lgorithm -to minimi.. e.level wid-th are of a

more general type than the rooted ones used by *the, Cu th111--

McKee alg or ithm, Under, cer ta in c ond it i on ;, pr ofile can be

furl her red uc: ed- by using the reverse4- n u mbering qiesc rib ed i ii

step D be:[ ow. (See the next sect ion on profile reduction. )

Nu mbe in g

A. If th dcgree of u is less Than Vhe cleciroe of v, -then

inter cha nge u and v andc reverse televelA st ruc ture oh t a irmed

by -the alclorihm to minimiize,- level width by sotting N. to

N k-i+l. (This insures -that the n umbe(-rinrg starts from the e--nd--

poin~t of lower de..gree).

B. Assign consecutive positive ntcr'to the vertices of

level N 1in the, fol lowingi order:

1. Assign the, numiber I to The vc.rte:x lo

2 , Let w he t hr ' 1owestn '. r dv ric> of . v e . N1

which ho. uninumbered ve.r-ii1.es, in N a-izo~tto it.

Numbric, the2 ve.rticces of N Ia d j PII t i. w, in order oP
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increasing degr,, Rcpeat this s-rep until all. vertices

of N adjiocent to numbered ver'tices are them~selves num-

bered.

3. If any unnuMbered vert:ces remain in level N , num--

ber "the one of mii:Lmal degree, then go to step B.2,

Otherwise proceed to step C.

C. Number, the: vertices of level Ni, i:=23,. .. k as follows:

I . Let w be the lowest numb ered vertex of level Ni_1

that has unnumbered:I vertices of level N. adjacent to it.

NuMber, the vertices of N adjacent to w in order ofi

increasinq degree. Repeat this step until all vertices

of level N. adjacc:nt to vertices of level N i_ are num-

bered,

2. Repeat steps 13.2 and 13, replacing 1 with i

D. The number ing is reversed by setting i to n-i+1 , for

iI:--l ) .2 , n if either of the two f ollowing conditions holds:

I , Step A interchanged vertices u and v and the algor-

i thml for min :iiii inq level width sel ec ted the sec:ond ele--

Ments of the level pairs for component C1

2. Step A did not interchanie vertices u and v and the

algorithm for mini.mizing lcvel width -,lected the first

elements of the level pairs for component C1 .

Recently Lewis IV !15 has .ad. soMe iml:rovements -to the

FORTRAN imp:lementation of the Cil)b s, Poo .Ie and StockMeVer

alIjorithm, 1II cl.aimc thai this rww versi.on will run slightly

faster thar, A].gori-th, 0 0 1:2],
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PCrfi i.e? Rre.d ct.i on

A related but independent problem is that of profile

reduction, Let A be an n x n sparse syMetric Matrix. To

define the profile of A, First define f = MinCJ: aij 0) for'

i1,)2,...,n (assuMe aii 0). This locates the leftmost

nonzero element in each row. Next define p = i-f i . The pro-

file is defined To be
n
111£Pi

Note that in the figure below the first labeling gives a

bandwidth of 3 (which is Minimal) and a profile of 8. The

second labeling gives a bandwidth of 5 and a profile of 5

(which is inial),

41
3 1

5 Z3 6

6
2 2

The first practical and widely used profile reduction

algorithm was the reverse Cuthill-McKee algorithm which was a

modification of the original algorithm due to George [8].

The algorithm is basically The same as descr:ibe,?d above exccept

a slep is added at -the end which "reverses" the numbering by

replacing i with n-i+1. The reversal of the numbering has no

effect on bandwidth and Lit, and Sherman [17] have proved -that
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it can never :Lncrci-.as prof'ile.

Other g o od profile red uc t i on a lg or:i thMs ha ve been devel-

oped by King L14: , Gibbs [13 , and Sny [203. Snay's parper

contains an exellent description of The intuitive notions of

why the King and Cuthill--Mcl(ee nuberings are good for pro-

file and bandwidth reduction respectively. Of the profile

reduction algor:ithms Mentioned) Snay's tends to produce the

best (least) profile when it works well. As will be men--

tioned below, Snay's algorithm soMetiMes has trouble as does

King's on certain graphs. Recently, Lewis [15] rmodified the

FORTRAN impleMentation of Gibbs' prof:i.:Le reduction algorithm

so that it runs almost as fast as the Gibbs, Poole, and

StockMeyer bandwidth reduction algorithm. Although Gibhs'

profile reduction algorithm does not always reduce profile as

much as Snay's algorithMLewis" iMpleentation is a signifi-

cant contribution in that it has Made the more stable algor--

ithM fast enough to be a practical alternative to Snay's

algorithM and King's algorithm. Based on percentage of

reduction, one can claim that the profile reduction of "the

three algorithMs are comparable.

Evaluat ion of Redaction ACd ri thm s

Since bandwJ:i.d h and proF:ile redaction ,-lrorithms are

hueristic.: it is difficul t to col,,pare(r. them. on ,approach
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talken by Gibbs, Poole, and Stoc:lMeyer [12:1 has gained in

popularity and has probably defined the de facto standard for

reduction algorithM testing. Dr, Gordon Everstine of the

David Taylor Naval Ship and Research DevelopMent Center in

Bethesda, Maryland (DTNSRDC) provided them with 19 -test

Matrices which arise when the finite eleMent Method is used

to approximate solutions of partial differential equations in

several structural engineering applications. The structures

included parts of aircraft, gasoline storage tanks, subma-

rines) propellor blades, and satellites. More recently,

Everstine [5] assembled a new set of application Matrices.

This set of 30 Matrices includes some of the original 19 and

drawing-s of the structutes represented by the Matrices are

available, This set of Matrices is now the standard bench-

Mark for any production reduction algorithm,

In the same paper, Gibbs, Poole, and Stockmeyer ran a

second set of tests. They were interested in obtaining tim-

ing data in order to estimate the asymptotic behavior of the

algorithms they were testing. The algorithms were tested on

several families of grids. The grids selected were n x n

squares, 3n x n rectangl.es, n x 20n rectangles, 20 n x n cyl-

inders, and n x 20n cylinders, (See the p:)aper for mor'e

details about the types of" elements used in the fam:ilies of

grids.) George and Liu adopted the same technique in Liu's

thesis (16] and in a la ter paper (9],
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The problem of how to evaluate a heritri ;ic. alqorithM hPs

no easy solution. It is usuall y not dirficult to core up

with bizarre count-rexamples which will destroy the perf or-

mance of almost any reduction algori'thn .... good or had.

Experience has shown, however, that the results of Tes ing

algorithms on the set of 19 Test matr:ices and Ahen on tIhe set

of 30 test matrices correlate well , These res uls have led a

number of researchers to believe that the set of 30 lest

matrices has enough variety to be representative of typical

application problems which would require the use of a reduc-

tion algorithm, An interesting example Throughout test:i.ng

reduction algorithms has been the Matrix with 910 vertices.

The Snay algorithm, the King algorithm, and the reverse Cut-

hill-McKee algorithm have all performed poorly on it indepen-

dent of starting points. In fact there is no starting point

for which Snay's algorithm or King's algorithm performs tiell

on this example. The reason why is an open probleM.



PAGE 17

REFERENCvI'S

E1 Alway, G. G. and Martin, D. W., "An algorithM for reduc-
inq the handwid1h of a matrix of syMMetrical confiquration",
C o pu.er Jo ur. tlj 1., 0A (196', 264-272.

(2] Crane, H. L. , Jr, Gibbs, N. E,., Poo:EI?, W. C., Jr., and
StockkM(yver, P. K., "AlgorithM 503 .... Matrix bandwidth and
profilt. reduction" , ACM J.!.-ansact.'.on_ on M a,th.e"MaIt--ic.al 1 E.oft-
ware, 2 (1976), 375--377.

[3] Cuthill, E. and McKef?, J. M. , "Reducinq the bandwidth
of sparse syMMeiric MatriceS", :r :e(c ino of the 24' .h,
Nat.ional CorFeren c,, A'-sociatiorn for Computing Machinery, ACM
Publication P69, New York, (1969), 157-172.

[4] Evprstinc', G., "The BANDIT computer proqram for the
reduction of matrix bandwidth for NASTRAN", N.tJva.1. Sh.i.p
Resarch & v . r Bethc-.sda, Maryland, Report
3827, (19'72),

[5] Everstine, G. C., "A comparison of three resequencing
algorithms for the reduction of Matrix pr ofile and wave-
front", Internat ional. Journal for Numerical Methods in .ngi -

)ee[ir 14 (1979), 837--363.

(6] Fulkerson, D. R. and Gross, 0. A., "'Incidence matrices
and interval graphs", Pacific Journal of MIaty, tics,
( 196b ), 835-85,51

r7] Carey, M. R., GrahaM, R. L., Johnson, D. S. and Knuth,
D. E., "CoMplexity results for bandwidth iniization", S.
Journl! for AppL~ied MathMatici, 34 (1978), 477-495.

(8] George, J. A., "CoMputer impl.eMenation of the finite
elvMent method", Ph. D. Dissertation, Technical Report STAN-
CS-71-2003, CoMputrr Science DepartMent, Stanford University,
Stanford, California, (1971).

(9] George, J. A. and Liu, J. W. H., "AlgorithMs for Matrix
partitionino and the numtrical solution of finite element
systems", SICoM Journal of* Numerical Ana.y.;i ., 15 (1971),
297-327,

(10] Gibbs, N. E. and Pnole, W. C., Jr., "Tridiaqonalization
hy prmutation,.", Communications of the ot'M, 20 (1974),
20-24.

[11] Gibbs, N, E., Poole, W. C. , J, and Stotckmeyer, P., .,
"An alq orithM for reduc inq th. bandwidth and profile of a



P A[rIT 18

up.rse matrix", S IAM Journal on Numer..ica.l Anly F, 13
(1976), _o ,o

112) Gibbs, N. E. , Poole, W. G., Jr. and StockMey(:er, P. K.,
"A compar'ison of" several bandwidth and profile reduction
algorithMs", .CM Trans ctions on Mte t ica]. Software, 2
(1976), 322-330.

[13] Gibbs, N, E., "AlgorithM 509 -" A hybrid profile reduc-
tion alqorithm", ACM Tr -. ac.ons on Math-Mat.ica. Software, 2
(1976), 378-387.

(14) King, I. P. , "An automatic reordering scheme for simul-
taneous equations derived froM network systems", -ntr..
t i .on .a .L Jo urnal or Num:r ica1 Methods in Engineering, 2
(1970), b23-533.

(15] Lewis, J, G., "IMplementation of the Gibbs-Poole-Stock-
meyer algorithm and the C:ibbs-Kinq algorithm (AlgorithMs 508
and 509)", Private CoMMunication, (1980).

[16] Liu, 3. W. H., "On reducing the profile of sparse sym-
Metric Matrices", Ph. D. Dissertation, University of Water-
loo, Ontario, Canada, DepartMent of CoMputer Science --
F'aculty of Mathomatics, (1975).

E17) Liu, J. W. H. and SherMan, A. H., "Comparative analysis
of the Cuthill-McKee ordering alcorithMs for sparse
matrices", SIAM Journal on NuMer'cal AnA ly.is, 13 (1976),
197-213.

[18] PapadiMitriou, Ch. H., "The NP-coMpleteness of the
bandwidth MiniMization probleM", .C'ojp..j.ig, 16 (1976),
263-270.

(193 Rosen, R., "Matrix bandwidth miniMization", Procedings
of the 23'rd National Confer(..nce of the o(M, Brandon Syst(-,Ms
Press, Princeton, N. J., (1968), 585-59b.

(20] Snay, R. A., "Reducing the profile of sparse syMMetric
matrices", B'lletin ,des...gu., 50 (1976), 341-352.



eta,,Ie -., n,,ui ocuM rl CONTPOL DATA.R & D /9.D - 6 0 /J-'
t( O1, etenc ted ,t t, * *fel ntntfr.n nveIt Iwe t .ft ,I the "t fi.t/, ttp A I. lai, ite.ds

I. Of I IQINA INQ A CIIVI I fV 'Lf tsufuale 0Dl(hor) Ze. it P'iON I SI CU IIIY CLA SII ICA l(IUI

College of William and :!ary / Unclassified'

Department of Mathematics & Computer Science .6. CROUP
Williamsburg, Virgin~ia 23185

3. REPORT TITLE

A Survey of Bandwidth and Profile Reduction Algorithms

A. DESCRIPTIVE NOT ES (Type *I report and inclusive date.)

Technical Report 22, 1080 (August)
S. AU THORISI (Fatlet name, ,,eeddle intleel, ai l name)

Norman E. Gibbs

0. REP'ORT DATE 70. TOTAL NO. OF PAGES 7b. NO. OF REFS

August 1980 20 20
5It. CONiRACT OR GRANT NO. ta. ORIGINATOR'S REPORT NUMOERISI

ONR Contract N00014-76-C-0673 epr
6. PROJECT No. Technical Report 22

NR 044-459
0. Sb. OTHER REPORT ROMS (Any other numbers at may be a irgned

this report)

10. DISTRIDUTION STATEMEHT

Approved for public release;
distribution unlimited

It. SUPPLEMENTARY NOTES 1a. SPONSORING MILITARY ACTIVITY

Mathematics Program
Office of Naval Research
Arlington, Virginia 22217

13. ABSTR .ACT

As of 1980 over 50 bandwidth and/o'r profile reduction algorithms have appeared

in the literature. This paper traces the development of the major reduction
algorithms and discusses how automatic redu'tion algorithms can be compared and e-

valuated.

ISII I

FORM (PAGE 1)

I 

aov 

SC 

f



Unclassified

Finite Element Method

LD w.,~.1473 (AK
I--I




