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Exact Algoerithms

In this section it will be assumed that the letter n is

a positive integer, If keg{0,1,2,...,n), let Bk,n denote the

"graph on n vertices whose vertices are numbered (1,2,...,n}"

and whose edge set is (C(a,bl:ila-bl{k). Given a graph G on n
vertices we can determine its bandwidth as follows

(See [101.):

Step 1. Set m (=0

Step 2. I+ G is a subgraph of Bm, then stop, m

n
i the bandwidth

Step 3. Set m (= m + 1 and return to Step 2

Unfortunately, this algorithm has little practical sig-
nificance since determining whether or not a graph is a sub-
graph of another graph takes a prohibitive amount of time,

In 1976, Papadimitriouv [18) was able to prove that the band-
width minimization preblem is (in general) NP-cemplete. In
1978, Garey, Greham, Johnson, and Knuth [7]1 were able to
prove NP-completeness in a sharper form. In the same paper
they give a linear algorithm for determining whether or not a
graph has bandwidth 2. Gibbs and Poole (101 and Fulkerson
and Gross (6] had previously gresented linear time algerithms

for bandwidth 1. The only gap now is the question of whether

or not the problem of.
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Is bandwidth(G) ( 3 NP-complete for arbitrary G?

Productian Alqorithms

Large sparse matrix problems arise in a variety of
application areas, such as structural engineering, fluid
dynamics, and network analysis. Although out of vogue for a
while, band solvers which solve sparse linear systems of
equations direcfly veing Gavssian elimination have been used
increasingly on vecror processing machines such as the Cray
and the CDC Star, (See [151.) Pure Gaussian elimination
requires o(n3) operations for an n x n Matrix, The time
required to solve the system using a band solver is o(nbz)
where b is the bandwidth, (If A is an n x n matrix its band-
width is gaxoli—jl.) The problem then becomes how to reduce
b as much ;s possible., Apparently people became adept at
labeling by hand the grids (graphs) which the matrices repre-
sented, The motivation then existed for the creation of

avtomatic production programs which (hopefully) reduced band-

width.

In a 1979 survey paper by Everstine {51, 49 "reduction"
algorithms are referenced. This list is by no means exhaus-
tive and 1t is safe to assume that between S0 and 100 reduc-

tion algorithms have been dosigned to date. A)Ythough most

applications proarammers working in the area were not famil-
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iar with the results on NP-completeness, hveristic reduction
algorithms were developed. Most were designed with the goal

of obtaining acceptable (rather than exact) bandwidth,

Alway and Martin published the first bandwidth reduction

algorithm in 1965 [11. The main idea of the algorithm was to
examine many row and corresponding column permutations with
some rather complex criteria vsed to discard certain permuta-
tions. The authors admit in the paper that the algoerithm
takes too much time even for graphs of moderate size,
Nevertheless, they created an algorithm which was effective
for their use in reducing banindTh of small matrices and

stimulated further research.

The first widely used production algorithm was published
by Rocen [1%]1 in 1968, The idea behind the algorithm is to
first compute the bandwidth of the matrix (graph). The end-
points of the edges which cause the bandwidth to be attained
are then examined to see if their vertex labels can be inter-
changed with other vertex labels. When such row and corres-
ponding column permutations are performed, the bandwidth is
recomputed to see if an improvement was made. The entire
process iterates until no improvement to bandwidth is made,
The algorithm vses a local strategy in terms of the entire
structure of the associated qraph, and is time consuming.
This algorithm was publiched along with its implementation

a FORTRAN program, Perhaps the most interesting aspect of
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the algorithm is that people were still using it in

production mode in the late 1970's.

A major breakthrough occurred in 1969 when the fameous
Cuthill-McKee algorithm [3] was published and subsequently
incorporated into NASTRAN (See [41.). To understand the Cut-
hill~-McKee algorithm and the algorithm which follows, it is
necessary to define a few terms, The definitions and the

next two algorithm descriptions are taken from [111. A level

0

trvcture, L(G), of a graph G is a partition of the vertices

<

f the graph into levels H_ ,Lz yreslpsuch that

1. all vertices adjacent to vertices in level gl,

are in either level glor L2,

2., all vertices adjacent to vertices in level gk |

are in either level gkor Lk*l ‘

and

3. for 1(ilk, all vertices adjacent to vertices

in level giare in either level Li—l ’Li’ or gi+1.
To each vertex v of the araph there corrcsponds a parti-

cvlar level structure Ly (G) called the level siructure rooted

at v. Its levels are determined by

1. g1= (v}, and
2, for 1)1, L{is the set of all those vertices which are

not yeot assigned to a level, buvt are adjacent to ver-

e — - n " RN Y T * +7~ w.




tices of level L .
i-1

In any level structure L(G) , rooted or not, wi (L) =

I L;! is called the width of level

tructure L(G), It is easily observed

i, and w(lL) = mix(wi) is
the width of the 1
that for any level structure, L, a numbering of G which
assigns consecutive integers level by level, first te the

P vertices of level Ll , then to thoese of level LZ , and so
forth, gives a bandwidth which is less than or equal to
2uw(l)~1, Furthermore, if the level structure is rooted, then
the bandwidth of the numbering is greater than or equal to
w(L). The depth of a level strvcture is the number of lev-

els, k.

For discussion purposes assume all graphs are connected,
The Cvthill-McKee algorithm begins by agenerating a level
structure rooted at each vertex of low degree. S8See [3]1 for
their definition of low degree. For each rooted level struc-—
ture of minimal width gencrated in the first step the graph
is numbered level by level with consecutive positive integers
by first assigning the integer 1 to the root., For each suvc-
cessive level, starting with level 2, the vertices adjacent
to the Jowest numbered vertex in the previouvs level are num-

bered according to increasing dear2e with ties broken arbi-

trarily., The remaining vertices adjacent to the next lower
nembered vertex of the preceding level are numbered next,

again in order of increasing degrec.  The process continves

. - P S~ 7./ .S TZ 0P ey
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until all vertices of the current level are numbered. This
numbering process is repeatedly applied in order to subse-
quent levels until all vertices have been numbered. The num-
bering which gives the best bandwidth of any of the rooted
level structures of minimal width is selectea. This algor-
ithm was the most widely vsed bandwidth reduction algorithm

during the 1970’s,

In 1976 Gibbs, Poole, and Stockmeyer published a series
of related papers (See (111, [21, and [121,) describing 3 new
bandwidth reduction algorithm which overcame what they per-
ceived to be major shortcomings of the Cuthill-McKee algor-
ithm, The algorithm has three phases, finding a psevdo-diam-
eter, minimizing level width, and numbering @& level structure

(not necessarily rooted),

The Cuthill-McKee algorithm is dinefficient because of
the time consumed performing an exhaustive search to find
rooted level structures of minimal width, A second problem
is that the graph is renumbered and the corresponding band-
width recomputed, for every level structure found of minimal
width., A third problem is that the bandwidth obtained by a
Cuthill-~McKee numbering can never be less than the wiath of
the rooted level struciure used, although the banduwidth of a
graph can be less than the width of any reoted level struc-

ture. The first twe shortcomings are overcome by carefully

selecting a starting vertex after generating only a rela-
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tively small number of level structures. The graph is

renumbered, and corresponding bandwidth computed only once,
The third problem is resolved by vtilizing a more general

type of level struvcture,

Gibbs, Poole, and Stockmeyer observed that level struc-
tures of small width are vusually among those of maximal
depth., Clearly, increasing the number of levels aluways
decreases the average n.mber of vertices in each level, and
tends to reduce the width of the level structure as well,
Ideally, then one would like to generate level structures
rooted at endpoints of a diameter. Since there is no known
efficient procedure which always finds such vertices, the
following algorithm is vsed to find the endpoints of a pseu-
do-diameter, that is, a pair of vertices that are at nearly
maximal distance apart. For a large class of graphs, includ-
ing all trees, the pseuvdo-diameter is actvally a real diame-

ter.

Finding the endpoints of a psevdo-diameter
A. Pick the smallest numbered vertex of minimal degree and
call it v,
E. Cenerate a level structure I, rooted at vertex v. Let S
be the set of vertices which are in the last level of L
ti.e., those vertices which are furthest away from v).

C, Gencrate level struvctures rooted at vertices se §

selected in order of increasing degree, If for some s €S the

SR

Y
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depth of LS ig greater than the depth of Lv , then set v{=s
and return to step E.

D, Let v be the vertex of 8§ whose associated level structure
has smallest width., The algorithm terminates with u and v

the endpoints of a psevdo-diameter,

In the process of finding a pseuvdo—diameter, this algor-

ithm constructs level structures Lu and Lv rooted at the end-
points v and v, respectively., It is possible to combine
these two level structures into a neu level structure whose
width is usually less than that of either of the eriginal

rooted ones, uvsing the following algorithm.

Minimizing Level Width
A. Using the rooted level structures Lv = CLl,LZ,...,Lk} and
Lu = CHl,ﬁz,...,Mk) ohtained from the algorithm for finding a

psevdoe—-diameter, associate with each vertex w of G the ord-

[ ered pair (i,j), called the associated level pair, where i is
the index of the level in L that contains w, and k+l1-j is

X the index of the level in Lu that contains w. Thus the pair

(i, j) is associated with a vertex w if and only if

N> Li(\M Nete that the pair (1,1) is associated with

k+l-j °
the vertex v, while the pair (k,k) is associated with v,
B. Aussign the vertices of G to levels in a neuw level struc-

ture L = (Nl,Nz,...,Nk) as Follows:

1. If the asvociated level pair of a vertex w is of the

form (1,1), then vertex w is placed in Ni + The vertex

TN e s e




c PAGE 10
; w and all edges incident to w are removed from the
graph, If V(G) is empty, stop.
2

2. The graph G pow consists of a set of one or waere

diﬁjoint connected components Cl,Cz,...,Ct ordered so
that TVCI2IVCC, )12 2IVIC T,
3. For each connected component (taken in the order Cl,
; CZ""’Ct) do the following:
E a, Compute the vector (nl'"z""’“k) where

b. Compute the vectors (hl,hz,...,hk) and

b s bl ARSI S

(11,12,...,1k) where hi =Ny + (the number c¢f ver-
tices which would be placed in Ni if the first
element of the associated level pairs were used)

and 11 = ny + (the number of vertices which would

be placed in Ni if the second element of the asso—

ciated level pairs were used),

€. Find ho = Mix (hjthy-ny 203 and

g = mgx Cli:li—ni)03.
i. If ho(lo, place all the vertices of the
connected component in the levels indicated by
the first elements of the associated level

2 pairs,

ii, If lo(ho, vse the second elements of the
level pairs to place the vertices in the
levels,

iii, IT howloThen vee the elemonts of the

level pairs which arise froem the rooted lovel

TR P o3 o 5B T
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structure of smallor width, I¥ the widths are
equal, vse the first clemnents,

The algoerithm terminates when each vetex of G

has been assigned a level in the level struvcture L

The numbering procedure is similer to that of the Cut—
hill-HMclee algorithm in that is assigns consecutive positive
integers to the vertices of G level by level., A fow modifi~
cations were necessary, however, since the level structures
obtained by the algorithm to minimize level width are of a
more general type than the rooted ones used by the Cuthill-
McKee algorithm. Under certain conditions, profile can be
furiber reduced by using the reverse numbering described in

step D below. (See the next section on profile reduction.)

Numbering
A. If the degree of v is less than the degree of v, then
interchange v and v and reverse the level structure obtained
by the algorihm to minimize level width by setting Ni 1o

N (This insures that the numbering starts from the end-

k-i+1’
point of lower degree).
B, Assign consecutive positive integers to the vertices of
level N1 in the following order:

1. Assign the number 1 to tho vertex v,

2, Let w be tho lowest nunbered vertex of leveld N1

which hes unnumbered verticos in Nl ad jaczent 1o it

Numboer the vertices of N1 adiocent 0 w, in order of

Y T YA B L w2
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increasing degroee, Repeat this step until all vertices
of Nl adjocent 1o numbered vertices are themselves num-—
bered.

3. If any unnumhered vertices remain in level N1 ; Dup-
{ ber the one of minimal degree, then 9o to step RB.2,
Otherwise proceed to step C.
C. Number the vertices of level Ni, i=2,3,,..,k as follows:
1. Let w be the lowest numbered vertex of level Ni—l
that has vnnumbered vertices of level Ni adjacent to it.
Number the vertices of Ni adjacent 10 w in order of
increasing degree., Repeat this step until all vertices
of level Ni adjacent to vertices of level Ni—l are num-
bered,
2, Repeat steps R.2 and B3, replacing 1 with i,
DP. The numbering is reversed by setting 1 to n-i+1, for
i=1,2,...,n if either of the tuwo following conditions holds:

1. Step A interchanged vertices v and v and the algor-

| ithm for minimizing level width selected the second ele- ?
] ments of the level pairg for component Cl. ;
2, Step A did not interchange vertices v and v and the
- algorithm for minimizing lovel width selected the first
elemnents of the level pairs for component Cl. E

Recently Lewis 1151 has made some improvements (o the
FORTRAN implemontation of the Cibbs, Poole, and Stockmeyer
algorithm, He claims that this new version Wwill run slightly {

fouster than Algorithm 500 121,

W LR GRS A T VLR T PN MR S T WA T TP YR T RTINS W Sl e 30 - . - dad ety
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Profile

A related but ipdependent problem is that of profile
reduc}ion. Let A be an n x n sparse symmetric matrix, To
define the profile of A, firet define Pi = nin(j:aij¢ 0} for
i=1,2,...,n (assume a;; % 0)., This locates the leftmost

nonzero element in each row. Next define py= i*Fi. The pro-

file is defined to be

Note that in the figure below the first labeling gives a
bandwidth of 3 (which is minimal) and a profile of 8, The

second labeling gives a bandwidth of 9 and a profile of O

(which is minimal),

The first practical and widely used profile reduction
algorithm was the reverse Cuthill-McKee algerithm which was a
modification of the original algorithm due to George [8].

The algorithm is basically the same as described above except
a step is added at the end uhich "reverses" the numbering by
replacing i with n-i+1., The reversal of the numboering has no

effect on bandwidth and Liuv and Sherman [17]1 have proved that
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it can never increase profile.

Other good profile reduction algorithms have been devel-
oped by King (141, Gibbs 1131, and Ynay [20]1. Snay’s paper
contains an exellent description of the intuvitive notions of
why the King and Cuthill-McKee numberings are qood for pro-
file and bandwidth reduction respectively, O0f the profile
reduction‘algoriThms mentioned, Snay’s tends to produce the
best (least) profile when it works well, As will be men-
tioned below, Snay’s algorithm sometimes has trouble as does
King’s on certain graphs. Recently, lLewis [151 nodified the
FORTRAN implementation of Gibbs’ profile reduction algorithnm
s0 that it runs almost as fast as the Gibbs, Poole, and
Stockmeyer bandwidth reduction algorithm., Althouagh Gibhe’
profile reduction algorithm does not always reduce profile as
much as Snay’s algorithm,Lewis’ implementation ic a signifi-
cant contribution in that it has made the more stable alger-
ithm fast enough to be a practical alternative to Snay’s
algorithm and King’s algorithm, Based on percentage of
reduction, one can claim that the profile reduction of the

three algorithms are comparable.
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Since banduidth and profile reduvction aglaerithms are

hveristic, it is difficult to comparce them. An approach
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PAGE 195
taken by Gibbs, Poole, and Stockmeyer (121 has gained in
popularity and has probably defined the de facto standard for
redvction algorithm testing. Dr., Gordon Everstine of the
David Taylor Naval Ship and Research Development Center in
Rethesda, Maryland (DTNSRDC) provided them with 19 test
matrices which arise when the finite element method is used
to approximate solutions of partial differential equations in
several structural engineering applications. The structures
included parts of aircraft, gasoline storage tanks, subma-
rines, propellor blades, and satellites. More recently,
Everstine [5]1 assembled a new set of application matrices.
This set of 30 matrices includes some of the original 19 and
drawings of the structutes represented by the matrices are
available. This set of matrices is now the standard bench-

mark for any production reduction algorithm,

In the same paper, Gibbs, Poole, and Stockmeyer ran a
second set of tests., They were interested in obtaining tim-
ing data in order to estimate the asymptotic behavier of the
algorithms they were testing, The algerithms were tested on
ceveral families of grids. The grids selected were n x n
squares, 3n x n rectangles, n x 20n rectangles, 20 n x n cyl-
inders, and n x 20n cylinders. (See the paper for more
details about the types of elements vused in the families of

grids.) Geerge and Liv adopted the same technique in Liv’s

thesis 161 and in a later paper 191,
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The problem of how to evaluate a houristic algorithm hag
no easy solution. It is vswvally not difficult to come up
with bizarre counterexamples which will destroy the porfeir-
mance of almost any reduction alqorithm -—- qoud or had.
Experience has shown, however, that the results of testing
algorithms on the set of 19 test matrices and then on the set
of 30 test matrices correlate well, These resuvltse have led a
numher of researchers to believe that the set of 30 test
matrices hats enovgh variety to be representative of typical
application problems which would require the vse of a reduc—
tion algorithm, An interesting example throughout testing
reduction algorithms has been the matrix with 918 vertices,
The Snay algorithm, the King algorithm, and the reverse Cut-
hill-McKee algorithm have all performed poorly on it indepen-
dent of starting points., In fact there is no starting point

for which Snay‘s algorithm or King’s alqgorithm performe uell

on this example. The reason why is an open problem.




PAGE 17

(1) Alwaoy, G. G. and Martin, D. W., "An algorithm for reduvc-
ing the bandwidth of a matrix of symmetrical configuration”,
Computer Journal, 8 (1960), 264-272.

(21 Crane, H, L., Jr,, Gibbs, N, E,, Pocle, W. G., Jr., and
Stockmover, P, K., "Algorithm 503 -- Matrix bandwidth and
profile reduction”, AGCM Transactions on Mathematical Hoft-
ware, 2 (1976), 375-477.

{3) Cuthill, E. and McKee, J. M., "Reducing the bandwidth
National Conference, Atssociation for Compuriﬁg Macﬁinery, ACHM
Publication P69, New York, (1969), 15§57-172.

[4l Everstine, G., "The BANDIT computer program for the
reduction of matrix bandwidth for MASTRAN", Naval Ship
Research & Developmeny Ceniter, Bethesda, Maryland, Report
3827, (1972).

{51 Everstine, G, €., “A comparison of three resequencing
algorithms for the reduction of matrix profile and wave-
front", Internatienal Journal for Numerical Methods in Engi-
neering, 14 (1979), 837-8463,

(61 Fulkersen, D, R, and CGross, 0. A., "Incidence matrices
and interval araphs", Pacific Journal of Mathematics, 10
(196%), B35-8LH.

(7} Carey, M. R., Graham, R. L., Johnson, D. §. and Knuth,
D. E., "Complexity resuvlts for bandwidth minimization", SIAM
Journal for Applied Mathematics, 34 (1978), 477-495.

(81 Georqge, J. A., "Computer implementation of the finite
element method", Ph, D, Dissertation, Technicel Report STAN-
CS-71-208, Computer Science Department, Stanford University,
Stanford, California, (1971),

(?) Georqge, J. A, and Liv, J. W. H., "Algorithms for matrix
partitionina and the numerical solution of finite element
systers”, SIOM Journal of Numerical Analysis, 15 (1978),
297-327,

(10} Gibbs, N, E., and Poole, W, G., Jr., "Tridiagonalization
by permutations™, Communications of the ACHM, 20 (1974),
20~-24,

[11] Gibts, N, E., Poole, W, G., Jr., and Stockmeyer, P, K,
"An algorithm for reducing the bandwidth and profile of a




PACE 19

sparse matrix", SIaM Journal on Numerical Analysis, 13
(1976), 235-201,

[12) Gibbs, N. E., Poole, W, G., Jr. and Stockmeyer, P, K.,
"A comparison of several bandwidth and profile reduction
algorithms", ACM Transacxions on Mathematical Seftware, 2
(1976), 322-330,

{131 Gibbs, N. E., "Algorithm 3509 - A hybrid profile r
tion algorithm", ACM Transactions on Mathematical Softw

educ-
! ar
(1976), 378-387.

e, 2

[141 King, I. P., "An avtomatic reordering scheme for simul-
taneous equations derived from network svstems", Interna-—
tional Journal for Nymerical HMethods in Engineering, 2
(1976), H23-533,

{151 Lewis, J. G., "Implementation of the Gibbs-Poole-Stock-
meyer algorithm and the Cibbs-King algorithm (Algorithms 508
and $09)", Private Communication, (1980),

£161 Liv, J. W, H.,, "On reducing the profile of sparse sym-
metric matrices", Ph, D, Dissertation, University of Water-
loo, Ontario, Canada, Department of Computer Science --—
Faculty of Mathematics, (1973),

(171 Liv, J. W. H. and Sherman, A, H., "Comparative analysis
of the Cuthill~McKee ordering alqorithms for sparse
matrices", SIAM Journal on Numerical Analysis, 13 (1976),
197-213,

1181 Papadimitriouv, Ch, H., "The NP-completeness of the
bandwidth minimization problem”, Computing, 16 (1976),
263-270,

[197 Rosen, R., "Matrix bandwidth minimization”, Proceedinqs
of the £3’rd National Conference of the AGH, Brondon Systems
Press, Princeton, N, J., (192468), 585-59%5.

v, "Reducing the profile of sparse symmetric
tin Goodesigque, S0 (1976), 341-352.

(201 Snay, R
Y

A
Mmatrices”", I e

il




o o S it b= e e

Wl ation

7 DOCUMENT CONTROL DATA.RLD 225 [) O /5
’ (Sccurety classiticntinn ol title, bo:tv of ah<ttact and inds s 31n0tation aaist be enteced when the averall repnart te !Iﬂl!lh’d’
V. ORIGINA TING ACTIVITY (Corpurate outhor) . 28, RLPVOUT SLCUMITY CLASZIIICATION
Collepe of William and Mary / Unclassified "
Department of Mathematics & Computer Science TN -
- Williamsburg, Virginia 23185 '
3. REPORTY TITLE .'_'."-
A Survey of Bandwidth and Profile Reduction Algorithms ’ .
4. DESCRIPTIVE NOTES (Type ol report and inclusive dates)
Technical Report 22, 1980 (August)
9. AUTHORIS) (Lirst name, nuddle inttiel, (a3t name) )
: Norman E. Gibbs ' : -
. _./“

$. REPORT DATE

August 1989

ve,

TOTAL NO. OF PAGLS

20

1b. NO. OF REFS

20

88, CONTRACT OR GHRANT NO.,

| [ TN °RIG|NA19R'S REPORT NUMBERI(LS)
ONR Contract N00014-76-C-0673 ./ -
5, PROJECT NO. )

NR 044-459

Technical Report 22 [/

. T ®b. OTHER REPORT NO(SI (Any other numbers that may be assigned
' . this report)

d.

10. DISTRIBUTION STATEMENT

Approved for public release;
distribution unlimited

$11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Mathematics Program
Office of Naval Research

Arlington, Virginia 22217
-~

13. Ansvnnn:/ .. .
As of 1980 over 50 bandwidth and/o‘r profile redtiction algorithms have appeared

in the literature, This paper traces the developnent of the major reduction

algorithms and discusses how automatic reduction algorithms can be compared and e~
valuated. . .. :

DD

.IN 0t01.807.€801}

Vv es] 4734, (PAGE 1)

Security Classilication

- e w

adiat,




——

Unclassified

Secunity Classtiratinn

' REY WORDY Litm 4 LiNx B LiNk € |
"ot wY ROLE wy ROLE wT

Bandwidth

Profile

Reduction Algorithms

Finite Element Method

l
} Oku -
DD /'54473 toack |
T parite €3 Lan
[ — DI e

"'ﬁ‘*.[', _ZL_,___‘____,“_,___,, .- )







