AD=AG90 143 ENGELHARD MINERALS AND CHEMICALS CORP EDISON N J ENG=-=ETC F/6 10/2
PHOSPHORIC ACID FUEL CELL DEVELOPMENT, (V)
SEP 80 A KAUFMAN» P L TERRY DAAK70=77=C=0206

NL

UNCLASSIFIED




e ————

———
sty

.
D N

ADA090143

AN

PHOSPHORIC ACID FUEL CELL DEVELOPMENT

FINAL TECHNICAL REPQRT

SEPTEMBER 1980

Prepared by
A. Kaufman, P. Terry

Prepared for
U. S. Army Mobility Equipment

Research and Development Command
Fort Belvoir, Va. 22060

Contract DAAK 70-77-C-0206

Engethard Industries Division
Engelhard Minerals & Chemicals Corporation
Menlo Park, Edison, New Jersey 08817




B <4 o ot € gi-aali

NOTICE
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SUMMARY

The objectives of this program were to design, construct and
test phosphoric acid fuel cells and fuel cell stacks capable of
operating on typical product gases of a methanol or hydrocarbon
reformer. Electrode performance was initially screened in a series
of parametric tests in which operating temperature, fuel composition
and fuel utilization were varied. Results of the parametric testing
were used to establish the operating conditions to be used in the
multiple cell stack testing phase of this program.

Preliminary multiple cell stack testing was performed using
three-cell stacks, eagh electrode having an active area of
approximately 0.4 ft¢. During initial testing on intermittent load
profiles, it was observed that the three-cell stacks exhibited a
marked performance decline associated with start-up/shut-down
cycling. Upon observing this effect in two three-cell stacks the
project effort was directed towards determination of the causes of
cycling related performance losses.

Additional three-cell stacks were constructed and tested
i strictly for start-up/shut-down investigation. Individual cells
. which exhibited degradation due to start-up/shut-down cycling
i showed a corresponding decline in open circuit voltage. This
2 observation led to the conclusion that the performance losses were
| due to reactant cross leakage caused by local breaching of the
{ matrix, probably caused by acid loss during the transient conditions
: of water production and removal experienced during start-up/shut-down
cycling. This conclusion was further verified by the fact that
tolerance to start-up/shut-down cycling could be improved through use
of a thicker, higher acid content matrix.

i A parallel development program being conducted by Engelhard
! : Industries for the Department of Energy (Contract No.
DE-ACO1-78ET15366) was devoted to developing alternate matrix and
electrolyte management concepts. It was, therefore, decided to
postpone further start-up/shut-down tolerance testing until improved
matrices were available from the matrix development program.

' Upon availability of a matrix with improved acid transport
‘Q properties, three additional three-cell stacks were constructed and
\ committed to start-up/shut-down cycling. The three stacks accumulated
' a total of 8,496 hours of testing and 268 shut-down cycles. During
. the course of this testing, long-term performance declines were
i . observed but no declines specifically related to start-up/shut-down
ooy cycling were noted.
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4.0

INTRODUCTION

This program was performed in support of the U. S. Army's efforts
to develop a family of lightweight, high efficiency, silent power
sources suitable for military, field operation.

The objective of this program was to proceed stepwise from
parametric testing of small scale, single-cell, phosphoric acid fuel
cells to construction of full size, 2-KW, 1iquid cooled fuel cell
stacks. This program was to have proceeded in the following steps.

A. Parametric single cell testing (3 units)

B. Fuel composition choice

C. Three-cell stack construction and test (6 units)
D. Ten-cell stack construction and test (2 units)

E. Full size stack (2-KW net output at maximum
rated load) construction and test (2 units)

The parametric single-cell testing was conducted utilizing a
variety of fuel compositions typical of those which would be produced
by a methanol or hydrocarbon reformer. As a result of the parametric
testing and other inputs, a fuel composition of 65% Hy, 2% CO,

10% Hy0 balance COp was chosen for mixed gas testing of the
multi-cell stacks.

Two of the three-cell stacks were tested using a continuous load
profile. Two other stacks were tested using an intermittent load
profile in which the stacks were periodically shut-down and allowed
to cool to room temperature. The two stacks tested on the
intermittent load profile showed substantial losses in performance
which were not observed in the identical stacks operated on the
continuous load profile.

As a result of this observation, the program was modified to
investigate the causes of the observed performance losses associated
with start-up/shut-down cycling. Four additional, identical
three-cell stacks were constructed. One stack was operated on a
constant load as a base-line. The other three stacks were operated
on cycles which included shut-down periods of varying frequency and
duration. During this testing, each individual cell's performance

was monitored.




" % T ” e b

ENGELNARD

It was found that with all individual cells that showed a
performance decline associated with start-up/shut-down cycling the
performance decline was accompanied by a corresponding decrease in
open circuit voltage. These results suggest that the observed
performance decline: could be due to breaching of the electrolyte
matrix resulting from the transient operating conditions which occur
during start-up/shut-down cycling.

Further testing was performed on stacks which utilized a newly
developed matrix having high acid transport characteristics.
During this test series of approximately 300 shut-down cycles, no
matrix related performance declines were observed.
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5.0 EXPERIMENTAL

5.1 Description of Test Samples - Parametric Single-Cell Testing

The parametric single-cell tests were conducted using
2 3/4 in. x 2 3/4 in. active-area cells. Carbonized graphite termination
plates were used -for current collection and reactant gas distribution.
This was the same material that was used later in the stack tests.
These 2 3/4 in. x 2 3/4 in. x 0.160 in. plates were inserted into
gold-plated brass frames that had the same thickness and
2 3/4 in,x 2 7/8 in. openings. A 1/16 in. gap was left on both inlet
and outlet ends for gas manifolding. 1 in. x 6 in. x 6 in. aluminum
blocks were used on both sides as end-plates. These blocks were
machined to allow the gases to be routed to and from the gas manifolds.

The electrodes utilized a 30% Pt/C catalyst (anode and cathode).
The nominal loading for each electrode was 1.4 mg Pt/cm2. Electrode
] substrates were Teflon-wetproofed Pfizer FD-33 carbon paper. The
matrix was Engelhard's standard phosphoric acid membrane with a nominal
thickness of 0.020 inches.

5.2 Description of Test Samples - Three-Cell Stack Testing

An isometric view of a three-cell fuel cell stack is shown in
Figure 1. Figure 2 shows the end plate configuration of the first
four stacks of this series. In an effort to eliminate the possibility
of cell poisoning due to off-gasing from some non-metallic materials
of construction minor changes were made in the construction of
subsequent stacks. These construction changes are shown in Figure 3.

Tabular data on the fuel cell stacks are given below:
Cell active area 6" x 9-3/4" (0.406 ft2)
Electrodes, anode & cathode

Stacks ta, 1b, 2a, 2b,
3a, 3b, 3c & 3d

Substrate Pfizer FD-33, 0.015" thick
Catalyst type 30% Platinum on carbon
Platinum loading 1.4 mg/cme each

Stacks le, 2e & 3e

Substrate Stackpole PC-206, 0.015" thick
Catalyst type 10% Platinum on carbon
Platinum loading 0.46 mg/cmé each
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Matrix type

Stacks la, 1b, 2a, 2b,
3a, 3b, 3c & 3d

Standard Engelhard phosphoric acid membrane
0.020" thick (Stacks 3b, 3c & 3d employed
2 matrices per cell for extra acid inventory)

Stacks le, 2e & 3e

Laminated, SiC based, with provision for
acid addition, 0.010" thick

Bipolar Plates

The bipolar plates were 7" x 10.688" overall and
0.140" thick. They were machined from Stackpole
Grade 2020 graphite. Air and fuel gas flow grooves
were machined in the corresponding surfaces of the
plates.

The porosity of the plates was sealed off by coating
the surfaces with Tylan Corporation's Vitrigraf
process.

Fuel Cell Edge Seal

The edges of the individual fuel cell electrodes
were sealed from exposure to the opposite reactant
manifolds by sealing strips placed along the edges
of the electrodes. These sealing strips were of

a free-standing matrix material as described in

U. S. patent 3,453,149.

5.3 Description of Test Facilities - Parametric Single-Cell Testing

A11 parametric single-cell tests utilized the same test
apparatus. The gas flow diagram for this apparatus is shown in
Figure 4. Figure 5 shows the wiring diagram for this test station.

5.4 Description of Test Facilities - Three-Cell Stack Testing

Three separate test stands were used in the course of fuel cell
stack testing. Each of the three test stands was of identical flow
configuration. Figure 6 shows the flow schematic of the test stands.
Figure 7 shows the electrical schematic.

+




PARAMETRIC SINGLE-CELL TEST STATION
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PARAMETRIC SINGLE-CELL TEST STATION

WIRING DIAGRAM

TEMP.
120 @ © CoNRoL 4‘@
e o |

10
—

30,

SHUNT
VOLTAGE
WEST
C? 400
rs
E i CELL
% Tel)) )
[7 1 120v 1
/ AC »
1 T J;_ TEMR <z>
e RERDOVT 120v 20)(
\‘h @ Ac /\ .
o & ©o—
ooz
tg
] HEATING /’®
) PAD FUEL
@\ L o CELL
n ] A
3
RHEOSTAT @@
LEGEND
1. Fuel Cell 8. Temperature Controller
2. Heating Pads 9. Transformer
3. Ammeter Shunt 10. Saturator Heating Tape
4. Load Resistance 11. Variable Transformer
5. Millivoltmeter 12. Temperature Indicator
6. Millivoltmeter
7. Binding Posts

Figure 5

-10-




ENGELINARD

GAS FLOW DIAGRAM

FUEL CELL STACK TEST STAND
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WIRING DIAGRAM
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5.5 Test Procedure - Parametric Single-Cell Testing

5.5.1 Cell No. 1

Data on pure hydrogen were acquired at 300°F in the
current-density range 0-150 ASF in 25 ASF increments. At each
stable current-density, voltage was recorded for a hydrogen
utilization of 90%. At a current-density of 150 ASF, voltage was
recorded for hydrogen utilizations of 70%, 80%, and 90%. Testing
then continued using an anode feed gas of the following composition:

65% Hp

104 H0

0.5% CO

24.5% C0y

The composition of 10% Hp0 was obtained by saturating the

appropriate dry gas mixture with water at a temperature of 115°F.
Voltages were recorded at current-densities of 0, 25, 50, 75, and
100 ASF with hydrogen utilizations of 70%, 80%, and 90% at each

current-density. Pure hydrogen was then rerun as described above.
The following anode feed gas was then utilized:

65% Hp
10% Ho0
1% co

24%  COp

Voltages were again recorded at current-densities of 0,
25, 50, 75, and 100 ASF with hydrogen utilization of 70%, 80%, and
90% at each current-density. Baseline hydrogn was then run again
as described initially. This was followed by a third 'reformate'
gas:

65% Ho
105 Hy0
2% co
23%  C0p
-13-~
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Voltages were recorded as before at current-densities of
0, 25, 50, 75, and 100 ASF with hydrogen utilizations of 70%, 80%,
and 90% at each current-density. Baseline hydrogen was again repeated
as described initially. The following anode feed gas was then run:

65% Hj
108 Hy0
3% €0
22% €0y

Voltages were recorded at current-densities of 0, 25, 50, 75,
and 100 ASF with hydrogen utilization of 70%, 80%, and 90% at each
current-density. Finally, testing was concluded by rerunning pure
hydrogen as described initially.

The temperature was then raised to 325°F, and the entire
sequence of events described above was repeated for this temperature.

5.5.2 Cell No. 1A
Testing for this cell was identical to that for Cell No. 1
except that each time pure hydrogen was run voltages were recorded for
hydrogen utilizations of 70%, 80%, and 90% at each current-density
(not just at 150 ASF).
5.5.3 Cell No. 2
Data on pure hydrogen were acquired at 300°F in the
current-density range 0-150 ASF in 25 ASF increments. At each stable
current-density, voltage was recorded for hydrogen utilizations of
70%, 80%, and 90%. The following anode feed gas composition was then
utilized:
65% Ho
8% H20
1.5% CO
25.5% €0y

Voltages were recorded at current-densities of 0, 25, 50,
75, and 100 ASF with hydrogen utilizations of 70%, 80%, and 90% at

-14-
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each current-density. Pure hydrogen was then rerun as described
above. Testing then continued with an anode feed gas of the
following composition:
65% Hy
102  H0
1.5% CO
23.5% €O,
Voltages were again recorded at current-densities of 0, 25,
50, 75, and 100 ASF with hydrogen utilizations of 70%, 80%, and 90%
at each current-density. Pure hydrogen was then run again as described
above. The following anode feed gas was then run:
65% Ho
12% H20
é 1.5% CO
21.5% CO,
| Voltages were recorded at current-densities of 0, 25, 50,

75, and 100 ASF with hydrogen utilizations of 70%, 80%, and 90% at

each current-density. Finally, pure hydrogen was run again as
described above.

The temperature was then raised to 325°F, and the entire
sequence of events described above was repeated for this temperature.

5.5.4 Cell No. 3

Data on pure hydrogen were acquired at 325°F in the
, current-density range 0-150 ASF in 25 ASF increments. At each stable
.o current-density, voltage was recorded for hydrogen utilizations of
; ‘ 70%, 80%, and 90%. This was followed by an 85% Hp-15% CHg gas
: mixture. Voltages were recorded at current-densities of 0, 25, 50,

I 75, and 100 ASF with hydrogen utilizations of 70%, 80%, and 90% at
each current-density.

This procedure was then repeated for an 85/15 Ho/CHy

mixture containing 100 ppm HpS. This was followed by 85/15 H2/CHy
mixtures with 200 ppm H2S, 300 ppm H2S, and 500 ppm H2S, respectively.

-15-
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In each case, voltages were recorded at current-densities of 0, -
25, 50, 75, and 100 ASF with hydrogen utilizations of 70%, 80%,
and 90%-at each current-density.

5.6 Test Procedure

5.6.1 Stacks l1a & 2a

5.6.1.1  Fuel

Stack la was operated on a simulated reformer product gas
of 65% hydrogen, 2% CO, 10% Hp0, balance CO,. Stack 2a was operated
on 90% Hpz, 10% H20.

5.6.1.2 Load Profile

Both stacks were operated on the continuous load profile
as shown in Figure 8. The stack operating temperature was varied a
minimum of three times during the test. Each temperature change wac
maintained for 50 hours. At all hours marked X on Figure 8, a
! current density/voltage curve was obtained from 0-200 amperes per
square foot in 25 ASF increments along with hydrogen utilizations of
70, 80 and 90% at each increment. A1l stack temperatures were 1
recorded for each current density/voltage curve. Minor modifications
were made to the Toad change and data collection sequence in order to
accommodate the normal work day.

5.6.2 Stacks 1b & 2b

5.6.2.1 Fuel

Stack 1b was operated on the simulated reformer product gas
as used in Stack la. Stack 2b was operated on 90% Hp, 10% H20.

5.6.2.2 Load Profile

Both stacks were operated on an intermittent load profile
as shown in Figure 9. The stack operating temperature was varied in
the continuous load protile test except when the stack was
shut-down (see below). At all hours marked X on Figure 9, a current
density/voltage curve and hydrogen utilizations were obtained as in
the continuous load profile test.

5.6.2.3 Start-Up/Shut-Down Procedure

The following procedures were used when starting and stopping
the fuel cell stacks. These procedures were designed to simulate the
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ENGELNARD

start and stop event sequence which would occur in a typical field
model fuel cell system with an integrated reformer.

Start-Up Procedure:

A - Apply external electrical load (in a field model
this load could be internal supplementary starting
heaters).

B - Heat fuel cell stack from ambient temperature to
approximately 240°F.

C - Open fuel and air exits.
D - Start air flow.
E - Start fuel flow.

F - Allow stack to heat to operating temperature.
G - Adjust load.
H - Control at operating temperature.

i Shut-Down Procedure:

A - Leave external electrical load on.
B - Shut off air flow.
C - Turn off heating pads.
' D - 1-1/2 minutes after shutting off air flow,
‘ shut off fuel fiow.
| ’ E - Close fuel and air exits.

v ) F - Allow stack to cool to ambient temperature.
5.6.3 Stacks 3u, b & c

. 5.6.3.1 Fuel

Stacks 3a, b & c were operated on 90% Hy, 10% Hy0.




",ﬂr--qhm e o o - g .

5.6.3.2 Load Profile

To evaluate the effects of start/stop cycling only,
Stacks 3a, b & ¢ were operated on constant load interrupted by
shut-down periods. The start-up/shut-down procedure of Section
5.6.2.3 was followed. Shut-downs were performed at random and
l : were of varying duration.

5.6.4 Stack 3d
5.6.4.1 Fuel
Stack 3d was operated on 90% Hp, 10% Hp0.
5.6.4.2 Load Profile
In order to provide baseline data, fuel cell Stack 3d was
ggg;?:g? on constant load with no intentional shut-down or temperature

g 5.6.5  Stacks le, 2e & 3e

5.6.5.1 Fuel

During the first 1400 hours of testing, each fuel cell stack
was to be operated on a fuel mixture of 90% hydrogen, 10% water. At
the completion of 1400 hours of testing, one fuel cell stack was to
continue operating on the hydrogen/water mixture, one fuel cell stack
was to be operated on 65% Hz, 23% CO2, 10% Hy0, 2% CO and the third
stack was to be operated on 88% Hp, 10% H20, 2% CO.

5.6.5.2 Load Profile

The stacks were operated at a continuous load of 150 Amps
per square foot. The continuous load was interrupted with complete
. shut-down/start-up cycles. Cycling frequency was selected to yield a
] ‘ minimum of fifty shut-down cycles during the first 1400 hours of
i operation (approximately 6 shut-downs per week). The
shut-down/start-up proceaure of section 5.6.2.3 was followed.
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6.0 RESULTS AND DISCUSSION

6.1 Parametric Single-Cell Testing

6.1.1 Cell No. 1

The parametric single-cell test results for Cell No. 1 are
shown in Tables 1 and 2 for temperatures of 300°F and 325°F,
respectively. These are also shown in Figures 10 through 17,

It should be noted that the performance on "reformate" gas
at 300°F was only slightly inferior to that at 325°F. In two cases
at 325°F and hydrogen utijlizations of 90% substantial penalties were
incurred on reformate gas. These occurred at a current-density of
100 Amp/ftZ using the 1% and 3% CO gases.

In a few instances running on hydrogen at 90% utilization,
stable performance could not be obtained. This occurred only at Tow
current-densities, and the cause is thought to be hydrogen
maldistribution as a result of extremely low exit flows under these
conditions.

6.1.2 Cell No. 1A

The results for Cell No. 1A are shown in Tables 3 and 4 for
temperatures of 300°F and 325°F, respectively. This cell was a repeat
of Cell No. 1 except that additional data were acquired during
running on baseline hydrogen.

The performance of Cell No. 1A was similar to that of
Cell No. 1, but the tolerance of high hydrogen utilizations was more
consistent.

The Cell No. 1 and Cell No. 1A test results on "reformate"
fuel indicate that the combined effects of CO (to concentrations up
to 3%) and hydrogen dilution could be tolerated for hydrogen
utilization rates to at least 80%. In fact, it appears that a 90%
hydrogen utilization rate can be accommodated - with moderate
performance penalties - at least for temporary periods.

It is seen that the effect of CO concentration in the range
of 1-3% was not severe. Also, reasonable tolerance of CO was
maintained to a temperature as low as 300°F.

6.1.3 Cell No. 2

The results for Cell No. 2 are shown in Tables 5 and 6 for
temperatures of 300°F and 325°F, respectively. These are also shown in
Figures 18 through 23.
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PARAMETRIC SINGLE-CELL TESTING

CELL NO. 1
: ! T=300°F
o ANODE GAS CELL VOLTAGE (MV) 5 Hp UTILIZATION
‘ ]
o 25 50 75 10 125 150 AMP/FI2
| H, 607 70
‘ Hy 606 80
Ha 959 761 715 680 652 626 603 90
0.5% CO 750 698 657 631 70
10% Hzo
65% H, 964 750 697 664 635 80
24.53 €0, 970 629 691 651 623 90 r
Hy 616 70
H, 616 80
| Hy 961 754 m 679 657 635 614 90 i
X 1.0% CO 9N 763 708 670 640 70 ;
& 10% Hy0 97 749 698 658 630 80 :
: 24% €0, 971 740 683 642 620 90 ;
‘ H, 607 70 ;
% H, 606 80
Hy 960 757 ne 679 653 625 604 90
2.0% €O 970 752 701 661 63) 70
. 10% Ha0 750 695 656 628 80
65% H, ;
i 232 €0, 746 690 640 616 90
: H, 607 70
; H, 606 80
o H, 952 761 no 679 651 625 604 %
| 3.0% €O 97 755 702 662 629 70
102 Hy0 749 687 656 624 80
65% H
22+ cb, 742 685 634 613 90
’n 606 70
My . 605 80
. Ky 978 735 681 678 651 628 604 90
Table 1
-22-
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PARAMETRIC SINGLE-CELL TESTING
CELL NO. 1
S T = 325°F )
| ANODE_GAS CELL VOLTAGE (MV) % Hp UTILIZATION
o 25 s0 75 100 125 150 AMp/FT2
: H, 774 728 693 665 638 620 70
Hy 976 772 726 692 664 637 618 80
Hy 770 725 689 663 637 614 %0 -
0.5% €0 910 760 70 673 643 70
;gf :20 747 707 669 642 )
2as50,] [933 13 ;653 633 %0 4
Hp 618 70
H, 616 80 .
Hy 925 768 721 686 662 637 614 90
S 1.05c0) {89 756 708 672 643 g
t lg: :go 752 704 669 641 LW
i 243 (0, 934 734 690 643 586 T s
’ Hy a5 a0
é Hy 613 80
Hy 908 - - 668 659 638 609 90
2.0% €O 904 751 702 664 634 70
' 10% 120 747 697 660 628 ' 80
. 65% Hp
5 233 €0, 730 681 636 621 ) 90
H H2 616, 70
i H e 80
P H, 884 - 700 660 653 630 609 . 9
‘ 3.02 CO 941 754 707 666 633 70
S ;g: :;0 723 697 656 625 ‘ 80
223 0, 934 703 672 630 576 90
H 73 724 689 660 634 6N 70
, My 772 723 688 659 633 609 80
SR TN H, 915 - 6§93 679 657 635 611 %0
]
. Table 2
-23-
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ENGELMNARD
PARAMETRIC SINGLE-CELL TESTING
CELL NO. 1A
T = 300°F
: ANODE GAS CELL VOLTAGE (#v) % Hp UTILIZATIAN
t
' o 25 so 15 100 125 150 AMP/FT?
Hy 921 763 718 685 655 629 604 70
Hy 927 763 717 684 655 628 604 80
Hy 928 762 17 684 655 629 605 90
0.5% €O ( 930 756 705 670 642 70
102 Hp0 928 750 699 668 641 80
65% Hp ﬂ
24.53 €0, (926 743 691 659 632 90
Hy 926 760 715 683 655 631 605 70
Ho 926 765 718 686 657 632 607 80
H, 926 763 718 685 658 632 607 90
1.0% CO 7 924 748 699 663 635 70
102 Hy0 923 744 695 664 63, 80
65% H,
241 c0, 924 749 687 654 626 90
]
H, 932 761 716 683 656 631 608 70
Hy 932 764 7117 685 657 633 609 80
Hy 932 762 715 680 654 630 607 90
2.0% CO f 928 749 699 663 634 70
102 H,0
' 65 Ho ¢ 928 749 695 659 630 80
f 237 €0, L 928 744 694 649 622 90
H, 931 760 715 682 654 631 608 70
H, 931 765 718 686 657 633 610 80
,' Hy 931 763 78 683 655 632 608 90
3.0% €O 926 747 596 660 631 70
10% H,0
653 H 925 743 693 656 628 80

22% €0, 928 735 687 647 615 90
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PARAMETRIC SINGLE-CELL TESTING
CELL NO A
T = 325°F
AHODE GAS CELL VOLTAGE (MV) % Hp UTILIZATION
o 2 50 15 100 125 150 AMP/FY2
Hy 934 m 725 693 666 640 618 70
Hy 910 761 78 687 660 635 614 80
Hy 929 766 722 690 665 640 617 90
?6§ﬁﬂc8 930 766 ne2 677 650 70
g5~ HZ 923 751 703 664 643 80
zadswzcoz 921 745 696 664 642 90
Hy 920 761 nz 686 660 641 619 70
Hy 932 768 723 691 666 641 620 80
Ha 933 769 724 692 665 642 623 90
}69*Hfg 931 755 708 676 649 70
g5 N 928 748 704 669 643 80
245 ng 928 753 701 661 637 90
ki 924 769 722 691 665 641 618 70
Hy 930 765 722 689 665 640 620 80
H, 934 768 722 69 666 642 620 90
féSﬁ“cg a8 752 706 672 645 70
65% HZ 928 749 702 670 641 80
230 ng 927 737 686 656 628 90
Hy 926 768 723 692 667 642 620 70
Hy 936 767 724 692 666 642 620 80
Hy 935 768 722 692 665 642 620 90
3.0, o ]) [ o2a 753 705 672 642 70
65~ " 928 748 697 664 638 80
oo tsz J 924 732 690 654 621 90
Hy 975 770 723 691 664 640 618 70
Ho 911 m 724 692 665 641 618 80
Ho 933 768 722 690 664 640 618 90
Table 4
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% ENGELMHARD
PARAMETRIC SINGLE-CELL TESTING
CELL NO. 2
' T = 300°F
! ANODE GAS CELL VOLTAGE (MV) % Hy UTILIZATION
| o0 25 50 75 10 125 150 w2
Hy 938 753 709 676 651 628 607 70
Hy 943 759 na 682 656 633 612 80
Hy 942 758 na 683 657 634 612 90
1.5% €0 935 748 700 666 639 70
8% Ho0 935 743 697 660 629 80
66.5% Hp L?JS 736 688 642 616 90
24% €0,
Ha 943 760 76 684 658 636 614 70
Ho 941 763 ny 685 659 636 614 80
Hp 943 760 N5 683 658 636 614 %
1.5% €0 942 748 699 664 634 70
; 10% Hy0 936 742 692 660 628 80
f 65% Hp 936 741 685 651 617 90
5 23.5% €0
H H2 943 762 716 684 656 636 614 70
Hp 942 763 78 686 660 636 614 80
Ha 942 760 al3 684 658 634 614 90
i 1.5% €0 940 747 696 660 630 70
: 125 H0 937 739 696 660 633 80
63.5% Hp 937 735 680 649 616 90
. . 233 €0,
' Ha 942 760 ns 683 656 633 612 70 :i
“ - Hy 940 759 74 682 657 632 612 80
My 940 758 ns 682 655 632 612 90 Ei

Table 5§
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PARAMETRIC SINGLE-CELL TESTING
CELL NO. 2
, T = 3250F
i ANODE_GAS CELL VOLTAGE (MV) % Hp UTILIZATION
o 25 0 15 100 125 150 Amp/FI2
|
: H2 937 769 725 696 670 648 626 70
Ho 937 m 728 698 671 549 627 80
Hp 937 767 726 695 670 648 627 90
;;53 80 93¢ 754 709 674 646 70
66 sg Hy 934 749 704 668 641 80
245 €0 934 736 694 657 627 90
Hy 942 768 724 693 668 647 625 70
Hy 939 767 725 694 668 647 627 80
Hy 940 766 724 693 667 646 626 90
}6§%HC8 935 752 708 676 647 70
654 ug 935 750 705 672 643 80
23,5220, 935 742 694 662 630 90
Hy 942 768 725 695 672 647 625 70
{ Hy 944 768 725 694 669 646 626 80
! Hp 945 767 724 695 670 648 628 90
}éngcg 'I\ 930 748 702 672 648 70
6357 Hy 935 747 704 672 640 80
23% (o /[ 935 746 700 658 629 90
) ‘ Ha 940 762 719 688 665 643 624 70
! Ha 942 765 722 690 667 643 622 80
' Ho 943 766 721 692 665 641 622 90
) 3
"
: Table 6
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ENGELMNARD

Perforr ance was not strongly influenced by H20 content in
the range of 8-12%. The performance at 325°F was generally 10-15 mV
higher than that at 300°F.

6.1.4 Cell No. 3
The results for Cell No. 3 are shown in Table 7. The data
indicate no clear effect of H2S in the 0-500 ppm range. At high
hydrogen-utilizations the dilution effect of CHs in 85/15 H2/CHy
mixtures far outweighs any possible effect from added HpS.

6.2 Three-Cell Stack Testing

6.2.1 Stack la

Figure 24 (see note below) shows the performance history of
Stack la. The initial performance de-line of Stack la was primarily
attributable to the decline of the top and bottom cells.

At approximately 42 days into the test, the top cell was
observed to decline more rapdily than the lower two cells. Open
circuit readings taken at the 50 day point showed a depression in the
top cell's open circuit, 0.788 volts versus 0.838 and 0.825 for the
middle and bottom cells respectively.

6.2.2 Stack 2a
Figure 25 shows the performance history of Stack 2a.

Testing of Stack 2a was terminated after 696 hours of load
profile testing (744 hours total load time) due to an over-temperature
failure. The over temperature condition was caused by mixing of fuel
and air within the inlet manifolds. Causes for the mixing were creep
of the hydrogen manifold gasket and improper original positioning of
this gasket.
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Note: Termination plate/current collector plate interface

To provide electrical contact between the carbon termination
plates and the aluminum current collector plates an expanded copper mesh
was employed in the preliminary stacks. Dissimilar metal corrosion
between the copper and aluminum caused excessively high resistive Tosses
at these interfaces. Examples of these losses are shown in Figures 24
and 25. The high resistive Tosses were reduced by copper plating the
current collector plates and using a sheet of Grafoil between the
collector and termination plate. Stacks la and 2a were rebuilt in this
manner. A1l subsequent stacks employed this construction.

-42-
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PARAMETRIC SINGLE-CELL TESTING

CELL NO. 3

CELL VOLTAGE (Mv)

1 Hp UTILIZATION

ENGELNARD
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685 658
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677 647
760 651
658 628
676 648
668 642
654 632
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670 643
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643 639
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667 641
652 617
674 649
669 643
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Table 7
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Prior to failure Stack 2a operated nominally. One day
before failure, stack open circuit voltage was 2.672 volts. j
Individual cell voltages at 125 ASF, 300°F were 0.591, 0.590 and
0.600 for the top, middle and bottom cells respectively. '

| 6.2.3 Stack 2b

Figure 26 shows the performance history of Stack 2b.
Figure 27 shows the open circuit voltage history of Stack 2b.

The performance decline in Stack 2b was characterized by
an accompanying decline in open circuit voltage, see Figure 27
Stack 2b - Open Circuit vs Time.

The extreme decline observed during the final two days of
testing was primarily caused by the bottom cell. On day thirty, the
bottom cell had declined to 0.263 volts at 125 ASF, 350°F as opposed
to 0.601 and 0.565 respectively for the top and middle cells. OQpen
circuit voltages of all cells were unacceptably low at the thirty day
point with the bottom cell having the lowest voltage. Open circuit
voltages at this point were: top cell 0.768, middle cell 0.726,
bottom cell 0.583.

6.2.4 Stack 1b

Figure 28 shows the performance history of Stack 1b.
Figure 29 shows the open circuit voltage history of Stack 1b.

As in Stack 2b, performance declines were accompanied by
declines in open circuit voltage. See Figure 29, Stack 1b. Open
Circuit Voltage vs. Time. Decline was uniform across the three
cells. Final open circuit voltages (24 days) were: top cell 0.729
volts, middle cell 0.722 volts, bottom cell 0.738 voits.

At 24 days into the test, the temperature controller for
Stack 1b failed in the on position causing gross overheating of the
stack. As a result, no further testing was possible.
6.2.5 Stack 3a

" Figure 30 shows the performance history of Stack 2a.

Stack 3a was the first stack specifically devoted to
investigation of start-up/shut-down effects. It can be seen in
Figure 30 that overall stack performance declines were accompanied by
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losses in individual cell open circuit voltages. Two shut-downs
(Nos. 9 and 10) were conducted by keeping the stack at operating
temperature under an inert gas blanket. No change in the stack
decline trends was observed as a result of this shut-down procedure.

Because it was felt that the loss of open circuit voltage
might be related to reactant cross leakage caused by breaching of
the electrolyte matrix due to acid loss, samples of the electrodes
and matrix were titrated for acid content after termination of the
run. Results of the titrations are given in Table 8.

Each of the three cells shows a total acid inventory
approximately equal to that of a fresh matrix, suggesting that acid
loss from the overall cell laminate package was not severe although
a nominal amount of acid was transferred from the matrix to the
electrodes. Acid loss from localized areas of the matrices which
would not be detected by these titrations might have caused the open
circuit voltage losses.

6.2.6 Stack 3b

Figure 3] shows the performance history of the individual
cells of Stack 3b.

Because the previous stack testing indicated that poor
shut-down tolerance was caused by breaching of the matrix through
acid loss, Stack 3b was constructed to incorporate a higher acid
inventory. The top cell of Stack 3b employed a standard matrix;
however, the electrodes were prefilled with acid to a level typical
of that observed in cells which had operated for one thousand hours.
The lower two cells each employed matrices of almost twice the normal
thickness containing twice the acid volume of a standard matrix.

Initially, the performance of all three cells declined at
a rate similar to that observed in previous stacks which were
subjected to shut-down cycling. At approximately the 225 hour point,
the decline in performance of the center cell stopped and this cell
ran stably for the final 400 hours of the test. The fact that the
open circuit voltage of the middie cell remained high throughout the
test indicates that no substantial breaching of the matrix occurred.

Testing of Stack 3b was terminated at 625 hours due to the
inability of the top and bottom cells to support a load.

6.2.7 Stack 3c

Figure 32 shows the performance history of the individual
cells of Stack 3c.
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PHOSPHORIC ACID CONTENT OF FUEL CELL STACK

COMPONENTS AFTER RUN NO. 3a

mg. Bhos. Acid/

cm“ of Matrix* % Volume **
Matrix & Electrodes 35.5 37.4%
TOP CELL Matrix 23.2 24.5%
Electrodes 12.3 -
Matrix & Electrodes 37.1 39.1%
MIDDLE CELL Matrix 28.1 29.5%
Electrodes 9.0 -
Matrix & Electrodes 40.2 42.1%
BOTTOM CELL Matrix 23.4 24.6%
Electrodes 16.8 -

* Std. Matrix,0.05 cm thick

** Assuming Phos. Acid density of 1.9 mg/1 ; based on matrix volume.

Table 8
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In Stack 3c, all three cells were duplicates of the middle
cell of Stack 3b (see Results and Discussion, Stack 3b).

It can be noted from Figure 32 that the performance of the
top cell initially deciined at a greater rate than did the
performance of the lower two cells. As in previous tests, the
performance decline of the top cell was accompanied with a
corresponding decline in open circuit voltage.

There was a more gradual depression of open circuit voltages
of the-lower two cells, and their performance was not significantly
affected by the shut-down cycling.

Upon disassembly, a small burn mark indicative of breaching
of the matrix was observed on the top cell.

6.2.8 Stack 3d

Stack 3d was constructed to be identical with Stack 3c.
Stack 3d was operated under constant load to provide a comparison with
stacks undergoing start-up/shut-down cycling.

Stack 3d experienced three thermal upsets during the test.
During the first day of operation a temperature control failure caused
the stack temperature to decline to approximately 200°F.

At 210 hours, the temperature controller cycled the stack
from operating temperature to lower temperatures for a period of
about 8 hours. The lowest temperature observed by automatic recording
equipment during this period was 172°F.

At 830 hours, the stack temperature controller failed in the
off position permitting the stack to cool for a period of approximately
6 hours. When this fault was discovered, the stack operating
temperature was observed to be 118°F (approximately the temperature of
the hydrogen saturator).

The results of testing of Stack 3d are shown in Figure 33. All
cells performed with minor degradation until the temperature controller
malfunction occurred at the 830 hour point. After this malfunction,
the middle cell continued to perform stably; however, the top and
bottom cells suffered permanent performance losses. These performance
losses were probably due to acid loss from the matrix caused by the
build-up of product water within the cells at the low operating
temperature. Upon disassembly, a burn mark, indicating breaching of
the matrix, was found on the lower cell.

-56-
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6.2.9 Stack le

The performance history of Stack le is shown in Figure 34.
The individual cell performance history, starting with the
| twenty-fifth day of operation is shown in Figure 35. Individual
i cell volt-ampere curves taken at 10 days, 50 days, and 100 days of
operation are shown in Figure 36.

On approximately the twenty-fifth day of operation, the
voltage under load of Stack le was observed to decline. This
performance decline was caused solely by a decrease in voltage of the
upper cell (see Figure 35).

It was observed that the phosphoric acid on the acid
addition “shelf" of the top cell had turned blue, indicating that
this acid was in communication with the copper plating of the
termination plate/current collector plate interface. To reduce the
possibility of similar contamination of the lower cells, acid
addition to the upper cell was stopped.

On the 118th day of operation, the fuel of Stack le was
changed from 90% Hp, 10% Hp0 to 88% Hz, 10% Hp0, 2% CO. Operation
. was not continued on this fuel mixture due to the low performance of
! the upper cell.

\ The temperature control thermocouple failed open on the
130th day of operation permitting the stack to cool to approximately
110°F with the reactants flowing. Upon restoring the stack to
operating temperature, a definite loss of performance of all three
cells was observed (see Figure 35).

: 6.2.10  Stack 2e
The performance history of Stack 2e is shown in Figure 37.

Individual cell volt-ampere curves taken at 10 days, 50 days, and
100 days of operation are shown in Figure 38.

, Stack 2e was operated on the 90% Hp, 10% Hp0 fuel mix.
Between the 45th and 65th days of operation, the stack exhibited
1y erratic performance accompanied by an increased sensitivity to air
. flow. Because air sensitivity can be caused by manifold leakage,
the air inlet manifold was replaced on the 66th day. After
replacement of the manifold, performance of the stack stabilized;
however, some air sensitivity remained.
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6.2.11] Stack 3e

The performance history of Stack 3e is shown in Figure 39.
Individual cell voltages under load beginning with 60th day of
operation are shown in Figure 40. Voltage-current relationships
taken on the 10th, 50th, C3rd, and 100th days of operation are
shown in Figure 41.

T —

On the 61st day of operation, Stack 3e was switched to
operation on the 65% H,, 23% C0,, 10% Hy0, 2% CO fuel mixture.
During the 12 days of operat1on on th1s fuel (see Figure 40),
erratic ‘performance was observed in the lower two cells. The upper
cell, however, remained stab]e in performance. The stack was
returned to operation on 90% H,, 10% H,0 and diagnostic tests were
performed to determine whether the dec%1ne in performance of the
l lower cells was due to poor flow distribution or CO effects. The
results of this testing are shown in Table 9.

l The two fuel streams that did not contain CO did not show
any definite trends in decline of individual cell performance.

t Operation on the two CO containing streams, however, showed declines

similar to those observed earlier. In both cases, the bottom cell

r showed the greatest performance loss, followed by the center cell.
The upper cell showed negligible or zero loss. These results

indicate that the decline in performance resulted primarily from

decreased tolerance to €0 effects rather than from unequal flow

distribution or hydrogen partial-pressure sensitivity.

Because CO tolerance can be a function of cell operating
temperature, temperature profiles of the three cells were taken.
Figures 42 through 44 in the appendix show in-plane tempera.ure ]
profiles of the cells when operating on pure hydrogen. Figures !
45 through 47 in the appendix show the in-plane temperature profiles i
of the same cells operating on the 65% Hp, 23% COp, 10% Hy0, 2% CO .
m1x [t should be noted that these measurements are not true 9

"center-of-the-cell"” measurements but measurements taken between the
cell cathode and the adjacent, lower bipolar plate. Figure 48 in
the appendix shows diagrammatically the location of the thermocouple
traverses.

The six thermal profiles show that for both fuels, the
temperature profiles of the top and center cells are very similar,
differing by approximately 1°F. The Tower cell temperature profiles
are approximately 5°F below those o7 the upper two. To determine if
the temperature profiles might have been influenced by unequal

Ll
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3-Cell Stack 3-e

I

Diagnostic Testing Summary

| Hydrogen/= 150 ASF

Utilization - 70%
Top cell 610 mv
Middle cell 590
Bottom cell 596

65% Hy, 23% COp, 10% Hp0, 2% CO/==125ASF

Utilization (approx.) 50%
Top cell 598 mv
Middle cell 513
Bottom cell 423

65% Hp, 25% Ny, 10% Hy0/=:125 ASF

f Utilization (approx.) 70%

' Top cell 584 mv
Middle cell 577
Bottom cell 570

, 88% Hp, 10% Hy0, 2% CO/~125 ASF

Utilization (approx.) 55%
Top cell 602 mv
b Middle cell 560
' Bottom cell 557
R Table 9
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operation of the end plate heating pads, the power consumption of
each pad was checked. The upper and lower heating pads were found i
to be aperating equally.

« Temperature differences can contribute to CO tolerance
effects. It is doubtful, however, that the small temperature
differences observed were responsible for the reduced performance of
the center and bottom cell.

6.3 2-KW Fuel Cell Stack Design

A design for a 2-KW, Tiquid cooled fuel cell stack was developed
as part of this effort. The fuel cell stack design had the following

characteristics:
No. of cell 62
Cell active area 6" x 9 3/4" (0.406 ft2)
Overall cell dimension 7" x 10.688"
No. of cooling plates 8
5 Cooling plate frequency every 8 ceils

Bare stack dimension

(excluding manifolds

and bolting) 7" x 10.688 x 15.73 h
Overall stack dimensions 10" x 12 3/4" x 18 3/4" h
Bare stack weight 55.5 1bs.

Overall stack weight 78.1 1bs.

The test stacks operated during this program employed a heavy,
' laboratory type bolting system. The overall weights and volumes
given above are based on a conceptual design utilizing honeycomb
stiffened, aluminum end plates.
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7.0 CONCLUSIONS

The initial 3-cell stack testing demonstrated conclusively that

the primary performance losses associated with start-up/shut-down

! cycling were due to breaching of the electrolyte matrix. The testing
of 3-cell Stacks 1, 2 & 3e showed that start-up/shut-down cycling
losses would be eliminated or greatly reduced by the use of a matrix
having improved acid transport characteristics combined with regular
acid addition. Although the original cause of rapid cell decay
associated with shut-down cycling appears to be eliminated, some long
term decay in all three stacks was observed. This decay was greater
than that observed in single-cells and stacks operated for similar
periods of time but without shut-down cycling.

Figures 36, 38 and 41 show the voltage-current relationships of
the three stacks taken after 10, 50 and 100 days of operation.
Individual cell voltages at 150 ASF taken at these times are given in
the figures. 1In all three stacks, over half the decay seen over the
ninety day period was due to decay of one of the three cells. The
center cell of Stack le was exceptionally stable showing only a 2 mV
loss after 2400 hours of testing. In general, the changes in offset
and slope of the V-A curves with time indicate that the decline in ’
stack performance was due to both decreased catalyst performance and
electrode flooding. It can be seen that between the 50 and 100 day
lines of Stack le and between the 10 and 50 day lines of Stack 3e only
a change in offset is present. This indicates that the performance
declines observed during these periods were due primarily to catalyst
activity losses. A1l other V-A curve "pairs" show change in offset
and slope. w

The inability of Stacks ie and 3e to operate stably on
: CO0-containing fuel streams after approximately 1400 hours of operation
: on pure hydrogen was traced to diminished anode catalyst activity, with
poisons other the CO suspected of playing a role. The center cell of
Stack 3e showed a nominal performance loss associated with operation on
CO-containing fuel streams, indicating that the factors contributing to
j ' decreased CO tolerance did not affect all cells equally. ‘ !

Initial cell stacks had high voltage losses associated with
corrosion of the current coliector/termination plate interface. These
Tosses were reduced by copper plating the current collector plates and i
interposing a sheet of graphite foil between the current collector
plates and termination plates.

‘ . A 2 kilowatt, liquid cooled, fuel cell stack was designed based on
' the components utilized in the three cell stack testing program. A
conceptual design of a lightweight bolting system was prepared to permit
an overall stack weight consistent with the requirements «f portable
field equipment.
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8.0 RECOMMENDATIONS

1.

Additional investigations should he performanced to determine
the effects of carbon monoxide containing fuel streams on
fuel cell stacks subjected to mulitiple start-up/shut-down
cycling.

Methods of improving CO-tolerance of fuel cell anodes should
be investigated. This would include higher-temperature
operation and anode composition modifications.

If carbon monoxide effects are shown to be deleterious to
long term fuel cell performance, methods of elimination (or
partial elimination) of carbon monoxide from the fuel stream
should be investigated.

The start-up/shut-down testing of Stacks le, 2e and 3e utilized
electrodes of similar hydrophobigcity. The effects of higi
wet-proofing levels on start-up/shut-down tolerance should

be investigated.

In Stacks le, 2e and 3e acid inventory was maintained by
external, manual acid addition. Similar testing should be
conducted on cell stacks incorporating internal acid storage.

The bipolar plates used in the three-cell stack testing phase
of this program showed excellent corrosion resistance and
dimensional stability under cell operating conditions. The
fabrication costs, however, are presently too high for
commercial use. Alternative bipolar plate construction and
fabrication methods are presently being investigated. Such
efforts should continue in order to attain cost-effective
bipolar plate structures.
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APPENDIX

[ THERMAL PROFILE TESTING
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