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CONTROLLED PROBABILITY PROPORTIONAL TO SIZE

SAMPLING DESIGNS

By A. Hedayat and B.Y. Lin

Department of Mathematics

University of Illinois, Chicago

ABSTRACT

Any sampling design, d, of size n without replacement based on a

finite population 14 of N units or strata can be formally presented by a

pair (Sd.Pd), where Sd called the support of d is any set of subsets of

size n each based on the elements of U such that the (set theoretic) union

of these subsets, called samples, is U and Pd is a strictly positive

probability distribution on S A sampling design is said to be a

probability proportional to size, denoted by PPS(N,n), if the probability

that the unit i is being selected in a random sample is proportional to a

known positive quantity associated with the unit i - 1,2,...,N. The

literature of survey sampling offers a PPS(N,n) with Sd consists of

all (nN) possible samples. Here we give an easily applicable technique

for the construction of PPS(N,n) with various support sizes and various

probabilities on each support. Such sampling designs are needed for controlled

samplings when some samples are undesirable to be chosen or we need to

minimize (or maximize) the probabilities of the selection of certain

samples.
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CONTROLLED PROBABILITY PROPORTIONAL TO SIZE

SAMPLING DESIGNS

By A. Hedayat and B.Y. Lin

1. Introduction Let U be a finite population of 11 units or N strata.

A sampling design without replacement, d, based on U is a pair (SdPd)

where Sd, called the support of d, is any set of nonempty subsets of U and P

is a strictly positive probability distribution on Sd with

(.1) U sd u

Every member of Sd is called a sample and a random sample (or probability sample)

is a sample selected by implementing d. In general samples in Sd may have

different sizes.

In order to implement d we must know the precise structures of Sd and Pd'

However, for the purpose of customary statistical analysis of the data collected

via a random sample sd all we need to know are the following quantities called

respectively the first order and the second order inclusion probabilities:

(1.2) 1di prob. that a random sample will contain the unit i
= Sd d(sd

(1.3) IlJ prob. that a random sample will contain the units i and jz i

XPd(sd).Sdi,i "

Note that by (1.1),ndi > 0. However, Idij can be zero for some i and j. Indeed

some of the classical sampling designs, such as systematic samplings, have the

undesirable property that ndiJ = 0 for some i and J. If we are interested in

unbiased estimation of variances of linear estimators we should avoid such

Isampling designs.
In the context of our discussion the literature of survey sampling are

basically of two types:

1. Those which do not specify Sd and Pd but rather give procedures for drawing
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random samples. Among these some specify 1di's and H dij's and some give only

Idi's and leave the burden of deriving fdij's to the reader. Most papers are

of this latter type.

2. Those which specify Sd and P The values of Hdi 's and n 's are eitherd' dii

given or can be easily computed by knowing Sd and Pd* Unfortunately, only few

papers are of this type.

2. PPS Sampling A purpose of survey sampling is to study a characteristic

of interest by a random sample chosen via a sampling design. Let us denote

this characteristic of interest by y. There is often a case that besides the

characteristic y there exists some auxiliary characteristic x which is related

to y and its information is available to us. So, to each unit i in U there

are associated two measurements Xi(known to us) and Yi corresponding to the

characteristics x and y respectively. We want to estimate the population

total Y = Y1+Y2+.. "+YN utilizing the information provided by a random sample

generated by a sampling design d. It is known (.see the list of papers at the

end) that in some cases we can improve the precision of our estimator of Y

if we properly utilize the information provided by X 's in the formation of
1

the sampling design. One such sampling design, popular among survey statisticians,

is called probability proportional to size (PPS) sampling design. Through our

notation this is defined as:

Definition 2.1 A sampling design, d - (S dPd) , based on U is called a

probability proportional to size design of size n, designated by PPS(N,n), if

(i) each sample in Sd consists of n units, and (ii) the probability 1di
N

is proportional to qi (hence the name), where qi = XI/E X
jl

Since in any sampling design based on samples of size n

N N

(2.1) Pd(Sd) - n,

i-l i-i Sdl i

therefore in PPS(N,n) sampling design

(2.2) IIdi -di i
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which puts the requirement nqi<1 for the existence of such designs. As we

shall see later without further demands on d such sampling designs always exist.

Here we would like to emphasize two points. First, q does not have to be of
N

the form X./IX In general, we allow qi' referred to as the size of the unit i,

J-1
to be any positive number as long as ql+q 2+...+qN - 1 and nqi<l. However, for

all practical purposes we can assume qi to be a rational number. Second, we

should take advantage of the mild requirements of PPS(N,n) in preparing a

sampling design which meets other useful requirements. We shall explain in

details this latter point later on.

In the literature of survey sampling, PPS sampling designs belong to a

celebrated family of sampling designs known as unequal probability sampling

designs without replacement. Our purpose here is not to review the literature

on this family but rather to indicate where and how our contributions fit in

the literature dealing primarily with PPS sampling designs. The interested

reader on the subject of unequal probability sampling designs should consult

the selected bibliography and their corresponding references at the end of the

paper.

The first formal attempt to construct PPS(N,n) sampling design was

undertaken by Goodman and Kish(1950). These authors do not specify Sd or Pd

but rather give a procedure for drawing a random sample which guarantees the

proportionality of R i to qi" It is extremely difficult to derive a general

expression for ij 's of the procedure of Goodman and Kish since the

mathematical structure of their procedure is quite complicated. Hartley and

Rao(1962) used asymptotic theory to approximate 1ij 's of the procedure of

Goodman and Kish. Though it is difficult to specify Pd of the corresponding

design of Goodman and Kish it is easy to see that Sd consists of all possibleh)

samples each receiving positive probability. Brewer(1963) and Durbin(1967)

were able to construct PPS(N,2) sampling designs. Their designs have the

-1 --C *
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property that > 0 and therefore S consists of all possibl e4 ) samples.
di d 2

Sampford(1967) inspired by the results of Brewer(1963) and Durbin(1967) was able

to construct PPS(N,n) sampling designs for all N and n. Again the support of

Sampford's design is all(N) possible samples. Sampford designs have the

desirable properties that 1ij > 0 and nij < ij" The statistical usefulness

of these latter properties can be argued as follows. To estimate the population

total Y we can use the Horvitz-Thompson linear unbiased estimator
A

(2.3) "HT Yi' di
iEsd

It can be easily veri ied hat 2
A 14a 

2 YJ(2.4) Var(y HT) - Z (n di ndj -1dij (t - TI 4 k

i-l J-i+l di dj

and can be unbiasedly estimated by the Yates-Grundy estimator
n n

A A 11 i~~~iyi 2
(2.5) Var(Y HT)drd- i

iXJES d dij di dj

provided 1dij > 0. In practice it is desirable that this estimator be always

nonnegative. The property that ni < di dj guarantees this.

The additional properties that nd > 0 force the size

of the support of PPS(Nn) to be(N) if n 2. However, for n>2 it is possible

to construct PPS(N,n) sampling designs whose supports have less than(N)samples

in them. This allows us to put zero probability on samples which we consider to be

undesirable or uneconomical to collect data from. The published literature

provides no such opportunities. We are also able to construct for the given N,n

and sizes ql,q2,.. N various Sd with varieties of Pd" Again here we are

able to control the members of Sd and their corresponding probabilities. This

means that either we can exclude undesirable samples from Sd or put very little

probabilities on them for the selection purposes. If we are interested in all

(N) samples then our procedure allows to construct various Pd in contrast to the

procedure of Sampford which provides no choice at all. Before we close this

section we give two examples to elucidate the above points.



Example 2.1 Let U be a stratum of size N = 5 with the following sizes:

ql " 3/11, q2 - 1/11, q3 - 2/11, q4 = 3/11 and q5 = 2/11. Suppose we want to I.

select a sample of size n = 2 by the method of PPS sampling. Further, we desire

that II > 0, and 1i < HiI so that the Yates-Grundy estimator(2.5) does not

take negative value. Since n = 2 and we require that i. > 0 any PPS sampling i

should have all ,) 10 samples of size 2 in the support. So we have no problem

concerning the construction of the support. Therefore, all we have to do is to

specify probabilities on these samples. For the given N, n, ql,q2 ,... ,q

Sampford(1967) gives one such a set of probabilities. Since in this case n = 2

the Sampford probabilities are identical to those of Durbin(1967). Our procedure

(see Section 3) gives several such possibilities. Below we list two such choices.

Thus in this case we could not control the support due to the restrictions

imposed on the design but we could control the probabilities on the samples.

Sd:Support Pd: Probability on the Support

(samples) Durbin/Sampford design Examples of our designs1 2
12 147/2497 1/22 1/22

13 324/2497 3/22 3/22

14 567/2497 6/22 5/22

15 324/2497 2/22 3/22

23 80/2497 1/22 1/22

24 147/2497 1/22 1/22

25 80/2497 1/22 1/22

34 324/2497 2/22 3/22

35 180/2497 2/22 1/22

45 324/2497 3/22 3/22
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Example 2.2 Suppose we have a stratum of N - 6 units and would like

to select 3 units based on a PPS sampling with the following sizes:

q1 = 2/17, q2 - 3/17, q3 - 4/17, q4 
f 1/17, q5 - 2/17, q6 - 5/17. Let us also

require that nij > 0 and iJ < 11iHJ " As we said the only available procedure in

the published literature is that of Sampford(1967). In the following table we

give the Sampford design as well as a design generated by our procedure.

Sampford design Our design

S :support Pd:probability Sd:support Pd:probability

(samples) on each sample (samples) on each sample

123 44352/1529898 123 1/34

124 5445/1529898 126 3/34

125 12600/1529898 136 7/34

126 121275/1529898 145 1/34

134 10560J1529898 234 1/34

135 24192/1529898 235 1/34

136 221760/1529898 236 7/34

145 2880/1529898 246 2/34

146 29700/1529898 256 3/34

156 67200/1529898 346 1/34

234 19602/1529898 356 6/34

235 44352/1529898 456 1/34

236 381150/1529898

245 5445/1529898

246 54450/1529898

256 121275/1529898

345 10560/1529898

346 101640/1529898

356 221760/1529898

456 29700/1529898



-7-

Our design has all the desirable properties which the Sampford's design

has. In addition, our design puts zero probability on the following eight

samples 124, 125, 134, 135, 146, 156, 245, 345. Therefore, our sampling

design could be utilized for controlled sampling if our desire is not

to select these samples. So, in this case, we controlled the support of the

sampling design.

The technique which we shall present in Section 3 can be adjusted to

accommodate certain "reasonable" demands on the composition of Sd or structurePdd

of Pd' However, we do not like to leave the impression that:

(i) we can freely choose the samples in the support; or

(ii)we can arbitrarily manipulate the probabilities on the samples. V
Clearly these cannot be done. For examples, the demand that 1ij > 0 for

all i and j, i z j puts an obvious restriction on the composition of Sd and its

cardinality, i.e., the samples in Sd must form a cover for all pairs which in

turn puts a lower bound on the number of samples in Sd. Or, we cannot ask for

a sampling design which puts zero probabilities on certain undesirable samples.

What our technique is capable of doing is to minimize such probabilities though

in some situations can indeed exclude such samples from the support.

3. Construction of Controlled PPS Sampling Designs. As we pointed out in

Section 2 we can utilize Sampford's technique to construct a PPS(N,n) sampling

design for every population size N, sample size n and any set of admissible

unit sizes ql,q 2,...,q N  While the technique of Sampford is an intO-ting

one it is not applicable at all if we want to construct controlled PPS(N,n)

sampling designs. In this section we shall provide a very general technique

for the construction of such sampling designs. Our technique has no similarity

to the technique of Sampford. Moreover, our technique enjoys the following

practically useful features.(i) It is an easy technique to be understood and

to be utilized in practical situations. (ii) It is a very flexible technique

in a sense that we can adjust it to produce desirable sampling designs. For

example, for given N, n and admissible unit sizes ql,q 2 ,...q it is possible

2I
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to adjust the technique to produce many PPS sampling designs with various

support sizes and various probabilities on the samples in each support. This

flexibility allows us to construct controlled PPS(N,n) sampling designs.

We shall now establish a result which is needed for the developmelt of

our technique to follow. Suppose we have N nonempty boxes containing kl,kp,... ,Ik

objects. For a given integer n_ N a round of size n is defined to be a process

by which we select n boxes and remove one object from each box. Now the

problem is this: what are the necessary and sufficient conditions on N,n,kl,...k N,

so that all the objects can be removed from the N boxes by a series of successive

rounds of size n? This problem is completely solved in the following lemma.

Lemma 3.1. The necessary and sufficient conditions for removing

k1 2+k +...+ M objects from N boxes by a series of successive rounds of

size n are:

(1) ME 0(rood n) ;

(2) max ki <(M/n).
i

Proof. Necessity.(l) In each round of size n we remove n objects so the

total number of objects, M, must be a multiple of n.(2) It takes precisely

M/n rounds of size n to pick all the M objects. Therefore, no k. can exceed
1

the total number of rounds M/n.

Sufficiency. Consider the following procedure. At round one we remove one

object from each of the n boxes containing the largest number of objects.

Similarly, we proceed with the remaining (M/n)-l rounds. We claim that this

procedure will succeed in removing all the M objects as long as M is a multiple

of n and ki 5 M/n, i-1,2,...,N. To simplify the proof we shall distinguish

two distinct cases:

Case 1. There are precisely n boxes each containing M/n objects.

Case 2. There are less than n boxes each containing M/n objects.

Note that there cannot be more than n boxes each containing M/n objects.
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Also, N=n in Case 1 and N >n in Case 2. It is clear that our procedure will

succeed in Case 1. In Case 2 we shall establish that our procedure will end

up to a case similar to Case 1 for the reduced values of M, and k. 's and1

thus we will be able to remove all the M objects. To show this we shall

prove two things: First, we shall prove that at no time the reduced values

of M and k. 's contradict the necessary conditions (1) and (2) of the lemma.1

After the completion of round j let k. (Q ) and M. be the number of objects1 J

left in the ith box and the total number of objects left in N boxes

respectively.

Now we claim that:

(1) M. = 0 (mod n)
J

(2) max k _ (M/n)
i i

(I) is obvious by assumption (1) and the fact that M. = M-j(n).J

(2') can be argued as follows. By assumption (2) max k-5 M/n.

Thus at the end of round j of our procedure max k max k - j which yields
i i i i

maxk - (M/n) - j = /n. As we can see conditions (1') and (2') are
ii J

equivalent to conditions (1) and (2) of the lemma for integers n, M. and
J

k1(, k2 )..9.,kN . Therefore, at the beginning of each round the system

satisfy the necessary conditions. Second, at the (j+l)th round we will be faced with

two possibilities. N-n boxes will be empty and c.a.h of t e romaining -, :.ts

contains the same number of objects. As we pointed out in Case 1 above our

procedure will clearly succeed. Otherwise, we will continue the rounds. If

a situation as above never arises before round (M/n)-l then round (M/n)-l

will produce a situation as above with one object in n boxes and thus by

round (M/n) all the objects will be removed. Note that the conditions of the

lemma will exclude the possibliity of ending up with more than N-n boxes to

be empty at any round.
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Remark 3.1. If in addition to conditions (1) and (2) above N is a

multiple of n then it is possible that we end up in some round with all N

boxes containing the same number of objects. Clearly, we can go on with our

procedure in such a situation in a trivial manner.

The following example will elucidate the procedure outlined in the

lemma and the point mentioned in the above remark.

Example 3.1. Consider the following system: N=6, n=3, k =6, k =9,

k3=12, k4=3, k5=6 and k6=15. Here M=51 and M/n = 17. The necessary

conditions are satisfied. The following 17 rounds of size 3 will remove

all the 51 objects.

Box No. 1 2 3 4 5 6

no. of objects:k. 6 9 12 3 6 15

Round 1 1 1 1

Residuals 6 8 11 3 6 14

Round 2 1 1 1

Residuals 6 7 10 3 6 13

Round 3 1 1 1

Residuals 6 6 9 3 6 12

Round 4 1 1 1

Residuals 5 6 8 3 6 11

Round 5 1 1 1

Residuals 5 6 7 3 5 10

Round 6 1 1 1

Residuals 5 5 6 3 5 9

Round 7 1 1 1

Residuals 4 5 5 3 5 8

Round 8 1 1 1

Residuals 4 4 5 3 4 7

Round 9 1 1 1



Residuals 3 4 4 3 4 6

Round 10 1 1 1

Residuals 3 3 3 3 4 5

Round 11 1 1 1

Residuals 2 3 3 3 3 4

Round 12 1 1 1

Residuals 2 2 3 2 3 3

Round 13 1 1 1

Residuals 2 2 2 2 2 2

Round 14 1 1 1

Residuals 1 2 2 1 1 2

Round 15 1 1 1

Residuals 1 1 1 1 1 1

Round 16 1 1 1

Residuals 1 1 0 0 1 0

Round 17 1 1 1

Residuals 0 0 0 0 0 0

Remarks 3.2. We would like to make the following important

observationsin the context of Example 3.1. (i) Except in rounds 1,2,3,

6,13, and 15 we had more than one choice in selecting n = 3 boxes.

(ii) we could modify our procedure and empty boxes 3,5, and 6 in

rounds 13, 14 and 15 and boxes 1,2, and 4 in rounds 16 and 17.(ii)

After rounds 13 and 15 we ended up with two examples of the case pointed

out in Remark 3.1 Again note that in a situation like this we could easily

modify our procedure and empty the boxes in several ways.

The above example clearly demonstrates that in general there are many

options in the formation of rounds and our procedure couldbe easily

modified throughout the process. These properties are important when we

apply our procedure in sampling from finite populations.

---------
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We shall now apply Lemma 3.1 and prove the following theorems.

In Theorem 3.1 we shall give a technique for the construction of PPS(N,n)

sampling designs directly based on the procedure of Lemma 3.1. In Theorem

3.2 we shall show how we can explicitly construct PPS(N,n) sampling designs

with the added property that H x 0. Examples are given to demonstrateij

the techniques.

We recall from Section 2 that the unit sizes ql,q2 .. ,qN in a PPS

sampling should satisfy q > 0, nqi < 1 and q1+q2+...+qNu 1. Here for

all practical purposes we shall assume that all qi's are in rational forms

Theorem 3.1. For any N, n < N, and unit sizes ql,q 2,. .. ,qN there

exists at least one PPS(N,n) sampling design.

Proof (By construction). Associate with the ith unit the integer

ki = nqiq . Now pretend that the N units are N boxes with the ith box

containing ki objects. The N integers kl,k2, .. ,kN and the sample size n

clearly satisfy condition (1) of lemma 3.1. They also satisfy condition (2)
since by assumption nqi < l and thus k i < q - M/n for M = k +k 2+...+k.

Now by M/n rounds of size n empty these N boxes and keep a record of all

rounds as we did in Example 3.1. Now our PPS(N,n) sampling design is

defined as follows:

S d:The Support. The set of n units in each round

determines a sample in Sd. The (set theoretic) union of all these samples

constitutes the support. Note that since there are (M/n) - q rounds in all,

thus the cardinality of Sd * q.

Pd: The Probability On The Support. If Sd - ( n

is a sample in S then the probability on this sample, P is the

proportion of rounds which produced this sample. Thus

iIPd (sd) r(s d)/q

where r(sd) is number of rounds of size n in which the units il,i 2, ..., n

were chosen.
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Indeed, d - (SdPd) so defined is a PPS(N,n) sampling design. Three

things should be verified. (a) The union of samples in Sd should satisfy

condition (1.1). (b)We should show that Pd is a strictly positive probability

distribution on Sd' (c) H1di nqi -i 2,...,N.

(a) is obvious since q > 0 and thus ki > 0 meaning that there is at least

one sample (one round) which contains the ith unit.

(b) clearly pd (S = r(sd)/q is a positive number less than one and

p] ) -( r(sd) ( no. of rounds M ) 1

dd d dSd q

(c) for all i,

di Pd(Sd )  r(Sd) q i nq
s-* s )id d

Example 3.2. Let N = 6, n = 3 and q1 = 2/17, q2 
= 3/17, q 4/17,

q = 1/17, q5 = 2/17, q 5/17. In this case q = 17 and thus k, - 6,
k2 = 9, k 3 - 12, k4 = 3, k5 = 6 and k6 

= 15. We have already exhibited a

table of rounds in Example 3.1 for this problem. So, let us exhibit the

corresponding PPS(6,3) sampling design. For example, the 6 rounds, 1,2,3,4,9,

13 determine the sample sI = {2,3,6} with P = 6/17 and similarly the

rest of the samples and the corresponding probabilities.

sample probability rounds produced the sample

2 3 6 6/17 1, 2, 3, 6, 10, 15

1 3 6 3/17 4, 7, 9

3 5 6 2/17 5, 13

2 5 6 1/17 8

1 5 6 1/17 11

2 4 6 1/17 12

1 4 5 1/17 14

3 4 6 1/17 16

1 2 5 1/17 17
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Let us for example compute n2" There are 4 samples in the support which

contain unit 2. If we add up the probabilities over these 4 samples

we obtain 12 - 6/17+1/17+1/17+1/17 - 9/17 which is equal to nq2 - 3(3/17).

Also note that in this design R iJ > 0 for all i, j x i. Finally, our

design has excluded 11 samples out of(3)for sampling purposes.

Let us now look at the procedure outlined in Theorem 3.1 from other

viewpoints. The only demand we formally imposed on the procedure in Theorem

3.1 was to be proportional to qi as was specified in the definition of

PPS sampling designs. Otherwise, we left the procedure very flexible so

that we can adjust or modify it to produce desirable PPS samplings. If,

for example, we further demand that n > 0 for all i,j 9 i then we should

adjust the procedure by observing the following facts.

Proposition 3.1. It is necessary that

(3.1) min k > (N
i i L n-i

in order that a resulting sampling design generated by the procedure of

Theorem 3.1 have further properties that R j > 0 for all i, j z i. {z}

denotes the smallest integer greater thar or equal to z.

Proof. The unit i appears in precisely ki rounds. Thus the number of

samples in the support which contain the unit i is at most k . Since

unit i appears with n-l other units in each sample, thus in order that

1[ij > 0 for all J x i the ith unit should appear in at least {(N-l)/(n-l);

samples in the support. Therefore, it is necessary that ki > i(N-l)/(n-l)

for i - 1,2,...,N.

Now we shall show that in case k i's do not satisfy condition (3.1)

we can artificially increase the values of ki's so that there will be

enough samples in the support to cover all pairs of units. In some cases

it may be necessary to manipulate the values of ki's even though the ki 's

satisfy the necessary condition (3.1). However, we reco-mmend that this
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r.

device should be avoided if possible if we are interested in supports with

not too many samples. Let us, for example, reconsider Example 3.1. In

that example had we chosen boxes 1,2,3 in round 16 and consequently

boxes 4,5,6 in round 17 the resulting sampling design would have suffered

from the undesirable property that 11 - 0.
34 .'

To avoid such outcomes we should keep track of the pairs being covered as

we go along and forming the rounds. We should take advantage of those situations

in which we have several possibilities for the formation of rounds. In

such a situation we should select a round which help in covering uncovered pairs

by the preceeding rounds as we did in Example 3.1. As we mentioned above

in any case we can artificially increase the values of ki's to make sure that

enough samples are in the support to cover all the pairs. We shall now

explicitly tndicate how to increase the values of ki's without putting too

many samples in the support. The procedure is applicable whether or not

the kI 's satisfy the necessary condition(3.1). However, we shall explain

it in the context of the case in which condition (3.1) is violated. Let

min ki - k* and assume that k* < {(N-l)/(n-l)}. Proceed as in procedure of

Theorem 3.1 till the stage in which, k 's, the reduced values of ki 's are

very close to k .(We do not need to be too formal and introduce a measure

of closeness since as we shall see,the operation we shall apply can be

introduced at any round, even in round one.) Multiply all ki's by a

sufficiently large integer h so that

h(min ki) > {(-~~ -)

and go on with the remaining rounds with these artificially large remaining

A

-= h i' i - 1,2,...,N. It is clear that if we select h large enough we

can cover all the pairs (i,j). The reason we do not recommend this operation

in round onepor early after that, is to avoid the prolongation of the procedure

and consequently having too many unwanted samples in the support. There is

a slight modification in forming the corresponding PPS sampling. The

. '4 , _ . . ._ , -l
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support, as in Theorem 3.1, consists of those samples formed by the rounds.

And for probabilities if sd is a sample then the probability over it is computed

by qd

Pd (s d) r (s d)/q ,q -. r (sd )
s d

where, r(sd) = h(rl(Sd))+ r2 (sd) with

rl(sd) no. of rounds which produced sd before the application of h;

and

r2(sd) no. of rounds which produced sd after the application of h.

Now we give an example to explain the above ideas.
Example 3.3. Let N - 8, n - 3 and the unit sizes qi's as given below:

unit 1 2 3 4 5 6 7 8

q 2/18 3/18 1/18 5/18 1/18 2/18 1/18 3/18

3q 6/18 9/18 3/18 15/18 3/18 6/18 3/18 9/18

ki 6 9 3 15 3 6 3 9

Here mtn ki -3 < -{- 4.

unit 1 2 3 4 5 6 7 8

k 6 9 3 15 3 6 3 9

Rounds 1,2,3 3 3 3

Residuals 6 6 3 12 3 6 3 6

Round 4 1 1 1

Residuals 5 5 3 11 3 6 3 6

Round 5 1 1 1

Residuals 5 5 3 10 3 5 3 5

Round 6 1 1 1

Residuals 5 4 3 9 3 4 3 5

Round7 1 1 1

Residuals 4 4 3 8 3 4 3 4

Round8 1 1 1

Residuals 4 3 3 7 3 4 3 3

Round9 1 1 1

Residuals 3 3 3 6 3 3 3 3
Introduce h - 2 6 6 6 12 6 6 6 6
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Round 10 1 1 1

Residuals 6 6 5 11 5 6 6 6

Round 11 1 1 1

Residuals 6 6 5 10 5 6 5 5

Round 12 1 1 1

Residuals 5 5 5 9 5 6 5 5

Round 13 1 1 1

Residuals 5 5 5 8 5 5 4 5

Round 14 1 1 1 5

Residuals 4 5 4 7 5 5 4 5

Round 15 1 1 1

Residuals 4 5 4 6 4 4 4 5

Round 16 1 1 1

Residuals 4 4 4 5 4 4 4 4

Round 17 1 1 1

Residuals 3 4 4 4 3 4 4 4

Round 18 1 1 1

Residuals 3 3 4 3 3 4 3 4

Round 19 1 1 1

Residuals 3 3 3 3 3 3 3 3

Round 20 1 1 1

Residuals 2 3 2 3 3 3 2 3

Round 21 1 1 1

Residuals 2 3 2 2 3 2 2 2

Round 22 1 1 1

Residuals 2 2 1 2 2 2 2 2

Round 23 1 1 1

Residuals 2 2 1 2 1 2 1 1

Round 24 1 1 1

ILL
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Residuals 1 1 1 1 1 2 1 1 Ir

Round 25 I 1 1

Residuals 0 0 1 1 1 1 1 1

Round 26 1 1 1

Residuals 0 0 0 0 0 1 1 1

Round 27 1 1 1

Residuals 0 0 0 0 0 0 0 0

Note that we increased the values of the residuals ki's at the end of

round 9 in which these values were close to min ki - 3 to begin with. Since
i

in this case h - 2 each round before round 10 is counted twice in computing

the probabilities. The resulting PPS(8,3) with all Hij > 0 is given below.

sample probabilit sample probability sample probability

2 4 8 9/36 4 7 8 1/36 3 6 8 1/36

1 2 4 4/36 4 6 7 1/36 1 3 7 1/36

4 6 8 3/36 1 3 4 1/36 2 3 5 1/36

2 4 6 2/36 4 5 6 1/36 5 7 8 1/36

1 4 8 2/36 1 4 5 1/36 1 2 6 1/36

1 4 6 2/36 2 4 7 1/36 6 7 8 1/36

3 4 5 2/36

This PPS sampling has excluded(8)- 19 - 37 samples from the support.

We now summarize in Theorem 3.2 what we have discovered above.

Theorem 3.2. For any N,n < N and unit sizes ql,q 2,.. .qN there are

various probability proportional to sampling designs with various support

sizes and varieties of probabilities on each support with i > 0, forii

all i, j a i. These sampling designs could be used for the purpose of

controlled sampling.

In conclusion, we would like to point out that as long as ki's, or

kcJ)'s, satisfy the conditions of Lemma 3.1 our procedure will succeed.

Bo we do not have to choose the largest n boxes at every round. This fact

together with the technique of introducing a multiplier makes our procedure
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even more flexible. The following example should demonstrate the point.

B-xamnle 3.4. As in Example 3.2, let N = 6, n = 3 and the unit sizes qi's as follows:

unit 1 2 3 4 5 6

qi 2/17 3/17 4/17 1/17 2/17 5/17

3qi 6/17 9/17 12/17 3/17 6/17 15/17

k. 6 9 12 3 6 15

unit 1 2 3 A 5 6

ki  6 9 12 3 6 15

Introduce h = 2 12 18 24 6 12 30

Round I 1 1 1

Residuals 11 17 23 6 12 30

Round 2 1 1 1

Residuals 11 16 22 5 12 30

Round 3 1 1 1

Residuals 11 15 21 5 11 30

Round 4 1 1 1

Residuals 10 15 21 4 10 30
I.

Rounds 5,6,7,8,9.10,11 7 7 7

Residuals 10 8 14 4 10 23

Rounds 12,13,14,15.16 5 5 5

Residuals 5 8 9 4 10 18

Rounds 17,18,19,20,21,22 6 6 6

Residuals 5 8 3 4 4 12

Rounds 23,24,2- 3 3 3

Residuals 2 5 3 4 4 9

Rounds 26.27 2 2 2

Residuals 2 3 3 2 4 7

Rounds 29.29 2 2 2

Residuals 2 1 3 2 2 5

Rounds 30,31 2 2 2

L:-
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Residuals 0 1 1 2 2 3

Round 32 1 1 1

Residuals 0 1 1 1 1 2

.ound 33 1 1 1

Residuals 0 0 1 1 0 1

Round 34 1 1 1

Residuals 0 0 0 0 0 0

The PPS(6,3) sampling design produced by this modified procedure is

samle probability sample probability

1 2 3 1/34 3 5 6 6/34

2 3 4 1/3d 1 2 6 3/54

2 3 5 1/34 2 4 6 2/34

1 4 5 1/34 2 5 6 3/34

2 3 6 7/34 4 5 6 1/34

1 3 6 7/34 3 4 6 1/34

which is the sampling design in Examnple 2.2.

..
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