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THE UNIFIED THEORY OF SHIP MOTIONS

by

J. N. Newman
P. Sclavounos

Department of Ocean Engineering
Massachusetts Institute of Technology

(Preliminary Copy of paper to be presented
at the 13th Symposium on Naval Hydrodynamics

Tokyo, Japan, 6-10 October 1980.)

ABSTRACT additional relevant length scale which must
be considered in developing asymptctic

A linear theory is presented for the theories of practical utility. This
heave and pitch motions of a slender ship, complication in slender-ship theory applies
moving with forward velocity in calm water. not only to unsteady motions in waves, but
The velocity potential includes a particu- also to the analysis of steady-state wave
lar solution similar to that of the high- resistance. The present paper is concerned
frequency strip theory, plus a homogeneous only with the former problem, and is
component which accounts for interactions restricted to the solution of the radiation
along the length in an analogous manner to problem for forced heave and pitch motions
the low-frequency "ordinary" slender-body in otherwise calm water. Work currently in
theory. The resulting "unified" theory is progress by Sclavounos (1980) will extend
valid more generally for all frequencies of this theory to the diffraction problem of
practical importance. incident waves, including the determination

Computations are presented for the of the exciting forces and moments.
added-mass and damping coefficients of a Substantial wave excitation in heave
floating spheroid, a Series 60 hull, and or pitch recuires an incident wavelength
a frigate. Comparisons with experimental greater than the ship length, typically by
data and with zero-speed exact theories a factor of 1.5 or more. This implies a
confirm the utility of the unified theory. regime where, based on the beam and draft,

This theory can be used to analyse a long-wavelength or low-freauency approxi-
the performance of elonvated wave-energy mation is appropriate. Hydrostatic res-
absorbers. This application is illustrated toring forces and the Froude-Krylov exciting
for a hinged "Cockerell" raft. force are dominant, and the resulting theo-

retical description of ship motions is rela-
1. INTRODUCTION tively simple. This is the leading-order

result of "ordinary" slender-body theory.
Conventional ship hulls are slender in For a ship proceeding with significant

the geometrical sense, with small beam and forward speed, the Doppler effect increases
draft compared to their length. This is the frecuency of encounter and shortens the
convenient from the standpoint of hydrody- radiated wavelength. Resonance occurs when
namic analysis, since slender-body approxi- this wavelength is comparable to the beam
mations simplify the governing equation and and draft, and therefore much less than
boundary conditions. the ship length. This is the applicable

Geometrical slenderness is sufficient regime of strip theory, where three-
to justify the classical slender-body theory dimensional interactions in the longitu-
of incompressible aerodynamics, but in ship dinal direction are negligible.
hydrodynamics the wavelength represents an
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The practical domain of ship motions the inner problem, and its solution, are
in waves obviously embraces both of the similar to strip theory.
above regimes, in the sense that the fre- The outer problem which applies far
quency of encounter may be low, especially from the hull surface is fully three-dimen-
for following seas, or high as in the case sional, with gradients in the longitudinal
of a fast vessel in head seas. In the direction comparable to those in the trans-
context of slender-body theory, it is verse plane. The three-dimensional Laplace
desirable therefore to avoid restrictive equation governs the solution, subject to
assumptions concerning the wavelength or the complete linearized free-surface bound-
the frequency of encounter. That objective ary condition (where the forward speed is
has led to the development of a "unified" a significant parameter) and the radiation
slender body theory which embraces both condition of outgoing waves at infinity.
long and short wavelengths in the sense Neither the inner nor the outer problem
defined above. is unique, as described above, since nothing

The theoretical framework for the has been stated about their respective
unified theory of ship motions is developed asymptotic behavior far away in the inner
in Newman (1978) and in more detail, for problem, and close to the ship in the outer
the special case of zero forward velocity, problem. Following the method of matched
by Mays (1978). The latter work includes asymptotic expansions, this nonuniciueness
computations of the damping and added-mass is resolved by requiring the two solutions
coefficients for a floating spheroid, and to be compatible in a suitably defined
the remarkable agreement of the latter with overlZap region.
exact three-dimensional computations was an In the special case of ordinary slender-
important motivation for extending the body theory, the frequency is asymptotically
computations to ship-like forms, and to small in the inner solution, and the "rigid"
non-zero forward velocity. The present free-surface condition applies. For ver-
paper is intended to report on these tical motions of the ship's section there
efforts. is a net source strength, and thus the

A brief review is given of the theo- inner solution is logarithmically singular
retical framework f or the unified theory, at "infinity", in the overlap domain. As
in Section 2, and supplemented in Section in the classical slender-body theory of
3 by the derivation of a simplified expres- aerodynamics, this determines the effective
sion for the kernel function which governs source strength of the outer solution.
longitudinal interactions along the ship's Conversely, the inner limit of the outer
lemgth. Numerical results for the added- solution determines a nontrivial additive
mass and damping coefficients are presented *constant" in the inner solution, which is
in Section 4, to illustrate the practical a function of the longitudinal coordinate.
utility of this theory in predictions of By comparison, in the high-frequency
ship motions in waves. The unified theory domain of strip theory, waves are present
also has been used to analyse the wave- in the inner problem via the free-surface
energy absorption of elongated devices such condition. Their outgoing radiated behavior
as the Cockerell raft and Kaimei ship, and at "infinity" can be matched directly to
the results are described briefly in Section the inner limit of an appropriate three-
5. dimensional source distribution, along the

Before proceeding with the mathematical ship's axis. The inner free-surface condi-
details of the unified theory, it may be tion does not admit an additive constant,
useful to present a brief description which and hence the inner solution is not affected
avoids so far as possible the use of mathe- by the matching process, justifying the
matical arguments. The fundamental assump- strip-theory solution itself.
tions are that (1) the fluid motion is Proceeding without restriction
irrotational and incompressible, (2) the of the frequency requires that the
oscillatory motions of the ship and of the inner free-surface condition is
fluid are sufficiently small to linearize, preserved, as in the high-f recuency
and (3) the ship hull is geometrically case. However, the corresponding
slender. strip-theory solution with outgoing

For heave and pitch motions and, more waves at "infinity" is not sufficiently
generally, situations where the distribu- general to match with the outer solu-
tion of normal velocity on the hull surface tion. Therefore a homogeneous solution
is a slowly-varying function along the is included in the inner problem, with
length, the flow is essentially two-dimen- standing waves at "infinity"; the
sional in the near-field close to the hull, coefficient of this homogeneous solu-
Changes in the x-direction are relatively tion is determined from an integral
small in this region, by comparison to equation similar to that which determines
changes in the transverse plane. Thus the the additive constant in ordinary slender-
flow in the near field is governed by the body theory.
two-dimensional Laplace equation, and sub- In swumary, the unified solution
ject to the simplest linearized free-sur- is an extension of the ordinary slen-
face boundary condition which applies in der-body theory ane strip theory
two dimensions and is independent of for- which apply resp~ectivelv in the low-
ward velocity. Theme characteristics of and hiah-frecuencv limits. The inner solu-



tion is similar to, but more general than 5n -iwxn3 - Uxm3 + Un3" (4)
that of strip theory. The two-dimensional n
damping and added-mass coefficients are
the fundamental parameters of this inner Here the subscript n denotes normal
solution but, with forward velocity, the differentiation, with the unit normal
complete solution of the kinematic hull vector pointing out of the fluid domain,
boundary condition requires additional ng is the component of this vector parallel
parameters to be evaluated. The integral t the xA axis, and m is an auxiliary
equation associated with the matching function Aefined in termi of the steady-
requirement is an additional complication, statc perturbation potential U4 by the
but its solution is a relatively minor relation*
chore by comparison to the numerical pro-
cedures required in the strip theory. i3 = -n2 yz - n3 ,zz' on S. (5)
Thus, while the concept of the unified
theory is a nontrivial extension of strip Since satisfies the rigid free-surface
theory, the computational effort reauired boundary condition in the inner region,
to utilize this more general approach is
not substantially greater. The numerical m3  is independent of U. for ..,The boundary-value problem fo
results which follow more than justify this can be restated separately in the inneradditional effort. region, where the transverse radius

2. THEORETICAL DERIVATION r = (y2 + z2 )1/2  is small compared to the
ship's length, and in the outer region

We consider a ship which moves in tte where r is large compared to the beam
positive x-direction, with constant forward and draft. The radiation condition (and
velocity U, while performing small har- vanishing of the solution as z - =) are
monic oscillations of frequency w in applicable only to the outer solution, and
heave and pitch. These and other oscilla- the boundary conditions (3) and (4) to the
tory quantities are expressed in complex inner solution. The missing conditions in
form, with the time factor eiwt understood each case are replaced by the requirement
throughout. Both U and w are restricted of matching, in an overlap region where r
to be >0. The analysis in this Section is is large compared to the beam and draft
abbreviated from Newman (1978), where more but small compared to the length.
details are provided. Gradients in the x-direction are

The principal task is to solve for the neglected in solving the inner problem.
complex velocity potentials cf., due to The governing equation is
heave (j-3) and pitch (j=5) motions of unit
amplitude. With the assumptions stated in jyy + jzz = 0, (6)
the Introduction, these potentials are
governed by the three-dimensional Laplace subject to the free-surface boundary
equation condition

jxx +jYY+ 0 (1) -2 j + g = 0, on z = 0 (7)

and, in the frame of reference moving with
the steady forward velocity of the ship, Equations (6) and (7) are applicable to the
by the linearized free-surface boundary two-dimensional strip theory of ship motions.
condition In view of the boundary conditions (3) and

(4), particular solutions of the inner
-W jx __jxx g~jz = 0, problem can be expressed in the form

(s)

on z = 0. (2) =j + U Oj, (8)

Here z = 0 is the plane of the free surface where the latter potentials satisfy (6),
and z is positive upwards. Far from the (7), and, on the hull profile, in planes
ship the potentials i must satisfy a x = constant,
suitable radiation condition of outgoing
waves and, for large depths, the condition *3n = iwn3' (9)
of vanishing motion as z - - -.

The potentials cj are distinguished (
by their respective boundary conditions on ;3n ' i3, (10)
the wetted surface of the ship hull. With
the instantaneous position of this surface 05 = -x 3 , (11)
replaced by its steady-state mean E, the
appropriate boundary conditions are = - (12)

45 - X0 3 -(i /U))0 3 ' 12

3n - iwn 3 + Um3, (3) TTe-iubscripts j=1,2,3 correspond respec-
tively to (x, y, z).



The potentials in (8) also satisfy the form
extraneous two-dimensional radiation condi-
tion. Thus we add to (8) a homogeneous * 1 *
solution of (6), (7), and of the boundary 2 (y,zDk) = C 2 D -2' (1+ Kz)f (k), (]7)
condition on the hull. This homogeneous
solution can be obtained simply in the where C 6 (v,z;0) is the two-dimen-
form (03 + T3) where the overbar denotes sional sgurce potential, which satifies (6)
the conjugate of the complex potential +3. and (7), and
This homogeneous solution behaves like a
two-dimensional standing wave at large I
distance from the hull, and can be regarded f = In (2K/ k1) + mi - [-s1
physically as the superposition of two (k 2/V2-)/2
diffraction solutions with symmetric inci-
dent waves acting upon the fixed hull 2 2
profile. (k :" 1), (18)

In summary, the general solution of
the inner problem takes the form

j =j (s) + C.(x) (I+3 + 3 )  (13) f =In (2K/Ik)+i -  (/k)+i sn (21 +Uk)
j 1 f ..n..2/skn)_ ii-)

(l - k /V
where the inter-a..tion J'un,.ti,,? Cj(x) is
an arbitrary "constant" in the inner solu- 2 2
tion to be determined from matching. (k2/, 1), (19)

The outer solution follows by con-
sidering the complete Laplace equation (1)
and free-surface condition (2), but ignoring where K = /g.
the hull boundary conditions. Assuming
symmetry about the plane y=0, an appro- It remains to match the inner and outer
priate solution follows from a longitudinal solutions (13) and (14). This may be carried
distribution of sources along the ship's out in the Fourier domain, using the con-

length, volution theorem to transform (14), and the
appropriate matching condition takes theI form

L qjlf.) G(x-f., y, z)di.. (14) for

ilere q.(x) is the source strenqth, and C + IC (x) (+3 + + 3 .

denotel the potential of a "translating- (20)
pulsating" source situated on the x-axis
at the point x = I.. This potential is Far from the hull in the inner domain, the
expressed generally in the form of a double two-dimensional potentials on the left side
Fourier integral over the free surface. Of of (20) can be expressed in terms of the
particular utility in our analysis is the effective source strengths, in the form
Fourier transform of C, with respect to
x, which can be expressed as j = 2D (21)

SJ"G(x. y, z) ikx 12
G (y, z; k) dx = , G21)

Jdu '2 + iy2 112Using (8), (17), and the fact that Im (G21))

1 -4pl(k 2 + u2)/2 _____ _e cos Ky, and equating separ.Iely the

(k+ factors of G in (20), it follows that

*(15) , * + . .j+ ) * ~* (3
wher + U , + C j (, + ,, )l qj (23)

where ]

+ Uk) 2/A (16) and * 1 * *

When 1kl v, there are two symmetric real -i(Cjo ) - -0 q. f (24)
poles in (15), and the appropriate contour
of integration is 9eformed in their vicin-
ity such that Imlu (,w + (1k)) 0. The error in the last equation is a factor

In order to match the inner approxi- 1 + O(K r2 ).
mation of (14) in the overlap region, an
asymptotic approximation of (15) is re-
quired for small values of (ky, kz). The .A-tu--on (16) corrects a sign error in
desired result can be expressed in the equation (4.9), and in the denominators of

(4.6) and (4.8) of Newman (1978).



The inverse Fourier transforms of the 3. REDUCTION OF THE KERNEL
last equations provide the relations

The kernel (27) in the integral equa-

a.+ U + C (a + .a) = qj, (25) tion (28) is defined by the inverse Fourier
3 • jtransform of the function f* given by (18)

and (19). This kernel can be interpreted
(6 as the value of the source potential on the

2wi C. a. qj() f(x-&) dE, (26) x-axis, after subtraction of the two-dimen-
IL sional oscillatory source potential G2D.

Singularities can be expected, especially
where at x=O, and a careful analysis is required.

The singular behavior at x=0 can be
ikx mitigated by considering the integral of

f(x) = dk e-  f*(k). (27) f(x), or the inverse transform of f*/(-ik).
If this modification is offset by multiplying
the transformed source strength czl by (-ik),

After elimination of C from (25) and (26), in (24), (29) is replaced by

the outer source stren4 th is determined
from the integral equation j )(¢4+*J q.( )F(x- )

qj(x) - 1 (o./a. + 1) Iqj() f(x-E) dL

IL (30)

Here q.' denotes the derivative of theaj(x) + U.j x). (28) sourcelstrength, and the new kernel is

Assuming a numerical solution for the i ikx
two-dimensional potentials in (8), and the F(x) = 2r. f(k)e dk/k. (31)
corresponding source-strengths a, a, the
integral equation (28) may be solved for
the unknown outer source strength qW(x). Since f*=O(k) as k-0, the integral (31) isThe complete inner solution follows from convergent and F(x) vanishes as Ixj' =.
(13) and (25), in the form There is a logarithmic infinity in f*(k) as

Ikl. -, and hence in F(x) as x - 0, but
- - x(s) +fj (+this singularity can be integrated in (30)

j = f. + (2,R )i ) (E) fx- ) d. without difficulty.
The integral in (31) can be simplified

by considering the function
(29)

The first term on the right side of (29) is A(k) = £n(2K/k)
the strip-theory potential (including the
contribution from # which usually is 2 2 1/2 2 2
ignored). The remaining contribution to - (1-k /K2) tn[K/k+(K /k -1) 1,
(29) represents the three-dimensional
interaction between adjacent sections. (32)

In the high-frequency domain the
integral in (29) tends to zero, and the where K(k) is defined by (16). A(k) is
strip-theory solution remains. Conversely analytic throughout the finite k-plane,
in the low-frequency regime the two-dimen- except for a branch cut on the negative
sionai potentials in (29) simplify and the real axis. With appropriate values
ordinary slender-body result is recovered determined on each side of this branch cut,
as derived by Newman and Tuck (1964). The in the manner described by Sclavounos
unified potential (29) is valid more (1980), it follows that
generally, for all wavenumbers between
these two limiting regimes. *

In the special case of zero forward f (k) = A(k~iO) + vi + vi H(-k)
velocity (U-0), the unified solution (29)
reduces to a form closely related to the -1/2
"interpolation solution" derived by Maruo + (11-k 2 / 2j) g4 (k) . (331
(1970). Maruo's approach is rather differ-
ent, but the only change in the final re- Here H(-k) is the Heaviside unit function,
sult is that the homogeneous solution equal to one for k<0 and zero otherwise, and
(t4+3 ) is replaced by (1+Kz), and the
anolitude of the two-dimensional strip- g+(k) = 2,i (-o<k~k (34a)
theory potential is modified accordingly
to satisfy the boundary condition on the
body. 9+(k) = 0 , (k<k<k2), (34b\



g+(k) = -2vi , (k 2 <k<0), (34c) and

g_(k) = 0 , (--<k<0), (34d) F2(x) 10+ e k xI_(1-k/C 2 1 dk/k

gl (k) = -wi , (O<k<k3, T<1/4), (34e) kG4k

" k -1/2
9± W- , (k3<k<k 4 , T<1/

4 ), (34f) - k4 e-ikCx[-i(k 2/1 2 -1) dk/k ,

g+(k) = -wi , (k4 <k<-, T<l/4), (34g) 3

g+(k) = --i , (0<k<-, T>1/4). (34h) (t<1/4), (41a)

The branch-points of the square-root func- --1 -ikx 2/2 -1/2
tion in (33) have been defined by F2 (x) T ' e [-(-k /dk/k,0

1/2

k1, 2 = -(g/2U
2) [1+2T - (1+4T) ], (35) (T>1/4). (41b)

k 3,4 = (g/2U2 ) 11-2T ; (1-4T) 1/ 2  (36) The function F1 is logarithmically

infinite at x-0, but F2 is regular at this
and point for U>0. From (39) it follows that

the logarithmic singularity exists only on
C- O/g. (37) the downstream side of x-0.

The singularity in F1 can be
displayed explicitly by using properties
of the sine and cosine integrals to expressNote that k1  are real and negative, (0 nteatraiefr

whereas k 'Ire positive for T<1/4, and (40) in the alternative form
complex- Ad jugate otherwise. k 0 1 2

From Jordan's lemma F1 (x) = 1- exikX[l-(l-k2/I 1  jdk/k

_- k2

JA(k±iO) eikx dk/k 0, (x 0). (38) o .(1_eikx)dkA

Hence, from (31) and (33), 1  2

F(x) - F1 (X) + F2(x), (x<0), (39a)

F(x) = F2 (x), (x>0), (39b) - 2(Ln(wlxl/U) + y + wi/21. (42)

where Here y=0 .57 7... is Euler's constant.
- -ikx 2 2 / The integrals in (41) and (42) are con-

1  evergent for all values of x, if U>0, and
-- can be evaluated by numerical quadratures.

Both limiting forms of the kernel,
2-ikx for zero forward velocity and for zero
2 dk/k frequency, can be derived by letting Tr-.

kl The resulting integrals in (40) and (41a)
C1  are evaluated after replacing the branch-

points (35) and (36) by their limiting
values, k1, 4 ; +(g/U

2 ) and k2,3 ; ; K, and

0 ix[l.(1-k 2K 2 dk/k, approximating K by U2k 2/g or K, respectively.
In this manner it can be shown that, for)k2  T-0,

(40)



F W f(tn(2KIxJ) + Y + Nil w2aij - ibij = -iW0Jni$ dS

'[IN(t)+Y (t)+2iJ (t) dt P U (iwni0 i jS

0

- P fiCi(x)(ini - Um i ) (, + dS.

- 4 [(2i) Yo(glxl/U
2) -1 (gx/U2 ) 1'  (44)

Here the surface integrals are over the
(x0) (43 submerged portion of the hull and, exceptS)4 

for

Here 0o Y and J are the Struve and Bessel m5 = n3 - xm3P (45)

functions of order zero.
The contribution from the last line the quantities in (44) are defined in Sec-

in (43) vanishes for U=0, and the resulting tion 2.
kernel is equivalent to that derived by The first integral in (44) is the zero-
Ursell (1962). In this c~se, as in classi- speed strip-theory contribution, or the
cal slender-body theory without a free integral along the length of the two-dimen-
surface, the logarithmic singularity is sional added-mass and damping coefficients.antisymmetrical. The second and third integrals in (44)

For the steady-state case w=O, on the represent linear and 'uadratic effects of
other hard, the integral in (43) vanishes the forward velocity which appear (to
and the result is consistent with that of varying degrees) in the strip theories.
Tuck (1963). As x- +0, the resulting (The quadratic terms are sometimes regardedTu (1963).rom the ireslter ing theas higher-order, and the potential j issingularity from the first term on the usually ignored.) Green's theorem can be
right-hand side of (43) is cancelled by used to show that the second integral in
the Bessel function Y and, as stated above (44) vanishes when i=j.
for the more general Rnsteady case, there The last integral in (44) represents
is no upstream logarithmic singularity, the three-dimensional correction from the
(The contribution from tn(K) in the interaction function Cj(x). As w-, the
first term is cancelled by a similar factor integral equation (29) can be used to show
in the low-frequency limit of the two- that Cj-0, and the "pure" strip theory is
dimensional source potential G .) Excet for this lsThereglarpar ofthekeihel(27 as recovered. Except for this limiting case,
a function of x/L is shown in Fi2ure 1 for however, three-dimensional effects are
a Froude number 0.2 and two values of T, significant in (44).
0.2 and 0.7 less and greater than 1/4 The first computations of added mass
respectively. and damping based on the unified theory

were performed by Mays (1978) for a prolate
4. ADDED-MASS AND DAMPING COEFFICIENTS spheroid, floating with its major axis in

the plane of the free surface, and for zero
The principal application of the re- forward velocity (U=0). From symmetry con-

sults above is to predict the hydrodynamic siderations there is no cross-coupling in
aoe an oenct, ctig uoynaic this case. Comparisons with the ordinarypressure oslender-body theory, strip theory, and with

heaving and pitching ship hull in response "exact" three-dimensional numerical solu-
to its oscillations. With the usual de- tions are included by Mays for values of
composition, these forces and moments are
expressed in terms of added-mass (ail) and the beam-length ratio equal to 1/16, 1/8,
damping (bi-) coefficients, which ar the and 1/4. The results for 1/8 are repro-
factors of ihe acceleration and velocity, duced in Figure 2 and it is apparent that
respectively, in a linear expression for the added-mass and damping coefficients
the total force and moment. Here i=3, for predicted by the unified slender-body
the heave force, i=5 for the pitch moment, theory are in virtually perfect agreement
and j=3,5 respectively for the contribution with the exact solutions of Kim (1964) and
due to each mode. Yeung (Bai and Yeung, 1974). By comparison,

A total of eight coefficients must be the strip theory predictions are satisfac-
considered, including cross-coupling tory only for relatively high frequencies
between heave and pitch. These coefficients (KB>I), and the ordinary slender-body
can be derived from the inner velocity theory is useful only for KL l. For the

potential (29) or (30), by means of beam-length ratio equal to 1/4 May's
Bernoulli's equation for the linearized computations show almost the same deqree of
pressure, and after using a theorem due agreement, and demonstrate the broad range
torE.0Tuckr gilvie and Tuck, 196) ae of applicability of the unified theory forto E. 0. Tuck (Ogilvie and Tuck, 1969) the zero forward velocity.results can be summarized in the form zr owr eoiy



Our first computations with nonzero Series 60 hull, there is good agreement for
forward velocity were performed for a float- the coefficient a53.
ing spheroid of beam-length ratio 1/6, for These comparisons of the added-mass
comparison with the experiments of Lee and and damping coefficients can be summarized
Paulling (1966). The results were generally with the following conclusions. In the
in agreement, but the experimental scatter case of zero forward velocity excellent
precludes a definitive judgement of the agreement exists between the unified theory,
degree of improvement of the unified theory three-dimensional numerical solutions, and
relative to strip theory. experimental data. With forward velocity

Subsequent computations were performed included, there are no complete three-
for two realistic hull forms where experi- dimensional computations with which to
mental data is available. In each case we compare, and the unified theory can be
show the computations based on unified judged only on the basis of experiments.
theory, and the strip theory results of Good agreement exists in most cases, but
Salvesen, Tuck and Faltinsen (1970). the confirmation is not satisfactory for

The results for a Series 60 hull (block some of the cross-coupling coefficients.
coefficient 0.7) are shown in Figures 3 and Relative to the strip-theory predictions
4, and compared with the experimental data with forward speed, the unified theory
of Gerritsma and Beukelman (1964) and provides a noticable improvement in the
Gerritsma (1966). For zero forward velocity diagonal coefficients a3 3 , a55, b33 and
(Figure 3) the agreement between the unified b55.
theory and experiments is very good Although the accuracy of the experi-
for a33 , b33 , and b55 . The remaining mental data is not well established, one

coefficients show a departure of the experi- possible explanation for the remaining
mental data at low frequencies. The cross- discrepancies is that the treatment of

coupling coefficients are symmetric in this end effects in the unified theory requires
casepanionly o neicie are smmetrin. ts lsome refinement. In this context we notecase, and only one pair are shown. For low that the steady-state disturbance potential

and moderate frequencies the differences Ua is teds t e i ne rentin
between the unified and strip theories are UT is approximated in the inner region in

substantial, and the experiments generally a stripwise manner by assuming no inter-
unified theory. All eight action between subsequent cross-sections.

support the are sho in eight A wall boundary condition is satisfied oncoefficients are shown in Figure 4, for a the free surface and conformal mapping is
Froude number of 0.2. In this case the use fr the auatonfo mapthrough
differences between the two theories are
reduced, suggesting in the strip theory expression (5). The two dimensional
that there is some cancellation between the velocity potentials Oj satisfying a wave
approximations associated with forward free-surface condition are then evaluated
velocity and three-dimensionality. The using a two dimensional numerical procedure
agreement between the unified theory and due to Yeung (1975).
experiments is generally favorable, with This procedure breaks down at the ship

the notable exception of the cross-coupling ends, introducing a significant overpre-
coefficients a ., a_, and b53. diction of m, and consequently of a and

The coeffaien 5nd. This difficulty has been avoided by
s copte3 b 55 ad 6a35  asuming a linear variation of m3 withinhave also been cmue ort;Series 60hull by Chang (1977) using a full three- 5% of the ship length away from each end,

hulb'hn 17) sn ultre and assuming rr3=0 at the ends. This
dimensional theory but neglecting the con-
tribution from the potential $. For zero problem could be overcome hy evaluating
forward velocity Chang's results are in- m3 from the full three-dimensional
distinguishable from the unified theory. double-body steady disturbance potential.
For the Froude number 0.2, the same is true The kernel of the integral equation
of a33 and a55, whereas Chang's comparison defined in (41) and (42) was evaluated
with experiments is better for a53 and numerically using Simpson's integration

formula, with appropriate truncation
worse for b55. corrections based on asymptotic expansions

Our final results are for the Friesland
class frigate hull (block coefficient 0.554) of the integrand. The number of integra-
where experimental data are given by Smith tion points is determined to ensure a

(1966). The comparisons in Figures 5 and relative error less than 10-5.
6 are for Froude numbers of 0.15 and 0.35, The integral equation (28) is solved
respectively. Once again there is a ten- by iteration using the strip-theory source
.:ency in some coefficients for the experi- distribution as the first iteration. The

solution obtained in this manner has beenmental data to diverge from the unified cekdaanta needn arx
theory at low frequencies, and the cross- checked against an independent matrix-
coupling coefficient a35 shows poor inversion solution.
comparison for all frequencies. The re- The two-dimensional strip-theory
maining results for the lower Froude numberBM370.

namig rsuls fo th loer Foud nuber The kernel evaluation and the solution ofshow good to excellent agreement between the kerl equation were solution a
the unified theory and experiments. Similar the integral ecuation were performed on a
conclusions apply for the higher Froude PDPII-34 minicorvuter. The computation
number, except that in this case the com- times reouired are estimated as follows:
parison for the coefficient b 53 is un-
satisfactory. In this case, unlike the

- .K



TABLE 1 can be expressed in the form

COMPUTATION TIMES 2

IBM370 PDP11-34 | K j )2 (4()

(sec) (sec) o

2D potentials (0 3 180 In long wavelengths the optimum modal
3) amplitudes of the body increase in propor-

tion to the wavelength, and unrealistically
2D potentials (3) 4 240 large motions are reauired for (46 ) to be

valid. To estimate the practical limit of

Kernel and integral the absorption width we define a parameter
e as the product of the beam-length ratioequation (U=O) 0.16 10 (b/L) and the maximum allowed vertical

(U>0) 1 60 displacement per unit wave amplitude.
Assuming arbitrarily that the maximum dis-

Total time required placement is twice the incident wave ampli-
tude, and that the beam-length ratio is

(U=0) 3.16 190 between 0.1 and 0.2, typical values for 8
are 0.2 and 0.4, respectively.

(U>0) 8 480 With the body motions limited in the
above sense, the absorption width is given
by

These estimates suggest that for
finite forward velocity the additional (2- 2 L()~-2 e (7
computational effort required by unified W = 20 - I 2 b 2

theory is of the order of 1/7 of the two-
dimensional strip-theory calculations if for small values of 8, and by r 46 ) when
the latter are complete. For zero forward 8 is laraer than the value where t47 )
velocity the corresponding ratio is 1/18. attains its maximum. Alternatively, with

8 fixed, ( 46 ) holds for K>K o and ( 47 ) for
K<Ko, where the transition wavenumber is

5. ELONGATED WAVE-POWER DEVICES defined by the condition that ( 46 ) and
(47 ) are eoual.

In ordinary slender-body theory, whereThe unified theory can be used to Kb-°l, the Kochin function is given to
analyse the performance of elongated wave- leading order by
power absorbers such as the Cockerell raft
and Kaimei ship, in a similar manner to the
results of Newman (1979) based on the H(6) = -K I f(F) b([,) e- i k c os e d . (48)
ordinary slender-body theory. In this JL
application the forward velocity is set
equal to zero, with resulting simplification Here f(x) is the vertical displacement and
of the analysis. b(x) is the local beam at the waterplane.

Following Newman (1979), we consider This approximation was used by Newman (1979)
the power absorbed by a slender body moored to calculate the absorption width of various
in the head-sea configuration and perform- modal shapes, with the symmetric and anti-
ing vertical oscillatory motions of appro- symmetric modes (with respect to x) treated
priate amplitude and phase, along its separately and superposed to obtain the
length. The power absorbed by this motion total absorption width. The curves in
can be represented as the product of the Figure 7 show the total absorption width
energy flux per unit width in the incident for an articulated raft, consistino of
wave system, and an "absorption width" W. three riqid seqments connected by two
In ideal circumstances W is comparable to symmetric hinges.*
the wavelength or body length, and sub- In the unified theory, the Kochin
stantially larger than the projected width function can be expressed in terms of the
of the body. outer source strength q(x), and (48) is

The absorption width can be expressed replaced by
in terms of the far-field radiated wave
amplitude due to the body motions, or the f(P) = q(0) e-ikcos8 d&, (49)
Kochin function H(6) which is proportional 2,
to the radiated wave amplitude in the L
direction e relative to the x-axis. If
the incident waves propagate in the +x- *For this case, and also for the Legendre
direction, and if the body motions are polynomial modes, the values of R given by
controlled in an optimum manner to maxi- Newman (1979) should be multiplied by a
mize the absorption width, this quantity factor of 2.0. This error has been cor-

rected in Fiqure 7.



with q(x) determined from the integral eaua- 5. Faren, P. G. R. (1980). Wave
tion (28). Computations have been performed energy: A hydrodynamic analysis of head
on this basis, for an articulated raft with sea absorbers. Ph.D. Thesis, Massachusetts
beam-length ratio 0.1 and beam-draft ratio Institute of Technoloqy, Cambridge,
2.0. These new results are shown in Figure Massachusetts.
7, and a comparison can be made with the
absorption width based on the ordinary 6. Kim, W. D. (1966). On a free-
slender-body theory. This comparison re- floating ship in waves. J. Ship Res.
veals that the latter approximation over- 10, 182-191, 200.
estimates the absorption width by a sub-
stantial amount, when the modal amplitudes
are limited, but in the shorter wavelength 7. Varuo, H. (1970). An improvement
regime where this limitation is not appli- of the slender body theory for oscillating
cable, the ordinary slender-bodv theory is ships with zero forward speed. BuZZ. Fa.
quite accurate. Similar conclusions have Eng., Yokohama Natl. Univ. 19, 45-56.
been reached by Haren (1980) based on a
three-dimensional numerical solution in the 8. Mays, J. H. (1978). Wave radia-
case of a body with zero draft. It appears tion and diffraction by a floating slender
that the ordinary slender-body theory over- body. Ph.D. Thesis, Massachusetts Institute
predicts the magnitude of the Kochin func- of Technology, Cambridge, Massachusetts.
tion, and hence the limited absorption width
(47), but (46) is not sensitive to this 9. Newman, J. N. (1979). Absorption
error in view of its form. of wave energy by elonqated bodies. App!.

In conclusion, the earlier results of Ocean Research. 1, 189-196.
Newman (1979) based on the use of ordinary
slender-body theory overpredict the per- 10. Newman, J. N. (1978). The theory
formance of an elongated wave-power device, of ship motions. Adv. AppZ. Mech. 18,
particularly in the regime of wavelength- 221-283.
where the absorption width is a maximum.
The unified theory can be used to provide 11. Newman, J. N., and Tuc,, E. 0.
a more precise estimate of the absorption (1964). Current progress in the slender-
width. body theory of ship motions. Proc. Symp.

Nav. Hydrodyn., 5th ACR-112, pp. 129-167.
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Figure la - Regular part (fR) of the kernel (27) as a function of the longitudinal coordi-
nate Ix /L for T=wU/g eoual to 0.2 and 0.7 (Figures la and lb respectively). Waves are
present upstream only for the first case, associated with the root k3 in (36) and with
the wavelength-to-ship-length ratio 21/k 3 L - 3.3. For T=0.7 (Figure lb) no waves exist
upstream. Downstream of the disturbance the most obvious wave motion is associated with
the largest root kl, and with the wavelength-to-ship-length ratio 0.19 (T=0.2) and 0.12
(=0.7). 1 Longer wavelengths also exist downstream, associated with the roots k and k
for T < and with k alone for T > . Their superposition upon the shorter wave system
is more Ipparent in Figure lb. 4
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Figure 7 - Total absorption width, as a fraction of the body length, for an articulated raft
with two symmetric hinges situated at the points x = ±L/5. The curves for the ordinary
slender-body theory (OSBT) are from Newman (1979), corrected as noted in the footnote, with
superposition of the power obtained separately in the even and odd modes. The full lines
are the values of the absorption width determined from the unified theory, for a beam-length
ratio of 0.1, and a beam-draft ratio of 2.0. In all cases the body motions are of optimum
phase. The maximum amplitude in each mode is equal to the product of SL/b and the incident
wave amplitude.


