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SECTION I
INTRODUCTION AND SUMMARY

OBJECTIVES OF THE RESEARCH

With the advent of active control technology (ACT) and control
configured vehicles, the use of specifications on the rigid body modes
of an aircraft for flight control design becomes unacceptable. Reducing
structural weight by employing active flutter suppression or stability
augmentation, and enhancing maneuverability by direct-1ift and side-
force control surfaces are some of the topics of current flight vehicle
research. Such vehicles, however, intrinsically involve dynamics of
higher order than the rigid body modes, and these dynamics have been
shown to significantly alter piloted vehicle performance as well as
subjective pilot ratings of the systems. The inclusion of such additional
dynamics in the determination of the acceptable open-loop systems
characteristics so drastically increases the dimensions of the problem
as to render this approach, impractical. Furthermore, this is attacking
the problem "upside down and backwards.”

The ultimate design objective is to maximize the performance of the
man-vehicle system. The most logical approach would seem to be to develop
and apply systems analysis methods based on closed-loop, task-oriented
design techniques - representing the man in the system appropriately as
a dynamical decision and control element. Attacking the problem this way
naturally leads to "optimal control configured vehicles" and forces one to
ask the right questions along the way. For example, we naturally address
the questions of what physical parameters the pilot is monitoring and

attempting to requlate in specific piloting tasks. Only after answering




such fundamental questions can one make an intelligent design decision

with regard to factors that would affect these reﬂgﬂght physical para-
meters.

The objective of this research activity then was to explore the
utility of multi-variable control techniques for piloted-flight-vehicle
control synthesis, with the above factors in mind, by application to a
specific piloting task.

The methodology, developed previously, employs an optimal multi-
variable control model (OCM) of the pilot, specifically includes the
pilot's mission objectives for control synthesis, and simultaneously
determines the pilot's analytical representation (or model) and augmenta-
tion control law. As a result, the method is intended to be well suited
for high-order dynamical systems, inherently reflect the cooperative
structure of the pilot and flight control system, and at the same time
include the pilot's ability to adapt to the controlled system dynamics.
The original development of this method is reported in Reference 1, and
the approach could be considered an optimal control version of a control

F |
design approach utilizing Anderson, "paper pilot".[z]

SUMMARY OF RESULTS

The piloting task addressed throughout the study was air-to-air
tracking. The initial phase involved the analysis and vehicle augmentation
for single axis pitch tracking, the system dynamics including active heads-
up display dynamics as well as those of the vehicle rigid body. Fixed-base

(3]

simulation data obtained elsewhere were used to determine the pilot
model parameters, specifically, the objective function and those determining
the observation and neuromotor noise characteristics. It was significant

that a unique objective function was found in the study cited for the task
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in question, over a variety of vehicle dynamics. Such an assumption
would be necessary for use in augmentation synthesis.

By parametrically varying the level of optimal-control augmentation,
not only rms tracking-error performance improvements were predicted, but
trends in desirable system dynamics were obtained. These trends were
depicted as open-loop as well as piloted closed-loop system root loci
and the agreement was noted between these loci and the asymptotic behavior

of linear quadratic-optimally-controlled systems. Significant in this

regard is the appearance of "pseudo zeros" or transmission zeros in the

results and their importance in interpreting these results. Specifically,

p of the augmented system roots tend to move toward the transmission
zeros, and the n-p remaining roots ultimately approach a Bu*terworth-type
pattern, where n is the order of the system and p is the number of
transmission zeros.

The dynamics of the displays were found to affect the "optimal"
vehicle characteristics. Agreement was found between the results for the
less "active" of the two sights and previous results obtained with a fixed
sight (and no display dynamics). However, with the more dynamic of the
two displays, a different set of desired vehicle roots were obtained.
Clearly then the complete system's dynamics must be considered, not just
the rigid-body eigenvalues. Furthermore, the numerator dynamics (which
include the display dynamics) were found to affect the desired system
characteristics (e.g., handling qualities).

With the augmentation determined, the pilot model was then used to |f

predict rms performance (e.g., tracking errors) as well as pilot and

vehicle describing function frequency response. This analysis indicated




the potential for significant reduction in tracking error and pilot
workload, with an anticivated improvement in pilot rating.

The second phase of the study involved a similar analysis of air-to-
air tracking in a highly-banked turning flight condition. As such, it
involved pilot/vehicle analysis of a flight condition in which the
longitudinal and lateral-directional axis were not independent, but
involved unsymmetrical cross coupling. Consequently, a significant
amount of pilot-modeling activity was neceésary as nho multi-axis pilot
models have been developed and documented.

To accomplish this modeling activity, results from a large-amplitude
motion simulation (the Air Force LAMARS facility at Wright-Patterson
AFB, Ohio) were compared to predicted rms performance. It was determined
that in addition to tracking error and displayed target lead angle, the }
weighted outputs in the single-axis pilot objective function, the pilot i
wzs also attempting to minimize lateral acceleration and relative bank angle
between the attacker and target. Hence, the pilot's vector of observations
as well as the objective function weights were modified appropriately.

The use of this pilot-modeling approach for tracking a target not
undergoing random maneuvers was another unique result of this phase. 1
Without a random forcing function (or process noise) the pilot's observation
and motor noise are the only source of errors. Since this was actually
the situation simulated, the modeling proceeded appropriately. The
solution involved selecting the variances of the additive motor noises
yielding the best match of statistical results (i.e., rms performance),
and a result of this modeling task is the noise-to-signal ratio for the
motor noises.

This multi-axis pilot model having been established, the multi-

variable augmentation synthesis followed directly. Again, a family of




full-state feedback control laws were synthesized with the pilot-optimal
control formulation, and the open- and closed-l1oop root loci used to
depict the trends in system dynamics (in terms of the eigenvalues). The
longitudinal results were found to agree with the single-axis results
using the same display dynamics, and were explainable in terms of the
asymptotic behavior of optimally controlled systems.

The more complex lateral directional axis was also found to yield
results consistent with the asymptotic properties. The dutch-roll mode
was augmented to yield significantly higher frequency and damping,
ultimately approaching a Butterworth configuration, while the spiral and
roll subsidence were coupled to form a complex, stable roll/spiral mode.

It is significant, in closing, that the pilot/vehicle analysis
and augmentation results all point to the high relative importance
and complexity of the lateral directional axis. The parameters associated
with this axis required much higher attentional allocation, as determined
by the pilot model, and the dynamics were highly modified via augmentation.
Yet this axis has received far less attention in the literature and
even less experimental activity is apparant. Much further work is

therefore called for in our opinion.

ORGANIZATION OF THE REPORT

The following section (Section I1) includes the complete analysis
and results from the first phase of the study, that involved with
single-axis pitch tréﬁggz. The multi-axis pilot/vehicle analysis and
augmentation is reported in Section III.

A significant amount of the effort of the project was devoted to
modeling the vehicle, display, and target kinematics and dynamics, these
results are documented in Appendices A through D. The matrices defining

the linear state variable model of the multi-axis tracking problem is given

in Appendix E.
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Finally, a management summary, citing publications, students involved,

and interactions with Air Force Laboratory personnel appears in Appendix F.
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SECTION II
PITCH TRACKING ANALYSIS AND AUGMENTATION

The problem to be addressed is the analysis and augmentations of the
plant dynamics in an (air-to-air pitch) tracking task. The higher-order
system dynamics actually include linearized flight vehicle rigid-body and
actuator dynamics as well as the display dynamics of two lead-computing sights.
In each of the cases considered, the vehicle flight condition, and therefore
rigid-body dynamics, remain unchanged. However, the sight dynamics vary
considerably between cases with different sight types and different tracking
ranges.

The vehicle and one of the sights was identical to one of the cases
addressed experimentally, as well as analytically (via the OCM), by Harve§§]1n
his investigation, Harvey used fixed-base simulation data to infer the pilot's
objective function in this task. A unique objective function was found to
yield extremely good correlation (in terms of rms statistics) between ana-
lytical and experimental results over a wide range of system dynamics. It is
therefore assumed in our work here, that this same objective function is invar-
iant with the system dynamics, and is used in all cases considered.

The objectives of this part of the investigation then include not only
the estimation of the performance improvement attainable with augmentation, but
also, and perhaps more important, the determination of the most desirable plant
or controlled e]ement'dynamics. By parametrically varying the level of augmen-

tation, we are able not only to establish trends in the desirable plant char-

acteristics with varying high-order plant characteristics. Finally, the results

so obtained are compared to those of Hol]isg4lho used simple pitch-rate and
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plunge-acceleration feedback along with Anderson's paper pilot to determine
optimum vehicle dynamics for pitch tracking with a fixed sight (with no dis-

play dynamics).

THE SYSTEM MODELS

The vehicle dynamics are the linearized short-period approximation for
a typical fighter aircraft in level flight at 15,000 ft. aititude, Mach =
0.9 (V = 952 ft/sec), and the specifics are presented in Table 1. Also, to
aid in the

TABLE 1
VEHICLE MATH MODEL

a = Zaa +q+ ZGGE
6 =q
g = (M +MZ)a+ (Mq Mg+ (Mo + M7 )5
s -1
T %t 165 ¢ick
_ 2 _ 2
ZOl = -983. (ft/sec”) Mcl = -10.4 (rad/sec”)
Z, = -90.5 (ft/sec’) M. = -0.344 (rad/sec)
1, = -05 sec Mq = -0.738 (rad/sec)
tep = 0.32; wp = 3.35 (rad/sec) M = -37.1 (rad/sec?)

interpretation of results, we will consider augmenting the simple, second-
order plant (e(s)/ast(s) = K/sz).

The schematics of the displays are shown in Fig. 1. The tracking task
of course involves the desire to minimize the tracking error ¢, where for the

simple K/S2 plant
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For the pitch tracking task

€E=X-8
where g, the relative line-of-sight angle 1is governed by the relations

B=q-F (yp-0+a)

ar

<|—

Note for this display, the fixed reference mark represents the weapon line and
the sight (reticle and pipper) is dynamic (moves in display).

For the high-order pitch-tracking task, the displayed variable, or lead
angle A, includes the lead required for velocities and acceleratiors, as well
as a ballistic "jump" correction. The governing linearized equation of an
ideal sight is (from Appendix B)

N L v,
» = Te(e - ) - 55~ ap - .038 -5 (1)
This relation implies that the Jine-of-sight rate f and the target's normal
acceleration ar, are available for lead-angle calculation, and therefore rep-
resents an idealized sight. A second lead-angle equation representing an actual
typical sight is given as (from Apoendix B)
17

. a f v p
A=-g A= ( 55~ + -038 5) ato (2)

f

This relation is obtained from the above by assuming the line-of-sight rate B8,
may be approximated by the lead-angle rate A, and the target acceleration is

approximately equal to the attacker's, or ar = Zu“' Note that since the actual
sight (Eqn. 2 ) depends entirely on the attacker's variables (a,8, etc), it is

much more sensitive to pilot stick input than the ideal sight. Also note the

10




Two tracking ranges

sight dynamics are clearly a function of tracking range.
were considered, D = 1000 ft. and D = 3000 ft, associated with two projectile

times of flight, Tf = (.33 sec. and Tf = 1.30 sec, respectively. The process :

driving noise for the pitch tracking case is the target normal acceleration

generated by filtered white noise where

ar = -.33aT +n

n = -0.33n + w(t)

and the white noise intensity is selected to yield chosen levels of target ;

accelerations. The driving noise for the K/s2 plant is simply the commanded

variable B> generated by filtered white noise where

6. +ab. * beC = w(t)

For comparison purposes, the transfer functions for the three systems are

given in Table 2. The numerator coefficients N] - N4 and M] - M4 are functions

of vehicle and sight characteristics, and therefore depend on tracking range

or, equivalently, Tf. On the other hand, except for the sight time constant

Tf in the typical-sight case, the denominator is a function of vehicle charac-

teristics alone.

The optimal-control model (OCM) of the pilo@sgssumes that the well-trained, -

well-motivated human operator chooses his control inputs Ub, subject to human

limitations, such that following objective function is minimized

L 3
+ quup)dt} (3)

T
] w0y o}
3 = el J (V' + GoRa,
o)

and G is selected to obtain a chosen neuromuscular lag time constant ™ The

pitot’s input is then expressed in the scalar case as

- Kxx - up




The selected parameters of the model in this investigation are given in Table
3, and are consistent with those in Harvey's investigation of this task.
(Note that nominal values of model parameters have been chosen which do not
reflect the pilot's acceleration environment. This was done to be consistent

with fixed-base simulation results.)

TABLE 2
TRANSFER FUNCTION COMPARISON

Second order plant:
e(s) _N.7
st

& _,{s S2

Ideal sight display:

3 2
EES] _ K(N]s + st + N3s + N4)
bs¢lS 52(1as + 1)(52 + 2 2 )

+
Csp“sps

Typical sight display:

3 2
K(Mls + Mzs + M.s + M4)

s%S) _ 3
Ss¢ls sz(Tfs +])(ras + I)(s2 + 2 + w2 )

Lspwsps

-16 1a/D
= "96226Tf
D
(V-+ Tf)(VM6 + ZéM&)-Zb
D
Zé(Mq + M&) + (v-+ Tf)(Mazs - ZaMé)

= M5 - LM




TABLE 3
PILOT MODEL PARAMETERS

Observation delay, t = 0.2 sec
Neuromuscular time constant, ™ = 0.1 sec

Observed variables, y' = [e,e,),4,]

Cost function weightings, Qy = [16,1,0,4]
i

R =0
u

Full attentional allocation
Observation thresholds, TF = TA = 0.65 deg
T

Té =T5 = 1.3 deg/sec
. . . 2
Observation noise variance V. = , = .01
vi %y Py
Motor noise variance, V = ap 02 , p = .00
up u up u

Shown in Table 4 is the predicted (rms) performance using this OCM as

compared with Harvey's (fixed-base simulator) experimental results for the
typical sight display. Also shown is the predicted performance for the

idealized sight for reference.

SYSTEM AUGMENTATION
With the above system models, we represent the system, including the
pilot’'s control input as well as the augmentation input, by the relation
x = Ax + Bup + Buaug + W
where uaug is an equivalent stick input, a scalar, in this case. As shown

previouslygtkf Géug is chosen to minimize the objective function

13




TABLE 4
PERFORMANCE COMPARISON

Parameter (rms) 5. (deq)
D = 1000 ft oy = 3.5 gle(deg)  A(deg) q(deg/sec) gLd€9
Experiment 2.1 2.9 8.0 2.1
Analytical
(Typical sight) 2.3 2.9 8.7 2.1
Analytical
(Ideal sight) 1.6 2.6 7.9 2.0
D = 1000 ft o = 549
Experiment 2.7 4.0 11.2 3.0
Analytical
(Typical sight) 3.0 4.2 12.1 3.0
Analytical
(Ideal sight) 1.9 3.7 11.0 2.9
} D = 3000 ft oy = 3.5 g
} Experiment 2.4 8.7 6.4 1.8
E Analytical
(Typical sight) 2.3 10.1 7.3 1.8
Analytical
(Ideal sight) 1.1 9.7 6.0 1.6
D = 3000 ft op = 54¢
, Experiment 2.7 12.1 9.2 2.4
# Analytical
(Typical sight) 2.7 14.2 10.2 2.5
Analytical
(I1deal sight) 1.4 13.8 8.5 2.3
T
- lim 1 \ —
Jaug = Jp + E{Tam T {0 ) aug Fuaug dt) ()
f where Jp is given in Eqn. 3 , the relation for the augmentation input is
u, = -F Bk, X - FIB'K, U
aug A] A2 P
14
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or

Gaug =KX - Ku
(The matrices KA] and KA2 are obtained, as discussed in Reference 1, by
simultaneously solving two coupled Riccati equations, one yielding the
augmentation gains, and one yielding the pilot's gains.).

The result, of course, is the pilot controiling the augmented system,

which is now described by

I}

x = (A - BKx)x + B(I - Ku)up +w

or

x|
]
T
*x
+
oo
[~
+
=

Second-Order Plant

Let us initially consider the effects of pilot optimal augmentation of
the second order plant (for which we may define x' = (ec, éc, 8, 8) and
y' = (e, ¢)). Shown in Fig. 2 is the augmented open-loop and pilot closed-
Toop root locus obtained via optimal augmentation for various uaug objective-
function weights, or F in Eqn. 4 . (A-E indicate open- and closed-loop cases
with increasing augmentation.) HNote the shape of the augmented (open-loop)
system root locus as well as that of the pilot closed-loop system corresponds
to the knowL6szmptotic behavior of the closed-loop roots of 2 linear optimally
controiled single-input, single-output system. In this case, the root locus
assumes a Butterworth configuration of order two. (This results from two open-
loop plant poles and no zeros. Except the pilot closed-loop poles include a

third introduced via the pilots neuromuscular lag.)

15
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The distance between open-loop and closed-loop eigenvalues is a maxi-
mum for no augmentation (i.e. F-»), while the open-loop and closed-loop poles
coalesce for increasing augmentation, eventually eliminating the pilot compen-
sation, and the system monotoically approaches a pure automatically controlled
system,

To aid in further interpretation of these results, consider the human

operator describing function in a compensatory task to be approximated by
er'TS(TLs +1)
H(S) = (TNS ¥ ])

or a gain, low-frequency lead, effective delay, and neuromuscular lag. Our
augmented or unaugmented second-order plants may be described in general by the
transfer function

K

G(s) =
52 + 2z0s + wz

The piloted closed-loop denominator now becomes (ignoring the delay)

s34 (1—- + ZCw)SZ + [w

N

2 1

1 2 ..
+ ;Q»(2cw + KKpTL)]s + ;ﬁ-(w + ka)

If we write this closed-lToop denominator as

(Tcs + l)(s2 + chmcs + wg)
or
3 ] 2 2 1 1 2
¥+ (—+ 20w )s" 4 (. *—2C w)s T w
TC cc c Tc cc TC c

we see that the pilot's gain Kp is related to the difference between open- and

closed-loop frequencies by the relation

SN2 2

p TC c

KK

J




Therefore, the pilot's gain tends to be proportional to the difference be-

tween the squares of closed- and open-loop natural frequencies, or equiva-
lently, the squares of distances of the poles from the origin.
Also, the pilot's lead TL, is related to the open- and closed-Tloop

parameters by the relation

2 2
T - TN[(wC -w ) + Z(CCMC/TC - €w/TN)]
L

T

N
(7 w. - w)
Tc C

Therefore, the pilot's lead would tend to increase with increasing a(zw)
/sz between open- and closed-loop eigenvalues. With these observations, we
are able to qualitiatively relate the trends from the root locus (Fig. 2) to
the parameters in the classical human operator describing function.

In the case of higher order systems, however, the pilot describing
function may not be well approximated by the simpler forms, and the relation-
ships between the root locus characteristics and the predicted human describing
function parameters are much more _omplex and difficult to express quantita-
tively. Still, the effects of augmentation, and of the pilot's ga%ns are de-
picted in the root loci, and the difference between the open- and closed-loop
roots indicate at least qualitatively the required Tevel of human equalization
involved. And finally, the augmented (open-loop) system root locus yields im-

portant information about the desirable trends in the systems dynamics.

Ideal Sight Display

Consider now, the optimal augmentation of the air-to-air tracking task
with the system including the ideal sight display (lead angle obtained from

Eqn. 1). Again, with descreasing augmentation-control-input weight (F in.

Egn. 4 ), we generate a family of augmented systems. The open- and closed-




eigenvalues are shown in Fig. 3.
The open-icop roots include, the unaugmented case, the two roots at the
origin, the vehicle short-period roots, and the actuator root at -20(rad/sec.)
For the piloted closed-loop system, still unaugmented, the roots include
a low-frequency pair, a high-frequency pair, and two real roots, one at
-3.7 rad/sec and one (not shown for clarity) at -20 rad/sec.
As the level of augmentation is increased, as indicated by cases A-C,
the frequency and damping of the vehicle short period mode is increased, and
the two poles originally at the origin move toward the piloted closed-loop

Tow-frequency pair due to the closure of the tracking loop (i.e., feedback

of ¢ and ¢). With the pilot closing the loop on the augmented systems a

unique pair of high frequency roots are associated with each level of augmen-
tation, and this pair appears to follow a Butterworth pattern. However, for
the levels of augmentation considered, the two real closed-loop roots (at
approximately -20 and -3.7 rad/sec) are relatively insensitive to augmenta-
tion level. Also, the low-frequency pair (at about -.7 + .7j) are invariant
with augmentation. This pair also corresponds closely to a pair of plant
zeros.

This behavior is consistent with the asymptotic properties of linear
optimally controlled system roots cited previously. For single-input, single-
output systems p of the roots tend toward the p open-loop zeros (in the left
half plane), and the remaining roots assume a Butterworth configuration of
order n-p. Furthermore, the systems with input and output vectors of equal
dimension (i.e., systems with square transfer-function matrices), p of the
closed-loop roots tend to the p "zeros" of the determinant of the transfer-

function matrix. Although, the transfer-function matrix is not square in this
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case, the invariance of any closed-loop roots may still be explained in
terms of the above properties and the existence of system "pseudo zeros."

Shown in Fig. 4 is the comparison of these (vehicle short period)
results with those of Hollis. In his analysis, Hollis determined the ve-
hicie augmentation yielding the best pilot rating via the "paper-piiot".
Pitch rate and plunge acceleration were used for augmenting only the
vehicle with a fixed sight (with no display dynamics). It is seen that the
results agree with the trend determined by Hollis' consideration of several
sets of vehicle dynamics. In all cases, the "optimal" augmentation in-
creased the frequency and damping of this vehicle mode. This trend, as
noted by Hollis, also agrees with the military specifications on flying
qualities. (As we shall see later, this is not the case for the other sight
display.)

The predicted improvement in (rms) tracking accuracy for the ideal
sight is shown in Table 5, along with the rms statistics on stick deflection
and rate of deflection (i.e., physical workload). Recall that the stick
deflection was not considered penalized in the pilot's objective function,
hence Tittle reduction in this parameter is obtained through augmentation.
However, rms stick rate is significantly reduced.

Finally, Table 6 lists the optimum full-state feedback gains in this
idealized case, for each level of augmentation.

For this sight display, increasing the tracking range D, from 1000 ft.
to 3000 ft. changed the results very slightly. The feedback gains varied
approximately 15 percent and the augmented and piloted system root loci were
almost identical to that in Fig. 3. The position of the invariant, low-frequency

piloted-system roots did change from -.7 + .7j to -.3 and -1.2 rad/sec, but
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the augmentation moved the poles at the origin toward those roots as in the

1000 ft. case.

Typical Sight Display

Considering now the system with the more typical display dynamics (lead
angle computed with Eqn. 2 ), the open- and closed-loop root loci are
shown in Fig. 5. The unaugmented system roots in this case include those

considered above, plus the lead-angle time constant T Comparing these re-

£
sults with those in Fig. 3, we see an entirely different trend in the vehicle
short-period roots! With the more sensitivity, or "active," sight display
in this case, the optimum short period frequency remains relatively con-
stant while the damping is increased. Recall that the results obtained
by Hollis included no display dynamics, and that the results agreed with
those obtained with the less active, ideal sight display. Additionally,
the augmented short-period roots in the case considered here (Fig. 5)
approach an invariant pair of piloted closed-loop eigenvalues, a trend not
observed in the ideal-sight case.

The behavior of the roots near the origin is as observed previously,
the augmentation closing the tracking loop and moving the plant poles at
the origin toward the two invariant closed-loop eigenvalues. Also, the
actuator and sight time constants move together, due to augmentation, and
eventually become a high-frequency, complex pair. Finally, as before, a
unique, high-frequency closed-loop pair is associated with each level of
augmentation, and approaches a Butterworth pattern. A seventh closed-loop
root at -20 rad/sec is the actuator root remaining, but is not shown for

clarity.
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Increasing the range to the target D from 1000, to 3000 ft. results in
the root loci shown in Fig. 6. Now, not only do the plant zeros (and there-
fore the "pseudo-zeros") depend on D, but the sight time constant Tf is
affected as well. As a result, this root locus is appreciably different
from that in Fig. 5, particularly at the higher level of augmentation.

Still present, however, are the four invariant closed-loop poles, two real
and two complex in this case, and the family of complex closed-loop roots

at the higher frequency. Note in this case, the migration of the sight time
constant with augmentation toward the closed-loop at -.3 rad/sec, and the
behavior of the augmented short-period roots for level C.

The effect of augmentation {(level B, D = 1000 ft) on the system's
frequency response (e/8) is depicted in Fig. 7. Closure of the tracking
loop (via € and € feedback) eliminates the 1/52 characteristic, at low fre-
quency, while the increased damping of the short period mode (at « = 3. rad/
sec) is evident. The effect of this level of augmentation on the predicted
frequency response of the pilot is shown in Fig. 8. With augmentation, the
pilot appears to increase his gain, as well as adding slightly more low
frequency lag. Also, his required lead near w = 3 rad/sec. would appear to
be decreased.

The pilot frequency response shown in this figure is that of an
equivalent describing function formed from the transfer function matrix
(H(s)) obtained from the optimal control pilot model. This equivalent de-
scribing function is analogous to the classical human describing function
measured experimentally in a conpensatory task, and is obtained from the

relation

854 (8) | 8g¢(s) 85¢(s)

= +s = h,,(s) + shy,(s)
C(S) EQUis.(SY E(S) 1 12
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and where §_,(s) = H(s) y(s).
The effect of the augmentation on the predicted rms performance is

shown in Table 7. The rms error e, stick deflection and stick rate are

given for D = 1000 ft., Oa = 5 g's. Here again we see a significant im-

provement in tracking error while the rms stick activity remains approximately

constant with increased augmentation. As before, however, we note that

stick activity was not penalized in the objective functions. The pilot stick

rate is also reduced with augmentation.
The above improvements in tracking accuracy were obtained while the

predicted elevator activity actually decreased slightly with increased

augmentation (2.96 deg-rms unaugmented to 2.81 deg-rms for level C). This

is due to the fact that the augmentation includes pilot stick position

feedback (Ksst), so the net commanded elevator deflection by the pilot be- :

comes

8 =K(]'Ka ) 8

E st

st i

where K is the actual stick gain. With his effective stick gain reduced,

{ the pilot's contribution to commanded elevator is reduced while the
augmentation’s contribution is increased. The sum of the two results in the
relatively constant net rms elevator with increasing augmentation. The
optimum gains for the vehicle states for the three levels of augmentation

is given in Table 8.
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SECTION 111

MULTI-AXIS ANALYSIS
AND AUGMENTATION

The more challenging (and more realistic) problem of pilot-vehicle
analysis and augmentation for a multi-axis air-to-air tracking task will
now be considered. The dynamics of the system, as in the pitch tracking
analysis in the previous section, include both vehicle and display
dynamics. However, the flight condition to be considered is a highly
banked turn with a normal load factor of four (i.e., 4 g turn). This
involves several issues not frequently, and in some cases never, considered
in previous investigations of pilot-vehicle dynamics. These extenuating
issues result from the significant amount of unsymmetrical coupling between
the elevation and azimuth axes of the system and the multiple control inputs

involved (i.e., elevator, aileron, and rudder).

Previous investigations of multi-axis tasks have been few in number,[7]
and those that have considered the effects of multi-axis aircraft control[g']oj
have actually treated the dynamics of both axes independently, reducing the
man's attentional allocation to each axis due to the simultaneous control
task. When applicable, this approach is nice since the dynamic model is
smaller and more manageable. And in wings-level flight in a position
tracking task the dynamics are uncoupled, hence independent. However, in
a highly-banked turn, and especially in an anqular tracking or pointing task,
the axes are highly interactive.

The problems to be addressed specifically in this section then include
1) the determination of any necessary changes in the pilot model parameters
for multi-axis modeting from those determined from the pitch tracking

3 . . .
analysis of HarveyE lnd 2) the application of the pilot-optimal control
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synthesis procedure to this multi-axis analysis and prediction of the

improvement in performance, if any.

To accomplish the first objective, the comparison will be made betv~en
analytical, or model, results and simulation data. The data was obtained
previously in the large-amplitude, motion simulator of the Flight Dynamics
Laboratory, Wright-Patterson Air Force Base as part of another study performed
by the Flight Dynamics Laboratory. The simulation involved F106 aircraft
dynamics, and investigated several sets of display, or sight dynamics. The
display to be considered here is the ideal display (or perfect director
sight) considered in the previous section. The development of linearized
mathematical models for the vehicle and display in this multi-axis configura-
tion is presented in Appendices B and D of this report.

The approach to the multi-axis pilot modeling task was to attempt to
match analytical and simulated statistical results in the form of rms values
of system states, outputs, and control inputs. The initial objective function
was a direct extension of the cost function determined experimentally by
Harvey - that used in the previous section. The observation errors, neuromotor
dynamics and number of control inputs were then varied to obtain the best
match (via eyeball fit) of rms values. As will be seen, some additional
parameters needed variation and describing functions were required in some cases.

Significant to this discussion of pilot modeling is the fact that the
similated task involved tracking a non-maneuvering target. The pilot rolled
into the turn,attempted to capture the target in his display, and then
tracked in approximately a steady-state condition. In terms of a linear
model, this corresponds to a system with no process driving noise. In fact,
the only contribution to tracking error in this case is the pilots observation

and neuromotor noise. To attempt to model this situation, additive motor
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noise of specified variance was injected into the pilot's control input,

and the variance of this noise was chosen so as to match model and simulated
rms control activity. The observation noise statistics were treated in

the usual manner, that is, the variance of observation noise was specified
in terms of a noise-to-signal ratio (e.g. -20 dB for full attentional

allocation to a particular output quantity).

SYSTEM MODEL
For this "frozen-point" analysis, the system dynamics are linearized
about a four-g, turning flight condition, the mathematical definition of
which 1S given below.
TABLE 9
STEADY STATE PARAMETERS

Altitude, h = 10,000 ft; Mach = Q.72

Flight Velocity, U = 775 ft/sec {
Flight path angle, oSS = 0.

Bank angle, ¢ss = 75.5 deg

Normal acceleration, Az = -4g = - 128.8 ft/sec2
Turn rate, @ss = 0.161 rad/sec

Pitch rate, QSS = 0.156 rad/sec

Yaw rate, Res = 0.040 rad/sec

Angle of attack, agg = 14.5 deg

Elevator deflection, & = -20.2 deg

ESS




Furthermore, unlike a level flight condition, the engagement geometry
requires a non-zero steady-state line of sight to the target, sight dis-
piayed Tead angle, and relative heading between attacker and target. Since
the steady-state line of sight must be a constant for this (statistically
stationary) modeling approach, the engagement geometry is essentially
specified once the tracking range is selected. The resulting steady-
state values may then be compared to the average values obtained from
simulation to verify that the simulation actually reflected a steady-state
tracking condition. Finally, note that the steady-state tracking error
must be zero for the perturbation quantities obtained from the linear
mathematical model to be representative of total trackihg error.

From the lines-of-sight equations developed in Appendix A and the
display lead angle equation in Appendix B, the engagement geometry may
be specified as in Table 10 for both aircraft on a common circular trajectory.

The steady-state lead angle may be found from the relations presented
in Appendix B. Assuming a projectile muzzle velocity of 3300 ft/sec, a
time of flight of 0.786 sec., and a ballistic jump correction, Jv, of 0.185,

yields the following lead angles in the steady-state flight condition.

‘) 0.13 rad

SS

A
PZSS

-0.03 rad

These lead angles are as shown in Figure 9 alona with the definition of
the components of the line of sight to the target. Finally, the steady-state

tracking error is taken to be

€ =B - A =0
E]SS ELSS E]SS

B - A =0
ss AZss Alss

“AZ

ERETR R
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TABLE 10
ENGAGEMENT PARAMETERS

Target altitude, hT = 10,000 ft; Mach = 0.72
Target Velocity, USS = 775 ft/sec
T

Target flight path angle, Oy = 0

i

Target bank angle, ¢ 75.5 deg

I

1]

Distance to target, d = 2000 ft

Target/Attacker relative heading, ay = 23.6°

Target normal acceleration, AZ = -128.8 ft/sec2
T

Target acceleration in attackers coordinates:

-50. ft/sec’

>
1]

Tx

Ar = -3 ft/sec’
Y

Ar = -119. ft/sec’
7

Target velocity vector in attacker's coordinates:

VT = 710 ft/sec
X

‘lT = 78 ft/sec
Y

VT = =300 ft/sec
Y4

The comparison of the above "theoretical" steady-state with the mean
value of the parameters obtained from the two simulation runs are presented
in Table 11. (These two runs were the only cases for the modeled flight
condition, display dynamics, etc.) It is apparent that Run 109 did not

simulate the modeled steady-state situation, and checking the actual time
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TABLE 11

STEADY-STATE PARAMETER

COMPARISON

Tracking Errors (rad)

T

Lead Angles (rad)

"By “AZ, o Az
Theoretical 0.0 0.0 .127 -.03
Run 133 014 .026 123 -.045
Run 109 .003  .021 .025  -.028

Target Velocity
Components (gun coord.)

Attacker Acceleration (ft/sec2

(body axis)

)

Vy WT ft/sec Ax Ay Az
55 ss
Theoretical 78. -300. 32. 0. -125.
Run 133 101. -312. 12. -1. -104.
Run 109 27. - b5. 8. =-3. - 42.
Body Euler Angles (deg.)| Body Anqular Rates (deg/sec)
Oss ®s Pss st Rss
Theoretical 3.6 75.5 - 0.6 8.9 2.2
Run 133 3.6 72.6 - 0.6 8.3 2.5
Run 109 3.4 28.9 38.0 2.9 2.6
Velocity Angles (deg.) Control Deflections (in.)
o B 8 8 §
ss S$ Est Ast Rped
Theoretical 14.5 0.0 -1. 0. 0.
Run 133 10.9 0.6 -2.3 -0.4 0.2
Run 109 3.8 0.6 -1.0 -0.1 1.3




histories of the parameters verified that a steady-state situation was
in fact not simulated. That is, rather than constant mean values, the
means were time varying for all parameters and a statistically stationary
model is therefore invalid.

On the other hand, the data from Run 133 appears to agree quite well.
The only discrepancy is the difference in range to the target (not given
in the table). The assumed encounter geometry considered a constant range
of 2000 feet, while the simulated range varied monotonically from 1800 to
3000 ft, with a mean value of 2315 feet. The primary effect of this
variation is on the standard deviation of the displayed lead angle about
the mean, the standard deviation is much larger than would be the case
with constant range. With this in mind, however, Run 133 will be taken as
the simulation results to be compared with the analytical statistics.

The Tinear dynamic model may now be defined, and expressed in the
familiar form

§=A§+BUP

with the state vector of perturbation variables taken as

;T

[AWa VT) Weos d’ BE]’ BAZ’ 6, ¢ a, q, By P, TJ

where

Ay = relative heading angle (wT - wA)
Vi, Wp = target velocity in attacker's coordinates

d = range variation

Bey» BAZ = line of sight angle components

n

8, ¢ = attacker Euler angles

a, B = angles of attack and sideslip

e




p, g, r = stability axis angular rates.
The pilot's control vector is
=T

up, = (60 , 8, , 6
P Est Ast Rped]

where as with the states, the stick and pedal deflections are perturbations
from their steady state values.

The pilot's observation vector was ultimately taken to be
Yp(t + ©) = Cx(t) + Dup(t)
with
¥ = Legre e onze Saze dere e Mz g e 00
where

gy €AZ © elevation and azimuth tracking error

A = elevation and azimuth displayed lead angle

£1° *az

Ay = lateral acceleration at the cockpit
¢ = bank angle (or relative bank angle)

Note that the errors and lead angles are included as in the pitch tracking
analysis of the previous section. Lateral acceleration and bank angle
must now also be included in the multi-axis task with motion. These latter
variables didn't need consideration in the previous analysis as it was
based on a fixed-base pitch tracking experiment. They definitely must
be included, however, in this more complex task with motion simulation as
we shall see later.

With the steady-state parameters developed previously, and the
perturbation equations developed in Appendices A, B, C, and D, the matrices

A, B, C, and D in the above equation are as given in Apperdix E.

40




-

To be addressed now is the coupling between the longitudinal and
tateral directional axes, and the piloting “strategy” in this multi-axis
task. Shown in Figure 9 previously was the schematic of the pilot's
view through the heads-up display. Now one classical approach is to null
the azimuth error by rolling the aircraft (using aileron and rudder) such
that all the error is in the pitch axis.

This situation is depicted in Figure 10, where for simplicity of
explanation, the sight (pipper and retical) is assumed fixed in space and
the pilot has rolled about the 1ine in space represented by the sight
position. It is apparent here that by using lateral-directional control,
the elevation, or pitch error has been increased. Conversely, a purely
pitching maneuver introduces no change in azimuth error (assuming the sight
to be fixed).

This anti-symmetric cross-coupling is depicted graphically ir Figure
11 , which shows the frequency response of the system's anti-symmetric
transfer functions. The coupling between aileron input and elevation
error is 20 to 40 dB larger than that between elevator input and azimuth
error. Here, of course, the complete dynamics of the vehicle and display
are included, while in the previous discussion of the display schematics
we assumed the sight fixed in the display. System eigenvalues and frequency
responses of the remaining transfer functions will be discussed later

with augmentation results.

PILOT-VEHICLE ANALYSIS

The baseline pilot model was a direct extension of the pitch tracking
analysis presented previously, and this model is summarized in Table 12.
Reiterating the approach outlined previously. the cost function weightings

in both axes are idential to those for the pitch-tracking case. The
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Table 12

BASELINE PILOT MODEL

Observation Vector, }T = [sE], éE]’ €pg éAz’ Ay iEl’ Mg XAZ]

Objective Function Weights, Q@ = 16., Q- = 1., Qi = 4,
(both axes) € €

Observation Thresholds, T€ = TA = 0.05 deg, Té =7 0.10 deg/sec

Observation Noise Ratio, =-20 dB for full attention
Fractional Attention, fi = 0.5 all observed variables
Observation delay, 1 = 0.2 sec

Neuromuscular lag, 1, = 0.2 sec all inputs

N

Motor Noise Variance, varied to match rms control inputs

Control inputs, § 8 only

stick stick

motor noise variance was modified to match model and simulated rms control
activity, and the parameters determining observation noise (i.e. observation
thresholds and attentional allocation) along with neuromuscular lag were
varied in the attempt to match the statistics of the system states and
outputs. ;
Initially, only two control inputs were considered, elevator and
aileron stick deflection, as the importance of the rudder in this task

was not clear a priori. Part of the modeling effort then was to determine

the necessity for including the rudder, and it will be shown that inclusion
is warranted.

Finally, recall that the target is not maneuvering, so the magnitude
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of the motor noise variances must be specified rather than noise-to-
signal ratio, the more typical case. The resulting noise-to-signal

ratio obtained from matching control activity is then one of the modeling
results in this analysis.

The comparison of the baseline model results with those obtained
from simulation is shown in Table13 . Considering the use of essentially
a "single axis" model, the results are amazingly good, the largest
differences appearing in lead angles, bank (¢) and side-slip angle (8),
and higher angular rates resulting from the model.

To assess the first-order sensitivities of the rms performance to
increased observation errors and pilot bandwidth (i.e. neuromuscular
lag), two "perturbations" to the baseline model were evaluated. The
first involved reducing the fractional attention allocation from 0.5, the
inverse of the number of controlled axes, to 0.125, the inverse of the
dimension of the observation vector. Additionally, the threshold on
angular rate was increased from 0.1 to 0.18 deg/sec consistent with
some earlier studiégﬂj The second case considered the above changes plus
increased the neuromuscular lag time constant from 0.2 seconds to 0.3
seconds for both control inputs.

The results for these two additional models are shown in Table 14,
along with the baseline model results. The effect of the increase in the
observation noise due to reduced attentional capacity and increased
threshold is an increase in all rms values of states and outputs. But
this is as expected since increased observation noise is similar to
increased motor noise in effect. Note, however, that the increases appear 4

to be greater in the lateral axis, with rms azimuth error (eAZ) increasing

65 percent and side-slip angle (i) and roll rate (p) increase 10 percent.




e TR
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It would appear that the lateral-directional axis, then, is more sensitive
to observation errors, may require increased attentional allocation, and
tends to contribute most to the task difficulty.

The effect of increased neuromuscular lag on both control inputs
also appears to affect the lateral axis more than the longitudinal - the
azimuth error increasing significantly more than the longitudinal. As
would be expected, all three angular rates decreased, but these were higher
than the simulated values for all three models - thus indicating perhaps
that neuromuscular lag greater than 0.2 seconds is warranted,

TABLE 13
SIMULATION VS. BASELINE MODEL
RMS PERFORMANCE

i ix e

Tracking Error (deg) Lead Angles (deg)
°E] €Az A *az
Simulated 1.09 0.97 1.72 2.58
Model 1.31 0.82 0.74 0.34
Target Velocities (ft/sec) Euler Angles (deg)
Wr v ) ¢
Simulated 48. 34. 1.09 4.18
Model 37. 15. 0.74 2.29
Velocity Angles (deg) Angular Rates (deg/sec)
a B p q r
Simulated 1.40 0.20 4,99 1.72 0.92
Model 1.03 0.43 6.07 3.04 1.72
Control Inputs (in)
8 8 8
Est  Ast  Repp
Simulated 0.27 0.22 0.22
Model 0.28 0.23 .
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TABLE 14

THREE BASIC MODELS-RMS PERFORMANCE

Tracking Error (deg) g

[ £ i ) A

Lead Angles (deg)

£l Az ; £ Az
Baseline 1.43 0.80 ! 0.74 0.34
Incr. Obs. Err.  1.60  1.32 j 0.97 0.52
Obs. Err. & Lag  1.66  1.95 ﬁ 0.34 0.69

Target Velocities (ft/sec)i

Euler Angles (deg)

Wy vy 4 o 6
Easeline 37. 15. j 0.74 2.29
Incr. Obs. Err. 44, 2¢. 0.97 3.32
Obs. Err. & Lag 21. 29. 1.38 4.70
Velocity Angles (deg) : v Angular Rates (deg/sec)
a B p q r
Baseline 1.03 0.43 6.07 3.04 1.72
Incr. Obs. Err. 1.09 0.47 6.65 3.09 1.78
Obs. Err. & Lag 1.15 0.40 6.30 2.58 1.38

Control Inputs (in)

& 8 : £ A

Motor Noise Ratio (dB)

Est Ast ; Est Ast
ég;;}};g 0.28 0'23‘"”*"‘"“:""“‘i}};""iji;i;“”"‘“‘““'
Incr. Obs. Err. 0.28 0.27 f -10 -13.6
Obs. Err. & Lag 0.24 0.25 E -8 -11.1
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Furthermore, though neuromuscular lag time constants on the order of 0.1
seconds for a single-axis task and a force-sensitive, side-arm control
stick may be reasonable, higher time constants are appropriate for a movable
center-stick control, and even larger time constants, approaching one
second, for rudder pedals in this multi-axis task.

Finally, none of these models were able to match the much higher
simulated lead angles (AE] and AAZ). Furthermore, none of the other models
to be discussed below yielded significantly larger rms lead angles. The
answer probably Ties in the fact that the simulation run, although almost
representative of a true steady-state aircraft flight condition, did not
result in a constant range to the target. The range increased from the
smallest value of 1800 feet, occurring early in the simulation, to over
3000 feet at the end of the 40 second run. Consequently, the projectile
time of flight to the target increased proportionally. Since the lead
angle tends to be proportional to the time of flight, the lead angles at
the larger ranges later in the simulation run are significantly higher
than those occurring earlier in the run, which are closer to the modeled
constant range of 2000 feet. Hence the rms lead angles obtained from the
simulation would be expected to be larger than those prediced via the model.

The fact that the largest deviation is in the azimuth lead anale is
consistent with this reasoning as well. At the highly banked flight
condition considered (¢ = 75°), the largest component of the gravity
vector will be in the azimuthal direction rather than in the elevational.
Hence, the azimuth lead angle will be more effected by the "gravity drop"
of the projectile, and therefore experience the largest increase as the
time of flight increases.

As a result of these considerations, we shall consider the aircraft
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states as the most important for comparison purposes, followed by the
tracking errors, and finally the lead angles. As a final note regarding
the matching of rmé performance, the simulation run represents a single
case involving a single pilot, hence is in effect a single data point. On
the other hand, the statistical results from the model represents ensemble
data over a large sample (N+=). Therefore, too much emphasis on precise
matching is foolish.

With these initial results in hand, we shall now address the issue
of the inclusion of the third control input, the rudder pedal.

Adding the third control parameter to the model, utilizing a pre-
selected neuromuscular time constant, must be done with care. The two !

lateral~-directional controls {aileron and rudder) do not yield pure modal

responses. That is, an aileron deflection produces both roll and yaw, as

is the case with the rudder as well. Recalling the control equation for

P S

the pilot model as

TNﬁp = -K]i -u |
the result of this coupled response is a nondiagonal TN matrix. Therefore, ;
the eigenvalues of'& represent the effective neuromuscular lag as before,
but this lag is for a combination of control inputs described by the
eigenvectors of TN' Therefore, the eigenvalues of TN will be used for the
lag time constants, realizing that rather than representing a pure aileron
input, for example, the appropriate time constant (or eigenvalue) represents
primarily aileron input along with some lesser rudder input.

The model results with rudder included are given in Table 15,

along with the simulated results. Note that the three-control model

includes the higher observation noises (fractional attention of 0.125 and

angular rate thresholds of 0.18 deg/sec) as well as the larger elevator
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TABLE 15
BASIC THREE-CONTROL MODEL PERFORMANCE

Tracking Error (deg)

Lead Angles (deg)

—— e i

°E] €Az AEY Az
Simulated 1.09 0.97 1.72 2.58 4
Model 1.66 1.03 0.97 0.47 ’

Target Velocities (ft/sec)

Euler Angles (deq)

Wr vr 8 ¢
Simulated 43, 34. 1.09 4.18
Model 46. 20. 0.92 2.58
Velocity Angles (deg) Angular Rates (deg/sec)
o 8 p q r
Simulated 1.40 0.20 4.99 1.72  0.92
Model 0.97 0.63 5.44 2.52 1.32

Control Inputs (in)

Neuromotor Lags (sec)

§ ) 8 T T T
EST AST RPED NE NA NR
Simulated 0.27 0.22 0.22 -- - -
Model 0.22 0.39 0.28 0.3 0.3 1.1

et it NS e v L

Al i i
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lag (0.3 seconds). And therefore is similar to the third model for which
the results are given in Table 14,

First note that much higher laa on the rudder input was reauired.
Attempting to use a lag time constant of around 0.3 seconds for all three
controls resulted in Tateral directional control inputs an order of
magnitude higher than those shown. Also, one would expect a higher laq
for pedal controls than for stick.

Note that most of the rms values for this three-control model are
closer to the simulated results than the similar two-control model (the
third set of results given in Table 14). The exceptions are in the much
higher side-slip (g) and much lower bank angle (¢). We'll return to this
later.

First consider the results depicted in Figure 12, which gives the
aileron-to-azimuth-error pilot describina functions obtained from the two-
and three-control models. These describing functions are equivalent to
those given in the pitch-tracking analysis of the previous section in that
they are comparable to those for a compensatory task. MNote that the Tow
frequency nhase of the two-control-model result is zero, while that of
the three control model is near -270 degrees. This fact, along with the
comparison of the low frequency slopes of the magnitude plots (zero for
two controls, -20dB per decade for three controls)indicates that the de-
scribing function gains are of opposite sign! Which one is correct?

We will only be able to answer part of that auestion here. One sign
on the describing function corresponds to a piloting strategy of rolling
to null azimuth error. This is the only possibility if aileron is the

only control input. However, with both control inputs, the possibility of
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20

101

100

‘]00 -
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Log w
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Log w
Sp only

6A vith rudder

Fig. 12 Lateral Pilot
Describing Functions (Preliminary)
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a pointing rather than a rolling strategy is possible, with "cross
control" inputs being used. Inclusion of the rudder is necessary, then,
to allow either strategy to be used, and the existence of opposite

sign on the three-control aileron describing function would represent
the effects of "pointing”. The preliminary conclusion then, would

appear that inclusion of the rudder may be necessary to capture the

proper piloting strategy “Which strategy is correct?" is now the question.
Now let's reconsider the rms performance of the three-control

model in Table 15, and note the much higher value for rms side-slip

angle (B8) and the lower rms bank angle (¢) compared to the previous two-

control models (Table 14). The fact that the rms azimuth error is reduced

in the three-control case, along with the large increase in side-slip

and lower bank angle further supports the presence of a "pointing” rather

than "rolling" strategy. Here the pointing may be accomplished with

rudder input, however. But the fact that the simulation resuits show

much Tower side slip indicate that the rolling strateqy was actually used.

This leads to the conclusion that the original objective function

(weighting only displayed errors and lead angles) is insufficient to

correctly model the pilot's strategy in the lateral-directional axis.

To determine the required modification to the objective function,
we must consider what additions to the pilot's observation vector are
appropriate. (Comments from a test pilot, incidentally, were helpful in

this regard.) In addition to lead angles and tracking error {or line of

sight), the pilot also sees the target itself through the heads-up dis-
play. Consequently, target bank angle and headina, or more precisely,

relative bank angle and heading are observed, although in this in-plane
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maneuver, the relative headina was considered difficult to observe
accurately. However, relative bank angle was observable, and in-
tuitively, if nothing else, would appear to be important. Furthermore,
in the purely single axis experiments of Harvey, target and attacker

bank angle were both always zero, hence no importance of bank anale

could be ascertained from his analysis.

This raises another key point not previously considered. Harvey's
experiments were fixed base, while in the Air Force LAMARS facility,
motion cues, and particularly accelerations, were most definately available.
Furthermore, clear evidence is avai1ab1e(]2] that pilots avoid lateral
accelerations, while vertical accelerations of reasonable maanitude (e.q.
less than 5 to 6 g's) are not as highly disliked, or at least pilots are
more conditioned to the Tatter type. Consequently, inclusion of relative
bank angle and Tateral acceleration in the observation vector is clearly
reasonable, and weighting both of these parameters in the objective function
is consistent with this entire discussion of piloting strateqy.

To complete the model then the observation threshold on relative
bank angle was taken to be 5 degrees, based on the pilot's perception
thresholds of 0.05 degrees at the pilot's eye, tracking ranage of 2000 ft.,
and target wing span of approximately 40 feet. The perception threshold
on lateral acceleration was assumed to be 0.4 ft/second or 0.012 g's,
roughly consistent with some earlier studies£]3] Finally, using an

analysis similar to that above for bank angle, it was determined that the

threshold on relative bank angle rate is approximately 10 deqg/sec. But
since this is much larger than the rms roll rates (p) encountered, no useful

information could be gained by including roll rate in the observation vector.
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Inclusion of the above parameters results in the multi-axis pilot

model summarized in Table 16 . Note that since the target has a constant
bank angle, observing and weighting relative bank angle is equivalent to

observing and weighting the attacker's bank angle in this case. Finally,
the attentional allocation has been adjusted to further improve the model
results, and these allocations reflect the relative difficulty, or work-
load, between the two axes.

With the above model, the rms performance shown in Table 17 was
obtained. The parameters marked with the double asterisk indicate this
value was the closest to the simulated value of all models considered,
while the single asterisk denotes one other model considered resulted in a
closer match for that parameter. Considering all the factors discussed,

it is felt that this model is quite justified.

SYSTEM AUGMENTATION
With this fipal pilot model established, we may proceed with the system
augmentation. Reiterating the methodology, with augmentation, the system

dynamics are represented as

X = Ax + Bp“p + BAuA +w
where GP and Gﬁug are the vectors of control inputs of the pilot and aug-

mentation, respectively, while w represents any system disturbances. The

control ﬁ;ug is chosen, then, to minimize the objective function.

T
= ] l YL Y
Jaug JP + E{11m T [0 uaug Fuaug dt}

To
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i TABLE 16

FINAL MULTI-AXIS
PILOT MODEL

Observation Vector, }T = [eE], EEI’ €pz éAz’ My iE]’ Mg iAz’ ays ¢re1]

Objective Function Weights, Q€ = 16., Q- = 1., Qi =4,, Qa = ,007, Q, = 8.

€ y ¢
Observation Thresholds, TE = Tx = .05 deg, Tg = Ti = .18 deg/sec
¥
T = .4 ft/sec?, T. = 5 deg
a ¢
y

r . . . _ . .

; Fractional Attention Allocations, fi = .05 on €E10 E1° AE]’ AE]
fi = .15 on €pz® Az’ XAZ, AAZ
fi = .1 ona_ and ¢

Observation Noise Ratio -20dB for full attention
Observation Delay, T = 0.2 sec

Neuromuscular Lag, ™ C .33 on GE (obj. func. wt. = .05)
st
A t, = .23 on & (obj. func. wt. = .10)
- N A
; st
Ty = .62 on Sp (obj. func. wt. = .12)
ped
Motor Noise Ratios, V. = mp o
010 01s€ Ratios, n npuou

.05 (-8 dB) on §

Lol
1]

Est

.02 (-12dB) on 8p
s

t

.05 (-8 dB) on GR
ped
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TABLE 17

FINAL MODEL PERFORMANCE

Tracking Error (deg)

Lead Angles (deg)

A A

“E1 ‘Az £l Az
Simulated 1.09 0.97 1.72 2.58
Final Model 1.78 1.72 1.38%*  0.63*

Target Velocities {ft/sec)

Euler Angles (deq)

W Ve 9 b
Simulated 48. 34. 1.09 4.18
Final Model 63. 25.%* 0.97* 3.55*

Velocity Angles (deg)

Angular Rates (deg/sec)

a B p q r 3
Simulated 1.40 0.20 4.99 1.72 0.92
Final Model 0.97 0.15*%* 5.21*% 2.58*%* () 57**

Control Inputs (in)

3 ) $
Est Ast Rped

Neuromotor Lags (sec)

INE TNA NR

Simulated 0.27 0.22 0.22
Final Model 0.23 0.15 0.10

.33 .28 .62

Lateral Acceleration

Neuromotor Noise Ratios

(ft/sec?) (dB)
a N N N
Y ° ° o
Simulated 0.67 - - -
Final Model 0.78** -8 -12 -8
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where JP is the pilot's objective function as determined previously in
the pilot/vehicle analysis. The optimal control law is then {as shown

previously)

- 1, T, T
uaug = -f (BAKA]X + BAKAZUP)

where KA and KA are determined by solving the pilot and augmentation
1 2

Riccati equations simultaneously. The augmented piloted system may then
be represented

= -1.7 - o =17 ~ =
x = (A - B,F BAKA])X +(q) BAF BAKAZ)UP +ow

or (A - BAF-]BXKA]) = (A - BAKX) = augmented plant matrix

(8. - B F!

p = By = (8, - B

T , _ .
BAKAZ) p Aku) = augmented control matrix

(e.g., stick gains and cross feeds)

The pilot's control law remains

iy = -6 B, X - 67'BIK, Uy
{ ] 2
i except the Riccati gains KP] and KP2 now reflect the presence of augmentation
t as they are solved simultaneously with the augmentation problem using the
& augmented plant matrices.

The open- and closed-loop root loci as augmentation level increases
from unaugmented (denoted by U) to higher levels of augmentation (denoted
1-4) are shown in Figures 13 and 14 . The first figure shows the (primarily)
longitudinal eigenvalues, recognizing this system actually has coupled
longitudinal and lateral-directional modes, with the second figure depicting
the (primarily) lateral-directional roots. As with the pitch tracking
results of the previous section, the augmented system roots are denoted as

"X" and the piloted closed-loop roots are denoted as "0".
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Examination of the longitudinal root locus leads to the conclusion

that the trends are changed only slightly from those obtained in the
single-axis pitch-tracking analysis. The two low frequency roots from
the geometry and kinematics of the problem were at the origin for the wings-
level pitch analysis, but still move quickly toward the invariant, low-
frequency pair of piloted closed-loop roots with augmentation. Recall
this probably indicates the existance of a pair of pseudo-zeros or
transmission zeros at this point. The trend in the vehicle short-period
roots is also similar to previous results, with the exception that short
period damping is increased much more due to augmentation. Finally, the
proximity of the open-loop roots to the closed-loop roots for the unaug-
mented plant (U) and level-two augmented plant (2) indicate less compensation
being introduced by the pilot, primarily due to his reduced bandwidth
(rn = .3 instead of ¢ = .1) in this more complex task.

The root loci for the lateral-directional axis will now be considered.
The unaugmented system has two eigenvalues near + .2j associated with
the azimuth portion of the geometry and kinematics of the engagment, the
spiral and roll subsidence vehicle roots at the origin and near -1 per
second, respectively, and the ditch roll roots at -.4 + 4.7j rad/sec.
With augmentation now, the damping and frequency of the dutch roll are
increased, and a complex roll/spiral mode is formed from the spiral and
roll subsidence roots. The two low-frequency roots on the jw axis ultimately
attach to the real axis near -.6 and become two real roots. The first of
these approaches the invariant closed-loop root at -.5/sec, the other
moves to the left on the real axis. This latter root, incidently, appears
to be attracted to the pilot closed-loop roots near -1/sec which also

approach the real axis with increased augmentation. Finally, associated




with the dutch-roll and the roll-spiral are two pairs of piloted closed-
loop roots very close to their associated unagumented branches.

Except for the roll-spiral mode without augmentation, the pilot appears
to introduce relatively little compensation in terms of eigenvalue
repositioning, again due to the complexity of this multi-variable task
and his limited bandwidth. The relatively large importance of this roll/
spiral mode could be inferred from this result.

The level-two augmentation was selected for evaluation and it appears to
represent a medium-to high-level of augmentation. (The gains KX and K, are
given in Table 18 for all augmentation levels). The frequency response for
the system and pilot describing functions are presented in Figures 15 to 20

for unaugmented and augmented systems.

The longitudinal results shown in Figure 15 indicate the near cancellation
of the low frequency eigenvalues due to closure of the tracking loop, and in-
creased damping of the short-period mode (near 3.5 rad/sec) is evident. The
pilot's describing function shown in Figure 16 shows little change due to aug-
mentation.

The aileron frequency responses are given in Figures17 and18 . The phase
results for the unaugmented vehicle clearly show the presence of the spiral
root at the origin, as well as the two low-frequency kinematic roots. These
three roots appear to be effectively cancelled with augmentation.

The pilot's aileron describing function indicates almost a constant aileron-

to-error-rate tracking characteristic, or

- 6A(s) - . °TS

y (s) D

p

tpz(s)
with augmentation, the slope of the magnitude curve is reduced, implying lesser

emphasis on rate. This should indicate less pilot workload as measured by lead

requirements.
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Finally, the rudder frequency responses are shown in Figures
19 and 20. As with the aileron results, the pilot's rudder describing
function indicates that the pilot is providing turn coordination and
requlating azimuth error with rudder input.

To see the effects of the augmentation on the statistical perfor-
mance, consider the results in Table 19, As anticipated, the rms tracking
errors are reduced, and it is noted that the azimuth error has been re-
duced more than the elevation error. Since the lateral directional
axis is considered the more difficult, it appears that the augmentation
has significantly improved the tracking performance as predicted by
linear analysis.

Note, finally, that the variance of the additive motor noise was the
same for the augmented system analysis as for unaugmented. This results
in a higher noise-to-signal ratio for the motor noise in the augmented

case, and should yield conservative results for the performance pre-

dictions. 1In addition, the piloted predictions were made assuming the
pilot used all three controls. However, the augmentation gains were de- i
termined using the assumption that no pilot rudder input would be used |
to reduce pilot workload (hence no gains on 8p in Table 18). 1If no pilot
rudder was actually evaluated, rms results would be further improved.
Simulations are required in any future efforts to substantiate these re-

sults.




TABLE 19
AUGMENTED SYSTEM
RMS PERFORMANCE

Tracking Errror (deg)

Lead Angles (deg)

A A

“E1 ‘Az 3 Az
Unaugmented 1.78 1.72 1.38 0.63
Augmented 0.54 0.20 0.33 0.10

Target Velocities (ft/sec)

Euler Angles (deg)

wT V1 6 ¢
Unaugmented  63. 25. 0.97 3.55
Augmented 15. 4, 0.17 0.48

Velocity Angles (deg)

Angular Rates (deg/sec)

a B p q r
Unaugmented 0.97 0.15 5.21 2.58 0.57
Augmented 0.36 0.06 1.20 0.97 0.21

Control Inputs (in)

s S s
Est Ast Rped

Neuromotor Lags {sec)

T T T
Ne Na Mg

Unaugmented 0.23 0.15 0.10
Augmented 0.19 0.11 0.06

0.33 0.28 0.62
0.33 0.28 0.62

Lateral Accelerational

Neuromotor Noise Ratios

(ft/sec?) (dB)
a N N N
y 8 %a ®r
Unaugmented 0.78 -8 -12. -8
Augmented $.25 ~7 -8. -4
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APPENDIX A

EQUATIONS FOR THE RELATIVE LINE OF SIGHT

Vector Equation Development

Clearly, the angle(s) to the line of sight (LOS) are required for our
analysis, and as usual, linearized perturbation equations are ultimately
required. The equations to be developed in this section will be derived
for the angles, as shown in the figure below, in the vehicles gun coordi-

nate system, X_ Y Z

g 99
Xq
'f‘ (x.) BE] -
xg — iSAz -
! =
BE] ‘ LOS
| .
Target
- :B\‘A/ 9 7
Az

Heads-Up-Display Schematic

Now the kinematics of the line of sight unit vector, s, are described by

_ B Cd oyt .
vTarQEt - Vattacker - dt (Ds) = Ds + Ds (A1)

where D is the scalar distance from the attacker to the target.
But the time rate of change of a wunit vector is the cross product of that
vector with its rate of rotation vector in inertial space, é3 or

s=8 XS

So & is the rate of rotation of the LOS in the inertial (e.g. earth-

fixed) coordinate system.
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Taking the cross-product of Equation Alwith s yields

A) =s XDs+sX(BXs)D=Ds X (g X5s)

And from the vector triple product identity

sX(BXs)=8B-(8-5)5s

Now, instead of the inertial LOS rate B, we desire the LOS rate in

the attacker's gun coordinate system or Bgun’ which is

Bgun =B - “g

where Bé in the rotation rate vector of the gun or aircraft system. Sub-

stituting into the above yields
or

Mow the term (8 - s) = 0 since the rotation vector and the line of

gun
sight in the gun coordinate are orthogonal.
The necessary vector equation is then

2 1 _ _ _ —
Bgun = ﬁ{s X(VT - VA)] - W + (mg . s)s (A2)

From the previous figure, we can define the vectors as follows, using
small angle approximations

s =t Bazdg * Bprk

g
Baun ~ “Bpyg * Bk
w =P3i +Qj +RX
g = Pglg * Qg * Re¥q
Ty = UaTg + Vp3y * WK
Vo=U; 7 +V. 3 +W. K
T T T
g3 ‘g9 g9




(It's important to note that VT and the components here defined are the
velocity components of the target in the attacker's gun coordinate system.)
Carrying out the operations in Equation A2, and assuming w_ - s - P_, we

9 q
have the desired relations

) - Bm(UTg - Ul + Qg - Pogp,

B

1
p LV = Vg) - 8y, (Uy

-U)]-R
g g 9

g ¥ PgBEl

To obtain the equation for the rate of change of range, or D, we can

simply take the dot product of Equation Al with s to obtain

(VT - VA) «s=D(s - s)+D(BXs) s
so
D= (VT - VA) S

Scalor Equations in Stability Axes

Since all our equations are ultimately expressed in the vehicle stability
axes, we need to express the above equations in terms of stability-axes
variables rather than gun-coordinate variables.

Assuming the gun axis to be aligned with the vehicle body reference

axis, we have the following relations between gun (-)g and stability (-)S

variables
Wg = US oS oy - ws sin o
Vg =V
wg = NS €os oy + Us sin oy
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Pg = Ps cos ay - RS sin a
Qq = Qg
Rg = RS cos o + PS sin a,

The resulting equations are

D - [y = ) cos aq = (= K sin o]
* BAZ(VTS - Vs)
+ BE][(NTs - W) cos oy + (UTS - U.) sin o]
éE] = %{(WTS - WS) cos oy + (UTS - Us) sin o (A3)
- BEl{(UTS - Us) €os ay - (wTS - ws) sin a]}]
+Q - BAZ(PS cos oy - R. sin a)

] :
Bz = DLV - Vs) - 8 {Up - Ug) cos oy - (Hy - lg)sin oy}
- (RS cos aj + P sin a]) + BEL(Ps Cos ay - RS sin c])
where UT s VT , wT are now the components of the target velocity in the
s s s
attacker's stability axis and oy is the attacker's trim angle of attack

(or the trim angle between the gun axis and stability axis).

The Perturbation Equation

Now to linearize the above equations, we will define the motion variables

in terms of a constant, steady-state quantity (-).I and a time-varying per-

turbation about the steady-state variable. So, let

D=0, +d Ug = Uy +u P =Py +D
fec " eyt P L Q = Q *+q
8Az B BAz1 * BAZ ws N w] tw Rs : R] tr
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Inserting these into Equations A3will yield two sets of equations,
one for the steady state values and one for the perturbation quantities.

For example, taking the éE] equation we have

(D] + d)(BE1] + éé]) = [(wT - w]) cos ay + (UT - U])sin a]]

1 1

+[(wp - W) cos a; + (up - u) sin o]

-(BE]] + Bé])[(UT] - U;) cos ay - (wT] - Wy)sin oy (A4)
+(uT - u) cos ay - (wT - w) sin a1]

+ (D) +d)(Q) + q)

- (D1 + d)(BAz] + BAz)[(Pl + p)cos o - (R] + r)sin a]]

Now the steady state (-)] values certainly must obey the original equation,

SO

0,Bg; = 0==[(NT - w]) cos oy ¥ (UT - U]) sin a]]

1 1 1
- BEl][(UT] - Uy) cos o - (NT] - W) sin o]
+ D]Q'l - D.I BAZ-I LP]COS a - R.l sin a]]

We may, as a result, subtract this relation out of the complete, original

relation (Egqn A3). In addition, under the assumption that the perturbation
variables are small, we will drop higher order terms (e.g., products of per-
turbation quantities). Finally, noting that éEL’ = 0 by definition, we have

Di8gy = [(wT - w) cos ay * (uT - u) sin a]]

- BE1][(UT]' u) cos ay - (wT]- w) sin a]]

- 8gp[(Up - U}) cos oy - (Wp - W) sin a;] (cont'd)
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+ D]q + Q]d -d BAz] (P] cos ay - R] sin a])

-~

- Bp, D](P] cos ay - Ry sin a]) - D1BAz](p €oS ay-r s1na])
This equation is now linear in terms of the perturbation variables,

and the steady-state variables are constant by definition.

In 1ike manner, the remaining two equations in A3 result in

6]= 0 =[(UT1 - U]) cos a, - (WT] - w]) sin al] + BAZ(VT]'VI)
+ BE] [(NT] - w]) cos a; + (UT] - U]) sin al]
d - [(up - u) cos o -'(wT - w) sin a1+ s;z(VT] - V)
*Bpy (vp - V) sg][(wT] - W) €05 oy + (U -Uy)sin o]

. + BE]][(wT - W) cos o ¥ (uy - u) sin a]]
= =_1_, - - - < -
BAz] 0 D][(VT] V]) BAZ{(UT] U]) cos oy (NT]
-(R] cos ap + P] sin u]) + BE]](P] cos a, - R, sin a]) :
and D]BAZ = (vT -v) - BAZ][(UT - u) cos ay - (wT - w) sin a]]

- N])S'in a]}] J

'BAZ[(UT] - U]) cos a; - (wT - w]) sin a]]

1
-0, (r cos ap +p sin a]) -d (R] cos oy + P] sin a])

+D]BE]](p cos o - r sin a]) + D]BE](P1 cos oy - Ry sin a])

+d BE1](P1 cos ay - R] sin a])




APPENDIX B

EQUATIONS FOR THE SIGHT LEAD ANGLES

) Perfect Director

Again, linearized equations are needed for the Tead angles computed

by the sights. From the reference*, the fundamental equation for the

lead angle, x, in general, is

- - - — o =\ T
vfx=sx(vT-vA)+JVvAa + (s X Vo) _f (B1)

gun T i

where, referring to the figure and assuming the sight (pipper) is on the

target, we have

S 1g + AAng + AE] Kg

ar

K

v
1

g * BAng * 8

>|
]

s X Ygun ~ AEngun B XAzkgun

V. = average projectile velocity in still air
(Vo = Df/Tf - VA’ Df = distance of flight)

Tf = projectile time of flight

V, = attacker's velocity

A
JV = Jump correction factor, = vM j Vf, VM is projectile muz-
zle velocity Vo + Yy
- o Vo . _ T
®qun * 1gun X IVAI “Jgun + Bkgun’ a and B here are angle
A

of attack and sideslip

V% = target's acceleration

*
Hohwiesner, W., Capt. "Principles of Airborne Fire Control," USAF Academy,
Dept. of Astro. and Comp. Sci., Dec. 1975.
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W

To obtain the scalar component equations, define the following vectors

in the gun coordinate system

X
9 > -

, | (fixed) Vi = AT Toun + AT Jqun + AT Eéun
El ' X y z

I— - vT B UT 1gun * vT Jgun * WT kgun

—— g g g

Apy Active
HUD Sight

where as in the LOS equation development, it's important to remember that the

target's velocity and acceleration components are in the attacker's gun

coordinate system. Carrying out the vector operation yields

Vergy = [551(Urg - Ug) - (ng - Wyl - Ve
*(Bgrhr - A )Ig
g ‘g
Vern, - [(VTg - V) - BAz(UTg - U]+ dyVps
* (ATYg - BAZATYg)I%

These equations may be used to calculate lead angles assuming the
actual line-of-sight angles (g's) and target acceleration are known. This
ideal case is referred to as a perfect director sight.

Now, these equations will be expressed in terms of stability axis

velocities, etc. rather than gun axis. We have the relations




e T p——— o —

U = US cos ay - NS sin oy |

g
Vg = VS
Ng = NS cos a; + Us sin oy
ATX = ATX Cos ay - ATZ sin o
g 3 S
ATY ) ATY
g S
ATz = ATZ €os a, + AT sin oy
g 3 XS

Finally, using the perturbation technique employed in the previous

appendix we introduce the relation

-

El Ty TX t

Ly + A

17 Me

»

a, +t a
1

@ etc.

Introducing these perturbations and assuming that Vf, Tf, and JV are

constant for this analysis we have the following steady state relations

Ve, = B [(U

e - U]) cos ay - (wT - w]) sin a]]

1 1

-[(NT] - w]) cos a; + (UT] - U]) sin a1]

~dVy oy - FL(AL  cos ay + Ap  sina
1 2 7 X]

-BE](A €os oy - ATz

1 1

sin a,]
Tx 1

and
-VfLAZ = (VT] - V]) - BAz[(UT] - U]) €OS oy - (NT] - w]) sin a]]

i

T
+ + N - ;
JyVa81 _;[ATY] BAZ(ATX] cos o ATZ] sin a,]
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Furthermore the perturbation equations are

foé] = BE]L(uT - u) cos ay - (wT - w) sin a]]

- W]) sin a]]

F + BE][<UT1 - U;) cos oy - (NT]

- [(wT - W) cos ay + (uT - u) sin al]

T .
—_;(aT coS oy + aTX sin ay)

z
- Be,(ay €OS @y - a. Sin a,)
El TX 1 TZ ]
- Bé](ATX cos a, - ATZ sin a])
1 1
- JVVAa

and
—VfAAZ = (vT -v) - BAZ[(uT - u) cos oy - (wT - w) sin a]]
—eAz[(UT] - U;) cos a; - (wT] - Wy) sin o]

T .
+ _fla; - By, (a; cos a; - a; sinay)

2 'Y X z
_BAZ(AT Cos ay - AT sin a])]
X z
1 1
+J,V.8°

VA

LCOS Equation

Returning to equation B1 in the previous section, recall that the per-

fect director assumes perfect knowledge of the line-of-sight rate and target

acceleration. The lead computing optical sight (LCOS) system, however, uses

attacker rotation rates and acceleration to approximate the above parameters.




In terms of the line of sight rate in the attacker's gun coordinate

system, Eﬁun we have from the cited reference,as well as the previous

appendix,

B = wg +Bgun

but, theifvectpr defined here is used as an approximation for 'Bgun for the

LCOS, and where the g vector is defined in the previous appendix.

In this case then,

B=w_ = A
g
Now since as shown in previous appendix

TX (V- V) = 0[F - (8-9) 5

and

E-(E- 95 @, - - [y -7 - 5%
SO

Gg-xbﬂg-§§+(7~§ﬁ

[}

s X (V.- VA)

In addition, the attacker acceleration KA is substituted in place of
the target's, resulting in the vector equation for the LCOS (with X - s

equal zero)

- - > = o\ - — 0y =+ T
Vf)\ = D[(mg 2) (wg s)s] + JVVA“gun + (s X AA) _g_
so, With
s = 19 + AAZJ + AELkg
w =P7 +QJF +REK
wg = Pgig * Qgig * Rgkg
and IA = Ax‘g + Ang + Azfé
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we have;the following two scalar differential equations

DAEL 'VfAEL + DQg - D(Pg + AAng + AELRg)XAz
Ve + E(A A - A)
v A — El 'x Z

R) a

.

o

>
1]

and

Az = Verag F DRy - DR + A, Qg * Ag R agy

+J VB + Tf(A - A, A)

v'A - Y Az 'x

The steady state equations are then, using the usual perturbation
technique,
Dylgy = 0= -Velp, + 030p - 9 Vpoy
T . .
+ —%-[LEL(Ax] cos ay - Az] sin a]) -(Az] cos u]+AX]s1n a])]

- DlLAz[(P] cos ay - R, sin a1) * Ly 0y * Ly (R] cos a, +
P‘ sin a])]

-D]LAZ =0 = VfLAz + D](R] cos o + P] sin a])

+

T .
JvVAB] + _%[Ay] - LAZ (Ax] cos oy - Az] sin a])]

'DlLEL[(Pl cos oy - R] sin a]) + LAzQ] + LEL(R1 cos ay +
P.l sin oy 1]
Finally, the perturbation equations become

Dydg = ~Vedgy ¥ 030+ Qd - J Vpoo

+

T .
—%[LEL(ax cos a; - a, sin a])

+ Aé1(Ax] cos a; - Az] sin a]) (cont'd)
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- (aZ €oSs ay ta, sin a])J

s M

- M - DA™

AZ 1

- DlLAZ[(p cos ay - ¥ sin a]) +aa,q f Lz

+ Aél(R] cos a, + P] sin al)

+ LEL(r cos aj + P sin a])]

-D]AAZ = foﬁz + D](r cos ay + P sin a])
+ d(R1 cos oy *+ P, sin u]) + JVVAB’ B
« Yfla - 2z (A cos ay - A sin o) 5

- LAZ(ax cos oy - 3, sin a1)]

- dlg M - gt

- D]LEL[(p cos aj - T sin a]) + L0t 29
AéL(R] cos ay + Py sin a]) + LEL(r cos a; + P sin a])]
where in the above relations

M] = (F’.| cos aq - R.l sin a]) + LAZQ]

+ LEL(R] cos ay + P] sin u])

i A B LI e 4T Y
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APPENDIX C

TARGET KINEMATICS

In the foregoing appendices, the equations for the line-of-sight
rates and sight lead angles were developed in terms of the attacker's
velocities and of the target's velocities expressed in the attacker
coordinate system. In this appendix, the relations governing these tar-
get kinematics will be developed.

Consider the target's velocity vector expressed in the attacker's

gun coordinates as

VT = UT Th + VTJA + WT kA

Now, the time rate of change of this vector with respect to the attacker's

coordinates is simply

V.l =U

k
Tla

T A Vpdg Yk
But we may also express this acceleration vector in terms of the time
rate of change of the target's velocity vector relative to the target's own

coordinate system, plus the effect of the relative motion between the two

coordinate systems,

or

where V =y

Here, then, ;fe] is the rate of rotation of the target's coordinate
system relative to the attacker's, or in terms of the two aircraft angular

rates relative to inertial coordinates




“A

rel “1

wp = Ppip + Qp dp + Ry kg
wp = Py g ¥ Jp * Ry Ky

Finally, the relative orientation of the two coordinate systems is
required to allow coordinate transformation of vectors. This may be ac-

complished in terms of the usual Euler angles @, ¢ , and ¢ for each vehicle

where
v = inertial heading angle
6 = angle of elevation above local horizontal
¢ = roll angle
Let
—;ose 0 sino._
T (o) =| 0O 1 0
L:sino 0 cose_j
[cosy -siny O
T (v) ={siny cosy O
L0 0 1
1 0 0 ]
T(¢)=|0 cos$¢  -sing
LO sing cos¢J

Then, noting that T'](a) = TT(a) = T(-a), we can express V and 5} in

T
terms of their components in the attacker's coordinates, since

A

|

i
Kn

87

4




After determining these components we can obitain the vectors

v
.

—

So we may write

wpe1 = (Pp= Ppdip + (0p - Qp) 3y + (R - Ry) Ky

or “ret = Pret TA T Qe da t Rrer Ka

Therefore, we obtain the resulting desired relations governing the

target's motion in attacker's coordinates from Equation Cl

iy = WV Prey - U Qg

Defining the above quantities in terms of steady state and perturbation

quantities yields the steady-state equations

Ur. =U + W

Q - V. R
T1 TT] T] re1] T] re]l
Vo =V + U - W
T] TT1I T] re]l T] re]l
W =W +VoP Uu. 0
T] TT] T] rel, T] re]l
Here note that UT = VT = W = 0 since the steady-state target velocity
T T,

is constant in the target coordinate system. The above relations also show
the required conditions for the target steady-state velocity to be constant

in the attacker’'s coordinate systen as weli.
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These conditions are

W: Q = V. R
T] re]l T] re]l

UT]Rre1] = NT]Pre1]

', Prell - UT]Qrell

Finally, the perturbation equations for the target's velocity components

in the attacker's coordinates are

»

Up = g W1, Grel T YT QreI]

- VT Trel1 = V1 R

1 rell

»

) UT] Prel t YT

R
rel]

'wT]prel - Wp prel]

T
-
]
L
b |
+
-

T T] prel + V1 P

re1]
'UT1 e = Yt Qrel]

Now if the target is simply in a steady flight condition, note that the tar-

get's perturbation acceleration terms &; = vy = QT = 0.
T T T
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APPENDIX D

F106 PERTURBATION EQUATIONS

In this section, the linearized equations for the vehicle dynamics

*
are summarized. From the reference the perturbation equations for a

general steady-state flight condition are as follows:

V]r - R]v + w]q + Q]w = -gecoso] + qu + wa + x6 GE

E

v + Ur+ R]u - w]p - P]w

] -gesine, sino,

gocose, €0s0, +Yv+ Ypp

v

Yrr +Ya 6A+ Y6 s

A R R

Q]u + V]p + P]v = -gecos¢] s1n0]

g¢51n¢] cosol + Zuu

+Iw+ . 8§
w GE

E

PRy e~ e S

§ + %yy (I, = L, )(Pyr + Ryp) + Ixz/lyy (2Pyp - 2R;r) E
=Mu+Mw+ M&& + qu + MéEaE g
p- Ixz/I F - Ixz/I (P1a + Qyp) 1
XX XX
+‘T (I, = L) R+ Qqr) = L8 + Lp

XX

I

X2 1

P+ (Qr+Raq)++ (I -1 )P,q+Qyp)
Izz 1 1 Izz yy xx ] 1

2z

=NBB+Npp*NRI"+N66+N §

A A 8p R

where in these relations the (-)] quantities (e.g., Uy V], w]) are constant,

, etc. are the dimensional stability deriva-

steady-state values, and Xw, Zw

*Roskam, J., Flight Dynamics of Rigid and Elastic Airplanes, Lawrence,
Kansas. 1979,




tives (see the above reference).

The case to be evaluated consists of a level, 4-g (n = 4) turning

condition at 10,000 ft. altitude, Mach = 0.72. Therefore, for this case,

the steady-state parameters are given as follows (equations developed in

the aircraft stability axis)
(-)]'

u

V = 775 ft/sec cos o]

"
o

1

75.52 deg.

v

]

Turn rate, ¥ = g(tan o, )/Uy = .161 rad/sec.

Roll rate, P] =0

Pitch rate, Q; = ¥ sin ¢, = .156 rad/sec

Yaw rate, R, = ¥ cos ¢, = .040 rad/sec.

The angle of attack required for trim (Ref. ) is 14.5° and the elevator

deflection for trim is -20 deg at this altitude and velocity. The inertias

(in the body axis) are

_ 4 2
I, = 2.126 x 10* slug-ft
I =2.035 x 10° sl o
yy oo IR sluge

i 5 2
1,, = 2.175 x 10° slug-ft

7.316 x 10° slug-ft2

IXZ

The reference wing area is 695 ftz and the weight is 33,000 pounds.

In the stability axis, the inertias are

. 4 2
T, = 2999 % 107 slug-e

1,, = 2.088 x 10° slug-ft?
S

. 4 0 o2
xxzs 4.111 x 10% siug-ft

9




Finally, the dimensional derivatives are estimated to be (for c=m.a.c.

= 23.8 ft)

X, = -.0924 (sec™!)

X, =-176.0 (Ft/sec?)

Xg_ = -26.4 (Ft/sec’)
E

Z, = -.437 (sec™])

Z, = -987. (ft/sec?)

7. = -288.(ft/sec?)
S

M, = -.00223 (ft 'sec”)

) -2

M, = -11.5 (sec’?)

M: = -.785(.3485) (sec”")
Mg = - 785(.3485) (sec™)
) -2
Mg = -17.36 (sec “)

E
N, = 6.77 (sec”2

g = 6 sec )
N, = =176 (sec™!)

Y, = 177 (Ft/sec?)
Yp = 1.76 (ft/sec)
Y. = 8.13 (ft/sec)
Y, =84.9 (ft/sec?)
A
Yo = 36.5 (ft/secz)
r
_ -2
LB = -47.6 (sec “)
Lp = -,0613 (sec'])
L, = 2.7 (sec™ )
Ly =-57.4 (sec'z)
A
Ly = .567 (sec'z)
R
N, = -.842 (sec™])
_ -2
N6 = .5,93 (sec “)
A
Ng = -3.98 (sec'z)
R

Finally, in the steady-state condition being considered, the aileron/

rudder interconnect results in the following relation

SR = R commanded ~'"

In addition, the feel system for this vehicle is estimated to provide

the following stick gains

5. = .0467 &
E Estick

Sp

= .0738 8p

§, = .0273 & (in.) l
A Astick |

ped (in.)
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Combining all above parameters, the resulting vehicle dynamics in

this turning condition are expressed as

u=.0924 u - 297.a - 32.20 + 31.28 - 1.14s
Est
a =-.00036 u - 1.272a + q - .040¢ - .01738
Est
g = =.00013 u - 11.21a - .547q + .0109¢
+.0353 p - .0162r - .8065
stick

we
1}
t

.228g + .0104¢ + .00227p - .99r
.00005u + .00156¢ + .00347¢
Ast R

ped
p =-.0245q -~ 77.98 + .198p + 5.27r

+ .6086R
t ped

.0127q + 22.18 - .344p - 1.852r

2.0915
A

-
1

+ .3706A - .4138

st R

ped

In addition to the vehicle dynamic model, the vehicle kinematics are

described by the perturbation relations

p= -'y]e
q=6 cose; + i] ¢ cosé; + ¥ sine,
r= -i] ¢sine, + &cosﬁl -6 sine,

In our case, solving for &, ¢, and ¢ yields

=p+ .16l

@

De

= -,161¢ + .25q - .968r
= ,968q + .25r
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APPENDIX E
SYSTEM STATE VARIABLE MODEL

SYSTEM DYNAMICS ARE: XCOT=AX+HBUSEW, Y=CX+DU
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APPENDIX F
MANAGEMENT SUMMARY

Summarized in this appendix is the list of written publications,
including those planned; data on the advanced degree student supported
by this research; and the summary of conference papers presented and
interactions with the Air Force Wright Aeronautical Laboratories (formerly
the Flight Dynamics Lab).

Publications include the following:

1) D.K. Schmidt, "Pilot-Optimal Augmentation for the Air-to-Air
Tracking Task," to appear in the AIAA Journal of Guidance and
Control, 1980.

2) S.N. Prasad and D.K. Schmidt, "Closed-Loop Pilot/Vehicle Analysis for
Multi-Axis Air-to-Air Tracking," in preparation for submission to the
AIAA Journal of Guidance and Control.

One graduate student was supported for one semester and one summer
session on this program and much of the technical results herein are in-
cluded in his thesis. This student, Mr. S.N. Prasad, will receive the
Master's Degree in Aeronautical and Astronautical Engineering from Purdue
University in August, 1980, and his M.S. thesis will be published at that
time.

Other dissemination of this studies results has been accomplished via
papers presented at technical conferences. These include presentation of
the first paper cited above at the 1979 AIAA Guidance and Control Conference
held at Boulder, Colorado, August 6-8, 1979. 1In addition, a presentation
entitled "Multi-Axis Tracking Via an Optimal Control Pilot Model," was made

at the 16th Annual Conference on Manual Control at Cambridge, Mass. in

May, 1980.
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Finally, throughout the course of this program, frequent contacts 1
have been made with the members of the technical staff of the Flight
Control Division, Air Force Wright Aeronautical Laboratories (formerly

the Flight Dynamics Laboratory). These contacts have included partici-

pation in workshops (1979 Flying Qualities Symposium, October, 1979, and
the 1980 Stability and Control Workshop, April, 1980) held at Wright-
Patterson AFB, Ohio. Also, informal telephone contacts with Mr. Ronald

0. Anderson and Mr. Frank George of the Wright Aeronautical Laboratories

have been made a number of times throughout this study.
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