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SECTION I

INTRODUCTION AND SUMMARY

OBJECTIVES OF THE RESEARCH

With the advent of active control technology (ACT) and control

configured vehicles, the use of specifications on the rigid body modes

of an aircraft for flight control design becomes unacceptable. Reducing

structural weight by employing active flutter suppression or stability

augmentation, and enhancing maneuverability by direct-lift and side-

force control surfaces are some of the topics of current flight vehicle

research. Such vehicles, however, intrinsically involve dynamics of

higher order than the rigid body modes, and these dynamics have been

*shown to significantly alter piloted vehicle performance as well as

subjective pilot ratings of the systems. The inclusion of such additional

dynamics in the determination of the acceptable open-loop systems

characteristics so drastically increases the dimensions of the problem

as to render this approach, impractical. Furthermore, this is attacking

the problem "upside down and backwards."

The ultimate design objective is to maximize the performance of the

man-vehicle system. The most logical approach would seem to be to develop

and apply systems analysis methods based on closed-loop, task-oriented

design techniques - representing the man in the system appropriately as

a dynamical decision and control element. Attacking the problem this way

naturally leads to "optimal control configured vehicles" and forces one to

ask the right questions along the way. For example, we naturally address

the questions of what physical parameters the pilot is monitoring and

attempting to regulate in specific piloting tasks. Only after answering
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such fundamental questions can one make an intelligent design decision

with regard to factors that would affect these rel tpycaphysical para-

meters.

The objective of this research activity then was to explore the

utility of multi-variable control techniques for piloted-flight-vehicle

control synthesis, with the above factors in mind, by application to a

specific piloting task.

The methodology, developed previously, employs an optimal multi-

variable control model (OCM) of the pilot, specifically includes the

pilot's mission objectives for control synthesis, and simultaneously

determines the pilot's analytical representation (or model) and augmenta-

tion control law. As a result, the method is intended to be well suited

for high-order dynamical systems, inherently reflect the cooperative

structure of the pilot and flight control system, and at the same time

include the pilot's ability to adapt to the controlled system dynamics.

The original development of this method is reported in Reference 1, and

the approach could be considered an optimal control version of a control

design approach utilizing Anderson, "paper pilot".[2]

SUMMARY OF RESULTS

The piloting task addressed throughout the study was air-to-air

tracking. The initial phase involved the analysis and vehicle augmentation

for single axis pitch tracking, the system dynamics including active heads-

up display dynamics as well as those of the vehicle rigid body. Fixed-base

simulation data obtained elsewhere[3] were used to determine the pilot

model parameters, specifically, the objective function and those determining

the observation and neuromotor noise characteristics. It was significant

that a unique objective function was found in the study cited for the task



in question, over a variety of vehicle dynamics. Such an assumption

would be necessary for use in augmentation synthesis.

By parametrically varying the level of optimal-control augmentation,

not only rm.; tracking-error performance improvements were predicted, but

trends in desirable system dynamics were obtained. These trends were

depicted as open-loop as well as piloted closed-loop system root loci

and the agreement was noted between these loci and the asymptotic behavior

of linear quadratic-optimally-controlled systems. Significant in this

regard is the appearance of "pseudo zeros" or transmission zeros in the

results and their importance in interpreting these results. Specifically,

p of the augmented system roots tend to move toward the transmission

zeros, and the n-p remaining roots ultimately approach a Bufterworth-type

pattern, where n is the order of the system and p is the number of

transmission zeros.

The dynamics of the displays were found to affect the "optimal"

vehicle characteristics. Agreement was found between the results for the

less "active" of the two sights and previous results obtained with a fixed

sight (and no display dynamics). However, with the more dynamic of the

two displays, a different set of desired vehicle roots were obtained.

Clearly then the complete system's dynamics must be considered, not just

the rigid-body eigenvalues. Furthermore, the numerator dynamics (which

include the display dynamics) were found to affect the desired system

characteristics (e.g., handling qualities).

With the augmentation determined, the pilot model was then used to

predict rms performance (e.g., tracking errors) as well as pilot and

vehicle describing function frequency response. This analysis indicated

3



the potential for significant reduction in tracking error and pilot

workload, with an anticioated improvement in pilot rating.

The second phase of the study involved a similar analysis of air-to-

air tracking in a highly-banked turning flight condition. As such, it

involved pilot/vehicle analysis of a flight condition in which the

longitudinal and lateral-directional axis were not independent, but

involved unsymmetrical cross coupling. Consequently, a significant

amount of pilot-modeling activity was necessary as no multi-axis pilot

models have been developed and documented.

To accomplish this modeling activity, results from a large-amplitude

motion simulation (the Air Force LAMARS facility at Wright-Patterson

AFB, Ohio) were compared to predicted rms performance. It was determined

that in addition to tracking error and displayed target lead angle, the

weighted outputs in the single-axis pilot objective function, the pilot

wFts also attempting to minimize lateral acceleration and relative bank angle

between the attacker and target. Hence, the pilot's vector of observations

as well as the objective function weights were modified appropriately.

The use of this pilot-modeling approach for tracking a target not

undergoing random maneuvers was another unique result of this phase.

Without a random forcing function (or process noise) the pilot's observation

and motor noise are the only source of errors. Since this was actually

the situation simulated, the modeling proceeded appropriately. The

solution involved selecting the variances of the additive motor noises

yielding the best match of statistical results (i.e., rms performance),

and a result of this modelina task is the noise-to-signal ratio for the

motor noises.

This multi-axis pilot model having been established, the multi-

variable augmentation synthesis followed directly. Again, a family of

4



full-state feedback control laws were synthesized with the pilot-optimal

control formulation, and the open- and closed-loop root loci used to

depict the trends in system dynamics (in terms of the eigenvalues). The

longitudinal results were found to agree with the single-axis results

using the same display dynamics, and were explainable in terms of the

asymptotic behavior of optimally controlled systems.

The more complex lateral directional axis was also found to yield

results consistent with the asymptotic properties. The dutch-roll mode

was augmented to yield significantly higher frequency and damping,

ultimately approaching a Butterworth configuration, while the spiral and

roll subsidence were coupled to form a complex, stable roll/spiral mode.

It is significant, in closing, that the pilot/vehicle analysis

and augmentation results all point to the high relative importance

and complexity of the lateral directional axis. The parameters associated

with this axis required much higher attentional allocation, as determined

by the pilot model, and the dynamics were highly modified via augmentation.

Yet this axis has received far less attention in the literature and

even less experimental activity is apparant. Much further work is

therefore called ft'r in our opinion.

ORGANIZATION OF THE REPORT

The following section (Section II) includes the complete analysis

and results from the fi st phase of the study, that involved with

single-axis pitch tra ing. The multi-axis pilot/vehicle analysis and

augmentation is reported in Section III.

A significant amount of the effort of the project was devoted to

modeling the vehicle, display, and target kinematics and dynamics, these

results are documented in Appendices A through D. The matrices defining

the linear state variable model of the multi-axis tracking problem is given

in Appendix E.
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Finally, a management summary, citing publications, students involved,

and interactions with Air Force Laboratory personnel appears in Appendix F.
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SECTION II

PITCH TRACKING ANALYSIS AND AUGMENTATION

The problem to be addressed is the analysis and augmentations of the

plant dynamics in an (air-to-air pitch) tracking task. The higher-order

system dynamics actually include linearized flight vehicle rigid-body and

actuator dynamics as well as the display dynamics of two lead-computing sights.

In each of the cases considered, the vehicle flight condition, and therefore

rigid-body dynamics, remain unchanged. However, the sight dynamics vary

considerably between cases with different sight types and different tracking

ranges.

The vehicle and one of the sights was identical to one of the cases

addressed experimentally, as well as analytically (via the OCM), by Harve3.In

his investigation, Harvey used fixed-base simulation data to infer the pilot's

objective function in this task. A unique objective function was found to

yield extremely good correlation (in terms of rms statistics) between ana-

lytical and experimental results over a wide range of system dynamics. It is

therefore assumed in our work here, that this same objective function is invar-

iant with the system dynamics, and is used in all cases considered.

The objectives of this part of the investigation then include not only

the estimation of the performance improvement attainable with augmentation, but

also, and perhaps more important, the determination of the most desirable plant

or controlled element dynamics. By parametrically varying the level of augmen-

tation, we are able not only to establish trends in the desirable plant char-

acteristics with varying high-order plant characteristics. Finally, the results

so obtained are compared to those of HollisY41ho used simple pitch-rate and

7



plunge-acceleration feedback along with Anderson's paper pilot to determine

optimum vehicle dynamics for pitch tracking with a fixed sight (with no dis-

play dynamics).

THE SYSTEM MODELS

The vehicle dynamics are the linearized short-period approximation for

a typical fighter aircraft in level flight at 15,000 ft. altitude, Mach =

0.9 (V = 952 ft/sec), and the specifics are presented in Table 1. Also, to

aid in the

TABLE I

VEHICLE MATH MODEL

=Z + q + Z 6E

o=q

(M + MZ) + (Mq + M)q + (MS + MZ)6E

E Ta E stick

Z = -983. (ft/sec 2 ) M = -10.4 (rad/sec )

Z6 = -90.5 (ft/sec 2 ) Ma = -0.344 (rad/sec)

Ta = .05 sec Mq = -0.738 (rad/sec)

SP = 0.32; wSp = 3.35 (rad/sec) M6 = -37.1 (rad/sec )

interpretation of results, we will consider augmenting the simple, second-

order plant (e(s)/6st(s) = K/s 2).

The schematics of the displays are shown in Fig. 1. The tracking task

of course involves the desire to minimize the tracking error E, where for the

simple K/S2 plant

8
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For the pitch tracking task

where a, the relative line-of-sight angle is governed by the relations

= q - (YT - e + a)

T - V T

Note for this display, the fixed reference mark represents the weapon line and

the sight (reticle and pipper) is dynamic (moves in display).

For the high-order pitch-tracking task, the displayed variable, or lead

angle X, includes the lead required for velocities and acceleratiors, as well

as a ballistic "jump" correction. The governing linearized equation of an

ideal sight is (from Appendix B)

T2f VTf
= Tf(e- ) D 2f aT- .038 (1)

This relation implies that the line-of-sight rate 3 and the target's normal

acceleration aT, are available for lead-angle calculation, and therefore rep-

resents an idealized sight. A second lead-angle equation representing an actual

typical sight is given as (from Apoendix B)

S Z Tf VS- 20 + .038 ) a (2)
TfD

This relation is obtained from the above by assuming the line-of-sight rate ,

may be approximated by the lead-angle rate , and the target acceleration is

approximately equal to the attacker's, or aT = Z(,a. Note that since the actual

sight (Eqn. 2 ) depends entirely on the attacker's variables (a,o, etc), it is

much more sensitive to pilot stick input than the ideal sight. Also note the

10



*. sight dynamics are clearly a function of tracking range. Two tracking ranges

were considered, D 1000 ft. and D = 3000 ft, associated with two projectile

times of flight, Tf 0.33 sec. and Tf = 1.30 sec, respectively. The process

driving noise for the pitch tracking case is the target normal acceleration

generated by filtered white noise where

;T = - 33aT + n

= -0.33n + w(t)

and the white noise intensity is selected to yield chosen levels of target

accelerations. The driving noise for the K/s2 plant is simply the commanded

variable ec, generated by filtered white noise where

ec+ ao + boc = w(t)

For comparison purposes, the transfer functions for the three systems are

given in Table 2. The numerator coefficients N1 - N4 and M - M4 are functions

of vehicle and sight characteristics, and therefore depend on tracking range

or, equivalently, Tf. On the other hand, except for the sight time constant

Tf in the typical-sight case, the denominator is a function of vehicle charac-

teristics alone.

The optimal-control model (OCM) of the pilo 5 ssumes that the well-trained,

well-motivated human operator chooses his control inputs u p, subject to human

limitations, such that following objective function is minimized
lim I T "

Jp = El Ti 1 (y y + u Ru + 'GUp )dt} (3)

and G is selected to obtain a chosen neuromuscular lag time constant TN. The

pilot's input is then expressed in the scalar case as

NUP - Kxx - p

II



The selected parameters of the model in this investigation are given in Table

3 , and are consistent with those in Harvey's investigation of this task.

(Note that nominal values of model parameters have been chosen which do not

reflect the pilot's acceleration environment. This was done to be consistent

with fixed-base simulation results.)

TABLE 2

TRANSFER FUNCTION COMPARISON

Second order plant:

E -s 1.7

Ideal sight display:

E(S) K(Nls3 + N2 s2 + N3s + N4)

6 s~s) S (,r + M)s 2+ 2z: W S + W)a sp p SP)

Typical sight display:

C s) K(M1s
3 + M2s 2 + M3s + M4 )

6st S s2 (T fs +1)(,tas + )(s2 + 2csp spS + Wsp)

K -16 T a/D

NI  -.962Z 6Tf

N2 :(-V + Tf)(VMS + Z6M;)-Z 6

N3  Z (M + M) + (D + T)(M Z - Z M )3 a q f CL6

N4 = M Z a - Z M6
ZD

M = ZTf - .962)
S f 2V

Z D

M2  N2 + Tf(--S- - .962)(VM- M qZ 6)
2V

M3  N3; M4  N4

12i



TABLE 3

PILOT MODEL PARAMETERS

Observation delay, T = 0.2 sec

Neuromuscular time constant, TN = 0.1 sec

Observed variables, y' = [ , ,x, ,]

Cost function weightings, QYii [16,1,0,4]

R =0
u

Full attentional allocation

Observation thresholds, T = TX = 0.65 deg

T = T. = 1.3 deg/sec

2
Observation noise variance Vy =~ i ' 2 y  .01

Motor noise variance, V np U U Pu = .001
u uu P

Shown in Table 4 is the predicted (rms) performance using this OCM as

compared with Harvey's (fixed-base simulator) experimental results for the

typical sight display. Also shown is the predicted performance for the

idealized sight for reference.

SYSTEM AUGMENTATION

With the above system models, we represent the system, including the

pilot's control input as well as the augmentation input, by the relation

Ai + Bup B5aug

where Uaug is an equivalent stick input, a scalar, in this case. As shown

previously[lAf u aug is chosen to minimize the objective function

13



TABLE 4

PERFORMANCE COMPARISON

D=10ftParameter (rms) 6E(dg
0 = 000ft T = 3.5 g E(dcq) x(deg) q(deg/sec) Ee)

Experiment 2.1 2.9 8.0 2.1

Analytical
(Typical sight) 2.3 2.9 8.7 2.1

Analytical
_(Ideal sight) 1.6 2.6 7.9 2.0

D = 1000 ft a T g

Experiment 2.7 4.0 11.2 3.0

Analytical
(Typical sight) 3.0 4.2 12.1 3.0

Analytical
(Ideal sight) 1.9 3.7 11.0 2.9

D0=3000 ft a T 3.5g

Experiment 2.4 8.7 6.4 1.8

Anal yt ical
(Typical sight) 2.3 10.1 7.3 1.8

Analytical
(Ideal sight) 1.1 9.7 6.0 1.6

D = 3000 ft GT 5 g

Experiment 2.7 12.1 9.2 2.4

______________________ ___________________Analytical______________

(Typical sight) 2.7 14.2 10.2 2.5

Analytical
(Ideal sight) 1.4 13.8 8.5 2.3

T

aug = p + (T-,.- T Jo aug F u t 4

where Jpis given in Eqn. 3 ,the relation for the augmentation input is

Uaug =-F-1 B'K A 1x - F- IB'K A2 up

14



or

aug x u p

(The matrices KAl and KA2 are obtained, as discussed in Reference 1, by

simultaneously solving two coupled Riccati equations, one yielding the

augmentation gains, and one yielding the pilot's gains.).

The result, of course, is the pilot controlling the augmented system,

which is now described by

= (A - BKx )x + B(I - Ku )Up +

or

x Ax + Bu + w
p p p

Second-Order Plant

Let us initially consider the effects of pilot optimal augmentation of

the second order plant (for which we may define x' (e c , c e, 6) and

y' = (c, 4)). Shown in Fig. 2 is the augmented open-loop and pilot closed-

loop root locus obtained via optimal augmentation for various uaug objective-

function weights, or F in Eqn. 4 . (A-E indicate open- and closed-loop cases

with increasing augmentation.) Note the shape of the augmented (open-loop)

system root locus as well as that of the pilot closed-loop system corresponds

to the know 6jsymptotic behavior of the closed-loop roots of a linear optimally

controlled single-input, single-output system. In this case, the root locus

assumes a Butterworth configuration of order two. (This results from two open-

loop plant poles and no zeros. Except the pilot closed-loop poles include a

third introduced via the pilots neuromuscular lag.)

15
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The distance between open-loop and closed-loop eigenvalues is a maxi-

mum for no augmentation (i.e. F-), while the open-loop and closed-loop poles

coalesce for increasing augmentation, eventually eliminating the pilot compen-

sation, and the system monotoically approaches a pure automatically controlled

system.

To aid in further interpretation of these results, consider the human

operator describing function in a compensatory task to be approximated by

K e- TS(TS + 1)
H(s) = N L

or a gain, low-frequency lead, effective delay, and neuromuscular lag. Our

augmented or unaugmented second-order plants may be described in general by the

transfer function
= K

G(s) s2 + 2Ks + 2

The piloted closed-loop denominator now becomes (ignorinq the delay)

s3 + (L + 2) s2 + [ 2 + (2 + KKT)Is + 1 2 + KKP
N pLT N

If we write this closed-loop denominator as

(TS + Ms + 2c cs + c)2

or

3  (L_+ 2cc)S2 + 2 _ 1 2
Tc cc (c +

- 2 cwc)S + T-  2
c c c

we see that the pilot's gain K is related to the difference between open- andP

closed-loop frequencies by the relation

K IN 2 2KK -- C -W
p c

C

17



Therefore, the pilot's gain tends to be proportional to the difference be-

tween the squares of closed- and open-loop natural frequencies, or equiva-

lently, the squares of distances of the poles from the origin.

Also, the pilot's lead TL, is related to the open- and closed-loop

parameters by the relation2 2

TN[(w - 2 ) + 2(cw /T - /T

TL = (N 2 2N

Therefore, the pilot's lead would tend to increase with increasing (Cw)

/Aw2 between open- and closed-loop eigenvalues. With these observations, we

are able to qualitiatively relate the trends from the root locus (Fig. 2) to

the parameters in the classical human operator describing function.

In the case of higher order systems, however, the pilot describing

function may not be well approximated by the simpler forms, and the relation-

ships between the root locus characteristics and the predicted human describing

function parameters are much more -omplex and difficult to express quantita-

tively. Still, the effects of augmentation, and of the pilot's gains are de-

picted in the root loci, and the difference between the open- and closed-loop

roots indicate at least qualitatively the required level of human equalization

involved. And finally, the augmented (open-loop) system root locus yields im-

portant information about the desirable trends in the systems dynamics.

Ideal Sight Display

Consider now, the optimal augmentation of the air-to-air tracking task

with the system including the ideal sight display (lead angle obtained from

Eqn. 1). Again, with descreasing augmentation-control-input weight (F in.

Eqn. 4 ), we generate a family of augmented systems. The open- and closed-

18



eigenvalues are shown in Fig. 3

The open-loop roots include, the unaugmented case, the two roots at the

origin, the vehicle short-period roots, and the actuator root at -20(rad/sec.)

For the piloted closed-loop system, still unaugmented, the roots include

a low-frequency pair, a high-frequency pair, and two real roots, one at

-3.7 rad/sec and one (not shown for clarity) at -20 rad/sec.

As the level of augmentation is increased, as indicated by cases A-C,

the frequency and damping of the vehicle short period mode is increased, and

the two poles originally at the origin move toward the piloted closed-loop

low-frequency pair due to the closure of the tracking loop (i.e., feedback

of c and ). With the pilot closing the loop on the augmented systems a

unique pair of high frequency roots are associated with each level of augmen-

tation, and this pair appears to follow a Butterworth pattern. However, for

the levels of augmentation considered, the two real closed-loop roots (at

approximately -20 and -3.7 rad/sec) are relatively insensitive to augmenta-

tion level. Also, the low-frequency pair (at about -.7 + .7j) are invariant

with augmentation. This pair also corresponds closely to a pair of plant

zeros.

This behavior is consistent with the asymptotic properties of linear

optimally controlled system roots cited previously. For single-input, single-

output systems p of the roots tend toward the p open-loop zeros (in the left

half plane), and the remaining roots assume a Butterworth configuration of

order n-p. Furthermore, the systems with input and output vectors of equal

dimension (i.e., systems with square transfer-function matrices), p of the

closed-loop roots tend to the p "zeros" of the determinant of the transfer-

function matrix. Although, the transfer-function matrix is not square in this
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case, the invariance of any closed-loop roots may still be explained in

terms of the above properties and the existence of system "pseudo zeros."

Shown in Fig. 4 is the comparison of these (vehicle short period)

results with those of Hollis. In his analysis, Hollis determined the ve-

hicle augmentation yielding the best pilot rating via the "paper-pilot".

Pitch rate and plunge acceleration were used for augmenting only the

vehicle with a fixed sight (with no display dynamics). It is seen that the

results agree with the trend determined by Hollis' consideration of several

sets of vehicle dynamics. In all cases, the "optimal" augmentation in-

creased the frequency and damping of this vehicle mode. This trend, as

noted by Hollis, also agrees with the military specifications on flying

qualities. (As we shall see later, this is not the case for the other sight

display.)

The predicted improvement in (rms) trackinq accuracy for the ideal

sight is shown in Table 5, along with the rms statistics on stick deflection

and rate of deflection (i.e., physical workload). Recall that the stick

deflection was not considered penalized in the pilot's objective function,

hence little reduction in this parameter is obtained through augmentation.

However, rms stick rate is significantly reduced.

Finally, Table 6 lists the optimum full-state feedback gains in this

idealized case, for each level of augmentation.

For this sight display, increasing the tracking range D, from 1000 ft.

to 3000 ft. changed the results very slightly. The feedback gains varied

approximately 15 percent and the augmented and piloted system root loci were

almost identical to that in Fig. 3. The position of the invariant, low-frequency

piloted-system roots did change from -.7 + .7j to -.3 and -1.2 rad/sec, but
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the augmentation moved the poles at the origin toward those roots as in the

1000 ft. case.

Typical Sight Display

Considering now the system with the more typical display dynamics (lead

angle computed with Eqn. 2 ), the open- and closed-loop root loci are

shown in Fig. 5. The unaugmented system roots in this case include those

considered above, plus the lead-angle time constant Tf. Comparing these re-

sults with those in Fig. 3, we see an entirely different trend in the vehicle

short-period roots! With the more sensitivity, or "active," sight display

in this case, the optimum short period frequency remains relatively con-

stant while the damping is increased. Recall that the results obtained

by Hollis included no display dynamics, and that the results agreed with

those obtained with the less active, ideal sight display. Additionally,

the augmented short-period roots in the case considered here (Fig. 5)

approach an invariant pair of piloted closed-loop eigenvalues, a trend not

observed in the ideal-sight case.

The behavior of the roots near the origin is as observed previously,

the augmentation closing the tracking loop and moving the plant poles at

the origin toward the two invariant closed-loop eigenvalues. Also, the

actuator and sight time constants move together, due to augmentation, and

eventually become a high-frequency, complex pair. Finally, as before, a

unique, high-frequency closed-loop pair is associated with each level of

augmentation, and approaches a Butterworth pattern. A seventh closed-loop

root at -20 rad/sec is the actuator root remaining, but is not shown for

clarity.
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Increasing the range to the target 0 from 1000, to 3000 ft. results in

the root loci shown in Fig. 6. Now, not only do the plant zeros (and there-

fore the "pseudo-zeros") depend on 0, but the sight time constant Tf is

affected as well. As a result, this root locus is appreciably different

from that in Fig. 5, particularly at the higher level of augmentation.

Still present, however, are the four invariant closed-loop poles, two real

and two complex in this case, and the family of complex closed-loop roots

at the higher frequency. Note in this case, the migration of the sight time

constant with augmentation toward the closed-loop at -.3 rad/sec, and the

behavior of the augmented short-period roots for level C.

The effect of augmentation (level B, D = 1000 ft) on the system's

frequency response (E/6) is depicted in Fig. 7. Closure of the tracking

loop (via E and feedback) eliminates the 1/s2 characteristic, at low fre-

quency, while the increased damping of the short period mode (at w 3. rad/

sec) is evident. The effect of this level of augmentation on the predicted

frequency response of the pilot is shown in Fig. 8. With augmentation, the

pilot appears to increase his gain, as well as adding slightly more low

frequency lag. Also, his required lead near w = 3 rad/sec. would appear to

be decreased.

The pilot frequency response shown in this figure is that of an

equivalent describing function formed from the transfer function matrix

(H(s)) obtained from the optimal control pilot model. This equivalent de-

scribing function is analogous to the classical human describing function

measured experimentally in a conipensdtory task, and is obtained from the

relation

6 st(s) 6 st(s) 6 st(s)

- ( = - + s ) - h11 (s) + sh12 (s)(;s Equiv. s (S)
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and where 6st(S) = H(s) y(s).

The effect of the augmentation on the predicted rms performance is

shown in Table 7. The rms error c, stick deflection and stick rate are

given for D = 1000 ft., uaT = 5 g's. Here again we see a significant im-

provement in tracking error while the rms stick activity remains approximately

constant with increased augmentation. As before, however, we note that

stick activity was not penalized in the objective functions. The pilot stick

rate is also reduced with augmentation.

The above improvements in tracking accuracy were obtained while the

predicted elevator activity actually decreased slightly with increased

augmentation (2.96 deg-rms unaugmented to 2.81 deg-rms for level C). This

is due to the fact that the augmentation includes pilot stick position

feedback (K6  ), so the net commanded elevator deflection by the pilot be-
st

comes

E K(I - K6st ) st
E 6~st s

where K is the actual stick gain. With his effective stick gain reduced,

the pilot's contribution to commanded elevator is reduced while the

augmentation's contribution is increased. The sum of the two results in the

relatively constant net rms elevator with increasing augmentation. The

optimum gains for the vehicle states for the three levels of augmentation

is given in Table 8.
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SECTION III

MULTI-AXIS ANALYSIS

AND AUGMENTATION

The more challenging (and more realistic) problem of pilot-vehicle

analysis and augmentation for a multi-axis air-to-air tracking task will

now be considered. The dynamics of the system, as in the pitch tracking

analysis in the previous section, include both vehicle and display

dynamics. However, the flight condition to be considered is a highly

banked turn with a normal load factor of four (i.e., 4 g turn). This

involves several issues not frequently, and in some cases never, considered

in previous investigations of pilot-vehicle dynamics. These extenuating

issues result from the significant amount of unsymmetrical couplinq between

the elevation and azimuth axes of the system and the multiple control inputs

involved (i.e., elevator, aileron, and rudder).

Previous investigations of multi-axis tasks have been few in number,[7]

and those that have considered the effects of multi-axis aircraft control[8 -l0]

have actually treated the dynamics of both axes independently, reducing the

man's attentional allocation to each axis due to the simultaneous control

task. When applicable, this approach is nice since the dynamic model is

smaller and more manageable. And in wings-level flight in a position

tracking task the dynamics are uncoupled, hence independent. However, in

a highly-banked turn, and especially in an anqular tracking or pointing task,

the axes are highly interactive.

The problems to be addressed specifically in this section then include

1) the determination of any necessary chang c in the pilot model parameters

for multi-axis modeling from those determined from the pitch tracking

analysis of Harvey, Ind 2) the application of the pilot-optimal control
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synthesis procedure to this multi-axis analysis and prediction of the

improvement in performance, if any.

To accomplish the first objective, the comparison will be made betv'--n

analytical, or model, results and simulation data. The data was obtained

previously in the large-amplitude, motion simulator of the Flight Dynamics

Laboratory, Wright-Patterson Air Force Base as part of another study performed

by the Flight Dynamics Laboratory. The simulation involved F106 aircraft

dynamics, and investigated several sets of display, or sight dynamics. The

display to be considered here is the ideal display (or perfect director

sight) considered in the previous section. The development of linearized

mathematical models for the vehicle and display in this multi-axis configura-

tion is presented in Appendices B and D of this report.

The approach to the multi-axis pilot modeling task was to attempt to

match analytical and simulated statistical results in the form of rms values

of system states, outputs, and control inputs. The initial objective function

was a direct extension of the cost function determined experimentally by

Harvey - that used in the previous section. The observation errors, neuromotor

dynamics and number of control inputs were then varied to obtain the best

match (via eyeball fit) of rms values. As will be seen, some additional

parameters needed variation and describinn functions were reouired in some cases.

Significant to this discussion of pilot modeling is the fact that the

sim'!Idted task involved tracking a non-maneuvering tarqet. The pilot rolled

into the turn,attempted to capture the target in his display, and then

tracked in approximately a steady-state condition. In terms of a linear

model, this corresponds to a system with no process driving noise. In fact,

the only contribution to tracking error in this case is the pilots observation

and neuromotor noise. To attempt to model this situation, additive motor
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noise of specified variance was injected into the pilot's control input,

and the variance of this noise was chosen so as to match model and simulated

rms control activity. The observation noise statistics were treated in

the usual manner, that is, the variance of observation noise was specified

in terms of a noise-to-signal ratio (e.g. -20 dB for full attentional

allocation to a particular output quantity).

SYSTEM MODEL

For this "frozen-point" analysis, the system dynamics are linearized

about a four-g, turning flight condition, the mathematical definition of

which is given below.

TABLE 9

STEADY STATE PARAMETERS

Altitude, h = 10,000 ft; Mach = 0.72

Flight Velocity, U = 775 ft/sec
ss

Flight path angle, 0 = 0.ss

Bank angle, ss = 75.5 deg

Normal acceleration, Az = -4g = - 128.8 ft/sec
2

Turn rate, =ss 0.161 rad/sec

Pitch rate, Qss= 0.156 rad/sec

Yaw rate, Rss = 0.040 rad/sec

Angle of attack, ass= 14.5 deg

Elevator deflection, a E -20.2 deg

34



I
Furthermore, unlike a level flight condition, the engagement geometry

requires a non-zero steady-state line of sight to the target, sight dis-

played lead angle, and relative heading between attacker and target. Since

the steady-state line of sight must be a constant for this (statistically

stationary) modeling approach, the engagement geometry is essentially

specified once the tracking range is selected. The resulting steady-

state values may then be compared to the average values obtained from

simulation to verify that the simulation actually reflected a steady-state

tracking condition. Finally, note that the steady-state tracking error

must be zero for the perturbation quantities obtained from the linear

mathematical model to be representative of total tracking error.

From the lines-of-sight equations developed in Appendix A and the

display lead angle equation in Appendix B, the engagement geometry may

be specified as in Table 10 for both aircraft on a common circular trajectory.

The steady-state lead angle may be found from the relations presented

in Appendix B. Assuming a projectile muzzle velocity of 3300 ft/sec, a

time of flight of 0.786 sec., and a ballistic jump correction, Jv, of 0.185,

yields the following lead angles in the steady-state flight condition.

XEl ss 0.13 rad

A s= -0.03 rad

These lead angles are as shown in Figure 9 alonn with the definition of

the components of the line of sight to the target. Finally, the steady-state

tracking error is taken to be

E =El s EL ss El 0
ss -5 Xss

CAZss AZss AZss 0

Nj 35
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TABLE 10

ENGAGEMENT PARAMETERS

Target altitude, hT = 10,000 ft; Mach = 0.72

Target Velocity, Uss T = 775 ft/sec

Target flight path angle, o T = 0

Target bank angle, DT = 75.5 deg

Distance to target, d = 2000 ft

Target/Attacker relative heading, AT = 23.60

Target normal acceleration, AZ -128.8 ft/sec2ZT

Target acceleration in attackers coordinates:

Ax = -50. ft/sec 2
AT = -3. ft/sec 2

TY

AT = -119. ft/sec2

Tz

Target velocity vector in attacker's coordinates:

VT = 710 ft/sec
Tx

VT = 78 ft/sec

VT = -300 ft/sec
Tz

The comparison of the above "theoretical" steady-state with the mean

value of the parameters obtained from the two simulation runs are presented

in Table 11. (These two runs were the only cases for the modeled flight

condition, display dynamics, etc.) It is apparent that Run 109 did not

simulate the modeled steady-state situation, and checking the actual time
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TABLE 11

STEADY-STATE PARAMETER

COMPARISON

Tracking Errors(rad) Lead Anqles (rad)

EELss AZss XElss XAZss

Theoretical 0.0 0.0 .127 -.031

Run 133 .014 .026 .123 -.045

Run 109 .003 .021 .025 -.028

Target Velocity Attacker Acceleration (ft/sec2

Components (gun coord.) (body axis)

VTss  WTs s ft/sec Ax Ay Az

Theoretical 78. -300. 32. 0. -125.

Run 133 101. -312. 12. -1. -104.

Run 109 27. - 65. 8. -3. - 42.

Body Euler Angles (deg.) Body Angular Rates (deg/sec)

oss Css Pss Qss Rss

Theoretical 3.6 75.5 - 0.6 8.9 2.2

Run 133 3.6 72.6 - 0.6 8.3 2.5

Run 109 3.4 28.9 38.0 2.9 2.6

Velocity Angles (deg.) Control Deflections (in.)

ss BSS 6 Est 6Ast 6Rped

Theoretical 14.5 0.0 -1. 0. 0.

Run 133 10.9 0.6 -2.3 -0.4 0.2

Run 109 3.8 0.6 -1.0 -0.1 1.3
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histories of the parameters verified that a steady-state situation was

in fact not simulated. That is, rather than constant mean values, the

means were time varying for all parameters and a statistically stationary

model is therefore invalid.

On the other hand, the data from Run 133 appears to agree quite well.

The only discrepancy is the difference in range to the target (not given

in the table). The assumed encounter geometry considered a constant range

of 2000 feet, while the simulated range varied monotonically from 1800 to

3000 ft, with a mean value of 2315 feet. The primary effect of this

variation is on the standard deviation of the displayed lead angle about

the mean, the standard deviation is much larger than would be the case

with constant range. With this in mind, however, Run 133 will be taken as

the simulation results to be compared with the analytical statistics.

The linear dynamic model may now be defined, and expressed in the

familiar form

x = Ax + Bup

with the state vector of perturbation variables taken as

O= [A, VT' WT' d, 'El' BAZ e, a, , q, , p, r]

where

A =relative heading angle ( T -A )

vT, wT = target velocity in attacker's coordinates

d = range variation

OEI, 6AZ = line of sight angle components

e, p -attacker Euler angles

, B = angles of attack and sideslip
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p, q, r = stability axis angular rates.

The pilot's control vector is

u =[6Est , Ast , Rped]

where as with the states, the stick and pedal deflections are perturbations

from their steady state values.

The pilot's observation vector was ultimately taken to be

y:(t + T) = Cx(t) + Dup(t)

with

Y = E Ay, *,]
yp = EEl' El -AZ9 EAV XEl AE19 AVZ XAV

where

EEl' 'AZ = elevation and azimuth tracking error

XEl9 AZ = elevation and azimuth displayed lead angle

Ay = lateral acceleration at the cockpit

= bank angle (or relative bank angle)

Note that the errors and lead angles are included as in the pitch tracking

analysis of the previous section. Lateral acceleration and bank angle

must now also be included in the multi-axis task with motion. These latter

variables didn't need consideration in the previous analysis as it was

based on a fixed-base pitch tracking experiment. They definitely must

be included, however, in this more complex task with motion simulation as

we shall see later.

With the steady-state parameters developed previously, and the

perturbation equations developed in Appendices A, B, C, and D, the matrices

A, B, C, and D in the above equation are as given in Appendix E.
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To be addressed now is the coupling between the longitudinal and

lateral directional axes, and the piloting "strategy" in this multi-axis

task. Shown in Figure 9 previously was the schematic of the pilot's

view through the heads-up display. Now one classical approach is to null

the azimuth error by rollinq the aircraft (usinq aileron and rudder) such

that all the error is in the pitch axis.

This situation is depicted in Figure 10 , where for simplicity of

explanation, the sight (pipper and retical) is assumed fixed in space and

the pilot has rolled about the line in space represented by the sight

position. It is apparent here that by using lateral-directional control,

the elevation, or pitch error has been increased. Conversely, a purely

pitching maneuver introduces no change in azimuth error (assuming the sight

to be fixed).

This anti-symmetric cross-coupling is depicted graphically in Figure

11 , which shows the frequency response of the system's anti-symmetric

transfer functions. The coupling between aileron input and elevation

error is 20 to 40 dB larger than that between elevator input and azimuth

error. Here, of course, the complete dynamics of the vehicle and display

are included, while in the previous discussion of the display schematics

we assumed the sight fixed in the display. System eigenvalues and frequency

responses of the remaining transfer functions will be discussed later

with augmentation results.

PILOT-VEHICLE ANALYSIS

Thebas Z7ne pilot model was a direct extension of the pitch tracking

analysis presented previously, and this model is summarized in Table 12.

Reiterating the approach outlined previously, the cost function weightings

in both axes are idential to those for the pitch-tracking case. The

41
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Table 12

BASELINE PILOT MODEL

Observation Vector, yT = ['El' EEll EAz9 £Az' XEl' AEll AAz' AAz ]

Objective Function Weights, Q = 16., Q = 1., Q = 4.
(both axes) '

Observation Thresholds, T, = TA = 0.05 deg, T* = T. = 0.10 deg/sec

Observation Noise Ratio, =-20 dB for full attention

Fractional Attention, f. = 0.5 all observed variables

Observation delay, T = 0.2 sec

Neuromuscular lag, TN = 0.2 sec all inputs

Motor Noise Variance, varied to match rms control inputs

Control inputs, 6E 6A sti only
stick stck

motor noise variance was modified to match model and simulated rms control

activity, and the parameters determining observation noise (i.e. observation

thresholds and attentional allocation) along with neuromuscular lag were

varied in the attempt to match the statistics of the system states and

outputs.

Initially, only two control inputs were considered, elevator and

aileron stick deflection, as the importance of the rudder in this task

was not clear a priori. Part of the modeling effort then was to determine

the necessity for including the rudder, and it will be shown that inclusion

is warranted.

Finally, recall that the target is not maneuvering, so the magnitude
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of the motor noise variances must be specified rather than noise-to-

signal ratio, the more typical case. The resulting noise-to-signal

ratio obtained from matching control activity is then one of the modeling

results in this analysis.

The comparison of the baseline model results with those obtained

from simulation is shown in Tablel3 . Considering the use of essentially

a "single axis" model, the results are amazingly good, the largest

differences appearing in lead angles, bank (p) and side-slip angle (s),

and higher angular rates resulting from the model.

To assess the first-order sensitivities of the rms performance to

increased observation errors and pilot bandwidth (i.e. neuromuscular

lag), two "perturbations" to the baseline model were evaluated. The

first involved reducing the fractional attention allocation from 0.5, the

inverse of the number of controlled axes, to 0.125, the inverse of the

dimension of the observation vector. Additionally, the threshold on

angular rate was increased from 0.1 to 0.18 deg/sec consistent with

[11]
some earlier studies . The second case considered the above changes plus

increased the neuromuscular lag time constant from 0.2 seconds to 0.3

seconds for both control inputs.

The results for these two additional models are shown in Table 14,

along with the baseline model results. The effect of the increase in the

observation noise due to reduced attentional capacity and increased

threshold is an increase in all rms values of states and outputs. But

this is as expected since increased observation noise is similar to

increased motor noise in effect. Note, however, that the increases appear

to be greater in the lateral axis, with rms azimuth error (cAz) increasing

65 percent and side-slip angle ( ) and roll rate (p) increase 10 percent.
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It would appear that the lateral-directional axis, then, is more sensitive

to observation errors, may require increased attentional allocation, and

tends to contribute most to the task difficulty.

The effect of increased neuromuscular lag on both control inputs

also appears to affect the lateral axis more than the longitudinal - the

azimuth error increasing significantly more than the longitudinal. As

would be expected, all three angular rates decreased, but these were higher

than the simulated values for all three models - thus indicating perhaps

that neuromuscular lag greater than 0.2 seconds is warranted.

TABLE 13

SIMULATION VS. BASELINE MODEL

RMS PERFORMANCE

Tracking Error (deg) Lead Angles (deg)

E El £Az A El A Az

Simulated 1.09 0.97 1.72 2.58

Model 1.31 0.82 0.74 0.34

Target Velocities (ft/sec) Euler Angles (deg)

wT vT e

Simulated 48. 34. 1.09 4.18

Model 37. 15. 0.74 2.29

Velocity Angles (deg) Angular Rates (deg/sec)

a p q r

Simulated 1.40 0.20 4.99 1.72 0.92

Model 1.03 0.43 6.07 3.04 1.72

Control Inputs (in)

_EST AST PED

Simulated 0.27 0.22 0.22

Model 0.28 0.23
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TABLE 14

THREE BASIC MODELS-RMS PERFORMANCE

Tracking Error (deg) Lead Angles (deg)

El Az El Az

Baseline 1.43 0.80 0.74 0.34

Incr. Obs. Err. 1.60 1.32 0.97 0.52

Obs. Err. & Lag 1.66 1.95 0.34 0.69

Target Velocities (ft/sec) Euler Angles (deg)

wT VT _

Baseline 37. 15. 0.74 2.29

Incr. Obs. Err. 44. 22. 0.97 3.32

Obs. Err. & Lag 21. 29. 1.38 4.70

Velocity Angles (deg) Angular Rates (deg/sec)

p q r

Baseline 1.03 0.43 6.07 3.04 1.72

Incr. Obs. Err. 1.09 0.47 6.65 3.09 1.78

Obs. Err. & Lag 1.15 0.40 6.30 2.58 1.38

Control Inputs (in) Motor Noise Ratio (dB)

EST ST EST AT

Baseline 0.28 0.23 -10 -12.3

Incr. Obs. Err. 0.28 0.27 -10 -13.6

Obs. Err. & Lag 0.24 0.25 - 8 -11.1
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Furthermore, though neuromuscular lag time constants on the order of 0.1

seconds for a single-axis task and a force-sensitive, side-arm control

stick may be reasonable, higher time constants are appropriate for a movable

center-stick control, and even larger time constants, approaching one

second, for rudder pedals in this multi-axis task.

Finally, none of these models were able to match the much higher

simulated lead angles (XEl and Az ). Furthermore, none of the other models

to be discussed below yielded significantly larger rms lead angles. The

answer probably lies in the fact that the simulation run, although almost

representative of a true steady-state aircraft flight condition, did not

result in a constant range to the target. The range increased from the

smallest value of 1800 feet, occurring early in the simulation, to over

3000 feet at the end of the 40 second run. Consequently, the projectile

time of flight to the target increased proportionally. Since the lead

angle tends to be proportional to the time of flight, the lead angles at

the larger ranges later in the simulation run are significantly higher

than those occurring earlier in the run, which are closer to the modeled

constant range of 2000 feet. Hence the rms lead angles obtained from the

simulation would be expected to be larger than those prediced via the model.

The fact that the largest deviation is in the azimuth lead anale is

consistent with this reasoning as well. At the highly banked flight

condition considered (¢ 750), the largest component of the gravity

vector will be in the azimuthal direction rather than in the elevational.

Hence, the azimuth lead angle will be more effected by the "gravity drop"

of the projectile, and therefore experience the largest increase as the

time of flight increases.

As a result of these considerations, we shall consider the aircraft
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states as the most important for comparison purposes, followed by the

tracking errors, and finally the lead angles. As a final note regarding

the matching of rms performance, the simulation run represents a single

case involving a single pilot, hence is in effect a single data point. On

the other hand, the statistical results from the model represents ensemble

data over a large sample (N-o). Therefore, too much emphasis on precise

matching is foolish.

With these initial results in hand, we shall now address the issue

of the inclusion of the third control input, the rudder pedal.

Adding the third control parameter to the model, utilizing a pre-

selected neuromuscular time constant, must be done with care. The two

lateral-directional controls (aileron and rudder) do not yield pure modal

responses. That is, an aileron deflection produces both roll and yaw, as

is the case with the rudder as well. Recalling the control equation for

the pilot model as

TNUP = -Kx -u

the result of this coupled response is a nondiagonal TN matrix. Therefore,

the eigenvalues of T represent the effective neuromuscular lag as before,
N

but this lag is for a combination of control irputs described by the

eigenvectors of TN. Therefore, the eigenvalues of TN will be used for the

lag time constants, realizing that rather than representing a pure aileron

input, for example, the appropriate time constant (or eigenvalue) represents

primarily aileron input along with some lesser rudder input.

The model results with rudder included are given in Table 15,

along with the simulated results. Note that the three-control model

includes the higher observation noises (fractional attention of 0.125 and

angular rate thresholds of 0.18 deg/sec) as well as the larger elevator
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TABLE 15

BASIC THREE-CONTROL MODEL PERFORMANCE

Tracking Error (deg) Lead Angles (deg)

El EAz El A Az

Simulated 1.09 0.97 1.72 2.58

Model 1.66 1.03 0.97 0.47

Target Velocities (ft/sec) Euler Angles (deg)

wT vT (

Simulated 48. 34. 1.09 4.18

Model 46. 20. 0.92 2.58

Velocity Angles (deg) Angular Rates (deg/sec)

a p q r

Simulated 1.40 0.20 4.99 1.72 0.92

Model 0.97 0.63 5.44 2.52 1.32

Control Inputs (in) Neuromotor Lags (sec)

EsT AsT RpED NE NA TNR

Simulated 0.27 0.22 0.22 .. .. ..

Model 0.22 0.39 0.28 0.3 0.3 1.1
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lag (0.3 seconds). And therefore is similar to the third model for which

the results are given in Table 14.

First note that much higher lan on the rudder input was required.

Attempting to use a lag time constant of around 0.3 seconds for all three

controls resulted in lateral directional control inputs an order of

magnitude higher than those shown. Also, one would expect a higher lag

for pedal controls than for stick.

Note that most of the rms values for this three-control model are

closer to the simulated results than the similar two-control model (the

third set of results given in Table 14). The exceptions are in the much

higher side-slip (v,) and much lower bank angle (f). We'll return to this

later.

First consider the results depicted in Figure 12, which gives the

aileron-to-azimuth-error pilot describina functions obtained from the two-

and three-control models. These describing functions are equivalent to

those given in the pitch-tracking analysis of the previous section in that

they are comparable to those for a compensatory task. Note that the low

frequency phese of the two-control-model result is zero, while that of

the three control model is near -270 degrees. This fact, along with the

comparison of the low frequency slopes of the maqnitude plots (zero for

two controls, -20dB per decade for three controls)indicates that the de-

scribing function gains are of opposite sign! Which one is correct?

We will only be able to answer part of that question here. One sign

on the describing function corresponds to a piloting strategy of rolling

to null azimuth error. This is the only possibility if aileron is the

only control input. However, with both control inputs, the possibility of
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a pointing rather than a rolling strategy is possible, with "cross

control" inputs being used. Inclusion of the rudder is necessary, then,

to allow either strategy to be used, and the existence of opposite

sign on the three-control aileron describing function would represent

the effects of "pointing". The preliminary conclusion then, would

appear that inclusion of the rudder may be necessary to capture the

proper piloting strategy "Which strate2X is correct?" is now the question.

Now let's reconsider the rms performance of the three-control

model in Table 15, and note the much higher value for rms side-slip

angle (0) and the lower rms bank angle (f) compared to the previous two-

control models (Table 14). The fact that the rms azimuth error is reduced

in the three-control case, along with the large increase in side-slip

and lower bank angle further supports the presence of a "pointing" rather

than "rollinq" strategy. Here the pointing may be accomplished with

rudder input, however. But the fact that the simulation results show

much lower side slip indicate that the rolling strategy was actually used.

This leads to the conclusion that the original objective function

(weighting only displayed errors and lead angles) is insufficient to

correctly model the pilot's strategy in the lateral-directional axis.

To determine the required modification to the objective function,

we must consider what additions to the pilot's observation vector are

appropriate. (Comments from a test pilot, incidentally, were helpful in

this regard.) In addition to lead angles and tracking error (or line of

sight), the pilot also sees the target itself through the heads-up dis-

play. Consequently, target bank angle and headinq, or more precisely,

relative bank angle and heading are observed, although in this in-plane
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maneuver, the relative heading was considered difficult to observe

accurately. However, relative bank angle was observable, and in-

tuitively, if nothing else, would appear to be important. Furthermore,

in the purely single axis experiments of Harvey, target and attacker

bank angle were both always zero, hence no importance of bank anole

could be ascertained from his analysis.

This raises another key point not previously considered. Harvey's

experiments were fixed base, while in the Air Force LAMARS facility,

motion cues, and particularly accelerations, were most definately available.

Furthermore, clear evidence is available [ 12] that pilots avoid lateral

accelerations, while vertical accelerations of reasonable maonitude (e.q.

less than 5 to 6 g's) are not as highly disliked, or at least pilots are

more conditioned to the latter type. Consequently, inclusion of relative

bank angle and lateral acceleration in the observation vector is clearly

reasonable, and weighting both of these parameters in the objective function

is consistent with this entire discussion of piloting strategy.

To complete the model then the observation threshold on relative

bank angle was taken to be 5 degrees, based on the pilot's perception

thresholds of 0.05 degrees at the pilot's eye, tracking ranqe of 2000 ft.,

and target wing span of approximately 40 feet. The perception threshold

on lateral acceleration was assumed to be 0.4 ft/second or 0.012 g's,

roughly consistent with some earlier studies [1 31 Finally, using an

analysis similar to that above for hank anqle, it was determined that the

threshold on relative bank anqle rate is approximately 10 deg/sec. But

since this is much larger than the rms roll rates (p) encountered, no useful

information could be gained by including roll rate in the observation vector.
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Inclusion of the above parameters results in the multi-axis pilot

model summarized in Table 16 . Note that since the target has a constant

bank angle, observing and weighting relative bank anqle is equivalent to

observing and weighting the attacker's bank angle in this case. Finally,

the attentional allocation has been adjusted to further improve the model

results, and these allocations reflect the relative difficulty, or work-

load, between the two axes.

With the above model, the rms performance shown in Table 17 was

obtained. The parameters marked with the double asterisk indicate this

value was the closest to the simulated value of all models considered,

while the single asterisk denotes one other model considered resulted in a

closer match for that parameter. Considering all the factors discussed,

it is felt that this model is quite justified.

SYSTEM AUGMENTATION

With this final pilot model established, we may proceed with the system

augmentation. Reiterating the methodology, with augmentation, the system

dynamics are represented as

x = Ax + BA A + w

where up and uaug are the vectors of control inputs of the pilot and aug-p aug-

mentation, respectively, while w represents any system disturbances. The

control uaug is chosen, then, to minimize the objective function.

aug T 0 a aug
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TABLE 16

FINAL MULTI-AXIS
PILOT MODEL

Obsevati T El El' (:Az' Az 'El' XEl' 'Az' Az' a3', 4rell

Objective Function Weights, Q.= 16., Q. = 1., Q. 4. Qa y .007, Q 8.

Observation Thresholds, T,= Tx .05 deg, T. T. .18 deg/sec

2T a .4 ft/sec ,T 5 deg

Fractional Attention Allocations, fi = .05 on c El' El' xAEl' AEl

f . = .15 on E:Az EAz' xA Az Az

f.i = .1 on a and ~
Observation Noise Ratio -20dB for full attention

Observation Delay, T =0.2 sec

Neuromuscular Lag, T N -.33 on 6 Es (obj. func. wt. =.05)

T N -.23 on 6 A st(obj. func. wt. = .10)

T N =.62 on 6 Rp (obj. func. wt. =.12)

Motor Noise Ratios, V = T
n u u

Qu= .02 (-12 dB) on 6 At

pu= .05 (-8 dB) on 6 Rped
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TABLE 17

FINAL MODEL PERFORMANCE

Tracking Error (deg) Lead Angles (deg)

IEI Az A El Az

Simulated 1.09 0.97 1.72 2.58

Final Model 1.78 1.72 1.38** 0.63*

Target Velocities (ft/sec) Euler Angles (deg)

WT vT 0

Simulated 48. 34. 1.09 4.18

Final Model 63. 25.* 0.97* 3.55*

Velocity Angles (deg) Angular Rates (deg/sec)

a p q r

Simulated 1.40 0.20 4.99 1.72 0.92

Final Model 0.97 0.15** 5.21** 2.58** 0.57**

Control Inputs (in) Neuromotor Lags (sec)

t Ad TNE TNA TNR

Simulated 0.27 0.22 0.22 -- -- --

Final Model 0.23 0.15 0.10 .33 .28 .62

Lateral Acceleration Neuromotor Noise Ratios
(ft/sec2) (dB)

ay N6  6 N6R_ _ _ _ _ _ _ _ _ _ _ _ _ _E N AR

Simulated 0.67 ......

Final Model 0.78** -8 -12 -8
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where J is the pilot's objective function as determined previously in

the pilot/vehicle analysis. The optimal control law is then (as shown

previously)

- IT T
Uaug = -F (BAKA1X + BAKA 2Up)

where KAI and K are determined by solving the pilot and augmentation

Riccati equations simultaneously. The augmented piloted system may then

be represented

(A BA-I T ) + BFI T + +FlBTKl A BAKA2U w

x (A - B A FBA KA )x +($~-B AF_ BTAK )UP +

or (A - BAF- BAKA (A - BAKx) = augmented plant matrix

(Bp- BAF-1IKAT  (Bp - BAK) = auamented control matrix

(e.g., stick gains and cross feeds)

The pilot's control law remains

- -I T -1 - T
up = -G Bp K Px - G Bp KP2U p

except the Riccati gains K and KP2 now reflect the presence of augmentation

as they are solved simultaneously with the augmentation problem using the

augmented plant matrices.

The open- and closed-loop root loci as augmentation level increases

from unaugmented (denoted by U) to higher levels of augmentation (denoted

1,4) are shown in Figures 13 and 14 . The first figure shows the (primarily)

longitudinal eigenvalues, recognizing this system actually has coupled

longitudinal and lateral-directional modes, with the second figure depicting

the (primarily) lateral-directional roots. As with the pitch tracking

results of the previous section, the augmented system roots are denoted as

"X" and the piloted closed-loop roots are denoted as "0".
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LATERAL DYNAMICS
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Examination of the longitudinal root locus leads to the conclusion

that the trends are changed only slightly from those obtained in the

single-axis pitch-tracking analysis. The two low frequency roots from

the geometry and kinematics of the problem were at the origin for the wings-

level pitch analysis, but still move quickly toward the invariant, low-

frequency pair of piloted closed-loop roots with augmentation. Recall

this probably indicates the existance of a pair of pseudo-zeros or

transmission zeros at this point. The trend in the vehicle short-period

roots is also similar to previous results, with the exception that short

period damping is increased much more due to augmentation. Finally, the

proximity of the open-loop roots to the closed-loop roots for the unaug-

mented plant (U) and level-two auqmented plant (2) indicate less compensation

being introduced by the pilot, primarily due to his reduced bandwidth

(Tn = .3 instead of Tn = .1) in this more complex task.

The root loci for the lateral-directional axis will now be considered.

The unaugmented system has two eigenvalues near + .2j associated with

the azimuth portion of the geometry and kinematics of the engagment, the

spiral and roll subsidence vehicle roots at the origin and near -1 per

second, respectively, and the dLtch roll roots at -.4 + 4.7j rad/sec.

With augmentation now, the damping and frequency of the dutch roll are

increased, and a complex roll/spiral mode is formed from the spiral and

roll subsidence roots. The two low-frequency roots on the jw axis ultimately

attach to the real axis near -.6 and become two real roots. The first of

these approaches the invariant closed-loop root at -.5/sec, the other

moves to the left on the real axis. This latter root, incidently, appears

to be attracted to the pilot closed-loop roots near -1/sec which also

approach the real axis with increased augmentation. Finally, associated
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with the dutch-roll and the roll-spiral are two pairs of piloted closed-

loop roots very close to their associated unagumented branches.

Except for the roll-spiral mode without augmentation, the pilot appears

to introduce relatively little compensation in terms of eigenvalue

repositioning, again due to the complexity of this multi-variable task

and his limited bandwidth. The relatively large importance of this roll/

spiral mode could be inferred from this result.

The level-two augmentation was selected for evaluation and it appears to

represent a medium-to high-level of augmentation. (The gains Kx and Ku are

given in Tablel8 for all augmentation levels). The frequency response for

the system and pilot describing functions are presented in Figures 15 to 20

for unaugmented and augmented systems.

The longitudinal results shown in Figure 15 indicate the near cancellation

of the low frequency eigenvalues due to closure of the tracking loop, and in-

creased damping of the short-period mode (near 3.5 rad/sec) is evident. The

pilot's describing function shown in Figure 16 shows little change due to aug-

mentation.

The aileron frequency responses are given in Figures17 and18 . The phase

results for the unaugmented vehicle clearly show the presence of the spiral

root at the origin, as well as the two low-frequency kinematic roots. These

three roots appear to be effectively cancelled with augmentation.

The pilot's aileron describing function indicates almost a constant aileron-

to-error-rate tracking characteristic, or

yp(S) A(s) - Kp -TS

Az(s
)

With augmentation, the slope of the magnitude curve is reduced, implying lesser

emphasis on rate. This should indicate less pilot workload as measured by lead

requirements.
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Finally, the rudder frequency responses are shown in Figures

19 and 20. As with the aileron results, the pilot's rudder describing

function indicates that the pilot is providing turn coordination and

regulating azimuth error with rudder input.

To see the effects of the augmentation on the statistical perfor-

mance, consider the results in Table 19. As anticipated, the rms tracking

errors are reduced, and it is noted that the azimuth error has been re-

duced more than the elevation error. Since the lateral directional

axis is considered the more difficult, it appears that the augmentation

has significantly improved the tracking performance as predicted by

linear analysis.

Note, finally, that the variance of the additive motor noise was the

same for the augmented system analysis as for unaugmented. This results

in a higher noise-to-signal ratio for the motor noise in the augmented

case, and should yield conservative results for the performance pre-

dictions. In addition, the piloted predictions were made assuminq the

pilot used all three controls. However, the augmentation gains were de-

termined using the assumption that no pilot rudder input would be used

to reduce pilot workload (hence no gains on 6R in Table 18). If no pilot

rudder was actually evaluated, rms results would be further improved.

Simulations are required in any future efforts to substantiate these re-

sults.

70



TABLE 19

AUGMENTED SYSTEM

RMS PERFORMANCE

Tracking Errror (deg) Lead Angles (deg)

EEl EAz AEl Az

Unaugmented 1.78 1.72 1.38 0.63

Augmented 0.54 0.20 0.33 0.10

Target Velocities (ft/sec) Euler Angles (deg)

WT vT e

Unaugmented 63. 25. 0.97 3.55

Augmented 15. 4. 0.17 0.48

Velocity Angles (deg) Angular Rates (deg/sec)

t p q r

Unaugmented 0.97 0.15 5.21 2.58 0.57

Augmented 0.36 0.06 1.20 0.97 0.21

Control Inputs (in) Neuromotor Lags (sec)

6Est 6Ast 6Rped NNE  TNA T NR

Unaugmented 0.23 0.15 0.10 0.33 0.28 0.62

Augmented 0.19 0.11 0.06 0.33 0.28 0.62

Lateral Accelerational Neuromotor Noise Ratios
(ft/sec2 ) (dB)

ay N6E N6 A N6R

Unaugmented 0.78 -8. -12. -8.

Augmented 0.25 -7. -8. -4.
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APPENDIX A

EQUATIONS FOR THE RELATIVE LINE OF SIGHT

Vector Equation Development

Clearly, the angle(s) to the line of sight (LOS) are required for our

analysis, and as usual, linearized perturbation equations are ultimately

required. The equations to be developed in this section will be derived

for the angles, as shown in the figure below, in the vehicles gun coordi-

nate system, Xg Yg Zg.

Xg

EI

9 Az
EEl LOS

Target g g

z y

Heads-Up-Display Schematic

Now the kinematics of the line of sight unit vector, s, are described by

di- - _ (Ds) = s + Ds (Al)
VTarget - Attacker dt ) (

where D is the scalar distance from the attacker to the target.

But the time rate of change of a unit vector is the cross product of that

vector with its rate of rotation vector in inertial space, -, or

So 6 is the rate of rotation of the LOS in the inertial (e.g. earth-

fixed) coordinate system.
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Taking the cross-product of Equation Alwith s yields

s X (VT - VA) =s X Ds + s X (-X -) D Ds X (8 X s)

And from the vector triple product identity

5 X (6 X S) S) - ( s s

Now, instead of the inertial LOS rate , we desire the LOS rate in

the attacker's gun coordinate system or %gun' which is

Bgun Wg

where wg in the rotation rate vector of the gun or aircraft system. Sub-

stituting into the above yields

-gun +g [(1gun + W • sis s X (VT - VA)

or

6gun D (?TVA) g + (Bgun - s ) 9 g S

Now the term (Bgun s) = 0 since the rotation vector and the line of

sight in the gun coordinate are orthogonal.

The necessary vector equation is then

Bgun = [ X(V- VA)] Wg + S)s (A2)

From the previous figure, we can define the vectors as follows, using

small angle approximations

ig + PAzAg El

gun = -0ElJK + 6Azkg

Wg gg g g

V A UAgi + V A jg +W kg
VT  UT T + VTg 9 + WT V9

ggg
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(It's important to note that VT and the components here defined are the

velocity components of the target in the attacker's gun coordinate system.)

Carrying out the operations in Equation A2, and assuming - • s Z Pg, we

have the desired relations

1E = -[(WT  Wg) - El(U U + Q - PgAz
g g

1= ( - (Ug- Ug) R +PB6Az D [(VT - Vg) - AzT Ug gEl

gg

To obtain the equation for the rate of change of range, or D, we can

simply take the dot product of Equation Al with s to obtain

(VT - VA) • s = D(s- s) + D(6 X s) •

so

D = (VT - VA)

D = (UT  -U) + (VT - Vg) Az + (WT - Wg) E
g g g

Scalor Equations in Stability Axes

Since all our equations are ultimately expressed in the vehicle stability

axes, we need to express the above equations in terms of stability-axes

variables rather than gun-coordinate variables.

Assuming the gun axis to be aligned with the vehicle body reference

axis, we hav the following relations between gun (.) and stability (.)s

variables

.Ig = U cos a1 W sin a,

Vg = Vs

Wg = W cos l + U sin aI
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Pg P s OS R ssin a,

Qg Qs

R 9 sOa1 + P S sin

The resulting equations are

0 = [(U T s- U) sCos (W T- (WT sin ai]

+ s Az(V T -V S)

+ 6 El[(WT - w) sCos a 1 + (U T - U5  sin a,]

El = [(W T - S5) Cos a1I + (UT sin 1(AU)

- El {(U T - U ) Cos al - (WT - W s) sin a 1

+ Q - Az (Ps Cos a I- R sin a1 )

~Az =1 -I V) - Az {(U T - ) UsCos al1- (W T - W s)sin a,}]

- (R5 sO a, + P ssin a1) + EL (Ps CosO 1  R ssin

where Ur T VT ' I are now the components of the target velocity in the
5 5 5

attacker's stability axis and a 1 is the attacker's trim angle of attack

(or the trim angle between the gun axis and stability axis).

The Perturbation Equation

Now to linearize the above equations, we will define the motion variables

in terms of a constant, steady-state quantity (- and a time-varying per-

turbation about the steady-state variable. So, let

D=D + d us = U + u P5 = P1 + p

BEL =B EL + El Vs V 1 + V Qs = Q1 + q

'Az=B Az + OA zWs = W1 + w R= R 1 +r
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Inserting these into Equations A3will yield two sets of equations,

one for the steady state values and one for the perturbation quantities.

For example, taking the AEl equation we have

(D1 + d)(AEl + BEI ) = [(WTI - W1) cos a, + (UT - Ul)sin al ]

+[(wT - w) cos a1 + (uT - u) sin all]

-(BEIl1 + BEI UT - U1) cos a1 - (WT - W1 )sin a, (A4)

+(uT - u) Cos aI - (wT - w) sin a1]

+ (Dl + d)(QI + q)

- (D1 + d)(BAzI + EAz(Pl + p)cos aI - (R1 + r)sin a 1]

Now the steady state (*)l values certainly must obey the original equation,

so

DIBE l  O=[(WTT - W) Cos 1] + (UTI - U1) sin a,]

B El [(UT - U1 ) cos a1 - (WT - Wl) sin all

+ DI~l DI BAzi LPcos a1 - RI sin a1]

We may, as a result, subtract this relation out of the complete, original

relation (Eqn A4). In addition, under the assumption that the perturbation

variables are small, we will drop higher order terms (e.g., products of per-

turbation quantities). Finally, noting that BEL, 0 by definition, we have

D1il = [(wT - w) cos al + (UT - u) sin a1]

- BEl 1[(UT- u) cos a1 - (wT - w) sin a1]

El[(UT U1) cos 1I (WT - W) sin all] (cont'd)
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+ Dlq + Q1 d - d BAz (P1 coS aI R1 sin a1)

-BAz D1 (P 1 COS a, - R1 sin a1 ) - DIBAzI (p Cos al-r sine I )

This equation is now linear in terms of the perturbation variables,

and the steady-state variables are constant by definition.

In like manner, the remaining two equations in A3result in

D= 0 =[(UTI - U1) cos a1 - (WTI - WI) sin a1 ] + BAz(VT -V1)

+ BEl [(WT - WI) cos aI + (UTI - U1) sin l]

d = [(uT - u) Cos a1  .(wT - w) sin a,] + BAz(V - V1)

+ BAz (vT - v) + BEl 1 (WT - Wl) cos Ol1 + (UT -U1 )sin all]

+ BEl l[(WT -w) Cos l + (UT - u) sin a,]

BAz 0 1 (VT - Vl ) - BAz{(UTI- U1 ) cos al - (WT - W1 )sin a,}]

-(Rl COS Ol + Pl sin l) + BEl (P1 cos - R1 sin a1 )

and 01 Az = (VT - v) - BAz [(UT - u) cos a1 - (wT - w) sin a1 ]

-OAz[(UT U1) Cos 1 - (WTl  Wl ) sin cl]

-Dl1 (r Cos a, + p sin al) d (Rl cos Ca + P1 sin a1 )

+DlBEl (p cos a1 - r sin Y1 ) + D1 El(Pl cos l - 1 sin a1 )

+ d BEI (P1 cos a -R sin a1 )l P
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APPENDIX B

EQUATIONS FOR THE SIGHT LEAD ANGLES

Perfect Director

Again, linearized equations are needed for the lead angles computed

by the sights. From the reference , the fundamental equation for the

lead angle, A, in general, is

Vfi s X (VT - VA) + JvVAgun + ( X )Tf (Bl)

where, referring to the figure and assuming the sight (pipper) is on the

target, we have

s= Tg + xAzJg + xEl

or

g Azg9 Elg9

gun Elgun Az kgun

Vf = average projectile velocity in still air

(Vf = Df/Tf - VA, Df = distance of flight)

Tf = projectile time of flight

VA = attacker's velocity

JV = Jump correction factor, = VM Vf, VM is projectile muz-

zle velocity VA + VM

OA T X !A + k a and 0 here are angle
gun gun gun gun

of attack and sideslip

iT target's acceleration

Hohwiesner, W., Capt. "Principles of Airborne Fire Control," USAF Academy,

Dept. of Astro. and Comp. Sci., Dec. 1975.
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To obtain the scalar component equations, define the following vectors

in the gun coordinate system

(fixed) VT= AT Igun + ATy Jgun + A TzVgun
Elx

V ~u + V + W kLIVT =  Tg gun Tggun Tgkgun

Az Active

HUD Sight

where as in the LOS equation development, it's important to remember that the

target's velocity and acceleration components are in the attacker's gun

coordinate system. Carrying out the vector operation yields

VfAEl = [BEl(UTg - Ug) - (WTg - Wg)] - JvVAa

+ (BEIAT A T f
g g

-Vf Az = [(VT - Vg) - 9Az(UT - U)] + V

+(AT _AzAT Tf

Y Y 2
g g

These equations may be used to calculate lead angles assuming the

actual line-of-sight angles (a's) and target acceleration are known. This

ideal case is referred to as a perfect director sight.

Now, these equations will be expressed in terms of stability axis

velocities, etc. rather than gun axis. We have the relations
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Ug Us COSa,-W 5  1 i

V 2V
g s

Wg = W sO a- + U ssina

A T A T COS a, - A T sinl a1
Xg Xs 5

A T A T
Y g Y

A T A T COS a1 + A sinla,
zg s X

Finally, using the perturbation technique employed in the previous

appendix we introduce the relation

El =LEl + El A TX A T -+a x

a a I+ etc.

Introducing these perturbations and assuming that Vf1 Tf9 and JVare

constant for this analysis we have the following steady state relations

V f LEl B BEl[UT - U ) Cos aI- (W T - I1) sin a 1]

-[( W ) Cos a1 + (UT - U) sin a]
T11 T 1 11

Jiv VA a, - Tf[(A T COS a1I + A TX sin a 1

-B El(A T COS aL1 - A T sin a 1]

Xl 1

and
-VfLz (V - Vl) - BAEU - U1) COS al - (WT W) sinal

f z ( 1 Az(T1TI I al

+ J1V VBI + T f A T Y z( 1COS a I- ATIsna1
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Furthermore the perturbation equations are

Vf~l BEl[(UT - u) cos a1 - (wT - w) sin ax]

+ .I[(UTI UI ) cos a1 - (WT - W1 ) sin a1]

- [(WT - w) cos a1 + (UT- u) sin a,]

_Tf(a T cos a, + aT sin a,)
_7 z x

G El(aT cos a -a sin a1)

1 Tz

- Bl(AT cos I ATZ sin a1)

- JvVAa "

and

Vfxlz = (vT - v) - BAz[UT - u) cos a1 - (wT - w) sin al]

-z[( UT- U1) cos a1 - (WT - WI ) sin i]

+ Tf[a -B (a cos 1 -a sin a1)
2 T AzT x  TI z

B z(AT cos a, - AT sin a1)]xI  z1

+ JvVAV

LCOS Equation

Returning to equation Bi in the previous section, recall that the per-

fect director assumes perfect knowledge of the line-of-sight rate arjd target

acceleration. The lead computing optical sight (LCOS) system, however, uses

attacker rotation rates and acceleration to approximate the above parameters.
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In terms of the line of sight rate in the attacker's gun coordinate

system, 8gun we have from the cited reference,as well as the previous

appendix,

= Wg +8gun

but, the Xvector defined here is used as an approximation for -agun for the

LCOS, and where the a vector is defined in the previous appendix.

In this case then,

8W -

Now since as shown in previous appendix

s X (VT VA) = D[-- (.) s-]

and

.-) - : ( Tg - - g ) s

so
- ~ ~ ~ X W (VT  sA :(g- )(g•)s+ (A- s-s

In addition, the attacker acceleration AA is substituted in place of

the target's, resulting in the vector equation for the LCOS (with T •s

equal zero)

V= DL(~-W (-) -S(*) T
g - s] + JvVAOgun + (X TA) f

so, with

s- ig + AAzJg + ELk

Wg gg gg gg 9j9+

and A AT +Aj +AV

A xg9 yg z g
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we have the following two scalar differential equations

DxEL = -VfxEL + DQg - D(Pg + xAzQg + x ELRg)Az

-JvVAa + T(ElAx - Az)

and -DAz = VfxAz + D Rg D(Pg + XAz Qg + xEL R xEL

+JvVA + Tf(A - AAzAx)
2 y

The steady state equations are then, using the usual perturbation

technique,

DILEL = 0 = -VfLAz + D Ql  JvVAl

+ Tf [LEL(Ax cos a A sin Y -(Az cos a1+A xsin
2~ 1 1 1

- DIL Az[UP Cos a - R1 sin ( ) + LAzQl + LEL (Rl COS a, +

P1 sin aI )

-DLAz = 0 = VfLAz + (Rcos + P sin a

+JvVAB + Tf[A -L (A cosa -A sin
v A 1~ 2y 1  Az x1 1 z1 mc 1 ]

-D1LEL[(Pl COS I1 - 1 sin ai) + LAzQl + LEL(R1 cos l+

P1 sin a

Finally, the perturbation equations become

D1 IEL : -VfA1  + DIq + QId - JvVAa'

+ fI[LEL(a x cos I - a z sin a,)

+ Xl(A cos aI - A I sin ai) (cont'd)
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- (az cos a] + ax sin a)]

- dLAZMI - DI,zMI

- DILAz[(p cos a - r sin a,) + AZQ + Lq

+ A-(R cos a1 + P1 sin a1 )

+ LEL(r cos a, + p sin a,)]

-D V + D1 (r cos al + p sin al)

+ d(R Cos ca, + P1 sin a,) + JvVAV

+ Tf[a - xz(Ax cos a1 - Az sin ct1

- LA (a cos - az sin

- dLELMI - D iM

- DILEL[(P cos al - r sin a,) + LAZq + X zQl

+ X EL(RI cos Il + P1 sin a1 ) + LEL(r cos a, + p sin a,)]

where in the above relations

Ml (PI Cos C1 - R sin ai ) + LAzQ1

+ LEL(RI cos a1 + P1 sin al)
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APPENDIX C

TARGET KINEMATICS

In the foregoing appendices, the equations for the line-of-sight

rates and sight lead angles were developed in terms of the attacker's

velocities and of the target's velocities expressed in the attacker

coordinate system. In this appendix, the relations governing these tar-

get kinematics will be developed.

Consider the target's velocity vector expressed in the attacker's

gun coordinates as

VT = UT TA + V TIA + WT kA

Now, the time rate of change of this vector with respect to the attacker's

coordinates is simply

= UT TA + VT JA+ WT k
VT A TA TA TA

But we may also express this acceleration vector in terms of the time

rate of change of the target's velocity vector relative to the target's own

coordinate system, plus the effect of the relative motion between the two

coordinate systems,

or

VT A T rel T (Cl)

where V T = U TT Tt  T T + wT T

Here, then, w rel is the rate of rotation of the target's coordinate

system relative to the attacker's, or in terms of the two aircraft angular
systemreaietthatakrs oritemoftetoarrfanur

rates relative to inertial coordinates
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Srel 
= mT wA

wT = PT TT + QT £T + RT kT

wA = PA TA + QA jA + RA kA

Finally, the relative orientation of the two coordinate systems is

required to allow coordinate transformation of vectors. This may be ac-

complished in terms of the usual Euler angles o, 0 , and 0 for each vehicle

where

= inertial heading angle

0 = angle of elevation above local horizontal

€ = roll angle

Let

Fcoso 0 sino
S(o)1 0

Lsino 0 cosoJ

cos p -sin p

T ()Lsin*P cos p 0

-0 ~0 1

1()L 0 0
T 0 coso -sinp

L 0 sino cosj

Then, noting that T-1(a) = T T(a) = T(-a), we can express V and wT in
T

terms of their components in the attacker's coordinates, since

i T TA

j-T = T(- T) T(-OT) T(-pT) T(pA) T(eA) T(OA) JA

1 T k A
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After determining these components we cdn obtain the vectors

V =U iA + VT A+WT KA

T TT A AT TA

'T PT iA + QT jA + RT KA

So we may write

(rel = - P A + ( - Q JA + (RT - RA)IKA

orl T A T AQ +R A
or rel P rel A + Qrel JA + Rrel KA

Therefore, we obtain the resulting desired relations governing the

target's motion in attacker's coordinates from Equation Cl

UT TT+ WT Qrel T rel
+ U T R - WT

VT V T rel T rel

TW T = WTT + V T P rel - UT Qrel

Defining the above quantities in terms of steady state and perturbation

quantities yields the steady-state equations

UT UT + WT Qrel VT relUT 1 +W1 1 V1 re 1

V T1 VT T rel 1T Prel1T T 1UT 1 1 l

W zW + V P -U
T I TT1 T I re.1  1 rell

Here note that UT Ti VTT W TT 1 0 since the steady-state Larget velocity1TT

is constant. in the target coordinate system. The above relations also show

the required conditions for the target steady-state velocity to be constant

in the attacker's coordinate systei1 as weli.

a8



A-0A090 05 PmL JV LAFAYETTE IND SCHOOL OF AERONAUTICS AND -- ETC F/B 5/a
NILTIVARIABLE CLOSED-LOOP ANALYSIS AND FLIGHT CONTROL SYNWESIS--ETC(UI
.JUN S0 0 K SCHMID0T AFOSR-79-0042

UNNCLASSIFIED AFOSR-TR-80-0961 tO.HICN



These conditions are

WT Qrei =T r1l

VT I rel T~ I e

Finally, the perturbation equations for the target's velocity components

in the attacker's coordinates are

u T u T T + W T q e + W T 0relI1

-V TIr -el vT e

T T +U rre +u Rrel TRr 1

_TV TU rr 1 PURel TPeI

w T w T T reT,-rWT Treel

_T TT I VT rreI + VT Qre

Now if the target is simply in a steady flight condition, note that the tar-

get's perturbation acceleration terms uTT T T TT =0.
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APPENDIX D

Fl06 PERTURBATION EQUATIONS

In this section, the linearized equations for the vehicle dynamics

are summiarized. From the reference the perturbation equations for a

general steady-state flight condition are as follows:

vi Vr - R Iv + Wlq+ Qlw -gecos I + Xu u+ Xww+ X6E 6 E

+ U Ir + R Iu - WIp - P Iw = -gesinp sine

+ g ~ o s o o s o + V v + V p
gcs1 C5 1  v p

+ Y r +

U I q - Q Iu + V1 p + P 1v = -gecoso 1 sine

- gosinp I cosolI + Z u u

+Zw+ Z 6

q+ (I -I )(P r + l +xzI (Pp 2rxx zz 1 Rp x' 2~ Rr
yy yy

=Mu + Mw + M + Mq +M 6u w w q E E

p I I (P q + Q, p)xzIx xz/ 1 x

+ I Z -I y)(Rlq + Qlr) = L +L P
xx

L r+L 6A 6A LR 6 R

I zI +-Iz(Q r + Rq) + (I -I X)(Pq+ Qp)

zz 
y

where in these relations the (.), quantities (e.g., U1, V1, W,) are constant,

steady-state values, and XW, Z ,, etc. are the dimensional stability deriva-

Roskam, J., Flight Dynamics of Rigid and Elastic Airplanes, Lawrence,
Kansas, 1979.
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tives (see the above reference).

The case to be evaluated consists of a level, 4-g (n = 4) turning

condition at 10,000 ft. altitude, Mach= 0.72. Therefore, for this case,

the steady-state parameters are given as follows (equations developed in

the aircraft stability axis)

1= 0.

U1 = V= 775 ft/sec cos t1 n

V1 = W= 0. 1 = 75.52 deg.

Turn rate, 4 = g(tan t1 )/U1 = .161 rad/sec.

Roll rate, P1 = 0

Pitch rate, Q= , sin t= .156 rad/sec

Yaw rate, R1 = 4 cos *l = .040 rad/sec.

The angle of attack required for trim (Ref. ) is 14.50 and the elevator

deflection for trim is -20 deg at this altitude and velocity. The inertias

(in the body axis) are

Ixx = 2.126 x 104 slug-ft
2

I = 2.035 x 105 slug-ftYY

1Izz a 2.175 x lO
5 slug-ft2

Ixz - 7.316 x 103 slug-ft
2

The reference wing area is 695 ft2 and the weight Is 33,000 pounds.

In the stability axis, the Inertlas are

I a 2.999 x 104 slug-ft
2

xx s

Izzs - 2.088 x 105 slug-ft2

1 a-4.111 x 104 slug-ft
2

xz9S
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Finally, the dimensional derivatives are estimated to be (for c=m.a.c.

=23.8 ft)

X= -.0924 (sec&1) YO= -177. (f/e2)

Xa=-176.0 (ft/sec2 ) Yp = 1.76 (ft/sec)

SE= -24.4 (tsc2 ) Yr = 8.13 (ft/sec)

Z u= -.437 (sec-1) = 84.9 (ft/sec2 )

Z= -987. (ft/sec 2) = 36.5 (ft/sec 2)'S 6 r

Z E = -288. (ft/sec 2) LO= -47.6 (sec- 2

Mu=-.00223 (ft- 1 sec-1 ) Lp = -.0613 (sec )

N = -11.5 (sec 2 ) L r= 2.77 (sec- I)

M= -.785(.3485)(sec- ) L6= -57.4 (sec- )

M q = 785(.3485)(sec- ) L .-567 (sec- 2

N = -17.36 (sec-2) N r= -.842 (se( 1)

N8 6.77 (sec 2) N6 A = -5.93 (sec 2 )

Np = -.176 (sec 1) N 6R = -3.98 (sec 2 )

Finally, in the steady-state condition being considered, the aileron/

rudder interconnect results in the following relation

6 R 6R coummanded 1.6A

In addition, the feel system for this vehicle is estimated to provide

the following stick gains

E .0467 68 tc (in.) 6 A = .0273 6 Asik(in.)

a .0738 6 R pd(in.)
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Combining all above parameters, the resulting vehicle dynamics in

this turning condition are expressed as

= .0924 u - 297.a - 32.2e + 31.20 - 1.146Es t

=-.00036 u - 1.272a + q - .0404 - .01736E st

= -.00013 u - 11.21a - .547q + .0109#

+ .0353 p - .0162r - .8066Esti
stck

= -.2280 + .0104, + .00227p - .99r

- .00005u + .001566A + .O03476Rped

= -.0245q - 77.98 + .198p + 5.27r

- 2 .091 Ast + .6086Rped

= .0127q + 22.1o - .344p - 1.852r

+ .3706 - .4136Rped

In addition to the vehicle dynamic model, the vehicle kinematics are

described by the perturbation relations

q = I + '1 * cost1 + sins1

r = "I1 *sinsl + icoss1 - e sins1

In our case, solving for , , and ; yields

= p + .161e

-.161# + .25q - .968r

= .968q + .25r
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APPENDIX E

SYSTEM STATE VARIABLE MODEL
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APPENDIX F

MANAGEMENT SUMMARY

Summarized in this appendix is the list of written publications,

including those planned; data on the advanced degree student supported

by this research; and the summary of conference papers presented and

interactions with the Air Force Wright Aeronautical Laboratories (formerly

the Flight Dynamics Lab).

Publications include the following:

1) D.K. Schmidt, "Pilot-Optimal Augmentation for the Air-to-Air
Tracking Task," to appear in the AIAA Journal of Guidance and
Control, 1980.

2) S.N. Prasad and D.K. Schmidt, "Closed-Loop Pilot/Vehicle Analysis for
Multi-Axis Air-to-Air Tracking," in preparation for submission to the
AIAA Journal of Guidance and Control.

One graduate student was supported for one semester and one summer

session on this program and much of the technical results herein are in-

cluded in his thesis. This student, Mr. S.N. Prasad, will receive the

Master's Degree in Aeronautical and Astronautical Engineering from Purdue

University in August, 1980, and his M.S. thesis will be published at that

time.

Other dissemination of this studies results has been accomplished via

papers presented at technical conferences. These include presentation of

the first paper cited above at the 1979 AIAA Guidance and Control Conference

held at Boulder, Colorado, August 6-8, 1979. In addition, a presentation

entitled "Multi-Axis Tracking Via an Optimal Control Pilot Model," was made

at the 16th Annual Conference on Manual Control at Cambridge, Mass. in

May, 1980.
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Finally, throughout the course of this program, frequent contacts

have been made with the members of the technical staff of the Flight

Control Division, Air Force Wright Aeronautical Laboratories (formerly

the Flight Dynamics Laboratory). These contacts have included partici-

pation in workshops (1979 Flying Qualities Symposium, October, 1979, and

the 1980 Stability and Control Workshop, April, 1980) held at Wright-

Patterson AFB, Ohio. Also, informal telephone contacts with Mr. Ronald

0. Anderson and Mr. Frank George of the Wright Aeronautical Laboratories

have been made a number of times throughout this study.
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