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CONVERSION FACTORS, INCH-POUND TO METRIC (SI)
UNITS OF MEASUREMENT

Inch-pound units of measurement used in this report can be converted

to metric (SI) units as follows:

Multiply By To Obtain

feet 0.3048 metres

feet per second 0.3048 metres per second

feet per millisecond 304.8 metres per second

pounds (mass) 0.45359237 kilograms

tons (mass) 907.1847 kilograms

pounds (force) per square inch 6.894757 kilopascals

kilotons (nuclear equivalent 4.20 x 1012 joules
of TNT)
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CALCULATION OF GROUND SHOCK MOTION PRODUCED BY

AIRBURST EXPLOSIONS USING CAGNIARD

ELASTIC PROPAGATION THEORY

CHAPTER 1

INTRODUCTION

This report describes a study which used elastic wave propagation

theory to predict and analyze ground motions produced by near surface

airburst explosions. The primary objectives of the study were to develop

a calculational capability using the exact Cagniard (1962) elastic formu-

lation and to determine the pracjical applications of the method.

In this study the air-earth environment was modeled as three

homogeneous elastic layers--air, soil and rock--separated by plane

parallel boundaries as illustrated in Figure 1. The air was treated as

Z

EXPLOSIVE
SOURCE PATH A

h - rs r AIR I

PA~h ....>: " REEIVER

dO Zu -H

ROCK 3

Figure 1 Model for airburst explosions over layered
earth media.

an elastic fluid, while the soil and rock were treated as elastic solids.

An airburst explosion of spherical charges was approximated by a point

source located on the axis of symmetry. Nonlinear empirical airblast

arrival time and overpressure waveform formulae were developed to
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specify the source characteristics for elastic calculations.

The exact closed form integral solutions of Cagniard for the re-

flection and refraction of spherical waves in elastic solids were

adapted and extended to model the ground shock propagation in a layered

earth. In this formulation the particle motion is obtained as a sum

of components propagated along rays or paths (such as shown in

Figure 1) associated with distinct wave arrivals. Calculations using

the Cagniard procedure were used previously successfully to predict the

reflection of underwater explosion shock waves from the ocean bottom

Rosenbaum (1956), Britt (1969, 1970), Britt and Snay (1971), Snay and
1Britt (1973). The theoretical analysis and computer code development

for the ground shock calculations were extensions of this bottom reflec-

tion study.

In the following sections solutions of the wave propagation equa-

tions for layered elastic media are derived using the Cagniard approach.

Much of the theoretical development can be found in the literature.

Hence, the goal of this report is to present only the basic steps of I:
the solution procedure and to bring together all the equations needed

for the ground shock calculations in a form tailored to the problem.

The CAGGS (Cagniard Ground Shock) computer code developed for evaluating

these solutions to obtain particle velocity histories is discussed, and

comparisons of calculated and measured waveforms are presented and

analyzed.

1 Classified reference. Bibliographic material for the classified

reference will be furnished to qualified agencies upon request.
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CHAPTER 2

THEORY

2.1 THEORETICAL BACKGROUND

The geometry of the ground shock model is shown in Figure 1 for

the 3-layer case used in the CAGGS computer code. Development of the

theory will be given in a general form applicable to an arbitrary num-

ber of layers. Because of the symmetry, axisymmetric equations of motion

in a cylindrical coordinate system are appropriate. The source is

located on the z-axis at the point (O,h) in the fluid half-space denoted

"air." The observer (receiver or gage) position is (r,z) in the finite

layer of thickness H denoted "soil." Both the layer and the under-

lying "rock" half-space are modeled as elastic solids so that the labels

"soil" and "rock" are arbitrary.

The solutions of the elastic wave propagation equations were ob-

tained using the methods developed by Cagniard (1939, 1962) for the

reflection and refraction of elastic waves at an interface between two

elastic solids. The solutions were extended to layered media by Spencer

(1960, 1965), Pekeris, et al. (1965), Abramovici and Alterman (1965),

and Abramovici (1970). Additional information on work using the Cagniard

approach and other elastic wave solutions in layered media is given in

the books by Ewing, Jardetzky and Press (1957) and Brekhovskikh (1960)

and the summary papers of Pao, et al. (1971, 1977) and Britt (1969).

Examples of the more recent literature are Abramovici (1978), Abramovici

and Gal-Ezer (1978, 1979), and Pao, et al. (1979).

2.2 EQUATIONS OF MOTION

Using a notation similar to Cagniard (1962), scalar potentials

Xj and U can be defined for an elastic solid medium j such that

the radial and vertical velocity components k and ZJ are given by

lu.
= - J (2.2.1)krj r z

. . . .• I ! I I I



3X. aU. U j

k + a + (2.2.2)
zj 9z @r r

These potentials are to satisfy the elastic wave propagation equations

in cylindrical coordinates

2U. a x.

V2X. .

V 2 . = -L 1 (2.2.4)

2 2
pa

e u. aij (2.2.h) '-
. r2 ~2 2
3 r c at2

sj '

where

V2 32  a2  1 a
r2 z2 r ar

ar 2 az 2 rD

t denotes time, and c and c are the wave propagation speeds of
pi s

compressional (P) and shear (S) waves, respectively. For fluid layers

c and U are zero. The subscript j refers to the layers.
sj i

The stress components for density p. can be expressed as follows:

normal stresses

(ZZj pj - 2 i s/pj at2  Csj az"

S  1- 2 + 2 c (2.2.6)

S 2 /C 2 ) + 2 c2  (2.2.7)(€)=pj -2 s/pj at 2  sjr

tangential stresses

(Tr) = 0 (2.2.8)
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2 = as4 2 z (2.2.9)
rz j j sj az /r

k z ) = 0 (2.2.10)

mean normal stress

(1mean)j  ) (2.2.11)

In a fluid the tangential stresses all vanish and the normal stresses are

equal to the mean normal stress given by

(Tmn). = - P p (2.2.12)
mean j j i t

where P. is the pressure.J

2.3 BOUNDARY AND INITIAL CONDITIONS r
Assuming perfect coupling at the interfaces the boundary conditions

of the problem are continuity of displacement and stress normal and

tangential to the interfaces. At an interface z = Zjk separating media

j and k these conditions are

t =t(2-3-1
zj zk '-,

k rj = krk (2.3.2)

(z) = (- zk (2.3.3)

(T = (rzk (2.3.4)

In order that the media be at rest before the source is initiated,

the potentials X and U and their derivatives must vanish at t 0
[211/2

and in the limit as R [r2 + (h - z) goes to infinity.

The source at (o,h) is taken into account by imposing the

"-- - - - e . .. .. - . .. , ... .. , .. . ... . , m, , ....8



condition: for z + h and r o o the solution tends to that correspond-

ing to a point pressure (or mean normal stress) source located in

medium m

Pm P 2X(t -R/Cpm) Po(t _ R/C )* (2.3.5)Pm= - R at 2  :R opm

where Xo(t - R/c )= 0 and Po(t - R/c ) 0 for t < R/c

Solutions for other types of sources are available in the literature,

but the pressure source is most appropriate for modeling an airburst

explosion. In future work a combination of various source types should

be considered.

2.4 PROBLEM SOLUTION IN LAPLACE TRANSFORM DOMAIN

In this chapter we begin solving the boundary value problem using

the Cagniard procedure. Briefly, in this method one obtains a solution

by Laplace transform techniques. Then through a series of changes of

integration variables and paths the solution is inverted by inspection

back to the time domain. The basic steps and results are presented

here. Cagniard (1962) and the other references can be consulted for the

rigorous mathematical details.

The first step is to Laplace transform with respect to time, t

the propagation equations (2.2.3) and (2.2.h), equations for the

potentials, velocities, stresses, and the boundary conditions. Let the

transform variable be s and denote a transformed function by placing

a bar over the function symbol. For the given initial conditions the

propagation equations become

. 2

V . 2 - (2.4.2)

j 2 2 Ujr
r Csj

* Note that the dimensions of X and P are RX and RP

respectively.
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The source condition (2.3.5) becomes

2 mS2 ,-sR/cpm) -sR/cp=  .Rio e /pm (2.143)

n ~M\o 0 R o

which can be written

T = ST e - s R c pm (2.4.4)

m o (sR

The term in parenthesis is the transform of the spherical step waveform

step 1 H(t - R/Cpm) (2.4.5)

where

0 for t < R/cpm

H(t - R/C )= (2.4.6)

(I for t > R/cpm

is the unit step function.

Applying the convolution theorem for Laplace transforms to (2.4.4)

and (2.4.5) yields

t

= (t - A) Ptep(A) dA (2.4.7)

0

-sR/cp
The same argument can also be applied to the X e pm factor ofo

equation (2.4.3). This result suggests expressing the transformed

potentials as

- ---step (2.4.8)
j o j

--:step (2.4.9)
U s  oj

where X tep and Utep are solutions for a spherical point source

- H(t -R/cp) . The solutions for an arbitrary time function

10



X (t - R/cp) are then obtained from
o pm

t

Xj = f ( - X) Xstep (X) dX (2.4.10)
Jo

t,Uj f X' (t - A) U'tep (A) dX (2.4.11)

0

Here X is the source function. But in the equations for particle
HR o

velocity and stress it will be advantageous to use the original pressure
1

source function R P (t - R/c ) which is proportional to the second
Ra pm.

time derivative of X in (2.3.5).
0

The significance of the above representations is that solutions

can be found for step sources from which solutions for an arbitrary time

dependence can be obtained by the convolution integrals. The solutions
xstep and Ustep will be treated in the following sections. For
j an j

simplicity of notation the superscript "step" will be omitted, except

when necessary for clarity, and it will be understood that the convolu-

tions must be performed for a specified source function.

Transformed solutions in any of the layers can be written in the

form

X= fapJ(U) exp(sapjz) Jo(sur)du

o (2.4.12)

+ fbpj(u) exp(-sapiZ) J (sur)du

000

U f ausj(u) exp(Ssj z) J'(sur)du

0 (2.4.13)

0

+ bsj(u ) exp(-Sasjz) JI(sur)du

o 11

A0
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where a 2 + J2 1/2 (u2 +C-2)1/2 and J (sur) is

the Bessel function of the first kind of order zero. The functions a

and b are to be determined from the boundary conditions. The terms

containing a and asj represent P and S waves, respectively,

traveling in the negative z direction. Similarly, the b and bsj

terms correspond to waves traveling in the positive direction.

The transform of the step source can be put in a similar form

using the Sommerfeld integral derived in Ewing, et al. (1957)

exp(-sRlcpm) Jo(Sur) exp-Saplh- z 1) udu (2.h.l4)
H ex(~sRcpm) J \5T ex\.-sl~hpm

0

The direct solution for the coefficients a and b is very com-

plicated even for the 3-layer case and results in very involved formulae.

(See Abramovici and Alterman (1965) for example.) An alternative ap-

proach is the generalized ray path concept introduced by Spencer (1960,

1965). It was shown that the potentials X and U can be built up

from terms which represent distinct arrivals or rays in the form

Y= X *j q fc(u) exp[ s(EcakA I J 0 (sur)du (2.4.15)
q qf 0

=j iijq f Cq(u) exp[-s( Elk dk) ] JO(sur)du (214.16)
q q 00

where q is an identifier of the ray, Cq (u) contains factors represent-

ing the source and the generalized reflection and transmission coeffi-

cients for each interface encounter. The subscript k is used symbol-

ically to identify segments of the ray q , and dk is the vertical

projection of the kt h  segment. If a segment is in medium m , then

ak  denotes apm and asm for P and S waves, respectively. A ray

represents a term in X or U if the last segment which joins to the

receiver is a P wave or S wave, respectively.

12
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Spencer (1960) derived the method of generalized rays by first con-

sidering the interactions at a single interface for incident P and S

waves. These interactions can be identified with two letters: the

first denoting the type (P or S) of the incident wave and the second

the type of the reflected or transmitted wave. There are then four com-

binations PP , PS , SP and SS for both reflections and transmissions

for a total of eight possible interface interactions for which coeffi-

cients must be determined. Once derived the formulae can be used at any

interface by inserting the applicable wave speeds and densities.

Starting at the source, rays can be drawn representing all the

possible types of paths which join the source to the receiver. The

appropriate coefficients (derived in the next section) are then included

in C (u) for each interface encounter of the ray. By considering theq

ray segment beginning at the source which has no interface contact,

the "source factor" (derived in Section 2.6) to be included in C (u)q

can be determined.

The arrival time (derived in Section 2.11) along each ray depends

on the wave speeds and the number and lengths of segments. At a given

time only those rays which "have arrived" must be considered.

2.5 DERIVATION OF GENERALIZED REFLECTION
AND TRANSMISSION COEFFICIENTS

In this section equations are derived for the generalized reflec-

tion and transmission coefficients. Consider the case of waves incident

only from medium j onto medium k . Let the interface separating media

j and k be z = 0 . Substitute the solutions in the form of (2.4.12)

and (2.4.13) into transformed versions of the boundary conditions (2.3.1)

-(2.3.4) using (2.2.1), (2.2.2), (2.2.5)-(2.2.10) to express displace-

ment and stress components in terms of the potentials. Assuming that

medium j is above k , the terms containing apj and as, represent

the incident waves and hence bpk = bsk = 0 . The resulting equations

can be put in a form similar to that used by Ewing, et al. (1957) for

plane wave reflection using the notation

C k , / jc 2 .  (2.5.1)
ksk O sj

13



Ai =2u2 + C-2  for i = j or k (2.5.2)

=L 2u) Csj (2.5.3)

L- u (A -A ) c 2  (2-5.42 Qa k - csj~2'-sJ A sJ (2.5.4) I

L p (j-2Qu 2) c2 (2.5.5)

L 2ucp (I - Q) cs2 (2.5.6)

M= 2Usk (l - Q) c2  (2.5.7)ssJ

M2  a sk (A _2u 2 Q 2 (258
2 = AsJ ( s) (2.5.8)

M - (QAk A) 2 (2.5.9)

M4 = L (2.5.10)

After some manipulation the boundary conditions yield equations as

follows:

Llapk + Mla = apj + b p (2.5.11)

L2 apk + M2ask asj - bsj (2.5.12)

L3apk + M3ask = apj - b p (2.5.13)

L4apk + M4ask = asj + bsj (2.5.14)

14



Setting a 0, a is the only incident term and equations

(2.5.1l)-(2.5.14) can be solved for the generalized reflection coeffi-

cients K and transmission coefficients T for an incident S wave.

Define "

D = (L1 + L3)(M2 +M 4) - (L2 + L )(M1 + M3) (2.5.15)

to obtain

bsP= =2(LM -LM)/D (2.5.16)
j1k a j 3 1 1 3

jk= = [(L -L)(M1 +M)-(L + - M')]D (2.5.17)

a
sp = a = -2(M + M3 )/D (2.5.18)Tjk as

a
sk

ss =-k =2(L + L3)/D (2.5.19)Tjk a 1 3asj

where the superscripts denote the types of waves before and after the

interface interaction, and the subscripts denote waves incident from

medium j onto medium k .

Incident P waves can be considered by setting a = 0 . The

resulting coefficients are

b
K -
P 

-P = [(LI - L)(M + M) (L2 + L)(M - M)]/D (2.5.20)
Jk pj 1 32 + 2 4 3

b .

Kp s = 2(LM 2 - LM 1 )/D (p.5.21)
jk a4

15



a1
T = ap k= 2(M2 + M4 )/D (2.5.22)jk a 2

pJ

ps a sk
TPS = a-k-= -2(L2 + L )/D (2.5.23)
3k pj 4

Since both media J and k are solids, coefficients K kJ and

T for waves incident from media k can be obtained by simply inter-

changing the subscripts in the above equations. In the case that one

medium is a fluid and one is a solid this symmetry does not hold, but

the coefficients can be obtained by taking the limit as cs  of the

fluid goes to zero.

Denote the fluid medium by J and the solid k . After taking

the limit csj 0 0 , the coefficients above can be simplified by

defining

f = PJ /Pk (2.5.24)

i k
D /2 A 42\ O fai c 4  (2.5.25)

k Ppjk pk sk/ pk sk

The resulting coefficients for waves incident from the fluid are

Kci [aI U -fc c1 /D (2.5.26)
3k Lp 2pkask) -fpkcsk j k

T = 2fa Akc-2/Dk (2.5.27)

1p =4ufi Oi C2 /D (-.8
Jk pp (2.5.28)

For waves incident from the solid medium k the coefficients are

16
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r

Kkp -huaj ckAk/Djk (2.5.29)

= -[apj(4 + 4U2 pas.) + faCpkCs /D (2.5.30)

-- -U pjkask)- Ps ' (2.5.31)

Pk = 2ua kAk /Djk (2.5.32)

sp -2

pp=2ce -2K /D (--3

T pk ksk jk (..3

Tsp 4 c ac/D (--4

kj pk skC sk k (2.5.3)

The coefficients for shear components in the fluid are all zero.

For the case of two fluid media the coefficients simplify to

KP = (a - fap )(at + fapk) (2.5.35)
jk pj pk pj pk

TPk = 2fapj/(cp + fapk) (2.5.36)jk pJ pi + pk

Again there is symmetry for waves incident from medium k , and now all

coefficients involving shear waves are zero.

2.6 DERIVATION OF THE SOURCE FACTOR

The source factor in C (u) can be determined by equating the
q

~17



integral representation (2.4.14) for a P wave source with the q 0

(no interface encounters) term of (2.4.15)

f Co(u) exp(-scpmdo ) J (sur)du

0O pmo
0 (2.6.1)

f J
u

(sur) exp(-scpmlh -z) u du

pm0

Equating expressions inside the integrals gives

0 exp(-s pm d 0  a u exp(sa pnIh -z) (2.6.2)
pm

Let

do = Ih - zf (2.6.3)

and

C = u/cpm (2.6.4)

Thus C (u) for a P wave source can be expressed in the formq

C (u) = " H q (KT) (2.6.5)q a qpm

where TI (KT) denotes a product of reflection and transmission coeffi-q

cients for each interface encounter of ray q

2.7 A RAY NUMBERING SCHEME FOR 3-LAYER MEDIA

The 3-layer geometry of Figure 1 was used for the ground shock

calculations in this report. A simple ray numbering scheme for this

case is as follows. First group together rays having the same number of

reflections within the layer. Then within each group arrange rays

18
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according to an increasing number of S wave segments. S segments

extending the full thickness of the layer are counted higher than seg-

ments which cross only part of the layer. This scheme arranges rays

within a group according to increasing arrival times for the common

situation in which IzJ < H/2 and c < c /2
s p

Each ray can be identified by the letters P or S of its seg-

ments. The first segment in the fluids is always P and its letter

designation will be dropped. The last segment crosses only part of the

layer and hence has a valve of d , vertical projection, which is less

than H . The other segments in the layer have dk = H . For calcula-

tional efficiency rays having the same Eakd (and hence the same arri-

val times) are numbered together and computed with the same integration

since all terms in the integrals are the same except for the product of

reflection and transmission coefficients RIKT in C (u) . Table 1
q

lists rays 1 through 12 with the factors Eakdk and the products TIKT

Note that rays 9 and 10 are degenerate, having two components.

For higher ordered reflections the labels PnsmS or Pnsmp can

be used, where n and m denote the number of P and S segments,

respectively, crossing the layer. The last letter denotes the type of

the last segment. Using this notation the general formula for Zkdk

for ray q is

Zkdk hcpl + nHap 2 +mHas 2 + (2.7.1)
H + z

The choice of the upper or lower terms in braces depends on the last seg-

ment of the ray. H + z is used if the segment is upward (n + m odd),

and -z is used if the segment is downward (n + m even). ap2  is used

if the last segment is a P wave (q odd), and a is used for a S

wave (q even).

2.8 EXAMPLE OF THE CONSTRUCTION OF TRANSFORN?1Th SOLUTIONS

As an example of how the ray solutions X and U. are
jq

19
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Table 1. Characteristic parameters of rays q = 1 to 12

Path diagram j Path type la kdk lkKkTk

p1 p2 12

2 h a z 2ps

p1 s2 TP2

3 PP plh + ap2(2H + z) T12 K23

p1p p2

4 PS Opl h + p2H + as2(H + z) T12 K 23

5 SP CL h + asH + ap(H + z) TPS 2KS
p1 s2 p2  12 23

SS ap h + s 2 (2H + z) T12 3 !

7 PPP aph + a (2H -z) 122321PPPPP
p1 p2 12232

8 PPS CL h + ap (2H) - cs 2 z TPPKPPKPS
p1 p2 12"2321

PSP l h + ap(H - z) + as2H TPPKPSKSP
Sp12"23"21

SPP TpsKsp p

12 23 21

10 PSS CIph + apH + as(H - z) T12pPKSS
p1 p2 s2 12 23 21

SPS TpsKspKps
12 23 21

11 SSP Op h - z + as (2H) Tps ss KSP
p - p2 s2 1223K21

12 SSS ap h + as (2H- z) TI2K3KS
p1 2 122321

20



constructed, consider the path B shown in Figure 1 which is denoted

q = 5 in Table 1. Since the last segment is a P wave in medium 2,

this ray represents the term X 2,5  The ray is first transmitted from
2,s

medium 1 into medium 2 with a coefficient 12 . The ray is then re

flected at the interface z = -H with a coefficient K . Hence, from
23

(2.6.5) we obtain

C u ps Ksp (2.8.1)
5 al 12 23

The vertical projections dk of the ray are h , H and H + z

so that

akdk = p* + Ct 2H + ap2 (H + z) (2.8.2)
k i

the solution for the ray is then

= T ps K2 Pl x h
2,5  f T2 23] exp

po (2.8.3)

+ s2
H + ap2(H + z]$ Jo(sur)du

Solutions for the other rays are built up in the same manner.

2.9 INVERSION OF THE TRANSFORMED SOLUTIONS

General terms of (2.4.15) and (2.4.16) are

Co
q =f Cq(U) exp [-s(Zaak) J,(sur)du (2.9.1)

iqi

0U-iq f Cq( u) exp [s(Ec Rd k)] J(sur)du (2.9.2)

o

These expressions can be inverted using Cagniard's method 
to obtain th
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solution X and U in the time domain. The first step is to
jq jq

substitute into (2.9.1) and (2.9.2) the integral representations

Jo(sUr) Re exp(-isur cos w)dw (2.9.3)

Jo(sur) = Im cos wexp(-isur cos w)d (2.9.4)

0 IT f
where Re and Im denote real and imaginary parts, respectively, and

i r . Rearrange the equations to obtain

X. Re C(u) exp dk + iur cos d du (2.9.5)

00~ i/2

U Im f cos u expEs ckdk + iur cos w1dw du (2.9.6)
jq =f 7I Cj)A u

The next step is the key Cagniard substitution: a change of integration

variable from u to t at constant w defined by

t = Eakdk + iur cos w (2.9.7)

.1
to give

1r2
X Re C (u) uN d exp(-st)dt (2.9.8)

dwqeqp Mttdfq f q\t/

Several rigorous mathematical details have been omitted here. See

the references (Cagniard (1962) or Britt (1969) for example) for addi-

tional information.
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nr/2

U j=f L J f u) cos w d exp(-st)dt (2.9.9)
7Tqq

0 04

From the definition of the Laplace transform the expressions in braces

are the inverse transforms

ir/2
2/2

X. =2 Re C(u) 3u dw (2.9.10)jq IT q q L

Uq Tm 5t w dw (2.9.11)
0

This completes the essential steps of the potential solutions. The

following expresses the equations in forms more suitable for computa-

tions.

2.10 CHANGE OF INTEGRATION VARIABLE FROM w TO u

The fact that u in the integrands of (2.9.10) and (2.9.11) can-

not in general be explicitly determined as a function of W makes the

numerical integration of these equations difficult. A change of inte-

gration variable from w to u at constant t produces expressions

more amenable to computations

2 u 2 j(uu2
X -_ Imi du (2.10.1)Xjq , J

u1

-q ~Irnf (t - ak3)du (2.10.2)
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where we have defined

y [ 2r2 + (t- kd) (2.10.3)

and u I , corresponding to w = 0 , is the solution in the fourth

quadrant of the complex plane having the smallest modulus of

t Ea A(ul)d k + iulr (2.10.4)

and u2 corresponding to w = n/2 is the solution of

t = k(u2)dk (2.10.5)

The imaginary parts of integrals (2.10.1) and (2.10.2) are

symmetric about the real axis and the real parts are anti-symmetric.

The integrals from u1 to u2  can be replaced by integrals from u1

to iil where Ul is the complex conjugate of u1 . The results are

u 
1 ((U)du

Xjq = i C (2.10.6)

i C Cq(u)(t - Ea k dk )

Ujq = - i- u; du (2.10.7)

u1

2.11 ARRIVAL TIMES

An examination of the integrands above reveals that the integrals

are zero before a time tlq which will be determined later. In addition
lql

there is a characteristic time t > t which is the maximum value of t

for which u1 from (2.10.4) is a pure imaginary number u1 = -iy 2 for

Y2 > 0 . This time t2q corresponds to the arrival time of 
a ray

satisfying Snell's Law of Refraction. The condition necessary for the

24



maximum is obtained by applying at/ay2 = 0 for u1  -iy2  in (2.10.4):

'dk/ak(-iY2max) - r/y2ma x = 0 (2.11.1)

This gives

t2q = Zack (-iy)2max dk + Y2max r (2.11.2)

We can identify

-1 *

Y2max = Ck 1sin k (2.11.3)

where ek  is the angle the kt h  segment of the ray makes with the

normal to the interface. This equation is really a statement of Snell's

law since k ranges over all segments of the ray and y2max is the

same for all k .

We next examine the case in which tlq < t2q as defined by (2.11.2).

An inspection of the integrands (2.10.6) and (2.10.7) shows that the integrals

are zero until at least one of the square roots becomes imaginary

or complex. It can be shown that u1  and U. are zeros of y which

means the potentials are non-zero for t > t For t < t to
2q ~ lq 2q

exist, one of the a's in the integrands must have a zero at a value

of u = +iy1  such that y1 < y2max But it has been shown that y2max
-1

is always less than any of the c k which occur in Eakdk . Hence,
= (-l 2\l1/2

y1  must be the zero of some a pn - yI) occurring in C (u)
1 ~pn (pn 1/ q

but not in EakdA. (Since c - < c ,only a need be considered.)bu nt nZad k .(Snc pn sn pn
-I -il~

Denote the minimum such c n as c 1.n Thus t < t occurs if
pn pmln lq 2q-i

CPm in  < Y2max . With uI = -icpmin equation (2.10.4) gives

tq kc ) + cpin r (2.11.4)tIq kipin) dk + -i

In the following discussion we generalize this definition of t1q to be-i l
the minimum arrival time of ray q , hence if no cp1. < y exists,

then we set tlq t2q

25



V

2.12 THE CHANGE OF INTEGRATION VARIABLE FROM u TO w

An additional change of integration variables in the potential

solutions (2.10.6) and (2.10.7) is advantageous because y(u) is zero

at the integration limits u I and 'I . It is easily shown that the
1 111

integrands have singularities which behave like (u - u I)/2 and

(U- , except at t = t2q when a logarithmic singularity occurs.

The first step in eliminating the singularity for t V t2q is to

replace the integration from u1  to I  by one in the first quadrant

of the complex plane. Using a path of constant real part, Re(u I) ,

the calculation can be performed using a real integration variable if

we set u Re(u ) + iy to give

Y 2 (u ) l

Xjq f f e[ j dy (2.12.1)

Yl

U. -2  Re Cq(u) k k dy (2.12.2)
.Jq 7r ~ q uY

where = and c for t < t and yl 0 for
2 pmin 2q

t > t2q

Next make a change of variable (similar to that used by Longman

(1961)) from y to

w = (Y2 - y)i/2 (2.12.3)

or

Re(u) = y y 2 - w2  (2.12.4)
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to give

WI c (u)l
Xjq = e[ReL- ] wdw (2.12.5)

wI

jq Mj lie -quk wdw (2.12.6)

0

where wl = (Y2 - y l 2 Since the quotient w/y has a finite limit

as w - 0 (y + y2) , the singularity has been eliminated.

2.13 SOLUTIONS FOR VELOCITY COMPONENTS

In explosion effects research particle velocity (or velocity ob-

tained by integrating acceleration) and stress are usually the quanti-

ties measured. Equations for velocity and stress components are best

derived by performing the various space and time derivatives on the

transformed potential soluticns (2.9.1) and (2.9.2) rather than deter-

mining the derivatives after inverting these solutions.

Since velocity v is related to the displacement k by

v = dt/dt , the transform is v = sT for zero intial displacement.

Equations for the transformed velocity components can then be obtained

from the transformed displacements by simply multiplying by s . Simi-
2 2 2-larly, the a Xjq /at terms in the stresses have transforms s X q

Denote the P wave contribution to the radial velocity for ray q

as vp  and the shear wave term vs Similarly, for the vertical
rq rq

velocity use vp  and v Let S +1 for rays in which the last
zq zq q

segment is downward and S = -1 if the last segment is upward. Velocityq

components are positive upward and outward. Substitute the transformed

potentials (2.9.1) and (2.9.2) into transformed versions of equations

(2.2.1) and (2.2.2), and multiply by s to obtain

vsrq r (u) J'(sur)du ..13.l)
vrq ar f u cXptf.L~ikudkI 0o

0
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00

rq =s -- -s2 f -SEXU) [ d Jo(SUr)du (2.13.2)
oJ

q= s2! r jSqCq(u) exp[-sckdk] J(su)du (2. 133)

zq az pj qq-~kk osr

Vzq = r _sr + = (uCqU) exp[-sEcLkdk] Jo(sur)du (2.13.4)

0

Note that these equations are solutions for a step wave source from

which solutions for an arbitrary potential time variation X (t - R/c p)

can be obtained by using (2.4.10) and (2.4.11).
2

The s factors above can be eliminated if a pressure source

P = 1 Po(t - R/c ) is used instead of the potential source. By
m R o pm--
applying equation (2.4.3) which relates Xo and Po , it is easily seen

for a velocity component v that we can define

v =- V (2.13.5)
PM o

where V is obtained from equations (2.13.1)-(2.13.4) by dropping the

s factor up front. Then v is obtained from the convolution

t

V = -L-~'t - X) V( ) dX (2.13.6)LM-

0

Note that subscripts and superscripts have been dropped for simplicity.

The V equations involve J'(sur) as in U and can be in-
r ojq a

verted in the same manner. Similarly, the V equations contain J (sur)
z 0

and can be inverted as Xjq was. The results analogous to (2.12.5) and

(2.12.6) are

28
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h C (u) )

VPrq - f Re Iy (t- ZLadk wdw (2.13.7)

rq rruy k
0

zq - R e [ t Ek wdw (2.13.9)

0

vs _r f L[ 1Y

Vs = (uf R P q w (2.13.i0)

zq Tr

0

where S = +1 or -1 when the last segment of ray q is downward orq
upward, respectively.

2.14 SOLUTIONS FOR STRESS COMPONENTS

For a pressure source we can obtain step wave response functions

Z and Y for the stress components which are analogous to the response

V for the velocity components. Then corresponding to (2.13.6) the stress

components can be obtained from

t t

T= - - ZP (t - Y(,) dX (2.14.1)

0 0

where the proper superscripts and subscripts are implied on both sides

of the equation. The following stress response functions were derived

using the same procedure used for the V functions:
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zpq 14 C, R 2(l] d (2.114.2)zz Tr SJ f~
0

8z ITpj i Re cq (u) wdw(.1.3

Wi 
-i p 

r Trr JUs fRe [ (t Easjl )wdw (.44

y sqc R (u) 1a
pq 8 _ I Re -s---- t (2.114.5)rr Y k 4k/Id

0

8p h J(kdklc)JfBewdw (2.114.6)

sj p ~ J L~

rrq p (2.114.8)

44 rr

7pq _, _ 8 Re~ (t -' ~Id (2.14.lo
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r
Zsq =2 I ACq(U) (t Z wdw
rz r j s e ( - d(2.14 )

w I

pq 4 - 4c c Re wdw (2.14.12)mean -r 3 J sj pjf

0

pq sq ~pqqAll Y response functions are zero except YPq Y , and Ysq
rr rr' 00

which are listed above. In addition, Sq , Z , and 7sq are zero.
rr 'mean

2.15 LIMITING VALUES OF THE POTENTIAL SOLUTIONS AT t = t2q AND r = 0

The case for which ci < Y = c sin corresponds to the
pmin < ~a k snkL

supercritical reflection of plane wave theory. This case occurs when

sin ek > sin ecrit ck /C pmin It can be shown for the supercritical

reflection that the responce to a step wave source has a logarithmic

singularity at t = t2q However, if the source function and its time

derivative vanish more rapidly than a logarithm diverges as t -0 1/c
pm

the response obtained after convolution is finite.
For subcritical cases (sin ek < sin crit) the responses at t = t2q

have finite values. The stepwave response functions for the potentials

(2.12.5) and (2.12.6), for the velocities (2.13.7)-(2.13.10), and for

the stresses (2.14.2)-(2.14.12) can all be written in the form

w 1

F(t) =f Re wdw (2.15.1)

0

Then using the procedure of Caniard (]962) pae:i b8 and 89, the value

of F at t t2q for r > 0 i



rs[f(u ,tq) ]
F(toq) - f -2 ] 2q (2.15.2)

Y2max r d kc2 /C.1

evaluated at u = iymax where y2max and tO) are riven by (2.11.1)

and (2.11.2), respectively.

In the case r = 0 , the solutions simplify considerably. The

expressions for the potentials can be easily derived by setting r 0

in equations (2.9.1) and (2.9.2) and using J (0) = 1 and J'(0) 0

Equation (2.9.7) reduces to

t = Ect (2.15.3)

and u is real rather than a complex variable. Then making the change

of integration variables from u to t as in Section 2.9, the solutions

can be inverted to obtain

C (u)

X. (r = 0) = C a (u) (2.15.4)J : u~dk/ak

U. (r = O) = 0 (2.15.5)~j q

where u is obtained from (2.15.3). The arrival time arguments of

Section 2.11 do not apply for r = 0 . For this rase the arrival time

til = tSq =C 1  (2.15.6)

whic'h results from u = . In ('.]5.).) thie limit as u - 0 of ( (u)/u

must be taken at the arrival time.

The oorrespond irw vel city and stress stepwave re:sponses for a

F, wave source are of the form

4,
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ITSf(u)

F(r t ~d/ (2.15.7)ud 
k

where the n>tation of (2.15.1) has i,eeri used. Note that all response

terms containing t - Xalkdk in the nuerator vanish at r = 0 since this

factor results from T'(sur) which is zero at r = . All other velocity
0

and stress component term.n: inv ,Ivinr 2 w -,e: are "1, :'ero at r = 0 since

they result from IT. and its derivatives.



CHAPTiR 3

'!'HE CAGGS CODE

3. 1 6iEINEEAL DEeCRIi'TION

A computer program CAdGS (faLniard drouid hock) was written to

calculate the particle veloc ity components v and v for the threer z
layer (fluid-solid-solid) case where the point source is in the fluid

and the receiver is in the finite layer. Displacement calculations ob-

tained by numerically integrating the velocities are also available.1

The code can calculate up to 183 arrival times which include all

rays havLng 12 cr fewer reflections and the P 3P ray having 13 reflec-

tim. Hiowev-t, ceilection and transmission coefficient products HKT

are coded for onaly 71 of the typically eariiest urrivals. The available
ra3r 3 3 7 2 8 o2

rays art E _,P_ PS3S , P _SP , P '-PSS ,
9 5 10 3" 1 .12 11Cd 13

PP-i ,i !I}-P , a 1, I Icss, pp.pg - i -, pgs 11p 1.i SS , and P

These ra. :t tu 'si'tnc velocity-time curves 'or a pproximately 3 to

WS wa*ve' t ici. it, t, im., of t!,a layer after the first arrival.

cd , w,; writtn in 1,til']RAN for the Honeywell 600-6000

orie ,'s:'.tc-. 'Ahe code i.. rui in the time sharing mode from a

'!ektr,:x 4'. :'in s ,, I raphics terminal. Hard copy of the informa-

is. on th~~~ ': ',,n is arillable at the push of a buttom. The output is

St ,ii, ,:' vi ,'it an 1j1.:placement versus time and velocity and dis-

.. .' '"  j 1 v; s'n as the calculated curves in Figures 3-10.

:;IW Lv' "11'1-t ; [ :¢eIdced to about 1/2 the oririnal size.

2 sowsUt nV t2 w eaInj ! calcul,tion including input and tabular

'i* -vryt tti tJ., i ,,' . 'he decay exponent allows calculations

f;r 't 1 /r do,-,; iV layr , .i"U1 computt,,tions in this report used a

purfe iine ,r deca.. wi 'Hn '.I, 1ten I.0. The next input selects which

plots; "L c h-;., .: 1, firu(-icy input allows calculation of

A v'u.jtt: ,,f tb¢ 'A ;'" ,. A.ie which calculntes stres conp.nent; in
me;iL ., I ; a Va;e nlt'.
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rhtio ionl resO- d i ] ki! t, IjO.' t-,0 1-t- p-o I 9 o ,Vi... C ity -a.it ; to the C

theoretical velos itv. The vairiz.tbli l. specifies the type of explosive

device. P.%' for nacoar rItd I W =2for conventional explosives

(H F ) Uis the eharre wei *'nt in kilotons nuclear or pounds T.N.TI.

equivalent weisht HL . Th(- iext ',wo l ine.- are the , wave speeds (ft/msec)

a3 estte mc ) ini rued ro anid 3. 'ihe paramjreters in the air

(ruied li I) are not, input buit aro deterinrid by the prog.ram from empiri-

cal formulae. 1i4MiN and NEAY pt c~ thte milniL and miaximum values

of q to be us-ed. Hi , h , r. , Y, re respectively, the layer

thicknei: ss,, cxplo i ye source height of burst, hon zorit ii range, anid -zA

thle depth of' gag e or ree.ver. These variables. -tre sleciflied in feet.

The next two i aut re the site Lalt itude-. and siir r n rtaeused in

calculatini, the- a _rblast.

The first, line of otput gives. the arrival. %r; ipeak

overpressure (vs i" at z =0 d-irectly aticve n The

folLowinoL7 table L-;%es3 characturisic p., sts; *. ~ ur

iF=q

Pi = time cof arri va-1 ( us 1

T2 =time of arriv-0l msec ) t "

TCONST =time cons,-tanit 0,, (me)J r Ie laterI. For the
present version of CAGGS the 6Ljarc. the same for
all q

RW horizontal distance r qat which the ray enters
T-me d ium 2

PAIR =airblas;t perik overp-ressure (psi) at ranr7e hW

DEFAULT DT = the time ster (nsec) which is adequate for most runs.
With experience larger steps can often be used.

TSTOP = t ime (msec) of' the end of thle calculation. The code
presently allows up to 1000 steps and quits automati-

ca1yi th iximnmi is- reached.

The next otput i:s :I tlbthr cents. tiii og he steop iiianber 11' , time t

(msec), velocitie:? 11 and -,- (ft/scc), and dis placemenits P and

r (ft). The maximumr and mlii ritu:'l values .)f the velocities, displace-

mnts, and the vei c itieo mna, iirf:j by a simulated velocity -a!ge are

Ilsted fol lowing- the abe

Al A of t'i h;npoit-outplt es e above is, prim ted on t ho terminal



screen. Hard copy is obtained by pressing the "copy" key. If plots

were specified, the user presses the "return" key after the copying is

completed. The program clears the screen and draws a plot. The code

stops after cach plot to allow copying and continues when the "return"

key is depressed. After a case is completed the programs allows chang-

ing all or only part of the input.

3.3 NUMERICAL INTEGRATION PROCEDURE

To obtain particle velocity components v and v I two numeri-
r z

cal integrations must be performed for each ray. First, the stepwave

responses must be evaluated from equations (2.13.7)-(2.13.10). Second,

the convolution integrals in the form of (2.13.6) must be computed.

To start the calculation, ym, is computed for each ray from

(2.11.1) using the Method of False Position (Conte (1965)) combined

with an increment halving iteration scheme to insure convergence in

difficult cases. Arrival times t and tq are then determined from
lq q

(2.11.2) and (2.11.4) as appropriate. The source amplitude and other

time independent terms of the step responses are calculated in the same

section of the code. The stepwave responses are then evaluated using a

four point Gaussian quadrature with eight subintervals for a total of

32 points. The V and V integrals are calculated together sincer z

most of the factors in the integrals are the same. The integration

limit a is obtained from a Newton'.3 Method iteration (Conte (1965))

for uI  in (2.10.4). When t < t < t , the substitution u = -iy21iq 2q1
is used to allow calculation with real arithmetic. When t > t2q

complex arithmetic must be used in the iteration. In either case, an

initial guess based on the value of u1  from the previous time step

generally produces rapid converrence.

The convolution integration is simplified by expressing the source

pressure time dependence P (t) in the form

Po( _ = a k e (3.31)
k
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I)I
Because of the property e =e e ,the convolution can be written

t

0

k - At,!0 k f -(t-At-A )/Ok
( et e V(X)dA (3.3.2)

) 0

+ te k) V (A)d,\

t-At

itr P = 1(t - i/c ) 1(t - cp) where P(O) #0 we must add an
o p] 1

/p1
additional teram to (".l3.6) cor-ret,;iondint, tW d 11(t --

6(t - R/cpI ). The result is

t t

1P(t - k) . (A)(i = p(O) V(t) + p'(t - A) V(A)dA (3.3.3)

o 0

The last inte,-ral can then be expressed a:; in (3.3.2).

The first integral in (3.3.2) is the convolution from the previous

time step muLtijiled by an exponential. Thus in a time step we must

only calculate the second integrral. For times not near a singularity

t iMe t, for a -5u[ rc it icalI reflection, we interrate as follows.

De ote , t - A .

V : V(t, - At) (3.3.4)

v V(t) (3.3.5)

, n- it,erpol, i,, ic 1e.w ,i the c~lrl:rted points;



V = V1 + (V2 - V )(t - t1 )/At (3.3.6)

then

1e =k V(X)dX

t-At

(3.3.7)

0k 1V2  At (VO 1  k + [(v2 t Viek - Vl]JI /ek

Near a singularity time t2q we make the change of variable

X = It2q - 112  (3.3.8)

to eliminate the logarithmic singularity from the integral producing

x(t) e-(t-x)/o 1
12 = +2 J k V(XI xdx (3.3.9)

x(t-At)

where + and - apply to t > t and t < t , respectively. This- 2q t2q

integral is evaluated using a generalized Simpson's rule obtained by

integrating a parabola fit to V(t) , V(t - At) , and V(t ) where

t is the time of the step before t - At . A fixed time step is not

required. The convolution integrations (3.3.7) or (3.3.9) take only a

small percentage of the computing time required to evaluate the V(t)

hence several terms in the sum of (3.3.1) can be used to fit the source

time dependence P (t) without adding significantly to the total com-0

puting time.

3.4 MODELING THE AIRBIAST WAVEFORM

The point source amplitude and waveform used in the CAGGS code was
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chosen to simulate the airbiast overpressure produced by airburst explo-

sion of spherical charges. Elrpirical curve fits based on explosive

field test data were used. Peak overpressure PI and arrival timemax

t at the air-soil interface (z = O) fX.'r height of burst h and hori-

zontal range r were obtained from formulae extr:acted from the ANSWER

(AnaLysis Lystem for Weapons [Affects diesarch) code (Britt (1980)). The

nuclear section uses the Brode (19'(0, 19'(8) height of burst curves. The

conventional explosive (H.E. ) values are based on curves developed for

the ANSWER code.

For the ranges of interest for most linear ground shock calcula-

tions and for the common surface tangent burst confitguraLion (charge

re! ting on the ground), the H.E. peak overpressure and arrival time curves

can be approximated by

-2. 57 1/3
P - 3770 r psi for 2.5 r 1 ft/lb (3.4.1)

max

t z 0.044 -,.95 msec/ibl/3 for 2 < r i 1,5 ft/lb I/3 (3.4.2)

where W is the explosive charge weight in pounds T.N.T., r = 1/
and t 1/ 3  The value of P given here is that measured at

ta =a 1/ hevleo max ivnhr

ground level and hence contains both the incident (or source contribu-

tion) and the reflection. Because of the great impedance mismatch be-

tween the air and soil, the linear theory predicts a reflection virtually

identical to the incident pulse if the soil layer is very thick. In

order to match the total pressure (normal stress zz ) at the interface,

one half of the empirical blast overpressure is ised for the incident

pres;ure in the linear ca] culat ion!.

The a]irblast wavef'orms 1 (t) such as shown in Figure 2 were fit0

to a snm of exponential terms of epa tion (3.3.1) using, data from the

D)epartment of Dfense (1P.0.1).) ex 1 osive tests series gi ven in table 3.

The event,,s usod in tih, waveform mode l were mostly surface tangent bursts

.upp.umented by other n,,an :,ur face detonations. The parameters ak and

ok  wcrt c hosen to fit th experiMental paramete'rs noted orn Fj, ure 2 as
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is

RANGE (FT) - 10.
CHARGE WEIGHT (LBS) - 1.
DEPTH OF GAGE (FT) .001
MAX. PRESSURE (PSI) a 10.1S

is- HP IN. PRESSURE (PSI) a -1.389

CL

a-

-a

of

t t_

1 s 15 30
TIME, MSEC;

Figure 2 Typical airblast waveform.
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'Fable 3. Explosive test series used in the airblast model.

Test Series Explosive Charge

CENSE 1 
1000 lbs NMa

CENSE 2 300 lbs TNT I'

CENSE 3 200 lbs NM

Dial Pack 500 tons TNT

Mine Ore 100 tons TNT

Mine Under 100 tons TNT

Middle Gust 3 100 tons TNT

Middle Gust 4 100 tons TNT

Mineral Rock 100 tons TNT

Misers Bluff Phase I 1000 lbs TNT

Misers Bluff Phase [I 120 tons ANFOb

Mixed Company 500 tons, 20 tons TNT

Pre-Dice Throw I 100 tons TNT, 120 tons ANFO

Pre-Mine Throw IV 1004 lbs TNT, 7.2 tons, 102.4 tons NM

1969 Height-of-Burst Series (BRL) 1000 lbs TNT

NOT}<: A table f factors for converting inch-pound units of measurement to

metric (S2) units is presented n page 3.

a Nitromethane (NM)
Ammonium nitrate wid fuel oil, (ANFO)
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well as the positive phase impulse I+ (the integral of the curve from

t to t). A large body of data was obtained from reports on Pa8 + max

I+ , t and t+ . A representative, but much smaller, quantity of

information on the negative phase was used. More data was available

from the agencies conducting the tests or from D.O.D. archives, but time

and funding limitations prohibited the extensive use of this material.

The scatter of the data used in determining the negative phase param-

eters is much greater than for the positive phase. It is expected that

the negative phase model used here will not be changed greatly when a

larger data base is used.

The resulting waveform for T.N.T. explosions is

PO(t ) = Pmax e + a2 e - + afte/ - /e5) (34.3)

where P is the peak overpressure in psi, W is the charge weight
max 1/3 1/3

in pounds of T.N.T., t = t/W msec/lb , ek = 8k/W'/3 msec/lb I/ ,

TI
o o 48

a0 = minimum max (3.4.4)

21 pO.1 for 5 < )9 < 2.1 i:;i

a 7930 Pnt 6 6x for Pmax > 29.1 p;i

-0.696.26 P for 5 < ' < 200 p:;i
max max -

61 218 P_ for 200 < P < '(00 psi ( .4.6
max max

o. 1,- nE.16 foll psi 0

3 -



!i P U.21- for <P < 200 psi
ma.X max

04 '2446 P-O .13 for 200 < P < 700 psi (3.4.7)
max mIX

0.49 for P > 700 psi
max

" 0."5 04 ,

02 =minimun (3.4.8)

.6 P-036

03 = 0.99 6D (3.4.9)

05 = 1.01 04 (3.4.10)

A finite rise timle can be introduced by adding, an additional term

to (3.4.3) of the form a6 e , where

S-a (3.4.11)

Let At be the scaled rise time of the pulse, then if the last four
of (3.14.3) change only slightly in this time, 06 can be approxi-

mated by

kn
= ~ z -(3.4.12)

-- - 1
06

The amplitude 1i of P (t) is then obtained by replacing a, = 1'
IlaX o max

by

P
max (3.4.13)

-At/0 -At/0 6
- e
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3.5 APPROXIMATION OF THE AIRBLAST WITH A POINT SOUhCE

As can be seen from the empirical formulae de3cribed above, the

airblast cannot be directly modeled as a linear point source in our range

of interest (10 < P < 200 psi) since (a) the airblast peak overpres-~max -

sure decays like l/R2 "57  instead of' 1/R , (b) the blast propagation

rate decreases with range instead of the constant speed cpl , and

(c) the shape of the waveform changes with range rather than being a

fixed function P (t - R/cl) Within the frunework of the Cagniard

model two options are available for approximating the empirical airblast:

(a) simulating the pressure in space and time by a distribution of point

sources or (b) using a single point source chosen to linearize around

a particular range related to the time of dominant motion. The first

option would be more accurate but would likely require much more com-

puter time to evaluate. The simpler and less costly linearization

approach (b) was used in this study. Several procedures were investi-

gated, but linearization around ray q 2 , the directly transmitted

shear wave (path A of Figure 1), produced the best overall agreement with

measured velocity waveforms for materials ranging from weak soils to

hard rock.

The directly transmitted S wave path was determincd by iterating

for the range r at which the ray entcrs.- theL soil. The empiricalS

formulae (such as (--.h.2)) were uised to calculate the blast. arrival time

t foL an initial value of r = r . An average P wave :;pced o"a sp

in the air was computed from

h~2 +
+ (3.5.)

Cpl 
t a

Then from equations (2.11.2) and (2.1.3) we obtaict.h the r lat iorns

(c-2 Z) C1/ L" )  +1 2

t ( I - ;m.tx) 2 + ii:i.) + -
ma i +,, x



pI

ri

(if
Y2max / ( )

+ r

which must also be satisfied for tile ra,. Thee equation-; are actually

a disguised statement of Snell's Law of H,fractiori. 'icing the initial

values of r arnd c in (3.5.2) and ( -.5.-3) a new estimate of r

was obtained. it is easily seen that the solution lies between r and

this second estimate of r . Hence, iteration was continued using, a l

interval halving technique on this interval until (3.5.1)-(3.5.3) were

.atisfied within an acceptable toleranice. The point source amplitude

and puise shape were then chosen using tile empirical formulae to match

tne airblast at the point (r ,O). The resulting< c and point source

function I' (t - R/c )/R were then used for all the rays.
o p1

I.
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COMIAkR,',k1!, OF CALCIATED AND MP!A:2UREI PARTICLEF
VELOCITY WAV Ei'OHRM2

4.1 OELECTION OF iK:iH

Calculations were pertrormed for the thiree 21ENS'V (Coupling Effi-

cienicy of Near 'uri'ace Explo.sions) explosive field test series (ie~

17,ir)80). These tests were chosen because they provide a variety

of site characteristic., wnioh were relotively well controlled. The

test bPeds were either effe(ctiv~liy hlomogeuneous or had layerinj suitable

for the two-layer iuoel. In aadition, each of the series had near sur-

face airburst explosions for which particle velecity or acceleration

was measured in the upper layer for a variety of ranges from the

explosions.

4.2 CALCUI.A'21NLI FOR CEN",E -1

CNFIcon.: i: el ofr a series of 1000-Lb spheres of nitronethane

(1140 lV; I'; vi~t de.tona1Uted1 over a mass;ive Kayenta sandstone

formation. Thes- e.ventsl- provi ic data for checking, the calculations for

motion in :1 s;trong1, homogecneous, material which behaves, elastically for

stress le-vels5 of hundtreds; f' psi . TUhez surface rock was thick enoug-h

that three Liyt.::; were iiot needed f'or the computations;. Fig-ure 3 com-
pares tnethe tia uids rmeasured vertical and raidial velocity compo-

nents. Vertical veloc-ity i.: positive for upward motion and radial

velocity is- poc lit iv' for outward motion. Note that the experimental

anid theoretiAcal curv-s are lue on di fferent criles and that the

calculation rersnsonly part of' the measured curve. The material

properties usedt fo-r is 2:(Lc;atiori were pi u.0n012 7n/c-Tu3

Cp' q 9 t /mseItC I C' ft /Mo3Ec( tnd 2.14 gmn/sm, Fvent I,

shown in thc' figure, w+ :rtl ic wi tl it!-; charge centtei (I ft abov-

the rock. MeasuIrements -, -re made w ith velocity ggs(1hay irlug a nomrTi)al1

600-Hz frequency e;pne)pla-i " ft hi, low the rock :'oir'ce. The

airblast peak prssreahv- thei ' a,,e wa.- measurcd at ---, ia:i nt the



tc
jii

a~o1

C4 all>

a Cd

5-:
H ED

P4

COL

*4 Li -

Auhi

1-0
a' U

W P i

> G~ta7v



48 ft range. Figure 4 shows a calculation at the 36-ft range (120 psi).

Only the horizontal velocity record was obtained. There is good agree-

ment between calculations and experiment at both ranges except in the

magnitude of the second positive phases. This slight discrepancy is

probably a result of the simple source linearization and not an effect

of non-linear material properties of the rock.

4.3 CALCULATIONS FOR CENSE 2

The data of CENSE 2 provided information to check the elastic cal-

cillations for a two-layered clayey-silt soil site. The explosives used

were 300-lb spherical TNT charges. In the calculations shown in

Figures 5 and 6, the soil was modeled in two layers: a surface layer

20 ft thick with cp2 = 1.1 ft/msec , cs2 0.( ft/msec , and p2 =

1.7 gm/cm , and a lower half-space with c = 1.6 ft/msec ,

0.7 ft/msec , and P3 = 1.75 gm/cm: . The measurements were made with

velocity gages located 1.5 ft below the surface. Event 2 ,as detonated

with charge center 7.2 ft above the soil surface. Excellent agreement

was obtained in Figure 5 at the (7-ft (13-psi) range. Figure 6 at the
4 3-ft (3 4 -psi) range shows sliIgtly poorer agreement but still within

typical scatter of field measurements. At, a, range of 32 ft (60 psi),

Figure 7,the linear calculations begin to fail to reproduce the major

characteristics of the measured motion. In this case the linear theory

does not predict the large initial lownwnr, _,nd outward displacements

(area under the velocity curve) se,.n ii: wI , xporiments. These differ-

ences are probably a result of thle nonilinwi ,aterial properties of the

soil becoming important and a re.-il C ; : l<.-in source conditions

not being adequately modeled by tl( ' i', 1-1rt i riput used in 1 th-,

calculations.

4.4 CALCULATIONS OR CENSE -

CENSE 3 provided measurcm.,nt.s for iomri . wit!.

weak soil layer over a hard rock si i -. Thi n- io 1. v

explos;ions of 200 lb (226 It 'i7[,i equiivalest,) -f r;i is... T'

bed consistd of compacted backfill of "alluvium'" wi 1in- v
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Kayenta ;andst-ne depOsit similar to thit, of CUNSf 1. The thickness of

the soil was v,ried from 0 to 6 ft. Measurements of vertical and radial

acceler:tion were made at middcpth in the soil layer. and in the rock.

Velocity histories were obtained by irteg'rating the acceleration records.

Events 2 and 4 were surface tangent bursts, that is, the explosive

charge was resting on the soil surface. The soil layer thickness in

Figure 8 WLaS 6 ft. In Figure 9 the thickness was 3 ft. The material

properties used in the calculations were c 2 = 0.9 ft/msec ,c 2
S3 p28 fise 

0.3 ft/msec, and P2 = 1.6 gm/em3  for the soil and c 9 ft/nsec

=3 ft/rnsec, and p= 2. 4 gm/Cm3 for the sandstone.

At the 56-ft. (12-psi) rane of Figure 8 the calculations are in

good agreement with the experimental curves up to a time of about

45 msec if' the high frequency s.nikei; are neg-lected. These spikes re-

sult from using an airblast pulse with zero rise time and reflections

at a perfectly distinct interface. High frequency motion of this type

is filtered out of the measurements because of the nonlinear effects

of the f soii and finite f'requoncy response f the gages and recording

Iystem. At the 3-ft (52-psi) range of Figure 9 agreement is poorer

but the initil velocity amplitudes are still close to the measured

values. At a range of 14 ft (]1') psi) not shown the calculated initial

peaks are nearly a factor or two hig<her than the experimental.

Figure 10 is presented for comparison with Figure 9 to illustrate

the effect of further in-reasiiig the :;oil layer thickness at the CENSE 3

sit e. The initial portlori; f' th-, r,.ords are produced by the directly

transmitted P and ) wave.; aiid are not #Ipeiident on the soil thick-

nesS. The later motion is a -,mfpli -atel interaction of reflected waves

for moierate layer thickn0i:a. In gig f'rom a layer thickness of 3 ft

as in Figure 8 to tU I- t i."Q ure 0 th, change in frequency

of the notion is rouhly prop ,1 4 ) the layer thickness- chang,,e,

but the waveform.; at 19'-ft thIckn.:;:; do not follow this pattern.

From the few waveforms pr sui ad here, one cannot draw general

conclusions on factors affeii, tie period and amplitude of the low

frequency motion. A dItaieid para meter study atnd analysis will be neces-

sary to determine how the motion changes in going from very thin to very
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thick layers. It appears that simple rules of thumb based on S or

wave layer transit times will be valid in only very restricted

ranges of thickness and elastic parameters.

K
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CHAPTM 5

CONCLUSIONS AND RECOMMENDATIONS

Calculations performed with the CAGGS code were in good agreement

with measurements from the three CENSE test series which had very differ-

ent site conditions and particle velocity waveforms. These sites span

much of the spectrum of typical soil-rock environments. CENSE 1 site

was a hard, strong, thick sandstone rock; CENSE 2 site was a two

layered soil medium: CENSE 3 site was a layer of weak soil backfill over

a thick sandstone formation. Based on these calculations, we conclude

that predictions of velocity waveforms using the Cagniard formulation

of the elastic theory and the localized airblast source model can be

expected to be accurate within the scatter of explosive tests measure-

ments for times up to about one cycle of the low frequency motion and for

airblast overpressure levels at the gage range up to approximately hO
psi for explosions over weak soils and over 100 psi for strong rocks.

At pressure levels in the range of 40 to 100 psi for explosions over

soil, the elastic theory still predicts the general character of the

motion but overestimates the peak velocities and underestimates the

large initial downward and outward displacements.

The simple localized airblast source model linearized around the

directly transmitted shear wave may be a major contribution to failure

of the calculations at higher pressures and at late time on waveforms.

Future work should be directed at improving the source formulation,

but any model other than a single point source would greatly increase

the computer time costs of the calculations.

The linear wave propagation model can produce motion waveforms

for homogeneous sites such as the CENSE 1 sandstone f.ur very small ,,n-

puter co-sts. But because of the rapidly increasing effort required to

calculate the late time portion of waveforms for layered media, routine

calculations to times greater than about three shear wave transit times

of the layer appear to be more expensive than comparable linear finite

difference methods or normal modes techniques. Calculations with the

Cagniard theory for more than two soil layers appear to be quite
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oxpensive except for early time motion or special cases where reflections

in one layer c Jn be ne glected or modeled by a few rays. Our incomplete

calculations have indicated that three solid-layer cases such as present

at the Dial Pack site where a shallow water table exists with a much

deeper rock layer can be effectively modeled by the Cagniard method

using only a few carefully selected rays in the thin surface layer.

The primary applicationrs of the CAGCS code for computing motion

waveforms in layered media appear to be early time motions up to about

tw .:hear wave transit times. These cases require relatively low com-

p1t>in0 .%sts and minimal eftfort to change code inputs. Runs to later

time!; and flor more than three layers are practical but are con:;iderably

1're expen:Live. Sincc the theory foll ows rays, the composite waveforms

,-,n 1,e di.scected to study the contributions of individual arrivals.

'hi, prmperty of the method makes it ideal for studying the basic char-

-cteri-:t2s and effects of the controlling parameters of wave propaga-

Vi in ]a' yered media. The CAGGS code developed in this study appears

to be an ideal to,,l for performing detailed parametric studies of ground

shock at intermedia.te rant;es where the airblast pressure is from 5 to 50

psi in weak s3oils anu to hundreds of psi for strong rock.
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