
MINICOMPUTER HARDWARE MONITOR OESIGN.dU)
JUN 80 B MORITZ. H SPAANENBURG, A J9 LABO4JT F30602-79-C-0006

SUNCLASSIFIED RADC-TR-80-203 NSunnnunnIInnII
EIIIIEIIEIIIIE
EIIEIIIIIEEI
IEEEEEEIIIIEEE
-mllllllEEllIl
-EllllllEllI-
-EhtttthttthEEEtt

!I

RADC-TR-80-203
Final Technical Report
June 1980

MINICOMPUTER HARDWARE
MONITOR DESIGN

9 Measurement Concept Corporation

B. Mori tz k > vl %C°

H. Spaanenburq
A. J. Labout ;

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

01 Griffiss Air Force Base, New York 13441

.- /
LCO

This report has been reviewed by the RADC Public Affairs Office (PA)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR-80-203 has been reviewed and is approved for publication.

APPROVED:

JOHN E. FRANK
Project Engineer

APPROVED: " " '

OWEN R. LAWTER, Colonel, USAF
Chief, Intelligence & Reconnaissance Division

FOR THE COMMANDER: ,,"t .

JOHN P. HUSS
Acting Chief, Plans Office

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using munitions of war.
Export of the information contained herein, or release to foreign nationals
within the United States, without first obtaining an export license, is a
violation of the International Traffic in Arms Regulations. Such violation
is subject to a penalty of up to 2 years imprisonment and a fine of $lO0.000
under 22 U.S.C 2778.

Include this notice with any reproduced portion of this document.

if your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (IRDA), Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

i t- . , . , _ ,

t'NC1.ASS I V III)

itLOW1 I~N LA '.I II A' N i 41~*f U...,,It.,

(QREPORT DOCUMENTATION P AGEj .RMINliI\.

u .. a A. CESSION ,0 3 -f -l VIT ATA , i

A u

MIN LUoMP1ITE*R HARDWARE MNONIToR 1)1.S I GNO iNov 78 hn - a Jo 79 pr
C-'6 N77Rmfmo G -,PIORI i4.MI3L

~Ysi rnan CneeptCo rpo rat ionf API A IS WOR N AM

1721 Blaick River Boulevard 62702F
Rome "~ I i!4O45041606

I \~t N. ' N NAMU AS;' A:'7VIRE OS

Romeii Air lieve Iopmn Cente~r (I RDA) JIune 1980 /
Gr if f iss A 1:1) NY 1!34i 4~ 12

15,, OF , ASI, ATC7N LlO*%N,RA.N,

Approi'.. for ptihi it- rce i esv distribution miniiited.

6S ', .I M nit ''

RADC I"'.. j,.'t F111. i TIC0r tiflin FK. Frank (IRD)

(orni tcr 't-t ri m it.1 11i ion

diwt d tor th lie voli~jtmcitt ' i .. N!Yi-' m\ l.i'l'.;irc moito r.

Ini Sctimi 2.0 j h.scrij'ti I'h1.15 el prltvilI .0 IIn ilip

DD ,'~',1473 '''. ' ''CAs1Ii Ult2

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whar; Date Enterd)

Item 20 (Cont'd) .J,

(t,. L
Section 3.0 first of all examines the AN/GYQ-21(V)Ain detail, ritei-
d sae+bes its interfaces to the monitor. The measurement set considered
to be a baseline for performance monitoring is documented in detail as
well as the locations of its requisite probe-points. The major contri- F
bution towards the hardware monitor design can be found in the break-up
of measurements into three stages: the vector generator, the program--
mable patchboard and the monitor microprocessor. The eventual hardware
specification of those devices awaits the decisions that have to be made
concerning the technology involved.

In Section 4.0 pecifications for the software involved have been
documented. Foremost in the designers' mind has been the ease of user
interface with the monitor.

All of the technical and software/organizational techniques presented
in the report are within the state-of-the-art. As a result, a micro-
processor based performance monitor possessing an extraordinary degree
of applicability to all potential users is eminently achievable,

User acceptance has been guaranteed by the lack of user-installed probes
and the versatile user interface high level language software.

In short, it is believed that the simplicity of staged measurement
handling, maximum utilization of nonsensitive probe interfaces such as
the 21(V) busses, and the integration of passive hardware, active
hardware, software, and cooperative hybrid measurement/control technique!
provide RADC and the end user with a highly useful, low risk product at

a cost commensurate with the complexity of the user requirement.

1If

U N C.A SS I~ F I F
Dur ,i IT- CL ASFICAi s, o,

TABLE OF CONTENTS

1.0 INTRODUCTION 1-1

1.1 Measurement Concepts 1-1

1.2 Basic Operational Measurement 1-5

1.3 Categorization of Computer Systems Monitor . . 1-6

1.4 Mc2 Hybrid Monitor Design 1-9

1.5 Outline of Report 1-10

2.0 SYSTEM CONCEPT AND SCOPE 2-1

2.1 Monitoring Requirements 2-1

2.2 Monitor Survey 2-8

2.2.1 Software-Based Monitoring Systems 2-8

2.2.2 Hardware Monitoring Systems 2-20

2.2.3 Commercial Logic Analyzers 2-32

2.2.4 Hybrid Monitoring Concept 2-37

3.0 HARDWARE DESCRIPTION 3-1

3.1 AN/GYQ-21(V) System Description 3-6

3.1.1 UNIBUS 3-8

3.1.2 PDP-I1/70 High Speed Bus 3-11

3.1.3 CPU/Console Interface 3-13

3.1.4 Multiprocessing AN/GYQ-21(V)s 3-16

3.1.5 AN/GYQ-21(V) Restrictions/Limitations . . . 3-17

3.2 AN/GYQ-21(V) Monitor Probe Point Locations . . 3-25

3.2.1 Interfaces Between Ar/GYQ-21(V) and
Hardware Monitor 3-28

3.2.2 Description of Interface Configuration 3-39

3.2.3 Measurement Set and Probe Points 3-43

iii

TABLE OC CONTENTS (Continued)

Page

3.3 Vector Generator 3-68

3.3.1 Vector Definition 3-69
3.3.2 Vector Building Components 3-72

3.3.3 Vector Post-Processing 3-75 1
3.4 Programmable Patchboard 3-76

3.4.1 Selection of Events 3-77

3.4.2 Counting of Events 3-79

3.4.3 Programmable Patchboard Realization 3-80

3.5 Monitor Control Unit (MCU) 3-82

3.5.1 Digital Equipment Corporation's
LSI-1l/23 3-84

3.5.2 Texas Instruments' TMS 9900 3-86

3.5.3 Bunker Ramo's IEP (Information
Exchange Processor) Microprocessor 3-87

3.6 Unibus Interface Card 3-91

4.0 SOFTWARE FOR HYBRID MONITOR 4-1

4.1 Software Organization 4-3

4.2 User Interface 4-10

4.2.1 Event Definition Statements 4-13

4.2.2 Measurement Definition Statements 4-16
4.2.3 Additional Statistics Statement 4-17

4.2.4 Automatic Statistics 4-21

4.2.5 Module Manipulation Statements 4-22

4.2.6 Monitoring Options 4-24

4.2.7 Monitor Invocation 4-26

4.3 Host Software Monitor 4-28

iv

TABLE OF CONTENTS (Continued)

Page

4.3.1 Fundamental Software Monitor Techniques 4-31

4.3.2 Software Monitor (SOFMON) Measurement 4-35

4.3.3 Extended SOFMON Measurements 4-38

4.4 Measurement Collection Software 4-40

4.4.1 Bootstrap 4-42

4.4.2 Microprocessor Interrupt Servicing 4-43

4.4.3 Background Operations 4-46

4.5 Reporting Formats 4-47

4.5.1 Event Measurements 4-47

S5.0 SUMMARY . 5-1
5. UMR...........................-

6.0 REFERENCES 6-1

V

LIST OF FIGURES

Figure No. Page

2-1 User Classes Hierarchy 2-7

2-2 Mc2 Software Monitor 2-17

2-3 COMTEN Basic Monitor Design 2-30

2-4 TESDATA High-End Monitor Design 2-31 1J

.2-5 Wired-Program Monitor 2-39

2-6 Stored Program Configuration 2-41

2-7 A Hybrid Monitor 2-43

3-1 Monitor System Design 3-4

3-2 UNIBUS Priority Arbitration 3-10

3-3 PDP-11/70 vs. PDP-l1/45 3-18

3-4 Probe Point Locations 3-26

3-5 Hardware Monitor Configuration (Boards) 3-40

3-6 Basic Vector Generator Components 3-73

3-7 Programmable Patchboard 3-81

3-8 DR1l-B System 3-92

4-1 Create and Save Patch 4-5

4-2 Creating Linked Load Module to Initialize
and Initiate Monitor 4-6

4-3 Host Software Monitor (SOFMAN)
Configuration 4-29

4-4 ESX EMT Handling By The Interceptive
Monitor (SOFAMO). 4-33

4-5 Microprocessor Memory Layout 4-41

4-6 Transfer Command Block 4-44

4-7 Physical Unit Device Report 4-52

4-8 Automatic Statistics Report 4-54

4-9 Node Pool Summary Output 4-55

vi

-~-r-~-x'.,'.momPW -M ~ --

LIST OF FIGURES (Continued)

Figure No. Page

4-10 System Performance Statistics Report 4-56

4-11 UNIBUS Statistics Report 4-58

4-12 Fast Bus Statistics Report 4-59

4-13 Mass Bus Statistics Report 4-60

4-14 Kiviat Graph of Optimum CPU-I/O
Utilization 4-62

4-15 Instruction Type Report 4-64

4-16 Histogram of Disk Arm Movements for DP0 4-66

4-17 Histogram of Counts for Each Cylinder
Accessed on DP0.... 4-67

II

LIST OF TABLES

Table No. Page

1-1 System Efficiency 1-3

1-2 System Effectiveness 1-4

3-1 Summary of Probe Points 3-27

3-2 UNIBUS Interface 3-29

-3-3 UNIBUS Pin Assignments (By Signal Name) 3-30 1
3-4 PDP-11/45 Console/CPU Interface 3-33

3-5 PDP-11/70 Console/CPU Interface 3-34

3-6 Maintenance Interface 3-36

3-7 Discrete Points 3-37

3-8 Events and Vectors 3-71

viii

hi

EVALUATION

The U.S. Air Force has made a major commitment to the use of
minicomputers as the vehicle for implementing many of its system
requirements, a prime example being to support the sophisticated
AN/GYQ-21(V) system. Whereas the individual minicomputer config-
uration is much cheaper than a large mainframe computer, many typ4-
cal programs today involve multiple minicomputers and multiple
sites with aggregate cost often equalling the cost of large main-
frame systems. In the process of developing sophisticated systems
using minicomputers it has become evident that equally sophisticated
tools are required to optimize the performance of such systems.
Since the use of hardware monitors has proven successful in optim-
izing the use of large mainframe systems, it is logical to intro-
duce the use of hardware monitors into minicomputer systems. Tile
microprocessor appears to be the ideal means to support a minicom-
puter hardware monitor. Economic benefits would likely equal,
if not exceed, benefits large mainframe systems have derived through
the use of hardware monitors. The introduction of a microprocessor-
based hardware monitor into a minicomputer system would provide many
oper-ticnal benefits. The more restricted capacity of a typical
minicomputer requires precise analysis of the timings of modules in
the system as well as close monitoring of utilization of various
hardware components. When a system becomes operational the hard-
ware monitor can provide on-going (hut not necessarily continuous)
monitoring at each site to determine when specific machine- are be-
coming overloaded and will aid in defining the most economical and
most efficient methods of alleviating problems caused by growing
workloads and diverse operational environments. These monitors will
also prove highly valuable as an aid in system debugging. Tinicom-
puters typically lack the types of diagnostic tools that are being
developed for use with larger machines. Within reasonable economic
constraints, such tools introduced into the minicomputer environment
will greatly reduce the cost and time delay in debugging and check-
ing out systems. The hardware monitor would have the added advantage
of .crg operating-system independent and computer dependent, though
each minicomputer in turn must be carefully analyzed to determine
the appropriate probe points for collecting data. The performance
of a PDP-11/70, for example, can be greatly affected by the degree to
which work is performed through the cache memory. In order to know
whether system performance should be enhanced by optimizing the code
for increased use of cache, it is first necessary to have accurate
readings for the percentage of executions currently being accomplished
out of the cache memory. There are many other similar considerations.
A hardware monitor will provide the technological vehicle to gather
that information. The problems associated with conventional hardware
monitors are that they are designed for use with large machines and
they tend to be very expensive utilizin i fairly large minicomputers

as integral components. What is required is a scaled-down system
with economics sufficiently attractive so that it will be possible
to replicate these monitors at a number of sites, and to make them
readily available to all development projects. The basic system would
be usable with any machine; the cost for developing and checking out
the data collection pattern for a particular machine is a one-time
expense.

This program determined the scope of monitoring capabilities
that are economically feasible to implement -using microcomputers to
monitor minicomputers. Specifically addressed is the system monitor-
ing of the AN/GYQ-21(V) computer system. The AN/GYQ-21(V) was anal-
yzed and appropriate probe points were identified for collecting
the data necessary for evaluating AN/GYQ-21(V) system performance
and utilization. r

JOHN FRANK
Project Engineer

x

1.0 INTRODUCTION

RADC has been a pioneer in the cost effective application of minicomputer

technology to intelligence and C3 . The 21(V) has been the primary vehicle

that carried these efforts to operational systems at USAFE, DIA, US Army,

SAC, and other installations around the world. The diversity of applica-

tions has resulted in a multiplicity of hardware and software configura-

tions that have, at times, been extremely difficult to optimize. To this

is added existing and planned developmental programs that will both

upgrade operational systems and create new ones.

The combined technical and management load of the 21(V) program has amply

demonstrated the need for monitor and SPM support. The following sections

present the technological basis from which this support may be obtained.

1.1 Measurement Concepts

The purpose of system performance evaluation is to determine how well a

system satisfies (or will satisfy) the processing requirements of the system

user. Evaluation takes place with respect to the objectives and goals of

the organization served by the system. System performance may be graded

on two aspects: system efficiency and system effectiveness. Efficiency

signifies an evaluation of the internal activities of the system and of the

utilization of individual system components. Effectiveness represents

the evaluation of the capability of the system to process a given workload

and to meet the response time requirements of the system users.

In order to evaluate a system from either of the above aspects, performance

criteria (standards with which comparison can be made) must be established.

Performance criteria can be specified only with respect to the type and

the purpose of the subject system, its workload and the purpose of the

evaluation. On the basis of the selected criteria, a set of evaluation

aids may be chosen.

1-1

There are a number of evaluation aids utilized to measure system perfor-

mance. Evaluation aids, if properly used, provide performance measurement

statistics for use in determining both the efficiency and the effectiveness

of a system. Tables 1-1 and 1-2, from Svobodova (1976), provide examples

of system performance measures (evaluation aids) that have been of interest

to computer system users.

System performance evaluation (a superset of system performance measures)

is based upon the measurements (and the measures and statistics derived

therefrom) that are collected during system operational periods (the data).

These data may then be analyzed and reports can be produced apart from the

system being studied.

1 _ .G . eC c i_ c.: Ion.r tre na: re cf the system
4einc va-' c and zhe avao'.ii i., of 6p-rooriate "sensors' One of tne

most s .;Ple (and least ex.)Ensive) of sensors is the coxnon stopwatch.

Althoucn woefully inadecate for measuring microsecond and millisecond

intervals, tn soo)a-cr has a key role in determininq efficiency measures

such as TMF and effectiveness measures such as turnaround time. This

cor:imon st:owatch, when electronically counled to internal system events,

may still be adequate to determine internal delay factors, Gain factors,

system availability and relative throuqhput to sufficient accuracy.

For xdry ozer ;iasures, the stu:watch and its more advanced brethren are

supp':,enr.ed with miore sophisticated sensors such as hardware and software
o.,r; io,' drid OE;[]o,:; c: d'c c.,jr,2 t r, ro r(, !e . :r :,0 n\ .: .. w e , dre the

.rv are nots availatl e * ne aral'st will resort to sinulaion

and nodelinq to represent the perceivable (reasureable) system characteris-

tics in terms of more basic operational efficiency factors. In these cases

both measurement and modeling could be required in order to perform the

necessary evaluation.

1-2

Performance Measure Description

External delay factor Ratio of job turnaround time to job
processing time

Elapsed time Ratio of job turnaround time under multi-
multiprogramming factor programming to job turnaround time wher
(ETMF) only one job is in the system

Gain factor Ratio of total system time* needed to
execute a set of job under multiprocramming
to the total system time needed to
execute the same set sequentially

CPU productivity Percent of time a CPU is doing useful
work (used as a measure of
throughput)

Component overlap Percent of time two or more system
components operate simultaneously

System utility Weighted sum of utilization of system
resources

Overhead Percent of CPU time required by the
operating system

Internal delay factor Ratio of the job processing time under
multiproqramming to the job processing
time when it is the only job in the
system

Reaction time Time between entering the last
character on a terminal or receiving
the input in the system and receiving
first CPU quantum

Wait timtu for I/O Elapsed time required to process an
I/O task

Wait time for CPU Elapsed time required to process a CPU
task

Page fault frequency Number of page faults per unit of time

Table 1-1 SYSTEM EFFICIENCY

* System time is the time during which it leitt one of the System'rocs(ors
(CPU, 0 2nnel s) is busy.

1-3

Performance Measure Description

Throughput Amount of useful work completed
per unit of time with given workload

Relative throughput Ratio of the elapsed time required to
process a given workload on system Sl
to the elapsed time required to process
the same workload on system S2

Capability (capacity) Maximum amount of useful work that
can be performed per unit of time
with given workload

Turnaround time Elapsed time between submitting a job*
to a system and receiving the output

Response time Turnaround time of requests and
transactions in an interactive or real r
time system

Availability Percentage of time a system is
available to users including MTBF/MTTR
statistics

I.

I

Table 1-2 SYSTEM EFFECTIVENESS

* In an interactive system, each command issued from a user's terminal is
assui;,ed to represent a new job.

1-4

1.2 Basic Operational Measurements

Although many of the measures presented in Tables 1-1 and 1-2 are virtually

identical to a basic physical measurement (e.g., time), many measures

are derived from statistical and logical operations performed upon a set

of basic measurements. The selected set of basic measurements also de-

pends upon the evaluation criteria. However, they may be classified to

include the following basic measurement types:

0 The occurrence of a hardware event

- Interrupts, interrupt requests, and interrupt grants
- I/O channel data transfer

- Change of machine status

- Execution of a specific instruction

- Access of a specific memory location (or range)

0 The occurrence of a sequence of hardware events

0 The occurrence of a software event

- Starting/stopping execution of a specific job

- Request for a specific executive service

- Calling of a specific subroutine

o Hardware status or software status

- Useful for "Gating" of events

- ANDing and ORing of several state variables

- CPU, I/O channels, and peripherals

o Hardware Timing

- Interval between any two hardware events

o Software timing

1-5

0 The counting of events

- Hardware or software

- Single events or event sequences

o Event tracing
- The recording of events and the time of their occurrence

when multiple event types may be involved

In short, the basic measurements consist of event detection, event

counting, tracing, status, and interval timing. From these basic

measurements come distributions of the values for these measurements,

statistical measures of those distributions, and other mathematical

measures obtained from the statistical measures and basic measurements

(ratios, sums, etc.). The set of measures (the evaluation aids) con-

tribute to the performance evaluation.

1.3 Categorization of Computer Systems Monitors

Performance monitoring of a computer system can he implemented along many

basically different methodoloqies - each methodoloqy with its own

characteristics strengths and weaknesses. The following five classic

monitor types have been built and/or designed:

o Software monitor, a collection of programs on the measured

machine that interrupt the execution of the system at the

occurrence of specific system events. The software monitor

then collects desired information before relinquishing

control back to "normal" operations.

0 Firmware monitor, a monitor that is imbedded within the

regular microcode instruction interpreter of a microprogrammable

machine. This technique can minimize the interference

(artifacts) that a slower softw.are monitor introduces and is

also capable of collecting detailed information unavailable

to a software monitor.

1-6

o Logic Analyzer, a measurement device at the circuit level,

monitoring and displaying logical signals.

o Hardware monitor, a free-standing imdependent physical device

connected to the measured machine by cables and probes. In

principle it does not disturb the operation of the measured

machine.

o Hybrid monitor, a combination of hardware, firmware and

software monitor.

Two primary monitor data collection methods are common:

o Event driven systems in which the monitor is triggered by

specific significant events. These events could be job

oriented or computer component oriented.

0 Sampling systems in which the monitor contains an interval timer

that will trigger data collection at certain time intervals.

Event driven systems are more efficient if specific events are to be

measured. Sampling systems tend to generate much more data but they are

useful in determining gross operational statistics (utilization rate, etc.).

Given a technique for accessing the events to be measured in the target

machine, the detail of data available to the analyst and the time at which

the data becomes available are important elements in performing the desired

evaluation. Two methods of data recording are prevalent - traces and sununaries.

0 Tracing monitors produce the complete, time ordered, event by

event listing of measured activities.

0 Summary monitors produce a condensed version of the history of

certain activities (i.e., a summary of activity over a given

interval) in the form of a count, histogram, etc. with little

or no precision in time ordering of events over short intervals.

1-7

Io

Tracing is not commonly used in system-wide evaluations because of the

extremely large amounts of information that must be stored, retrieved and

reviewed; it is, however, useful for program debugging. Summary data

monitors do allow the analyst to evaluate variable performance over longer

periods through the "snapshot" mechanism - where the summary data is

stored at regular intervals. Summary monitors, however, can record high

speed event sequences with sequence detection logic at their front ends.

Most detailed evaluations require significant analysis of data obtained during

a test. However, some critical data could be immediately displayed; this

leads to two forms of monitor data presentation.

o Real-time monitors where all desired information is immediately

obtained and displayed or otherwise used in the measurement

task. Only a limited amount of data can be meaningfully presented

in this manner.

o Post-processing monitors where the previously stored measurement

data is retrieved from storage devices; it is processed, analyzed

and reported at a later time then the actual measurement took place.

In Section 2.0 is described the nrinciples involved in software, hardware

and hybrid monitors. In each of them a distinction can be made between

the following monitor components:

0 Instrumentation, such as software interceptive techniques,

electronic probes, interfaces, etc.

o Selector element, such as special hardware, vector generator,

logical patchboards.

o Processing element, such as host software, microprocessor

monitor.

1.-8

o Recording element, such as host's main or secondary memory,

counters, RAMs and any monitor storage devices.

o Reporting element, such as host, monitor-microcomputer.

1.4 Mc2 Hybrid Monitor Design

The object of this report is the documentation of exploratory research

performed by Mc This research has led to the development of design

specifications for a minicomputer hardware monitor.

The Mc2 design incorporates pure hardware, software, and hybrid elements.

All of these types of elements are required for a completely synchronized,

fully capable performance measurement program that generates minimal

artifacts.

The combined hardware and software hybrid monitor can be used in

hardware mode only (no host resident software) to capture basic

hardware component performance data such as those popularly utilized and

displayed in Kiviat and Gantt chart form (CPU busy, etc.); it can also

be utilized together with a host software monitor or other cooperative

code to provide powerful debugging tools and operating system software/

job/program performance measures. Through the flexibility provided

with nronrammable patchboard logic and the ability to easily select

desirable functions to be active, the hybrid system approacn will

satisfy all currently known measurement and operational requirements at

a low replication cost.

Independence from the target host operating system is assured by the

hardware subsystem of the proposed monitor. For many job/program/

overhead measurements, however, independence of host software is fictional

as the requisite host software monitor element is specific to the host's

operat4 i system.

L _ _ _ __ __ ..I-9.

1.5 Outline of Report

In Section 1.0 an introduction was provided to the kind of measurements
that generally are of interest to monitor service users. In addition

the various forms of monitor services have been categorized.

In Section 2.0 further details of the monitor services categories have

been provided, in order to establish a baseline of performance

characteristics that should be included in the hybrid monitor design.
Also described is the environment in which the AN/GYQ-21(V) monitor

will be applied and the potential users that it will find in those

environments.

Section 3.0 outlines the various hardware elements that are parts of the
monitoring configuration. Included in this outline is a description

of the AN/GYQ-21(V) environment, as it will be seen by the Monitor-21(V)

interface. The measurements that can be made hv the monitor, and that

were of interest to the various users groups, are also described in

Section 3.0. The description documents the contributions that the

various hardware elements make to the measurements.

The software elements to be running on the host processor and monitor

microprocessor have been specified in Section 4.0. The eventual

implementation of the software elements is, of course, dependent on

the ultimate decisions taken on hardware element implementations (choice

of microprocessor, etc.).

Lastly in Section 5.0 a summary is provided of the cost factors

involved in the implementation of the design, as well as its expected

performance characteristics.

1-10

2.0 SYSTEM CONCEPT AND SCOPE

2.1 Monitoring Requirements

Commercial monitoring systems are oriented towards the user who
is controlling a large data processing installation. Typically, the

environment is a multiprocessor environment, with a flexible multiprogram-

ming executive that must control a large number of users, a variety of

processing requirements, large amounts of direct access storage and a mix

of "batch" and on-line users. In about all cases, these environments are

either IBM or IBM compatible (i.e., Amdahl) and the operating systems are

almost always IBM products (i.e., OS-MVT, Multiprogramming, variable number

of tasks) or the sophisticated virtual-storage operating system (VS2).

Facility managers are tasked with the problems of "tuning" their facilities

to provide the best possible workload throughput and to break dynamic work-

load "logiams" that may occur due to special transient conditions. Commercial

monitors are designed to capture and process internal system information

to assist management in identifying processing bottlenecks, and to forecast

future processing requirements. The information is interpreted by persons

having detailed knowledge of both the total system hardware configuration

and the operating system or systems that run on the equipment under study.

The resultant information then influences management planning to accomplish

performance enhancements through:

o Improved scheduling

- batch and interactive jobs

- development and testing

- critical scheduled jobs

- demand loading variations during a day

2-1

o Optimization of system software runtime variables

o Optimization of application programs

- improved algorithms

- reorganization of modules/overlays

o Hardware reconfiguration

- Channel/controller utilization

- Multiprocessor peripheral sharing

o Improvement of Data File organization

- physical location of data

- data structures

- record contents

The environment of the AN/GYQ-21(V) certainly incorporates the above

characteristics. It is expected that the "21(V)" facility managers will

have basically the same operational enhancement goals as their commercial

counterpart. However they are also burdened by additional factors that

preclude many of the solutions available to the commercial facility

manager:

o In an intelligence/communications environment, the system must

typically be operational on a 24 hour per day, 7 day per week

schedule and management cannot predict a low level, crisis-free

time for loading for testing during the midnight hours.

2-2

o The security arrangement does not stop with control of physical

access or even with controlled remote access to data. In many

cases the very presence of emanations - whether or not they

contain comprehensible information - is compromising to the

mission.

o The personnel has not typically grown with and learned the

system over a long period of time. The military environment

produces a constant change in personnel with the concomittent

demands for continuous training and low complexity operations.

For the same reason, one similarly cannot always rely on the

availability of in-house expertise at the technical levels

required for more esoteric analysis.

Solutions to this dilemma have not come easily or inexpensively and have

typically involved acquisition of separate systems upon which software

development and testing is performed. This situation does not necessarily

aid in the correction of an intermittent system failure under "real" loads

nor does it tend to make accurate loading and utilization data from the

"live" system readily available so that well-directed, cost-effective

improvements may be rapidly implemented.

Recognizing the situation and faced with the continuing placement of

AN/GYQ-21(V) hardware and software at hundreds of critical locations around

the world, RADC has taken several steps to provide the tools and techniques

necessary to cost effectively optimize 21(V) performance and utility in its

unique operational environment. The project, of which this document is

the final report, is one of those steps.

2-3

The monitor described in this report is not solely of use for manage-

ment. In general, the intended potential users of the AN/GYQ-21(V)

monitor services can be partitioned into four "classes". Such parti-

tioning, however, does not exclude, for instance, a "Class III" user

from requiring "Class I" measurements. It does partition requirements

into groups most frequently used by a "class" of monitor users.

o Class I Users

Resident system technicians, as opposed to engineers, are the

primary Class I representatives. Such technicians are

responsible for the continued functioning of an AN/GYQ-21(V)

system, primarily from a hardware standpoint. Responsible for

some limited preventative and remedial maintenance, the

technician would use the services supplied by the hybrid

monitor to both verify proper continued system operation and

to isolate system malfunctions. Such isolation would help

tne Lecnnician justify the use of outside or vendor-supplied

maintenance, and would also help the teuhnician to discuss the

specific malfunction, in advance of their arrival, with the

outside repair personnel. This will not only save valuable

elaosed-time maintenance charqe hours, but may also assist

the outside maintenance personnel to assemble needed replace-

ment components before making a charged visit to the facility

where the defective AN/GYQ-21(V) is located.

2-4

o Class II Users

Class II Users are software development people, primarily

programmers. Their uses of the hybrid monitor would be for

debugging and performance monitoring of isolated software

modules, and are not as general in scope as any of the other

user classes. Monitor facilities could be used to greatly

enhance the functions of ODT (Online Debugging Technique),

supplied with RSX operating systems. In addition, the

hybrid monitor could provide the Class II user with a more

sophisticated timing and resource usage analysis capability

in a multi program/multi task environment.

o Class III Users

Class III users are persons with responsibility for the

continuing technical performance of a complete 21(V) system.

It is this user that must answer to both Class IV (management)

users, and indirectly to all system users, for the level of

performance provided by the system. The Class III user is

the most demanding user of hybrid monitoring services; they

require access to information describing hardware operation

in the most minute of detail, information about the performance

of the Operating System, identification and parametric infor-

mation regarding the transient user loads placed upon the

system, and gate-level timing analysis information to resolve

system deadlock conditions. While nearly all requirements

of Class II and IV users could be gathered by means of host-

supported software-based monitoring techniques, the Class III

user requires information that can only be obtained by means

of logic ancillary to the system being measured. The user's

requirements most closely parallel the capabilities provided

by a fast, logic state analyzer, with its list of required

probe points being most demanding.

2-5

o Class IV Users
Class IV users are management personnel responsible both for
providing sufficient computer resources for a given "mission",
and for justifying the cost of both present and future computer
resources. They conform closely to the typical users of com-
mercial software-based monitoring systems that report breakdowns
of system utilization by user, ti.e of day, etc. In addition,
Class IV users.need to be able to relate current demands upon
a system to the system's maximal capacity in order to forecast
system capability expansion. Most Class IV measurement
requirements are cumulative, and do not require extensive

real-time reporting capability.

In Figure 2-1, the relationship between the user classes is illustrated.
In addition, the figure shows the way in which the various user classes
complement each other.

In the following section, we will survey existing monitoring facilities
and document attributes of these systems. The concepts thus described have
been incorporated in the baseline concepts of Mc2's minicomputer hardware
monitor design, the objective of it being a scaling down of monitoring
facilities from large-scale machinery towards minicomputer systems.

2-6

* ~ ,*

USER CLASS IV GLOBAL

Management

USERCLASSIII_ TECHNICAL

System

Integrator

USER CLASS I.I RCASI

Hardware Person: Software Person:
Technician Programmer

(MPINTENANCE SUPER ODT

Figure 2-1 User Classes Hierarchy

2-7

2.2 Monitor Survey

2.2.1 Software-Based Monitoring Systems

Software-based monitoring methods utilize the resources of the system

being measured to monitor its own activities. As every request to use

one of the system's hardware resources is actually a computer instruction,

or a sequence thereof, it is a relatively simple matter to divert all

instructions in the midst of their normal fetch-execute cycle to a

software routine that examines the instruction and determines what sort

of resources it requires. The software routine used to decode the

diverted "workload" instructions, is itself composed of instructions.

It can easily be seen that even this elementary software based monitoring

scheme introduces confusion into the collected results. While this
"contamination",called artifact, can be accounted for and the results

adjusted accordingly, it can be seen that the scheme introduces operational

overhead to the system being measured.

The level of overhead introduced varies, in proportion, to the degree of

detail of the information being collected. While it is true that in

a properly-designed and properly-working system that nearly any collection

of system functions can be quantified and recorded, the overhead of doing

so on a continuous basis burdens the system being measured to an unac-

ceptable level. While all software monitors must introduce overnead,

the difference between the good ones and bad ones is more or less a

function of their affect on the system's normal assigned operations.

There are several clever compromises that a software-based measurement

scheme can employ while not seriously compromising the integrity of the

measurement being made. These compromises are the indirect marketing

tools used by the handful of companies that produce software monitors

for general commercial use. More will be said about both the compromises

and the vendors in section 2.2.1.3.1.

2-8

Software monitors contain two major functions:

o collection of performance measurements and/or their

statistics during operation of the subject system.

o analysis and reporting of the collected statistics, usually

upon the termination of subject system processing.

2.2.1.1 Collection of Performance Measurements

The collection function is embedded within the subject system at the

operating system or executive level in order to gain access to system

management data relative to memory utilization, scheduling queues,

peripheral device activity queues, CPU utilization, the system clock, etc.

The collection function of a software monitor should operate as a near invisible

component of the operating system. It should be noted that, for this reason,

the monitor itself contributes to the measurement data being collected

since CPU time, memory utilization and possibly I/O activity statistics

will include monitor processing and storage areas. In the normal case,

a software monitor will contribute from 2 - 5% of the measured quantities

in the above statistics.

Two implementation methods are employed for the collection function in

software monitors.

o event driven

o periodic sampling

An event-driven monitor is activated by the occurrence of a special event

within the subject system that is able to trigger the monitor (e.g., an

interrupt). The monitor examines the cause of the event and collects

pertinent statistics dependent upon the type of event and/or the subject

system function responsible for the event. Control is then transferred to

2-9

the normal operating system event/interrupt handling routines. An interrupt

driven monitor obtains access to interrupts through modification of the

subject operating system's interrupt transfer vectors whereby the transfer

is directed to the software monitor, not to the operating system's interrupt

routines.

Periodic sampling involves the scheduling of the monitor collection

function at specified time intervals. When activated, the monitor examines

all pertinent system tables and collects performance statistics reflecting

the status of the subject system at that point in time.

2.2.1.2 Analysis and Reporting of Collected Statistics

The collected performance measurement statistics are analyzed and

reported by a distinct monitor function which is independently activated at

the user's convenience. The collected statistics may be reported in detail,

summarized, or printed in graphic form (e.g., Kiviat or Gantt representations) -

depending upon the nature of the subject system and upon the type of measurement

data involved. The collected statistics may be saved in a peripheral file

if the collection function has not been designed to do so. The reporting

function of a software monitor may also be employed to perform comparison analysis

of performance measurements from several operational periods of the subject system.

2.2.1.3 Types of Monitoring Supported by Commercial Software Monitors

There are three distinct types of software-based monitors. These can be

differentiated on the basis of their measurement objectives as follows:

2-10

- -' ; l~.

TYPE

1 Monitors oriented toward the collection of information about

hardware component usage.

2 Monitors oriented towards the measurement of usage of

executive resources.

3 Monitors oriented towards the measurement of system user

throughput.

ohile the first kind of software monitoring is sometimes necessary to

locate chronic bottlenecks, most commercial software monitors are of

type 2 and/or 3. As such, these monitors are totally designed around a

single operating system.

In Mc2's survey of the software monitor market, the following conclusions

were drawn:

0 All were designed for "IBM" hardware/software environments.

They would, however, support equivalent architectures, such

as AMDAHL and ITEL/National Semiconductor.

o Each was designed for a specific operating system. MVS was

most common, with CICS a close second.

o Except for Mc2 monitor, no software monitor products have

been made available for either the PDP 11/45 or 11/70.

The implication from these conclusions is that the software component

of the hardware/software monitoring system designed by Mc2 will also not be

universal, but rather will be written specifically for one or more of

the possible operating systems for the AN/GYQ-2l(V); i.e., IAS, RSX-IID,

RSX-11M (+), or perhaps UNIX. Further, as the hardware component of

the hardware/software monitoring system will be better suited to the

2-11

measurement of hardware component usage, any software monitoring services

will be type 2 or 3, although they will make use of the data collected

by the hardware monitor to assess type 1 activity.

2.2.1.3.1 Features of Commercial Monitors

Two interesting, if not profound, ideas gained from examination of some

of the more MVS-oriented monitors were monitor modularity (a Boole and

Babbage concept) and the universally used monitor configuration.

The modular monitor was developed by B&B, as a "compromise" on the

monitor's appetite for system resources. Basically, it means that a

monitor "nucleus" exists, containing monitor clock, I/O and reporting

routines, and its own "sub-executive". This nucleus is sort of the

Venn-diagram overlap area of the variety of sub-monitors (types 1,2 and 3)

that B&B provides. Dormant, the nucleus takes very little space, and

very little system overhead. The monitor user can communicate with this

nucleus, and cause it to call into memory one or more sub-monitor modules.

The sub-monitor activated with input from the user reports about recording

frequency, etc. The result of this modularity is that monitor overhead

is reduced to just that necessary for the monitoring features needed at

the time.

The "interactive monitor configuration" is usually set up by means of a

high level English-like language that allows the user to communicate

with the software monitor and tell it what the user wants collected,

reported, how often and where.

An efficient software monitor is designed by determining the minimum

frequency at which each important system component is used, and by

forcing the monitoring process to be event driven. That is, to have a

given resource sampled only when the monitor is informed that a significant

event has occurred.

2-12

Unfortunately, the optimal rates for sampling system resources are as

dynamic as the usage of system resources themselves. Further, since

it is necessary to monitor the systems for a variety of distinct

reasons (i.e., long-term management planning, individual performance

problems), the monitoring "formula" for sampling and report rates

will change as well. Most commercial monitors allow the user to adjust

sampling of each important resource by direct interaction with the

software monitor.

Principally different software monitors have been written by Boole and
2 2

Babbage, Inc., !CANDLE Corp., and Mc . The Mc monitor will be described

in more detail in section 2.2.1.3.2 in order to illustrate the software
r

monitor concept.

The surveyed software monitors can be characterized as follows.

2-13

W

Name: CONTROL/CICS (Customer Information Control System)

Vendor: Boole and Babbage

Hardware: IBM 370 series

Software: IBM CICS (Customer Information Control System)

Monitor Type: 3

Description: Provides management-oriented reporting on the performance

of a CICS HW/SW system, with emphasis on system throughput. K

Name: CONTROL/CMF (Comprehensive Management Facility)

Vendor: Boole and Babbage

Hardware: IBM 370 series

Software: IBM MVS

Monitor Type: 1, 2 and 3

Description: CMF (Comprehensive Management Facility) provides a

resident "Master Monitor" onto which may be hung as many

special Boole and Babbage supplemental monitors as are necessary

Only monitors that are "active" consume system resources, and

the total monitor configuration is under real-time control of

a user. CMF c,)n monitor from the hardware component level,

through use of executive services and up to the system

throughput level. It will support the generation of long term

trending data bdses as well as short-term high resolution data

bases and special-purpose submonitor data bases.

2-14

Name: Omegamon

Vendor: !CANDLE CORP.

Hardware: IBM 370 series

Software: IBM MVS-

Monitor Type: Some 1, mostly 2 and 3

Description: Primarily a real-time reporting system supporting IBM 3270
terminals in dedicated or remote (through TSO) mode. Primarily
oriented to machine room management, Omegamon allows dynamic
monitoring of system bottlenecks, "deadly embrace" and through-

put delay, and help personnel remove bottlenecks or optimize

their MVS system.

Name: Mc2 AN/GYQ-21(V) software monitor

Vendor: Measurement Concept Corporation

:Iardware: DEC PDP ll/45-compatible machines

Software: DEC RSX-1D Real-Tine Executive

Monitor Type: Some I, mostly 2

Description: The Mc2 monitor was d',signed not only to mionitor the
behavior of an AN/GYQ-21(V) system, but also to examine the
behavior of the Runker Rarno Corporation SARP (Storage and
Retrieval Processor) system.

1'- 1 5)

2.2.1.3.2 The Mc2 Software Monitor

A software monitor has been developed by Mc2 to collect performance statistics

of an AN/GYQ-21(V) computer. The present monitor collects and reports

a limited set of performance measurements involving input/output activities.

The monitor has been utilized to obtain 1/0 performance measurements for

SARP* functions within the CATIS** system, which subsequently have been

successfully used in a computer simulation model of that particular system.

The Mc2 monitor has three main functions (Fiqure 2-2).

o Definition of parameters

o Collection of performance measurement data

o Reporting of collected measurement data

The Parameter Definition Function allows the user to specify the

measurement statistics to be collected during the operational period of

the subject system. Parameters are defined before beginning the operational

period of the subject system. A secondary purpose of the Parameter Definition

Function is to initialize the runtime collection function of the monitor.

The initialization process involves the allocation of main store storage

areas for the collected statistics and the alteration of the internal

interrupt transfer vectors within the RSX operating system to direct interrupt

processing to the active monitor.

*SARP - Storage And Retrieval Processor - a Data Management System

**CATIS - Computer Aided Tactical Information System

2-16

Usie Definition of
\ hat to /[Monitor
measure Parameters tin

Monitor

Initialization
(install in RSX-111

SUBJECT SYSTEM

internal
interrupt

Active Monitor

Collect

Measurement
Statistics

Report
Measurement
Statistics - Report

Figure 2-2 Mc2 Software Monitor

2-17

Performance measurement data is collected while the subject system is

in operation. The active monitor module captures all internally generated

software interrupt requests for operating system services (an EMT),

examines the request with respect to the user-defined collection parameters,

and gathers the measurement statistics specified if the interrupt request is

determined to be pertinent. The intercepted request is then passed to

the RSX operating system to perform the requested service. All measurement

statistics requested are accumulated in main store buffer areas.

The reporting function of the monitor is activated at the discretion of

the user. The reporting function may be called during operational periods

of the subject system or upon termination of operations by the subject

system. The reporting function produces a report containing the performance

measurements requested in the Parameter Definition Function.

Among the key performance measurements made by the Mc monitor are:

o Count of RSX-11D I/O directives by task and (work in progress)

by device

o Amount of time taken to service RSX-11D directives (by directive)

o Amount of CPU time utilized by task

o Disk activity measures

- Arm motion histogram

- Sector address 1/0 activity (also a histogram)

0 Communications Device Activity Measure (work in progress)

- Size of message transferred

o RSX-1lD SYSCOM Node pool utilization

2-18

Summary measures (event counts and times) are collected and may be

periodically dumped to disk for later "snapshot" time analysis.

The Mc2 monitor is designed to operate as an integral part of the RSX-lID,
version 6B Operating System for the AN/GYQ-21(V) computer. Nomenclature,
mnemonics, absolute memory addresses and operating system table structure
references used by the monitor are for the named version of RSX-llD.

Buffer space allocation and usage take advantage of the RSX Task philosophy.

The Mc2 monitor is written in Macro-ll.

All of the above contribute to the non-portability of the Mc2 monitor. This
restriction is common in software monitors which, in general, are designed

for use with a specific CPU and operating system combination.

2.2.1.4 Firmware and Microprogramming

With the growth of microprogrammable mainframes, another version of the
software monitors has emerged. In principle the microcode that interprets

the machine's assembly (macro) level instruction is slightly modified to
record (or to have recorded) appropriate performance data. When only
the system's own resources are utilized, this technique becomes a po-

tentially sophisticated software monitor with the capabilities to perform
some hardware oriented measurements. It also suffers from the general
drawback of software monitors: it introduces measureable artifacts.

2-19

2.2.2 Hardware Monitoring Systems

Measuring the performance of a computer system dedicated to the execution

of a single task is a relatively easy undertaking. Multiprogramming

presents additional obstacles to system performance measurement. Since

processes of all active programs are interleaved in time, it is not easy

to identify delays in processing due to contention between tasks for

hardware and/or software resources. More information is necessary about

the states of the CPU, I/0 busses, peripheral controllers, and about

memory utilization relative to time.

Capturing and recording the state and utilization of the various internal

subsystems of a multiprogrammed data processing system can be performed

in two ways: the system can be used to interrogate itself, or special

hardware can be used to interrogate the various subsystems while the

system runs its normal workload. These two approaches correspond to
"software" and "hardware" monitoring, respectively.

Using a system to monitor itself is attractive from the standpoint of not

having to acquire additional resources, but it imposes some restrictions

upon the system it is measuring. By placing a complex software subsys-

tem between the normal operating jobstream and the hardware resources

necessary to service the jobstream, overhead is incurred, slowing

down the system. Additionally, the monitoring process can itself create

contention for services that would not exist if the monitoring were not

being undertaken. Because of these problems, software monitoring is

rarely used on a continuous basis to determine overall system performance.

2-20

Hardware monitoring, on the other hand, introduces no loading of the

system being studied. Instead, carefully selected "probe" devices

eavesdrop on the activities of various subcomponents of the system. As

these probes are invisible to the system under measurement, an accurate

accounting of the utilization of all hardware components of the system

can be made without fear of the measurement process itself affecting these

measurements. The sorts of data collected by hardware monitoring procedures

include:

o Counting the occurrence of an event

o Measuring the duration of the event

o Determining the "state" of a device (i.e., active, wait, idle)

o Intercepting and storing data

o Determining memory segment utilization

o Registering the time at which the event occurred

The problem of monitoring the activity of a multi-programmed system,

requires the monitor results to be linked with each particular task.

Hardware monitoring procedures are often combined with some software

monitoring to specifically equate hardware monitor statistics with a task.

2-21

While many manufacturers provide hardware designed to monitor specific

areas of a system's performance, we will focus on two vendors who manu-

facture hardware based monitoring systems. The two vendors, COMTEN

(acquired by NCR) and TESDATA provide integrated hardware, software,

installation and customer training to help data processing management

deal with the kinds of problems found in large computer installations.

Other vendors supply monitoring equipment that classifies more accurately

as hardware diagnostic test equipment.

COMTEN can be considered the forerunner in the hardware monitoring

business, having filed for their patent in 1965 (granted in 1968), which

dates their concern to the approximate timeframe of IBM's System 360.

Their systems can be classified as "passive", in that they collect data

for later processing by COMTEN software running on the system being

monitored.

TESDATA markets a line of more sophisticated monitors, each based on

a minicomputer, which controls the monitoring processes, reduces the

resultant data, and reports the findings (both in real time and by batch

process) to the user.

Each of these systems has elements in common with the other. The methods

by which these monitors collect, record and report monitoring data is

described in the following sections.

2.2.2.1 Principles of Existing Hardware Monitoring Systems

2.2.2.1.1 Data Collection Methods

All hardware monitors rely at least partially on being able to tap into

various busses, flag lines, interrupt vector locations, and controllers

by means of high- impedance probes which "mimic" the logic state of these

points, and report them to the hardware monitor logic. As such, they are

2-22

entirely passive components from the standpoint of the system being monitor-

ed. Between 18 and 144 such probe points can be under surveillence by

the monitoring equipment, although only half of these may be "active" at

a given instant. The probes are capable of responding to pulses as short

as 10 nanoseconds, and can sustain repetition rates of 40MHZ (one pulse

every 25 nanoseconds).

Probes are attached to probe points with "temporary" connectors (i.e.,

spring clips). The points chosen for interrogation are generally single

control status lines (i.e., CPU idle, channel request). 1.cingful

events in terms of system behavior are rarely measureable by a single

sensor. These events are generally defined by ordered combinations

and sequences of sensor-detected signals. Both the COMTEN and TESDATA

systems rely on a "plugboard" arrangement where sensor inputs may be combined

by means of standard gate logic (AND's, OR's, NOT's, etc.), to define

system "events", which are the basic units of information for processing

by the monitor's hardware/software systems.

A further use of the plugboard "patch panels" is to direct the measured

"event" to collection and/or distribution circuitry, where the event will

be either "counted", "measured", or "mapped". These terms will be discussed

in the following section.

2.2.2.1.2 Collection of Event uata

Collecting information about the frequency and duration of events, and

about the contents of information transfers is accomplished by comparator

and collector circuitry within the monitor. A detected event can he
"patched" to a counter circuit, which will record the number of times the

event occurs. In addition, clock circuitry can be connected which accumulated

the amount of time for which the event exists. Some models permit "time

stamping" the event with the actual time of day.

2-23

In addition to events, actual data values may be recorded (for instance,

addresses as they appear on a bus). Generally, the sampling of this sort of

information is dictated by the occurrence of a logical event. Once

sampled, the data can be held (buffered) and submitted to comparater

logic, which will determine:

o where to store the data, or

o if it is within a desired range, or

o equal to a specific value.

This determination may lead either to the data's storage or its rejection.

2.2.2.1.3 Data Storage and Real-Time Reporting

The method of storing the data collected by monitor procedures described

thus far is the prime point of departure between COMTEN's and TESDATA's

monitoring. The COMTEN systems record the data with little further

processing. Aside from perhaps allowing display of the contents of

specific frequency counters by L.E.D.s, the COMTEN system provides very

little immediate information to personnel supervising the monitoring

procedures. Instead, the collected information is spooled onto magnetic

tape at set intervals for later, off-line processing. The COMTEN system

can be thought of as a passive system peripheral.

The TESDATA system are all built around powerful minicomputers, and are

considered a node in a distributed processing system. The minicomputer

is equipped with a tape or disk-based operating system allowing user

interaction with the monitoring procedure. Without repositioning

2-24

sensors, the user may load new monitor procedures, query the monitor

"data base" for dynamic reports, or may specify the dynamic display of

monitoring results on either a special bar graph display unit or a more

conventional CRT. In addition, dynamic data exception reporting is possible

because of the system's ability to sense, analyze and record data

simultaneously.

The most advanced of the TESDATA systems can serve as the central node
in a distributed (multiprocessor) monitoring network. Secondary measure-

ment systems transmit data to the primary system over voice-grade lines,

permitting effective analysis of remotely-distributed systems.

2.2.2.1.4 Data Reduction and Report Generation

2.2.2.1.4.1 COMTEN

Both representative manufacturers offer extensive software report gen-

eration packages. COMTEN offers them unbundled, as it tends to have

many packages tailored for specific IBM operating systems. COMTEN

software must run on the host computer, relying on the tape history

generated by the monitoring system for data input and the host's hard

copy facilities for output. These programs do riot appear to be at all

interactive. The user is able to define the time interval of da'a

reporting. Beyond that, report formats appearquite static. Standard

reports generated by basic COMTEN software (DYNAPAR) include:

2-25

0 Counter Processor

- Counter sunnaries

- Profiles - percentage of times that various monitored events

occur during a period (horizontal bar graph)

- Counter statistical analysis (mean, standard deviation,

min, max)

- Kiviatcharts

- Histograms

o Distribution Processor

These show the relative frequency of activity in various parts

of a hardware resource.

o Disk Analysis Profile

An information package for evaluation of data set placement.

0 Data Path Analysis

This package provides information for configuration management

by reporting on utilization of channel and bus activity, generally

for a multiprocessor environment.

0 0perating System related reportiLn

MVS Performance Measurement/Memory Mapping report package.

COMTEN reports, contrary to their publicity literature, appear to be of

direct use only to technical management, and would require annotation/inter-

pretation to be useful to management not directly involved with the computer

facility.

2-26

2.2.2.1.4.2 TESDATA

TESDATA's facilities for reporting monitor findings to the user are considerably

more comprehensive than can be offered by COMTEN because the monitoring

instrument is controlled by a minicomputer with a multi-user interactive

operating system. All software supplied for the presentation of reports runs

on the monitor's minicomputer, under control of the operating system, simul-

taneous with the collection of data. This dynamic monitoring capability

supports a number of TESDATA peripherals that can continuously report to

machine-room management on the current operating efficiency of the system.

One such peripheral is a standard alphanumeric CRT, while the others, a

bar-graph display and a large-character 32 character alphanumeric plasma

display unit, can report utilization and exception conditions from some

distance.

In addition to supplying its dynamic output capability, the TESDATA opera-

ting system allows the user to dynamically invoke all report generation

programs. The user can supply a variety of input parameters to these

programs, and direct outputs to either hard or soft copy devices, elimina-

ting paper waste. Because the report formats can be interactively tailored

to fit the user's requirements, the reports are far easier to interpret

than the COMTEN reports, and can more readily be understood by management

of all levels.

TESDATA systems do "spool" incoming information to mass storage devices (tape

or disk), so that reports can be requested for any given time period contained

in the system "data base".

2-?7

TESDATA can supply turnkey report generation packages (T-PACs) for their

entire line of machires, although the larger models in the series are capable

of supporting development of a custom monitoring package. Included with the

T-PACs are plugboard and sensor hookup configurations. The available T-PACs

are:

o Basic System Profile

o Regional Mapping

o Advanced System Management Profile, including high speed buffer

activity and effective channel transfer rates

o Disk Contention Profile

o Regional Disk Mapping and Disk Arm Motion Profile

In addition to the T-PACs, TESDATA can supply an optional MVS-SMF support

package, which allows the user to combine hardware monitoring information

with output from IBM's SMF (Software Monitor Function) to produce a report

linking control information previously only available in separate reports.

2.2.2.2 Typical Hardware Monitor Configurations

Figures 2-3 and 2-4 are block diagrams of the two typical hardware-based

commercial monitoring systems discussed. While it is generally accepted

that the TESDATA monitoring systems are the "Cadillacs" of hardware

monitors, COMTEN does offer more sophisticated systems than the basic

monitor presented here.

The TESDATA minicomputer based monitoring systems are considerably easier

to configure, and requests for new kinds of reports can be serviced more easily

than in the COMTEN systems. The manufacturers' interfaces with the host

machine are essentially the same; where they differ is in the point where the

2-28

monitored data must be stored. COMTEN is content to spool their data

sequentially for offline processing, whereas TESDATA in effect adds an

entire system to the monitor, including a data base management facility.

If the kind of information that needs to be monitored does not chanae

often, and there is no need for dynamic condition or exception reporting,

then the COMTEN approach to "batch" monitoring is cost effective. For

complex systems, where on-line reporting capabilities are essential, the

much greater cost of the TESDATA systems is justified.

The hardware monitors discussed so far have been used in the optimization

of large mainframe systems. They tend to be very expensive utilizing fairly

large minicomputers as integral components.

At this point in time, except for the Mc2 hybrid monitor, no scaled-down

system with economics sufficiently attractive is available for the

AN/GYQ-21(V).

L _ -__

41~~' ro (00 (

V)) a

o~ ~-o

co~ 0

E 0. LA

0
(U EUE

Q) 44EU44
a

C A >L4 A 4 4 4 4C

m0k C.-)

4.1.

PC 4 -C
0 0 c

'v C .

C >14- U

'A 0 -4 '-0
444 rU MO 444)

::3 0> .0
0.

C)O. 100 'JcW

0V 0~ C

-1
0)

0 0

C 0' C

'-EUC

~Tape

Tape

Interval Time

CollIect r ;41 C
Collector 2 0

Probes (18 per concentrator) n

St w Minico
C7500C r.4DMA 32-64

0000r - 16 bit

0 (max of 8) ogMemory
Concentrator #1 r 1

0

0e
0r Pisk Cont

(max of 8) Plugboard Corn arator #1
Patch Panel Co mparator #2

TESDATA collectors
do the following:

o count

o store

o time

o map

o time-map

o time-store

The functions of each collector

are software-selectable from FigU
the system console

- A

ys em
Controll r

(T ap e
nPrinter

L collector ;'I 7---'

F_ CQector C2

t DMA " Minicompute Communications (Optional)
16-bit] -- -

(max of 8) o Memory
1

li l' , " Graphic Display (pinl

I ~~Devices (pinl

e
r isk Controller

Cornparator #1
Comparator #2

Disk-based
Operating System
(Multi-user)

TESDATA collectorsdo the following: o TPAC data collection/reduction
o cuthe report generation softwar

o User-defined data collection/o store reduction, report
o time generation software
o map o Monitoring System Self -o tmap Diagnostics

o Communications software

o time-store

The functions of each collector
are software-selectable from Figure 2-4 TESDATA High-End Monitor Design

the system console

2-31

improper execution sequence, addressing out of bounds, and improper data

capture from an external device. They are useful for detecting but not

diagnosing transient hardware malfunctions. To locate these problems, the

faster clocking speed of the logic timing analyzer is necessary. Typically,

a timing analyzer must run at 4 to 10 times the speed of the hardware

being monitored to examine the behavior of the hardware between its

own machine cycles.

2.2.3.1 Basic Functions

Logic analyzers generally have adjustable voltage threshold limits

between a logical "0" and a logical "I". As the analyzer deals with many

different logic "families" (i.e., TTL, TRL, DTL), it allows oversetting

the threshold to trap marginal logic conditions, when a signal swings

close enough to the threshold.

Available analyzers range in sample frequency from a few megahertz to

200 Mhz. The faster the analyzer, the higher the price, on an

approximately logarithmic scale. For example, a 5 to 10 Mhz analyser

sells for about $1500, a 50 Mhz analyzer sell for about $4600, and a

200 Mhz analyzer costs about $20,000. Part of the greater cost of the

faster asynchronous units can be explained by their larger memories.

One feature often present on asynchronous timing analyzers that increases

their utility is "latch mode". Latch mode allows an analyzer to capture

data spikes or events that are narrower than the sample clock interval:

the "latch" captures the transition and "holds" it until the next clock cycle.

2-33

In this way. the analyzer captures the high-speed anomaly and stores it

in its proper time sequence in relation to the rest of the data. This,

in effect, extends the bandwidth capability of a lower speed analyzer.

All general-purpose logic analyzers have the ability to "trigger" on

the basis of the combinational states of several logic lines. A

trigger variable can be constructed from a sequence of logical 'I',

logical '0', or 'don't care' conditions. Lines being monitored can be

compared to this trigger variable, with a 'match' condition beginning

the recording process described earlier. Added to this capability is

the ability to trigger when a 'match' condition fails to exist as well.

2.2.3.2 Special Monitoring Devices for the PDP-11 Series of Computers

o Formation

Formation F801 Program Debug Console for PDP-11 users can be set

up to stop or interrupt on UNIBUS receipt of a predetermined

memory or interrupt location. Upon halt, the F801 contains

the last 16 addresses, in order, to appear on the UNIBUS.

In addition, the F801 can respond to a match of pre-set address

to UNIBUS address by generating a UNIBUS interrupt, which is

handled by user-written software. The interrupt vector

address and bus request level are set by means of jumpers

on the control electronics plug-in module.

Both of these features can be executed:

(a) instructions accessed in "write" mode.

(b) instructions accessed in "read or write" mode.

2-34

The 801 mounts in a 19" rack or DEC cabinet, is 5 1/4" high,

draws 1.5 amps @ +5 volts, and uses one standard UNIBUS

load. The console sells for $1,200.

o Three Rivers Computer Corporation Bus Monitor.

Three Rivers Computer Corporation's Bus Monitor is designed

to assist hardware and software personnel in production and

maintenance of their PDP-11 based systems. All 56 UNIBUS

signals are displayed with LED indicators with switch selectable

FOLLOW or HOLD mode on the address and data lines. HOLD mode

is controlled by the 9 position function select rotary switch.

Eighteen three-position address switches allow the monitor to

display only the activity that occurs on a single address or

group of addresses. UNIBUS operation may be suspended by

such events as a memory reference, a write to a device register,

an interrupt, a parity error or an externally supplied signal.

The basic Bus Monitor may be enhanced with the Examine/Deposit

option. This adds the ability to examine or deposit into any

memory location or bus accessible register. The Repeat/Repeat-

Next functions for examine and deposit allow one to create

high levels of NPR traffic, to search for parity errors, or to

fill memory with a constant. The repeat rate is variable from

once every 5 seconds to 400,000 per second. With the Examine/

Deposit option the Bus Monitor may also be set up to interrupt

the CPU on the event selected by the function select rotary

switch of the basic monitor. Interrupt vector and bus priority

level are set by the user. Function select outputs and inputs

are provided the interconnection with logic analyzers, digital

counters and oscilloscopes. The monitor sells for $995, or

S1500 with the Examine/Deposit oDtion added.

2-35

o Hewlett Packard PDP-1l UNIBUS Interface

Designed as an accessory for Hewlett Packard logic analyzers,

the device provides a method for fast, easy connection of a

logic analyzer with a PDP-11 minicomputer. It consists of

of a quad-height board, which plugs directly into a PDP-11

SPC (Small Peripheral Control) slots, and allows access to

all 56 signals on the Bus. Circuits on the board generate

a clock signal for the logic state analyzer. In addition,

switches on the board provide qualification of UNIBUS

activity, so that reads, writes, interrupt vectors and DMA

transfers can be selectively captured for detailed analysis.

The price is quite modest at $300.

2-36

2.2.4 Hybrid Monitoring Concept

A hardware monitor is a device external to a measured device, that senses

electronic signals in the circuitry of the measured system and processes

them externally to the system in question. Several concepts are critical

to understanding the distinction between hardware and other types of

monitors.

The terms "passive", "active", and "cooperative" as used below refer to

the three primary data collection modes available for use in a 21(V)

monitor:

o Passive measurements are those requiring no monitor processing

logic or sequencing other than that necessary to detect a

signal from the probes and interfaces and to convert these

signals into event counts, distributions and inter-event

intervals.

A passive monitor can collect data at the tested system's

cycle speed or at a rate determined by some external event

(e.g., monitor cycle time, monitor clock, or frequency

divided host clock).

o Active measurements are those that result from specific

monitor activities that "request" information from the

host or otherwise alter (temporarily) the host's status.

An example of this technique is the transfer of the program

counter (PC) from the host CPU to the monitor via the UNIBUS.

2-37

o Cooperative measurements are those requiring a "handshake"

between host activities and monitor resources. A simple

example is the case where programs being debugged can utilize

the monitor (through one or more UNIBUS addresses) to record

specific events and counts.

A distinction can be made between the following major classes of hardware

monitors - the wired program monitor, the stored program monitor, and the

hybrid monitor.

2.2.4.1 Wired Program Monitors

Wired program monitors are characterized by their completely passive

mode of measurement; i.e., such a monitor merely records events that it

has the capacity to directly measure. Because of its limited "intelligence",

this type of monitor is capable of reporting only event trace and event
summary data for a limited number of events that must be defined prior to

test (no dynamic changes to event definitions can be made).

In its simplest hardwired configuration, the wired program monitor could

be similar to that illustrated in Figure 2-5 (Ferrari, 1978). The illustrated

tool only measures the utilization and overlap factors of CPU and I/0 channel
by observing the busy/idle and problem/supervisor flip-flops of the CPU

and the busy/idle flip-flop of the I/O channel (presuming they are accessible

for measurement); it only provides summary data since no provision for trace

recording/playback has been made.

In a more complex configuration, the wired program monitor can be equipped

with a "patchboard" that would allow the various probes to be logically

combined in other ways so that different measurements could be made. Patchboards

2-38

4

AND CPL) BUSY IPROBL E M)

ANANDh O(LA7j

TOTAL TIMEJ

CHANNEL E VENT FILTER COLINI f RS

PRO BE S

START STOP

Figure 2-5 Wired-Program Monitor

2-39

T

supplied with commercial units are sophisticated enough to allow detection

and counting of sequences of events.

2.2.4.2 Stored Program Monitors

The introduction of mini and micro computers have made it possible to

desigr, monitoring configurations in which the user can determine to a

larger extent what kind of measurements should be taken. Figure 2-6

(Ferrari, 1978), shows a configuration in which the program counter of

the CPU and the busy/idle flip-flop of the drum are being observed by a

monitoring device. In addition, information is obtained from the opera-

ting system tables to further sub-classify the observed events as they

trigger the monitor by a signal from the event filter. This is achieved

through the additional connection between the measuring computer and the

measured system's I/O bus.

Although such connections significantly enhance the discriminatory power

of the stored program monitor, they introduce some measure of artifact;

the monitor is actively pursuing the collection of data from the measured

system through utilization of the measured system's resources (its I/O

bus). The stored program monitor's processor element is capable of pre-

processing and storing more complex measurement data so that a better

picture of the system's performance can be screened.

Lastly, the availability of buffering and "intelligent" I/O control within

the stored program monitor offer enhanced capabilities for the capture and

recording of more detailed test information over longer periods of time.

2-49

STORED-PROGRAM TOOL

CONTROL
MEASURED SYSTEM JSIGNALSCPU / ~EVENT L

__ CPUS FILTER I

PC COUNTERS MEASURING

M COMPUTER
DRUM OC. -- COMPARATORS

MEMRESEN T D------1 BUS

PC - Program Counter of the measured system

FF - Busy/Idle Flip-Flop of the drum processor

Figure 2-6 Stored Program Configuration

2-41

2.2.4.3 Hybrid Monitors

A hybrid monitor is a cooperative and mutually synchronized configuration

of an internal software monitor and a hardware monitor. It combines the

best of two worlds:

0 A hardware monitor rapidly senses a variety of events,

but is limited in the ability to detect the stimulus for

a set of events.

o A software monitor is able to relate events to the

stimulus of the events, but is limited in the ability

to spend time processing that information.

In a hybrid configuration the hardware monitor is basically treated as

an intelligent peripheral device.

It is sometimes hard to make a clear distinction between the equipment

of the stored program hardware monitor and a hybrid monitor. Figure 2-7

shows a hybrid system where the connection between the data channel and

the minicomputer provides for two-way communication between the hardware

monitor and the software monitor in the host system; either can interrupt

the other. The result is that causal relationships between events can be

established. In addition, the minicomputer provides for opportunities to:

o Assist in setup and reconfiguration of combinatorial logic

of the event filter.

o Off-load the software monitor components on the host system.

o Produce on-line reports and detailed summary reports.

2-42

SOFTWARE MONITOR

HOSTMAINRAMEHARDWARE MONITOR

DATA CHANNEL RB

DEVICE7 DEVICE DEVICE MINICOMPUTER COMBINATION
UNIT

TIME & COUNT
RECORDING UNIT
UNIT.1

K

-- ONLINE DISPLAYS & KEYBOARD

Figure 2-7 A Hybrid Monitor

2-43

L _ _ __ _ __ __ _

3.0 HARDWARE DESCRIPTION

This section presents the hardware concept for the microprocessor based

AN/GYQ-21(V) monitor. The basic concept consists of a set of modules

whose functions parallel the classic data collection through recording sequencE.

o Raw data sensing/collection

o Event detection (preprocessong of raw data)

o Event processing and recording

Four modular hardware systems are defined for the hardware design concept.

o Sensing and high speed preprocessing subsystem (Vector

Generator)

o Medium speed event subsystem (Programmable Patchboard)

o Extended event processing subsystem

o UNIBUS Interface Subsystem

All subsystems operate under the general control of a "basic" monitor

microprocessor. Each subsystem may vary considerably in its complexity

from a "basic" configuration that still provides significant amounts of

performance data at minimum cost and installation complexity to a "fully

loaded" configuration that will simultaneously service the many diverse

requirements of programmers, system designers, system integrators,

installers, maintenance personnel, and managers.

3-1

The design concept recognizes the many orders of magnitude

difference between the times in which CPU and peripheral control signals

change (nanoseconds) and the times in which statistically relevent system-

wide evaluation aids such as average responsiveness are calculated (minutes

or hours). To accomodate this difference, four levels of detection/

processing are necessary.

o Level I: Changes that occur at rates faster than the basic

machine memory cycle time. In this domain, for example, are

21(V) UNIBUS handshaking signals that determine the latency

of bus acquisition, slave response, and change of bus master status

between CPU and peripheral devices. Typical times are from

10 nanoseconds to less than 500 nanoseconds.

o Level 2: Changes and status indicators that reflect time

durations on the order of one machine memory cycle. Among

the most important data elements at this level are the bus address

and data lines and UNIBUS transaction class (interrupt, NPR, etc.).

These events typically occur at .05 to 1 megahertz.

0 Level 3: Events and status indicators that change at rates

significantly slower than a single memory cycle but which could,

for example, reflect primary changes in CPU operational status

and peripheral device activity. Clear examples of events at

this level are:

- A change in processor priority

- A change in processor mode

3-2

- Completion of a block transfer

Characteristics times at this level are in excess of 10

microseconds and more typically in excess of 100 micro-

seconds.

o Level 4: Human perceivable events measured in seconds

to hours.

Each of these levels contributes valuable information to the higher

level event detection and processing.

The major components of the complete monitor and its AN/GYQ-21(V) inter-

faces ar'e shown in Figure 3-1. Events of all frequencies occur in the

21(V) host to the left of the figure. The high speed events are pre-

processed and converted to medium speed signals by the vector generator

that is physically connected to the host. Medium speed signals enter the

programmable patchboard (PP) where, per instructions left by the monitor

microprocessor, they are AND'ed, ORed and otherwise subjected to data

reduction that results in incrementing of counters or in self-modifica-

tion of the PP-program to allow sequence detection and interval stop/start.

The PP interrupts the microprocessor when program selected level 3 events

have occurred. These events are handled by microprocessor code which

eventudIly results in the storage (for later retrieval) of only desired

measurements.

Data flowing from left to right in Figure 3-1 arrives at the PP from the

vector generator subsystem. The data from the latter subsystem is all

obtained in a "passive" mode, that is, the monitor just prncesses what

it detects with no attempt to influence the host. Data from the special

UNIBUS interface subsystem, however, is based upon active arid cooperative

measurement techniques that force the host to give up the desired infor-

mation. At desired sample times and under ultimate microprocessor

3-3

IF-

) >1 c0 4 -3

CD I S 0 i I

U- 20)S O

Lf)I CD I W). 0 >
I~ 'a V-- M V)0--' II

QC U (.) n C A c C) ~C
(0 cc CS 4~-) 41~,

CL' I S-~(10 A I

LAIA CZ I C) 0 0 o i CL) 0)
~100)~ I 00 0)
OCQC' 4-) I-M0 E

I ~ ~ ~ c 0.I>o.*~
100000 ILIJO. C)

___ --...
-0 +-)

ra S-0

10 40 41() ~ 00

X2 L/l

cu V) 000UQ
0) 0- S.- >, CC o n

-0 V) o. *. Cn: - M ' 3L n_ -

0- W. [o0a) 0 a

Q.0I- ____ L/ L)V)M

-- 7-- -C I
W 0)0)

(0 (3 - (

) 4w ___

Cj _

S.- 0. S- I~ 00'01

W) C)

003-4

control, active measurements are initiated by creating appropriate signals

on the host (e.g., interrupt request, non-processor request, etc.) to

cause either the transfer of host data elements to the monitor or the

changing of the host execution mode (stopping the CPU, single stepping

it, etc.).

When monitoring a multiple AN/GYQ-21(V) system several vector generator

and programmable patchboard pairs might be involved delivering their

respective measurements to a common microprocessor (or several micro-

processors, as the need may be). The central microprocessor(s) system

will perform the correlation of events observed in the total system

under observation.

3-5

3.1 AN/GYQ-21(V) System Description

The AN/GYQ-21(V) is a software and (to a large degree) hardware compatible

series of computers and computer peripherals that cover the Digital

Equipment Corporation PDP-11 series plus peripherals and software from

other suppliers (such as Bunker Ramo). For this reason, maximum

utilization will be made of such commonality factors as:

0 The 21(V) operating systems (RSX-lI and IAS) are

multiprogrammed and multitasked. They are heavily interrupt

("real time") oriented. Maximal advantage can, therefore,

be taken of system hardware and software interrupts (traps)

to signify changes of system state.

0 The 21(V) operating systems are localized in low memory and

with the possible exception of common subroutines, they

execute in "kernel" mode. This information is highly useful

in developing evaluation factors such as CPU time in

executive service (overhead) and utilization of common routines

(time spent in linking and unlinking dequeues, etc.).

o The 21(V) design provides for easy accessability of the CPU's

general registers, memory mapping parameters, processor status,

and cache statistics, among other variables, via a straiy4it-

forward existing UNIBUS interface.

As the (V) in the nomenclature indicates, no two systems are the same.

They vary in memory size, CPU type, CPU options such as hardware floating

point, memory management, clock type, cache type and size (if any), I/0

bus structure and manner of memory access, peripheral mix and relative

positions, 1/0 bus acquisition priority, software operating system, and

application program mix and processing load. While the mainframe in a

3-6

21(V) can be any of a series of eight different machines, they are similar

in the following ways:

o All have the same instruction set

o All use the UNIBUS for I/0 device control and status

reporting

o All but the PDP-11/70 use the UNIBUS exclusively for data

exchange

o Except for the PDP-11/70 mass bus controller, all have similar

peripheral devices

o All have similar (but not identical) card module and cabling

structures and air flow and physical access arrangements

o All current 21(V)s have similar control consoles except for

differences which are irrelevant as far as the hardware is

concerned

As a result of the above, the discussion of the 21(V) emphasizes the

following four aspects for the reasons stated.

o UNIBUS - It is a window to the heart of 21(V) operation and

performance.

0 11/70 High Speed Memory and MBC Buses - This bus complex, in addition

to the UNIBUS, allows most aspects of every 21(V) transaction

to be monitored and measured.

0 CPU/Console Interface - A set of important CPU status and control

data is readily accessible at this interface.

3-7

o Restrictions and Limitations - A common set of architectural,

physical and operational restrictions apply to all 21(V)

systems.

3.1.1 UNIBUS

In AN/GYQ-21(V) systems most of the computer system components and peripherals

connect to and communicate with each other over a common bus known as the

UNIBUS. Address, data, and control information are transmitted on the 56 lines

of this bus. The discipline required to communicate is identical for every

device connected to the UNIBUS. Each device, including memory locations,

processor registers, and peripheral device registers is assigned a unique

address. Communications on the UNIBUS are bi-directional and asynchronous

making it compatible with devices operating over a wide range of speeds.

Any device can be easily connected to the UNIBUS by utilizing a connector

which accomodates the standard UNIBUS cables which are employed to

interconnect the components of the system.

The signals which comprise the UNIBUS afford an extremely comprehensive

set of parameters for evaluating system performance. In particular, the

duration of and interval between various control signals are of prime

importance in determining the degree of optimization present in the system

configuration both from a hardware and software standpoint.

Communication between devices on the bus takes the form of a master-slave
relationship. The device which currently has control of the bus is

referred to as "bus master". The device with which the master wishes to

communicate is defined as the "slave". These relationships are dynamic.

3-R

The processor may, for instance, pass bus control to a disk. The disk, as

bus master, could then transfer data to/from a slave memory bank or

other peripheral without CPU intervention.

Communications on the bus are interlocked such that each control signal

issued by a bus master requires a response from the slave in order to

complete the transaction. Communication is thus independent of the physical

length of the bus and response times of the various devices. No time-

dependent interfaces exist for the UNIBUS, thus no pulse-width or rise-

time restrictions are imposed on devices attached to the bus.

Any device which wishes to use the UNIBUS to make a DMA type of data

transfer activates the "Non-Processor Request"(NPR) signal line. Whenever

the arbitration logic determines that the processor does not require the

bus it issues a "Non-Processor Grant" (NPG) in response to the pending

NPR. Since NPG is a cascaded (daisy chained) signal, the first device

on the bus which has its NPR active will intercept the NPG and issue
I ,(.t Acknowledqe" (SACK) informing the arbitration logic that the grant

has been recognized. The interval between NPR and SACK represents the bus

acquisition time. By measuring the interval between NPR and SACK, it is

possible to determine the effectiveness of the arbitration logic in re-

sponding to the various devices attempting to utilize the UNIBUS.

To allow for data or control (e.g., interrupts) exchanges with the CPU, a

set of Bus Request (BR) and Bus Grant (BG) lines are provided for use by

I/O devices to acquire bus mastership. These functions are electrically

and functionally the same as the NPR/NPG lines described above except for

the priority level at which they operate. NPRs can stall the CPU in mid-

instruction execution and are the highest priority in the system. BRs

are only effective between CPU instructions. Figure 3-2 shows the priority

levels relative to internal software and CPU priorities.

3-9

V)LUJ

=:LZ -FD
fC

0o

of-s

~LLJLJ ~ .f
0: A.

o

C)0. --cr>

0.- X LUJ WL
CL 0I CL a_.-a

CL C-

<Z~L INRASN PRIORITY -

3-10

After acquiring the bus a device waits until the previous bus master

relinquishes control of the bus by clearing "Bus Busy" (BBSY). The new

master then activates this signal and proceeds to execute the desired

data transfer. The duration of BBSY is a direct measure of the length

of time that a device occupies the UNIBUS.

Once a device has acquired control of the UNIBUS, it issues a signal called

"Master Sync" (MSYN) alog with the appropriate address of the device or

memory location it wishes to exchange data with. In response to MSYN

the requested device generates "Slave Sync" (SSYN). This constitutes
the required handshake relationship needed to consummate data transactions

over the UNIBUS. The time interval between MSYN and SSYN is a significant

f*,sur: -f the e:rf-r:-ance 'f Pr)' 10S in general and sel,-ct-d d'vi c'',,

memory modules in particular. Since systems frequently have many memory

modules (as well as bus repeaters, etc.) the relationship between the

physical location of devices on the distributed UNIBUS can significantly

effect system performance. The address associated with any particular

bus transaction which is inordinately long identifies the device ur bluck

of memory which is responsible for compromising system performance.

3.1.2 PDP-11/70 High Speed Bus

Many current versions of the AN/GYQ-21(V) use the POP-11/70 as the main

frame. These 21(V)s also have a UNIBUS but the high speed peripherals

use a second bus for their data exchanges with memory. The UNIBUS is

still used for overall I/O transaction control and status reporting,

however, and the preceding UNIBUS discussion applies equally to these

21(V)'s as well.

3-11

The PDP-11/70 has an expanded interval implementation which improves

system thruput by virtue of the high data rate memory bus with its pro-

visions for up to four high-speed (MBC) I/O controllers. Unlike the other

PDP-11 systems, main memory does not reside on the UNIBUS and hence a

PDP-11/70 UNIBUS is rarely heavily loaded. This additional capioLit' is

intended for use with large capacity disk and magnetic tape systems which

would otherwise occupy the UNIBUS to an excessive degree.

The 11/70 has a cache memory which enhances program execution since

information stored in the cache can be accessed much more rapidly then

from main memory. Because of its function and position relative to the

other functional components of the system, the cache acts as a clearing

house for all main memory accesses. Three sources of requests for main

memory are possible: processor, UNIBUS Map, and the MBC I/O controllers.

System performance on the 11/70 is most easily monitored by examining the

requests and responses of the cache control logic which allocates memory

cycles on a priority basis to the three contenders. The performance of

the cache in executing its primary function can be evaluated by examining

the input to HIT/MISS Register which indicates whether the six most recent

program memory references were contained in cache. If a low percentage

(if hits i; ,ccurrin,, the prnorams heinc executed are not opti,1ll,

organized and corrective action is indicated. Both monitoring of hits and

disabling of the cache can be accomplished by accessing special cache

registers via standard UNIBUS addresses (17777746 and 17777752).

MBC requests for service are handled by arbitration logic located

on the cache modules. Since there are four such interfaces, the arbitrator

must decide the order in which to service these requests. Jumpers

installed in each of the four RH70 interface locations determine the

3-I 1

priorities assigned to each device. Monitoring the request lines from each

channel and the arbitrators response of "select address" back to the

controller gives a figure of merit as to the thruput from each high-speed

device connected to the 11/70.

Although high speed devices exchange data on the high speed bus, they

still communicate control information over the UNIBUS and generate processor

interrupts via this bus as well. Consequently, system performance can

still be evaluated by monitoring the intervals between transfer of control

information to a device and the consequent interrupt from that device after

the requested transaction is complete.

The final unique aspect of the PDP-11/70 is its Unibus Map Facility (UMF).

The function of the UMF is to allow UNIBUS resident devices to perform

DMA accesses to any of the 11/70's memory locations. A total of 31

mapping registers (UMR) are provided. Each UMR allows access to a 8K byte

contigious segment of memory. The UMRs are shared by all of the UNIBUS

devices. They are allocated and loaded by software on a dynamic, per

transaction basis.

3.1.3 CPU/Console Interface

The CPU/Console Interface is significant to the study because it provides

convenient access to a number of important monitor data elements as well

as providing a mechanism by which, in the active mode, the hardware monitor

can exert real time physical control over the 21(V) system if desired.

The CPU consoles are interfaces with the CPU and the remainder of the

system via a pair of ribbon cables. The data/control elements of interest

provided at this interface are the following:

3-13

o Address Display Indicator Inputs

- User I and D

- Super I and D

- Kernel I and D

- Program Physical

- Console Physical

o Mapping Mode Indicator Inputs (PDP 11/70 only)

- 16 bit

- 18 bit

- 22 bit

o Data Display Indicator Inputs

- Current Data Path

- Bus Register Contents

- Current CPU ROM and Floating Point Processor Address

- Display Register Contents

0 Processor State Indicator Inputs

- RUN: CPU is executing instructions

- PAUSE: CPU is waiting for UNIBUS device or memory

- MASTER: CPU is current UNIBUS master

- USER: (CPU is executing

- SUPERVISOR: program instructions in

- KERNEL: the indicated mode.

- DATA: The last memory reference mode was to Data (D) space

rather than Instruction (1) space.

3-14

o Error

- Address Error

- Parity Error (PDP 11/70 only)

o Address Select Switch Group

- Virtual: 6 position

- Console Physical

- Program Physical

0 Data Select Switch Group

- Data Path

- Bus Register

- P address of FFP/CPU ROM

- Display Register

o System Control Switches

- Load Address

- Examine

- Deposit

- Continue

- Enable/Halt

- Single Instruction/Single Bus Cycle

- Start

3-15

3.1.4 Multiprocessing AN/GYQ-21(V)s

Within a site, individual AN/GYQ-21(V) units can be linked together to create

a single operational entity, with each unit contributing its designated tasks to

the overall system operation. This technique of "distributed processing"

permits each AN/GYQ-21(V) unit to compute simultaneously with other

units, accessing its own or other data bases on a priority basis, resulting

in a net performance more powerful than most large-scale machines. As work-

load requirements change, AN/GYQ-21(V) units may be incrementally added or

removed on an "as needed" basis.

Distributed processing also provides operational redundancy. Individual

AN/GYQ-(V) units are paired and programmed, such, that either unit

will perform the tasks of both in the event of a unit failure. In this

mode, the system is neither interrupted nor is data lost.

Within component commands, AN/GYQ-21(V) Systems process and analyze locally

collected intelligence data. The systems maintain local data bases and can

transfer to and access the data bases of other AN/GYQ-(V) Systems at local,

regional and national levels, as required.

Units are also being used for local and regional data processing, for

"front-ending" host computer systems, and as a communication controller/

message handler for worldwide communication systems.

NMIC and PDSC are examples of military intelligence systems that include

multiple 21(V)s operating in a functionally distributed multiprocessor mode.

3-16

3.1.5 AN/GYQ-21(V) Restrictions/Limitations

The purpose of this section is to present those architectural, physical

and operational restrictions or limitations which will have to be observed

during the design of 21(V) monitor. While not all 21(V) installations

have the same set of constraints, the ones presented herein all occur

with sufficient frequenGy to be important.

3.1.5.1 Architectural Considerations

The processors mostly found in 21(V) systems are the PDP-11/45 and the

PDP-II/70. In this section we will discuss those differences between

these processors, already alluded to in Section 3.2, that will have an

impact on the monitor design. The PDP-il/45 and 11/70 (Figure 3-3)

are both medium scale general purpose computers, designed around the

basic PDP-11 family architecture. Although both are 16-bit machines,

the 11/70 employs the power of a cache memory, a 32-bit word organized

memory and I/0 structures to demanding, multi-functioned computing

requirements. This in conjunction with the UNIBUS Mapping Register and

a unique Memory Management Technique are the major differences between

the 11/45 and the 11/70 systems.

The PDP-11/45 memory management unit is designed for systems with memory

sizes greater than 56K bytes and multi-user, multi-programming require-

ments which dictate memory protection and relocation. In this environ-

ment several user programs are run simultaneously. This is accomplished

in memory management registers which generate an 18-bit physical address

from the 16-bit virtual address produced by the processor.

The 11/70, however, also uses memory management to generate a 22-bit

address from the virtual address to be placed in cache and main memory.

3-17

C.~

C r-

-- C-

V))

ccc C.0 C

o - LLlC V

C\J D

K c".

3-13-

The cache used in the 11/70 is two-way set-associative, consisting of

two groups of 256 blocks each. Each block consists of two words, thus

providing storage space for IK words. The cache is implemented using

a random replacement strategy with write-through.

The UNIBUS interface is the same for either the 11/45 or the 11/70.

The Front Panel connections for the 11/70 are different from the

11/45, but are functionally similar. As a result a different cable

would be required with a 11/70 vs. a 11/45. Any special individual

probe points would be different for the 11/70 and 11/45, but, considering

only a few would be necessary and they would only have to be installed

once, this should not cause a problem.

3.1.5.2 Physical Constraints

The major physical constraints in interfacing with a 21(V) system,

concern space, temperature, signal noise, load sensitivity and

power.

o Space

Space for the main body as well as probe/connect elements of

the hardware monitor is very limited in the majority of 21(V)

installations: this is true both in the immediate vicinity of

as well as inside the various 21(V) equipment enclosures. High

card profiles, limited inter-card space and existing cable

runs will make access to on-card signal points difficult without

resorting to the use of card extenders.

3-19

0 Temperature

Card extenders cannot be used because the 21(V) components

cannot be operated for any period of time with cabinet doors

open and drawers extended because of the loss of already

limited cooling air, danger of physical damage to the exposed

modules and compromising emanations. The mounting of monitor

components and the routing of monitor cables must be such that

no disruptions or redirection of cooling air flow occurs.

o Signal Sensitivity

Monitor cables must be routed so as to preclude cross talk

with 21(V) components. Monitor cables should not provide

paths for the sympathetic conduction and subsequent radiation

of 21(V) signals.

0 Load Sensitivity

The UNIBUS is an asynchronous bus with bus length and load a

factor in bus throughput. The hardware monitor should not

significantly extend the UNIBUS length. The UNIBUS, being a

transmission line, is also sensitive to reflections due to

excessive stubs. Hardware monitor UNIBUS probes must have

active components to provide a suitable match with the bus.

0 Power
Adequate amounts of 21(V) component power are available for

the use of the immediate probe/interface elements only. The

main units of the monitor should have self-contained power

supplies which operate on 48-63 Hz AC power.

3-20

3.1.5.3 Operational Limitations

Three factors in this area are paramount inestablishing design

objectives - security, operational availability, and monitor operational

procedures.

o Security.

The presence of long probe leads in commercially available

monitors could result in unacceptable radio emissions of

computer data. Significant care had therefore been taken

to minimize cable lengths and to provide adequate shielding

if and when longer cables are necessary. Similarly, probes

are designed to eliminate requirements for open bay doors

and rack assemblies.

o Operational Availability.

The classical hardware monitor requires significant machine

downtime - first to "open up" the equipment for probe

placement; this could well be followed by a period of limited

accessability or restricted operation because of the extra

equipment, cable runs, repositioning of probes, and open

drawers. Lastly, the equipment must be removed and the

system is again buttoned up. Not the least of the potential

problems are those associated with probe placement. Given

documented cases of misplaced probes and component destruction

from, for example, short circuited leads, the likelihood of

actual machine failure should not be underestimated.

Such downtime is not usually acceptable to the 21(V) user

community. The monitor design therefore:

- minimizes the possibility of probe misplacement

3-21

provides mechanically secure latches for those

probes that are required

may be "permanently" attached at low cost

-- fu: ;ystem operation (closed drawers

-- little or no accessability problems

minimal need to change probes (no need at all

for standard measurements)

-- minimal downtown for installation or removal

o Operational Procedures.

The lack of highly trained computer performance evaluation

professionals within the staff of a typical operational

installation need not be a barrier to regular collection

and reporting of measurement data for later evaluation. The

most important criterion to accomplish the collection is to

make the collection procedures a standard part of normal

responsibilities that can be executed by the typical

machine operator.

This, in turn, requires the monitor to be simply controlled

and "programmed" through regular operator console devices

(switch panels, teletypes, video terminals, etc.) - including

the 21(V) console itself.

3-22

Given simplicity and relevancy of measurement, it is then possible (and

cost effective) to consider permanent installation of a monitor configuration.

Both operational and technical advantages rapidly accrue:

o System "troubleshooting" can be better supported by remote experts.

0 A standard measurement set collected during daily operations

will help system managers better understand the impact of

operational procedures on system loading and responsiveness

and to better predict performance trends.

0 More complex evaluations could be performed by specialists

without the obvious need to install any new probes or hardware

on the 21(V). The evaluations could be accomplished in support

of system balancing, software tuning, or long range configuration

planning.

o System-wide (multiple installations) tests could be designed

and executed by just transmitting (electrically or physically)

test instructions to the installations and analyzing returned

reports and tapes.

o The sophisticated high speed event detection logic of the

molitor can aid in the analysis of system failures and in the

isolation of faulty elements (both hardware and software).

3-23

Improvement to a system MTBF is expected to result; "flaky" or

intermittent gear might be rapidly isolated before a full

failure brings down the system. MTTR would also be significantly

improved as the failure characteristics are already known.

The goal of simplicity also has relevance for several technical issues

including:

o Monitor cost

o Monitor measurement flexibility and completeness

o Independence of monitor and host software/hardware.

A final key element of the approach taken is the minimization of

expensive display, printing, and bulk memory devices. This is accomplished

at two levels:

o Many measurements can be stored within the monitor RAM and

reported by simple LED/LCD displays.

o For those measurements requiring bulk memory and more extensive

reporting, the 21(V) peripherals will be utilized whenever possible.

If the host 21(V) peripherals are fully utilized or there are other operational

requirements precluding their use by the monitor, only those devices needed

for the measurement process and unavailable on the host would be added to the

monitor configuration.

3-24

3.2 AN/GYQ-21(V) Monitor Probe Point Locations

Five major types of probe sources have been identified for the AN/GYQ-

21(V). These are:

o UNIBUS Interface

o Console/CPU Interface

o Maintenance Interface

o Discrete Points

o Memory/Cache Interface

The monitor's probe point connections are shown in Figure 3-4. It

consists of a probe board that would plug into an UNIBUS slot, and

a pair of ribbon cables that would connect it to the Front Panel and

Maintenance Interface Board. In addition certain critical signals

are wire-wrapped to the probe board to provide access to these signals

that otherwise cannot be obtained. Table 3-1 summarizes the individual

signals which are required as inputs to the Hardware Monitor.

3-25

-I-
r.u

~ C7

-

3 ,

CL

NUMBER
GENERIC SIGNAL OF LINES INPUT INTERFACE

Address22 max o Unibus

.... o Console/CPU

o Memory/Cache*

Data16 max. 0 • • . o Unibus

.... o Console/CPU

.... o Memory/Cache*

Unibus Control20 o Unibus

CPU Control17o Console/CPU

CPU Status 8 o Maintenance

...... o Discrete

Memory Control 7 o Maintenance

. o Discrete

Floating Point Control 4o Maintenance

Timing and Control . 10o Maintenance

MBC Control 8 o Discrete*

112 total

*PDP-II/70 only

Table 3-1 Summary of Probe Points

3-27

3.2.1 Interfaces Between AN/GYQ-21(V) and Hardware Monitor

3.2.1.1 UNIBUS Interface

The UNIBUS Sensor Module interfaces directly with the 21(V) UNIBUS.

In this way access is achieved to all UNIBUS activity (except for the

grant lines) without affecting UNIBUS performance in any way. The

Hardware Monitor will reside as an active peripheral device on the

UNIBUS. Its location on the UNIBUS will be determined in part by

the physical characteristics and design of the device itself, i.e.,

it may be designed to fit into an RH70 location or a Small Peripheral

Controller (SPC) slot, or it may be designed as an independent unit

with UNIBUS cables connecting it to the rest of the system.

The UNIBUS Interface (Tables 3-2, 3-3) provides 56 active signals

to the Hardware Monitor, of which 54 are utilized by peripheral

devices. It should also be noted that both the address and data

signals are available via the Console/CPU Interface.

3-28

SIGNAL
NAME LOCATION REQUIRED COMMENTS

AOO-Al7 Refer yes* Unibus address lines 00-17
to
Table 3-3

ACLO yes System power failure

BBSY yes Unibus busy

BG4-7 yes Bus grant at priority "n"

BR4-7 yes Bus request at priority "n"

CO, C1 yes Determine type of cycle

DOO-D15 yes* Unibus data lines 00-15

INIT yes System initialization
(reset)

INTR yes Interrupt

MSYN yes Master sync

NPG yes Non-processor grant

NPR yes Non-processor request

PA, PB no Parity error; available
but not utilized

SACK yes Selection acknowledged

DCLO yes System power failure

SSYN yes Slave sync

* Also available via Console/CPU Interface

Table 3-2 UNIBUS Interface

3-29

SIGNAL PIN SIGNAL PIN
AOO L BH2 D06 L AFI
AOI L BH1 D07 L AH2
AO2 L BJ2 DO L AHI
A03 L RJI D09 L AJ2
A04 L BK2 DI L AJI

A05 L BKI D1 L AK2
A06 L BL2 D12 L AK

A07 L BLI D13 L AL2
A08 L BM2 D14 L ALl
A09 L BMI DI5 L AM2

AIO L BN2 GROUND A82

All L BNI GROUND AC2
Al2 L BP2 GROUND ANI

A13 L BPi GROUND API

A14 L BR2 GROUND AR]
A15 L BR] GROUND ASIA16 L BR] GROUND ASL * +5V IS WIRED TO
A16 L BSI GROUND AT1 THESE PINS TO SUPPLY
A17 L BSI GROUND AV2 POWER TO THE BUS
ACLO L BF1 GROUND BB2 TERMINATOR ONLY.
BBSY L AP2 GROUND BC2 * +5V SHOULD NEVER

BE CONNECTED VIA THE5G4 H BE? GROUND BDI UNIBUS BETWEEN SYS-
BGS H BBI GROUND BEt TEM UNITS.
BG6 H BAl GROUND BTI

8G7 H AVI GROUND BV2
BR4 L BD2 INIT L AAl
BR5 L BCI INTR L ABI

BR6 L AU2 MSYN L BVI
BR7 L AT2 NPG H AUI
CO L BU2 NPR L AS2
Cl L BT2 PA L AMIt
)00 L ACI PB L AN2

DO1 L AD2 +5V* AA2
DO2 L AD1 +5V* BA2
003 L AE2 SACK AR2

D04 L AEl DC1O L BF2

)05 L AF2 SSYN L BUI

Table 3-3 UNIBUS Pin Assignments (By Signal Name)

3-30

3.2.1.2 Console/CPU Interface

The console status/control module provides the basic monitor with

access to the status indications provided on the 21(V) CPU console.

It also provides the basic monitor with the ability to drive selected

system control lines which emanate from the CPU console switches.

The Front Panel board gets its data through ribbon cables from the

Processor Data and UNIBUS register board (PDR, slot 10, 11/70) and

the SYS DESC/CNSL cables board (SCC/CNSL slot 16, 11/70). By

inserting a special connector at this point, the Front Panel can still

be connected, but now a cable with all of the Front Panel signals is

available. A great deal of information can be obtained from just this

connection. In fact, Digital Equipment Corporation's own hardware

monitor (DIAMOND) connects through the Front Panel and CPU boards

only.

DIAMOND was designed almost exclusively for software optimization.

It has been used on VAX and PDP-II/34, 70 for development of RSX-IIM+.

The purpose of the DIAMOND monitor is to capture, in real time, percent

CPU utilization, I/0 times, I/O-CPU overlap, percent CPU in kernel

mode, context-switch time, histogram of disk statistics. It actually

consists of a PDP-11/04 connected through "spaghetti" to the CPU processor

board and Front Panel (CPU Front Panel is removed.). A high level

language was used to generate microcode for use by the 11/04 in

looking at proper signals.

Design of both the PDP-ll/45 and 11/70 make many signals available

for visual display on the CPU console. These signals can be used

by the Hardware Monitor in conjunction with the console when special

cables allow connection to the Hardware Monitor. Ideally, the special

cables will simply add another set of flat ribbon cables to the

3- 31

AO-A090 026 MEASUREMENT CONCEPT CORP ROE NY F/6 9/2 "
MINICOMPUTER HARDWARE MONITOR DESIGN. (U)
JUN 80 8 MORITZ. H SPAANENBURG. A J LABOUT F

3
0602-79-C-0006

UNCLASSIFIED RADC-TR-80-203 NL, EIEIIIEIlIEE
Eliiiiiiiiiiil
EIIIIIIIIIIIIl
IIIIIIEIIEIII
-IIIIIEIIIII
Ill""llll

existing set, but major differences between the 11/45 and 11/70 may

make this difficult to achieve. However, it should be possible to

use the same Hardware Monitor connection scheme for both processors,

either through patch plugs in the Hardware Monitor or by using a

different type of cable arrangement, so that inputs to the Monitor

are mated to the corresponding console signal.

There are four connectors on the Front Panel board in the 11/70, and

three in the 11/45. The signals on these connectors are listed in

Tables 3-4 and 3-5. The signals at this point are normally either high

level lamp driver inputs or static manual switch type outputs. Hence,

the risk of disruptive affects on CPU operation due to the presence

of this interface is negligible. The signals of interest are all TTL

level signals and all of these signals have only one TTL load on them.

This means that standard TTL low power Schottky buffer circuits can be

used in the monitor connection to the Front Panel board without concern

for overloading the driving circuits.

The Address Data Path select switch on the Front Panel determines what

address mode is displayed (sent to) on the Front Panel address lights.

It is desirable to have the monitor change the switch setting during

monitoring (dynamically) if possible. The select signals (DISP DATA

SEL 0 and 1) go through Jl SS and TT. Thus by blocking these pins

from the Front Panel and supplying these signals from the monitor,

the switch setting can be set dynamically by the monitor.

3-32

S IGNAL

-NAME - -] LOCATION REQUIRED COMMENTS

DISP DOO-15 Ji YES Data (16 bits)

DISP DATA SELO Ji YES Allow HM to select
DISP DATA SELl Ji YES data source

* FPP & CPU Microaddress
e light register (display)
* shifter (data paths)
bus register

VAOO-03 J2 YES Address (22 bits)
DISP ADRS04-21

DISP ADRS SELO J2 YES Allow HM to select
DISP ADRS SELl J2 YES address source
DISP ADRS SEL2 J2 YES * program physical

s kernel D virtual
* kernel I virtual
e console physical
* supervisor D virtual
e supervisor I virtual
* user D virtual* user I vfrtual

IND PAUSE J2 YES CPU is in a PAUSE

condition

IND MASTER J2 YES CPU is Unibus master

IND RUN J2 YES CPU is in RUN mode

IND ADRS ERR J2 YES Error when addressing
Unibus device or memory

MMRO MODEO J2 YES Used to decode user mode
MMRO MODEl (K, S, or U)
SWROO-21 J3 NO Switch Register (22 bits)

Table 3-4 PDP-ll/45 Console/CPU Interface

3-33

SIGNAL
NAME LOCATION REQUIRED COMMENTS

DISP PAR HI Ji NO Indicate parity of
DISP PAR LO Ji NO memory data

DISP DO0-15 Ji YES Data (16 bits)

DISP DATA SELO J1 YES Allow HM to select
DISP DATA SELl JI YES data source

* FPP & CPU Microaddress
o light register (display)
e shifter (data paths)
* bus register

VAOO-03 J2 YES Address (22 bits)
DISP ADRS04-21

DISP ADRS SELO J2 YES Allow HM to select
DISP ADRS SELl J2 YES address source
DISP ADRS SEL2 J2 YES * program physical

9 kernel D virtual
* kernel I virtual
@ console physical
* supervisor D virtual
e supervisor I virtual
9 user D virtual
* user I vfrtual

IND PAUSE J2 YES CPU is in a PAUSE
condition

IND MASTER J2 YES CPU is Unibus master

IND RUN J2 YES CPU is in RUN mode

IND ADRS ERR J2 YES Error when addressing
Unibus device or memory

IND PAR ERR J2 YES Parity error when accessing
memory

MMRO MODEO J2 YES Used to decode user mode
MMRO MODEI (K, S, or U)

SWROO-21 J3 NO Switch Register (22 bits)

IND 16 BIT J3 YES Virtual address
MAPPING

IND 18 BIT J3 YES Unibus address
MAPPING

IND 22 BIT J3 YES Physical address
MAPPING

Table 3-5 PDP-ll/70 Console/CPU Interface

3-34

3.2.1.3 Maintenance Interface

Both the PDP-ll/45 and 11/70 make certain critical signals available

for maintenance purposes. Originally provided for use with a

CPU/FPP Maintenance Module, these signals can be made available to the

Hardware Monitor through either a single-height or double-height

paddle board. The paddle board terminates one end of the cable

carrying signals between the maintenance slot and the Hardware Monitor.

Table 3-6 lists the signals that are available at the maintenance

interface.

3.2.1.4 Discrete Point Modules

The addition of discrete point sensor module probes will provide

additional data not obtainable from the UNIBUS, Maintenance Interface

and Front Panel alone. This group of signal probes is to be avoided

if possible. However, it is clear that certain measures cannot

be made without some of these connections.

This type of connection is not pleasing; however DEC PDP-lls are wire

wrapped and a few back plane modifications are certainly possible at

system integration time (for instance when assembling the 21(V) system).

The signals listed in Table 3-7 must be input to the Hardware Monitor

by discrete signal lines running from pins on the backplane

to the Hardware Monitor. It is possible for these discrete signal

lines to be terminated on a paddle board (for convenience) before

being routed to the Hardware Monitor. The relative worth of some

of these signals may be of question. For instance, the signal UIRK

is not really needed if the Monitor can determine the clocking of the

Instruction Register by other means. Also, it is debatable whether

eight signal lines are to be used just to gather information regaraing HBC

arbitration. Although the total number of discrete points listed is

relatively small, this still represents the most aesiraDle metnoa

of collecting data.

3-35

. . k , f '

SIGNAL
NAME LOCATION* REQUIRED COMMENTS

MAT Z DI YES These signals are the C, V,
MAT C El YES Z, N and T condition codes
MAT V Mi YES which make up bits 0-4 of
MAT N U2 YES the Processor Status Word.
PS04 MAT P2 YES

CONTROL OK E2 YES These signals control
SLOW CYCLE Li YES the memory cycles.
MAT

MEM SYNC NI YES
BUST MAT R2 NO

FP ATTN F1 YES These signals control the
WAITS S2 YES Floating Point Processor/
FP REQ T2 YES CPU interaction.
FP SYNC MAT Vi YES

SSYN MAT D2 NO Same as corresponding
BBSY MAT KI NO Unibus signals
MSYN B MAT M2 NO

AERF MAT F2 NO Address error, parity
PARITY ERR H2 NO error, and stack limit
MAT error will all cause a
SERF MAT L2 NO TRAP or ABORT.

Ti MAT H1 NO These are outputs from the
T2 MAT P1 NO timing generator and may be
T3 MAT Ri NO used for timing and synchro-
T4 MAT S1 NO nization within the HM.
T5 MAT N2 NO
TPH MAT K2 NO

SI B2 NO These signals control the
S2 V2 NO timing generator and can be
S3 Al NO used to stop the CPU in an
S4 U1 NO predetermined state.

* Slot 1B in the PDP-11/70
Slot IF in the PDP-ll/45

Table 3-6 Maintenance Interface

3-36

SIGNAL
NAME LOCATION REQUIRED COMMENTS

PS05 (1) FLOP2 YES Processor Status Register
PS06 (1) FIOMI YES bits 5-7 allow tracking
PS07 (1) FIOK2 YES of CPU priority.

UIRK C8U2 YES Instruction Register
clock pulse.

UB REQUEST D17R2 YES These signals are used
MBC REQ F17U2" YES to determine which input
AMX SO DI7L1 YES to the Cache Request Arbi-
AMX SI DI7K1 YES trator is being honored.

CTRLA REQ F21KI YES These signals are used
CTRLB REQ F21K2 YES to determine which MBC
CTRLC REQ F21E2 YES device is honored by the
CTRLD REQ F21CI YES MBC Arbitrator.

SELADRS CTRLA F21P2 YES
.SELADRS CTRLB F21M2 YES
SELADRS CTRLC F21FI YES
SELADRS CTRLD F21H2 YES

Table 3-7 Discrete Points

3-37

The use of discrete probes to the various AN/GYQ-21(V) peripherals

should be discouraged, although they would simplify the measurement

procedures relative to a particular peripheral. Not only would these

lines be long, they would be susceptible to disruptive changes when

the set of peripherals change.

3.2.1.5 Meory/§acne Inte~r-face

The Memory Sensor Module provides access to toe PDP-I/70 memory

subsystem via the cache-unit where the memory operations from all target

system devices are concentrated. Physical access is made at the

cache end of the Memory Bus cable and at selected cache backplane signal

points. While these signal points are moderately sensitive, when

suitable isolation methods are adopted on the probe lines no deleterious

effects due to monitoring should occur.

The signals that can be obtained by this interface are included in the

listing of discrete probe points (Table 3-7).

In the PDP-11/70 it may be possible to utilize an RH70 location to

house the logic assembly which will collect the event data and reduce

it to a form which can be used by the Hardware Monitor Processor. The

advantage is that Unibus signals plus physical address and data

signals are available in the RH70 location. This would reduce the

complexity of cabling in the Hardware Monitor system.

The advantages and disadvantages of various hardware configurations

for the Monitor must be carefully weighed before a decision is made

concerning the final hardware design.

3-38

3.2.2 Description of Interface Configuration

The hardware interface between the 21(V) and the Hardware Monitor will

consist of a group of modules and cables, which allow the Hardware

Monitor to collect and evaluate performance parameters of the host

computer system. The specific configuration of these modules and cables

will depend in part on the type of host computer and in part on the final

design of the Hardware Monitor logic. Analysis of options concerning

the microprocessor will affect its choice, and this may in turn impact

the final Hardware Monitor configuration.

The Hardware Monitor will consist of four functional blocks:

o data collection and reduction logic,

o microprocessor, r

o microprocessor interface, and

o PDP-11 interface.

For all Hardware Monitors the first three elements can be identical. Major

differences between the PDP-11/45 and the PDP-11/70 dictate that the

actual physical interface between the Hardware Monitor and the PDP-1l be

unique.

The actual hardware configuration will depend on the type of microprocessor

chosen for the Hardware Monitor and the particular PDP-il host system.

Figure 3-5 depicts the simplest Hardware Monitor configuration. Here, the

entire Hardware Monitor, including microprocessor, is comprised of a set

of boards which mount directly into an RH70 location in a PDP-II/70.

3-39

T*

: I\ r t I
INTJER<FACE
I-IODULE

NI CNUFI-OI 11IGt

ITODUI E MDIThlJ VODIII E
(U-NIBus INTERFACE) (ADDRESS IT':TRFACE) (DATA I NTF ROACL)

Fi-ur? 3-5 Hardware Monitor Configuration (Boards)

3-AfA

The Logic I and Logic II modules contain all Hardware Monitor logic

functions. The Maintenance Interface and Interconnect modules provide

the means for connecting PDP-11 signal inputs to the Hardware Monitor

logic via ribbon cables between various boards.

If the microprocessor and associated circuitry is essentially a stand-alone

system, then an interconnection can be made between the Hardware Monitor

modules and a separately mounted microprocessor chassis.

In the case of the PDP-11/45 there is no appropriate location within the

CPU for the installation of the Hardware Monitor modules of Figure 3-5.

Furthermore, pin-outs for various UNIBUS signals are not the same between

the RH70 "UNIBUS Interface" location and a SPC (Small Peripheral Controller)

location. This implies that the Hardware Monitor Interconnect Module

must be unique. It appears that for a PDP-11/45 system, the Hardware

Monitor must reside in its own chassis. In this case the backplane of the

chassis could perhaps reassign the various UNIBUS pin-outs so that only

one set of boards would be required for the Hardware Monitor. It is also

possible that a standard DD11 backplane could be modified for use as the

Hardware Monitor backplane, and that it could be rewired to look like a

RH70 backplane.

The electrical location of the Hardware Monitor will be critical in many

system performance measurements which count or time certain UNIBUS signals.

It should also be kept in mind that, as a peripheral device, the Hardware

Monitor will also contribute one standard load to the system UNIBUS.

Because of these factors, there will always be certain restrictions to the

use and operation of the Hardware Monitor. Although we cannot expect

100% utility, we must formulate the operational standards to Include as

3-41

many systems as possible. (The idea of making the Hardware Monitor a

UNIBUS "repeater" may just add to the complexity of operational charact-

eristics.)

The critical signals for UNIBUS location are the grant signals, BG and NPG.

The ideal location for a probe for these signals is on the CPU output; then

the probe is the first receptor. These signals are available at the UNIBUS

terminator location (slot 1), but use here requires that a special terminator

connector assembly be fabricated.

In the PDP-l/45 the grant signals go from the terminator directly to

SPC slot #1. Thus, the Hardware Monitor could replace the device in slot #1,

if this device can be relocated in the system. In the PDP-11/70 the grant

signals take an irregular path after leaving the terminator. The NPG,

BG7, BG5, and BG4 go to the SPC slots before going to the RH70 locations.

The BG6 signal goes to the KWII-L, the RH70 slots, and then the SPC slots.

If the Hardware Monitor is placed in RH70 location A, the NPG, BG7, BG5, and

BG4 signals are first received by those controllers in the SPC slots. This

is not critical for the NPG and BG5 signals, as they normally are not

used by these controllers. Likewise, the BR7 signal is not critical because

there are normally no BR7 devices in the SPC slots. The BR4, however, is

used extensively by SPC devices, and some restriction may have to be placed

on its use by the Hardware Monitor. (An alternative use of a discrete

probe for this signal is certainly possible.)

Restrictions governing the use of a Hardware Monitor may become a touchy

situation. We do not feel that a requirement of one UNIBUS load and one

UNIBUS (or RH70) location is too extreme, considering the cost restrictions

placed on the Hardware Monitor itself. It would be possible, with additional

cost and complexity, to do away with the UNIBUS requirements, but this may

be impractical.

3-42

L_

3.2.3 Measurement Set and Probe Points

The Mc2 hybrid monitor is capable of measuring and following the pulse of

the 21(V) system. Many of the measurements are directly measured from the

UNIBUS and Front panel; however, with the vector generator, programmable

patchboard and microorocessor it is possible to measure many events needir,

some processinq before beina useful to the usEr.

This section will describe system performance parameters, required inputs

to the Hardware Monitor for measurement of the performance parameter, and

additional comments concerning the parameter and its measurement. Many

suggestions from users of the 21(V) system have contributed to the list

and most of them have been studied and included. As the system is used,

it is likely more and different types of measurements not already discussed

will be suggested. In that light, the Mc2 design will be a flexible one

to accommodate these future requirements.

The list is divided into the following categories:

o Group A: CPU Performance

o Group B: UNIBUS Performance

o Group C: Peripheral Performance

o Group D: Program Performance

o Group E: Fault Detection/Isolation

3-43

3.2.3.1 CPU Performance

3.2.3.1.1 Task Time

This is a measurement of CPU time and wall clock time between task

initiation and exit. The measurement is helpful in demonstrating the

effect of priority and therefore facilitates tuning of the system.

The times will be collected under software control, as it would be

extremely difficult to track global references (EXECUTIVE calls) made

by the task. The probe "points" involved are the ADRS space of task.

The monitor must look at adrs of instructions, as opposed to instruction

itself. For more details one is referred to Section 4.3, where the host

software monitor is discussed.

3.2.3.1.2 Event Time

An event is the occurrence of a predefined combination of signals and/or

changes of signals. The implication is that any combination of signals,

including addresses and data, can be determined to be an event. The

event detection logic must be sophisticated enough to select the following

events:

o Specific address - both memory and peripheral page.

o Specific range of addresses - both memory and peripheral page.

o Specific data (i.e., specific instruction).

o Specific data sequence.

0 Specific signal (CPU, FPP, UNIBUS, Memory).

o Specific combination of signals.

o Specific sequence of signals.

o Time domain relationships of any of the above - both time per

unit event and events per unit time.

3-44

3.2.3.1.3 Time in Kernel, Supervisor and User Mode

A majority of the CPU measurements involve separately accounting for

these operations while the machine is in different states (Kernel/

Supervisor/User-mode; priority level). Instead of just counting

instructions per second and/or memory references per second on an

overall basis with a single counter, separate counters could be used

to measure CPU activity in each of the desired states. The measurement

therefore boils down to determining the state at which the computer is

executing. The front panel/console interface provides the signals MMRO

mode 0 and mode 1 that information necessary to count the operation as

belonging to Kernel, Supervisor, or User-mode.

3.2.3.1.4 Time at Priority Level

This is a measure of the time the CPU operates at a particular priority

level. The monitor must decode PS bits 5-7 to determine priority level

since eight levels are possible. A multiple clock system must exist in the

Hardware Monitor to measure percentage of time at various levels. Back

plane locations FlOP2, FIOMI, FlOK2, are processor status register

bits 5 thru 7. These bits can be fed to the state vector to enable the

counting of events at different CPU priorities.

The alternate to measuring these discrete points involves additional

sophistication in tracking trap instructions, processor error traps and

INTR traps - i.e., all those events that can cause a change in processor

priority. The procedure makes use of the fact that upon any of the

above traps, the CPU places the current PC and PSW on the R6 stack in

memory and retrieves the new PC and PSW from the vector locations in

low memory specified by instruction, error trap type or INTR sequence.

As each transfer to/from memory by the processor is made available to

the monitor via the state vector, the straightforward sequence control

can pick out the PSW data that is to be loaded to the CPU's register.

3-45

The RTI instruction will also have to be monitored as it belongs to the

trap class.

3.2.3.1.5 CPU Idle

This is a measurement of the time that the CPU is not busy, or better

defined, the time that it is in the WAIT state. Two methods for

measuring the occurrence of the WAIT state are available:

o Through monitoring the CPU micro address (available via the

console). In the. WAIT state the micro address cycles in

states 11, 264 and 273 until an INTR puts it in state 244.

0 By comparing fetched instructions to the bit configuration

of a WAIT instruction. The Hardware Monitor can determine

when a WAIT instruction is executed by looking at the data

loaded into the instruction register. This is done by

looking at the data in the Bus Register after IR loading

time. Br and IR are loaded with the same data at the same

time. The WAIT state concludes with an interrupt.

The latter appears more reasonable. For Unibus machines, the state

vector will contain the fact that the transaction was a CPU fetch. The

data lines in the state vector can be matched by the patchboard and

cause an interrupt condition to the microprocessor.

For Cache machines, the only mechanism to provide equivalent sampling

will be the use of the Front Panel data lines selected to show actual

Unibus data. The match to the WAIT instruction would be identical

as the state vector would now contain data lines from the Front Panel

instead of from the Unibus. INTR is specifically a Unibus function so

there would be no difference in the stopping of the WAIT time function.

i

3-46

3.2.3.1.6 CPU - I/0 Overlap

This is a measure of the time that I/0 is taking place while the CPU

is executing. There is a close correlation between this measurement

and that of UNIBUS utilization (especially for the 11/45), so both

will be discussed at this time.

Maximum system throughput will occur if each and every device on the

system is operating at its maximum rate. Two factors become intuitively

obvious in evaluation of a particular system, sub-system or device:

0 If a device is ready to perform but is not used, it is not

operating at its maximum rate, and

o If a device must wait for another device to complete an operation

before it can continue, it is not operating at its maximum

rate.

The first factor can be considered device utilization, and the

second factor can be considered device efficiency. We maximize system

throughput by maximizing both utilization and efficiency. Total Unibus

utilization = tBBSY i.e., the time BBSY is asserted over a particular
Tt

period of time. CPU Unibus utilization = tMASTER i.e., the CPU
T

is using the Unibus when the MASTER signal is asserted. CPU Unibus

efficiency = 1- tPAUSE - tMASTER. The total time that CPU wants to
tPAUSE

use the Unibus is represented by tPAUSE. It should be noted that tPAUSE

also includes the time that the CPU is waiting for a device to interrupt

after a bus grant has been issued. This time may or may not be considered

3-47

a factor in CPU efficiency. I/0 Unibus utilization = tBBSY tMASTER

I/O Unibus efficiency SACK As with CPU(tBBSY - tMASTER) + tSACK

Unibus efficiency, the I/O Unibus efficiency is maximum efficiency

minus the time spent waiting for the bus to become available. CPU-I/O

overlap should express itself in terms of Unibus utilization and

efficiency. The BBSY and SACK signals are available at the UNIBUS,

while the IND PAUSE and IND MASTER signals are available at the Console/

CPU interface. CPU-I/O Overlap in the 11/70 is more importantly a function

of cache/memory performance than Unibus performance and will be

treated in the section concerning peripheral performance (Section

3.2.3.3). For those devices utilizing the Unibus for data transfers,

performance measurements for the Unibus are the same as discussed

before.

3.2.3.1.7 CPU-FPP Overlap

This is a measure of the time that the FPP is operating at the same

time that the CPU continues its instruction sequence. It indicates

increased performance and speed obtained by applying the FPP. Signals

that the FPP and CPU are in operation can be found on the Maintenance

Interface.

3.2.3.2 Unibus Performance

3.2.3.2.1 Unibus Acquisition Time

Unibus acquisition time represents the time between assertion of a bus

request (BRn or NPR) and the device's assertion of BBSY as bus master. Bus

acquisition time is a complex measurement. Whereas NPG response to an NPR

may be relatively quick, the U-I"US "daisy chain" "PPG architecture 'ops nnt

guarantee that the first requesting device receives the first grant. The

BR/BG cycle can be even more complex as, in addition to the BG

3-48

"daisy chain" architecture, BGs will nof be issued if the CPU priority

level (Processor Status Word) is equal to or greater than the level at

which a request is made. Therefore, execution of interrupt service

routines (ISRs) or other high priority (hardware level) code will preclude

the issue of BGs for times on the order of 100-150 microseconds.

A primary issue is the degree of detail necessary to adequately describe

latency effects. Clearly, if each peripheral's NPR, BR, and BBSY lines

(in front of bus transceiver) are probed, it is possible to answer ques-

tions such as:

o How long did this device wait for an NPG?

o How long did this device wait for a BR?

To get this level of detail, one must provide discrete probes for each

device controller.

The alternative to this approach explores the statistical nature of

system performance on a given BR/NPR line and correlates this information

with device activity counts (number of NPRs, number of INTRs by device)

made available through the state vector.

NPR and BR latencies are considered two different problems as an NPG will

always be issued within one CPU instruction time whereas the BR could

remain unanswered for 100 times that duration.

All signals for this measurement are available on the Unibus Interface.

3-49

3.2.3.2.2 UNIBUS Occupancy

As BBSY is always asserted by the current bus master, the measurement of

BBSY AND "device active" determines the percentage of "busy time" used by

each of the UNIBUS devices which may become bus master.

Measuring the time the CPU is master is extremely simple as the IND

MASTER signal from the Front Panel provides the necessary data. Non-CPU

devices are a little more difficult as they may become bus master for

NPR transfers or at INTR time.

The identification of an interrupting device is relatively straightforward

as it places a predetermined vector address on the UNIBUS at INTR time.

The device performing an NPR can be most easily identified through dis-

crete sensor lines attached, for example, to the input to the device

controller's BBSY line UNIBUS transceiver.

However, this project continues to be guided by the desire to minimize

or remove discrete probes except under those cases where such a discrete

probe is permanently connected and independent of the peripheral device

configuration.

The alternative to discrete probes is more complex but achievable with

the suggested design. It requires that the monitor be "sensitized" to

CPU loading of selected NPR device buffer address and word count registers.

As the address to (from) which an NPR transfer is made appears on the

UNIBUS and is on the state vector, comparison of such an address with

the memory buffer bounds obtained from the register loading provides

the required device identification.

3-50

Initially, a comparator buffer in the patchboard is set to the desired

device(s) buffer address register. Upon receiving a state vector whose

address lines match this value, the Hardware Monitor strobes the data

lines of the vector (containing the buffer address) into a second

cGmparator buffer.

If all buffer sizes are assumed to be multiples of 256 bytes, only the

high order address bits are necessary. Otherwise a third comparator

buffer is loaded with the sum of the buffer base address and word count

(complemented as necessary).

To keep the patchboard logic simple, it is likely that the monitor micro-

processor will actually perform the loading of the comparator buffers in

response to interrupts generated by the matching of the device buffer

address register on the patchboard.

As each state vector is received at the monitor, the address lines are

examined. If the transfer is NPR AND the address is within the selected

buffer, it is known that the selected device has been bus master. The

MSYN-SSYN time will be close to the BBSY duration and can be "posted" to

the time accumulator for the appropriate device.

A similar approach using the D lines of the state vector at INTR time

can be taken. Here, a comparator buffer contains the selected device's

interrupt vector instead of (or in addition to) its memory buffer boun-

daries. If the vector is an INTR event AND the D lines match the sel-

ected device's interrupt address, the event time is added to the approp-

riate time accumulator.

All signals for this measurement are available on the Unibus Interface

(except IND MASTER, which is available on the Console/CPU Interface).

3-51

3.2.3.2.3 NPR Latency

Under most cases, a DMA peripheral that wishes to perform a transfer will

issue its NPR and, upon receipt of an NPG will perform an MSYN/SSYN trans-

fer cycle and relinquish bus master. It is possible (particularly with

disks) for the controller, when bus master, to perform two MSYI1/SSY-

transfer cycles before relinquishing bus master. Upon asserting NPR,

a device on the bus will wait until all devices closer to the CPU also

having their NPR asserted are serviced with NPGs (and resultant transfer

cycles).

If a device is not "serviced" with an NPG within a certain time (dependent

on device) its data buffer could be overwritten by new data so that a
"missed data" error would occur.

It is believed that an important use of the monitor is to aid system

"balancing" so that missed data errors will not occur. The issue is to

determine that information necessary to perform this needed function.

Clearly, each device can be individually monitored through discrete

probes (the brute force method). This method tells how long a given

device typically waits (average, median, mode, variance) for its NPG.

However, it really doesn't matter how long it waits unless either the wait

time exceeds the latency limit determined by the device's buffer size

and transfer rate or, as in the case of a disk with "silo" (FIFO), if the

average transfer rate during a transfer is well below that of the device

itself. In the latter case, the determination can be made directly from

the state vector and address matching technique discussed for the Unibus

)ccupancy measurement. The clock is started with the first transfer and

stopped with the last transfer. This time, divided by the number of

transfers, is the effective transfer rate of the device in presence of

contention from other devices.

3-52

It remains to determine the probability that a given device will have to

wait longer than a given amount of time for NPR bus access. First one

must obtain the probability of NPR contention - that percent of all NPRs

for which, when the NPG is issued, the NPR line remains high. It is only

these transactions that, without discrete probes, we need to further

explore in order to determine if NPR latency by device can be extracted.

Through the state vector address map, we already know the identities of

the devices participating in NPR transfers at the time of contention and

the order in which they are serviced by NPGs. We also know the physical

bus locations at which each device is connected.

The simple contention involves two devices that both assert NPR within

one bus handshake/transfer time - this "window" occurring during the

duration of a single MSYN/SSYN preceeding the BG. The closer device will

intercept the NPG and perform the NPG with a measured NPR/NPG time equal

to that from the first assertion of NPR to the NPG. The second NPG

will receive a NPR/NPG time equal to the time between the first assertion

of NPR and the second NPG. In both cases, the NPR/NPG times are accurate

to the extent that they show a latency of less than 1 handshake/transfer

cycle and a latency of between 1 and 2 cycles, respectively. The in-

accuracy lies in the inability to differentiate the first from the second

requestor and is, in this case always less than one cycle.

It is believed that this degree of two device contention measurement

accuracy is more than adequate for a monitor possessing the stated cost

and environmental impact objectives.

Were three devices involved, the degree of uncertainty in the measurement

would grow to between 1 and 2 cycle times. However, this worst case

requires all three devices to assert NPR within two cycles such that the

closest device asserts NPR during the same cycle of either of (or both of)

3-53

the others and that the third device asserts NPR before the closest device

executes its grant. The error in timing NPR/NPG for the closest device

is still less than 1 cycle.

As the very detection of a three-way contention and the measurement of its

rate of occurrence and involved devices is believed more important than

the precise latency by device, and as the effective throughput of each

device is known anyway, a'design without discrete probes at each NPR

device is believed to be satisfactory.

3.2.3.2.4 BR Latency

Whereas excess BR latency does not normally lead to hardware errors such

as missed data in 21(V) configurations, it can, in general, cause problems

with input from non-DMA devices such as DLlls and will contribute to re-

duced system throughput.

Unlike NPR latencies which are measured in terms of a few bus cycles, BR

latencies of several hundred microseconds are not expected to be unusual.

Because of this longer time span, measurements without discrete device

probes will suffer inaccuracies on the order of one or more Interrupt

Service Routine (ISR) execution times. The probability of multiple BRs

queued at a given level is much higher as, for example, no BGs for a lower

level BR can be issued until all higher level BGs have been given.

The issue in this case involves the determination of need for BR/BG

times by device - especially when the contending devices at a BR level are

known as are the identities of all devices waiting at lower priorities

and the net I/O times (device "GO" to device INTR). What is missing is an

accurate determination of the fraction of net I/O time by device caused by

BR queueing. Total system time during which BR queueing exists is,

however, known by BR level through the contents of the state vector.

3-54

For cases where there are no multiple BRs at a given level, the current

design does provide the BR queueing fraction of net I/O time by device:

the total time of BRn assertion is known as is the identity of the device

that uses the BGn for its interrupt.

Thus the issue boils down to the probability of multiple non-granted BRs

at a given level and the importance of knowing the exact device BR/BG

time in the fraction of cases where multiple BRs of a given level will be

asserted. The worst case inaccuracies of the suggested (no discrete

device probe) configuration are basically equal to the time between the

assertion of the first BR at a given level and the issue of the first

BG that de-asserts BR; this time measurement is provided by the suggested

configuration.

3.2.3.2.5 INTR Latency

A measurement, similar to NPR and BR Latency used for device position/

priority evaluation. It measures the time between BR and INTR as found

on the Unibus. All signals for INTR, BR and NPR latency can be found

on the Unibus Interface.

3.2.3.2.6 UMR Utilization

The Unibus Mapping Registers extend the PDP-11/70 physical address

available from 256K bytes to 4M bytes. The utilization is a measure

of use of this feature. Usually the operating system does not dynamically

allocate UMR usage. However, the address space of the mapping registers

can be monitored on the Unibus Interface.

3-55

L_____________

3.2.3.2.7 UNIBUS Effective Transfer Rate

This measurement is simply defined as the number of UNIBUS data transfers

per unit of time (e.g., 106 transfers per second). It is a highly useful

number on 21(V) machinery of the 11/45 class or below as it provides a

baseline to which individual device activity on the same bus (also

measured as transfers per second) can be compared. On a 11/70 class

machine, the utility of this measurement depends entirely upon the
number and type of peripherals using the UNIBUS.

The UNIBUS MSYN and SSYN signals together define a data transfer cycle

on the UNIBUS and are preprocessed by the UNIBUS sensor module to

create its state vector and time extent. Each state vector defines

either a data transfer or a control transfer. Each arrival of a state

vector describing a data transfer increments a data transfer cycle counter

on the programmable patchboard. Counter overflow interrupts the monitor's
microprocessor which obtains and stores the time at which overflow occurs.

Assuming no more than 1 x 106 transfers per second and a 16-bit counter,
the cycle counter will overflow each 33 milliseconds - thereby producing

little microprocessor loading. Preloading the register will effectively

shorten the time between interrupts and allow higher resolution.

3.2.3.2.8 UNIBUS Read/Write Count

The Unibus CO and Cl signals determine direction (in or out), word size

(word or byte out) and read-modify-write cycle. If the CO, Cl states

are to be separately counted, a total of four counters are required -

one each for three CO, Cl states and the fourth for the total number

of cycles. Overflow of the total cycle counter causes the interrupted

microprocessor to read each of the other three registers (and clear

them) and to store this data with the time stamp for post processing.

3-56

LJ

3.2.3.3 Peripheral Performance

3.2.3.3.1 Memory References in Range

This measurement delivers a count or rate of memory references in

a particular range of memory (e.g., a particular bank). The

measurement can be further itemized by instructions only, CPU data only,

read and/or write, by device or a combination of these categories.

3.2.3.3.2 Memory Range by Task

As for the Memory References in Range measurement the Hardware Monitor

must be capable of selecting a window of addresses to be included in the

determination of an event. Also included can be the CO, C1 information

and whether or not the data represents an instruction. The signals for

both these measurements come from the Unibus Interface, the Console/CPU

Interface and the Memory/Cache Interface. The host software monitor

will provide the Task Identification (see Section 4.3).

3.2.3.3.3 Controller Registers

Similar to the last two measurement. In this case, the window of

addresses under consideration includes those of specific device registers.

In particular, a "control" register can be selected and "GO" bit

monitored. Of interest is a count by device of the number of "GO"

events to the respective Control and Status Registers (CSR). Also

measured is programmed I/0, that is when the CPU puts data on the lines

for transfer without using NPR. Signals for this measurement are available

on Unibus Interface and Console/CPU Interface.

3.2.3.3.4 Number of NPRs per Controller

This measurement is accomplished in a similar manner as Memory References

in Range and Memory Range by Task. It requires separate event detection

3-57

logic for each controller to be dynamically evaluated. The device

which asserted NPR is determined by monitoring the address lines during

the MSYN - SSYN cycle. It could also be measured by software within

any device handler. Again all signals for this measurement are present

on the Unibus Interface and Console/CPU Interface.

3.2.3.3.5 Number of INTRs per Controller

The frequency of interrupts is determined by the INTR signal and the

associated vector. The time of the Interrupt Service Routine can be

measured as the time between the INTR signal and a subsequent RTI

instruction. Interruption of the ISR itself can be detected by any

intervening program break, which first appears when the CPU enters the

BRQ service routine. All signals for this measurement are present

on Unibus Interface and Console/CPU Interface.

3.2.3.3.6 Memory/Peripheral Transfers

In the PDP-11/45 memory transfers by peripherals are accomplished via

NPR's. Total number of memory transfers can be determined by looking

at the number of memory address space accesses.

In the PDP-11/70 memory accesses can be determined by looking at
"request" signals in the cache control logic. This can be done either

by backplane connection or by utilizing one of the RH70 locations. The

pertinent signals are:

o CONTROL OK - CPU memory reference

o UB REQUEST - Unibus NPR memory reference

o MBC REQ - Memory reference by RH70-type controller.

These signals are available on the Memory/Cache Interface and the

Maintenance Interface.

3-58

3.2.3.3.7 Service Time

A measurement of the event to be accomplished and the duration

of the INTR signal. The start of the event should be programmable

to include the issuance of any command to any device. The event

terminates with the INTR signal. It could also be measured by

software within any device handler. All signals for this

measurement are on the Unibus Interface and the Console/CPU

Interface.

3-59

3.2.3.3.8 Number of Terminals On-Line

This information is tracked by the system EXECUTIVE. It can therefore

be passed by the host software monitor to the hardware monitor micro-

processor or it can be directly requested by the microprocessor.

3.2.3.3.9 Number of Units Busy

There are programs available for the host system to monitor this

information. The way for the Hardware Monitor to track this information

is by either having a discrete probe for each device or by having the

capability of performing multiple Service Time evaluations.

3.2.3.3.10 Controller Busy

This is an extension of the service time measurement to include

measurement of total service time per unit time.

3.2.3.3.11 Disk Performance

Each disk drive provides status signals to the controller to assist

in performing the "handshake" functions. It might prove infeasible to

attach a discrete probe to either the disk drive or the controller when

this information can be provided by the controller status register.

One of the most important parameters of disk operation is the "seek"

time. This can be measured in the host system by having the disk handler

issue "SEEK" commands followed by "READ/WRITE" commands rather than

issuing "implied seek" R/W commands. The Hardware Monitor could

measure the seek time by measuring the Service Time for a SEEK command.

An extremely useful application of this measurement would be to dynami-

cally restruction file organization on a disk pack to increase system

efficiency. An application of this type may be beyond the scope of the

Hardware Monitor system. Other parameters of the disk system are also

available via the various status registers of the controller.

3-60

For additional disk performance measurements one is referred to Section

4.3 describing the host software monitor.

3.2.3.3.12 Cache Acquisition Latency

Latency is measured from the time a request is made to the time the

Cache Request Arbitrator allows memory access. The request signals are

listed under the Memory/Peripheral measurement. The output of the

arbitration logic must be decoded to determine which request is

serviced. The signals AMX So and AMX S1 are decoded as follows:

SO Sl Cache Cycle

L L CPU

L H MBC

H H UNIBUS

The necessary signals for this measurement can be found on the Maintenance

Interface and the Memory/Cache Interface.

3.2.3.3.13 Cache Hit Rate

First a clarification of terms is in order. A Cache hit refers to a

memory read cycle where data is read from high-speed memory rather than

slower core memory. Although intended primarily as a means of speeding

up CPU memory references, the cache memory in the PDP-11/70 is also used

during Unibus memory references, i.e., NPR transfers. The HIT/MISS

Register associated with the cache memory only tracks CPU memory

references, so it is not a true indication of the system cache hit rate.

The second point which should be mentioned is that any type of active

sampling, such as reading the HIT/MISS REgister, should be avoided

whenever possible to reduce artifacts. Fortunately, there is a very

easy method of determining the cache hit rate without active samplinq,

and by selecting appropriate signals it is possible to obtain a better

3-61

picture of cache performance. The key signal to cache operation is

called SLOW CYCLE. Whenever this signal is asserted by the cache control

logic, the memory cycle requires reference to main memory. By proper

decoding of the memory request signals, the Cl signal, and the SLOW

CYCLE signal, it will be possible to determine the cache hit rate for

any of the following performance measures:

o all memory references

o only READ memory references

o CPU memory references

o CPU READ memory references

o Unibus memory references

o Unibus READ memory references

The Maintenance Interface and the Memory/Cache Interface therefore

contain the required signals for this measurement.

3.2.3.3.14 Cache/Memory Transfers

This is a simple extension of the Cache Hit Rate measurement. Where

the Cache Hit Rate is determined by the number of hits per type of

transfer, the Cache/Memory Transfer measurement is determined by the

number of transfers (by type) per unit time.

3.2.3.3.15 MBC Busy

All system peripherals, including MBC-type devices, utilize the Unibus

to communicate with the CPU. Thus, the MBC Busy measurement is identical

to the Controller Busy measurement.

3-62

3.2.3.3.16 MBC Transfers

This is an extension of the Cache Hit Rate and Cache/Memory Transfers

measurements. Although MBC transfers do not use cache memory, they

are controlled by the cache control logic, and thus, the signals that

are used to determine cache performance include those necessary to measure

MBC transfers. This can be equated to transfers per unit time as in

the Cache/Memory Transfers Measurement.

3.2.3.3.17 MBC Latency

Contention for MBC memory requests and thus the MBC Latency can be measured

by accessing discrete signals on the backplane. All MBC controllers

can make requests simultaneously; it is up to the MBC arbitration logic

to select the controller with the highest priority. Latency is

measured from request time (CTRL "X" REQ) to selection time (SELADRS CRTL

"X"). These signals as well as signals from the Maintenance Interface

are required for this measurement.

3.2.3.4 Program Performance

Measurement and evaluation of most Program Performance parameters are

most effectively accomplished via the host system software. Exceptions

to this where some data can be collected by the Hardware Monitor are

noted.

3.2.3.4.1 Task Request Rate

Measurement performed by host system software.

3.2.3.4.2 1/0 Request by Task/Device

Measurement performed by host system software.

3-63

3.2.3.4.3 Active Tasks in Memory

Measurement performed by host system software.

3.2.3.4.4 Memory Allocations

Measurement performed by host system software. Results will show memory

fragmentation. Memory allocation can also be tracked via the Memory

Management registers (PAR's and PDR's). This relatively easy to do,

as the PAR's and PDR's occupy a contiguous block of addresses in the

peripheral page.

3.2.3.4.5 Node Claim/Release Status

Measurement performed by host system software.

3.2.3.4.6 Instructions per Second

This information may be obtained in several different methods.

The first is a match to a micro address in the PDP-l/45 and PDP-11/70

processor. The micro address itself is available from the Front Panel

with assertion of the proper multiplex signals. All PDP-11/45 and 11/70

processors use the ROM state at microaddress 343 to decode the current

instruction. A count of the number of times the CPU goes to this

microaddress is equivalent to the number of instructions fetched. This

count can be made on a per unit time basis.

The second method is a discrete probe to the PDP-11 backplane where

the signal C8U2 (IR clock) may be sampled. The IR is the processor's

instruction register which is loaded with each instruction that the

processor is to execute. The preferred method is the use of the IR

load signal as (i) the PDP-i/45 and PDP-*/70 may share a micro

address;ais (1 t o l the case for all mprocessors in the 21(V)

3-64

line and (2) the IR load signal occurs when the instruction being

fetched is on the data lines of the Unibus of fast bus. By using

the IR load signal we are then able to capture the actual instruction

being executed so that comparisons with selected instructions such

as EMT or WAIT can be made.

3.2.3.4.7 Instruction Type

The instructions can be collected over a period of time and then be

evaluated by the Hardware Monitor processor for operation code, mode,

and register. Tne priority can be collected along with each

instruction. Correlation between task and instruction will require

a rather extensive exchange of parameters and status between the

host processor and the Hardware Monitor processor. Again signals from

the Console/CPU Interface or the IR clock are required to detect

instructions.

3.2.3.4.8 Floating Point Instructions

Floating point instructions can easily be detected by looking for

the operation code (17XXXX)8 . This information can be represented

as total count or count per unit time.

3.2.3.5 Fault Detection and Isolation

Most of the events in this section are detected by the host system -

either through hardware or software. Detection through hardware will

cause a subsequent TRAP or ABORT condition, which will vector the

software to a corresponding location. These events can be easily tracked

by host system software.

3.2.3.5.1 Slave Faults

Slave Faults can be detected by the lack of a SSYN response when MSYN

is asserted. The Unibus address where the slave fault occurs can be

detected by the Hardware Monitor. The signals in question are on the

Unibus Interface.

3-65

3.2.3.5.2 Trace Trap

Trace Traps are detected by monitoring the T bit in the Processor

Status Word. Data and status associated with the trap can be collected

by the Hardware Monitor from the Console/CPU Interface and the Main-

tenance Interface.

3.2.3.5.3 Error Counts

Host system software can collect pertinent error information via a

task called ERRLOG. This program has been developed to collect

parameters for mass-storage-type devices, such as disks and magnetic

tape drives. Error information can also be collected by monitoring

selective device addresses during an ISR (see peripheral performance

measurements of Controller Registers, number of INTRs per Controller

and Service Time). Interpretation of device registers can be

accomplished by the Hardware Monitor processor.

3.2.3.5.4 Unclaimed NPG, BG

An unclaimed NPG or BG will cause a SACK timeout in the CPU. This

will light an error indicator in the CPU but will not cause a hardware

trap. This condition can be detected by the lack of the SACK response

to either a BG or a NPG. In order to determine which device fails to

issue the SACK response, a separate probe is required for each device,

especially if the condition is intermittent.

3.2.3.5.5 Memory Out of Bounds

Host system software reports this condition, if the address is asserted

during a CPU cycle. Device handlers will receive a non-existent memory

error if there is no SSYN response after the device asserts MSYN.

3-66

3.2.3.5.6 Odd Address Error

Host system software reports this condition (similar to Memory Out

of Bounds measurement).

3.2.3.5.7 Multiple NPRs/BRs

The occurrence of multiple NPR's or BR's is not a system error

condition. It can occur anytime more than one device contends for use

of the bus. The measurement for Multiple NPR's/BR's is simply the

condition where the NPR or BR is not negated after SACK is asserted.

This measurement is done using the Unibus Interface signals.

3.2.3.5.8 EMT Service Time

EMT timing is the time from issue of EMT by task to return of control

by EXECUTIVE to the same or another application task. EMT and TRAP

instructions can be detected by monitoring instructions for operation

code (104XXX)8. Number of instructions and number per unit time can

be easily be evaluated. Service time begins with an EMT or TRAP

instruction and is completed with a RTT or RTI instruction.

3.2.3.5.9 Event Driven Trap

This measurement is a subset of the EMT Service Time measurement. A

particular event can be detected by the contents of the lower byte of

an EMT or TRAP instruction.

3.2.3.5.10 Glitches on Power Supply

A discrete probe is required for each voltage within every power

supply to be monitored. This could require many probes, for in the

CPU alone there are at least eleven (11) different supplies. It is

possible that one single power supply could be representative of all;

this would require in-depth investiqation.

3-67

3.2.3.5.11 Loss of Power

The ACLO and DCLO signals on the Unibus Interface are used by the

system to determine loss of power.

3.3 Vector Generator

The 21(V) system will be measured by monitoring a number of probe

points that will minimally affect the system performance. The majority

of the information is obtained by constantly monitoring the UNIBUS and

Cache/Memory bus transactions. The collected information is fed to the

programmable patch panel and microcomputer in the Hardware Monitor.

The signals from most probe points are monitored and a number of pre-

calculations are accomplished on a Hardware Monitor board inside the

21(V) system. Many signals are timed and counted and sent to the

programmable patchboard in the form of event indicator and a vector

of signals associated with specific events. Each event has a specific

format of signals associated with it.

The events selected constitute most of the significant computer operations

occurring inside the 21(V) system. The probe point for these events are

taken from UNIBUS, Memory/Cache, and Front Panel probe points to simplify

the measurement technique and the number of wires needed to be plugged

into the measured system. In a few cases the signals were not available

at standard output locations and wire wrap probes would be used.

3-6

3.3.1 Vector Definition

The following intrinsic events have been selected:

o Fetch Instructions

The Fetch signal is obtained by a special probe inside the

processor or from CPU ROM micro-address observations. The

information obtained in the Fetch is recorded in the address

data lines being monitored on the UNIBUS. The time in micro-

seconds needed for the transaction is recorded also.

o Memory Read.

In many cases it is necessary to read data stored in memory.

Each time the processor asks for data in storage this event will

record the address, data and time necessary for the transaction.

0 Memory Write.

Same as the memory read above but the data observed is being

stored in memory.

o NPR - NPG.

Signals used when requesting and being granted a one or two

machine cycle data transaction between a master and slave unit

will be detected. Included in the measurements taken will be

the master and slave unit causing the NPR-NPG and the time

necessary for the transaction to be established.

o BR - BG.

The daisy chained system of device priority is used when the

processor needs to be interrupted for some type of transfer.

In most cases an INTR request follows the BR - BG pair.

3-69

o INTR.

When an interrupt occurs a new program status word is inserted

and the processor completes this new process while the PSW of

the old routine that was being executed is put in storage. The

parameters measured include the new PSW and the times from

request to completion as well as between BR and INTR signals.

o Error.

When the processor detects an error signal in its operation it

will be analyzed in the Hardware Monitor to detect when the

error occurred and what peripherals were involved.

0 Trap.

When a trap occurs, the operator is interested in knowing all

the information leading to a trap. It will be available using

FIFO memory in the monitor.

Each of the above events will result in an output of the vector generator

to the Programmable Patchboard. Depending on the program selected by the

operator, any of these events can be accepted for analysis. In each event

a number of measurements will be combined to form an event vector. This

vector contains measurements that are of interest to that particular

event. Table 3-8 specifies the make-up of the vector and the spaces of

information allotted to each measurement. From the data received, it

can be interpreted what significant unusual occurrences exist in the

event. The history of computer events can be inspected since all the

vectors are recorded in a FIFO buffer.

3-70

F- H-

LuD Lu H-

Lu LuI

>-- >- <
of of LL H- -u
ar aL LuJ2!

CA - - a' -

HF- CD

a' F- H- L
V) (A (A Lu 1

Lu- Lu LuJ~ E A (L
-r LA Lu-

Lu -J L

>- >- >-J Of- r

So 1

V'a -a Lu h

u- V- >) U"- H-) H-Lu -cc :r

Q) ~ ~ hLu H-- a'j ofa

(n LO V Lu- h- - DL

(A (A (A C' CD V) a CLD(
a aj a' aLJ a':z-a

(A H-- afh- C A

L)J2 ULuf Ul Lu

H- H- h:' A a- <CT h-U' <- a'-
Ic ':: < a'< u -J :X:Lu m a

M' a'3 a'm 'l V m aa a' -

4-) c; rl: C 4()

uL

4-0 ' ' ? (0(~

CL

cia_

4-'7

Each vector exists to simplify the data and group it in a manner that

can reduce the workload and complication in reading it. Some signals

are measured that occur at a high rate. To keep from interfering with

the host computer the concept is to measure and group the signals as

close to the probe point as possible. The signals will have some pre-

processing done on them to present them to the PP in the proper manner.

This pre-processing allows for proper event marking and sequence timing,

without over-utilization of PP thus allowing for more efficient use of

the PP.

Part of this procedurea will allow for five events to be marked when they

occur (NPR/NPG, BR 7-4/BG 7-4). At the same time these events are marked,

time interval measurements relating to request-to-grant, request-to-completion,

grant-to-completion, request-to-grant latency and NPR-NPG contention time

are made. These time interval measurements will then be stored in a short

term scratch-pad type memory corresponding to the event vector and will

be made available to the PP if and when it is requested.

3.3.2 Vector Building Components

There are four basic circuits that will be used to process these events

(Figure (3-6). From combinations of them the vector generator will be

built.

Circuits I, II will be used to monitor the NPR-NPG, BR-BG events. It will

indicate that these events have occurred and will also have the capacity to

time the intervals from request to grant and request to the completion of

the data transfer. The event will be directly available to the PP and the

time intervals will be stored until requested by the PP.

Circuit III will monitor' only eVwnts pertaining to the BR-BG (7-4) and

their grants. It will mark the event (BR-BG) and will also time the

intervals of Request-to-Interrupt and Interrupt-to-Completion of the

3-72

NPR

NPG ____REQUEST-TO-GRANT TIME
SACK ____ - - REQUEST-TO-COMPLET ION TIME

CLOCK NPR/NPG EVENT

BR

SA K__ _ __ _ _ REQUEST-TO-GRANT TIME
__________REQUEST-TO-COMPLETION TIME

CLOCK -BR/BG EVENT

BRn
BGn REQUEST-TO-INTR TIME
I NTR L______INTR-TO-COMPLETION TIME

CLOCK -BRn/BGn EVENT

MSYN
SSYN IV MSYN-TO-SSYN TIME

Figure 3-6 Basic Vector Generator Components

3-73

data transfer process. The event will be made available directly to tie

PP and the time intervals will be stored until requested by the PP.

Circuit IV will be used to time MSYN-SSYN.

In addition to these pre-processed results there will be available

in the vector the data, address, control lines, as well as mode signals.

Using a latch as a Vector Assembler allows for:

1. Proper collection of vector bits,

2. Latching of vector to ensure correct timing and coordination

of vector bits,

3. New vector formation while previous vector is being examined

in the PP.

Placing the first vector information into the latch allows for the second

vector to be started. This minimizes the delay of the vector transfer

due to data transfer interlocking. This also allows for the PP to examine

and act upon the previous vector before placing it in long term storage.

By designing a "PP Ready" signal, to indicate to the PP that the vector

is ready for transmission, it is insured that the transfer into the

PP will be orderly.

This design also allows for future vector size modification and vector

tailoring to specific 21(V) systems and particular user measuremcnts with

minimal time and cost.

3-74

3.3.3 Vector Post-Processin

The basic count of the monitor system is provided by this state vector

generator. Each new vector represents either a transfer of data, a

transfer of control, or both (e.g., NPR data transfer) and the total num-

ber of vectors equals the total number of master/slave bus transactions.

The most elementary breakdowns are therefore:

o Total data transfers/total number of vectors

0 Number of NPR transfers/total number of vectors

o Number of NPR transfers/total number data transfers

o Number of controi transters/total number of vectors

u Number of NPR transfers/numoer of control transfers

o Number of BR/BG transfers (i.e., number of interrupts)

0 Number of CPU instruction fetches/number of vectors

It is presumed that the monitor always counts the total number of v.:ci:nr,-

and that the microprocessor is maintaining this information. For each

of the above measures, one must count just those vector types of interest.

Postprocessing will perform the divi;ions by the "100' reference" values.

't is most interesting to note that or;ly the event type nieeds [e matcne.

This is easily accomplished by the programmable patchboards associative

logic. The logic identifies the counter to be incremented at each

occurrence of the selected event type or types. The counters can be

read and cleared when the total vector counter overflows or can themselves

cause an interrupt when they overflow. Interrupt rates will be lower

than that for the total data transfer cycle counters.

3-75

As multiple samples may be obtained over a period of minutes, reports

can include absolute counts or ratios averaged over a desirable period

of "wall clock" time as well as a measure of statistical fluctuation

'devat> oJ.s . e ,ea., d-. t;.e se'ected period.

3.4 Pr'_o rammIa b.i e. _Pa tc h-boa-ra

The function of the programmable patchboard is to digest the many probe

results into a reasonable number of events to be accounted for by the

monitor processor. As a consequence of this modular approach and of

intrinsic hardware limitations, the vector generator will handle and

pre-process relatively fast events, the programmable patchboard will process

medium speed events (500 ns - 10 nsec) and the monitor processor and memory

will process relatively siow events.

The following distinctions can be made in the elementary functions of

the programmable patchboard:

o Selection of Events

o Counting of Events

It should be clear that a compression of events has to be made, since

it will be unrealistic to be monitoring all possible events all of the

time. Compression can take place either by filtering or by outright data

reduction. Data reduction is the main function of the Vector Generator,

while the Programmable Patchboard mainly performs a filtering function.

Historically, hardware monitors have used logic plugboards to make connections

between probes and logic devices, and subsequently between those logic devices

dnd (OUntors in the hardware monitor.

A real-time clock is necessary as a reference either to time the utilization

of a device or the total expired time durinq test. More complicated systems

will contain data selectors such as decoders, multiplexers, etc., whose

inputs and outputs are also routed via the pat(hhoard.

3-76

In conmercially available hardware monitors, 500 to 1000 plugs are

required, which means that setting-up of the plugboards is not only

time-consuming but also complicated. Changes in the monitoring procedure

will be hard to incorporate and might be error prone. In order to

alleviate those obvious shortcomings of manual plugboards, a dynamically

programmable approach will be taken. Not only will this approach result

in a more reliable monitor, it will greatly improve set-up and

modification times, as well as allow time-sharing of the plug-board hardware

between several measurement procedures.

3.4.1 Selection of Events

In order to filter events for only those events that are of interest,

the input stream can be compared against preset values or value ranges.

It should be clear that sequential comparison will be too slow for the

total number of inputs to be acconodated in the system at hand. A recent

develcpment in chip technology called PLA (programmable logic arrays)

greatly reduces the total number of discrete logic elements required to

implement the parallel matching function. A PLA is not only able to

detect single or multiple combinations of events, it can also, when provided

with a feedback register, detect secluences of events. Basically the AND

plane provides an associative function on the inputs followed by a multiple

response from the OR plane. A PLA with 16 input variables, 8 output

variables and space in the AND plane for 48 combinations can, from those
16 inputs, determine whether or not P predefined events have taken place;

these eight events can be any logical combination of the 4P predefined

ones in the AND plane. Unfortunately, LSI PLA's are only one-time statically

programmable; once burned-in they cannot be changed.

3-77

Various alternatives exist for the matching function implementation:

o PLAs, as discussed above, burn-in for a particular

set of measurements.

o PLAs, burned-in for a particular fixed set of measurements,

but used in conjunction with RAMs for local changes.

o Associative memory in conjunction with RAM circuits. The

associative memory performs the individual matching, while

the RAM performs the detection of combinations of

matches.

o RAMs where the data to be matched is used as an address

into RAM, preset with logical ones in the locations that are

matches. This solution is cheap and bulky, and can only

be realistic if the proper segmentation of data items is

accomplished, as well as a hierarchy of sub-match handling.

3-78

Mc2 intends to implement the PLA function, or essentially the parallel
comparison function, by a concatenation of an associative memory (AM)

and a RAM. The associative memory, in concept, will replace the AND

plane, while the RAM will implement the OR plane: this realization will,

therefore, be dynamically programmable. In addition, the physical

segmentation of AND and OR plane will allow the application of techniques

that make associative processing especially attractive. LSI AM chips

have been developed, though of relatively small dimensions (e.g., 16x16).

The proper dimensioning of this AM-RAM combination or even a hierarchy will

have to come from a detailed analysis of the monitoring requirements. It

should also be clear that a software interface will have to be implemented

that will obtain the actual coding of the AM-RAM from the user-desired

combination of monitored events. In other words, the personality of the AM-

RAM combination should be obtained from a functional description, not from

an inout as an arlav of bits at the qate level.

3.4.2 Countinj of Events

Results from Selection and/or Comparison will be counted and/or sent
on to the monitor processor. Counting can be done in either a purely count

ode or in a relative rate mode when a "clock" signal is combined with the ev(,nt in

question. The results in the counters will be stored in the monitor processor's

memory either periodically or triggered by an impending overflow. This
informndtion and the real-time clock value at the moment of dumping will

be the basis for subce(uent post-analysis by the monitor processor or any

other so prescribed machine.

3-79

Wnen a histogram is required for the periori:,trice diSti')LJt1ln of a certairl

event, use can been made of a RAM in which the content of addresses,

created from the respective sub-cases of the event, are incremerited by

one when the corresponding sub-case occurs. This is known as the

distribution mode. One should be careful to make sure that the

read-increment-write cycle of the RAM is shorter than the interval

between two sub-case occurrences. If that is not the case, a multiple-

increment-station and inter-leaved memory configuration should be evaluated.

Lastly, the RAM's can be used as buffers in a trace-mode operation, again

limited by their write-cycle time.

3.4.3 Proqrammable Patchboard Realization

A combination of buffers, comparitors and counters (Figure 3-7) will result

in a programmable patchboard processor that will be highly effective both

from the cost as from the versatility point of view. The Associative Memory

(AM) contributes to the selection as well as the match function. Some

RAM's operate as part of the AM-RAM PLA implementation, others in a count,

time, distribution or trace mode.

The device is programmable by setting up values in the associative memory.
The User Interface software (see Section 4.2) is responsible for creating

combinatorial tables that are to be useu by the monitor processor to
"program" the programmable patchboard. Bit positions in this table

correspond to the logical AND, OR, XOR, and NOT, operations that are

handled by manual switches and connectors in currently available commercial

machines. The table would also be used to indicate the disposition of the

event (increment counter 23, etc.). The bit-for-bit tables will be loaded

from the monitor's microprocessor.

3-P0

21 (V)

VECTOR GENERATOR

PROGRAMMABLE PATCHBOARD I 1

- BUFFER-IN j

COMPARISONS ACCEPT

COUNT

COUNTES j [BUFFER-OUTJ

i i-PROCFSSOR

Figure 3-7 Programmable Patchboard

3-8I

3.5 Monitor Control Unit (MCU)

The functions of the MCU microprocessor are:

o Monitor Initialization

- Program load

- Self test

- Programmable Patchboard initialization

o Measurement Data Acquisition

- Test directive input

- Data acquisition Control

- Data path arbitration

- Data input/storage

0 Data Processing

- Statistics/correlation

- Formatting and scaling

- Abnormal Direction/Fault detection

0 Operator Communication

- Display selection

- Data Display/output

- Status display

The MCU is composed of a standard 16 bit microprocessor, 16K to 32K

ROM/RAM, a parallel I/0 interface structure for the patchboard, host, and

optional peripherals, basic display/control panel, and chassis with

i,'teqral power supplied.

The microprocessor will be supported with the basic tools required for

3-92

easy program development and maintenance. The microprocessor will

have the power in terms of instruction set, I/0 and interrupt structure,

and execution rate of at least a DEC PDP-II/23, TI TMS 9900 or Bunker

Ramo IEP. The MCU memory will be a mix of RAM and ROM in variable

proportions dependent on the monitor applications.

An optional basic display/control unit will be provided for those

configurations not utilizing 21(V) peripherals (Decwriter, LP, etc.)

for monitor control and display.

The MCU chassis can provide space and DC power for the programmable

patchboard and vector generator logic modules, as well as a means of

interconnect (backplane) between these modules. The chassis can accommodate

up to 10 cards, and consume no more than 10 1/2 vertical inches of

standard 19" RETMA rack space. The chassis will provide self-contained

cooling and physical protection for the internal components. The unit

will be suitable for table top operation as well as rack mount. The

MCU will, subject to space availability, normally be mounted inside the

21(V) in the vicinity (10 ft.) of the CPU cabinet.

With the exception of an AC power and bootstrap/reset switch, there is

no absolute requirement for controls to be mounted on the monitor. As

the monitor bootstrap, executive, and primary channel interface control

software will be resident in ROM, the monitor can be "brought up"

except for its measurement definition/control variables, patchboard

configuration, and applicable special process software. The latter

three items are programmable and are to be resident in monitor RAM.

Through the simple provision of a down-line loading facility within

ROM, all variable data can be loaded into tne monitor from the host

computer. This data has been prepared on the host system prior to

testing. Several different tests can thereby be created and stored

within the hst. The test to be executed can be initialized by a

3-,'.23

simple 21(V) console command to load the test by name. Test can be

changed without causing any system downtime. Through the power of

the host's program development tools, (cross assembler, test definition

language interpreter, etc.) test specification can be significantly

simplified.

The 21(V) video console and printing peripherals can provide all

necessary real time data and "post mortem" reports. As this requires

host resources, it may be desirable to attach display and/or report

production peripherals directly to the monitor in certain environ-

ments. Video display terminals offer the possibility of quiet

operation and rapid update for real time information. Hardcopy

terminals can double as post mortem printers. Both terminal types

offer keyboard input for control at the monitor.

In the following sections we will address the characteristics of

the DEC LSI-11/23 and TI TMS 9900 and a current product from Bunker

Ramo, the IEP microprocessor. Particular attention will be paid to their

respective interrupt handling structures.

3.5.1 Digital Equipment Corporation's LSI-11/23

The LSI-11/23 processor is built around two MOS/LSI chips. The data

chip contains all of the logic and arithmetic functions, handles all

data and address transfers, external system control and most interchip

communication. The control chip contains the Programmable Logic Arrays

(PLAS) and sequencing logic for the microprogram.

Communications and control between the data and control chips are

handled via a 16-bit micro instruction bus internal to the processor

board. This bus also handles communications with the optional memory

management unit and floating point unit.

3-84

Data transfers between the chips, processor and LSI-Bus are executed

on a 16-bit time miltiplexed data a'dress ine which also handles

the interface logic.

Each instruction of the instruction set, which includes both single

and double operand instructions, has equal access to I/O interface,

and processor registers and memory locations. The 11/23 instruction

set is also compatible with existing PDP-11 sets including software,

documentation, and associated application notes. An extended

instruction set which is standard, allows for hardware integer

. ultiplyand divide as well as direct multiple shifting.

All communication between modules, connections with memory and I/O

interface elements to the central processor are handled by the LSI-11

Bus. The asynchronous timing of the bus allows each device on the

LSI-11 Bus to operate at its own speed, thius promoting better system

performance.

Address and data information are multiplexed with data on the [us ana

interlocking (hand-shaking) is similar to other PDP-11 data transfer

routines. The bus provides a fully vectored prioritized interrupt

scheme, with nearly an unlimited number of independent interrupts

in a system. Each interrupt stimulus has its own vector and service

routine assigned to it eliminating the need for device polling.

Priority is determined by the electrical closeness of the device,

i.e., the closer the device the higher the priority. In addition

interrupts may be enabled or disabled for the system or for

particular devices through individual control and status registers.

Direct Memory Access Techniques may be utilized to implement faster

data transfers for the 1/0 interface module.

3.5.2 Texas Instruments' TMS 9900

The TMS 9900 is a MOS 16-bit central processor. The instruction

set of the 9900 is comparable to any minicomputer and it employs

a unique memory to memory architecture with multiple register files

that allow for faster response to interrupts and greater programming

flexibility. The 9900 is completely compatible with MOS T2L Logic

and memory and is completely supported by Texas Instruments.

The memory architecture is based on a 16-bit (2 x 8 bit bytes) word

thus making all memory location even addresses.

Sixteen interrupt levels, 0 through 15, are available on the 9900

with 0, the highest level priority reserved for reset. 1 through 15

are available for external devices and may be shared by several

device interrupts. The interrupt code (ICO through IC3) is compared

continuously by the 9900 with the interrupt bit mask contained in

status register (ST) bits 12 through 15. When the level of the pending

interrupt is less than or equal to the enable mask, the processor

recognizes the interrupt and initiates a context switch following

completion of the current instruction. The processor fetches the new

context Workspace Pointer (WP) and Program Counter (PC) from the

interrupt vector locations. Then, the previous context WP, PC, and ST

are stored in workspace registers 13, 14, and 15, respectively, of the

new workspace. The TMS 9900 then forces the interrupt mask to a value

that is one less than the level of the interrupt being serviced, except

for level-zero interrupt, which loads zero into the mask. This allows only

interrupts of higher priority to interrupt a service routine. The processor

also inhibits interrupts until the first instruction of the service

routine has been executed to preserve program linkage should a higher

priority interrupt occur. All interrupt requests should remain active

until recognized by the processor in the device-service routine. The

3-86

individual service routines must reset the interrupt requests before

the routine is complete.

If a higher priority interrupt occurs, a second context switch occurs

to service the higher priority interrupt. When that routine is

complete, a return instruction restores the first service routine

parameters to the processor to complete processing of the lower-

priority interrupt. All interrupt subroutines should terminate with

the return instruction to restore original program parameters.

3.5.3 Bunker Ramo's IEP (Information Exchange Processor) Microprocessor

The IEP microprocessor is a powerful, high speed, multi-task Cpu,

designed for use in modern distributed processing systems. The micro-

processor's 16 bit architecture, capable instruction set and ability to

address large memories enables it to be used in a wide variety of applications.

Yet, the microprocessor is relatively small and inexpensively being assembled

on a single printed circuit board along with 8,192 words of high speed

dual ported memory.

The IEP microprocessor uses a mixture of hardware and memory reqisters to

achieve a large register set. This combination permits the execution speed

of individual programs as well as context switchinq between proqIrams to be

very fast.

Most processors use only one type of general purpose register. The

registers are either hardware registers or they are memory words which are

addressed as if they were implemented in hardware (memory registers).

3-47

Computers which use a memory register structure, such as the TI 990 computer,

are able to context switch very quickly. They have this ability because only

the program counter and the register set pointer need be saved during

an interrupt. The register set pointer defines where the memory registers

for the current program are located in memory. Each program running in

the computer has its own set of memory registers. The problem with this

architecture is that the execution speed of individual programs is sluggish

since operands and operand addresses must always be read from memory

before an instruction can be executed. Computers which use hardware regis-

ters, such as the DEC PDP 11/34 computer, keep the commonly used operands

and operand pointers in their hardware registers where they are immediately

available for use by the program instructions. As a result, programs execute

faster. However, the hardware registers are shared by all programs running

in the computer. The contents of the registers must therefore, be saved

before the interrupting program can use them. This slows down program

context switching.

In contrast, the IEP microprocessor provides each of its program channels

with 16 memory registers and also provides 7 hardware registers which all

program channels share. Up to 256 program channels may be running concurrently

within the microprocessor. The hardware registers temporarily hold the

operand pointers, counters, accumulator and shift registers upon which a program

is currently operating. The memory registers hold program control words,

stack pointers, counters, operand pointers not currently in use, program

entry points and intra-IEP mailboxes. During an interrupt, only the first

three hardware registers are automatically saved. The remaining four may

be saved under program control if they are needed by the interrupting program.

The sixteen memory registers associated with the program being interrupted

do not need to be saved as they are already in a dedicated portion of memory.

3-89

As a result, each program running in the IEP microprocessor has available

23 general purpose registers which it may use. Of these, only the 7

hardware registers used for data and address manipulation need to be

saved during an interrupt. This architecture allows the IEP microprocessor

to execute programs very fast and to quickly switch context between programs.

The IEP microprocessor executes 80 different types of instructions, the

instruction set includes all of the move, arithmetic, logic, shift and

jump instructions normally found in mini and microprocessors. Multiply and

divide instructions found in some mini and microprocessors have not been

included in the IEP instruction set. These functions will be performed by

installing a small high-speed floating point processor in the IEP if

required.

The IEP instruction set is particularly powerful in the area of program

jumps. All IEP compare and test instructions perform an immediate jump if

the conditions of the compare or test are satisfied. As a result, the IEP

microprocessor performs examine and jump functions in one instruction where-

as other processors typical require two instructions for the same task. In

addition, the IEP microprocessor performs more types of compare and test

instructions than are commonly found in other processors. A heavy emphasis

is placed on jump functions since a substantial portion of IEP programs will

be control oriented and thus contain a large number of decision loops.

The IEP instruction set fully supports the writing of position independent

code. Position independence is particularly important since IEP application

programs are typically built by linking together off-the-shelf subroutines.

The combination and order in which subroutines are linked continously charnges

from application to application. As a result the ability to write position

3-89

independent subroutines significantly improves the cost effectiveness of

IEP systems. Position independent code is supported through the program

option of selecting PC relative addresses for all compare, test, jump and

intra-page call instructions and by the available operand addressing modes.

Re-entrant program code is also fully supported throuh the micronrocessor's

multiple stack, memory register and channel I/O addressing structure.

Typically a number of IEP channels are all driving the same type of I/O

device or communication circuit. Re-entrant code permits all of these

channels to share a single copy of the IEP application program, thereby

saving a considerable amount of program memory space.

The interrupt structure, multiple stack and memory register architecture of

the IEP microprocessor permits up to 256 concurrent programs to be running

within the processor. This multi-task capability is essential to IEP

system performance since real time interleaved processing of several I/O

channels is the normal intended mode of IEP operation.

3-90

3.t. fib s Interfact a ,..rd

The Unibus Interface Module provid- the monitor control unit's micro-

processor with the means of accessing any main memory location, any

peripheral device register in the external (UNIBUS) page, and the CPU

program accessible registers. Physical access is via a standard

UNIBUS interface and cable. By means of the Unibus Interface Module

(oIM), the monitor can use the 21(V) UNIBUS facilities to exchanje

data with and control all of the above devices.

The DRll-B, a Unibus I/O Card, operates directly to or from memory

rather than using program-controlled data transfers and is a general

purp'ose DMA interface to the Unibus (Figure 3-8).

The interface consists of four registers and its operations is

initiated under program control. When data is requested by the user

dev . the ORII-B performs i flat.9-Tn Transfer (DATI) and loads its

data register with information fr,)ri the rcfvren~ed address. If a
"write" is requested by the user device, a Data-Out Transfer (DATO)

is performed moving data from the user devices data registers to the

appropriate address. Also a number of control lines allow for

burstmodes, byte addressing and reddl-modify-restore operatiuns.

The UUIBUS Interface provides the means of communication between the

host and the microprocessor unit. It allows the results of the

software monitoring activities on the host to be transferred to the

mic-,'v-rc.ssor to be correlated with the hardware monitoring results.

- - tjt.IHC, OUT

-~~~~~ .- ,)IA,- - - .(NIRt IN

A 1 N C. RS

UA.

-~~DT -I DT
Cl , CT. j'

-3 9

4.0 SOFTWARE FOR HYBRID MONITOR

Software is a critical ingredient in ensuring that the 21(V) monitor
can and will meet design objectives in terms of flexibility and simplicity

of operation. Flexibility is believed much more than an unspecific

ability to handle the wide variety of measurement definitions and

combinations made possible by the hardware design. Flexibility must

include specific provisions to properly deal with the range of user

needs outlined in Section 2.0 and to deal with several levels of user

sophistication and knowledge of both measurement techniques and hardware/

software technology.

Monitor software is naturally partitioned by consideration of the

machine upon which it executes. The hybrid monitor concept entails

cooperative measurement through actions of both the host 21(V) and the

monitor's microprocessor controller, and it is necessary . -rovide

software for both machines. To minimize development costs and to

maximize monitor measurement bandwidth, much of the most complex

software is to be developed for the host itself.

As conceived, there are four unique and distinct functions that can

be performed by the monitor - each served by its own set of software:

o Basic measurement definition and measurement set compjation.

Measurement definition and measurement set compilation is

analogues to the design coding and task buildirr ,f a

computer program. It is a precise operation that would involve

assembly level language programming for the microprocessor

and is performed by technically oriented proqrammer/analysts

and engineers in response to evolv;nq requirements for

specific measurements and for groups of associated or simul-

taneous measurements. With the Pxcfeption of code debu~qinq,

4-1

there is no requirement for real time operations and, in any

case, there is no need to use the operational target machine

which will eventually be measured. Yet the full power and

efficiency of a large machine can be utilized to rapidly

and efficiently perform this function.

o Selection!qualification/invocation of a measurement set.

Selection/qualification/invocation is akey user interface.

These routines "configure" the monitor by loading/enabling that

software to be used for a selected measu-rement set. This

software is used interactively via the operational system's

console and only temporarily uses host system resources to

provide interactive discourse and actual loading of micro-

processor software. The programs need not be resident when they

are not being used. The level of interactive discourse is

designed for use by computer operator and/or system manager.

It is menu-oriented and uses basic English and an easily

learned command set.

0 Measurement.

The measurement software is resident in the microprocessor

during measurement operations. Since most of the organizational

and operator interface work has already been accomplished,

the measurement software itself is compact and requires

minimal host resources. Depending upon the measurement

type and duration (and also upon the level of extra monitor

peripherals attached), some host peripheral loading could be

encountered in storing measurements data for later (post)

processing.

4-2

0 Reporting.

Reporting software ranges from the most simplistic micro-

processor routines that would drive a near-real-time display,

to more complex, time-of-day oriented programs that would

reside on the host and utilize the host's printing and disk

storage facilities. Although the latter case would introduce

additional host loading, the programs could be run at low

priority to minimize the impact on other system operations.

4.1 Software Organization

A hybrid monitor will examine both the host computer's hardware and

software states. The hardware component of the hybrid monitor will

contain the programmable logic units (load modules) specifying

logical combinations of events or sequences of events to allow patch-

board ;,,itching by remote control. The software component of the hybrid

monitor is a very small module or modules which reside in the host and

which are transparent to the host operating system. This software

traps events such as Emulated Trap (EMT) directives and activation of

tasks.

Each basic measurement, be it performed by host software intercept

techniques, by programmable patchboard/microprocessor setups, or by

combinations of these methods is associated with specific software

and table structures within the system. The software responds to specific

hard.%-e -vents and the table structures define "programmable" hard-

ware configurations (such as the patchboard) to provide these specific

events. Measurement data storage organization for use by measurement

and reporting routines is also kept in table form. Standards can be

established for software interfaces, table organization, register use,

interrupt handling, etc. so that measurement modules consisting of

necessary code and structures for a given measurement can be system-

4-3

atically developed with assurance that they can be integrated with other

modules within a single, uniform, controlled software environment. The

combination of individual modules and structures in the standard format

is called a "patch". Once created and tested, a patch (consisting of

at least one module) may be named, saved and subsequently recalled or

linked with other patches and/or modules to build complex measurement

sets. Figure 4-1 gives a high-level overview of the manner in which

patches are interactifely created (or modified) and saved. Figure 4-2

shows how one or more single patch modules are linked and loaded to create

the software for the hardware monitoring activity.

The user, after selecting, for example PTCH23 which consists of modules

X, Y and Z, then enters, by use of a simple interactive command

language, the run time parameters for the monitor, the events he/she

wishes to monitor with additional qualifiers if applicable, and the report

format requirements. The interact:,i hybrid monitor front-end edits

the language statements (compiler mode), then also edits the parameters

entered based on the patch having been selected. When all user data

has been collected, edited, and verified, the hardware parameters are

decoded and entered into a matrix which is downloaded to the micro-

processor as part of the hardware component of the hybrid monitor. The

applicable software parameters are put into acceptable format, then

passed to the software component of the hybrid monitor.

The hybrid monitor front-end is envisioned as having several parts:

the interactive frort-end which accepts and displays data to and from

the console of the host computer, a compiler to decode the interactive

measurement language, and a link-loader to create the composite software

load module and transfer it to the microprocessor to perform the hardware

measurement collection activities.

I-4

CD
aj

44IM
C~C)

0

4--r

eu 0

.13

m 00 t 0 w 0
3: 4J (Ue :4

'0 r 4)

0~ ~ ~ 0 000
l~n X:

~0

Z)
CL N

~~a)4- CJ)a
UL I- 4-
eu m ra
S-- 4-) 3S-)
4--) 0 ~ - C 0C : 0S- 0l 0 0 LI

AL 0
I -D

4-

The monitor user commdnd lanyuage trcludes those commands and operations

necessary to hierarchically build eAecutable patches from host and

microprocessor elements and to store and retrieve such patches by

name. Among the capabilities provided by this language is the speci-

fication of run time (run-dependent) variables. The host software

associated with this feature is activated by console request and/or as

a time-scheduled RSX task request. Console requests allow the analyst

to invoke execution of a measurement set, change run time parameters,

or suspend/cancel a measurement. Run time parameters may be "precanned"

sc that a clock or activity level related task request could be

provided with the desired run time data. With this technique, various

measurenients can be sequentially performed and/or measurements can

be triggered without operator involvement. The invocation of measure-

ment set involves the following steps:

o Create, modify or delete a hardwarp "soft patch" load module,

o Enter a list of patch modules to be linked into a single patch

load module for download to the microprocessor,

o Enter parameters required to initiate and terminate a

monitoring session, and to qualify and quantify a selected

patchboard configuration,

o Load necessary measurement software and table structures in

ooth the host and the monitor's microprocessor,

o Enter report formats desired as result of the monitoring

activity.

The basis for the host measurement software is the fielded
Mc2

software monitor. Whereas Mc2 believes the proven trap/ATL dispatch

intercepts used by the software monitor are the proper method for the

4-7

hybrid system, they can neither be left unmodified nor are they, by

themselves, sufficient. The major changes involve the introduction of

greater modularity and the removal of virtually all in-memory tables

and counters. The increased modularity will minimize host core

requirements for selected measurement sets. The tables and counters

are replaced by equivalent elements within the monitor microprocessor.

The remaining streamlined intercept code now becomes an event detector.

Events selected for marking as part of a measurement are first detected

by the host resident program. The program then encodes the event and
"passes" the code to the external monitor hardware through the monitor's

UNIBUS interface. This will be accomplished with significantly less

overhead than the software monitor.

The measurement software in the microprocessor accepts the events passed

to it by the programmable patchboard. This takes the form of individual

events or the accummulated totals of certain events. The microprocessor

software prepares these results into the form required by the reporting

functions.

The provision of reporting facilities to match the extraordinary

flexibility of the measuring device is no simple feat. Without care,

the complexity and cost of the reporting software alone could well

exceed the combined cost of the other parts of the monitor.

Mc2 approaches this by recognizing the need for three major report

types:

o Fixed statistical reports considered valuable enough to be

automatically produced for each run or which are often used

as part of standard operating procedures.

4-8

o Parameterized standard report formats such as histogram, Kiviat,

and Gantt charts where the user will be able to assign measured

variables to the "channels" (axes, strip numbers, etc.) of the

report.

o Structured "core dump" reports.

The fixed report will be tied to specific patches and/or to modules

which do not require data storage on the host disk. The format of

these reports is chosen to best present the data; graphics could be

employed.

The latter two reports are to be organized by "snapshot" - each

occurrence of a stored record on disk or by the structured contents

of the monitor microprocessor's memory. The basic structure of each

snapshot is that of the microprocessor's memory at a given insLant so

that, given the structure of the memory, individual elements could be

selectively extracted for inclusion in the parameterized standard forms.

As it is likely that many patches will involve complex strings of

inter-related values, the "core dump" mode is supplied. Major structural

boundaries will cause line skips, ejects and/or similar visual cues to

aid the analyst in the interpretation of the information.

Special provisions will have to be made when the monitored system in

question contains multiple AN/GYQ-21(V)'s. In that case H ',e will

be written that will correlate the information from multiple vector

generator and programmable patchboard pairs after it has been written

into the microprocessor(s) storage.

In the following sections individual attention will be paid to the

user, interface formats, software monitor functions, microprocessor soft-

ware and reporting formats. The integration of those software elements

constitute the software for the hybrid monitor.

4.2 User Interface

The setup of measurements has to be flexible. An understanding of the

term flexible is critical. Each AN/GYQ-21(V) system is uniquely char-

acterized by its hardware configuration, operating system, applications

programs, and, most importantly, by the profile of user activity. There

is no a priori "obvious measure" to take that is "universal" and

independent of the use to which a system is put. For example, systems

that generate little I/0 are unlikely to have their performance

degraded by slower I/O devices or inefficient utilization of these devices.

Number crunching problems which would more likely be associated with

inefficient code might be detected by program locality measures (average

change in program counter between instruction), incidence of page faults

or cache "misses", instruction execution rates, timing of innermost

program loops, and distribution of instruction types. In a multipro-

gramming environment the detection of the "offending" routine or subsystem

might be made by measuring the amount of CPU time specnt in each task's

partition, by determining the relationship of each task's execution times

to the system's quantum time slice, by comparing CPU utilization in
"overhead" activities such as context switching with CPU utilization

in task execution, or by capturing some other "significant event" that

typifies a subsystem under study.

The Hybrid Monitor Control Language (HMCL) is a simple measurement

definition language which is used to interactively create modules

of "patches" and selectively include or modify previously created

patches to compose a complete monitor run with the capability to

specify run-dependent variables at execution time.

4-10

'iA

The instruction set alcwl the user to define events of significance,

and specify measurements to be taken when these events occur. The

events may range from rather high level actions such as a task becoming

active, to machine level events such as signals being passed by a probe.

Combinations and sequences of events may be defined as events in their own

right - actions occurring simultaneously or consecutively.

Various measurements can be made, triggered by the occurrence of an

event. Counts may be kept of the number of instances recognized.

Durations and intervals can be measured for events which have beginning

and ending points, or for two known successive events. Time stamping

may be lone upon the occurrence of an event or program trap. Special

measurements may be requested of the node pool, UNIBUS or memory

(system performance), and in the case of the 11/70, the Fast Bus and

Mass bus. Also, reports in the form of histograms of device activities,

Kivat oraphs of CPU-I/O activity, or instruction type distributions

may be specified.

At the conclusion of each monitoring session, certain statistics are

always reported. These include CPU Performance, Floating Point

Processor (FPP) performance, and Fault Detection/Isolation.

Additionally, as events, measurements, even whole monitoring runs are

defined, they may be manipulated as necessary. Provision is made for

storing, retrieving, deleting and listing specified monitor modules,

allc4,rg updating or repeating sessions with minimum effort.

Finally, at actual run time, previously defined run-dependent variables

can be assigned, giving additional flexibility to the monitoring setup.

4-11

Although the exact command invocations and examples shown may be

duplicated by a terminal user, they should not be interpreted as

representing a necessary sequence of operations. Rather, the examples

outline the general function and typical usage of a command or

combination of commands. The user should build his/her own language

command string to fit the particular monitoring requirement.

The following conventions are used in the description of the syntax of

the language. All commands and source text are free form based on

correct usage of keywords. Syntax surrounded by square brackets is

optional; braces enclosing two objects separated by a slash indicates

that one of the two objects must be chosen; keywords are shown in

upper case; commas delimiting elements in a list are required; an

ellipsis (...) indicates that several objects may be listed.

4-12

I I II I II I II I I I

4.2.1 Event Definition Statements

These statements are used to define events to be considered significant

during the run of the monitor. Single events may be combined to create

new events. For ease of manipulation during the interactive phase, the

events are labeled with a 1-6 character event name.

DEFINE Statement

f location = address [THRU address][IF VALUE value]

SIGNAL = probe #

TASK = tasknamel, taskname2,

DEFINE eventname: I FILE = filenamel, filename2, .

USER = useridl, userid2,

DIR lirectivel, irective2,

This statement is used to define events to be recognized by the monitor.

To facilitate measurements at the machine instruction level, two options

specifying machine locations or probe signals are provided. Valid lo-

cations are:

ILOC - Instruction Location

DLOC - Data Location

PC - Program Counter (Register 7)

Rn - Register n (Registers 0-6)

DEV Device

Associated with these location identifiers are address variables giving

specific values or ranges of values as conditions to be satisfied for

the event to occur. For memory locations (ILOC, DLOC, PC, Rn), the

addresses consist of eight octal digits, defining an actual memory

address. If a peripheral device is specified, the logical unit number.

1

4-13

device address or controller address must also be given with the desired

address on the device:

DEV LUN5,256

would indicate sector 256 if LUN5 refers to a disk. In addition, the

value of the location may be tested by the IF value clause. Any six-digit

octal value may be specified.

To specify reception of certain signals to the microprocessor as events,

the signal option is provided. By giving the probe number which will

transmit the signal, the event is defined to occur whenever a signal

is received from the particular probe. If certain combinations or

sequences of signals are desired, the component signals may be defined

individually and joined by the use of the combine or sequence statements

described below.

The TASK, FILE*, and USER options give the capability to specify the

occurrences of tasks, file accesses and actions associated with user IDs

as events. This gives flexibility at the software level. Valid task

names, file names* and user IDs are specified for these options.

The DIR option allows lists of directives to be defined as events. These

directives may be combined with other events to give specific statistics

or they may be used in their own right to give system measurements. As a

large number of directives may exist, a table or user's manual would be

provided giving mnemonics or codes for reference.

*File statistics may be monitored dependent on host resources required

by the software monitor component to do so (artifact).

4-14

COMBINE Statement

COMBINE eventname& eventl IAN/ORevent2 ...

The COMBINE statement provides the capability to define an event as a

simultaneous occurrence of other previously defined events. The events

may be connected by the key words AND or OR signifying all events must

occur or at least one of the events must occur, respectively, for the

defined event tu be considered as having occurred. Conceivably, with

some , this statement could be extended to allow use of both key

words in h .avtme instruction, using parentheses and establishing prece-

Jeuncs. This is suppoi ,ed in the current design through use of

multiple -.ombine statements defininq intermediate events.

;[QU-NCE Statement

SEQUENCE eventname: eventl, event2 ...

The SEQUENCE statement defines an event as the consecutive occurrences

of previously defined events. The defined event, "eventname". will

have occurred when the events listed are recognized to have occurred

in the order in which they appear in this statement.

4-11,

4.2.2 Measurement Definition Statements

These statements define measurements to be collected when the associated

event has occurred.

COUNT Statement

COUNT event

The COUNT statement causes a counter to be maintained representing the

number of times "event" has been recognized as having occurred.

TIME Statement

[TOTAL] TIME event

The TIME statement causes the duration of event to be recorded. The

optional TOTAL clause indicates the total accumulated duration will be

recorded in addition to the individual occurrences. This statistic

would be useful for measuring response times or task durations and would

have limited application for evaluation at the machine instruction level.

INTERVAL Statement

INTERVAL eventl, event2

The INTERVAL statement provides for the measurement of the interval

between the occurrence of "eventl" and the occurrence of "event2" to be

r,((rded.

TRACE Statement

TRACE event

The TRACE taternent causes a time stamp to be saved each time "event" is

known tr have)ccurred. This statistic is useful for program debuqginq.

4-16

TRAP Statement

TRAP event

The TRAP statement causes a program trap to occur when the described 4q

event is encountered. Processing would proceed as per ordinary

program trap. Again, this instruction would usually be used for

program debugging or error detection.

4.2.3 Add-it-iona] Statistics St-_atement

Inclusion of any of these statements causes a group of statistics to

be reported pertaining to the specified resource

PUD Stdtement

The PUD (Physical Unit Device) statement calls for snapshots to be

taken of the Physical Unit Device Table at the beginning and at the

end of the monitoring run. The snapshots would record the online and

logon status for each device in the table.

NODE Statement

NODE WITH SAMPLE FREQ nnn iSEC/MIN' AND REPORT FREQ nnn /SEC/MIN

The NODE statement causes activation of the node pool usaq(- monitor at

given intervals specified by "nnn" and the appropriate time unit.

The node pool usaqe monitor samples the node pool and reports such

statisti(s as minimums and maximums for nodes held by tasks, nodes

allocatd and number of nodes each task held at. system maximum. Node

pool SImpl es are providcd at spo ific d intf, rv 1j l d ,r im y i

<1-1 P

HIST Statement

HIST dev4 WITH PARTS nnnnnn

The HIST statement causes special statistics to be collected to

construct histograms of the device activity. The device number

indicates which device is to be monitored (a special number would

indicate main memory). The value "nnnnnn" indicates the size of the

partitions (tracks for disk, address ranges for memory) the device

would be separated into to provide sampling intervals for the histogram.

This summary would be given at the end of the monitoring period.

SYSTEM Statement

SYSTEM WITH FREQ nnn [SEC/MIN
L

The SYSTEM statement causes statistics to be reported pertaining to

system performance. Such statistics would be: number of active tasks

in memory, memory allocation and task request rate. Again this sampling

takes place with a certain frequency specified by "nnn".

UBUS Statement

UBUS

By specifying UBUS, the user will receive UNIBUS performance statistics.

These statistics include: UNIBUS Acquisition Time, UNIBUS

Occupancy, Interrupt Response Latency, Non-Processor Request (NPR)

Latency, Bus Request (BR) Latency, UNIBUS Mapping Register (UMR)

Utilization. and Number of Transfers per Second.

4-I

FBUS Statement (11/70)

FBUS

With the FBUS statement comes statistics detailing the Fast Bus and

cache performance measurements. Reports for these devices would include:

Cache Acquisition Latency from CPU, UMAP, and MBC(s), Cache Hit Rates,

and Cache/Memory Transfers per Second, and Read and Write Counts. These

measurements are available for the PDP 11/70 only.

MBUS Statement (11/70)

MBU S

By specifying MBUS, statistics for the Mass Bus Controllers (MBC) will be

obtained. Relevant measurements would be MBC transfers per second (both
read and write) and percent busy. If there are several MBCs in the system,

the reports would be for each. Again these values may be obtained for the

11/70 only.

ITYPE Statement

ITYPE BY (OPCODE/MODE/REG HEN PRI=nnn/STATE=state/TASK=taskname[PRI=nnn] i

The IT'i'< statement initiates measurements for an instruction type

report. Such a report could be organized by Opcode, Register, or

Addressing Mode specified by coding the appropriate word from the first

braces. The statistics collected may be restricted to one of the

conditions denoted within the second braces. These conditions are:

0 STATE - "state" values are KERNEL (Kernel mode), SUPER

(supervisor mode) or USER (user mode).

4-19

o TASK - a single "taskname" is specified. USER state is

implied. TASK may be further restricted to statistics

collection only when it is executing at a specified

priority level (PRI=nnn), where "nnn" can range in

value from 1 - 250.

o PRI -priority at system level provides statistics for at

total of all tasks executing at the specified priority.

KIVIAT Statement

KIVIAT

The KIVIAT statement calls for a Kiviat Graph to be produced at the end

of the monitoring session. At present the graph is envisioned to

depict the CPU-I/O interaction for the system as these statistics are

readily available (CPU statistics r automatically collected by the

monitor and by specification of the UBUS (and FBUS and MBUS for the

11/70) commands(s), statistics will be kept for I/0 utilization as

well), It is conceivable that other sets of measurements will be

found useful to be compared using Kiviat Graph. Parameters would then

be required for this statement defining the group of statistics to be

used. At the moment, however, the CPU vs. I'O Kiviat Graph appears

to be of primary value.

4-0

4.2.4 Automatic Statistics

Certain statistics are considered valuable enough to be automatically

reported for each monitoring run. They include:

0 CPU Performance, such as: instruction rate. percentage

of utilization, percentage of time at priority levels,

percentage of time in kernel, supervisor and user modes;

also CPU-I/O and CPU/FPP (Floating Point Processor) overlap.

o FPP Instruction Rate

0 Fault Detection/Isolation counts including: slave faults,

error counts, unclaimed NPG, BG counts, memory out of bounds,

odd address error, multiple NPR count, multiple BRn counts,

glitches on power system, loss of power.

4-21

t.2.5 Module Manipulation Statements

These statements give the capability to work with monitor "modules"

containing groups of event and measurement statements. This allows the

user great flexibility and reduces the work required to create

monitoring setups. It also means runs can be set up with a minimum

of one command to include a module.

STORE Statement

STORE AS identifier

The STORE command causes the event and measurement definitions made since

the previous store command (or start of the session) to be saved for

further reference as a module (patch) known as "identifier". This provides

for ease and economy of operation as frequently run monitoring setups

will be available with the use of a single INCLUDE command. Also implied

is the ability to modify a previously run session rather than create an

entirely new one.

Some form of direct access storage will have to be maintained for the

purpose of saving these modules. The actual method of storage wili

depend on the implementation chosen.

INCLUDE Statement

INCLUDE identifier

The INCLUDE command retrieves the module specified by "identifier" and makes

it available to be linked together with other modules (if required) to

form a monitoring run. In addition, once the module is retrieved, it

may be further modified as necessary for the current session.

4-22

DELETE Statement

DELETE identifier

The DELETE command removes the module specified by identifier from the

storage area reserved for the monitor modules.

LIST Statement

LIST [identifier]

The LIST command lists the current event and measurement definitions

for the module currently being constructed or as specified by

"iderti fier".

4-23

4.2.6 Monitoring Options

These options affect the running of the monitor. The mode output and

statistics collection process can be altered as well as setting up test

runs to check the performance of the monitor.

SUPER Statement

SUPER

r

This statement allows the software component of the monitor to be run

in supervisor mode. Care must be taken to ensure no other tasks are

running in supervisor mode.

STATS Statement

STATS filestring

The STATS statement allows the collection of statistics to be saved at

the end of the monitoring run. They will be stored in a file identified

by "filestring", a standard RSX file identifier. If this statement is not

coded, statistics will be lost after completion of the report phase.

REPORT Statement

REPORT [hh:mni:ss],[Idevice/NOPRINT]

This statement causes actions to be taken by the report component other

than defaulting to reporting upon completion of the monitoring phase on

the system printer. By specifying a time, the report can be delayed to

begin at the given time if it is after the completion of the monitoring

run. In addition, a device may be aij, ied as the output unit of the

4-24

report or the special option NOPRINT may be coded to suppress the listing

of the report. Due to the nature of the histograms and Hiviat Graphs,

these special reports must be output to the printer rather than the output

unit assigned.

TEST Summary

TEST EVERY hh:mm:ss FROM hh:nim:ss TO hh:mm:ss[;]

[DIR = directivel, directive2, ... [;]

[NODE : nn[+ /- nn [;]]

[DEV = devicel. device2. ...]

(Other parameters may be defined).

The TEST statement is used to check the performance of thc ffr(, 1noritor.

At the given intervals, a test program is invoked causing a known

sequence of events to occur. Reports generated by the appropridte

monitor setup will then provide a means for determininq both the accuracy

of the monitor measurements and the artifact caused by the software

component of the monitor.

Several options may be used with this statement, to, oditv events gen-

erated by the test program. A semicolon is used to indicate an option

follows on the next line. The DIR option lists the directives to be

caused by the test program. NODE specifies a number of n,, be re-

quested, with the capability to raise or lower that number :\ a fixed

increment each invocation of the test program. The DEV option lists

the devices events may be directed to. In addition, other parameters

may be defined to allow such actions as modifyinq loop contrnl values

of the test program.

It is important to note that the proper monitor event and measurement

definitions are used in conjunction with this test facilitv Sttistics

must be collected regardinq all events to be compared with the tVst

program, otherwise inconclusive results are to be ex.ectfdi

4 -?

4.2.7 Monitor Invo;cation

This section describes how to start and stop the monitor, and how

the special run time assignment facility works.

START at hh:mm:ss FOR hh:mm:ss

This comnnd causes the current event and measuremeui definitions to

be "assembled" and any conflicts to be brought to the attention of

the operator for resolution. Such conflicts might be the over-

allocation of resources (too many measurements) or that a specified

measurement may significantly degrade machine performance. Once the

events and measurements and any conflicts are resolved, the hardware

monitor load module and qualifying parameters will be passed to the

microprocessor for patchboard initialization and resource allocation.

The software monitor in the host is initialized for software event

detection. At the specified starting time, monitoring will begin and

continue for the duration given as the second parameter.

If for some reason it is no longer desired to continue the monitoring

run, a STOP command is also provided to terminate execution of the

monitor. At any time after the START statement has been entered, the

command

STOP

may be entered, causing the monitor to abort. The user will then be

prompted for a decision whether or not to report the statistics

collected.

An additional feature that should prove worthwhile, especially when

usinq frequently run experiments, is the capability to make assign-

ments to specially defined variables at the time the monitor is invoked.

This allows monitoring runs to be designed to measure actions defined

4 -

by values not known until run time, for example, to monitor task times.

An input variable would be the task name. A special character or

sequence of characters would be used at the time of event definition

in place of the variable.

In the case of the task name example, the instruction would be coded:

DEFINE MYTASK: TASK =

At run time, since this variable is undefined, the user will be

prompted for a value to be assigned. Such a facility greatly increases

the usefulness of a monitoring set up.

4-27

4.3 Host Software Monitor

The software portion of the hybrid monitor must be kept small

to reduce artifact (the side effects of time, memory, and device

usage). Although the host monitor, hereafter referred to as SOFMON,

is capable of tracking many of the user required measurements, the

hardware monitor component, through use of probes, can extract

the majority of the same measurements at no cost to system efficiency.

These hardware measurements can be meaningless without the interpre-

tive data and control information provided by SOFMON.

The Host Software Monitor will conform to the followinq desiqn

specifications:

o Transparency

o Independent maintenance

o Modularity

The following areas must be considered carefully during SOFMON design:

o Use of supervisor mode (an option requiring further

investigation)

o Operating system dependency

Figure 4-3 depicts the Host Software Monitor configuration.

4-28

44-

L.- ----

4-1

0
-

C) U')"m~"

0 00 I

a 4'

is 0

C: C '

o~ ID
CL~'

4-'I -'D~'

-~~ C CLC~ 'a D ~ Z~

4-291

SOFMON will be completely transparent to both the system user and to

the various routines comprising the system and user software. No

restrictions or special requirements such as monitor invocations

embedded within the system or user programs will be introduced.

Related to the requirement for transparency is the requirement that

the monitor not be tied to other software components of the system in

such a manner as to force recompilation of one should the other be

recompiled or replaced. The is especially important in the case of
routines supplied from external sources, such as device handlers.

The design structure of the monitor will be modular so that option

moditications can be performed with minimum integration effort, thus

affording expansion capability. More importantly, based on option

selection, code which is not required for the current monitoring

session (example: SOFNOD or SOFTST) will not occupy system memory.

SOFMON artifact can be reduced by dedicatinq supervisor space
to the monitor. This can be done if there are no special tasks such

as the Intertask Communications Module (ICM) running in supervisor

mode. The interceptive monitor will no longer need to save or restore

supervisor registers but can directly address them. The nodes required

by the "NODCOD" or kernel portion of SOFMON would be greatly reduced.

This option would be implemented interactively in a manner similar to

the way the user selects any of the options provided by the interactive

I I ,,

measurement language. The "supervisor mode" option must be selected

with care. If another supervisor mode task is executing, selection

of this option results in system failure. The default value for the

"supervisor mode" option will accommodate other supervisor tasks, at

a cost of higher resultant artifact.

The Host Software Monitor, although designed to be general purpose,

is dependent on a specific CPU and operating system. Modifications

are required to operate under a different operating system (RSX-IID

vs. IAS vs. RSX-IlM). If the EMT handler address changes or any of

the system executive tables are modified, corresponding modifications

must be made to monitor code. Care must be taken to thoroughly document

monitor code so that changes, if required, can be easily made. The

changes are particularly significant between the RSX-11D and RSX-11M

operatirc systems because of changes in the area of inter-task

comi, -,-.etions. Separate software monitor packages are required for

each o erating system.

4.3.1 Fundamental Software Monitor Techniques

4.3.1.1 Interceptive Monitor (SOFAMO)

RSX executive software provides a number of services initiated by

the Emulated Trap (EMT) instruction. This instruction is issued in

conjunction with parameters which define the service requested from

the executive. I/0 initiation, running of tasks, suspension and

resu .(-, n of tasks, reading and setting event flags, and task exits

are ex amiles of services initiated by the [MT 377 instruction. The

EMT is issued in conjunction with a directive parameter block (DPB)

4-a1

which defines the service requested.

The system return from directive services is implemented through the

TRAP instruction. The TRAP service routine then transfers control

back to the system by means of the RTI (Return from Interrupt).

A location in low memory contains the address of the EMT handler. By

altering this address to point to the monitoring routines, the EMT

can be captured at the start of directive services. The monitor examines

the directive parameter block of the EMT, makes appropriate updates

to and comparisons with its statistical records, then notifies the

hardware monitor component (HARMON) of a significant event or event

combination, and passes parameters such as ASR memory bounds for a

snecific task. SOFAMO then relays the EMT to RSX for normal Drocessing.

Figure 4-4 shows the method by which the interceptive monitor performs

its function in the host.

4.3.1.2 Sampling Monitor (SOFNOD)

The Node Pool Monitor is a sampling program with no unusual or

special features to distinguish it from the other tasks running in

the system. It scans the System Task Directory (STD) on a user-

specified time interval, retrieving the node pool usage statistics for

each task in the directory if non-zero. Between scans the monitor issues

a "Mark Time" directive for the user-specified time interval. If the

inter-scan interval is too large, the data collected can be largely

meaningless. If the scan window is too small, the system will be un-

acceptably degraded. The usual method of giving statistics is via a node

pool report to console or printer at the specified time interval

giving:

o The minimum and maximum number of nodes each task held

during the sampling period.

4-3?

1 ,4

USER TASK JOB1 RSX EXECUTIVE
Request for Service. EMT

QIO EMT I NODCOD HANDLER

EMT Vector b 5kC e

MemoryLc#nn DIRECTIVE
\ / DISPATCH

(Transparent) .

SOFAMO 0

Collects Statistics from / QIO
ATL, STD, PUD: Fill 1/0 Other

Time Diff for Prev Tsk ' Request Required
Logs Current Task INode Actions

Initiates EMT Handler
/

ATL SCAN 112 i3 4
2 I/ 1 DP NJYIN N

HANDLER TASK DP JOB1
Dequeue I/0 Request, JOB2
Issue Commands to Device
Wait for Completion h,qv

(EMT) -

I/O INTERRUPT SVC ROUTINE' DISPATC. I:
(Mapped into ASRn) TASK (RTI)

Service I/O,
Set I/0 Done Flag, r SYS TABLES1
Jump to EXEC ..INTX Rtne PUD
_ _ STD

3

USER TASK JOB2

Executing some code
when interrupted (by dis)

s%.DEYCE Vecto.
,Memor) Loc nn'

LEGEND

... User Mode
Kernel Mode

--- Flow
Y Executing
N Not Executinq
1-4 Order of Execution
a-w Flow Path

I (lice 4-4 RSX EMT Handling By The Interceptive Monitor (S FkM2

,1 -q

o The minimum and maximum totals of nodes allocated by the

system during the sampling period.

o The number of nodes each task held at system maximum.

The results of each sampling are compared to produce the same type of

information for the total node pool monitoring period.

Although initiated by the hybrid monitor front-end (MONKEY), SOFNOD

is a separate subordinate module whose artifact can be measured.

Its run time can be different than that of other hybrid monitoring

activities.

Node pool usage statistics are meaningful when monitoring RSX-11D

or IAS. RSX-IIM design modification in the inter-task communications

area reduces the applicability of taking these measurements.

4.3.1.3 Software Monitor Testing

A method for testing and validation should be considered in the desiqn

and implementation of SOFMON. Only by careful testing under a

controlled environment will accuracy of measurement, and level of monitor

artifact be ascertained and documented. A test plan is required to

include specification of test programs and the specific conditions

under which they run. A test program or programs must exercise every

possible EMT directive against each specific device active on the

system and keep a count of each directive by type and device unit

number or other associated parameters. Times must be documented to

include program start and end times, the time each directive was

issued and the time the program entered execution again after an EMT

interrupt. Testing should also include requests for nodes (blocks of

memory) from the node pool and keep a count of nodes used.

'-34

A possible approach to testing is the incorporation of a test

program within the monitor configuration. An additional option "TEST",

would be issued by the user at the terminal, The test module could be

run without any monitor functions active or concurrently with any or

all of the monitor functions. Reports would be produced both by SOFTST

and by the MONRPT portion of the hybrid monitor which could be compared

with each other and with other independent test runs. The percentage of

artifact caused by implementation of the software monitoring functions

or any combination of these functions can be observed and documented.

The proPosed method of testing allows parametric control of each test.

Examples of values that could be entered by the user from his terminal,

then passed by MONKEY to SOFTST to modify test conditions are: loop

cont- -I 3-lues to vary the length of an individual test run, the

number of times to re-initialize the test on a timed (sampling) basis,

or a change in the count of nodes to be requested by the test.

Default values would be coded in the test module in the event the user

did not want any modifications to the standard test.

4.3.2 Software Monitor (SOFMON) Measurement

Functions listed below can be measured by the software monitor. Within

the context of hybrid monitor design, it would in many instances be

more cost effective in time and resources for the hardware monitor to

tak, - measurement or measurement group and for the software wonitor

component to trigger and qualify the action:

4- 35F

AD-A090 026 MEASUREMENT CONCEPT CORP ROM4E NY
F/B 9/2o7 MINICOMPUTER HARDWARE MONITOR DESIGN.(U)

JUN 80 B MORITZ, H SPAANENBURB. A .5 LABOUT F
3
0602-9-C-0006

UNCLASSIFIED RADC-TR-80-203 NEh-E hE.EE

o Count of Emulated Trap (EMT) Directives.

Selection of this option gives a list by EMT name and count

for each EMT directives executed during the monitoring period.

A sub-option allows a count of all EMTs by name for specified

tasks. A sub-option allows the user to input from one to

thirty tasks names. The EMT counts are given for each task

selected.

o Count of QIO$ EMT Directives by Task.

Selection of the AIO$ directive option causes the monitor

to keep a count for 1-30 specified tasks of the Read Virtual,

Read Logical, Write Virtual, Write Logical and other QIO$

directives by device and data transfer quantity.

o Count of Send/Receive EMT Directives by Task Pairs.

Selection of this option causes SOFMON to record the

occurrence of the Send/Receive EMT directives using two counts,

one for "Send" type EMTs and one for "Receive" type EMTs.

These counts are kept separately for I to 39 task pairs with

the last send/receive counter and the last receive/send

counter reserved for a count of "Others" to notify the user

of the system total for the monitoring period.

o Automatic Task Option Selection Statistics.

If any of the EMT Directive monitoring options have been

selected to include task accounting, the following data is

collected by task:

- Time of first activation during monitoring period

- Time of last exit (task termination) before monitoring

terminates

4-36

F
- Number of times task exited during monitoring period

Number of times task is activated by the Active Task

List (ATL) Scan

- Total task CPU time including context switching

- Total RSX-1l service time for EMT being monitored

0 Null Task (NULTSK) Statistics.

If any of the Directive options have been selected Null Task

statistics are automatically collected and reported by the

interceptive monitor NULTSK is only activated by the RSX-11

Executive when no other task is active; therefore NULTSK

statistics give a picture of system idle time.

o RSX-11 Service Time.

Similar to the NULTSK statistics, RSX-11 service time can

be collected, not only for specified EMTs but for a total

of all EMTs, if any of the EMT options have been selected

to be monitored.

o Node Pool Usage

The node pool sampling monitor SOFNOD has been described

in Section 4.3.1.2. Node pool statistics will be gathered

by the separate SOFNOD module executing in the host computer.

o Disk Arm Movement Statistics (Histograms).

Selection of this limited special purpose option causes

collection of data to create histograms of disk activity

for each of the disk drives on-line during the monitoring

activity. The first histogram, in graph form, reflects the

frequency with which disk arm movements of a certain distance

4-37

(in cylinders) occurred. The second histogram graphically

displays, by ranges, the number of times each cylinder was

accessed. Monitoring of disk arm movement is hardware

dependent. Therefore, monitor code must be revised for

each different configuration. Disk arm movement measurements

could be taken more effectively by the hardware monitor.

The following monitor control options are available to the user:

o Length of monitor period

o Secondary storage to user-specified UIC, device, and file

o Number of sampling printouts required

o Print device

4.3.3 Extended SOFMON Measurements

Design of the interceptive monitor to include monitoring of the whole

range of EMT directives at system or task level permits inclusion of

other sub-options with future implementations to capture other specific

categories of EMTs with their respective parameters. The configuration

of SOFMON also provides an in-depth debugging aid for specific tasks or

groups of tasks. SOFMON could be used as a tool to aid in system

design and development. Monitor artifact is not an important factor

if SOFMON is being used for this purpose. The limiting factor is memory

to hold increased statistics. Additional measurement or enhancements

of existing measurement functions to be considered follow.

o Dumping Statistics on a Sampling Basis.

A dump of statistics to secondary storage on a timed or

sampling basis provides three benefits:

4-38

i1
The problem of counter overflow as result of an

extended monitoring period would be avoided, and

Data loss due to system failure would be reduced to

the statistics gathered since the last dump, and

- More extensive data reduction functions can be performed.

A buffer switching mechanism could be designed to allow the

dump processes to proceed while the interceptive monitor

continues to'increment counts, but using a new set of cleared

buffers for data collection while the filled buffers are

being dumped. The associated artifact of double-buffering

is greater if many options have been selected to be monitored.

If the monitor must be suspended for the period of time required

to switch buffers, a small quantity of statistics will be lost.

Further research may find solutions to these drawbacks.

o System Configuration Changes.

Hardware assignment changes could be intercepted as they occur.

Because of additional executable code and memory space

required (artifact), two snapshots could be provided - one at

the beginning and one at the conclusion of the monitoring

session.

o 1/0 Counts by Filename.

Analysis should be performed to determine the feasibility of

capturing I/O counts by specific filename if initiated through

File Control Services (FSC). This option could be implemented

if the associated artifact is not too great.

4-39

4.4 Measurement Collection Software

This section describes the system software architecture for the

hardware monitor microprocessor. The microprocessor controls the

gathering of information form "Vector Generator" by means of the
"programmable patchboard", and supports all communications between the

host AN/GYQ-21(V) and the hardware monitor.

Certain features of the proposed architecture are dependent, in their

method of implementation, upon the characteristics of the microprocessor

chosen. For instance, the LSI-ll compatible microprocessors have but

one level of interrupt priority, while the T19900 series offer fifteen

such levels (but fewer interrupt vector locations). It appears that the

newest entries in the 16-bit microprocessor fiels (Zilog Z8000, Motorola

MC68000, INTEL 8086) have even more versatile interrupt handling

capabilities, and may force revisions of this section should they be

selected for the monitor implementation.

In its conventional form, the mciroprocessor associated with the

hardware monitor will have no peripheral storage or input/output devices,

and will depend on the host for its normal operation. Since the micro-

processor will contain primarily voiatile RAM memory, most microprocessor

software modules will reside in storage on the host, and will be sent

on an as-needed basis to the microprocessor. The only exception to this

depnedence is the software written in non-volatile ROM or PROM storage,

which will control the bootstrap sequence and some low-level invariant

communications and utility functions (Figure 4-5). As non-volatile

memory is'logically interchangeable with dynamic memory, it may develop

that some of the more frequently-used microprocessor application modules

will eventually become permanently resident in the hardware monitor

microprocessor.

4-40

ROM

(a) Micro bootstrap routine.

(b) Null task "listen" loop.

(c) Accept Data Block from Host.

(d) Send Data Block to Host

Interrupt Vectors

Memory "Common" Area

Interrupt Service Routines

Background Program(s)

Figure 4-5 Microprocessor Memory Layout

4-41

r

W I pill

In keeping with the design objective of a relatively low-cost basic

monitor, the software architecture of the Hardware Monitor microprocessor

is kept quite simple. The actual "operating system" has been spared the

clerical responsibility of relocating executable modules and accounting

for memory usage: These functions are performed by the test preparation

software executing at the host computer. Instead, the microprocessor

will behave much as a traffic policeman, directing data flows between

the host and the monitor, recognizing service request priorities, and

assembling bundles of information for transport to the host-resident

monitor report generation software. This relatively simple design has

an important benefit - speed. By relocating more complicated processing

requirements to the host, the microprocessor will be capable of more

simultaneous measurement processes.

The permanent memory of the microprocessor contains routines to "bootstrap"

the microprocessor, read data sent from the host and direct it either

to microprocessor RAM or the Programmable Patchboard, and write data

from the microprocessor to the Host. It is possible that at a later date

certain elemental and repetitive measurement functions can be relegated

to ROM, but for simplicity, we shall limit discussion to the first three

functions.

4.4.1 Bootstrap

The bootstrap procedure is a sequence of hardware and software "events"

that resets the microprocessor and peripheral circuitry to a known initial

state, and then places the processor in "RUN" mode, executing a set of

instructions that "listen" for an interrupt from the host system over the

Unibus lines. Because the monitor is not designed to require local I/O

4-42

-. 4=

devices, the microprocessor will operate in "slave" mode to the host.

The host can then initiate transfer of interrupt vector addresses,

interrupt service routines, Programmable Patchboard tables and back-

ground programs to the microprocessor, and in the case of background

programs, initiate their executions.

The second ROM function is the host-to-microprocessor communications

handler. Upon being invoked by UNIBUS interrupt, the micro shall read

a 256 byte block from the host. This block may not be completely full,

if it contains only a-"command" to the micro, or it may contain a command

and related data, possibly requiring additional "reads" from the micro-

processor's standpoint. In either event, this ROM routine not only

accomplishes the interprocessor transfer, but also interprets the

function code and modifies to determine where the data is to be loaded

(Figure 4-6). Having digested this information, the handler will read

subsequent data blocks (where applicable) into the appropriate patch-

board or microprocessor locations.

The third ROM function is an analog of the second, in that it controls

transfer of data from the micro to the host. The host will always

be "expecting" such transfers, and will respond to interrupts generated by

the monitor accordingly.

4.4.2 Microprocessor Interrupt Servicing

As the total hardware monitor is basically a passive observer of host

system performance, the monitor microprocessor will gather the bulk of

its data by responding to interrupts generated by the Programmable

Patchboard or interrupts caused by the overflow of counters within

4-43

Word 1: Function Code CodeWord : Fuctio Cod Modifier

Word 2: Load Address

Word 3: Interrupt Vector Address

Word 4: Length (Bytes)

Interrupt "Next Transaction"
Priority Code

Punction Code ;

Function Code ncdifier Ce Function

l fe Reboot Microprocessor

2 I Accept Data from Host

1 ILoad Command Block

2 Load P.P. Table

3 Load Interrupt Service Routine

4 Load Background Task

3 !Execute Background Task

4 Terminate Background Task

5 Send Data to Host

1 I Data Dump from Microprocessor

_ 2 Testing Complete

Figure 4-6 Transfer Command Block

J 4-44

the Programmable Patchboard. This does not mean that microprocessor

software will never actively "interrogate" the UNIBUS or Programmable

Patchboard, but rather that these activities will be infrequent compared

to the servicing of externally generated interrupts.

The interconnection between the physical device (or "pseudo device",

where the event being measured is a boolean combination of discrete hard-

ware events) and a particular interrupt request line at the microprocessor,

is defined by a table of entries loaded into RAM within the Programmable V

Patchboard. Logic within the patchboard will use this table to physically

connect interrupt sources to the interrupt lines of the microprocessor.

Associated with the patchboard RAM table are the vectored interrupt memory

locations within the microprocessor. Each distinct interrupt input line

to this processor can initiate cessation of current processor activity,

storage of the processor's "current state" variables, and a resumption of

execution beginning at a unique memory location. This location, known as

an interrupt trap address, contains a branch instruction, to a service

routine, unique to that interrupt source, located elsewhere in micro-

processor memory.

Each measurement or group of measurements to be performed by the monitor

will require downloading of a patchboard interconnection table, a micro-

processor interrupt vector table, and appropriate interrupt service

routines. The service routines will vary in complexity depending on the

expected frequency of the interrupt. For high frequency interrupts,

the service routine may do little else than store away data for later

processing by a batch reporting routine.

4-45

V

Interrupt service priority presumably will be arbitrated by hardware

features of the microprocessor, and should be user-defined. Interrupt

structures akin to that of the LSI-ll, where priority is, in essence,

hardwired, shall hopefully be avoided. It should be possible to define

the priority of a service routine as well as an interrupt trap location.

(in fact, the T19900 micro forces one to do this!).

4.4.3 Background Operations

Many monitoring functions will require more than the counting of event

occurrences. It may be desirable to associate some measurements with

"time stamps", to measure interrelationship among several measurements,

or to format results into reports. These less time-critical (read:

interruptable) calculations can be run on the microprocessor as a

"background" program. The microprocessor would return to the execution

of such a program when no interrupts were pending recognition or

service.

Background programs would also be down-loaded from the host, with a load

point address specified, so that the ROM communication program would

know where to "put" the program. By convention, the first location of

the program would be a transfer to the starting address of the program.

4-46

4.5 Reporting Formats

After the monitor run is completed, and the measurements have been

collected, the reporting component of the monitor is activated.

Statistics which were requested during the monitor set up are

formatted and output to the printer or other specified device. This

section gives examples of each HMCL command and an associated sample

report.

4.5.1 Event Measurements

Tasks and Devices

Tasks and devices are high-level "events" which merit reporting certain

statistics, simply because of their importance to the system. Tasks

should always have their number of activations, CPU time and service

time reported. As for devices, number of accesses, response time and

services times should be given. These statistics will be output when-

ever a task name or device is defined as an event. If event definitions

are input such as:

DEFINE EVENTO: TASK MYTASK

DEFINE EVENT1: DEV = LUN5

then the following statistics would appear on the report:

EVENTO: TASK = MYTASK

52 ACTIVATIONS

0:u4.23 sec. CPU

0:00.47 sec SERVICE

EVENT: DEV = LUN5

131 ACCESSES

0:05.43 sec TOTAL ACCESS

0:00.86 sec TOTAL SERVICE

4-47

Controllers may also be defined as devices by giving the controller

address in the event definition. Certain additional measurements

pertaining to requests, interrupts and transfers will be reported

for each controller defined. An example of a controller being defined

is:

DEFINE EVENT2:DEV = 774400

Where 774400 is the controller address. The statistics reported are:

EVENT2:DEV = 774400

742 ACCESSES

677 NPRs

712 INTRs

91804 MEMORY/PERIPHERAL TRANS/SEC.

0:04.87 sec. SERVICE

60.2% BUSY

Design of measurement definitions should take into account the

statistics automatically reported to eliminate needless duplication

of statistics collection.

COUNT Statement

The COUNT Statement causes the number of occurrences of an event to

be reported. For example:

DEVINE EVENT2: Ro = 177756

COUNT EVENT2

keeps track of the number of times Register 0 contained the value
177756. Appearing in the output report is:

EVENT2: Ro = 177756

COUNT = 128

TIME Statement

Collection of the durations of individual event occurrences is specified

by the TIME statement. The TOTAL option, if present, causes the

4-48

cumulative event time to be maintained. The statements:

DEFINE EVENT4: DIR = QIOW$

TOTAL TIME EVENT4

cause monitoring the durations of each QIOW$ directive issued and the

total time QIOW$ directives were being executed. Since a large amount

of data could be generated with a statement such as this, an

acceptable solution is to summarize the durations into a mean and

standard deviation of'the sampling. The report then shows:

EVENT4: DIR QIOW$

TIME: MEAN = 0.0012 sec., STD.DEV. = .00514, TOTAL = 0.532 sec.

INTERVAL Statement

Another measurement requiring summarization is the interval statement

to measure the time interval between the occurrence of two events.

A situation where this capability is useful might be:

DEFINE EVENTI:PC=572

DEFINE EVENT2: PC=576

INTERVAL EVENT1,EVENT2

calling for the time intervals between the program counter having the

value 572 and then containing the value 576. While this may not occur

as often as the QIOW$ directives in the last example, if these

instructions appear in a loop, there could be an unwieldy nmber.

Reporting interval times would probably take the form:

PC=572, PC=576

INTERVAL: MEAN = 0.0014 sec., STD.DEV. = .00031

4-49

TRACE Statement

Traces must be handled somewhat differently than the other statistics.

What needs to be known here is when the event occurred, why it

occurred, and every occurrence of it. Means and standard deviations

do not have much significance for traces. Therefore when a trace

is specified, every occurrence of the event will cause the time of

the occurrence and the values of each component defined in the event

to be saved and ultimately reported. Definition statements like:

DEFINE EVENT5: DLOC = 10240 THRU 10400

TRACE EVENT5

would cause the time and the data location to be output for every time

data is accessed between locations 10240 and 10400. The output

would look like:

EVENTS: DLOC = 10240 THRU 10400

TRACE = 10:25:04.6217, DLOC = 10360

EVENTS: DLOC = 10240 THRU 10400

TRACE = 10:25:06.1825, DLOC = 10244

TRACE is a tool which must be carefully exercised to prevent waste

of resources.

TRAP Statement

The measurements and reporting for the TRAP statement are much the same

as for the TRACE statement. The essential difference is that a
program trap caused when the associated event for the trap occurs. An

example of the TRAP definition is:

DEFINE EVENT6: ILOC 1132 IF DLOC 0

TRAP EVENT6

4-50

The corresponding report output would be:

EVENT6: ILOC = 1132 IF DLOC =0

TRAP = 14:52:38.0298, ILOC 1132, DLOC 0

Again, the TRAP statement must be used with discretion, otherwise

large amounts of output can be expected.

4.5.2 Additional Statistics

This section describes the reporting formats produced by the various

additional statistics statements. Each of the statements call for a

group of measurements to be collected for the specified resource,

therefore, the output of these statistics can be somewhat more

structured than the individual event reports. These additional statistics

are output after all the event reporting has been completed with the

exception of the Physical Unit Device (PUD) report.

PUD Statement

Use of the PUD command causes PUD snapshots to be made at the beginning

and ending of the monitor run. The two snapshots are outputted at

the beginning and the ending of the monitor report, distinguished

by the time of the snapshot. Each device is listed with its on line

and logged-on status. The PUD reports are requested with a simple

command:

PUD

Figure 4-7 is an example of a PUD report.

Automatic Statistics Report

Following the individual event statistics will be the additional

statistics report. The first group listed will be the automatically

4-51

..... __ __ __ __ __ __ _____ -.,. .. , :, 4 . . "

0-

00

>-

LUJ

0-0
LUJ

LLL
m

I- >

4.-)

- 0

tj CL
U

C)
>

LO

2-')

u F -~ -..J C - F- .

Q)

4-52

generated statistics detailing the CPU and FPP performance and the
Fault Isolation/Detection measurements. Figure 4-8 is a sample

report of these statistics.

NODE Statement

The NODE statement causes the node pool to be sampled with a given

frequency, and reports to be produced with a separately specified

frequency. The node pool report gives minimum and maximum node usage

by task, and a snapshot at system maximum of task node usage, along

with the report number, reporting interval and number of samples per

report. A NODE statement coded as:

NODE WITH SAMPLE FREQ 2 SEC AND REPORT FREQ 50 SEC

Calls for node sampling to be done every 2 seconds and reports to be

produced every 50 seconds. If the monitoring run goes for -rit minute

report would be output when the statistics are given after the end

of the run, summarizing 25 samples. A sample node report is given in

Figure 4-9.

SYSTEM Statement

When the SYSTEM statement is specified, statistics regarding the system

performance are produced. A sampling frequency is supplied by the

user determining when snapshots are taken of three system indicators -

number of active tasks in memory, memory allocation, and :1k request

rate. A statement such as:

SYSTEM WITH FREQ .5 MIN

causes a system snapshot to be taken every half minute. A sample

SYSTEM report is given in Figure 4-10.

4-53

CPU Performance Fault Counts

72.7% Utilization 3 Slave Faults
26.5% CPU-I/O Overlap 26 Unclaimed NPG

41.2% CPU-FPP Overlap 14 Unclaimed BG

5.1% Supervisor Mode 8 Memory Out of Bounds
13.6% Kernel Mode 19 Odd Address Error ,

79.8% User Mode 7 Multiple NPRs

262675.4 CPU Inst/Sec. 2 Multiple BRs

85729.3 FPP Inst/Sec. 0 Power System Gliches

0 Losses of Power

73 Total Error Count

13.5% Priority Level 8 (NPR)

44.8% Priority Level 7 (BR7)

20.1% Priority Level 6 (BR6)

15.2% Priority Level 5 (BR5)

6.4% Priority Level 4 (BR4)

0% Priority Level 3

0% Priority Level 2

0% Priority Level 1

Figure 4-8 Automatic Statistics Report

4-54

C, -

C-,-

r-) C>
C>

CC

C

-n C>4

C>

oA r CL

-a

K ,

C, I w In C> ''>

.j O x C '

ag C -

- ~ D I= OC

~-"~ - K 4-55

0

IA W% -L ~

Oja C -W N 0
0a. Ln 0 (\A 0-%C

to 00 r -c0 .

'I- 1.-4-)

I-- 24

* LAJ a

06 CL

X 0 E

)

cri 0

4-56

UBUS Statement

With the UBUS statement comes statistics detaining the UNIBUS performance.

A single report is produced at the end of the monitoring run containing

various response times, utilizations, and transfer counts. The UBUS

statement is entered simply as:

UBUS

A sample UBUS report is Figure 4-11.

FBUS, MBUS Statements (11/70)

The FBUS and MBUS statements call for statistics to be reported on

the Fast Bus and Mass Bus, respectively, for the PDP-II/70. The Fast

Bus statistics deal with cache latencies and cache/memory tranfer

counts, while the Mass Bus statistics report Mass Bus Controller

(MBC) utilizations and transfer counts. The FBUS and MBUS reports

appear once at the end of the monitoring run. As in the case of UBUS the

FBUS and MBUS commands are coded:

FBUS, or

MBUS.

Figure 4-12 and 4-13 give FBUS and MBUS outputs.

KIVIAT Statement

When specified, the KIVIAT statement causes a Kiviat Graph to be output

describing the CPU vs. 1/0 activity of the system. Statistics must be

collected during the monitoring run regarding the CPU and I/O activity
in order that the chart may be produced. Kiviat Graphs are specified

4-57

C\j cu

a C0

4-)

LUL

4-)

0

to CL) 0M

(L (A O
C>. S-11

I 4-
w U,) 00

V- 4-) >U

Q) (a C
(AE -J (L) S.-

4-) tv Cl 4-
S4A) -1 (A

4)D >,) r-O C
0 C r_ n S.-

(U 4- 0 F-

4-3 4.) C)

o~ (1) M..

o 4 41- L
0 CT :3L

in 1.. W - (A
L =. S- 00

.0 n) . C\j
-C Un 4-)

c 0 = a c
CD 0o toC C

4-58

-CL

0

- C'

4-)

0

4- C)

a 4) C)

fu IJ - C~ -
cr1 0) 00 S-

Ci) a) C

LLC
U) - 2

CY0)

0)0

a) DUC

4-) (A f

Ln4- -9

o 4-) 4-)

(1) C.) S.
CL a1 C

V)

LUL

C) - ko o
Q- V) LO

V) E

- 4.

:: c

Lnd

V))

4-60

by coding;

KIVIAT

The Kiviat Graph pictorially depicts the interaction of several

performance components on a circular graph. The resulting shapes

can then be interpreted to give a measure of the utilization of the

resources involved. One of the most useful Kiviat Graph describes the

amount of CPU-I/O overlap present in a system. This graph is

constructed by plotting four measurements, for which high utilizations

are preferable, on the horizontal and vertical axes, and four

"undesirable" measurements, for which low utilizations are preferable,

on the diagonal axes. By connecting the plotted points a figure is

produced describing the interactions of these measurements. As

Figure 4-14 shows the four standard "good" indexes are: CPU active,

CPU/IO overlap, any I/0 active and program executing in t , ,:-oblem

state. The four "bad" quantities are: CPU only, I/0 only, CPU not

busy, and program executing in the supervisor state.

Figure 4-14 , the so-called "star pattern" represents a system

well balanced in terms of continuous and overlapping CPU and channel

usage. The maximum utilizations for the horizontal and vertical axes

and minimum levels for the diagonal axes contribute to the star-like

figure.

The evaluation of Kiviat Graphs is generally not a quantit.>tive process.

Experience with the graphs is important to determine the relative

efficiency of the system beyond the interpretation of approaching the

optimum star shape.

ITYPE Statement

The ITYPE statement gives an instruction type report summarizing

4-61

PROBLEM STATE 7 3 CPU/AN 0'LAP

Figure 4-14 Kiviat Graph of Optimum CPU-1/O Utilization

4-62

instruction activity during the monitoring run. The instruction

summary may be in terms of opcode, addressing mode or registers,

optionally restricted to a specified task, priority level or operating

state. For each instruction type, the report lists the number

executed and the percent of total instructions. An example of an

instruction type report specification recording the instruction

addressing modes for the task "MYTASK" executing at priority level

75 is:

ITYPE BY MODE WHEN TASK = MYTASK, PRI = 75.

A sample instruction type report is given in Figure 4-15.

It is important to recognize that the instruction type report can

involve a large number of measurements, especially if produced for

opcodes. This can have a substantial effect on the number of other

measureneits collected during the monitoring run.

HIST Statement

The HIST statement produces a histogram for a specified device. Also

specified is the size of the partitions (in units appropriate to the

device) that the device will be divided into for sampling purposes.

It is probable that histograms will be requested for either memory

or disk accesses, and the choice will have an effect on the

histogram format.

For memory histograms, the memory region is divided into sampling

partitions of specified size (perhaps 4096 byte increments), and the

count is given of the number of accesses to each partition. Disk

histograms, however, involve disk arm movements as well as partitions

(specified in number of cylinders) accessed. The disk arm movement

histogram reports the number of times the disk arm moves a given

4-63

. II I • II I Ik

INSTRUCTION TYPE REPORT

BY MODE WHEN TASK = MYTASK, PRI = 75

Mode Count % of Total

Register 1528 51.5

Register Deferred 67 2.2

Auto Increment 812 27.4

Auto Increment Deferred 21 .7

Auto Decrement 44 1.5

Auto Increment Deferred 0 0

Index 392 13.2

Index Deferred 104 3.5

TOTAL 2968 100.0

Figure 4-15 Instruction Type Report

4-64

number of cylinders. The disk access histogram is similar to the

memory histogram in that it gives number of accesses to each partition.

The command:

HIST DP0 WITH PARTS 20

indicates histograms are to be produced for device DPO (a disk)

with each partition containing a range of 20 cylinders. Figures 4-16

and 4-17 give examples of histograms for disk arm movements and cylinder

accesses, respectively.

4-65

E
Go

> ..

m 0

CC)

If C

C

Us In

C 0

- 4

S... a

C) E

0 0

goE
4 S.

4 ci

C> 41 4

4
4LS

Cl. C
o ~ .4U

44
In 49 E94 9

fA4U * * * 11 4

* * 49 0
4 4 41 4.

*44 4
* 4 4
4 4 4 4

* It * * * *

4A4

4M m *7 mm4
M 4n 4 M4 nr

0 *4J CM r4 *% % n t-

44 44 4466

C- 0

L- n) C> C) C) l~ CD 1- C'J to CD. LO C). 0 n n CD Lon CD C- 1-

C.%

II!

LA

41 4
LA C

11

C).

S-.
-o 0

(L) 4-
LA n

0~ LC C

u

Ifl 0) 0

4 1

C'Ij

C) 4. lo

40 4

*n 4 41 4 444

II I- I - 4- - - - - 4 . M M M M z
4) 4 3 4) 4~ I I I I I I I I4

.- m r %D w C4 CD CD C4 CD 4 4 4D CD4tC) C D
CD4j 4o M CD " 4c %4 W C4 4 % 4 M
- - - - - - - 4I M M M

0 ~ ~ ' ' r 4

5.0 SUMMARY

This report has documented the exploratory research that has been

conducted by Mc2 as its contribution to the development of an AN/GYQ-21(V)

hardware monitor.

In Section 2.0 a description has been provided of the concept of

monitoring, the users involved with monitoring and the monitoring

systems that are already in existence. The objective of that
2

section was to put the development of the Mc hybrid monitor into

its proper perspective.

Section 3.0 first of all examines the AN/GYQ-21(V) in detail, then

describes its interfaces to the monitor. The measurement set

considered to be a baseline for performance monitoring is documented

in detail as well as the locations of its requisite probe-points.

The major contribution of Mc2 towards the hardware monitor design can

be found in the break-up of measurements into three stages: the vector

generator, the programmable patchboard and the monitor microprocessor.

The eventual hardware specification of those devices awaits the

decisions that have to be made concerning the technology involved.

In Section 4.0 specifications for the software involved have

been documented. Foremost in the designers' mind has been the ease

of user interface with the monitor.

All of the technical and software/organizational techniques presented

in the report are within the state-of-the-art. As a result, a

microprocessor based performance monitor possessing an extraordinary

degree of applicability to all potential users is eminently

achievable.

5-1

The level of complexity of the modules and components involved in

either the vector generator, the programmable patchboard and micro-

processor with its accessories do point in the direction of satisfying

the production cost requirements of $12,000.

User acceptance has been guaranteed by the lack of user-installed

probes and the versatile user interface high level language software.

In short, it is believed that the simplicity of staged measurement

handling, maximum utilization of nonsensitive probe interfaces

such as the 21(V) busses, and the integration of passive hardware,

active hardware, software, and cooperative hybrid measurement/control

techniques provide RADC and the end user with a highly useful, low

risk product at a cost commensurate with the complexity of the user r
requirement.

5-2

6.0 REFERENCES

Svovodova, L., Computer Performance Measurement and Evaluation Methods:

Analysis and Applications

Elsevier, New York 1976

Ferrari, D., Computer Systems Performance Evaluation

Prentice Hall, New Jersey 1978

6

6-1

*

MISSION
Of

Rame Air Development Center
RAVC ptan6 and executeA Xe2~eatich, devetopment, te~t and
Aee.-ted acqwZ6tion p'wg'wxn in 6uppo Lt o6 Command, Cont)Lot

Commhnication and InteUigence (C31) actitZie,. Tecitnicaf-
a~nd engineeAung sppott within a~ez~ o6 technicat competence
ic-s p-'wvided to ESV P'zoqAar O66ice" f PO.6) and othe't ESV
etement6. The p~inc pat .technZcaX mi,6-5Zon aAeaz ate
com,,lLnicatt 046, etectAomagnetic guidance and contAo, sWt-
veit~ance o6 g,%ocnd and ae,'o~pace obJecLs, intettigenc~i da-ta
cotec-tion and handZing, in~o.'wation sy.6tem -tecJhnotogy,
iono.6phvec p'topagation, 6otid 6.tate 6ciencez, miwwaoLve
phy~.&.6 and etec.LAonic tetiabitity, maint&nabitity and
compatibitity.

0

