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SECTION 1

INTRODUCTION

Over the past several years the interactions between spacecraft and the'vacuum,

electromagnetic and particle radiation environment in space have been of considerable

interest to the scientific and engineering community. Electrostatic charging of high

altitude satellites by the effects of the ambient plasma and solar radiation is of serious

importance, since it can affect the operation of several on-board systems in scientific,

military, and commercial satellites.

Some laboratory facilities are presently available (see Refs. 1-3, for example) and

others are projected (4) which can provide a degree of simulation of the radiation and

plasma environment of space. A simulation facility is necessarily limited by engineering

and economic considerations to providing only a partial re-creation of the actual

environment encountered by a space vehicle. For example, only a few monoenergetic

beams, incident on a target from a limited number of directions, can be envisioned to
simulate geomagnetic substorm plasmas which generally have distributed energy spectrafr
and are fairly isotropic. The question as to what constitutes a "good" simulation ofa

given plasma environment has often been posed, but there are presently no consistent

answers.

The purpose of the present investigation is to analyze specific techniques for

choosing the energies and current densities of monoenergetic electron and ion beams to

simulate given space plasmas with distributed particle energy spectra. The plasmas are

characterized by various averages of their velocity distribution functions, and the

energies and particle densities of the monoenergetic beams are computed so that there is

z~ good match between the characteristics of the distributed spectra and those of the

beams. We hope that this analysis will help provide a concrete link between the

measurements of the space environment and the engineering specifications for charged

particle beams in laboratory simulation facilities.

This interim report outlines the approach which we have followed to define beam

energies and densities to simulate distributed plasma spectra. It does not consider the

equally important problems of the effects of discrete angular directions of the charged

particle beams or the interactions of the incident beams with the target. We have,

however, made considerable progress in both these areas, which will be reported in other

publications and in the final report of the program.



SECTION 2

MOMENT-MATCHING TECHNIQUES

2.1 BACKGROUND

A plasma can be characterized by various averages of the velocity distributions of

its constituent particles. In general, the "velocity moments" of a given distributon

function, f(v), are defined by

= 47r f vk f(v) v2 dv
0

k = 0,1,2,----.

where the 4 7rv 2 dv term represents an infinitesimal element in (isotropic) velocity space.

The velocity moments, Mk, can be related to physical averages for several values

of k. For example, M0 , M1, M2 , and M3 are related, respectively, to the average number

density <N>, particle flux, <NF>, pressure, <P>, and energy flux, <EF>, of the given

particle type in the plasma.

it = <N> = n (2)
0

1/2M 4-n<NF> <V>(3)

N2  <P> 3vr (_ 8kT1 (4)
2 m 8 7 M/

N3  2 <EF> )( kT)3/2

12(8 
kT) 2

M4  , n 2 (6)

32 n( kT)5/2

5  - n8 T- (7)

-2-



The average speed, <v>, in Equation (3) is defined by

MI

< M> (8)<CV> = --
M0

The expressions on the right-hand side of Equations (2) -(7) are given for the case of a

Maxwellian velocity distribution,

2
• 3/2 _mVk

f (v) =n( - ) e (9)

where n, m, and T are respectively ti;e number density, mass, and temperature of the

particles and k is Boltzmann's contant.

Average and RMS "Temperatures"

A useful method for characterizing a non-Maxwellian plasma is to define effective

temperatures which are related to ratios of the velocity moments. ( 5) The average and

RMS temperatures are given by

T M m2 (10)
AV k <N> 3k M 0

1 <EF> m M3

RMS m k 2<NF> = 4k M I

The two temperatures are equal when the velocity distribution is Maxwellian.

2.2 MONOENERGETIC BEAMS TO MATCH VELOCITY MOMENTS

A technique to simulate a plasma with a distributed velocity distribution is to

choose the velocities and particle densities of mononergetic beams so that their velocity

moments match those of the plasma. Under these conditions, the average parameters of

the beams, such as number density, pressure, or energy flux, are equal to those of the

plasma component under simulation.

-3-



In general, a single beam can match two moments of the distributed spectrum, so

that two beams can match four moments, three beams, six moments, etc. As discussed

in Section 2.4, it is also possible to overspecify the problem and use more than the

minimum number of beams to match a given number of velocity moments.

2.2.1 Single Beam Energy

A monoenergetic beam can match two moments according to the simultaneous

equations,

n
nlbVbJ =V

(j#k) (12)
knbvb =

where nb and vb are the density and velocity of the beam particles.

For example, when the zeroth (number density) and second (pressure) moments are
chosen,

nbfn

Vb 2 = (3 kmTAV) 1/2  (13)

or, in terms, of beam energy, Eb,

3 (14)
Eb 2 I k TAV

If the first (number flux) and third (energy flux) moments are used,

b n

(4 k T RA 1/2
Vb\ IlS (15)

-4-
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or

Eb =2 k TRMS (16)

2.2.2 Two Beam Energies

The densities and velocities of two monoenergetic beams can be found to match

the zeroth through third velocity moments of the distributed spectrum by solving four

simultaneous equations:

nI + n2  n

I,:

nlv1 + n2v2 = n <v>

(17)
2 2 3 nTlVl +1 2v 2  m AV

3 3 4nlv I + nv 2  =- n<v> TR
1 1 2 2 m RMS

where nl, n2, V,, and v2 are the densities and velocities of the beams, and the velocity

moments of the distributed spectrum have been replaced by relations (8), (10), and (11).

Boltzmann's constant, k, has been taken to be unity.

It is shown in Appendix A that the velocities and densities of the monoenergetic

beams can be found analytically.

V <V> 42mTv3 T1,2 2 RMS  AV6 T AV - 2 m <v>

+ [8 TRMS (2 T MS -9 TAV + 2 m <v> 2 (18)

TL 1  (2 -4 TA ) I/

-27 TAV 1 V2
-m <v>

! -5-



(in v 2 - <v>2.]

(19)

n 2 a n p 1

For a Maxwellian plasma, where TAV T RMS = T, Eq. (18) simplifies somewhat,

V 1 2  6 16 + (--- + 2- 83 (20)
1,2~ 67-162 T

The beam densities and energies are then found to be

n1 = 0.382 n
(21)

n 2 = 0.618 n

= 3.007 T (22)

E = 0.568 T

2.2.3 Three Beam Energies

Six moments of the distributed spectrum can be used to compute the densities and

velocities of three monoenergetic beams. No analytical solutions have been found for

this case, but iterative techniques can be used to find solutions of the set of six

simultaneous, nonlinear equations.

As discussed in Appendix B, the beam velocities and densities can be found in

terms of the average speed and density of the plasma particles. For the case of a

Maxwellian plasma with temperature, T, the beam densities and energies are

n ,2, 3 = [0.087, 0.588, 0.325] n (23)

E1,2,3 = [4.931, 1.657, 0.303] T

-6-



Different values will be found for other types of velocity distribution functions,

but the method used to compute the Maxwellian results is general for all realistic

spectral shapes.

2.3 TWO-MAXWELLIAN PLASMAS

Garrett showed that a two-Maxwellian fit is often a good representation of plasma

distribution functions measured during geomagnetic substorms.(6) The density and

temperature of each Maxwellian component can be found from four velocity moments of

the measured spectrum. It is possible, in principle, to find three-Maxwellian fits which

match six moments, although the effects of errors in measurement of the plasma

spectrum become increasingly exaggerated when computing the high-order moments. It

should also be possible to find multiple-Maxwellian least-square fits directly from the

measured distribution functions without computing the velocity moments of the data.

2.3.1 Single Beam Energy

A two-Maxwellian distribution has average and RMS temperatures given by

T nT 1 + n2T 2AV n + n (24)

nlT 3/2 + n2T23/2

TRMS (25)
nlT 1/2 + n 1/2
I11 2 2

where nl, n2 , TI, and T2 are the respective densities and temperatures of the two

components of the spectrum.

A single monoenergetic beam can match two velocity moments of the distributed

spectrum if its density and energy are chosen according to Eqs. (13)-(16) above. For

example, if the beam density is equal to the total plasma density, nI + n2 , and its energy

is 3/2 TAV, then the zeroth and second velocity moments of the two-Maxwellian plasma

and the monoenergetic beam are equal.

-7-



2.3.2 Two Beam Energies

Two methods exist for matching the velocity moments of a two-Maxwellian

distribution by two monoenergetic beams. First, the energy and density of each beam

can be chosen individually to match two moments of each of the Maxwellian components

of the spectrum. In this case, Eqs. (13)-(16) would be employed along with the densities

and temperatures of the two-Maxwellian fit.

The second approach is to use the average and RMS temperatures of the

two-Maxwellian fit, Eqs. (24) and (25) and to calculate the beam velocities and densities

from Eqs. (18) and (19). In both cases, as many as four moments of the two-Maxwellian

distribution function can be matched by two monoenergetic beams. In practical

situations, physical considerations would be required to make a choice between the two

methods of matching velocity moments.

2.3.3 Three or More Beam Energies

The moments of a two-Maxwellian distribution function can be matched in several

different combinations with multiple monoenergetic beams. As in the two-beam case,

each Maxwellian component of the plasma can have one or more beams assigned to it

which individually match velocity moments. For six-moment matching, three beam

energies and densities could be selected using Eq. (23) for each component, and a total of

six beam energies would be required to simulate the two-Maxwellian plasma. As

mentioned in Section 2.2.3, the computed values of the zeroth through fifth moment of

the full spectrum can also be used directly to find three beam energies and densities

through the iterative minimization procedure described in Appendix B.

-8-
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2.4 ARBITRARILY ASSIGNED BEAM ENERGIES

The velocity moments of a measured distribution function can also be matched by

monoenergetic beams whose velocities are chosen arbitrarily. As an example, four

monoenergetic beams can match four velocity moments:

n + n + n + n =M
1 2 3 4 0

2 2 2 2 (26)v 1 n I +v 2 n 2 +v 3 n3 +v 4 n4  M2

3 3 3 3V1 n+ + n2 +Vn +v 4 n4 =M

When the four beam velocities are fixed, then it is only a matter of solving a set

of linear simultaneous equations for the beam densities, n I through n4 . It should be

pointed out that not all combinations of beam velocity may be chosen for v1 through v4 ,

because negative, and therefore unphysical, solutions for the beam densities can be

obtained in some cases.

Table 1 gives the densities calculated for three, four, and five beams as a function

of preassigned beam energies. The beam energies and densities are normalized to the

temperature and density of a MaxweUian distribution, and the velocity moments used for

the calculations are given by the right-hand side of Eqs. (2)-(6). The first three-beam

solution in Table 1 is a check of the six-moment solution, Eq. (23), found by the iterative

procedure discussed in Section 2.2.3.

-9-



TABLE 1. PARTICLE DENSITIES FOR PREASSIGNED
BEAM ENERGIES

No. of
Beams Ei/kT ni/n

0.303 0.325

3 1.657 0.588

4.931 0.087

0.5 0.521

32.0 0.339H
4.0 0.140

0.4 0.282

4 0.8 0.333

1.6 0.069

3.2 0.316

0.5 0.518

1.5 0.156

4 2.5 0.134

3.5 0.192

0.2 0.198

0.6 0.061

5 1.3 0.548

3.0 0.127

5.0 0.066

0.2 0.179

0.6 0.162

5 1.5 0.502

3.0 0.086

5.0 0.071

-10-



SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

It has been shown in Section 2 that the low order velocity moments of plasmas

with arbitrary distributed energy spectra can be matched by combinations of

monoenergetic beams. The beams simulate, in a mathematically precise manner, certain

properties of an undisturbed space plasma. However, interactions between the plasma

and a complicated object such as a satellite were not considered in this analysis.

Spacecraft charging, on the other hand, is a phenomenon which depends not only on the

properties of the undisturbed plasma, but also on the detailed interactions of the plasma

particles with the surface and the magnitude and shape of the equipotentials around the

spacecraft.

Charging models of various degrees of complexity have been developed (7) in an

attempt to account for the observed interactions between the environment of space and

instrumented spacecraft. An important task of the present program is to use such a

model to study the consequences of substituting monoenergetic beams for plasmas with

distributed spectra. We believe that comparisons of this kind will provide insight into the

selection of a few combinations of beam parameters which will provide good simulation

of spacecraft charging phenomena among the many, mathematically equivalent,

techniques for matching averaged properties of plasmas and monoenergetic beams.

-11-
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APPENDIX A

TWO-BEAM SOLUTION TO MATCH FOUR VELOCITY MOMENTS

Garrett (6 ) has shown for a similar problem that the set of nonlinear simultaneous

equations, Eq. (17), can be reduced to a single quadratic equation of the form,

AX + BX + C - 0 (A-1)

where A, B, and C are functions of the right-hand side of Eqs. (17). For the problem of

calculating the velocities and densities of monoenergetic beams, we have set

<V>

A 3 T AV
m 2

<V> (A-2)

TT
RMS 3 TAVim 2 m 2

B_ 4

<V> <V>

M\ <V>l m 2=m m v

The beam velocities are found to be

V1,2 <V 2 4TS -3TAV6 TAV - 2 m <v>

+8 TRMS (2 TRMS - 9 TAV + 2 m <v> 2) (A-3)

- 27 T AV ~ ___ 2)

where vI (v2 ) corresponds to the + (-) sign of Eq. (A-3).

13



The beam densities corresponding to the velocities are found by substitution,

V 2 <v>)
n I  n V" 1 v 2

(A-4)

n n n

14
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APPENDIX B

THREE-BEAM SOLUTION TO MATCH SIX VELOCITY MOMENTS

To find a three-beam solution to match six velocity moments of a distributed Ij

spectrum, six nonlinear simultaneous equations must be solved. These equations are of

the form

3 5 MB
FZ F nvk M. (B-i) 1

k=l j=O k

where nk and vk are the densities and velocities of the beams, and M. represents the jth

velocity moment of the distributed spectrum.

Although any physically reasonable distribution function can be utilized, we used

the six velocity moments of a Maxwellian distribution, Eqs. (2)-(7), to find solutions of

Eq. (B-i). The beam densities and velocities were normalized by changing variables,

a,b,c = n' ,2,3
n (B-2)

x,y,z v''
<V>

so that the moment equations for a Maxwellian distribution become

a+b+c= I

ax + by + cz - I

ax 2+ 2+ CZ 2 3r (B-3)

3 3 3 17
ax +by + CZ

4 by4 4 15 2
ax +b + cz =6"'

5 5 5 3 2ax +by + CZ W r
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Eqs. (B-3) can be solved by an iterative procedure that minimizes the expression

represented by the absolute sum of Eqs. B-3. Trial solutions are substituted into a

computer program which then converges on the best solution through an iterative

process.(8 )

The only solutions of Eqs. (B-3) found by the iterative routine were permutations

of the following:

(x,y,z) = (1.9679, 1.14085, 0.4881)
(B-4)

(a,b,c) = (0.0866, 0.5879, 0.3255)

The energies of the beams were found from

= 4 T x 2(B-5)
IT

and similar expressions for E2 and E3.
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