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ABSTRACT

Melt and solution grown crystals of nylons 6 and 66 have been solid

state extruded to examine the relationships among thermal behavior,

crystallinity, orientation and modulus. Unextruded and extruded samples

were examined by thermal analysis, wide angle x-ray and by tensile

testing. An extrusion draw ratio (EDR) of 4.0 was attained for all

samples. At this EDR, modulus and crystallinity are linearly related

over a wide range up to 6U% crystallinity. The highest tensile modulus

of 6.7 GPa was attained for both polymers in extrudates of solution-

grown crystals, although these extrudates of compacted precipitates

were less oriented. This suggests that the extent of both crystallinity

and draw play an important role in the enhancement of modulus.
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INTRODUCTION

Solid state extrusion under selective conditions of high density

polyethylenes crystallized from melt (1 ) and from solution(2) has provided

ultra-oriented morphologies of high tensile moduli. The semi-crystalline

state of nylons 11 and 12 can also be solid-state extruded (3). Nylons are

thermally more stable than polyethylene due to inter- and intramolecular

hydrogen bonding. The crystals and mechanics of nylons 6 and 66 are

thermally yet more stable than in nylons 11 and 12(4 ) due to a higher

concentration of amide groups. They also have potentially high tensile

moduli, comparable to polyethylene (5). Higher crystallinity leads to

higher moduli for melt-crystallized nylons(6). Solution-grown nylon

crystals( 7-10) have also been shown to exhibit a higher percent crystal-

linity(8) than the corresponding melt-crystallized polymers.

In this study, both melt-crystallized and solution grown crystals

of nylons 6 and 66 have been solid-state extruded through conical dies

to examine the dependence of thermal behavior on extrusion draw ratio

(EDR) and the relationships among modulus, crystallinity and orientation.

The extrudates have been examined by thermal analysis, wide angle x-ray

and by tensile tests.
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MATERIALS AND EXPERIMENTS

Nylon 6 powder and cylindrical plugs of nylon 66 were obtained com-

mercially. For determination of molecular weights, small amounts were

solution purified by dissolving in formic acid followed by precipitation

on pouring into water as by the method of Pennings (lO). The molecular

weights were calculated to be 3.0 x l04 and 3.8 x lO4 for nylons 6 and

66, respectively, from intrinsic viscosities of 1.07 and 1.41 in 85% and

90% formic acid.

Nylon 66 rods were melt-crystallized, as received. They were shaved

to a diameter (€) of 0.95 cm. Nylon 6 powder was melt-crystallized by

slow cooling at a rate of -l°C/min under an applied pressure of -200 atm

in the resevoir (0=0.95 cm) of an Instron Capillary Rheometer.

Both nylons were dissolved at several concentrations (0.1 - 25 w/w %)

in 1,4-butanediol (lO ) and then crystallized isothermally or by fast

i cooling. The suspensions obtained were poured into a 1:1 w/w mixture of

methanol and acetone. The precipitates were dried in vacuo at 100°C over

48 hrs. and compressed at 120°C and 2400 atm in the Rheometer resevoir.

The prepared plugs were solid state extruded at several fixed temper-

atures and at constant extrusion rate; i.e., a fixed cross head speed of

0.2 cm/min through the stainless steel conical dies with an entrance angle

of 200 and at several ratios of cross sectional areas for die entrance to

exit, i.e., at several draw ratios, viz. 2, 3, 4 and 5. No lubricant,

hydrostatic liquid nor plasticizer was used.

i'
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Thermal analysis of all samples was performed at a heating rate of

1O°C/min in a Perkin-Elmer DSC model IB to estimate melting peak tempera-

ture (Tm) and percent crystallinity based on a reported (" ) heat of

fusion (AHf) of perfect crystals (45 cal/gr) for both nylons.

Wide angle x-ray diffraction patterns were obtained with the use

of nickel-filtered, copper K radiation.

Tensile moduli were calculated at a strain of 0.2% and at a strain

rate of 3.33 x l0 sec 1 by using an Instron tensile testing machine,

model TTCM, equipped with a 10 mm strain extensometer.

i
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RESULTS AND DISCUSSION

Melt-Crystallized Nylons

Multi-melting temperatures for both nylons 6 and 66 have been reported

(12-15 (13) rpre
and discussed by prior investigators 15) . Dumbleton et al. reported

in nylon 66 that at increased annealing temperature and/or time, the temper-

ature and area of the lower melting peak increased, while retaining the

higher melting peak; but subsequently all could be transformed to the

higher melting peak as the total crystallinity increased. Etching studies

suggest an alternate explanation (13a ). The long period of crystallites

also increased during this annealing process
(13 ,15 )

Both nylons are known to exhibit polymorphism. Nylon 6 has a, 6, and

y crystal forms, depending on preparation (16,17); and nylon 66 exhibits a

$ and B crystal forms (IB . It is well known(4 '16'18) that slow crystalliza-

tion for both polymers produces the aform which is the most stable and does

not convert to other forms on annealing or drawing. Slow crystallization

was performed in this study on both nylons. Annealing effects at 180 and

2000C for 1 hour on the melting for unoriented nylons 6 and 66 are shown

in Figures 1 and 2. Annealing increased the crystallinity and lower

melting peaks but did not produce complete conversion of the lower melting

peaks to the higher peaks, as reported at lower temperature and shorter

annealing time. Results in Figures I and 2 are also representative of

unoriented (unextruded) residual samples left in the capillary resevoir

of the Instron Rheometer after a portion had been solid state extruded.

6*U21
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The extrudates of different EDR's were obtained in steady state

after one hour by use of dies of different exit diameter. Melting behavior

as seen in Figures 1 and 2 shows the effect of EDR at fixed extrusion

temperatures (TE). The higher melting peak for both nylons remained

constant. On the other hand, the lower melting peaks increased with EDR

and subsequently all was converted to the higher melting form. Crystal-

linity concurrently increased. These results suggest that the drawing

effect on melting may be similar to that of annealing.

Solution-Grown Crystals

The solution-crystals of nylon 6 precipitated from 1,4-butanediol

produced the c-form (10) , as confirmed in a subsequent figure, 8b. The

solution-grown samples of nylon 6 were prepared by isothermal crystalliza-

tion at 1280C from 0.1 and 1% solutions and by fast cooling to room

temperature from 8 and 25 wt % solutions. Fast cooling crystallization

was also performed on nylon 66 to obtain precipitates from 8 and 25 wt %

solutions. This produced melting behavior different from melt-crystallized

and from samples precipitated at lower concentrations, as seen in Figure 3.

The lower Tm corresponds to 70% of the total area for the 8% solution-

precipitate. This differs markedly from the shoulder or tail on the

melting curves of the samples melt-crystallized and precipitated at lower

concentrations. Nylon 6 precipitated from 0.1 and 1% solutions exhibited

single melting peaks with a Tm of 2220C, the same as the higher Tm of the

melt-crystallized sample.

-U --
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Similar and more clear behavior was observed for nylon 66, as seen

in Figure 4. The higher melting peak of solution-grown crytals, as shown

in Figure 4, may be due to the melting of reorganized crystals formed

during the DSC scan. The higher melting peak of the SGC may thus not

correspond to the higher melting peak of the extruded samples, (b) in

Figure 4(
13a). The larger area of the lower melting peak is associated

with fast crystallization which produces smaller crystallites.

Precipitated and compacted nylon 6 and 66 were solid-state extrudable

at 200 and 2400C to an EDR of 4.0. The limits of temperature and draw

are likely due to crystallinity level, as shown in Table II. Extrudates

of nylon 6 precipitate from 0.1 - 25% solutions exhibited single melting

peaks. On the other hand, extrudates of nylon 66 showed double peaks

with the lower peak only converted partially to the nigher. Complete

transformation of crystallites of nylon 66 likely require more extensive

drawing since complete transformation was attained for nylon 6. The %

crystallinity for both nylons is high after extrusion as seen in Table V.

Tensile Behavior of Extrudates

Conventional drawing effects on deformation (19 ,20 ) and mechanical

properties (21 22) have been reported for these nylons. Higher draw

provides higher orientation of both crystalline and amorphous regions.

Nylons can absorb water in their amorphous component. However, the
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tensile modulus of oriented nylon 66 conditioned at 50% RH is similar to

that of dried samples, although the change from dryness to water saturation

causes a four fold decrease in modulus because of the plasticizing action(23).

Our experiments here were performed below 50% humidity. Thus, after prep-

aration of solid plugs, sample drying was not performed in this study.

Both crystallinity and tensile modulus increase with EDR, for both melt-

crystallized nylon 6 and 66, as seen in Figures 5 and 6. The highest

readily obtainable EDR was 4 for all samples, either melt-crystallized or

precipitated. EDRs over 4 produced spiral fractures in extrudates. In
comparable tests, nylon 12( ) has been solid state extruded at EDR up to

12 without fractures and high density polyethylene~l) to an EDR of 36.

The lower draw ratio obtained here for nylons 6 and 66 is likely due to

high concentrations of amide groups leading to extensive interchain hydrogen

bonding. Thus, the studies on deformation of nylons containing plasticizers

with polar chemical groups have been reported to reduce yield stress

(24)
and the work of deformation 2

. Importantly, however, no high draw

ratios for nylons 6 and 66 appear to have been reported. The highest

moduli obtained for extrudates of melt-crystallized nylons 6 and 66 were

3.3 and 4.3 GPa, respectively. This nylon 66 extrudate is well oriented

according to wide angle x-ray diffraction patterns, as seen in Figure 8a.

A similar x-ray pattern was observed in nylon 6 extrudate.

Increase of crystallinity was observed with EDR for both nylons. The

starting crystallinity for melt-crystallized nylons 6 and 66 is -30%, as

shown in Table I. Samples of both polymers annealed at 180 and 200*C

wI
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increased slightly in crystallinity. Crystallinity increased by -20% on

solid state extrusion to an EDR of 4 for both melt-crystallized polymers.

On the other hand, the initial crystallinity for solution-grown nylons 6

and 66 is remarkably high, 50 - 60%, as shown in Table II. On solid-state

extrusion, crystallinity stays high, increasing slightly. This suggests

that -60% may be near saturated for crystallinity of nylons 6 and 66.

Extrusion of melt-crystallized nylon 66 at 2200C produced a higher modulus

and crystallinity, due to annealing, than that at 2000 C. This suggests

that the higher crystallinity is responsible for a higher modulus. Figure

7 shows that relationship of tensile modulus to crystallinity at a fixed

EDR of 4 for melt-crystallized and precipitated samples. The highest

modulus, as obtained for both nylons, is 6.7 GPa which was for solution-

grown samples. The linearity in Figure 7 is likely fortuitous, with

extrapolation being unwarrented.

Extrudates of nylon 66 precipitate is less oriented than that of

melt-crystallized samples, as seen in Figures 8-a and c; yet the modulus

of the former is higher. Similar results were obtained for nylon 6. This

indicates a dominant role of crystallinity in determinaing the tensile

modulus of these solid-state extruded aliphatic nylons.

w
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CONCLUSIONS

Solution-grown crystals of nylons 6 and 66 have been solid-state

extruded. The thermal properties, crystalline orientation and tensile

moduli of these extrudates are compared with solid-state extrudates of

melt-crystallized nylons.

1. Of the dual melting peaks for each nylon, the concentration of

crystallites having the highest melting isotherm was increased by solid-

state extrusion.

2. The highest initial crystallinities for precipitates of 50 - 60%

increased only slightly on solid-state extrusion to a draw ratio (EDR)

of 4.

3. At an EDR of 4, the measured tensile moduli for both polymers

increased linearly with crystallinity up to 60%.

4. Extrudates of precipitates for both polymers were less oriented

at EDR of 4 than the corresponding melt-crystallized samples. The former

nonetheless exhibited higher moduli. This indicates that crystallinity

as well as drawing plays an important role in tensile modulus development.

5. The highest moduli obtained for extrudates of precipitates for

* each nylon 6 and 66 is 6.7 GPa. Extrudates of the same EDR of 4 for

* melt-crystallized samples of the same nylons 6 and 66 were 3.3 and 4.3 GPa.

__ _ _
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TABLE I: Crystallinity of Melt-Crystallized Nylons

Sample History % Crystallinity

Nylon 6 Nylon 66

Unextruded 28 29

Extruded at 180 0C at 2000C at 220C

EDR =2 35 37 44

3 40 41 52

4 47 47 50

Unextruded residue 32 32 36
in Rheometer



TABLE II: Crystallinity of Solution-Grown Nylons

and Their Solid-State Extrudates

wt % concentration 
% Crystallinity

Nylon 6 Nylon 66
* **

unextruded extruded* unextruded extruded

0.1 61 63 -

1.0 58 61 -

8.0 54 57 54 56

25 53 55 53 53

*

**at 200"C to EDR of 4

c at 240aC to EDR of 4

' ,,, Uncertainty ±+1% in crystallinity.

'I



FIGURE CAPTIONS

Figure 1: DSC melting behavior of melt-crsytallized nylon 6: a, unextruded;

b, unextruded and annealed at 1800C for 1 hr; c, d, and e,

extruded at 180 0C and at EDR of 2, 3 and 4, respectively.

Figure 2: DSC melting behaivor of melt-crystallized nylon 66: a, unextruded,

b, unextruded and annealed at 220°C for 1 hr; c, d and e, ex-

truded at 220 0C and at EDR of 2, 3 and 4, respectively.

Figure 3: Melting behavior of nylon 6 precipitates from 8% solution:

a, unextruded; b, extruded at 200% at EDR of 4.

Figure 4: Melting behavior of nylon 66 precipitates from 8% solution:

a, unextruded; b, extruded at 2400C and at EDR of 4.

Figure 5: Increase in tensile modulus and crystallinity with extrusion

draw ratio for melt-crystallized nylon 6 extruded at 180°C:

e, tensile modulus, *, crystallinity.

Figure 6: Increase in tensile modulus and crystallinity with extrusion

draw ratio for melt-crystallized nylon 66: * and *, tensile

modulus and crystallinity for extrudates at 200C (filled

symbols), for extrudates at 2200C (open symbols).

Figure 7: Relationship of tensile modulus to crystallinity for nylons

6 and 66 at a fixed draw ratio of 4: e, nylon 6; *, nylon 66.
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Figure 8: Wide angle x-ray diffraction patterns for nylon 66: a, melt-

crystallized sample extruded dt 2200C and EDR of 4; b, 8%

solution grown sample unextruded; c, 8% solution-grown sample

extruded at 2400C and EDR of 4.
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