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INTRODUCTION

In order to obtain a comprehensive model to describe the interaction of
ultrasonic waves with fiber reinforced laminated composite materials , a series
of experimental and theoretical studies has been undertaken characterizing the
behavior of elastic waves in anisotropic layered media. The principal motiva-
tion of these studies has been to develop improved nondestructive evaluation
techniques in which measurements are made of properties, such as complex elastic
constants, which are critical parameters used in the modeling of failure and
fracture in composites.

This report will be devoted entirely to the mathematical treatment of ob-
lique incidence wave propagation in layered anisotropic media. Results will be
developed for use in subsequent reports which will detail various experimental
studies and will describe the use of a comprehensive computer code for gener-
ating accurate numerical results.

No attempt has been made to provide a comprehensive treatment of wave prop-
agation in all anisotropic media, rather consideration has been restricted to
symmetries which are found in certain composite materials of interest. Thus,
the results apply to materials of orthorhomic symmetry and higher. Within this
class of problems a further restriction has been made limiting boundary condi-
tions to treat only those boundary planes coincident with principle planes of
symmetry for the material. In so doing we eliminate a few cases of practical
interest but obtain the advantage of restricting eigenvalue problems to those
for which closed form solutions exist.

The development of wave propagation theory will be carried to the point
where total oblique incidence reflection and transmission coefficients can be
computed as a function of frequency for rather general laminates consisting of
laminae of the treated symmetries.

The mathematical development will proceed by defining the complex secular
wave equation for displacement velocity in an anisotropic medium and trans-
forming it to allow its solution in terms of parameters describing wave propa-~gation in the incident medium. The solution to this equation provides the

complex phase velocity and displacement velocity eigenvectors which, when
coupled with Snell's Law, yield the direction of the propagating waves.

Using this information, impedance matrices are defined which relate the
stress and velocity fields for the propagating waves.

Once the stress and velocity fields are characterized for the media on
either side of an interface, linear boundary value equations may be written
relating the amplitudes for various modes of wave propagation on either side of
the interface.

For a system consisting of many interfaces, a method will be developed for

evaluating the total reflection and transmission coefficients. This technique
is a generalization of one developed by Scott1 for normal incidence laminate
propagation.
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THEORY

The time harmonic equation for a wave in an anisotropic medium may be ex-
pressed in the form 2 .

k2(liK CKL lLj)vj = pw2 v, (1)

The quantities in (1) are defined as follows:

k is the complex wave vector for the propagating wave

w is the angular frequency

p is the density

Vi  is the vector associated with the i th component of wave displacement
velocity

CKL are the components of the complex elastic constant matrix as expressed
in contracted engineering notation in which the subscripts run over 6
values, and

1i is a matrix of the form
1K

[lx 0 0 0lz 1 
0 1y 0 lz  0 Ix (2)

0 0 1z  
1y Ix 0

where 1- are complex direction cosine defining the propagation direction of the
wave; tAe transposed matrix, ILj, is defined analogously.

WAVE EQUATION IN
AN ORTHOTROP IC LAMINATE

For the most general case to be considered, an anisotropic solid with or-
thorhombic symmetry and principal axes along the x, y, and z directions (1)
takes the form:

2 2

2

- V2  (3)

OW
2

C T k" 2 Lv3mm im I 0

Y Ic

'I 1
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where

= CII cos2 e cos2 * + C66 cos2 e sin 2 0 + C5S sin 2 e

= C66 cos
2 e cos2 * + C22 cos 2 e sin 2  + C44 sin

2 8

Y = C5S cos
2 8 cos 2 0 + C44 cos

2 6 sin 2 * + C33 sin 2 e (4)

= (C12 + C66) cos
2 6 cos sin

= (C13 + C55 cos e sin e cos

= (C23 + C44) cos 0 sin 8 sin 0

6 is chosen as the angle of incidence of the wave with respect to the plane
of the laminate (measured up from the plane) and ' is the angle between the
plane of incidence and the first principal axis in the plane of the laminate.

It should be noted that a number of possible conventions exist for choosing
axes in an anisotropic medium. In a unidirectional fiber reinforced lamina the
first coordinate index is usually chosen along the fiber axis while the third
index is chosen perpendicular to the plane of the laminate. On the other hand,
when the wave equations refer to a crystallographic system the third axis is
conventionally chosen perpendicular to the plane of hexagonal symmetry which
would be the counterpart of the fiber direction. Hence, when values of elastic
moduli are chosen for the equations, care must be taken to ensure that they are
referenced to the same coordinate system as the equations. In this paper we
adhere to former convention.

The wave equation in the form (3) may be solved in closed form whenever
the angles defining the propagation direction (8 and ) are known. This is not
often the case experimentally.

In most practical problems involving anisotropic media the waves present
) have risen from refraction or reflection at a given interface and it is desired

to solve the equation (3) in terms of the parameters of the incident wave. In
order to treat such cases the complex form of Snell's Law

k cos e = k' cos ' (5)

is used, where in general 8, 6', k and k' are complex. The complex angles are
necessary for separately defining planes of constant phase and attenuation
which may not always be parallel in problems involving oblique incidence.

By substituting the relation (5) into (4) which in turn is substituted in-
to (3) a secular equation is derived which expresses the quantity w

2/h2

2

-eMae

$ - -- -
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in terms of the known quantities 8, Cij, the angle of incidence e' and the in-
cident wave vector k'.

This is not a secular equation in the classical sense, since the off-diag-
onal elements involve the variable w/k; however, the resulting bicubic equation
does provide the correct eigenvalues and eigenvectors for the refracted waves.
On the other hand, if we were to compute actual numerical values of k and e
from (S) their substitution into (3) and (4) would yield in addition to one cor-
rect solution, two spurious solutions corresponding to other eigen modes trav-
eling parallel to the true refracted wave.

As mentioned above, the secular equation (3) is bicubic in w 2/k2 and it is
easily shown that it is also bicubic in cos 8. Expanding (3) we have

2
-6 6 k2 -

+ - 2 P2)] =0 (6)

From the relations (4) it is clear that cos 8 appears everywhere in even
powers since the terms in cos 8 sin e (E and ) always appear in even products
and in fact the equation can readily be converted to a cubic equation in cos

2 8

using the substitution

2 = C 2 e 2(7w cos258

k2  cos 2a' k'2  (7)

The fact that the equation can be expressed in terms of even powers of
cos 8 is a result of (3) being expressed in such a way that incident and re-
flected waves move with the same speed.

W AVE EQUATION IN A HEXAGONAL MEDIUM

For the case of hexagonal symmetry the secular equation (1) reduces to a
* biquadratic equation with solutions of the form. 'I 1

k )S (8)W S 6 sin2 + C44 Cos2

3

I
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2 22] 2 i22 )(k) Q llsin2a+C 33cos2a+C 44 - [(Cll-c 44 )sin
2a+C33 C)os 2a]2+(C13+C 44 sin22

(9)

L( llsi2a+C 5cos2a C 44 + [(Cll-C,,)sin2a-(C 33- C44 )COS2(]2+(C 44+C 1)2sin
2 2

(10)

These are denoted as the pure shear, quasishear and quasilongitudinal solu-
tions respectively, where a is the angle between the unique principal axis and
the direction of wave propagation. This solution is a good first approximation
for the problem of a unidirectional fiber reinforced laminate, where the fiber
direction lies along the principal axis. Clearly this solution yields isotropy
in the plane perpendicular to the fiber direction.

For the case in which a wave is obliquely incident upon a hexagonal medium
(see figure 1) from a medium of known velocity, equations (6), (7) and (9) canbe inverted through the use of Snell's Law giving for the pure shear case,

()X (C66 - C4 4 ) cos 2 e' cos 2  (k'2/W2) + p

S C66 (11)

and K
cos 2ps 2 k'2  (12)

P + (C66 - C4 4 ) cos cos et -2

where

k is the magnitude of the wave vector in the hexagonal medium

e is the angle of refraction in the hexagonal medium

P is the density of the hexagonal medium

6' is the angle of incidence

kI is the wave vector in the incident medium

is the angle between the x axis (fiber direction) and the plane of
incidence (or the plane of refraction), and the

Cij's are elements of the elastic constant matrix for the hexagonal mate-
rial.

4
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Figure 1. Plane Wave Incident Obliquely Upon a Hexagonal Medium
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For the cases of quasishear and quasilongitudinal waves the expressions are
somewhat more cumbersome:

COS 2 8QS, -B (B 2  4 CII C4 4 \ (13)

QL 7 A2

where

B :[(CII -C 4 4) (Cll - 2C44 + C33) - 2(C13 + C44)2 cos 2

-2 1 4+ C1 W 2P2 + (C 11 - C.33) cos
2

[C 4 4  ij kt eos2  
(14)

and

A 2 + (C11 - C33) cos
2 012

k'2 cos 2  (

[(C11 -2 C44 + C33) 2 - 4(C13 + C44 ) 2 ] Cos4 (15)

IMPEDANCE MATRICES AND THE

BOUNDARY VALUE PROBLEM

In order to solve the complete boundary value problem for waves traveling
between two anisotropic media it is also necessary to compute the normal compo-
nent of the stress fields, or traction forces associated with waves on either
side of the interface. This relation is given by

2

niK CKL KLj (16)
W

-Tin Vj

where

rn 0 0 0 n n
X z y

niK = 0 n y 0 n z  0 nx  (17)

L 0 0 n z  ny nx 0

n. are normals to the interface

J 6
wl
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x 0 0
m

0 K 0
y

0 0 K
z

K Lj 0 Kz  Ky (18)

K 0 K
z y

K K 0
Ly x

K1 are wave vectors for the wave within the given medium and Tin (the traction
force) consists of three components transforming as a vector.

The quantity

nlK CKL KLj = Z.

J(19)

in (16) is defined as the normal acoustic impedance matrix and is useful in
solving the boundary value equations for a given interface.

Boundary value equations may be written by applying the conditions that the
displacement velocities and traction forces at the interface between two media
must match. This implies:

V (20)

z zv = vZ'v v, (21)

where the unprimed variables refer to the incident medium. In general, for
orthotropic symmetry, these equations will contain six unknowns corresponding
to three possible modes for the reflected and refracted waves (2 quasishear,
1 quasilongitudinal).

Each vector Vi may be written in the form Vi = Ai vi where vi is an eigen-
vector of (3) and Ai is the displacement velocity amplitude. Since the compo-
nents of each vi are known within a constant factor (10) and (11) each may be
broken down into 3 component equations allowing solutions for the six unknowns
to be obtained.

Care must be taken in (10) and (11) to insure that identical components are
being matched for the incident and refracted media. For media in which princi-
pal axes are not aligned, this is most easily done by rotating the T's and v's
on the right side of the equation after initially computing them in a system for
which the coordinate axes and principal axes are coincident.

7
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COMPUTATION OF THE Z MATRIX

In order to compute the Z matrix of expression (9) it is necessary to know

the wave vector k for the particular mode in question. For refracted waves this

information comes directly from the solution to equation (3). When reflected
waves are considered one can, by the use of symmetry arguments, obtain the k
vectors for the refracted waves directly from those of the reflected waves by
changing the sign of the component of k normal to the interface. If all three
modes of the incident wave are present this will permit immediate computation
of the reflected Z matrices; however, if only one mode is present this may be
used to determine the corresponding reflected mode which may then be used in
place of the incident k' and 8' for the solution of equation (3).

Having computed the oblique incidence reflection and transmission coeffi-

cients for waves incident upon interfaces between anisotropic media of interest,
it becomes possible to compute frequency dependent reflection and transmission
coefficients for arbitrary laminates consisting of such media.

PLANE WAVES IN LAYERED MEDIA

-0,

Figure 2. Plane Waves being Reflected and Mode Converted at the
Interfaces of a Layered Medium

Figure 2 depicts a laminate for which a plane wave is obliquely incident
upon an interface from the lower left. The wave is monochromatic, and by defi-
nition infinite in width and may, therefore, be equally wel] represented by any
parallel ray. Upon striking the interface the wave produces, in the most gen-
eral case, three reflected and three refracted modes whose amplitudes may be
denoted by the vector

a = a2) (22)

3

8

i 1
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For the sake of convention the components may be ordered according to cor-
responding velocity for orthorhombic symmetry. For hexagonal symmetry the or-
dering quasilongitudinal, quasishear, pure shear is less ambiguous since modes
do not change at points where velocities cross over. It is clear from Snell's
Law and elementary geometry that for plane parallel media, even numbered multi-
ple reflections in a given direction will always be scattered into one of the
three modes present in the transmitted wave. In other words, for the situation
depicted in figure 2, a single vector a as in (12) is adequate for describing
all of the waves propagating to the right within any given medium. This im-
plies that, since we are dealing with a linear system of plane waves, any re-
flection, propagation, transmission, etc. of such waves can be treated as a
matrix multiplication operation. For example, a vector a whose components
represent the three possible modes of propagation with a given (k' sin 0') for
any given medium will have components of the form

a i = a i exp i(wt - ki • r) (23)

II ) Y

X

AM 2 3

Figure 3. Waves Referenced to the Origin

For simplicity the phase of wave (23) will be referenced to point P(r=O)
(see figure 3). Thus in passing from medium 1 to medium 2 the vector a will
undergo the component transformation

af. Tj ai exp i(wt - k •. r), (24)3 i Ti - 3'

where.1

°,9
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a is a mode vector which represents waves with the same "k sin 6" inci-
dent at P

ai is the complex amplitude of the i th component of such waves at r=O

and t=O

k£ is the wave vector for the i th component and

T*j is the amplitude transmission coefficient from the i th incident mode

to the i th refracted mode

The variables a', k', are defined analogously for medium 2 which implies the
matrix equation

a'. = Ei Tij ai or a' = T a (2S)

It should be noted that the vanishing of the phase component of (1S)results from
the assumption that the wave front travels an infinitesimal distance in going
from medium 1 to medium 2 in the neighborhood of P and is independent of the
fact that r = 0. Hence, any phase shift experienced would be entirely the result
of transmission phenomena described in equations (10)and (ll)from which Tij is
computed.

In computing phase shift matrices corresponding to propagation delays, it
is convenient to describe phase shifts seen at a given point in terms of fre-
quency domain spectra. Thus a wave traveling from point P to point P' in medium
2 will undergo a phase shift such that

a' (P') = a' (P) exp i(-k' D cos 0

= ai (P) exp - i(wD cos e'i/Ci) (26)

which is described by a diagonal matrix of the form

Dij = 6ij exp -i(wD cos e'i/Ci) (27)

a' . (P') -ij ai (P) (28)
3.3

a (P,) = 4 a (P) (29)

The other matrix of interest is that associated with a reflection. Again
no propagation delay is associated with this phenomenon and reflection matrices
produce the transformation in medium 1

b. (P)=ERij a. (P) (30)

"j or

b = R a where bi = bi exp i(wt + ki.r) (31)

10
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where R- j is the amplitude reflection coefficient for i mode incident waves
going to j mode reflected waves.

Again the coefficients Rij are computed by solving the equations (10) and
(11).

MULTIPLE REFLECTIONS IN A THICK PLATE

In calculating the reflection and transmission coefficients of a thick
plate it is convenient to compute the total amplitude of waves at the points P
and P' and to consider wave fronts as being reflected between those points (figure 3).
This is permissible since it is easily shown that the phase shift of the wave-
front is independent of the point from which the reflection is assumed to occur.
Then for an incident wave A (") the total reflected wave at the point P is of
the form

8(w) = (R1 2 + T 07 R 23 
0 T 1 2 + T21 02 R23 02 R21 02 R23 02 Tl2 +

+ T 21 02 R23 02 R21 02 R23 02 R2 1 02 R2 3 02 T1 2 + "..) A(w)

B(w) = (R12 
+ T 21 -2 R23 -2 n=O 21 ¢2 R23 T) T) A{w)

i (32)

B(w) = 2 T21 02 R23 02 - R2 1 02 R2 3  - T11 2 ] A(-) (33)

where B(w) is the amplitude vector for waves of frequency W traveling in medium
1 with a negative y component of velocity and matrices of the form T.. or R..
are incident from medium i onto medium j. 13 13

A composite reflection coefficient may now be defined

"W1 3 [R -f1 2 + 2 1 i2 T23 T2~ 21 02 K23 T2- ;F121 (34)

which describes the total contribution in medium I from interface reflections
occurring to the right of medium 1 (see figure 2).

In a similar fashion, the wave at point P' emerging into medium 3 can be
written

A'(w) T 23 T2 TI2 + T2 3 T2 R2 1 02 R23 
) TI2

+ T2 3  R2 1 02 R23 2 R21  2 R23  T2 . . .. . .. AW)

(35)

11
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At M T2  (! T2 2 23 z)n F1 2 A(w)

f2 3  Rj - 21  02 R 23 * 1T 1 2  A(w) (36)

The total transmission coefficient may now be defined as,

T 13  T23 021 R R 21 02 R 23 0 1-1 T 12  " (37)

REFLECTION AND TRANSMISSION

C 0 E F F I C I*E N T S F O R L A Y E R E D M E D I A

In the frequency domain, expressions (34) and (37) may be applied itera-
tively to construct reflection and transmission coefficients for multilayered
media. In figure 2 a wave is incident from the left upon a stratified medium
having n +1 layers, the n + 1 layer being the incident layer and the n th
interface being the first interface.

If the media beyond medium n and in front of medium 1 (with respect to the
direction of wave motion) are considered as a single virtual interface having
reflection and transmission matrices r-, Tn-1; then the problem becomes equiv-
alent to that of a thick plate with reflection and transmission matrices,

R n -[r nf + t nb 4nR -l n (i-r b0n R n- On) 1nf] (38)

T= z[ T * j-r o- R o-)- tJ (39)
n n-l n nb n n-i n nf)

where rnf (rnb) and tnf (tnb) are the forward (backward) reflection and trans-

mission coefficients respectively.

Clearly equations (38) and (39) form recursion relations which allow the
computation of V. and Tn in terms of the phase shift matrices Oi and the reflec-
tion and transmission matrices tfif, tib, rif, rib-

This set of recursion relations can be put in matrix form using the method
of Scott1 by employing the definitions

-1
R =a b , (40)

ni n n

/ -1t r -1 r 0R 0 t 0R 0(1an rnf tnf " rnf tnf rnb n n-1 *n tnb On Rn On (41)

and

bn " (t; - t- 1 b 1 (42)

12
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where the bar matrix notation is suppressed. Expression (40) may be shown to
follow from (38), (41) and (42) by direct substitution. By use of definition
(40) we may write

R a--=r t- r t 0R 0 -1 b t 0Rn =ab-n (rnf tnf rf tnf nb n Rn- n bnn- + tnb n n-1

nf n - nb n a n- 1.

-a n b bn1  n b -1  (43)n n n1n-i

Thus for each pair of matrices an, bn a matrix relationship may be established
of the form:

rnf tnf mb) On rnf tnf O*1 n-

Extending the relationship through all of the layers of the laminate yields:

The expressions (44) and (45) above could be expanded into a form contain-
ing 6x6 and 6x3 matrices; however, the above forms are much easier to work with
and are expressed in terms of the 3x3 matrices desired in the result.

From expression (39) a similar definition can be made for transmission
matrices. Thus, letting

I n n- tn-l On (46)

and as before

bn= (tn - tnl rb n R 1  n)  (47)

the expression (39) becomes

T = C n b "n (48)n n n

This leads to the recursion relation

13
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n 1  n 1 n n nf rnb n an n- i bnl n]

S- -1 -1 a ]-1
Cn- [nf *n bn- tnf rnb n n-1 1 (49)

from which is derived the matrix relation

cn0 0 n-

n) ( tnb rnf tnf nb rnf tnf n n-

A matrix product of the type in expression(45)could readily be constructed, how-
ever it is clear that there is no mixing of the c s with other matrix elements
and the immediate result is

= tl• bn1 (1

where bn is obtained directly from expression (4().

The above analytical technique has been utilized for calculating reflection
and transmission coefficients for a number of layered anisotropic and isotropic

materials both lossless and attenuating. Although the author has not as yet
found independent results in the literature for checking the most general cases
which can be treated by this technique, verification has been performed for a
number of results for reflection and transmission between crystalline media and
crystalline and amorphous media given by Auld.2 In addition, formulas given by
Ewing Jardetzky and Press 3 for liquid to solid and solid to liquid interfaces
have also been checked and give agreement of the type shown in figures 4 and 5.
Excellent agreement was also found with results given by Brekhowskikh4 for trans-
mission through a thick aluminum plate in water as a function of angle. Further-
more all solutions generated for very general laminate systems have satisfied
energy conservation laws.

C 0 N C L U S I 0 N S

The above formalism is believed to provide an accurate and efficient tech-
nique for treating rather general problems involving the oblique indicence trans-
mission and reflection of stress waves through anisotropic, layered media. The
technique has proved adequate to handle problems involving evanescent waves and
material attenuation and should be useful in treating practical problems involv-
ing composite materials.

14
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