“PD=A090 0%  NAVAL AIR DEVELOPMENT CENTER WARMINSTER PA AIRCRAFT ==ETC F/6 11/k
WAVE PROPAGATION IN ANISOTROPIC LAYERED MEDIA. (V)
JUN 80 W R SCOTT
UNCLASSIFIED NADC=80099-60 NL
Lol

i d




REPORT NO.

WA09001 4

NADC- 80099-60 JRNECIRS

WAVE PROPAGATION IN ANISOTROPIC LAYERED MEDIA

WILLIAM R. SCOTT
ATIRCRAFT AND CREW SYSTEMS TECHNOLOGY DIRECTORATE .
NAVAL AIR DEVELOPMENT CENTER
WARMINSTER, PENNSYLVANIA 18974

17 June 1980

PHASE REPORT
Task No. ZF61-542-201
Work Unit ZMS501

Approvea for Public Release; Distribution Unlimited

DT!C

ELETT ’\
« OCT6 1980

Qs

"




b PR I

b NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the
Naval Air Development Center is arranged for specific identification purposes. Each
number consists of the Center acronym, the calendar year in which the number was
assigned, . the sequence number of the report within the specific calendar year, and
the official 2-digit correspondence code of the Command Office or the Functional
Directorate responsible for the report. For example: Report No. NADC-78015-20
indicates the fifteenth €enter report for the year 1978, and prepared by the Systems
Directorate. The numerical codes are as follows:

CODE OFFICE OR DIRECTORATE

) 00 Commander, Naval Air Development Center

i ) 01 Technical Director, Naval Air Development Center
02 Comptroller’

s ; 10 Directorate Command Projects

20 Systems Directorate
30 Sensors § Avionics Technology Directorate
40 Communication § Navigation Technology Directorate
50 Software Computer Directorate
60 Aircraft § Crew Systems Technology Directorate
70 Planning Assessment Resources

80 Engineering Support Group

Zﬂb DATE: Z/Z[;éo




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)
| REPORT DOCUMENTATION PAGE BEF OB CONPE BT P ORM

' NADC-80099-60

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

BD A0 &L

4. TITLE (and Subtitie) ’
' . . . . /
{ Wave Propagation in Anisotropic Layered Medias/
/ e o
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(s)

- ———

) N /
' /& William R. /Scott !
. " 1%

(

8. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

NAVAL AIR DEVELOPMENT CENTER AREA L NORK UNIT NUMAKRS
Aircraft and Crew S,stems Technology Direcgerate Task No. ZF61-542-201

Warminster, Pennsvlvania 18974 Work Unit IM501
11. CONTROLLING OFFICE NAME AND ADDRESS A 12. REPORT DATE
Naval Air Systems Command Y 17 June %85 / 4
Department of the Navy N Y NomaER ©
Washington, 20361 22

74, o NITORING Ac:ncv W ing Oftice) | 18. SECURITY CLASS. (of thia report)
; /f_ V??«( \{C/ /C/ . UNCLASSIFIED
AN

[15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for pub lije-release;-dist :buuon unhmted

7 ST’ 2 gL

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

e e c————

i {8, SUPPLEMENTARY NOTES

19. XEY WOROS (Centinue on reverse side if y and | ty by dlock ber)

Anisotropic Media
. Wave Propagation
Composite Materials

230. ADSTRACT (Continue an reveres oide If y and | ity by bloek ber)

\—j.-\ mathematical treatment is presented for the problem of a plane wave

N obliquely incident upon an attenuating lavered anisotropic medium. Detailed
treatment is given for cases of interest for laminated composite materials. e

DD ,"9"™_ 1473 coimion oF 1 NOV €8 13 esOLETE A
' JAN 7Y SN 0102.L.F 01 .6601 UNCLASSIFIED
ucunnv CLASMPICATION OF THIS PAGE (When Darte M/ v
' 7 . ”~ W A -7
,// é -y \_/ J
e o ———




NADC-80099-60

INTRODUCTION

In order to obtain a comprehensive model to describe the interaction of
ultrasonic waves with fiber reinforced laminated composite materials , a series
of experimental and theoretical studies has been undertaken characterizing the
behavior of elastic waves in anisotropic layered media. The principal motiva-
tion of these studies has been to develop improved nondestructive evaluation
techniques in which measurements are made of properties, such as complex elastic

constants, which are critical parameters used in the modeling of failure and
fracture in composites.

This report will be devoted entirely to the mathematical treatment of ob-
lique incidence wave propagation in layered anisotropic media. Results will be
developed for use in subsequent reports which will detail various experimental
studies and will describe the use of a comprehensive computer code for gener-
ating accurate numerical results.

No attempt has been made to provide a comprehensive treatment of wave prop-
agation in all anisotropic media, rather consideration has been restricted to
symmetries which are found in certain composite materials of interest. Thus,
the results apply to materials of orthorhomic symmetry and higher. Within this
class of problems a further restriction has been made limiting boundary condi-
tions to treat only those boundary planes coincident with principle planes of
symmetry for the material. In so doing we eliminate a few cases of practical
interest but obtain the advantage of restricting eigenvalue problems to those
for which closed form solutions exist.

The development of wave propagation theory will be carried to the point
where total oblique incidence reflection and transmission coefficients can be

computed as a function of frequency for rather general laminates consisting of
laminae of the treated symmetries.

The mathematical development will proceed by defining the complex secular
wave equation for displacement velocity in an anisotropic medium and tramns-
forming it to allow its solution in terms of parameters describing wave propa-
gation in the incident medium. The solution to this equation provides the
complex phase velocity and displacement velocity eigenvectors which, when
coupled with Snell's Law, yield the direction of the propagating waves.

Using this information, impedance matrices are defined which relate the
stress and velocity fields for the propagating waves.

Once the stress and velocity fields are characterized for the media on
either side of an interface, linear boundary value equations may be written

relating the amplitudes for various modes of wave propagation on either side of
the interface.

For a system consisting of many interfaces, a method will be developed for
evaluating the total reflection and transmission coefficients. This technique
is a generalization of one developed by Scott? for normal incidence laminate
propagation.
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THEORY

The time harmonic equation for a wave in an anisotropic medium may be ex- ‘
pressed in the form2. 1

kz(lix CKL le)VJ' = pwz Vi . (1)

: . The quantities in (1) are defined as follows:

' k is the complex wave vector for the propagating wave
w is the angular frequency

o is the density

V. 1is the vector associated with the i th component of wave displacement
velocity

CKL are the components of the complex elastic constant matrix as expressed
in contracted engineering notation in which the subscripts run over 6
values, and

liK is a matrix of the form

l, 0 0 0 1, 1
| 0 , 0 1, o0 1, (2)
0 0 L, I, 1 0

where 1. are complex direction cosine defining the propagation direction of the
wave ; tﬁe transposed matrix, le, is defined analogously.

WAVE EQUATION 1IN
AN ORTHOTROPIC LAMINATE

————— s ™ S —

For the most general case to be considered, an anisotropic solid with or-
0 thorhombic symmetry and principal axes along the x, y, and z directions (1)
) takes the form:

S % ¢ v2 =0 (3)
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where
a =Cqp cos? 6 cos? ¢ + Cee cosZ @ sin2 ¢ + Css sin? ¢
8 = Cge cos? g cos2 ¢ + sz cos? ¢ sin2 ¢ + c44 sinZ o
y = Cgg cosZ g cos? ¢ « Ca4 cos? g sinZ ¢ + Cyz sin? @ (4
§ = (C12 + Cgg) cos? § cos ¢ sin ¢
e = (Cyz + Cggd cos ® sin g cos ¢
£ = (C23 + C44) cos 8 sin 6 sin ¢

8 is chosen as the angle of incidence of the wave with respect to the plane
of the laminate (measured up from the plane) and ¢ is the angle between the
plane of incidence and the first principal axis in the plane of the laminate.

It should be noted that a number of possible conventions exist for choosing
axes in an anisotropic medium. In a unidirectional fiber reinforced lamina the
first coordinate index is usually chosen along the fiber axis while the third
index is chosen perpendicular to the plane of the laminate. On the other hand,
when the wave equations refer to a crystallographic system the third axis is
conventionally chosen perpendicular to the plane of hexagonal symmetry which
would be the counterpart of the fiber direction. Hence, when values of elastic
moduli are chosen for the equations, care must be taken to ensure that they are
referenced to the same coordinate system as the equations. In this paper we
adhere to former convention.

The wave equation in the form (3) may be solved in closed form whenever
the angles defining the propagation direction (8 and ¢) are known. This is not
often the case experimentally.

In most practical problems involving anisotropic media the waves present
have risen from refraction or reflection at a given interface and it is desired
to solve the equation (3) in terms of the parameters of the incident wave. In
order to treat such cases the complex form of Snell's Law

k cos 8 = k' cos §' (5)
is used, where in general 6, 6', k and k' are complex. The complex angles are

necessary for separately defining planes of constant phase and attenuation
which may not always be parallel in problems involving oblique incidence.

By substituting the relation (5) into (4) which in turn is substituted in-
to (3) a secular equation is derived which expresses the quantity w2/h2
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in terms of the known quantities 6, C;., the angle of incidence 8' and the in-
cident wave vector k'. J

This is not a secular equation in the classical sense, since the off-diag-
onal elements involve the variable w/k; however, the resulting bicubic equation
does provide the correct eigenvalues and eigenvectors for the refracted waves.
On the other hand, if we were to compute actual numerical values of k and &
from (5) their substitution into (3) and (4) would yield in addition to one cor-
rect solution, two spurious solutions corresponding to other eigen modes trav-
eling parallel to the true refracted wave,

As mentioned above, the secular equation (3) is bicubic in w2/k2 and it is
easily shown that it is also bicubic in cos 6. Expanding (3) we have

2

C#) 6F) (8]
L)
+e[6£-a(-i—‘:—)]=o (6)

From the relations (4) it is clear that cos 8 appears everywhere in even
powers since the terms in cos 6 sin 8 (e and £) always appear in even products
and in fact the equation can readily be converted to a cubic equation in cos? g
using the substitution
u)z 00529 wz

k2 cos2g! k'2 (

The fact that the equation can be expressed in terms of even powers of
cos 6 is a result of (3) being expressed in such a way that incident and re-
flected waves move with the same speed.

WAVE EQUATION IN A HEXAGONAL MEDIUM

For the case of hexagonal symmetry the secular equation (1) reduces to a
biquadratic equation with solutions of the form

N

L. N o (8)
w /pg C66 sin2 a + C44 cos? a




T

ISR O

NADC-80099-60

1
<1<> / 20 z
— 1 ={ . 2 2 4 _ . 2 2.12 2.:.2
wfys (ills1n a+C qcosla+Cy [(C1,-C4q)sin“a+Coz)cos o] +(C 5#Cyy) “sin‘2a
(9
1
() e |
b 02 2 _ -0 2q R 2,12 (C 2.5.2
w/gy C;,sina+Cg cos a+C, ,+ [(C11 CAA)SIH a-(C55-C, 4)cos a] (u44+C13) sin<2
(10)

These are denoted as the pure shear, quasishear and quasilongitudinal solu-
tions respectively, where o is the angle between the unique principal axis and
the direction of wave propagation. This solution is a good first approximation
for the problem of a unidirectional fiber reinforced laminate, where the fiber
direction lies along the principal axis. Clearly this solution yields isotropy
in the plane perpendicular to the fiber direction.

For the case in which a wave is obliquely incident upon a hexagonal medium
(see figure 1) from a medium of known velocity, equations (6), (7) and (9) can
be inverted through the use of Snell's Law giving for the pure shear case,

(k)z - (C66 - C44) cos2 8' cos2 ) (k'z/u,z) + o

“/ps Ce6 (1
and %
cos 8pg = g6 (12)
k2
o + (866 - C44) cos2 ¢ cos2 gt ‘;7
where
k is the magnitude of the wave vector in the hexagonal medium
8 is the angle of refraction in the hexagonal medium
p is the density of the hexagonal medium
N is the angle of incidence
k' is the wave vector in the incident medium
¢ is the angle between the x axis (fiber direction) and the plane of

incidence (or the plane of refraction), and the

ij's are elements of the elastic constant matrix for the hexagonal mate-
rial.

4
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Figure 1. Plane Wave Incident Obliquely Upon a Hexagonal Medium
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For the cases of quasishear and quasilongitudinal waves the expressions are

somewhat more cumbersome:

2
cos< @
QS, _-B _ (B2 4Cp Cyy (13)
A 4 \a2 A
where
- - . - 2 2
B [(C11 Caad (Cpy - 2C 4 + Cg3) - 20C;5 + Cyy) } cos® ¢
2
. . 2
2 [c44 " 511} zw 0 . + (Cy - C35) cos? ¢
k! cos g (14)
and
2 2
A= | —O0 (C - C,;) cos® ¢
k' cos2 ] 1 33
2 2 4
[ (Cyq =2 Cyy * Ca)” - 4(C 5 + Cyyp) ] cos’ 4 (15)

IMPEDANCE

MATRICES AND THE

BOUNDARY VALUE PROBLEM

In order to solve the complete boundary value problem for waves traveling
between two anisotropic media it is also necessary to compute the normal compo-
nent of the stress fields, or traction forces associated with waves on either
side of the interface. This relation is given by

n;y C Ky s
'Tin _ 1K ~KL “Lj V3
[
where
n 0 0
X
niK = 0 ny 0
0 0 n

n, are normals to the interface

(16)
0 n n
z y

nz 0 nx (17)
ny nx 0




NADC-80099-60

K o o]
X

0 K 0

y
o 0 K

z
K510 k. «x (18)

z Uy
K, 0 X
K Kx 0
—y —-—

K; are wave vectors for the wave within the given medium and T (the traction
force) consists of three components transforming as a vector.

The quantity

Mk Sk Ky

w ij (19)

in (16) is defined as the normal acoustic impedance matrix and is useful in
solving the boundary value equations for a given interface.

Boundary value equations may be written by applying the conditions that the
displacement velocities and traction forces at the interface between two media
must match. This implies:

Ve XV, (20)
E:u ZuVu = E:V Z'VV‘V (21)

where the unprimed variables refer to the incident medium. In general, for
orthotropic symmetry, these equations will contain six unknowns corresponding
to three possible modes for the reflected and refracted waves (2 quasishear,
1 quasilonygitudinal).

Each vector V; may be written in the form Vi = Aj vj where v; is an eigen-
vector of (3) and Ay is the displacement veloc1ty amplltude Since the compo-
nents of each v; are known within a constant factor (10) and (11) each may be

broken down into 3 component equations allowing solutions for the six unknowns
to be obtained.

Care must be taken in (10) and (11) to insure that identical components are
being matched for the incident and refracted media. For media in which princi-
pal axes are not aligned, this is most easily done by rotating the T's and v's
on the right side of the equation after initially computing them in a system for
which the coordinate axes and principal axes are coincident.
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COMPUTATION OF THE Z MATRIX

In order to compute the Z matrix of expression (9) it is necessary to know
the wave vector k for the particular mode in question. For refracted waves this
information comes directly from the solution to equation (3). When reflected
waves are considered one can, by the use of symmetry arguments, obtain the k
vectors for the refracted waves directly from those of the reflected waves by
changing the sign of the component of k normal to the interface. If all three
modes of the incident wave are present this will permit immediate computation
of the reflected Z matrices; however, if only one mode is present this may be
used to determine the corresponding reflected mode which may then be used in
place of the incident k' and &' for the solution of equation (3).

Having computed the oblique incidence reflection and transmission coeffi-
cients for waves incident upon interfaces between anisotropic media of interest,
it becomes possible to compute frequency dependent reflection and transmission
coefficients for arbitrary laminates consisting of such media.

PLANE WAVES IN LAYERED MEDIA

1 2 3 n n+1

Figure 2. Plane Waves being Reflected and Mode Converted at the
Interfaces of a Layered Medium

Figure 2 depicts a laminate for which a plane wave is obliquely incident
upon an interface from the lower left. The wave is monochromatic, and by defi-
nition infinite in width and may, therefore, be equally well represented by any
parallel ray. Upon striking the interface the wave produces, in the most gen-
eral case, three reflected and three refracted modes whose amplitudes may be
denoted by the vector

3
a = 32 (22)
a

3
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For the sake of convention the components may be ordered according to cor-
responding velocity for orthorhombic symmetry. For hexagonal symmetry the or-
dering quasilongitudinal, quasishear, pure shear is less ambiguous since modes
do not change at points where velocities cross over. It is clear from Snell's
Law and elementary geometry that for plane parallel media, even numbered multi-
ple reflections in a given direction will always be scattered into one of the
three modes present in the transmitted wave. In other words, for the situation
depicted in figure 2, a single vector a as in (12) is adequate for describing
all of the waves propagating to the right within any given medium. This im-
plies that, since we are dealing with a linear system of plane waves, any re-
flection, propagation, transmission, etc. of such waves can be treated as a
matrix multiplication operation. For example, a vector a whose components
represent the three possible modes of propagation with a given (k' sin 8') for
any given medium will have components of the form

a; = a; exp i(wt - ky * T) (23)

Alw) 1 2 3

Figure 3. Waves Referenced to the Origin
For simplicity the phase of wave (23) will be referenced to point P(r=0)

(see figure 3). Thus in passing from medium 1 to medium 2 the vector a will
undergo the component transformation

= : . i - L
a'j Zi le a; exp i(ut kJ T), (24)
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a 1is a mode vector which represents waves with the same "k sin 8" inci-
dent at P

a; 1is the complex amplitude of the i th component of such waves at r=0
and t=0

k; 1is the wave vector for the i th component and

T;; is the amplitude transmission coefficient from the i th incident mode
to the i th refracted mode

The variables a', k', are defined analogously for medium 2 which implies the
matrix equation .
a'j = E:i Tij ajora' =Ta (25)

It should be noted that the vanishing of the phase component of (5)results from
the assumption that the wave front travels an infinitesimal distance in going
from medium 1 to medium 2 in the neighborhood of P and is independent of the

fact that r = 0. Hence, any phase shift experienced would be entirely the result
of transmission phenomena described in equations (10) and 11) from which Tjj is
computed.

In computing phase shift matrices corresponding to propagation delays, it
is convenient to describe phase shifts seen at a given point in terms of fre-
quency domain spectra. Thus a wave traveling from point P to point P' in medium
2 will undergo a phase shift such that

ar, (P') = a', (P) exp i(-k' D cos 8'j)

aj (P) exp - i(wD cos 8';/Cj) (26)

which is described by a diagonal matrix of the form

Qij = Sij exp -i{wD cos e'i/Ci) (27)
s | a', (1) = °'1j a;, (P) (28)
a (P') =% a (P) (29)

il The other matrix of interest is that associated with a reflection. Again
no propagation delay is associated with this phenomenon and reflection matrices
produce the transformation in medium 1

o by (P) =ZRij a; (P) (30)

or
b=Ra where b, =b, exp i(ut + k-r) (31)

10

s o A ) i o . .
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where R;. is the amplitude reflection coefficient for i mode incident waves
going to”j mode reflected waves.

Again the coefficients Rij are computed by solving the equations (10) and
(11).

MULTIPLE REFLECTIONS IN A THICK PLATE

In calculating the reflection and transmission coefficients of a thick
plate it is convenient to compute the total amplitude of waves at the points P
and P' and to consider wave fronts as being reflected between those points (figure 3).
This is permissible since it is easily shown that the phase shift of the wave-
front is independent of the point from which the reflection is assumed to occur.

Then for an incident wave A (w) the total reflected wave at the point P is of
the form

Bw) = (Ryy + Tpy $3 Ry §Typ v Ty 93 Ry 6, Ry B3 9, Ty
, * Ty 82 Koz 9 Ry 35 Ryg 03 Ry 3 Rz 9, Ty v -00) A)
! B) = (Ryy + Ty 8, Myg 0 2 By 3 By 5" Ty A
. (32)
E Blw) = [ﬁiz 21 92 Ryz &, (1- Ry 0, Ryy 97! 17] Alw) (33)

where B(w) is the amplitude vector for waves of frequency w trave11ng in medium
1 with a negative y component of velocity and matrices of the form T or R
are incident from medium i onto medium j.

| A composite reflection coefficient may now be defined

Ry

+T2

-— -1—

Oy Ry 3, (T-Ry 0, Ry )7 T (34)

3 = [Ry, 12

which describes the total contribution in medium 1 from interface reflections
. occurring to the right of medium 1 (see figure 2).

- e, v Se——

In a similar fashion, the wave at point P' emerging into medium 3 can be
written

, o o
Atw) = { Tys 93 Typ * Tp3 8, Ry 9, Ryg 0 le

3 OR O, Ry & Ry R T, s A(w)}

11
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v = {7, ® ::5 Ry, ¥, Ry 7" le b

The total transmission coefficient may now be defined as,

- -1
T3 = 3 Tas 921 1 - Ry ¢ Ryg 0}™ T)y f' (37)

REFLECTION AND TRANSMISSION

COEFFICIEENTS FOR LAYERED MEDTIA

In the frequency domain, expressions (34) and (37) may be applied itera-
tively to construct reflection and transmission coefficients for multilayered
media. In figure 2 a wave is incident from the left upon a stratified medium
having n + 1 layers, the n + 1 layer being the incident layer and the n th
interface being the first interface.

If the media beyond medium n and in front of medium 1 (with respect to the
direction of wave motion) are considered as a single virtual interface having
reflection and transmission matrices -1 Tn~13 then the problem becomes equiv-
alent to that of a thick plate with reflection and transmission matrices,

-— -_— = - -_— e e e . -] -
Rn = [rnf * tnb °n Rn-l ¢’n (1- Thb ¢n Rn-l ¢n) tnf] (38)

= -1

)

o= [T n Rn 1 "n

n-1 (1 nb ®. tnf] (39)

where rp¢ (rnb) and the (thp) are the forward (backward) reflection and trans-
mission coefficients respectively.

Clearly equations (38) and (39) form recursion relations which allow the
computation of R, and T, in terms of the phase shift matrices ¢; and the reflec-
tion and transmission matrlces tlf, tlb' Tif, rib'

Thxs set of recursion relations can be put in matrix form using the method
of Scott! by employing the definitions

-1
Ry =a b, (40)

-1 -1
a " (rnf the ” Tnf tnf Tnb *n Rn-1 ®y * tnb %0 Rnoa d’n) (41)

and

-1 -1
by = (the - the Tnb ®n Rn-y 4p) (42)
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where the bar matrix notation is suppressed. Expression (40) may be shown to

follow from (38), (41) and (42) by direct substitution. By use of definition
{(40) we may write

- R -1 -1 -1
Rn a bn [(rnf tnf Thf tnf Tnb q’n Rn-1 ¢nMn bn— ¢n an J

-1 .1 _ -l -1
[tnf ¢n b-l t Thb 4’n an-&

-1 -1 -1
aq %0 Pno1 Pnoy ¢n Bn - (43)

b

Thus for each pair of matrices a,, b, a matrix relationship may be established
of the form:

-1
an (tnb - The the Tnp) ¢n  Tnf tnf %5’
= -1
®n “thf Tnb %n Bn-y (44)

Extending the relationship through all of the layers of the laminate yields:

.1
ay tmb  Tmf tmf Tmb) Om Tnf tmf on! rig
= -1 -1
b -t T . ¢ ¢
n ment, ) mf “mb 'm tmf 1 (45)

The expressions (44) and (45) above could be expanded into a2 form contain-
ing 6x6 and 6x3 matrices; however, the above forms are much easier to work with
and are expressed in terms of the 3x3 matrices desired in the result.

From expression (39) a similar definition can be made for transmission
matrices. Thus, letting

‘n * *n-1 % (46)

and as before

-

= -1
bn (tnf nf Tnb ¢n n-1 ¢n) (47)
the expression (39) becomes

T |
Tn cn bn (48)

This leads to the recursion relation
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-1
Tn = [cn-l n-l ¢ ] [t - nf nb ¢n ah-1 bn-l ¢n]
-1 -1 -1

S [tnf ®2 Pnol 7 g Tnb % n-l]

-1

(49)
from which is derived the matrix relation

f . 0
\ ' n
; a o (t,-rT e )y ) r o1
: n | nf nf "nb Qn nf nf n
1 -
b 0 nf Tb °n nf n (50)

A matrix product of the type in expression (45) could readily be constructed, how-
ever it is clear that there is no mixing of the €S with other matrix elements
and the immediate result is

Th = tie ° Pp (51)

where bn is obtained directly from expression (45).

———— e~

RESULTS

The above analytical technique has been utilized for calculating reflection
and transmission coefficients for a number of layered anisotropic and isotropic
materials both lossless and attenuating. Although the author has not as yet
found independent results in the literature for checking the most general cases
which can be treated by this technique, verification has been performed for a
number of results for reflection and transm1sszon between crystalline media and
crystalline and amorphous media given by Auld.2 In addition, formulas given by
Ewing Jardetzky and Press3 for liquid to solid and solid to 11qu1d interfaces
have also been checked and give agreement of the type shown in figures 4 and 5.
Excellent agreement was also found with results given by Brekhowskikh? for trans-
mission through a thick aluminum plate in water as a function of angle. Further-
more all solutions generated for very general laminate systems have satisfied
energy conservation laws.

e et e e

——— by, W ———

CONCLUSIONS

The above formalism is believed to provide an accurate and efficient tech-
nique for treating rather general problems involving the oblique indicence trans-
mission and reflection of stress waves through anisotropic, layered media. The
technique has proved adequate to handle problems involving evanescent waves and
material attenuation and should be useful in treating practical problems involv-
ing composite materials.
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