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Item 20 (Cont'd)

C >flowchart paths are exercised at least once. Type 1 is performed by

forced traversal and Type 2 by natural execution. Types 3 and 4 cor-
respond to an exhaustive interaction of all INPUT AND STORED DATA.
Clearly, Types 3 and 4 are unfeasible and only a strategy lying between
Type 1 and 2 can effectively be implemented.-.

'fSince enumeration of all the paths in a given program is required for
Type 1 and 2 tests, this report establishes the lower and upper bounds
on the number of paths as a function of the number of deciders, des-
cribes a manual decomposition procedure to cut a graph into smaller
subgraphs, and proposes an algoritim to machine-identify all paths.
A complete Type 1.5 driver system for forced path traversal, Implemented
in PL/l, is then thoroughly described, together with suggestions on how
to extend these techniques to other languages.-

'A typical program is analyzed manually, tested with data and run
through the system. Some evaluation of the usefulness of the system
is eventually given in the light of the accumulated experience.
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1. 0 Introduction
At the present state of the programming art, there exist two tech-

niques for removing errors from a program during the various stages of
development, program proofs and program testing. Although much effort
has been expended on program proofs, it is not clear whether this method
will become a practical and widely used technique. The present universally
used technique is to test to remove bugs, either by code reading, by
walkthroughs, or by machine testing.

To ivsiaea strategy for testing - - be it manual, semi-automatic or
formal definitions and analytic models, to fully define the range and scope
of the test project. In general, it is indeed unclear what really is meant
by error models, debugging procedures, and other such terms. We des-
cribe here a hierarchy of testing models. The importance of testing cannot
be exaggerated, because only a well-tested program can be assumed to be
reasonably error-free, in the prevailing lack of general techniques to prove
the correctness of procedures.

Much of the testing presently done is ad hoc and heuristic rather than
having any theoretical background. The purpose of this report is to pre-
sent some models and analytical techniques which can be used in developing
software test systems. It will be shown that practical driver systems for
automatic testing can be implemented from formal definitions of testing
types.

The test type to be discussed in detail is a Type I test, which is de-
fined as a test model in which each program path is force-traversed once.
The definition involves a discussion on how program branching points and
loops affect the number of paths. The process culminates in an algorithm
for identifying all program paths.

The possibility of implementing and automating such a testing model is
then investigated. It is shown that the technique is feasible; a system of
programs has been implemented to force execution through all possible pathsI I of a given program under test. This requires that the system analytically
determine all program paths from the code, modify the input code and drive
several runs of the program. Study of these forced runs will result inI many program errors being caught without having to calculate and insertparticular testing data, a major effort if done by hand for a complex pro-
gram. The computer output for each run contains a unique labeling of the

1path traversed, related error messages and normal output , if any, and the
amount of time elapsed during that run. The system has already proved
itself very valuable in program debugging on a few problems, with its fully
automatic mode of operation being the significant asset.

Section 2 is a short survey of similar efforts for automated testing
systems. Section 3 defines in detail a hierarchy of test types; Section 4
1Note that forced testing may result in program outputs which differ from
those produced by natural testing; however, these can be readily identi-
fied by the tester.



deals with the analytical determination of paths in program flowcharts;
Section 5 describes in detail driver systems and associated algorithms, and
Section 6 considers the results and limitations of the system. Finally,
Section 7 concludes by considering the advantages and disadvantages of the
models, and a proposal for future research efforts.
2.0 Drivers for Testing - A Brief Survey

The idea of automatic drivers for software testing is certainly as old
as the discipline of software engineering. Quite a few models for testing
have been proposed in the past, based on techniques ranging from some
form of dynamic program analysis to automatic data generation for traversal
of program paths (4,5,6,7,8,10,12,16,17). We shall briefly discuss some of
these methods and some of the advantages and disadvantages inherent in
these techniques.

The execution of a program may, in general, be described by a pro-
cess of mapping a set of input data values into some output data by the use
of some intermediate, internal data. Testing may therefore be accomplished
by assigning some critically chosen values to the input data, for which the
output values may be known in advance, and by running the program to
check for consistency. It subsequently becomes clear that the technique
could be extended to what is generally referred to as Symbolic Execution, a
form of generalized testing (4,7). In such a case, a program is said to be
executed "symbolically" if symbols are introduced as input values replacing
real data objects (such as integers and reals). In trivial cases involving
no symbols, the process would be identical to normal execution. The exten-
sion of normal execution to symbolic is analogous to the extension of numer-
ic arithmetic to symbolic algebraic operations. Hence, during symbolic
execution of the program, a variable has a fixed but unknown value, and
therefore one single run is equivalent to a large class of manual test runs.
Assignment of values to all symbols would correspond to normal execution,
and furthermore, between these two extremes, a tester may choose an
intermediate strategy of assigning a value only to some variable symbols.

During a symbolic run, computation of symbolic expressions is gene-
rally delayed, or generalized. Conditional expressions are handled by
exploring both the "true" and the "false" branch (conflicts may be resolved

K at some latter point). One symbolic execution run may be characterized by
an "execution tree" and further applied to testing. Based upon this strat-
egy, a system called EFFIGY has been developed, which algebraically repre-

* sents a program path's computation by symbolically executing it (6,7).

SELECT (4) is another driver system based on the technique of sym-
bolic execution. It handles all paths of a given program by symbolically
traversing all of them and by constructing all input and intermediate data
necessary to exercise that path and produced in it. It operates on a LISP-
like language, i.e., a subset of LISP to which constructs such as FOR,
WHILE and UNTIL have been added. A path may be exercised by "forward
substitution" of values within the deciders, values which are stored in a
LISP-list (this list contains, at the end of the run, all the values corres-
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ponding to a given path); and by "backward substitution," which consists
of resubstituting the values causing a run through a desired path. Condi-
tions causing branching in a program are inequalities and equalities. A
subprogram attempts to solve the system of inequalities with a conjugate
gradient ("thill -climbing") algorithm; obviously a certain solution corres-
ponds to a certan path. The system further allows the user to include
assertions about the program as an adjunct to the program code, whose
consistency with the program can be proved or disproved by the mechan-
ism. One clear advantage of this strategy is that it finds and excludes
from execution all unreachable paths. A minor criticism can be stated by
remarking that the language handled by the system is a subset of LISP with
some ALGOL constructs, which probably has the disadvantages of both
languages without the advantages of neither and which, in any case, only
moderately approximates the coding techniques used in the real world of
programming. Furthermore, the inequality solver's hill-climbing algorithm is
not guaranteed to work in general and requires human interaction, thus
preventing the system from being fully automated.

A similar methodology can be used to automatically generate data for
path testing, as described in (5). From symbolic executon one can derive
a set of constraints on the values of the input data set. The method
described in (5) consists, among others, of some preprocessing of the
subject program to be tested, of the generation of some data base from it,
and of translation of the subject program into some intermediate code for
symbolic execution. Path selection can be static (meaning automatic gene-
ration of paths) or interactive (under user's control). Data determination
is achieved by first simplifying the resulting inequalities and then solving
them. The inequality solver attempts a solution and adds the constraints
one by one, checking for consistency. If the previous solution still holds,
it is retained, otherwise a new one is generated. The main disadvantage of
this ingenious strategy is that it is impossible to solve a general system of
inequalities. A serious restriction is that path analysis must operate with
linear inequalities. The system handles FORTRAN programs, but with a
few restrictions (e.g., array references dependent on input values are not
allowed). in spite of the restrictions, however, the application of path
analysis techniques to a real language has considerable merit.

Some other strategies for automatic testing have been proposed, among
which we shall consider the type of driver system described in (8). The
system works for FORTRAN programs and operates upon code segments,
defined as a set of consecutive statements to which control may be trans-
ferred (presumably a construct corresponding to a compound statement in
programming languages with structured features). Segment relationship
depends upon how the flow of control transfers from one segment to another
(probably a definition rendered necessary by the wide use of GO TO' s in
FORTRAN). The driver then attempts to traverse an optimal path for test-
ing. Identification of segments, relationships, type of branching, etc. is
achieved through syntactic analysis. A base path is then generated as a
concatenation of segments, and finally a path optimizer selects paths and

*1 the order of execution of the code. Thus the system can automatically
supply the tester with an analysis chart of a given program, and the tester
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is responsible for the execution of the path. The system has been imple-
mented and completed with practical applications in mind; hence its use is
geared. toward FORTRAN and some language- dependent constructs. As a
rusult, one may voice the well known reservations deriving from the FORT-
RAN -versus -structured languages controversy.

Another set of automatic software test drivers is described in (12).
Their main objective is the construction of test cases for the proper exe-
cution and linkage of calling and called routines in terms of external inter-
face of target-program modules. IBM's Automated Unit (16) works with a
low-level assembler-like language, Module Interface Language - Specific
(MIL-S), and creates a test procedure in MIL-S from a FORTRAN segment.
Other systems operate directly at source level, performing operation of test
procedures with the goal of assisting the tester by managing test data and
automatically running simple tests.

We will show below that our system employs a totally new approach.
Although it is implemented in PL/1 and handles PL/1 programs, the tech-
niques can be extended with almost no effort to any other structured lan-
guage, such as PASCAL, C, (C is the Bell Labs language in which UNIX is
written), ADA, etc., and with some further research even to FORTRAN and
assemblers. Its main features consist of a static analysis of the source
code determining the program structure, and of a dynamic part in which
the program is force-executed through all its paths. The main disadvan-
tage of the strategy is that some normally unreachable paths may be reach-
ed by the system. However, the approach allows the implementation of a
fully automatic system requiring no human interaction and guaranteed to
explore all paths of a program for any case.

3. 0 Types of Tests

3.1 Introduction

We shall begin with a formal definition of various types of testing
strteges.We shall note that, in devising a classification scheme for

testing models, it is natural to desire that it correspond to an increasing
(or decreasing) hierarchy of thoroughness and difficulty . Clearly, the
upper range of our numerical scheme should correspond to an exhaustive
test. At the lower end of the range we will require only that each instruc-
tion be executed at least once.

We might liken the types of tests to the test procedures which an
V owner might apply to check a new car he has just purchased from a dealer.

The first, and most rudimentary, check would be to compare the list of
accessories he ordered wth the delivered list on the car window, and see if
these are present and work. For example, the owner might check to see
that he got an AM/FM radio, and that it works on both AM and FM; that he
received a V-6 engine and not a straight six or a V-8; that the engine
starts; the hood lamp, glove box lamp, and trunk lamp were installed and
work; etc. This check list type test would be the lowest level. At the
other extreme would be functional testing, i.e., use of the auto for three
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months. However, in between, he would try many things during his first
week of driving: drive the car up a hill with and without the air condition-
er on, try the heater on a cool day and the air conditioner on a hot one
(or alternate the two functions), accelerate from rest to 60 mph and try a

panic stop, etc.
toThus, the philosophy for test classification which we will use applies

toproduct testing in general. However, the specific details will apply to
software in particular.

3.2 Completeness and Continuity Checking - Type 0

This type of testing requires that each instruction be exercised at
least once.

Intuition tells us that in testing a mechanism one basic principle is to
try and exercise the parts. In the case of a program, such a test is very
much expedited by a modern assembler or compiler whose location counter
assigns a number to each instruction or statement. A Type 0 test is a
necessary but not sufficient condition for thorough testing of the program.
In fact, when such a test is employed, one often finds design flaws. For
example, it is sometimes impossible to reach a section of code, and upon
detailed investigation, one finds that an error was corrected by inserting a
patch to bypass a block of code. However, the block was never removed
and just remains inert.

as~Obviously, a Type 0 test can be performed at the module level as well
aatthe system integration level. It is more common to allow the individ-

ual coder (or tester) freedom at the module stage to proceed as he wishes.
Thus, much of our definition of test types is more applicable to integration
testing.

A common way to implement a Type 0 test is to exercise each function
at least once, and check the code, pseudocode, or flow chart to see which
code is checked out. For example, in a word processing system we might
check to see that the editor can be reached, that each editor function
works, etc. At this stage of testing, it is unnecessary to check interac-
tions of features; i.e. , we don't have to enter the editor system to change
a word, store it on disk, and then recall the new version. However, even
such a low level test requires a great deal of effort and bookkeeping in a

* large system, unless a computerized tool is developed as an aid. Some
practitioners have even suggested that a machine architectural feature be
added which reserves a machine word bit for such checking. A special
instruction would be added to zero all these bits initially, and whenever a
machine instruction is executed, the respective check bit could be set to
one. Thus, a memory dump (or a search for nonset bits) could be used to

reelwihscinIhdntbe etd
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3.3 All Paths Force-Executed - Type I

One of the problems in testing a program at a level higher than zero
is the dependence between the data and the decider predicates (expressions
which control the branching of an IF-THEN-ELSE or DO WHILE instruction)
in the program. Intuition tells us that once we have completed a check list
for a Type 0 test, we should next test all paths in the program. If we use
a flowchart as our program abstraction, we can define dl paths of the
chart. However, it is unfeasible to determin~e by manual analysis all possi-
ble executable paths in most programs. Thus, an automated tool is highly
desirable.

In the solution to the problem of constructing a program testing tool,
it is convenient to define two classes of path tests: Force- Execution,
Type 1, and Natural -Execution, Type 2. By natural execution we mean
that the tester (human or machine) reads the decider predicates, computes
whether they are true or false based on the current values of the program
variables, and branches left or right accordingly. This concept applies
also to 3-way or multi-way branching, because such constructs can always
be expressed by 2-way branches. Modern IF-THEN-ELSE constructs ex-
press indeed this fact that a condition is either true or false. To simplify
the problem, we have defined the artificial concept of forced-execution
(1,2). In forced -execution the tester only recognizes the fact that it has
reached a decider as it progresses through the program. Once it discovers
a decider it forces further execution of the program for two cases, one
where the decider is true and one where the decider is false.

We should however mention that such a model has a flaw. It is ob-
vious that forced execution will traverse some unfeasible paths, while real
data would prevent natural execution from reaching particular sections, as
in the example of Fig. 3.1. Forced execution would traverse path A-B,
thus causing overflow in branch B. However, natural execution of branch
A prevents subsequent execution of branch B. On the other hand, it is
equally true that some real errors, appearing only with natural -execution,
will never be detected by forced-execution. This is true for any driver
model, regardless of its level of sophistication. Even with these limitations,
Type 1 testing provides a quick and inexpensive technique for detecting
many program errors, because the benefits of automatic analysis outweigh
the disadvantages of some unnatural test cases.

The execlition time of a program is often largely devoted to the repeti-
tive execution of DO loops within the program. However, the philosophy c,,
a forced test is to execute all paths which only include, at most, two execu-
tions of a program loop. Thus, we must invent a technique to ensure that
each DO loop is traversed no more than twice. We also know from exper-
ience that many errors are committed when we exit from a loop. Thus, we
define forced execution of a DO loop as testing the loop twice, one for the
first value of the index and again for the last value. Methods of forced

1 execution of paths and of DO loops are discussed in Section 4.
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path. This data set could be designed by the user, clearly a major effort
with unreliable results, or by the use of some computer assisted tools, as
described in Section 2. However, there is no known fully automatic pro-
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cedure for the generation of such data, and thus an automatic Type 2
driver is not feasible. Furthermore, for each member of the data set, one
can find, in general, an infinity of data exercising the same path. Thus a
Type 2 test is not unique, but rather represents a class of tests.

We suggest that a realistic strategy is made possible by a test model of
Type 1.5, i.e., between Types 1 and 2. According to such a model, some
selected paths would be naturally executed with their associated data, and
an exhaustive test would be completed by force-traversal of all other paths
to ensure complete coverage.

3.5 Exhaustive Testing - Types 3 and 4

Similarly, we define here two types of exhaustive tests. If we assume
that neither the input nor stored data are inherently probabilistic, and we
wish to construct an exhaustive test, we must now test each path not only
for one value of input data per path (as for Type 2), but for the entire
range of combnations allowable. The problem of calculating the number of
needed combinations reduces to a combinatorial problem yielding a huge
number of cases. in all practical cases, it is unfeasible to perform an
exhaustive test, and since a Type 2 may not be thorough enough, a realis-
tic implementation of a Type 3 test is possible only by resorting to some
heuristically constructed test which is somewhere between Type 2 and 3. If
we use heuristics to choose the number of test cases, we should make sure
that the variable ranges include cases of positive, negative and zero val-
ues, as well as other values which traditionally cause trouble.

If either the stored system status data or input data is probabilistic in
nature, the sequence variables must also be included in computing an
exhaustive list of combinations. This is a Type 4 test and it differs from
Type 3 in that additional sequence variables are needed to define an exhaus-
tive test. Again, the number of combinations in an exhaustive test renders
the model unfeasible. It is clear that a Type 4 test is the upper limit for
testing, which includes all other types as special cases.

Table 3.1 summarizes the class definitions which we have evolved, and
discusses one typical "in between" classification, Type 1.5.
4.0 Analytical Determination of Program Paths

4.1 Introduction

In this section we analyze the relationship between the number of
decider predicates in a loopless program and the number of program paths.

First, an upper and lower bound are determined in Section 4.2. Then
a decomposition procedure is explained in Section 4.3, and an example is
given which shows how all possible paths in a program flowchart can be
identified from its structure.

8



TABLE 3.1 -- Classification of Tests

Types Discussion

0 All instructions in code executed at least once
(check list).

1 All paths force-executed at least once (simulated 10(
coverage).

1.5 All paths force-executed, some naturally executed.

2 All paths naturally- executed at least once (pat
coverage 100%).- This test is not unique.

3 All paths naturally-executed for all values of input
parameters (exhaustive test).

4 ADl paths naturally-executed for all values of inpul
parameters, all sequences of inputs, and all combina-I tions of initial conditions (exhaustive test for mul-
tiprocessing, multiprogramming, and real time sys-
tems with non-fixed input sequence).

4.2 Bounds on the Number of Paths in a Loopless Program

The important properties of flowcharts are:

(1) the number of decision elements (deciders);

(2) the number of points where two or more feed forward branches
meet (merges);

(3) the number of points where a feed forward path meets a feedback
path and creates a loop.

At each of these points one can write a simple equation relating each
* path. Repeated use of these relations leads to the analytic determination of

the number of paths in a flowchart.

For simplicity we assume that the flowgraph has no loops. We attempt
* to bind the number of paths to the number of deciders and merges. In

Figure 4.1(a) we show a graph with mn deciders and mn merges. Each deci-
der-merge pair furnishes two paths. By virtue of the chain structure, we
see that the number of paths for the total graph is simply the product of

eac sugrah pthi.e., 2m paths. In Figure 4.1(b) we portray a struc-
ture with n deciders and one merge. The first decider creates two paths.

4 9
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The next decider takes up one of the paths as its input and creates two
new paths. Thus, there are n+1 paths in this graph. As an example of

the application of these bounds, consider a graph with 13 deciders. The

number of paths in such a graph is between 14 and 8192. Our intuition

and experience with some examples seems to point out that the number of

paths in a program is usually closer to the lower bound.

STARTSTR

Branch- Bac
Merge N-eg

Chain O

CSTOP

Fig. 4. 1(a) An Upper Bound. Fig. 4.1(b) A lower bound.

FIGURE 4.1. Flowchart Bounds on the Number of Paths.

4.3 Procedure for Manual Determination of the Number of Paths

If a program is written in structured top-down form or any other

modular form, the program can easily be divided into independent sub-

graphs. In the case of a nonstructured design, subdivision can still be
performed with analogous techniques.

I ; In performing subdivisions, the elementary sub-structures given in
Figure 4.2 are encountered. In Figure 4.2(a) the number of paths in the

program between point A and stop or stops is denoted byr NA Clearly this

number is the sum of the number of paths attached to the left hand branch

NB and those attached to the right hand branch NC* In Figure 4.2(b) the

branch-merge-Structure multiplies the number of paths seen at point B by 2
whereas in the case of Figure 4.2(c) we end up with two equalities at the
merge, as shown.

We will illustrate the calculation of the number of paths in a program
with n conditional jumps. From the previous discussion, we know this

number to be in the range (n+1, 2 n). Let us now consider the following
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Fig. 4.2(a) Branch. Fig. 4.2(b). Branch-Merge Fig. 4.2(c). Merge

FIGURE 4.2. Elementary Graph Sub-Structures

Assume that the computer is to determine the winner of a card game in
which player A is dealt two cards: A, A2, and similarly player B is dealt
two cards, i.e., Bi, B2. If the players have any pairs, the highest pair
wins; otherwise, the player with the highest card wins. If both players
have the same high card, then the winner is the player with the highes t
second card. Identical hands with or without pairs are ties. A flowchart
for this program is given in Figure 4.3. There are 13 deciders, and each
branch is identified with letters A, A', B. etc. The flowchart is decom-
posed in sub-modules labeled A, A', B, B', etc., as shown in Figure 4.3
and the simple algebraic relationships which can be derived are listed in
Table 4.1. All paths are identified and taken into account one by one; the
final computation for this structure with 13 deciders yields 100 paths.

We now have an analytic technique for the manual determination of the
number of flowchart paths. The procedure is, however, time consuming
and error prone even for very simple cases. it is desirable to realize a
fully automatic algorithm to machine -identify all, paths (not simply count
them); such a programmable algorithm is described in the next section.

5.0 Driver Systems

5.1 Introduction

We will now introduce the practical implementation of Type 1.5 driver
systems. Such drivers force the traversal of a given subject program

truhall its paths.
Recall that if we naturally execute a subset of all program paths, then

we refer to such a test as being between Type 1 and Type 2. Similarly, in
most cases, forced -execution will coincide or can be made to coincide with
natural- traversal of some paths and forced- traversal of the remainder or

*1can be made as such. Consequently, we describe the drivers discussed
here as Type 1. 5 tests.
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TABLE 4.1 Number of Paths Calculated in the Flowchart of Figure 4.3

Algebraic Relationship Number of Paths

N = NA + NA, = 2 x NA, 2 x NAf

NA, = NB + NB, = 2 x NB, 4 x NB'
NB, = NC + ND 4 x (NC + ND)

NC = NE + NE, = 1 + NE, 4 x ((1 + NE,) + ND)

NE, = NF + NF, = 1 + 1 = 2  4 x (3 + ND)

ND = NG + NG, = 1 + NG# 4 x (3 + 1 + NG,)

NG = NH + NH, = +NH 4 x (4  NH,)

NH, = N, + N1, =2 x NI, 4 x (5 + 2 x NI,)

Ni , = N + Ni- 2 x Ni, 4 x (5 + 4 x Nil)

NJ, -NK + NK,  1 + NK,  
4 x (5 + 4 x ( + NK))

NK= NL + NL= 1 + NL, 4 x (5 + 4 x (1 + 1 + NL))

NL,  NM + NMI 1 + NMI 4 X (5 + 4 x (2 + 1 + NMI))

NM,= NN + NN, 1 + I = 2  4 x (5 + 4 x (3 + 2))) = 100

The design of drivers has evolved through several phases during the
present research on testing models. The most obvious technique for com-
plete path traversal is referred to as an "upper bound" driver and is
described in Section 5.2. Such a design, as it will be shown, achieves the
goal of automated path testing at a high penalty. Further considerations
and refinements of the problem, namely, the realization of an algorithm for
path analysis, have led to the implementation of a system of programs which
constitute the whole driver system. These will be described in Sections 5.3
to 5.6.

5.2 An "Upper Bound" Driver

The system described here was a first attempt to implement a driver to
force the execution of a PL/1 program under test, from now on referred to
as the subject program.

13



The subject program is written in standard PL/1 with no restrictions.
There are only a few precautions the programmer must take in designing
his code:

e The total number of IF-statements and repetitive DO-groups, herein
called NTESTS, must be supplied on a data card;

* Each statement of the form: IF cond ... must be written as
IF F(cond) ...

e Each statement of the form: DO I=limitl TO Umit2 BY increment
must be written as: DO I=GL(limitl, limit2) to GH BY incre-

ment

e Each statement of the form: DO WIILE(cond)
must be written as: DO WHILE(H(cond))

* Functions and subroutines must be internal.

The deck of the subject program is then simply inserted within the
deck of the driver program at an appropriate location. The driver exer-
cises all paths through several runs.

The driver's mode of operation is simply based on the fact that the
upper bound on the number of possible paths is 2NTESTS (see Section
4.2). The driver program will internally construct a binary number, called
control word, with NTESTS bits, whose initial value has all bits set to 0.
This number is increased by 1 at each run during execution, till the con-
trol word has all bits set to 1.

At each run, function F (as well as GL, GH and H) replaces the value
of the condition with the corresponding bit from the control word. Func-
tions GL and GH cause a DO-group with an index variable to be executed
once with the initial value of the index (bit=0), and once with the final
value (bit=1). Function H causes execution of a DO WHILE group exactly
once in any case.

Since there are 2 NTESTSpossible distinct values of the control word,Ithere will be exactly 2 runs of the subject program. Therefore,
the coverage of all possible paths is mathematically guaranteed. Hence, the
goal of automated force-traversal is fully achieved with this simple strategy.

Because the number of paths in a program may be closer to the lower
bound NTESTS+1 than to the upper bound 2NTESTS there will often be a
large number of runs which do not represent any existing paths. For In-
stance, the flowchart of Figure 4.3 has 13 deciders but only 100 paths;
hence 8092 runs are wasted with this strategy. Furthermore, since the
number of runs increases exponentially with the number of deciders, the
running cost of such a driver becomes very prohibitive, even for medium
size programs.

14
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This problem can be overcome by the derivation of the path structure
of a program from its code using static analysis. This strategy will be
described in the following sections.

5. 3 A Type 1. 5 Driver

The complete driver system is shown in Figure 5. 1. It has a section
for static path analysis, one for code translation and one for dynamic
testing.- At the left hand side in the picture, one recognizes the execution
of the driver programs from files located in the middle of the picture.- An
gram, enters the path analyzer, which determines the program paths and
saves their representation as binary path descriptors, along with a copy of
the subject program. This is described in Section 5.4.

The copy of the subject program undergoes some modifications per-
formed by the translator program. This translator modifies conditional
branches, loop constructs and includes the program in a large loop. This
inclusion allows repeated execution. This is described in Section 5.5.

Eventually, the modified subject program reaches the execution stage
through all its paths, as determined by the binary path descriptors, and
the output of the driver is produced, as described in Section 5.6.

Although we have chosen to implement a PL/l driver, it can be shown
that these techniques are applicable to almost any language. For this par-
ticular implementation, we assume that the program is structured, contains
no GO TO's and has been compiled successfully. The language PL/1 has
been chosen because it is widely available and allows the design of well
structured programs, since it possesses constructs such as IF-THEN-ELSE,
DO WHILE, compound statements and blocks.

In spite of these restrictions, we will show that similar techniques for
the construction of the driver can be applied to almost any language, struc-
tured or not. Any language possessing blocks, "if-then-else"l, and "while"
constructs can be handled exactly as is PL/1, with the proper (isomorphic)
change of syntax. This is the case for ALGOL, PASCAL, and C (a lang-
uage developed at Bell Labs running on PDP-11 machines) and ADA.
Furthermore, languages like C, LISP, etc., where an assignment statement
can be embedded within a conditional expression (conveniently for our
purposes, this is not the case for PL/1), may be adapted to our technique
simply by isolating that statement from those affecting the control flow.

Languages which do not have structured programming constructs can
be handled by the algorithm in another way. This is the case for FORTRAN
and assembly languages. Note that considerable effort is spent today in
writing structured FORTRAN and assemblers. Furthermore, there exist
som structured versions of FORTRAN, such as ratfor (developed at Bell
Labs), involving a preprocessor which converts if-tfiiii1)ise, while, etc.,

15
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constructs into standard FORTRAN. A preprocessor which converts un-
structured into structured FORTRAN has also been developed (Bell Labs).
It is conceivable that similar techniques can be applied to programs written
in assembly language. Therefore the approach could be used for any lang-
uage (with the possible exception of LISP and SNOBOL). We are currently
examining extensions of the technique to assembly and machine languages.
Hence, the vast majority of computer users could benefit from these tech-
niques.

5.4 The Algorithm for Path Analysis

5.4.1 Labeling of Paths: We shall use the convention to label the "true"
branch of a conditional statement with a "1", and the "false" branch with a
"0", as seen in Figure 5.2. In this way, it is possible to uniquely label a

path in a given program with a binary path description, as shown in Fig-
ure 5.3.

false tzrue

0 2

FIGURE 5.2 Labeling of branches.

5.4.2 Algorithm for Finding All Possible Paths: We will first show that it
is possible to determine all possible paths. We will start by considering
path analysis for a program without any repetitive DO constructs. Since
each path is uniquely defined by a binary integer, referred to here as path
descriptor, the problem of finding each path in a given program is analo-
gous to the problem of finding the set of binary integers associated with
the path structure of that program. Because sets of binary quantities can
be expressed by regular expressions, we propose an algorithm which con-
structs a regular expression whose associated set contains the values of

Sbinary cont-ro -worcWE coresponding to the paths. only the operations "+"
(expressing union in the associated set) and concatenation will be needed.
The expressionis recursively defined as being always binari.e, it
contains two terms separated by "+". A term is the symboIl, or 0, or an
expression; concatenation of expressions forms an expression.

The algorithm scans a PL/1 program in search of IF-THEN-ELSE con-
structs, and operates according to the following rules:

1. Each IF opens a left parenthesis, and initiates an expression.

2. Each THEN corresponds to a "1".

17



0 0

FIGURE 5.3. Labeling of Path 10011.

3. Each ELSE corresponds to a "0", and since it matches a previous
THEN, a "+" is inserted at that level.

4. If no matching ELSE is present, it is assumed to be there and
U+0"5 is added.

5. Each balanced expression, consisting of "1", "+", "10", closed at
its level, causes closure with a right parenthesis at that level.

The following examples I to 4 contain a variety of flowchart constructs
designed to illustrate how the algorithm works for most common programming
segments. Each example consists of a few lines of PL/1 pseudo-code (i.e.,
in which only keywords such as IF, THEN, ELSE, DO, END are important)
which are represented in the flowgraph of the associated figure. The
reader may attempt to directly apply to the code the appropriate rule from
the set of the above five rules. This will yield the regular expression
listed below the code. Each element in the resulting expression is labeled
underneath with the particular algorithm rule producing that element (exam-
ples of elements: "(", "1", "+0"). The regular expression could be solved
by hand to determine its associated set of binary numbers, shown at the
end of each example. These are the binary path descriptors. The reader
can verify with the flowgraph that they indeed correspond to the paths in
the program segment.

18
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EXAMPLE 1.

Consider the flowchart of Figure 5.4. This chart is implemented by
the program segment

IF cond THEN s
ELSE s

IF cond THEN s
IF cond THEN s

ELSE s

The algorithm constructs:

(1+0)(1+0)(1+0), applying algorithm rules
12 3512 4512 35

Computation of the regular expressions yields

111,011,101,001,110,010,100,000

i.e., the eight possible paths.

'i FIGURE 5.4. Flowchart for Example 1.

EXAMPLE 2.

The flowchart of Figure 5.5 translates into:

19
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IF cond THEN IF cond THEN IF cond THEN s
ELSE s

ELSE IF cond THEN s
ELSE s

ELSE IF cond THEN IF cond THEN s
ELSE s

ELSE IF cond THEN s
ELSE s

Regular expression:

(1(1(1+0)+0(1+0))+0(l(1+0)+0(1+0))), rules:
121212 35 312 355 31212 35 312 3555

representing the eight paths

111,110,101,OO,011,010,01,0000 0

FIGURE 5.5. Flowchart for Example 2.

EXAMPLE 3.

The flowchart of Figure 5.6 is programmed by

IF cond THEN s
ELSE IF cond THEN s

ELSE IF cond THEN s
ELSE IF cond THEN s

ELSE s

Regular expression:

(1+0(1+0(1+0(1+0)))), rules:
12 312 312 312 35555

which gives

1,01,001,0001,0000

20
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FIGURE 5.6. Flowchart for Example 3.

EXAMPLE 4.

The flowchart of Figure 5.7 is realized by

IF cond THEN DO;
IF cond THEN IF cond THEN s

ELSE
ELSE IF cond THEN s

ELSE s
IF cond THEN s
END;

ELSE DO;
IF cond THEN;

ELSE s
END;

Regular expression:

(1(l(1+O)+O(1:+0))(1+O))+O(1+0)), rules:

121212 35 312 355 12 45 312 355

yielding

1111,1110,1101,1100,1011,1010,1001,1000,01,00

FIGURE 5.7. Flowchart for Example 4.
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In example 4, the path structure is complicated by the presence of DO
groups within the THEN and ELSE clauses. When this occurs, construction
of the regular expression temporarily halts, and the algorithm calls itself
recursively for that DO module. This algorithm has been tested with a
program written in LISP (it's easier to design a recursive algorithm in that
language) and then translated. into PL/1.

A second algorithm solves the regular expression and finds all the ele-
ments of its associated set. The number of elements is the number of all
possible paths. Hence the algorithm, as an extra bonus, enumerates all
paths of a program.

The complete analyzing program embodies these algorithms. It starts
by reading in the subject program, card by card. This is stored as a
character string in the main memory, and is saved on an external file,
called ORIG (see Figure 5.1). Control is then passed to the section which
performs the scanning and computes the set of binary control words.

The scanning mechanism is built around two PL/1 procedures, CAR
and CDR, which respectively return the head and the tail of a given
string. By head we mean: Any PL/1 operator such as , -,I) any
PL/1 separat-iiTcharacter (such as ;.: , ,any string separated by an
operator, a separating character or a blank, or any quoted string or com-
ment; by tail we mean the string without its head. Hence, CAR is capable
of correctjIy selecting keywords in portions of statements, such as
;IF( ,*/THEN/*, L2:DO;, but will not return those in THEN1=5, 'A STRING
IF NEEDED', /f*THEN A COMMENT*/.

The analyzing program produces the set of binary path descriptors
(stored on external file REGEXP, see Figure 5.1), which will control the
successive phases of the subject program execution performed by the driver
system.

We are ready to consider the example of Figure 4.3, described in Sec-
tion 4.3. The path analyzer program of the driver system would produce
the output shown in Listing 1. The reader can convince himself that each
of the 100 binary path descriptors corresponds to an existing path in
Figure 4.3. The regular expression corresponds to the structure of the
flowchart, and its associated set yields all paths.

5.5 Program Translator for Forced Driving

This second program reads the subject program from file ORIG and
performs a few PL/1 string manipulations, to transform it into a program
able to run through all its paths.

It inserts at the top of the program some declarations of auxiliary
variables and procedures which were not in the original program; these
entities will control the test runs. A simple statement is inserted in order
to allow continued execution of the new object program even if it runs out
of data, which are not used anyhow in most runs.

22
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The original program is embedded into an infinite loop. Its execution
and exit will be controlled by the system-created function WORD, which
reads the binary path descriptor to select the path and stops the program
when the test is completed.

The object program is scanned in search of conditional statements and

repetitive DO groups.

Any construction of the form

IF cond THEN

is replaced by

IF @F (cond) THEN

where @F is a procedure function replacing, at running time, the original
value of the condition with the corresponding value within the binary path
descriptor representing the path being examined.

It is the responsibility of the translator to modify the subject program

to force traversal of each repetitive DO-group at least once, and not more
than twice. The following cases can occur at execution time:

o The values of initial value, final value and increment of the control
variable are such that the loop would be skipped altogether. Consis-
tent with the strategy of traversing all possible paths, such a loop will
be executed once, regardless.

o The initial value equals the final value; the loop is executed once.

o Otherwise, the loop is executed twice; once with the index, or control
variable, set to its initial value, and once with the highest (or small-
est) value of the index variable for which the loop is still executable.
Example: in the loop DO 1=0 TO 9 BY 2, the final value of the index
variable is 8 (not 9).

This is accomplished by transforming any construct of the form

DO CV=IV TO FV BY INC WHILE(cond);

or
DO CV=IV BY INC TO FV WHILE(cond);

(where IV, FV, INC are, in general, expressions representing the initial
value, final value and increment, and CV is the control variable) into:

DO CV=IV TO FV BY @G(CV,IV,FV,INC) /*WHILE(cond)*/;

24
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If the BY clause is missing in the original, INC is set to 1 in the
argument list of @G, and if the TO clause is missing FV is set to IV. @G is
a function which returns a value for the increment. This value will control
execution of the loop exactly in the manner described above, forcing execu-
tion once or twice, as the case dictates.

Recall that there is always a binary path descriptor associated unique-
ly with each path and that each bit of the binary word is the value of the
expression in the corresponding IF-statement in that path. However, since
it is possible that there are conditional statements within a repetitive DO-
group, it becomes necessary to store the current scanning position within
the binary path descriptor when a loop is entered the first time and to
resume scanning from that same position when the* second execution of the
loop begins. Otherwise the system would, so to speak, fall out of synchron-
ism, picking up a bit value which would not anymore correspond to the
conditions it should be assigned to. This is accomplished by two functions:

H1 saves the current scanning position on a stack, whenever a loop execut-
able twice is entered. @H2 pops that value from the stack upon re-entry of
the same loop. Obviously the stack level corresponds to the level of loop
nesting. In this way, care is taken that the proper order of scanning a
path descriptor is maintained.

Lastly, notice that since the construct

DO WHILE(cond);

becomes

DO /*WHILE(cond)*/;

this iterative DO group is executed just once, regardless of the value of
the condition.

Hence, the object program has been transformed to let it run as many
time as there are paths, with proper action enforced at the loop. And
finally, this new program is sent to the external file RUNTST, which is
then called into PL/ execution by the operating system (see Figure 5.1).
As an example we will consider the following simple program segment,
consisting of a repetitive DO-group:

DO I=3 TO BY 34-J*2 TO Li WHILE(X**2-64);
X=X+ I;
IF PATHBRANCH=1 THEN PUT LIST('HERE');

ELSE PUT LIST('THERE');
END;

The translator program would write on file RUNTST the following lines of
code:

*' 25
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DO 1=3 TO Li BY @G(I,3,L1,34-J*2) /* WHILE(X**2-,= 64)*/;
IF I=3 & @G(I,3,L1,34-J*2) C=L1-3 THEN CALL @HI;
IF I=3 THEN CALL @H2;
X=X+1;
IF @F(PATHBRANCH=I) THEN PUT LIST(HERE');

ELSE PUT LIST('THERE');
END;

The segment has been modified. @G will return a new increment value to
force the loop to execute at most twice. Then @1-I is called only the first
time the loop is entered (I=3), and only if the loop executes twice (new
increment = final value - initial value) and pushes the path descriptor
scanning position on the stack. @H2 is called only when the loop is execut-
ed the second time around (I-3). Finally, @F will force traversal of the
path described by the corresponding bit in the path descriptor.

As a second and final example, we shall show the translated code (see
Listing 2) for the program of Listing 1 whose flowchart is shown in Figure
4.3. As of the present, it is not necessary for the reader to follow in
detail the operation of the modified subject program. He can, however,
readily recognize that the original code is embedded in the new program
(with some automatically added indentation to make DO-groups more read-
able), and that any identifier whose first character is # (for variables) and
@ (for procedures) has been produced by the translator. The TIMER
functions are external assembly language subroutines connected to the inner
clock; all other procedures are internal.

5.6 Execution of the Translated Subject Program

The original object program is inserted into an infinite loop. Control
of its execution is assumed by a function procedure @WORD (see Listing 2).
This routine reads in the binary path descriptor belonging to that path
from file REGEXP (see Figure 5.1).

Function @F is invoked each time a conditional statement is met at
execution. It fetches the next bit from the control binary word and as-
signs that value to the conoition, hence forcing the flow of control through

j a branch, regardless of the __riginal value of the condition.

igFunction @G returns the increment value of a repetitive DO-group forc-
ing execution at most twice, but at least once. The present scanning
position within the controlling path descriptor is saved in a stack. An
external procedure written in assembly language is used to compute the
execution time in a path.

The output produced by each run contains information relevant to that
path. The number of the run, or of the path, is printed together with Its
associated path descriptor. Hence, the reader can see by inspection which
program path caused trouble, if any. The run catches and prints errors
caused by interrupts, such as end-of-file, overflow and underflow, division

* by 0, etc. It then prints the time elapsed in each path. However, provi-
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STNT LEVEL NEST

I aP:PRCC CPTICNSMAIhl;
2 1 CCL sT SITELOOO)VARt 1IPAT

I-SIBITPCSIFIXEO 81N INIT(11 *F INTRYIBIT1Il8
RETUONSI (BT113);

3 1 CCL IBPCI2536FIXE0#i FIXED INITII);
4 1 CL (#TLIMIT,.FL,#TL1FT3FIX,'0 SIN (311;
5 1 CCL STUSED FLOAT;
6 1 CCL aG ENTRYIFIXEOFtXECFIXE DFIXEO3IRETURNS(FIXEOa ;
7 1 CCL REGEXP FILE INPUT STREAM;
a I CPEN FILE(REGEXPI;.
9 1 Ch ENCFILEiSYSIN);

11 1 CN ENOFILSIREGExPISTCP;
13 1 CALL ZbCRO;
14 1 OTLIiIT-SO00;
s15 I LCCP:0O WHILE1tI;

16 1 1 CALL 2T I,4EATLIMIT,0FLI;

17 1 1 PIOGRAM:eEGIN;
is 2 1 CCL I Al , AZ , 81 , 82 t I'IGH-A # LOWA * HIGM_8 * LO~b- I FIXED INARY IN

IT 1 0 ) , i PAIAA , PAIR.8 I eIT 4 1 1
19 2 1 GET LIST I Al , A2 , 81 , e2 I CCFY
20 2 1 IF aF( Al A2) THEN PAIR.A * '1'1;
ZZ 2 1 ELSE PAIRA a 'O0S ;
23 2 1 IF eFI 81 a 021 THEN PAIR-e a *10
23 2 1 ELSE PAIRB a '0'S ;
26 2 1 IF aFf PAIRA & FAIR-8) THEN IF 4FI Al > 81) THEN PUT SKIP LIST -'A WINS-

3 ;

29 2 1 ELSE IF d04 Al < 81) THEN PUT SNIP LIST I *S WINS$ I 1
31 2 1 ELSE PUT SKIP LIST I 'TIE' I
32 2 1 ELSE S1 : 00;
23 2 2 IF 4F( PAIR.A3 THEN PUT SKIP LIST I 'A WINS* I
35 2 2 ELSE IF F( PAIR-81 TO-EN PUT SKIP LIST '6 WINS@ I a
37 2 2 ELSE S2 : CC;
38 2 3 IF @F4 A > AV THEN CC;
40 2 4 HIGHA = At ;
41 2 4 LCW.A a A2 ;
42 2 4 END;
43 2 3 ELSE CC;
44 2 4 t-IGh_ a A2 ;
45 2 4 LC%_A a A ;
46 2 4 ENC ;

? 2 3 IF F( 81 > 823 THEN CC;
49 z 4 HIGHha81 ;
50 2 4 LCw_8 "82 ;
51 2 4 ;
52 2 3 CLSE DC;
53 2 4 1,IGh_d a 82 ;
54 2 4 LCN..BaSl a
55 2 4 :NO;
56 " 2 3 IF aFI HIGHA > I-GH._S TIO-N PUT SKIP LIST I 'A WINS' I
so 2 3 ELSF IF iFf HI3H_S > HIGh-A) THEN PUT SKIP LIST I 'S NINS' I
60 2 3 "LSE IF iF( LCW-. > L 8.1 THEN PUT SKIP LIST ( 'A WINS' I ;
62 . 3 -LS' IF iF( LCW.E > LCW.Ai TI-EN P'IT SKIP LIST I 0S WINS' I ;

Listing 2. Translated code for the program of Listing 1.
(Part 1)
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STMT LUVEL hEST

64 2 3 :-LSE P1,T SKIP LIST @TIE' 1 3
65 2 3 'N. 0 2;
66 2 2 2t10 SI;
6? 2 1 END PR03RAM;

68 1 1 CALSIER#LF)

23 G2TCS FIL(REGXP I .I

75MT 2 AC Fol) ,ADI ;
76 2 S*SA (T t4B I TP.I; )

84 2 OMIPCSsO.L; S1

?6a 2 G PRC(C ,VN)ETRS;1

88 2 ENO 0.~ HNRStP(I
80 2 GFZNC' FIL EGEP LST~(Fv!;
82 2 IFT SIP12v I (OATI N C URvP v-S1 PT OSRPT~
94 2 OF TH(FV C INCO4 A!UNFVI~s
84 2 aS! TURi-I~CCIVF,-NC
as9 2 ENO awG~;

100 1 G :RCC PVFPN~I-UNIIE)
101 2 CCLPO3.I)9FITPC; X.D
102 2 I VF HNRTR(1
0 2 IF~ J1;OTE4RTR (VII

I0s 2 ELS8 IT RsPIVIV;NCI-FPIC
107 2 END &G.?

100 1 @ JFP;I0 1P00~d1PS
L0 4-111

Lisin 2. Traslte coefr h rgrmo iig1
104~(ar 1 II)PC

Los 2 1-st28
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sion is made, such that if a path's running time exceeds a certain threshold
(as defined by the programmer), infinite loops will not run indefinitely and
will be stopped. Finally, the output expected in executing that path ap-
pears on the printout.

Since a listing of the modified subject program is available to allow
interpretation of the results, the user can make best use of the output by
skipping those errors associated with unreachable paths or those derived
from unspecified data, considering those errors which point to a structural
error in the algorithm, identifying the corresponding path and fixing the
code.

Note that the running mode does not require any explicit care to be
taken by the programmer on the tested subject (except for a few restric-
tions noted in the next section). The insertion of the proper variable and
procedures allowing exhaustive testing is automatically done by the system,
first by the analyzer which constructs the path descriptors, and later by
the translator which modifies the code. Hence, the programmer need not be
aware of the transformations his code went through. To allow easy tracing,
however, the original conditions have not been deleted from the code, and
WHILE clauses are enclosed in comments. Thus, the original program could
be executed normally and is still readable even in its new form on the
listing.

We will now show, as an example of the result of running a translated
subject program, the output for the program shown in Listings 1 and 2 and
Figure 4.3. Recall that, because of the construction of the path analyzing
algorithm (Section 5.4.1), the first paths identified and traversed will be
those labeled ABCE, ABCE'F, ABCE'F' and ABDG in Figure 4.3. Hence the
output will be as shown in Listing 3:

PATH NC. I PATH 02SCAIPTOR:11Il
A WINSi TIE ELAFS'-D 0.16
PATH NO, 2 PATH D,SCRIFTCR:1111

* 8 WINS
TIME ELAPSE 0.C4

PATH NO, PATH CZSCRIPTOR:111Cc
TIE~
TIME ELAPSED 000Z

PATH NO, 4 PATH CESCRIPTC.R:IllC
A WINS
TIME -LAPS.D 0.02

Listing 3. Computer Output of the Driver System for the Program
of Listings 1 and 2.
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and so on for the remaining 96 paths.

6. 0 Results

6. 1 Introduction

In this section we shall attempt to discuss the usefulness of Type 1.5
drivers for forced testing, briefly comparing their use with other widely
used testing strategies, and describing the efficiency and deficiencies of
the present implementation.

6.2 Automatic Analysis and Forced -Execution

As shown in Section 4.3, even for a simple program like that of Figure
4.3, path identification and enumeration is not a trivial problem; it is time
consuming and error prone. in such cases, the algorithm described in Sec-
tion 5.4 has great advantages, because it not only identifies all paths and
properly labels them, but its implementation as a path-analyzer program
cons tructs all binary path descriptors. Hence, it is not necessary to spend
time in designing data sets to exercise all paths (which is often unsuccess-
ful). The driver system takes the subject program as the input; the anal-
yzer creates the descriptor for each run or path; the translator modifies
the code; and the modified program runs through all its paths as many
times as there are paths.

6.3 Comparison between Manual and Automatic Testing

Consider again the program of Listing 1 and Figure 4.3. We will
establish a timetable to compare results and time spent by testing with
either input data or with the driver system. We begin by saying that it
took 30 minutes to design a successfully compiled program. We then test
the program manually and automatically(*).

Manual Testing__With Data Automatic Testing With The Driver

e Design of a data set to exer- e Path analyzer, 1.13 min, 450K core
cise some paths: 10 minutes

e Running of the program through e Translator: 0.27 minutes
these paths: 0.01 minutes

e Translated subject: 0.04 minutes
all paths

e Results: program is OK o Results: one buG was discovered

The bug appeared in the form of two contradictory outputs; an erroneous
ELSE clause was subsequently fixed in the subject program.

(*)These operations were carried out on the IBM 360/65 system at the

Polytechnic Institute of New York, Brooklyn.
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It appears that no particular penalty in running time has to be paid to
let a program run through all its paths. In fact, a program with repetitive
DO-loops may very well run faster through the driver than with some
manual testing, because extra saving in running time is achieved by not
letting loops run more than twice. This saving may become consistent for
programs with many nested loops.

Since it is not necessary to design any testing data, the programmer
saves time and effort for manual debugging. There is, moreover, no guar-
antee that testing with data achieves the result, as this case shows: the
erroneous path had never been reached using the test data.

However, a strategy which is currently being researched would allow a
user to supply testing data to exercise paths of interest, as well as inhibit-
ors to suppress force-traversal of unwanted paths. The driver would
automatically keep track of naturally -executed paths and resume control to
force-traverse all remaining paths upon exhaustion of the testing data set.

6.4 Efficiency of the Driver

The path analyzer program is a literal implementation of the recursive
algorithm described in Section 5.4.1. As such, it is slow and inefficient,
and requires a large amount of computer memory. This is due to the fact
that each time a recursive procedure, which is still open, calls itself either
directly or indirectly, the PL/1 system reallocates new space for variables
in main storage. The scanned subject program is stored as a string and in
PL/1, unfortunately, a string of maximum length is allocated even if the
string is declared with a varying length attribute. As a result, the path
analyzer wastes a large number of bytes. This wasted memory is recuper-
ated only when the last recursive call terminates, that is, at the point when
the recursion stack begins to pop.

The problem has, in fact, been avoided by implementing the algorithm
for path analysis in LISP, a language ideally suited for recursive function
and string (i.e., list) manipulations. No prohibitive memory is needed,
since the calling-by-value and the pointer mechanism uses space only when
needed. However, the LISP interpreter is not widely available and is, in
general, very slow compared to compilers for other high level languages.

One solution to the efficiency of the analyzer we are considering would
be to modify the recursive algorithm in PL/1. Instead of storing in the
stack the character string resulting from an intermediate computation, we
would operate always on one copy of the program string and store the
present scanning location, i.e. , a one-word pointer. Hence, we would
achieve a saving of 32K-bytes versus one word, which is close to an order
of magnitude of 4. A drastic saving in memory space would be realized,
and simultaneously some techniques to speed up the algorithm could be
added.

The translator program is essentially built around string manipulating
built-in prcdrsand is therefore fast. No doubt, however, it could be
further optimized.
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The translated subject program will run through all its paths. In the
previous secEtion we pointed out that this may be achieved at the price of
some penalty in running time. It is worth mentioning, however, that even
if this were so, the advantage provided by an automatic mechanism which is
guaranteed to exercise all paths in a subject program outweighs some pos-
sible disadvantages of extra running time.

6.5 Restrictions on the Subject Program and Limitations of the Driver
System.

Our programs implement a driver system which forces execution of a
subject program written in PL/1 through all its possible paths. Almost all
PL/1 features can be used in the design of the subject program, with only
a few restrictions. Some of these restrictions are caused by our computer
installation and some others have been introduced for ease of design of the
system. Some are tolerable or even welcome since they encourage good
programming style, but some are undesirable and will hopefully be removed
in the near future.

We begin by mentioning that, as shown in Section 3.3, the driver will
force execution of some paths that could never be reached by natural
execution, hence creating error messages for non-existent errors. This is
a flaw of the Type 1 testing model and could conceivably only be solved by
a hierarchically higher model. It can be demonstrated rigorously that the
determination by static analysis of unreachable paths is an impossible prob-
lem. In order to see this with an example, assume that within certain lines
of code an algorithm is called for the computation of one of the values used
in the next decider. Before execution it is unkniown whether the algorithm
will terminate or not (halting problem). This example shows that it is, in
theory, impossible to exercise a path, even at level 1. Our driver discon-
tinues a path if it takes longer than a certain time, thus setting a time
bound to avoid the problem altogether. Possibly, only those impossible
paths depending on assignments of known values to the decider variables
can be identified and possibly only a subset of them could be found by a
static analysis similar to the one of Figure 3.1. In the meantime, we must
regard this problem as not a highly important one; the user can in fact
quickly identify these paths from the driver's output.

We now describe a few implementation restrictions. Our version of
PL/1 does not allow strings (hence, subject programs) with more than 32767
bytes, i.e. , about 400 cards. Without modifying our local definition ofPL/1, this could be solved by a more complex scanning algorithm operating
upon arrays of strings, memory size permitting.

Ease in program design of the analyzer requires the exclusion, in the
subject program, of any variable or identifier named IF, THEN, ELSE, DO,
END, BEGIN, TO, BY and WHILE. Similarly, multiple clause DO-groups
(where clauses are separated by commas), and multiple closure with a
labeled END (as permitted by PL/1) have to be avoided. However, use of
these PL/1 features causes confusion, and often programmers are indepen-
dently encouraged not to use them.
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Moreover, although it is a minor drawback that the driver cannot
handle GO TO's (they can always be avoided in structured programs, and
almost always with profit), it is more serious that it cannot cope, at this
stage of development, with branching to subroutines. Consistent with the
theory behind Type 1 testing, we plan to remove this restriction by allow-
ing subroutines which the driver would enter and leave without any force-
traversal mechanism. A subroutine would have to be tested individually by
the driver to check its paths. It is unclear how a static path analyzer
should cope with recursive procedures, because the path structure of a
recursive program is unknown before execution time. In fact, no graph or
flowchart representation exists for a recursive algorithm. Let us say that
any recursive function can always, though often with a lot of effort, be
made non-recursive. Besides, recursive programs are rarely found in the
real world of programming.

It is relevant to note that any structured program can be written with
the constructs allowed by our driver. Therefore, except for its inability to
handle procedures (to be removed soon), the driver system is able enough
to accept any well written PL/1 program to be tested.

7. Summary and Conclusions

We conclude by describing a practical application for a Type 1.5 test-
ing model.

Our driver system could advantageously be integrated into an operat-
ing system. A program would initially be compiled to catch syntax errors.
Upon successful compilation, it would be submitted to the driver system for
forced execution . Hence, another set of errors, appearing at execution
time, could be eliminated prior to the definitive testing with real data, or a
strategy intermingling natural and forced execution could be implemented.

We would like to recall once more that our effort, although, directed
mainly toward PL/1 programs, can be extended to other programming lang-
uages. We hope, therefore, that our driver techniques represent a step
toward automatic debugging.

As a final conclusion, we note that:

1 . Although the area of testing is a difficult one, this report has
developed several quantitative models and approaches to aid research pro-
gress in the field.

2. A auantitative way of describing and categorizing different types
of tests has been developed which may aid discussion and characterization
of tests.

3. A system of algorithms to perform automatic Type 1.5 testing has
been implemented and described in detail. It was shown that such a driver
is feasible and advantageous. An explicit computation of the number of
paths in a flowgraph was carried out analytically. An example has been

33



submitted to the driver system and run through the driver. The testing
model has been defined, researched and fully implemented. Although the
model has already proved itself a useful tool, it is hoped that it will clarify
and further stimulate research in this area.
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