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SECTION I
INTRODUCTION

In 1973 Byer and Garbuny (Reference 1) theoretically ana-
lyzed remote atmospheric pollutant monitoring by absorption. Two
methods considered were long path absorption measurements using ™\
topographical targets and depth resolved absorption measurements
using Mie scattering in the atmosphere as a distributed reflector.

Progress in remote monitoring since that first theoretical
study has been delayed due to the slow development of tunable
laser sources. Depth resolved absorption measurements referred
to by the acronym DIAL-LIDAR have now been demonstrated in the
visible, ultraviolet and infrared spectral ranges. The progress
in remote measurements in tunable source LIDAR has been reviewed,
(References 2 and 3) and this method is presently accepted as the
primary measurement approach for long range atmospheric measure-
ments using laser sources.

;
i

An early research effort at Stanford was to invent and
develop a high power tunable source for remote monitoring appli-
cations. Under National Science Foundation (NSF) support a
tunable infrared source based on a Nd:YAG-pumped LiNbO3 Optical
Parametric Oscillator (OPO) was devised and demonstrated. The
early device demonstrated a tuning range from 1.4 to 4.0 microns
with a linewidth of 4 wavenumbers at an output energy of 10
millijoules per pulse at 10 Hertz.

The wide infrared tuning range and all solid-state construc-
tion of the tunable source showed promise for use in infrared
remote monitoring. The solid state construction had a potential
for reliable operation, and the wide infrared tuning range
included molecular absorption bands of a wide variety of pollu-
tant molecules. An additional benefit of the infrared source was
eye-safe operation under either daylight or nighttime operations.

The OPO tunable source was used for remote measurements at
Stanford in 1977-1978. The Stanford remote monitoring system,
which includes a 16 inch diameter receiving telescope, minicom-
puter and Nd:YAG laser source was designed and constructed under
NSF and Electric Power Research Institute (EPRI) support. The
early measurements of SO and CHy by Baumgartner and Byer
(References 4 and 5) were conducted as a demonstration of the
measurement potential of the system.

. Following the early measurements, an extensive program of

. research on the OPO source and an optical parametric amplifier
(OPA) for increased energy output was carried out. This program
led to significant improvements in the tunable source energy,
linewidth control, and automatic computer control (References 6
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and 7). It also led to a design which demonstrated long term
reliable operation under full automatic computer control. The
improved OPO/OPA source was used as a transmitter in the present
system.

Single-ended remote atmospheric measurements reguire con-
siderable transmitted energy. For example, measurements using
topographical targets typically require 0.01 to 0.1 joules per
pulse transmitted energy. For DIAL-LIDAR measurements the
required energy increases to near 0.1 to 1.0 joules due to the
weak return signal. Future remote monitoring progress reguires
increased tunable laser capability.

Independent research has been carried out at Stanford to
investigate new approaches to high pulse energy tunable infrared
sources. The results show good potential for transmitted sources
based on Nd:Glass and on pressure tunable CO3 followed by Raman
shifting. These future high energy sources make the potential
for depth resolved infrared LIDAR appear particularly good.

The measurement program described in this report illustrates
the advantages of the LIDAR approach for remote monitoring.
These advantages include rapid measurement time, path averaged
measurements, multiple pollutant capability, and excellent
measurement precision. The measurement capability will improve
as new higher energy sources become available.




SECTION II :

DESCRIPTION OF THE MONITORING SYSTEM

|

|

oo The current monitoring system is a derivative of the one

! reported earlier by Baumgartner and Byer (References 4 and 5).

| Although the basic set-up remained the same, many essential
changes have been made to increase the reliabllity of the system.

. Figure 1 shows a schematic of the present set-up. The pump

i source for the Optical Parametric Oscillator (OPO) and the

: Optical Parametric Amplifier (OPA) is an unstable resonator
Nd:YAG laser. However, to prevent damage to the LiNbO; crystals
in the OPO and OPA, two important changes were made. irst, the
cavity length of the Nd:YAG laser was doubled to 1.50 meters to

: increase the pulse length to 18 nanoseconds and so to decrease

; the peak optical intensity. This avolds the danger of crystal

tracking due to self-focusing effects. The second change was the

introduction of a far-field converter, which transforms the

' doughnut-shaped near-field laser output beam into an Alry-disk

% profile, which ensures better beam homogeneity. This, in turn,
lowers the threshold of the OP0O and also avolds hot spots in the

beam profile and thus reduces the chance of crystal surface

damage. .

Extenslve studies by Brosnan and Byer lead to improvements
of the OPO itself (Reference 6). The introduction of a 10:1
prism beam expander before the grating decreases the output
linewidth to less than one wavenumber over the entire tuning
range. This linewidth 1s adequate to resolve most lines of
‘ atmospheric pollutants. If necessary, it is possible to reduce
! the linewlidth to 0.1 wavenumbers by introducing an intracavity
tilted etalon. To increase the avallable tunable output energy,
an OPA, which was studied by Baumgartner and Byer (Reference T),
was added after the OPO source. The OPA now generates 20 milli-
Joules output energy. However, optimization of beam overlap
should increase the output energy to previously obtained values
of 50 millijoules.

Y-

v About 1 percent of the tunable output is reflected into a

) photo-acoustic cell to continuously monitor the cross-section of

e . the observed species. The photo-acoustic cell is followed by an

| InSb detector, which is used as a reference detector to ratio out
] energy fluctuations of the OPA, and by an absorption cell to

i N measure the absolute absorption cross-section of a pollutant at a
given wavelength.

i The maln portion of the beam is expanded to about 3 cen-

' timeters dlameter and transmitted to the telescope on the roof of
the laboratory. Detection of the backscattered signal is done
with a 40 centimeter, f=3 Newtonlan telescope with a liquid-
nitrogen-cooled InSb detector at the focal plane.

:
5
|
|
|
|
|
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Figure 2 shows a schematic of the improved data processing
and control electronics. It is centered around the PDP/11lElO
minicomputer, which uses an extensive 1nteractive program to tune
the OPO, take data, process the data, and finally display it.
The signals from the cooled InSb detector and the reference
detector are integrated over one shot in a gated integrator and
read out by the computer which ratios and averages them. In one
mode the computer tunes the OPO on and off a resonance line,
uses the signal from the photo-acoustic cell to correct for slow
changes of the absorption cross-section, and immedlately prints
the measured concentration or stores the data for laboratory
processing. Another operating mode provides automatic
atmospheric or in-laboratory transmittance scans over wide
spectral reglons. The control program greatly simplifles the
handling of the system.

Important improvements were made to the remote monitoring
system. The tunable source was modifled by adding a prism beam
expander to the OPO resonator cavity. This led to a reduction in
the grating-only linewidth from 4 wavenumbers to 0.9 wavenumbers.
The OPO/OPA system was enclosed 1n a dust-free housing and
operated at a lower energy level to ensure long-term damage-free
operation. Rellable operation from January 1979 to June 1979
verified that the all solid-state tunable source can be trouble-
free for extended operation times.

Recently, a tllted etalon for linewidth control to 0.1 wave-~
numbers was 1installed. The galvanometer tilt control proved to
have 1nadequate resettability and 1s being replaced by a stepper
motor device. However, the etalon did operate over an extended
40 wavenumber scan range under computer control. When the new
mechanical system is completed, atmospheric measurements can be
conducted at the improved resolution.

The second area of improvement was the system control soft-
ware. The software package now allows control of the tunable
source, monitoring of an absorption cross-section by means of the
photo-acoustic cell, normalization of the transmitted pulse
energy, data collection, and processing of the returned signal.
Software was also developed to display the recorded spectrum in
real time or to calculate and plot the measured pollutant
concentration.

Figure 2 shows a schematic of the detection system and indi-
cates the signal processing steps. The received signal S(v;) and
reference signal R(vi) and the rms deviation of the normalized
signal are calculatea along with the quantity A = log [S(vq) / S
(v5)]) which 1is proportional to the product No L where N is the
po%lutant density, o is the cross-section, and L is the path.
Typlcally 20 shots on resonance and 20 shots off resonance are
processed and stored. Thus, one measurement takes 4 seconds.
Further signal processing and averaging 1s done later with the
stored values A and the rms variation of A.
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SECTION III

MEASUREMENTS

Using the tunable OPO/OPA source, single ended atmospheric
absorption measurements were made. The typical path length was
1.54 kilometers, using the Hoover Tower structure as the
topographical target. Spectral scans over a wavelength range
from 1.45 to 4.0 microns have been made.

Figure 3 shows a section of a spectral scan in the 5500 to
5800 wavenumbers range. The 300 wavenumber scan is a part of a
scan that extends to 2500 wavenumbers. The region shown in
Figure 3 covers the overtone absorption band of Hy0. The absorp-
tion peaks are not noise but are individual absorption lines of
water vapor. To illustrate the resolution of the source, Figure
4 shows a section of water vapor absorption over a 40 wavenumber
interval. In this scan the water vapor lines have been labeled.
The scan has a resolution near 1 wavenumber and, therefore, does
not resolve the water vapor lines which have half-widths near
0.03 to 0.1 wavenumbers. However, water vapor density can be
determined with the 1 wavenumber resolution if an effective
absorption cross-section is used.

Figure 5 shows a segment of the atmospheric absorption
spectrum near the methane 3.4-micron fundamental band. Both
CH4 and Ho0 absorption lines are present. To clearly identify
the CH4 lines and to aid in selecting a transition free from
water vapor, an absorption spectrum of CHy4 was taken in the
laboratory. A section of the scan centered on the P-branch is
shown in Figure 6. Figures 5 and 6 can be overlaid to show that
the P10 methane transition is of proper strength and nearly water
vapor free for atmospheric measurement over the 1.5 kilometer
path.

The ability to select interference-free absorption bands and
to verify the location of spectral lines by scanning the spectrum
is a major advantage of the tunable source.

The P10 transition was selected for CH4q measurements. The
computer was programmed to tune onto the P10 line and off the
line every 20 pulses. The data was normalized, ratioed, and pro-
cessed to show ppm CH4. An effective cross-section for CH4q (P10)
was utilized based on the resolution of the OPO/OPA source. To
correct for any long-term drift, the cross~section was con-
tinuously measured during a run by a photo-acoustic detector
cell. The value of the cross-section was used to calculate the
methane concentration in near real time.

Figure 7 shows a segment of an 18-hour CH4q measurement run.
Here the raw measurements are shown for 20 shots/line averaging

7
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Figure 3. A segment of an atmospheric transmission scan over a 1.55-
kilometer path in the spectral range from 5500 to 5800
wavenumbers,
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Figure 6. An in-laboratory CH, absorption spectrum of the identical
spectral region shown in Figure 5. Fiqure 6 can be overlaid
onto Figure 5 to show the CH; absorption peaks and to help
select water vapor-free CH4 absorption lines.
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Figure 7. A section of an 18-hour measurement of CH4q on 31 May 1979
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over a 1.55 kilometer path. The 20-shot average yields a
4-second measurement time and a 0.6-ppm rms error.
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or 4 seconds per point., The rms fluctuations are calculated to
be 0.6 parts per million. To improve the precision of the
measurement longer averaging times can be used. Figure 8 shows a
section of the same (CH4 measurement run with an 80-second
averaging time. Here the rms deviation is reduced to 0.03 ppm
which is less than the CHgq fluctuation level in the atmosphere.

During these measurements there was concern that the
measured CHy levels were too high since the global average
CH4 level is near 1.5 ppm. Therefore, hourly CH, measurements
were obtained from the Redwood City Bay Area Pollution Control
District point monitoring station.

Figure 9 shows the measurements at Stanford over a 10-hour
period and the hourly averaged measurements from the monitoring
station which is located 8 kilometers north of Stanford. The
agreement is excellent and is within the variations of CH4q 1n the
atmosphere. On the night of 30 May 1979 the weather was clear
with a very light wind. The anomalously high CHg levels observed
in the south bay area may be due to the large biomass production
rate from marshes and city dumps located along the bay itself.

To check further on the correlation between our measurements
and the station measurements, a second CH4 run was made on 6 and
7 June 1979, Figure 10 shows the results and comparison. In
this case the wind was blowing down the bay from Redwood City
toward Stanford. The wind velocity and distance gave a 20 to
30-minute delay time from Redwood City to Stanford. This delay
time is in good agreement with the peak CHgq measurement at 22,00
at Redwood City which was observed at Stanford at 22.30. Later
in the evening the wind ceased, making the measurements indepen-
dent of the Redwood station.

It should be noted that the LIDAR system was making
CH4 measurements every 50 seconds. The Hedwood City flame ioni-
zation detector measurements are averaged over l-hour intervals
for recording. Even though the measurement systems are separated
physically, the agreement in measured CH4 levels is excellent as
should be expected in a region free of large sources of
CH4 in the area between Stanford and Redwood City.

During the final phase of this program the H0 spectrum was
investigated to determine optimal wavelengths for density and
temperature measurements. Figure 11 shows a section of the Hy0
absorption spectrum near 5650 wavenumbers. The labeled peaks
have been selected for atmospheric temperature measurements due
to their close proximity in wavenumber and their widely spaced
lower levels. Here E, denotes the energy above the Hp0 ground
state in wavenumbers.

These two Ho0 lines should allow temperature measurements to
better than 1°C for a 1 percent precision in absorption

13
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Figure 8. A part of the CHy measurement showing CHq fluctuations over the
path being monitored. The statistical rms noise of the measurement
is 0.03 ppm which is less than the CH4 fluctuation level.
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Figure 9. CH4 Ppm versus time over a l2-hour period. The Stanford LIDAR ‘
data is plotted as crosses. The point-monitoring hourly-
averaged CH, levels are shown as open circles.
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CHy ppm versus time for a second measurement run.

Stanford LIDAR data is plotted as crosses. Here a
prevailing wind yielded a 30-minute delay between the

atmosphere at Redwood City point monitoring station and

its arrival near Stanford campus.
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Figure 11. A section of the H20 atmospheric absorption spectrum of use
for Hy0 and atmospheric temperature measurements.
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measurement. The CH4 measurements show that such a measurement
precision is possible for an averaging time of approximately 5
minutes. Preliminary measurements have shown that the peak
ratios of the two Hp0 lines do vary with atmospheric temperature
as expected. Improvements are being made to the linewidth
control of the OPO before attempting long-term atmospheric tem-
perature measurements.

The primary emphasis of this program was to demonstrate
long-term reliable remote air pollution measurement capability.
The decision was made to concentrate on CHg rather than to
attempt measurements on a wider variety of molecules. However,
it should be noted that within the OPO 1.4~ to 4.0-micron tuning
range are absorption bands of a number of hydrocarbons, including
ethane, propane, ethylene, and formaldehyde. Other molecules of
potential interest include HCl, HF, N50, NO,, Hoe8, NHg, CO, and
COq.

A measurement capability has been demonstrated using an
OPO/OPA source. It is hoped to extend these results to other

molecules and to atmospheric meteorological parameter measure-
ments in the future.
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SHCTION 1Y

CONCLUSTONS

The reliable use of an OPO-based remote air pollution system
has been demonstrated. Fully automatic operation of this system
is possible. Future measurements will demonstrate the capability
to measure many pollutants with the same system, thus showing
another advantage of the tunability. The advantages of the con-
tinuous tunability for cross~section optimization and interference
avoidance have been clearly demonstrated. The possibility of
improving the measurement accuracy by appropriate signal
averaging has also been demonstrated. Finally, long-term opera-
tion under full computer control of the all solid-state laser
source and LiNbO3 OPO/OPA tunable source has demonstrated the
potential for future use in remote atmospheric measurements.

19

i D RBP4



. e et Mg 4 oo

B SR - v

REFERENCES

R. L. Byer and M. Garbuny, "Pollutant Detection by Absorption
Using Mie Scattering and Topographical Targets as
Retroreflectors", Applied Optics, 12, p.1496 (1973).

R. L. Byer, "Review: Remote Air Pollution Measurements",
Optical and Quantum Electronics, 7, p.147 (1975).

Jo Murray and R. L. Byer, "Remote Mohitoring Techniques", in
Handbook of Air Pollution Analysis, ed. by R. Perry and K.
Jd. Young, Chapman and Hall, London 1977.

R. A. Baumgartner and R. L. Byer, "Remote SOy Measurements at
4 um with a Continuously Tunable Source", Optics Letters, 2,
p.163 (1978).

R. A, Baumgartner and R. L. Byer, "Continuously Tunable ir
LIDAR with Applications to Remote Measurements of SO2 and
CH4", Applied Optics, 17, p.3555 (1978).

S. J. Brosnan and R. L. Byer, "Optical Parametric Oscillator
Threshold and Linewidth Studies", IEEE Journ. Quant. Elect.
QE-15, p.415 (1970).

R. A. Baumgartner and R. L. Byer, "Optical Parametric
Amplification", IEEE Journ. Quant. Elect. QE-15, p 432 (1979).

- . .
el e I s i i, i

- -




INITIAL DISTRIBUTION

DTIC/DDA

HQ USAF/LEEV

OSAF/MIQ

OSAF /01

OASD/ (I1&L)EES
AFIT/Library

EPA/ORD

USA Chief, R&D/EQ
OEHL/CC

USAFSAM/EDE

AFOSR/CC

AFOSR/NC

AUL/LSE 71-249

HEQ USAFA/Library

HQ AFESC/TST
AFATL/DLODL

OUSDR&E

AFWL/SUL

USAFSAM/VNL

AFOSR/NP

EPA/ESRL

HQ AFESC/RDV

HQ AFESC/RDVC

Stanford University
NASA/Langley R.C.

MIT Lincoln Laboratory
USAEHA

US Army Med Bioengrg R&D Lab
1 Med Svc Wg/SGB

Chem Abstracts Service
Environmental Research Lab

Pttt DN s bt b DN G B N e e et e b pd bt b e DO S b b e e 1D

21
(The reverse of this page is blank)




