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PREFACE

In the past several years, researchers in simplicial pivoting

algorithms have developed a new class of algorithms, called variable-

dimension algorithms. The dimension of the simplices encountered in the

execution of these algorithms can vary significantly and it is this

variability that sets these algorithms apart from other simplicial pivot-

&ing algorithms.

With the partial goal of presenting a unified view of these variable-

dimension algorithms, we introduce a new mathematical structure called a

V-complex (which is short for "variable-dimension complex"). A

V-complex is axiomatically defined using elementary concepts from alge-

braic topology. With the addition of a labelling function on a

V-complex, we develop a theory and a characterization of paths generated

by V-complexes, that are reminiscent of the paths generated by typical

simplicial pivoting algorithms.

For a given V-complex, we define its associated H-complex

(which is short for "homogeneous-dimension complex"). We then show that

an H-complex is an n-dimensional pseudomanifold; furthermore, path-follow-

ing on V-complexes is equivalent to and is a "projection" of the well-

known path-following scheme on a pseudomanifold, as applied to the

H-complex.

Path-following on V-complexes gives rise to constructive proofs of

a host of lemmas from combinatorial topology, including the Sperner Lemma,7Scarf's Dual Sperner Lemma, Kuhn's Strong Cubical Sperner Lema, and

Tucker's Lama on the n-cube. Exploiting the structure V-complexes, we
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present two new combinatorial lemmas, the Generalized Sperner Lemma,

and a new lemma on the n-cube. These combinatorial lemmas have interest-

ing relationships with existence theorems for fixed-points, antipodal

points, stationary points, nonlinear complementarity points, and

equilibrium points in n-person non-cooperative game theory. The

Generalized Sperner Lemma results in a new Covering Theorem on the simplex,

as well as two other new results on the simplex.

V-complexes are also used to present a unifying theory of variable-

dimension simplicial pivoting algorithms. We show that essentially all of

these algorithms can be viewed as path-following schemes on a V-complex.

Similar to the orientation theory for pseudomanifolds, we present

an orientation theory for H-complexes, which gives insight into the behavior

of the paths on H- and V-complexes. We then give sufficient conditions

on a V-complex that guarantee that the associated H-complex is orientable.

In Chapter I, we review some basic concepts from algebraic topology

and triangulations. In Chapter II, we motivate our study by presenting

Reiser's algorithm for the nonlinear complementarity problem, and

vanderLaan and Talman's first fixed-point algorithm. In Chapter III, we

introduce and develop the theory of V-complexes and H-complexes. In

Chapter IV, we present and give constructive proofs of the combinatorial

lemmas noted above. In Chapter V, we show the relationship between these

lemmas and certain existence theorems. We also prove new results using

these lemmas. In Chapter VI, we present an orientation theory for

H-complexes, and give sufficient conditions for the orientability of
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H-complexes. In Chapter VII, we demonstrate that virtually all

variable-dimension algorithms can be viewed in terms of a V-complex.

In Chapter VIII, we make some concluding remarks and give suggestions

for further research.
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NOTATION

JR real n-dimensional space

nor ]+ (x E 3Rn Ix > 0)

e the vector of l's, (1, 1, 1, ... , 1)

the empty set

symmetric difference operator on sets;

S ̂AT x Ix E S UT, x S n T)

difference operator on sets;

S \T = (xix E S, x V T)

I1111I2 the Euclidean norm; 11112 = 2x * + + x2

"11-110 14 = maxlx i

i

Diameter of Let c be a real n-simplex. The diameter of a is
a simplex

equal to max llx-yjj, where 111 is any norm.Ix xjy a.I Diameter Let C be a triangulation. The diameter of C is
of a tri-
angulation equal to sup [diameter of c).

crc C

A. i the in column of a matrix A

thAi. the i-z row of a matrix A.

e the i- unit vector in .
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CHAPTER I

COMPLEXS, PSEUDOMANIFOLDS, ORIENTATION, TRIA1GUATIONS

1.0. Introduction

In this first chapter, we review some basic concepts from algebraic

topology that provide a basis for the mterial which follows. Specifically,

. we discuss the notions of an abstract complex, pseudomanifolds, orientation,

and triangulations. Most of this material is not new, but a review is

helpful.

1.1. Complexes

An abstract complex consists of a set of vertices K and a set

of finite nonempty subsets of K , denoted K, such that

i) v K implies (v) E K

ii) x CyE K implies x E K.

The elements of K are called simplices. Suppose x E K and lxi = n+l,

where 1-1 denotes cardinality. Then x is called an n-dimensional

simplex, or simply an n-simplex. Condition (i) above means that all

members of K0  are O-simplices, and condition (ii) means that K is

closed under subsets. Technically, an abstract complex is defined by the

pair (K,KO). However, since the set K0  is implied by K, it is con-

venient to simply denote the complex by K alone.

As an example, consider

K = ((a), fb), (c), (a,b), (a,c), (b,c], fa,b,c), (a,d) (d)).

4New



Then K0 = (a,b,c,d). (a,b) is a 1-simplex. (a,b,c) is a 2-simplex,

and (d) is a O-simplex.

An abstract complex K is said to be finite if the set K0  is

finite. An abstract complex K is said to be locally finite if for each

0
v E K , the set of simplices containing v is a finite set. More formally,

K is locally finite if and only if for each v C KO ,

(x : Kjv E x) is a finite set.

Clearly, if K is finite, it is locally finite. The converse is not always

true.

The previous example is a finite complex. As an example of a

locally finite complex that is not finite, let

K = f[1), (2), (3), ( 1,2), (2,33, (3,41, . . •

As an example of a non-locally finite complex, let

~JK = (fl), (2), (3), .. , 1,2), (1,3), (1,4), 11,5),... .

A subset L of K is said to be a subcomplex of K if L itself is

a complex.

1.2. Pseudomanifolds

A particular class of complexes, called pseudomanifolds, is central

to the theory to be developed. An n-dimensional pseudosanifold, or more

simply an n-pseudomanifold, is a complex K such that

*1 2
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i) x E K implies there exists y E K with I tl,

and x Cy.

ii) If x E K and jxi n, then there are at most two n-simplices

* that contain x.

Let

K = (a,b,c), (a,b,d), (a,c,d), (a,b), (a,c), (a,d), (b,c), {bjd),

(c,d), (a), (b), (c), (d))

Then K is a 2-dimensional pseudomanifold.

As an example of a complex vhich is not a pseudomanifold, let

K =((a,bc), fa,b,d), (a,be), (a,b),. (a..c), (bc), (a,d),. (b,d)

{a.,e), (b,e), (a), (b), [c), (d), (e))

Here (a,b) is contained in three 2-sirnplices.

Let K be an n-pseudomanifold. The boundary of K, denoted K

is defined to be the set of simplices x C K such that x is contained

in an (n-l)-simplex y E K, and y is a subset of exactly one n-simplex

of K.

Let K = {[a}, fb}, {c}, {d}, {ab}, {b,c}, {c,dll. Then

[ (a), (d)).

Not all pseudomanifolds have a nonempty boundary. For example,

let

K =([a), (b), (c), (d), (a,b), (b,c), (c,d), (d,a)i

Then ~ 1
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An n-pseudomanifold K is said to be homogeneous if for any

pair of n-simplices x, y E K, there is a finite sequence

x X1 X 2, x3, ... = y of n-simplices in K such that x, n x,+1

is an (n-l)-simplex in K, for i = 1, ., m-l. The preceding examples

of pseudomanifolds are all homogeneous.

As an example of a non-homogeneous pseudomanifold, let

K = {{a,b,c), {c,d,e), (a,b), fa,c), {b,c), [c,d), (c,e), fd,e)

(a), (b), [c), (d), (e))

There is no "path" of n-simplices connecting la,b,c) and {c,d,e).

Before closing this section, we define the notion of a pivot and

a neighboring pair. Let K be an n-pseudomanifold and let x be an

n-simplex in K. Let x = {v O , ... , Vn ). Let y = (lv, ... , vn.

If y ' K, there is a unique w E K such that w, v . vn1  is

an n-simplex in K. The process of exchanging v0  for w to obtain a

new n-simplex is called a pivot. In general, if x and z are n-simplices

and z can be obtained from x by a pivot, x and z are said to be a

neighboring pair, or simply neighbors.I

1.3. Orientation

* Let K be a homogeneous n-pseudomanifold, and let x be an

n-simplex in K. Let (vo, ... , Vn) be some fixed ordering of the

vertices of x. For an arbitrary ordering (vo , ... , vi ) of x,Jn

this ordering is said to have a (+) orientation if and only if the

permutation

(Jo " 'n

is even; otherwise the orientation is (-).

'4
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Now let us extend this notion to all of K. Fix an ordering of

all n-simplices of K. Let x be an n-simplex and let y be an n-simplex

obtained by pivoting on an element v. of x and replacing v. by w.
ji ji

We say that the pair (x,y) is coherently-oriented if the orderings

(v ... ,v ) and (v., ... , v ,wv. , ,v ) areVjo jn jo i-i 3 i+lVj

differently oriented, i.e. one is (+) and the other is (-). K is

said to be orientable if it is possible to specify orientations on all

n-simplices of K in a way that all neighboring n-simplices x, y are

coherently-oriented.

It is important to note a convenient way to go about orienting

K, if K is orientable. Choose an n-simplex x and an ordering of its

vertices and designate this ordering as (+). Then, by the homogeneity of

K, we can orient all simplices that form a neighboring pair with x, and

hence all n-simplices of K.

A natural question to ask at this point is whether or not all

homogeneous pseudomanifolds are orientable. The answer is no. Figure 1.1

schematically represents a non-orientable 2-pseudomanifold that is equivalent

j to the famous M6bius strip. The maximal elements of K bre

ia,b,cl, fa,c,dJ, tc,d,e), (d,e,f), fe,f,a), and (f,a,b). It is a simple

exercise to verify that K cannot be oriented.

* *

e5

I' _ _ _ _ _ _ _ _ _ _ _ _



b c e a

Figure 1. 1

Figure 1.2, on the other hand, represents an orientable 2-pseudamanifold.

(a,b,c) +

(c,b,d) +

a e h(c,d,e) +-

iy Cv(c,e,f) +

(f,e,g) +
Qv (g,e,h) +

f g

Figure 1.2
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Finally, we define induced orientation on the boundary of K. Let

K be a homogeneous orientable n-pseudomanifold such that K is not

empty. Let y be an (n-l)-simplex in K. Then there is a unique

n-simplex x E K such that y C x. Orient K coherently. Let

(vo ,  .be an ordering of the vertices of x. y = x \(v )

for some i uniquely determined. Denote the orientation of the ordering

~(vo, .. ,Vn by Or(vjo . j) Then we define the induced

orientation on y as

O(v , .. v )=-l i or~v,.., ).
oVJo' "' ji-l' vji~l in JO' Jn

Proposition 1.1. Induced orientation is well-defined.

PROOF. Let y be an (n-l)-simplex in K, and let x be the unique

n-simplex in K that contains y. Let (io, ... i be an ordering

of the vertices of y, and let (jo' "'" ' n ) and (A0',"'" ' n) be

orderings of the vertices of x, from which (io, ... , in.) is derived.

y = x\; for some unique E C x. = V = v2  for some unique r, s.
s

If r = s, then (Jo' I Jn)(0' "'" , An),and

Or(i 0, nl) (_1)r Or(JO, .. ) (-l) s Or(10, A

trivially.

So suppose s - r. It takes s-r transpositions to change

'JO ' in) to (0' " ' )" Hence (_1 )r Or(JO, in)

= (_l)r (.l)s -r Or(co, ... , An) (-1)8 Or(co, ... , An
).  ®

7



1.4. Triangulations

The pseudomanifolds discussed so far are very abstract objects.

They can be schematically represented, but trying to picture what they

are all about is not easy. An n-dimensional pseudomanifold is an abstrac-

Stion of a triangulation of an n-dimensional set in IR n .The m-simplices

of pseudomanifolds correspond to geometric objects, which by an unfortunate

tradition, are also called m-simplices. In order to formally define a

triangulation, we first need to define a real m-simplex in FR

0 m n 0
Let v, ... ,v be vectors in R. v, ...,v m  are said to

be affinely independent if the matrix

0 m

has rank m+l. If v , ... , v are affinely independent then their

convex hull, denoted (v , ... , vm ) is said to be an m-dimensional

simplex or more simply an m-simplex. All m-simplices are closed and

bounded polyhedral convex sets. Let (v , ... , v i] be a subset of

v 0 .. ,vm . Then (v 0 , ... , ) is called a k-dimensional face of

k-face of (vO, ... , vn). Any k-face of (vO, ... , vm ) is a k-simplex

itself. An (m-l)-face of an m-simplex is called a facet of the m-simplex.

With the notions of simplices and faces in mind, we are ready

to define a triangulation. Let H be an m-dimensional convex set in

*n. Let C be a collection of m-simplices a together with all of

their faces. C is a triangulation of H if

8
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i) H= U a
aC C

ii) , C imply r n T E C

iii) If a is an (m-1) simplex of C, a is a face of at most

two m-simplices of C.

The connection between triangulations and pseudomanifolds should be clear.

Corresponding to each simplex a in C is its set of vertices (v ,...,v k.

Let K be the collection of these sets of vertices. Then K is an

m-dimensional pseudomanifold.

Before concluding this section, we describe two useful triangulations,
nn nf n T =

one of F", and one of T x E Fne x 1 ).

1.4.1. Kuhn's triangulation of FRn

Let Zn denote the integral points in IRn , let N =(Is...,nn•

and let a be a permutation of N. We define the simplex

•r) 0 ,,7y), ... yn} where y = y + e , n,

where y0 C Zn, and e is the i t  unit vector in n. The collection

of all such a(y,r) as y ranges over all of Z and a ranges over

all permutations, together with all faces of (y,w), is a triangulation

of Fn. By scaling these simplices, we obtain triangulations of JR

with arbitrarily small diameters of the simplices.

9



1.4.2. The Scarf-Hansen triangulation of Sn

Let c be a fixed positive integer. Let Q be the following

n x n matrix:

-1 0 0 +1

+1 -1 0

O +i 1

... -1 0

O 0 +1 -1

thi
Let the i-h column of Q be denoted by q Let 7r be a permutation

of N = (l,...,n) with any one element of N missing. Finally, let 0

be an element of Zn  such that eT  h

with 0 ).ar estriftn of ti treaimutulet
whre = yi-C I le x 1,x0. T e he restriction of thisc yu ) triagution

I o n  sasofS n  o Sn.
toa triangulation and all faces of S

.05. A Word on O-Dimensional Pseudomanifolds

*In the definition of a complex, the empty set q is not an

admissible element of the complex K. However, it is extremely desirable

to allow, and insist that the empty set be an element of K, if K is a

10
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O-dimensional pseudomanifold. O-dimensional pseudomanifolds either consist

of one element or two elements. Hence K = ((a)) or K [(a), (b)).

We shall allow the empty set to be the unique (-1)-dimensional simplex

contained in K. If K has one element, then upon amending K, we

have K = { , a)), and we say q E Ko If K has two elements, the

amended K is (a, (a), {b)), and K = ; hence i K.

1.6. References

Pertinent references for complexes and pseudomanifolds are

Spanier [39] and Eaves [ 4]. Some of the material on orientation was

taken from Lemke and Grotzinger [30]. The material on triangulations

is based on Kuhn [213, Scarf [55], and Todd [41].

It should be noted that the notion of orienting pseudomanifolds

can be extended to triangulations by the use of determinants. The

interested reader can refer to Eaves [6] and Eaves and Scarf [81 for a

development on orienting triangulations.

1'
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CHAPTER II

THE ALGORITHMS OF REISER AND VAN DER LAAN AND TALMAN

2.0 Introduction

In the past few year, researchers in mathematical programming

have developed a new class of algorithms for computing fixed-points,

solutions to the nonlinear complementarity problem, and equilibrium

points in non-cooperative games. Unlike previous algorithms, these

particular algorithms generate simplices of varying dimensions, and

hence are called variable-dimension simplicial algorithms. As stated

in the introduction, this dissertation presents a unifying view of

these variable-dimension algorithms. In order to motivate the reader

for the material of Chapter III and beyond, we present two of these

algorithms in Lhis chapter. The first algorithm, due to Reiser [33],

is used to find an approximate solution to the nonlinear complementarity

problem. The second algorithm, due to van der Laan and Talman [24),

i is used to find an approximate fixed point on the unit simplex.

jThe aim of this chapter is to illustrate certain properties of

the paths generated by these algorithms. Hence, we only state the

algorithms' pivot rules and present sample paths that each algorithm

could generate. For complete descriptions of these algorithms, see

the references above.

2.1. Reiser's Algorithm

Reiser's algorithm, mutatis mutandis, is based on Kuhn's triangu-

lation (denoted T) of Fn scaled by a constant c > 0. Let w be

iA 12



a fixed vertex of the triangulation. Let L(") be a labelling function

that assigns to each vertex of T an element of (+1, ... , + n]. The

algorithm is as follows:

Step 0 (Initialization). Set v 1 = w, q = 1 (q is the index of the

vertex to be labelled), m = 1 (number of vertices of the actual simplex S).

Go to Step 1.

Step 1 (Labelling). Let . = L(vq). If there exists a vertex v of S

with L(v) -1, go to Step 4. If there is a vertex vk, k / q, of S

k
with L(vk ) = 2, go to Step 2. Otherwise go to Step 3.

k
Step 2 (Dropping or Replacing a Vertex). v is replaced by the only vertex

-kv which can be added in order to obtain another (m-l)-siuiplex of T in

the affine hull of S. If there is an i C {l,...,n) with (v-wi)(v-wi)<O,

determine that j E fl,...,n] with jL(vJ = i, drop , let k4-J,

m +-m-l, and go to Step 2. Otherwise let v _;k , q 4-k, and go to

Step 1.

Step 3 (Adding a Vertex). Let v < -.. < v be the vertices of S.
If > ,le m+l  m m+1 1

if If >0, let v 4- v + c*e . Otherwise, let v #-v - c.eltI.

let m -m+l, q*-m, and go to Step 1.

i1

Step 4 (Termination). A simplex has been found with two vertices, v I

. 2 1i i2

v , such that L(v ) = -L(v ). Stop.

13* , _ _ _ _ _ _ __J--



It can be proven that this algorithm can always be executed and

that cycling cannot occur. Finite termination depends on regularity

conditions imposed on L(.) either directly or through a function f(-)

from which L() is derived.

Figure 2.1 illustrates a sample path that could be generated by

2
the algorithm in J . With the aid of this sample path, we make some

observations about paths generated by the algorithm.

. First, we see that the algorithm generates simplices of varying

dimensions, but it does not do so arbitrarily! When the simplices are

strictly inside a given quadrant (relative to w), it generates 2-simplices.

When the algorithm is moving along a coordinate axis, it usually generates

1-simplices. Were we to examine a sample path generated in R n, the

above remarks would generalize.

Second, the adjacency rules appear to be different for each quad-

rant. In the southeast quadrant, adjacent 2-simplices share the labels

1l,-2). In the southwest quadrant, adjacent 2-simplices share the labels

(-1,-2), etc. Along the coordinate axes, a related phenomenon takes

place. In the north pointing axis, adjacent 1-simplices share the label

I '(21. In the south pointing axis, adjacent 1-simplices share the label

(-2), etc.

;J Finally, we remark that we have made no real use of the fact that

the simplices of T have relative interiors. Indeed, we only use the

vertices of the simplices, and the only extensively used property of

T is its relation to a pseudomanifold.

14
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The above remarks suggest that we redefine adjacency between two

simplices in terms of the region of JRn  in which they are located.

Furthermore, they suggest that we assign labels to entire regions of

n
R We could (and later on we shall) refer to the northeast region

of Figure 2.1 as the "(1,2)-region" and the north-pointing axis as the

"(1)-region." Finally, the remarks suggest we look at the algorithm

combinatorially, in terms related to pseudomanifolds.

2.2. van der Laan and Talman's First Algorithm

van der Laan and Talman's first algorithm for computing fixed

points on the unit simplex uses Scarf's triangulation of Sn, which we denote

by C. Let c be the scaling factor for the triangulation, and fix w,

a vertex of C. Let L(*) be a labelling function that assigns to each

vertex of C an element of (l,...,n). van der Laan and Talman's

algorithm appears below. In the notation of the algorithm, N = fl,...,n)
T

and T I N. y is a permutation of the elements of T used to define

the simplex. t is the dimension of the current simplex under scrutiny,

q is the index of the incoming vertex, and k is the index of the out-

going vertex. R is a work vector, R 4 Rn. q(i) is the it column

of Q defined in Chapter 1, section 4.2. A simplex encountered in the

V algorithm is described by vO , T, rT where for iv = .t, vi =vl+q(y ).

Step 0 (Initialization). Set T4- ', T .- ', t -0, R 4-0, v 0 -w,

q -O.
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Step I (Labelling a Vertex). Set I = L(vq). If (L(v0 ),..., L(vt))

= (1,...,n), go to Step 4. If I is different from the labels of all other

* vertices, go to Step 3. Otherwise I L(v ) for some k E (O,...,t)\fq).

IGo to Step 2.

Present
value New value T New
of k of v0  New value of y R q

0 T T T TT

k = 0 v + q() (Y2 trl) R + e() t

1 < k < t-l v0  T T T T T R k

0  T T T T R - e(y T 0
k=tv q(rt )  (yt, rl,.., tl R I) e T )

Table 2.1

Step 2 (Replacing or Deleting a Vertex). Determine new values of v ,T

R, and q from Table 2.1. If R > 0, go to Step 1. Otherwise, set k
TT

equal to the index j such that Lv"= y. t Set R-R + e(t),

T T-T\[y,- ... ,t ) , t 4-t-l. Go to Step 2.

Step 3 (Adding a Vertex). Set vt+  = vt + q(t). Set T .-T U (i),
T T T

(Y,..,rt4), t4-t+l. q -t. Go to Step 1.

0 tStep 4 (Termination). A simplex has been found with (L(vO),..., L(vt)]

= {l,...,n, and hence t n-l. Stop.

17



Under suitable conditions imposed on L(') (i.e. that L(-)

be a "proper" labelling, see Chapter IV, Section 1), it can be proven

that the steps of the algorithm generate a unique finite sequence of

simplices, and that the last simplex of the sequence satisfies the

termination conditions of Step 4.

A sample path that the algorithm could generate in S5 appears

in Figure 2.2. As in the case of Reiser's algorithm, we see that in

different regions of the simplex, the adjacency properties of the generated

simplices varies. In the upper right region of the simplex, adjacent

2-simplices share the labels (1,23, in the central left region of the

simplex, adjacent 2-simplices share the labels (2,3). Along the right-

pointing axis from w, adjacent l-simplices share the label (1), etc.

And, as in Reiser's algorithm, we only take advantage of the pseudo-

manifold properties of the triangulation in the execution of the algorithm.

2.3. Conclusion and Final Remarks

We have seen that the variable-dimension algorithms of Reiser

and van der Laan-Talman have a number of properties in common. As

it turns out, numerous other variable-dimension algorithms (i.e., all

such that have come to my attention) share these properties. In the

next chapter, we shall define a special complex which has the above-

mentioned properties. And we shall show in Chapters IV and VII that

the variable-dimensional simplicial algorithms can be viewed as acting

on specific realizations of this complex.

, 18
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CHAPTER III

V-COMPLEXES AND H-COPLEXES

5.0. Introduction

In this chapter, we define a particular type of complex, called

a V-complex. We define adjacency between two simplices of a V-complex

in a general manner, and then proceed to characterize paths generated

by the adjacency properties of V-complexes. The net result is a path

following scheme, or algorithm, that encompasses a variety of known

algorithms, and lays a foundation for new algorithms as well.

The concept of a V-complex and the adjacency rule for simplices

are the central theme of this dissertation.

The development of this chapter is fairly abstract, and directly

q uses the material of Chapter I.

3.1. V-Complexes

0
Let K be a simplicial complex with vertices KO . Let N be

a fixed finite nonempty set, which we call the label set. Let 3 denote

a collection of subsets of N, which we call the admissible subsets of N.

Let A(*) be a set-to-set map, A:3 -*4 2K\{0), where 2S  denotes the

collection of subsets of a set S. K is said to be a V-complex if the

following eight conditions are met:

20
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i) K is a complex with vertices K

ii) 2 - 2N

iii) T E, S E implies S nfT E

iv) A(.):2 -2 K\ V)

v) For any x E K, there is a T E C such that x E A(T)

vi) For any S, T E 2, A(S n T) = A(S) nA(T)

vii) For T E 2, A(T) is a subcomplex of K and is a pseudommanifold

of dimension ITI, where I1 denotes the cardinality of the set.

viii) T E , T U (j) E , j V T implies A(T) C MA(T U {j)).

Let us examine these properties. (i), (ii), and (iv) reiterate what

has been said in the preceding paragraph. (iii) imposes some structure

on , namely that it is closed under intersections. (v) states that the

map A(,) covers all simplices of K. (vi) states that A(.) is a

homomorphism with respect to intersections. (vii) states that each A(T)

is an appropriately-dimensioned pseudomanifold. Condition (viii) stipulates

how the pseudomanifolds A(T) are arranged relative to each other,

namely that A(T) is part of the boundary of A(T U (j)).

As an example of a V-complex, consider Kuhn's subdivision of

I , as is used in Reiser's algorithm. Let N = (l, 12). Let 2 be

the collection of sets [1), [-l), (2), (-2), (1,2), (1,-2), (-1,2), (-l,-2)

and V. Let K be the complex (actually a pseudomanifold itself)

associated with Kuhn's triangulation. Then for each T C , we define

A(T) = (x C KIv E x implies i-vll a 0 for each i E T,and vi 0

if i i T and -i 9TV.

21
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Figure 3.1

i Figure 3.1 illustrates this V-complex. Note that for matters of convenience,

f the set brackets t 3 have been deleted. In the figure, A(V) is the

origin, A(i) corresponds to one of the four axes emanating from the origin,

and A(i,j) corresponds to one of the four quadrants.

Figure 3.1 is by no means the only V-complex associated with

]R Figures 3.2 and 3.3 demonstrate other V-complexes associated with

2
R, with the triangulations omitted.

22
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Figure 3.2
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Suppose K is a V-complex. Let x Z K. We define

T fn T
X TEZ

x E A(T)

T then is the smallest set T such that x E A(T). We say x is full

if Ixi = ITx I + 1. x is a full simplex if it is a maximum-dimension

simplex in A(Tx).

For each T C 3, we also define 3'A(T) as

)'A(T) = (x C 6A(T)ITx = T)

We illustrate the above definitions in the V-complex in Figure 3.4.

In the figure, the left-most vertex of the 2-simplex is A(q), the

"bottom" line segment is A(l), the left-sided line segment is A(2),

and the simplex itself is A(1,2).

b

SkI'

I V1  A(2

V A(1,2)

a C

Figure 3.4
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For x (d,e), T = (1,2), for x : {f,g), Tx = (1). For

x (e,f,h], Tx = (1,2). The simplices (a), ff,g), and (e,h,f) are

all full. We have )'A(l) = (c), 3'A(2) = (b), and 6'A(1,2) is the

pseudomanifold corresponding to the line segment from b to c. Thus,

while both (k,i) and tf,g) are elements of )A(l,2), (k,1 E 3'A(1,2),

whereas (f,g) i 'A(I,2).

When T = $, and A(T) contains only one vertex, we define

so in this case 3'A(V) = 6A(O) = (0). Thus, in Figure 3.4,

3.2. Labelling Vertices and Adjacency on V-Complexes

Let K be a V-complex with label set N. Let L(-) be a function

that assigns to each v E K0  an element i E N. Such a function L(.)

is a labelling function. For a simplex x = (v ,...,v m) E K, we define

L(x) = UvC X L(v). L(x) is the set of labels spanned by the elements

of x.

We define two distinct simplices x, y E K to be adjacent (written

x - y) if

i) x and y are full

and ii) L(x n y) = T U T .x y

Note that adjacency is symmetric: x - y if and only if y - x.

0
Figure 3.5 represents a V-complex whose vertices K have

labels (). In the figure, we have the following adjacent simplices:

25
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al k (2 aA(1,2) -.

(1) 1)(2)(2

(2(2)

1)( r (3)h

(2) A(1,2)

q

1) (1 (2) 1) a A(l)

b c de f

Figure 5.5

(u,s,vl-i s,u, t)-.ft, s,p)-tp, t,qJ-{ p, qV(p, n)-in,m)-( npm,r)-m, r,k)-[k,r, s)-1 B,k,V)
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Observe that, in the figure, any full simplex is adjacent to at most two

other simplices. We shall see later on that this is true in general.

Observe also that the adjacency relationship results in the formation of

three distinct "paths" of simplices, each path being a string of simplices

adjacent to one another.

The purpose of the remainder of this chapter is to give a character-

ization of these paths. However, we must develop the theory of V-

complexes further before a complete characterization is possible.

3.3. H-Complexes

Let K be a V-complex with label set N and admissible sets

3. We wish to "lift" K into a pseudomanifold of dimension n where

n = INI. Without loss of generality, assume N = (l,...,n). Let

K be the set of vertices of K. We define artifical vertices

qV ... q n" Let C = fql,...,qn). Define 0 K U . Define

QT = (q, QJi _ N \T). We now define:

K fx U QIx u Q $, x Z K, Q C QT
x

We have the following:

Theorem 3.1. K is an n-dimensional pseudomanifold.

PROOF. Clearly R is closed under nonempty subsets, and so is a complex.

Let x U Q E R. Then there exists y - A(Tx) that is full and y Dx.
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Let P =Q Then we have x U Q C y U P C R. Furthermore,
x

ly U PI = jyj + PI~ = jyj + n - ITxI = jyI + n - (lyt-l) = n+l

Therefore every simplex in R is a subset of an n-simplex in R. And

clearly, R is closed under nonempty subsets. It only remains to show

that each (n-l)-simplex of K is contained in at most two n-simplices.

Let x = x U Q be an n-simplex in R, and let yC i be an

(n-l)-simplex in K. Suppose y x -i, and z is an n-simplex in !.

We aim to show that z is uniquely determined by x and y. Since x

is an n-simplex, x is full and C = CT We have three cases:i x x

Case 1. y X \ Lqi for some a . Let Z = z U C . If z = x,i x z
then x and so z x, a contradiction. Therefore z j x. But

since z Dx, we must have z = x U tw) for some w. Therefore z = x\ (qi

and so T = T U ij. By property (viii) of V-complexes, the choice ofz x

w, and hence z, is unique.

Case 2. y = v for some v E x, and x \ v] is not full. We

can write y = y 'IJ where y x tv}. Since y is not full, we

0
must have z = y UI (w) for some w K , w 9 y, and hence Qz CX 'zI

* whence T = T . The choice of w is uniquely determined, since A(Tx)
Vz x

is a pseudomanifold.

mo.U
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Case 3. y = x \(v) for some v E x, and x \ (v) is full. Again we

write y yU , where y = x \ (v). Since y is full, T = T\iJ

for some i E Tx, and by property (viii) of V-complexes, y E 6A(T).

Hence we cannot have z = y U twj for any w C KO . Therefore the unique

n-simplex of R containing y is z = y U Q U tqi).

We illustrate this result in Figures 3.6, 3.7, and 3.8.

K = { 1, {l}, (2), (1,2}1

A(l) -

I' A(1,2 q

A A(2)
tA(O,)

Figure 5.6
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K ={,(1), (211

AA(l)

Figure 3.7

K M 1, [211}

A(2) A (1)q2

A( )

Figure 3.8
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In Figure 3.8, A(V) consists of the north and south "poles" of the circle

and A(l), A(2) are the right and left arcs, respectively.

Our next task is a characterization of the boundary of K.

Theorem 3.2. K = S1 U $ where

S, = {y U QG KY C a'A(T )}, and

S2 = {y U Qy E KIN \ {ijq i E Q Y .

PROOF. We first prove that S 1- K. Let y = y U Qy be a maximal

element of S V Then y E 6'A(T y) and Q Q The only n-simplex that

contains y is of the form y U (v) U Q, where v is uniquely determined

since y C 6'A(T ). Therefore S1 ::).
y

Next we prove that S2 C:). Let y U % be a maximal element

of S2 Then y is full and Q = QT\ (qi) for some i, where
y

T U (i) V Z. Let i = U (a) be an n-simplex in R. We need to showy

a is uniquely determined. We cannot have a E KO, since the set

T U ti} ' 5. Hence c = q. for some j. Suppose j / i. ThenTy

T U (iI\ [j) E Z, and in fact T = T U (i\ tjj, whereby j i,
y y y

• a contradiction. Therefore a = qi, and so S2 C 8. Therefore

s I Us 2 C: 3R.

Now let us prove the converse. Let = x U QT be an n-simplex
x

in K and let y C be an element of 3R, where y y U Q. We have

two cases:

31
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Case 1. x = y U tv). Clearly we must have y E 6A(Tx). If y were

full, then 9 c y U QT , and so y ' 5. Therefore y is not full.
y

Hence y E S1.

Case 2. QT= Q U q.) for some q. ' Q. Suppose N\ (iq E Q) E
x

This means that T U (j) E Z. But then, by property (viii) of V-complexes,

there is a unique v E K0  s.t. y U (v) E A(T U Ii)). HenceX

C y U [v) U Q E R, and hence y 8R, a contradiction. Therefore

N\(iiq i E Q) V , and y E S2 .

Therefore CS 1 U S 2, so S=SI U S2.

3.4. Labelling Vertices and Adjacency on H-Complexes

Let K be a V-complex and R its associated H-complex. Let

L(.): K0 - N be a labelling function on e. We extend L(-) to

by the simple rule that L(qi) = i for each q, C a, thereby obtaining

a labelling function on -O . Let x be a simplex in R. We define

L(x) U L(v).

We define two distinct n-simplices x, y C R to be adjacent

(written x y) if

i) x and y are n-simplices

and ii) L(i n 9) N.

The above definition of adjacency is quite standard for labelling functions

on pseudomanifolds (see Gould and Tolle (14] or Lemke and Grotzinger [30]).

Note that if x~ y, x and 9 must be neighbors.
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3.5. Characterization of Paths on H-Complexes

Let K be a V-complex, R its associated H-complex, and let

L(.) be a labelling function on K, extended to R. The following theorem,

whose proof we omit, follows from the standard "ghost story, argument

of complementary pivot theory (see Lemke f29], Gould and Tolle

[14], Kuhn 1221, Eaves [ 5 1, or Scarf [34]).

Theorem 3.3. Let x be an n-simplex of R. Then x is adjacent to at

most two other n-simplices of R. If x is adjacent to only one n-simplex

of K, then there is a unique (n-l)-simplex 9 C x such that L(y) = N

and E 3R. o

We define B=x C SlL(x) = N) and G = E S2IL(x) N).

Proposition. B n =0.

PROOF. Suppose x C G. Then xj = n, so x is a maximal element of

S2. We can write x = x U Q, where x is full. But then x ' S1 ,

since otherwise x is not full. Therefore x . 0

With the help of Theorem 3.3, we can construct and characterize

"paths" on R. Let xi.). be a maximal sequence of n-simplices of

such that L(X.) =N, x. xi and x x for any i. If -

is a right-endpoint of the sequence, define xk+l to be the unique subset

of xk such that L(Xk-l) = N and Xk+l " If xk is a left-endpoint

of the sequence, define to be the unique subset of Xk such that

L(ikl) = N and -i E "R. The new sequence, with possible endpoints

added, is called a path on K. Note that endpoints are elements of U .
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We can characterize paths on as one of six types.

Type I. Uxii where the sequence has no endpoints, and

i) xi ~ i+l for all - < i < +o.

ii) £i .jfor any i j.

Type II. where the sequence has no endpoints, and

i) xi ~ i+l -ror all --w < i < +co

ii) xi-1 # i+l for all --o < i < +

iii) There is an m > 2 such that x. x for all -w < i < +
I i+M

iv) xi / Xi+k for any 0 < k < m.

Type III. xi.i where the sequence consists of only three elements,

say xO j, Xl x2, and

i) 0o'x2 E U B, o / x2

ii) L(xl) N

iii) Xl is an n-simplex and x0 x2 C xI.

Type IV. (x.) has more than three elements, and has two endpoints,

say R0 andim, and

i) o C SU , and O / mX

ii) x Xi+l for all 0 < i < m-1

iii) for any i / j, 0 < i, j <m.

34
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Type V. i has only a left endpoint, say x0 ' and

i) X0 E U

ii) x i i+l for all i > 0

iii) i i for all i, j > O, i j.

Type VI. (xi has only a right endpoint, say xm, and

i) X- E U

ii) xi- xi for all i < m

iii) X. x. for all i, j < m, i / j.

A type I path stretches infinitely in both directions. A type II

path is a loop. A type III path is a "degenerate" path consisting of

one n-simplex and two of its (n-l) subsimplices. A type IV path is a

path with two endpoints. A Type V or Type VI path consists of one

endpoint and stretches infinitely in one direction. A Type III path

is illustrated in Figure 3.9.

In the applicationn of V-complexes and H-complexes, it is the

endpoints of paths that are of interest. We have the following lemmas.

Lemma 3.4. Let X C K. Then x is an endpoint of a path if and only

* I if : 5u .

PROOF. If i is an endpoint of a path, by definition x E U .

Conversely, let R C G U B. There is a unique n-simplex z = x U (a)

for some cy C R0, and L(i) = N. We can construct a path starting at

=Xo' x 1 z, etc.
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Corollary 3.5. If K is finite, and G have the same parity.

PROOF. If R is finite, the total number of endpoints of paths is finite

4and even. Each endpoint is in exactly one of the two sets above; hence,

they have the same parity. 0

3.6. Characterization of Paths on V-Complexes

The characterization of paths on V-complexes is achieved by

establishing a certain equivalence relationships between V-complexes and

H-complexes. The first equivalence is given in the following lemma.

Lemma 3.6. Let x and y be n-simplices on K. Let x = x U QxJ

y =yU Qy. Then i~y- if and only if x ~y.

PROOF. Suppose x - j. This means L(x n y) N. We have

N = L(x n y) = L(x n y) U L(Q x n ) = L(x n y) U ((N\Tx) n(N\T y)).

Therefore

L(x n y) = N\ ((N\Tx) n (N\Ty)) = N\(N\(Tx U T )) = Tx U T .iy x y y

I
Thus we see that L(x n y) = T U T., and so x - y. The same argumentx

in reverse shows that if x - y, then x - y.

Define G = Ix C KIx is full, L(x) DTx, and L(x) q .

G can be thought of as the goal set, for in most applications of V-complexes,

the algorithm searches for an element of G.

Define B = tx C Kix C )'A(Tx), and L(x) = Tx). We have the

following lemmas:
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Lemm -. Let x C K, and let x U QT" Then x E B if and only
x

if x .

PROOF. Let xE B. L(x) =T. L(i) =L(x) UL(%) --T U(N\T) --N.X °

x
Furthermore, x E 3'A(T), so i E S Therefore i E P.

Conversely let x z B. Then x z 6'A(T ) and L(x) =N\L(Qx

= N\(N\T) TX, whence x Z B.

Lemma 3.8. Let x ! K and L(x) D Tx and let x = x U QL(x)" Then

x E G if and only if x G.

PROOF. Let x E G. Then L(x) = T U {j) for some j 7 Tx, where

xx*1 T U~~g * ~~ -- \ ,so xE.Also,

N \ (ilqi E C (x)) = N\ (N\(Tx U {j))) = Tx U (j) ' . Furthermore,

L(x) = L(x) U L(QL(x)) = L(x) U (N \ (L(x)) = N. Therefore X-£ G.

Conversely, let i E G. Then L(x) = N \ (ilqi E QL(x)) V

Hence x E G.

Let x C K be full. We define the degree of x, written deg(x),

to be the number of distinct simplices of K adjacent to x.

Lemma .9. For any x E K, deg(x)< 2.

PROOF. From Lemma 3.6, we have x ~ y if and only if i ~ 9, where

= x U QT and y y U T Since ; is adjacent to at most two
x y

simplices, so is x. :
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With the help of Lemma 3.9, we can construct paths on K. Let (xj)i

be a maximal sequence of full simplices in K such that xi - Xi+1,

xi x xi , and L(xi) D Txi. (Note that if x i  xi+1  then L(xi) D Tx.)

Let xk be a left endpoint of the sequence. Then ik is a left endpoint

of the associated sequence in R. Define x-I as in Section 3.5, and

define Xk-1 such that k-1 Xk-1 U Q for appropriate Q C . Like-

wise, if xk  is a right endpoint, define xk+1 analogously. The new

sequence, with possible endpoints added, is a path on K.

We have the following characterization of endpoints of paths

on K.

Lemma 3.10. Les x E K. Then x is an endpoint of a path on K if

and only if x C G U B.

PROOF. Let x be an endpoint of a path on K. Then x x U Q (for

appropriate choice of 0, : ) is an endpoint of a path on

E G U B. So x C G U B. 9

Lemma 3.11. If K is finite, B and G have the same parity.

PROOF. B and G, by definition, have no simplices in common. There is

a one-to-one correspondence between elements of B (G) and elements of

(G). Also, if K is finite, so is K. Thus, by Corollary 3.5, B and

G have the same parity. 9

We thus see a complete equivalence between paths on K and on R.

Hence we can classify paths on K as one of six types.
F
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Type I. (x.)i, where the sequence has no endpoints, and

i) x i  xi+1 for all i

ii) xi / x. for all i / j.

ii

Type II. (x.ii, where the sequence has no endpoints, and

i) xi - xi+ 1  for all i

ii) x 1 / x for all i

iii) There is an m > 2 such that xi = xi+m for all i

iv) x i  x i+ k  for all i, all 0 < k < m.

Type III. (x). where the sequence consists of only three elements,

say xo, x1 , x2 , and

i) xo, x2 E G U B

ii) L(x) C T

iii) x1  is full and x0, x2 C xI.

SType IV. Kxi. has more than three elements, and has two endpoints,p IV .

say x0  and xand

i) X0, x m G U B and x0 / x

ii) x~ xi+1  for all 0 < i < m-1

iii) x. /x. for any i / j, 0 < i, j<m.

Type V. x has only a left endpoint, say x0 , and

1) x oGUB
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ii) xi ~ xi+ 1 for all i > 0

iii) x x for any i, j >0, i /J.

Type VI. (xi) has only a right endpoint, say x, and

i) x CGUB

ii) x. 1 - xi for all i < m

iii) x. x. for all i, j < m, i / J.

5.7. The Algorithmic Development

There are two ways to develop an algorithm based on a V-complex

and a labelling function L(-), depending on the nature of the set A(q).

If A(V) consists of a single O-simplex, say (w3 and the

empty set V, then 9(E B, since $ C )'A(V) and L(q) = V = T . Thus

our algorithm consists of following a path whose endpoint is V.

If A(') consists of two O-simplices, say (v) and [w), we

have v - w, since L(lv) n (w)) = L(V) = = U V = Tv ) U T w) . Thus

the algorithm consists of following the path containing (vi and (w)

in one or both directions.

5.8. Concluding Remarks

The purpose of this chapter has been to show how to construct and

follow paths on V-complexes. We used the construction of an H-complex to

expedite the development of the theory. However, path following on

H-complexes is an "ordinary" phenomenon familiar to researchers in
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complement ! fivut t.%eory, ninc& ;! !.-com lex is an n-dimensional pseudo-

manifold. The: *ire, v ewei jproperly, p atn following in V-complexes,

which seems to he .* of the r~inary, is equivalent to path-following

on n-dimensional I t :rmanifolas, and can be viewed as the "pro. ection

onto K of pqth-follow:' rn K.

In mos;t a1irithms I!ise, on V-complexes, we search for an element

of 3. We nave seen that the ,t 6] is derived from the structural

properties cf _, ?ni nence tne c.' our complex K is diviied up into

the A(T) is intimately connected .:hat we can expect to look for in

an algorithm on K. Conversely, suppu- ,.e wish to find elements x of

K with certain labels L,x, - G, where u _:" some set. If we can

divide the space into AT), T _ , such that arises from 4,

we are close to our stated purpose.
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CHAPTER IV

COMBINATORIAL LEMMAS

Introduction

In Chapter III, we developed the theory of V-complexes and

H-complexes, and showed how to trace paths on these complexes. In this

chapter, we apply this theory to give constructive proofs of five com-

,rinatorial lemmas. We prove Sperner's Lemma [hO], and show that Kuhn's

algorithm for Sperner's Lemma '441 is a specific instance of path-follow-

ing on a V-complex. We next prove a generalization of Sperner's lemma.

We then pr-ve three lemmas on the n-cube: the Tucker lemma [h2], Kuhn's

lemma "I,, and a new combinatorial lemma on the n-cube.

.1. p 0erner's Lemma and Kuhn's Algorithm

e n  ]n T
Let _ X , x> 0, e x = I , and let C be a triangulation

c : J. ot o that induces a triangulation of each face of Sn. Let

K ,onsi.-t of the vertices of the triangulation C, and let K be the

Lse~i ua A foli corresponding to C. L(.):K -f {l,...,n) is defined to

:-e a proper labelling of K0  if for each v C K0 , v. = 0 implies

Lv) - i. A simplex x K is said to be completely labelled if

x, r.... ,n . We can now ktnte and prove:

-emna -.1 "rerner's Lemma). Let C triangulate Sn and let L(.) be

a proper labelling. Then there are an odd number of completely labelled

si 1flices of C.

fI '
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PROOF. Our first task is to set up a V-complex on K. To do so, we

define N --(l,...,nj and (3 T ii Nin~ T, 1 < i -'!T implies i-I tE T).

£3is then the collection:

For T = ,we define A(T) = j, el}}. For ~'/T E %3 T = l.,M

for some unique integer m. Then we define A(T) to be the pseudomanifold

induced on the face tx C S n Ix, 0 for i > m-4lj. (This construction is

illustrated for n 2 in Figure 4.1.)

3
e

AA1,2

e e

Figure 4.1.
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It is simple to verify that K, ,and A(.) define a V-complex.

Our second task is to examine the set B. We know that q E B,

since A(V) contains only one O-simplex. Suppose o p x = (v1,...,v j E: B.

Then L(x) = T and x ' 6'A(Tx). Thus Ixi = ITxf = t, and so
x x x

T = [l,...,tj. Therefore L(x) = fl,...,tJ. But x 3 'A(T x) implies

that there i3 an i, 1 < i < t+l, such that v = 0 for all j =1,...,t.

If i < t+l, then we cannot have L(vj ) = i for any j = 1,...,t since

L(') is a proper labelling. But i C L(x). Therefore i = t+l. But

then T = (l,...,t-l), a contradiction. Therefore B consists only ofx

, i.e. B =

Our third task is to examine the set G. Let x = Lv . ..,vt+l

be in G.

Then T = l,...,tJ. L(x) D T and L(x) Z. Thereforex x

either L(x) = tl,...,nj, or L(x) = [l,...,t, sj where s > t+l. The

latter cannot occur, since for s > t+l, vi = 0 for all j = 1,...,t+l,
s

and hence s L(x) because L(-) is a proper labelling. Thus G is

the set of completely labelled simplices.

From Lemma 5.11, we know that G and B have the same parity.

Therefore G is odd, proving that there are an odd number of completely

labelled simplices.

Kuhn's algorithm for Sperner's lemma [44] corresponds to follow-

ing the path from B 4 to an element of G. Figure 4.2 illustrates

this algorithm.
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A(O)2

e 1 1A' 2 2 1i)2e

Figure 4.2. Path from c~to an element of G.
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4.2. A Generalization of Sperner's Lemma = T

As in Section 4.1, we define Sn .x C R nx > 0, e x = 1)

and let C be a triangulation of Sn . Let KO be the set of vertices

of C, and let K be the pseudomanifold corresponding to C. Let
0 0 , t

L(-): - tl,...,nj be a labelling function. Let x = LvO,...,vt.

be a simplex of K. We define S(x) = tijvj > 0 for some j =t.

We have the following:

Lemma 4.2. (Generalized Sperner Lemma). Let C triangulate Sn. Then

there are an odd number of nonempty simplices x such that L(x) = S(x).

Before proving this lemma, we make a few observations. For a

given simplex x, S(x) is the "index set' of the smallest face contain-

ing x. Thus if the smallest face of Sn containing x isSi !  i
1e ,...,e m), then S(x) fil,...,iml. If S(x) = L(x), then

L(x) = fill .,i m. Such a simplex x is said to be "completely labelled

in its face." The reason this lemma is a "generalization" of Sperner's

lemma is that we have relaxed the requirement that L(.) be a proper

labelling; yet we still are able to deduce an interesting conclusion.

PROOF. As in the proof of lemma 4.1, we first construct a V-complex.

Let N = (1,...,n, and let = T:Njn V T). We define A(V) = [V,(en

and for T C 3, T / V, we define A(T) to be the pseudomanifold induced

by C on the face [x C snx i = 0, i / n, i V T). It is simple to verify

that K, A-), and 1Z define a V-complex. (This V-complex is illustrated

in Figure 4.3, for n = 2.)
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Figure 4.3
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Let xC G. Then x is full, and L(x) D T, and L(x) ' j.

Then L(x) T U (n). Also, since x is full S(x) T U tn).x x

Thus x is completely labelled in its face.

Suppose x E B, and x/ . Then L(x) - Tx, and x E 3'A(T x).

Let x be written as x = v I ... ,v). xE 'A(T ) implies v i = 0
x n

for all i l,...,t. Therefore S(x) = T x . Thus x is completely

labelled in its face.

Conversely, suppose S(x) = L(x) for a given x. Then if

n E S(x), we must have L(x) . But also L(x) D T . Thereforex

x C G. On the other hand, if n S S(x), we have T = S(x) = L(x)x

and x E 3'A(Tx). So x C B.

Thus, G U B\ is the set of nonempty x such that L(x) = S(x).

By Lemma 3.11, G U B ) has an odd number of elements, proving the

lemma.

An algorithm for computing an element G U B \ W ' consists of

following the path whose endpoint is 0. The other endpoint of the path

is a simplex x for which L(x) = S(x). See Figure 4.4.

As a byproduct of the Generalized Sperner Lemma, we have a lemma

due to Scarf [351, which is a "dual" of the Sperner Lemma. In Scarf's

lemma, vertices on the boundary receive labels in the complement of the

set that gives rise to a proper labelling.

Corollary 4.3 (Scarf's Lemma). Let C triangulate Sn, such that no

nsimplex of C has a nonempty intersection with every face of S
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Let L(*):K0 -- [1, ... ,n) be a labelling function such that if v C K0,.

v 6S v. > 0 then L(v) j i. Then there are an odd number of' simplices

3.3

e:

2

3 22

/3 3

* Fiure4.4 Pat frm *to n elmen x uchthat L~x - ~x)
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I
PROOF. The proof follows directly from the Generalized Sperner Lemma.

0
Since L(-):K - [l,...,nl, there are an odd number of simplices x

that are completely labelled in their face. Let x be one such simplex.

Suppose L(x) = T / (l,...,n. Then for each v E x, vi = 0 for i T.

But by design of L('), for each i Z T, there is a v E x such that

v. = . Thus x meets every face of Sn, a contradiction. Thus

L(x) = (1,...,n). 0

4.3. Tucker's Lemma on the n-Cube

Let p be a positive integer and let Cn  (x E IRnI -pe < x < pe),

an n-dimensional cube in )R. Let C be Todd's Union-Jack triangulation

[41] of IRn restricted to Cn . Let K be the vertices of C and let

0 t
K be the pseudomanifold corresponding to C. Let x = (v ,...,v t ) E K.

Then, by the symmetry of the Union-Jack triangulation, f-v ,...,-v E K.

.0 t L-n
We define -x = -v ... ,-vi. Let L,): bea...,

labelling of K such that v K implies L(v) = -L(-v), i.e. L(-)

is odd on the boundary K.

Note that K0  is simply the integral points of Cn .

We have the following:

Lemma 4.4 (Tucker's Lemma). Let L(.) be a labelling of the integral

points of Cn , which is odd on the boundary of C Then there exists

integral points v', v", such that tIv'-v"]]I 1, and L(v') =-L(v

S ' 51



PROOF. We first construct a V-complex. Let N :l,...,n,-l,...,-n),

and let =T c Nhi Z T implies -i V Ti. Let A($) (, 10)), and

for q j T E , let A(T) be the pseudomanifold corresponding to the

restriction of C to the region

(xE Mnli-ii >0 for iCT, and x. 0 if neither i nor -iETIT.

It is simple to verify that K, £s , and A(.) define a V-complex. (Such

a V-complex is illustrated in Figure 4.5, for n = 2 and p = 4.)

Let us now examine the set B. V E B, so B has at least one

element. Let / x C B. Then x C 6'A(Tx). For any $ / T E

)'A(T) C_ 3K.

Therefore, x E 6K. Also L(x) = T . Furthermore, -x E K,i x
and L(-x) = t-ijiETx j, and in fact Tx= -iiET x). Therefore,

-x E B. Thus we see that except for V, B consists of pairs of the

form x, -x. Therefore B has an odd number of elements, and so must

G, by Lemma 3.11.

Thus there is an element x C G. Thus there are two vertices

of x, say v' and v", such that L(v') = -L(v"). And since v' and

v" are elements of x, Ij v'-v"1 = 1, proving the lemma. 0

An algorithm for finding a pair v', v" consists of following

the path that orignates with q. If its endpoint is an element of G,

stop. If it is an element x of B, reinitiate the path at -x. Con-

tinuing in this fashion, an element of G will be found. For a complete

description of the pivot rules for this algorithm, see Freund and Todd [11].

See Figure 4.6 for a sample path.
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Figure 4.6.

Unlike the first two combinatorial lemmas of this chapter, we

cannot assert that there are an odd number of pairs v', v" with

L(v') = -L(v") and 1j v'-v"1I = 1. This is because not all such pairs

are subsets of elements of G. Nevertheless, we can assert that there is

at least one pair. Figure 4.7 illustrates an instance of Tucker's lemma

where the number of such pairs is six, an even number.
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Figure 4.7.

4.4. Kuhn's Lemma

Let p be a positive integer and let Cn = lx E 0 < x < pci,

an n-dimensional cube in IRn . Let C be Kuhn's triangulation of ]n

restricted to Cn. Let K0 be the vertices of C, i.e. the integral

points of Cn . Let K be the pseudomanifold corresponding to C. Let

I = (yE nI --o or 1 for i =l,...,n). Let i('):K -41 be

a function such that

i) vi = 0 implies i(v) =0

ii) vi = p implies i (v) = 1.

0
We define L(v) = the number of leading zeroes of I(v) for each v E K

We have the following:
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Lemma 4.5 (Kuhn's lemma). There exists an odd number of simplices x E K

such that L(x) = (0,l,...,n).

PROOF. We first construct a V-complex. Let N = (0,l,...,nj, and let

= fT (l,...,nII 0 < i £ T implies i-1 E Tj. Z then is the collection

qo(0, (0,1), ...,:l, , (o,l,...,n-l] .

We define A(q) = (V,Lpe)), and for q j T C 2, T = (0,...,mj for

some m < n. We then define A(T) to be the pseudomanifold corresponding

to the restriction of C to

(x E Cnixi = p for i > m+l
1o

It is simple to verify that K, 2, and A(-) define a V-complex. (Figure h.8

illustrates such a V-complex for n = 2.)

Let us now examine the set B. We know that q E B. Suppose

1x E B, where x = (vl,...,Vm) for some m. Then T =(0O,...,m-l)! x

and L(x) = T and x E 6'A(Tx) Since x E 6'A(Tx), either vj = 0 forX "x i

all j = 1,...,m and some i E (1,...,m), or vj = p for all j = 1,...,m

and some i C (l,...,m. Suppose the former is true. Then i-i ' L(x),

a contradiction. If the latter is true, then i V L(x), which is a con-

tradiction unless i = m. But then x E A((O,...,m-2)), so that

T = (0,...,m-2}, a contradiction. Therefore B = ($1

Next we examine the set G. Let x E G. Then Tx = {O,...,m)x

for some m < n, and L(x) D Tx, L(x) ' 5. Therefore either L(x) =

10,1,...,n), or m < n-l and there is an s > m+l such that
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L(x) (0,...,m,s,. Suppose the latter is true. Let x = {vO...vml.

Since T =,...,m), vi p for all j E 0,..., m+li. But then
xm2

L(v j ) < m+l for all j, and so s L(x), a contradiction. Therefore

L(x) = 1O,...,n).

Furthermore, if L(x) = fO,...,ni, then clearly x I G. Therefore

G consists precisely of those x for which L(x) = iO,...,nl. By

Lemma 3.11, G has an odd number of elements, which proves the lemma. S

An algorithm for finding an element of G consists of following

the path starting at 0 C B, and terminating at its other endpoint, an

element of G. See Figure 4.9 for a sample path.

4.5. Another Combinatorial-Lemma on the n-Cube

Let p be a positive integer and let Cn  [x n 0 < x < pe).

n0
Let C be a triangulation of C . Let K be the vertices of C, and

let K be the pseudomanifold corresponding to C. Let L(.): K0
i0

{l,...,n,-l,...,-n] be a labelling of K , with the restriction on

L(') that

i) V E KO, vi = 0 implies L(vi) i -i, and

1 ii) v E K, V1  p implies L(vi) / i.

We have the following:

Lemma 4.6. Let C triangulate Cn and let L(.) be as above. Then

there exists a pair of vertices v', v" in some simplex of C

such that L(v') = -L(v").
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PROOF. Let N = (l,...,n,-l,...,-n) and let 3 = cTC Ni C T

implies i > 0). Let A(V) (0,[0), and for T E 2 , we define

A(T) to be the pseudomanifold corresponding to the restriction of C to

(x C Cnlj V T implies x= O)

It is simple to verify that K, 3, and A(.) define a V-complex.

Figure 4.10 illustrates such a V-complex for n = 2.

First let us examine the set B. We know that V E B, since

A(V) has only one O-simplex. Let V x = {vl ,..., v t ) E B. Then

L(x) = T and x & 3'A(T ). Thus for some i C T 'Vl = p for allx x x 1

j=l,...,t. But then L(vi) / i for any j = l,...,t. Thus i V

a contradiction. Therefore B =

By Lemma 3.11, G must have an odd number of elements, and hence

at least one. Let x - G. Then L(x) DT and L(x) E 3. This meansx

there is an i > 0 such that L(x) = -i. Suppose i / T . Then forx

each v E x, vi = 0 and so by the restriction on L(.), -i £ L(x), a

contradiction. Therefore ii,-i) c L(x). Thus there are two elements

v' and v" of x such that L(v') = -L(v"), proving the lemma.

An algorithm for finding v', v" consists of following the path

whose endpoint is 0 & B, until an element of G is found. Figure 4.11

illustrates a sample path. As in the case of the Tucker lemma, we cannot

assert that there are odd number of pairs, since not all pairs are contained

in elements of G.
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h.6. Concluding Remarks

In this chapter, we have given "constructive" proofs of six com-

binatorial lemmas in topology. The proofs are constructive in the sense

that, for most standard triangulations of the n-simplex and the n-cube,

it is possible to write down the pivot rules of an algorithm that will

compute the simplices of a path from V E B to the desired simplex as

stated in the conclusion of the lemma.

Sperner's lemma leads to a very elegant proof the Brouwer fixed-

point theorem. In the next chapter, we show that Kuhn's lemma and

Lemma 4.6 also lead (independently) to a proof of this famous fixed-point

theorem. Tucker's lemma can be used to provide a proof of the Borsuk-Ulam

and Lusternik-Schnirelmann antipodal point theorems [11,271.

The Generalized Sperner Lemma (Lemma 4.2) has been independently

developed by Ky Fan [ 917, and inadvertently by Lithi [31]. The algorithm

of Lithi in [1 5 for the nonlinear complementarity problem is precisely the

path follcwing routine used in our proof the Generalized Sperner Lemma.

In his 1960 paper, "Some Combinatorial Lemmas in Topology" [21],

Kuhn derives the Tucker lemma from his lemma, for the case n = 2. He asks

"Is there a derivation of Tucker's Lemma from the Strong Cubical Sperner

[Kuhnj Lemma for all n?" [211. Although this question is still unresolved,

we see that both Tucker's and Kuhn's lemma are specific instances of

labelling on V-complexes, and that the proofs of both are similar in

nature.
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CHAPTER V

EXTENSIONS OF THE COMBINATORIAL LEMMAS

5.0. Introduction

In Chapter IV, we demonstrated six combinatorial lemmas. In

this chapter, we present various extensions of these lemmas. In Section

5.1, we show the relationship between Brouwer's fixed-point theorem and

five of the combinatorial lemmas. In Section 5.2, we use the Generalized

Sperner Lemma to prove other mathematical results. In Section 5.3, we

present a "homotopy"-type V-complex and suggest an algorithm based on

the Generalized Sperner Lemma. In Section 5.4, we show the relationship

between the Tucker lemma and antipodal point theorems.

5.1. Brouwer's Theorem and Combinatorial Lemmas

Simplicial methods were first developed in the 1960's for the

computation of fixed points of continuous mappings, the existence of

which was first demonstrated by Brouwer's celebrated Fixed-Point Theorem.

It is only appropriate therefore to show the relationship between

Brouwer's Theorem and five of the combinatorial lemmas of Chapter IV.

Although some of the material of this section is not new, it is included

for the sake of completeness. Brouwer's Theorem can be stated as

follows:
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Theorem 5.1 (Brouwer). Let f(.):S -+S, where S is a compact convex

set in F n, and f(.) is continuous. Then there exists a fixed point

of f(-), i.e. a point x* E S such that f(x*) = x*.

An elegant proof of Brouwer's Theorem is provided by using Sperner's

Lemma. We have

Lemma 5.2. Sperner's Lemma implies Brouwer's Theorem.

PROOF: Without loss of generality, we can assume S S n=(x GRleTx.=1

x > 0). Let C be a triangulation of S and consider the following

labelling function on the vertices of C:

L(v) = i if vi > 0 and fi(v) < v

If more than one such i exists for a particular vertex v, let L(v)

be the smallest such i. L(.) is readily seen to be a proper labelling

of the vertex set of C, and so by Sperner's lemma, there exists a com-

pletely labelled simplex. If we take an infinite sequence of triangulations

C with diameter approaching zero, the sequence of completely labelled

simplices must have at least one subsequence that converges to a single

point, say x*. At this point, we have fi(x*) < xi, i = 1,...,n, since

T Tf(') is continuous. But since e .f(x*) e x* = 1, this means that

f(x*) = x*, proving the theorem.

Furthermore, we have:
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Lemma 5.3. Brouwer's Theorem implies Sperner's Lemma.

PROOF: Let C triangulate Sn and let L(.) be a proper labelling
0 =0eL(V) "1 ,

of K , the vertices of C. For each v E K , define f(v) = e

0 n
and for the purposes of this proof alone, we define e = e . Extend

f(.) to all of Sn in a piece-wise linear manner on each subsimplex.

n n
Then f(-) is continuous and maps S into S . Thus there is a fixed

point x of f. Let V1 ... Vm be the unique smallest simplex of C

that contains x*. We have x* = E ?iv = Z i f(v
i ) for appropriate ,

where e T 1, and ) > 0. Suppose x* 0 0. Then there is an i

such that xt = 0. But then vj = 0 for all j, whereby1 i

i V (L(vl), ... , L(vm)), since L(-) is a proper labelling. This implies

that f (x*) = 0, and hence x_ = 0. (If i = 1, it implies x* = 0.)
i-l 1i-l

Proceeding likewise,we have that x* = 0, a contradiction. Therefore

x* > 0, and since f(x*) = Z e L we must have that
: 1

[L(vl), ... , L(vm)) = (l,...,n), and so m = n. Therefore, the simplex

v ., v } is completely labelled, completing the proof.

Actually, we have not proved Sperner's Lemma in its entirety, since we

have not shown that there are an odd number of completely labelled

simplices, so the equivalence between Brouwer's Theorem and Sperner's

Lemma is not complete.

Similarly, we can show:
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Lemma 5.4. Brouwer's Theorem implies the Generalized Sperner Lemma.

n
PROOF: Let C triangulate S and let L(.) be a labelling function

as in the Generalized Sperner Lemma. For each v in the vertex set

K0  of C, define f(v) = e L (v ), and extend this map in a piece-wise

linear manner. f satisfies the conditions of Brouwer's Theorem, and

so there exists a fixed point of f, say x*. Let (v , ... , v m ) be

the unique smallest simplex of C that contains x*. We have x* > 0
i

if and only if i C S(Iv ,..., vn), where S(') is defined in Section

4.2. Furthermore, by the construction of f('), x* > 0 if and only if

i ' (L(v), ... , L(vm)). Thus there exists a simplex of C that is

completely labelled in its face, proving the lemma. 0

As in Lemma 5.3, we have not proven the Generalized Sperner in its full

force, since we have not shown that there are an odd number of simplices

that are completely labelled in their faces. Finally, we show:

Lemma 5.5. The Generalized Sperner Lemma implies Sperner's Lemma.

n= T

PROOF: Let Sn  x E ln Ix > 0, e x = 1). Our proof is by induction

on n. For n = 1, the two lemmas are trivially identical. Suppose the

implication is true for all k < n. Let N = (l,...,n and for

T T
IT EN, define S = (x C Fn Ix > 0, e x = 1, xi = 0 for i V T).

Let C triangulate Sn = SN with vertex set KO . Let L(.) be a

proper labelling of S n, and note L() is a "proper" labelling of ST

i.e. v E K0 f S implies L(v) E T. Thus for $ / T, N / T, we induc-

Ttively have that there are an odd number of simplices in S that have
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label set T. We have

# simplices in Sn that are completely labelled

+ (# simplices in S that have label set T)

TCN

= an odd number,

by the Generalized Sperner lemma. Each term in our summation E is odd,

and there are (2 
n - 2) terms, an even number for n > 1. Thus the total

number in the summation term is even. Hence, the number of simplices

in Sn that are completely labelled is odd, proving Sperner's lemma. I

Our next task is to show the relationship between Brouwer's

Theorem and Kuhn's Lemma. We have:

Lemma 5.6. Kuhn's Lemma implies Brouwer's Theorem.

PROOF: Here let S = Cn = (x E ]R n 0 < x < e), and let f('):S -)S

be continuous. Let C be a triangulation of Cn with vertex set K0

0
For each vertex v EK let

(0 if fi(v) > xi #

i.(v)

1 if fi(v) < xi , i=l,..., n.

If there is more than one choice for I(v), choose Ai(v) 0. Let

L(v) be as described in Section 4.4. Note i(') satisfies the conditions

of Kuhn's Lemma. Thus there exists a simplex of C that has labels
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(0,l,...,n). Take a sequence of such simplices as the diameter of C

approaches 0; such a sequence will have a cluster point, say x*. By

the continuity of f(.), we have f.(x*) < x. and f (x*) > x* for
1i - 1

i = l,...,n. Thus f(x*) = x*, proving Brouwer's Theorem. 0

We cannot assert that Brouwer's Theorem implies

Kuhn's Lemma. However, there is a weak form of Kuhn's lemma, called the

Cubical Sperner Lemma in [21], that as Kuhn shows, implies Brouwer's

Theorem. See [21] for details of this proof.

Last of all, we show the relationship between Lemma 4.6 and

Brouwer's Theorem. We have:

Lemma 5.7. Lemma h.6 implies Brouwer's Theorem.

PROOF: Let S = Cn < x f 0 O x < e), and let f(-):S -*S be

continuous. Let C be a triangulation of Cn with vertex set K0 .

We define for each v K

I if I1f(v) - vIL = fi(v) - vi , v #i

L(v) f

i-i if !If(v) v!, =v i - fi(v), v i 1 0

If there is more than one choice for i, let i be the smallest such

index. L(') satisfies restrictions (i) and (ii) of Section 4.5, and so

by Lemma 4.6, there exists a pair of vertices v' and v" of K in

some simplex of C, such that L(v') = -L(v"). As we let the diameter
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of C go to zero, and take a limiting sequence of the pairs (v',v"),

we must have at least one cluster point, say x*. But by the continuity

of f(.), we have If(x*) - x*11j = 0, and so x* is a fixed-point,

proving Brouwer's Theorem.

Finally, we remark that Scarf's Lemma (Corollary 4.3) is

equivalent to Brouwer's Theorem. The proof follows along the same

lines as Lemmas 5.2 and 5.3.

By way of concluding this section, Figure 5.1 shows the relation-

ships contained herein, where "4' denotes "implies" in the direction

of the arrow.

I Generalized Sperner Lemma

Scarf' s Lemma Brouwer's Theorem Sperner' s Lemma

' I~Lemma 4.6 I uns Lema

Figure 5.1
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5.2. Extensions of the Generalized Sperner Lemma

In this section we prove four mathematical results that are by-

products of the Generalized Sperner Lemma.

The first result, a covering theorem, is used to prove the other three

results. Throughout this section, let Sn = E ]n leTx = 1, x > 0).

We have

Theorem 5.9 (Covering Theorem). Let Ci , i 1,...,n be closed sets

in such that iP Ci DS n . Then there is at least one point x*
i =1

in S n such that (ijxt > 0 C (ilx* E Ci

PROOF: Let C triangulate Sn with vertex set K , and let L(.)

be a labelling of K , where for each v K

L(v) E iilv Ci .

By Lemma 4.2, there is a simplex x of C that is completely labelled

in its face. Take a sequence of triangulations whose diameter goes to

zero in the limit. Then there is a sequence of simplices x, completely

labelled in their faces, that have a limit point, say x*. Since each

Ci  is a closed set, we have (ilx* > O C (ilx* E C), proving the

theorem. ®

This theorem is illustrated in Figures 5.2 and 5.3. In Figure 5.5,

a type of "degeneracy" occurs at x*, showing that strict inclusion "c'

of the theorem can indeed occur.
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Theorem 5.9 can be generalized. Let S be an n-simplex in

IRn and for each x G S, let c(x) be the barycentric representation

of x. Then we have

i
Theorem 5.10 (Covering Theorem). Let C , i = 0,...,n, be closed sets

in R=n such that Un C D S. Then there is at least one point x*
i=0

in S such that

(ili (x*) > O i ti x* E C i.

Our next lemma demonstrates the existence of stationary points

(see Eaves [ 51, and Luthi [311). Let Sn+  = (x,w) E R n+lle Tx + w = 1,

x > 0, w > 01, where it is understood that x r . Let

Dn = x ERn leTx < 1, x > 0). Clearly Dn is the projection of Sn+l
Dn _, n

onto the x-coordinates. Let f(.):D In be continuous. A point x

in Dn  is said to be a stationary point of the pair (f,Dn) (see Eaves

[3]) if and only if there exists z G- IR and y E IR such that

i) y >0, z >0

ii) f(x) =y -ze

iii) x*y = 0

Tiv) z(l - e x) = 0

We have the following:
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Lemma 5.11 (Hartman and Stampacchia [1J, and Karamardian [17a], [17b),

[181). There exists a stationary point x* of (f,D n).

PROOF: Our proof is based on Theorem 5.9. For i 1,...,n, define

C= {(x,w) sn+ I f(x) O and fi(x) < f.(x) for any j = 1,....n)

Define Cn+l f(xw) G Sn+llf(x) > 0). Note that each Ci  (i 1,...,n+l)
n+l Ci D n ~l

is closed, and that U i C -S) . Thus by Theorem 5.9, there exists

(x*,w*) in S n+l such that

i) xt > 0 implies (x ,w*) C C , i = 1,...,n, and1

ii) W* > 0 implies (x*,wx-) Cn+l .

We now show that x* is a stationary point of (f,Dn). We have two

cases:

Case I. (x*,w*) E Cn 1 . In this case, let z = 0, and let y = f(x*).

(x*,w*) G Cn l implies f(x*) > 0, and so y > O. Also, xf > O implies

fi(x*) < 0, but f(x*) > 0, therefore fi(x*) 0. Thus x.y = x.f(x) = 0.

TFinally, z(l - e .x*) = 0 since z = 0. Therefore, x* is a stationary

point.

Case 2. (x*,w*) Cn+ l . Let z = -mint'lI x" /, .. , fn(x*')). Note

z > 0. Let y = f(x*) + ze. We have -z < fi (x*) for each i. Hence

y = f(x*) + ze > 0. Furthermore, xl > 0 implies f.(x*) < f (x*) for

any j, and since f(x*) 0, fi (x*) = -z. Therefore y = 0, and so

x*.y = 0. Finally, since (x*,w) V Cn+ l , we must have w = 0, so
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eT = 1, which implies z(l - e Tx*) = 0. Thus x* is a stationary

point of (f,D n).

Our proof suggests an algorithm for computing x*. Choose a

triangulation of S n +  with small diameter and compute a simplex x which

is completely labelled in its face by following the path starting at

E B (see Section 4.2). Any point in x almost satisfies the conclusion

of Theorem 5.9, and hence is an approximate stationary point. In

Section 5.3, we suggest an algorithm for finding points guaranteed by

Theorem 5.9, using a "homotopy" principle.

We conclude this section with two theorems that follow directly

from the covering theorem, Theorem 5.10. The set-up for these theorems

is as follows:

Let A be an n x (n+l) matrix such that the A, = y, N > 0,

has a solution for any y - Fn (i.e. the cone space of the columns of

A is R ). We state without proof the following:

Remark: For fixed y, c, y = c + A?\, X > 0 has a unique semi-

positive solution where by semi-positive we mean nonnegative and

4 not positive. 0

Let S be an n-simplex in Fn and let f():S 1Rn  be continuous.

n
For each y F n, let )(y) be the unique non-positive solution }

to y c + AN, 0 > 0. We have the following theorem:
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Theorem 5.12. For x C S, let 0(x) be the barycentric representation

of x. Then there exists a point x* E S such that a(x*).\(f(x*)) = 0.

PROOF: Let C = (x i SIi(f(x)) 03 for i = 0,...,n. Each x : S

is an element of at least one Ci. Furthermore, since f is continuous

and \(') is continuous, Ci is closed for each i. Applying Theorem 5.10,

we have that there is an x* E S such that u. (x*) > 0 implies1
ii

x* S Ci . Therefore, u(x*)'N(f(xk)) = 0.

Theorem 5.13. For x C S, let U(x) be the barycentric representation

of x. Then there exists at least one point x* C S such that

T Tijci(x*) >0) ] tilf(x*) A. < cTA

i

PROOF: For i = O... .,n, let C (x C S[f(x)] A. c A*i 1. 1 claim

that (P CI S. Suppose not. Then there is an x S such that

T Tf(x) A > c A. Let -7, c - f(x). We have -A < 0. We have A

for some 0. Therefore 0 > rAN = .7 > C. Therefore 7, = 0.

But then f(x)TA = cTA, a contradiction. Thus Un Ci .

Applying Theorem 5.10. we have that there exists xI C S such that

fi.(x) 03 {ilf(x )TA . < cTA 
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5.5. A Homotopy Algorithm for Computing x* of Theorem 5.9

In Section 5.2, we showed that the covering theorem, Theorem 5.9,

can be used to prove three other theorem~s, including the existence of

stationary points. The covering theorem is proved by applying the

Generalized Sperner Lemma in a limiting sense. To compute the point x*

of the covering theorem, one could set up a triangulation of small

diameter, and follow the path from q : B, as suggested in Section 4.2,

to its other endpoint. Any vector in the endpoint simplex approximates

the properties of x*. The problem with this technique is that the

number of simplices eno V. ; path may be very large.

Eaves iigl Iintroduced the idea of a homotopy

met owin methods, and computational experience has proven

• .Lerior nature of homotopy methods in path-following algorithms

(see Wilmuth [5)

In this section, we present a homotopy approach

n n T
to calculating a point x* of Theorem 5.9. Let S = {x C IR le x = 1,

x > 0), the unit simplex in IRn. Let C be a locally finite triangulation

of Sn X [0,-) with the property that for every c > 0, there is a t > 0

such that any simplex of C in Sn x [t,c.) has diameter less than E.

Such triangulations exist and specific pivot rules have been calculated

for some of these (see Eaves t L ], Todd [4l], and van der Laan and

Talman [261). Let K denote the vertices of C.

Let Ci , i - 1,...,n, be closed sets in ]Rn such that

~n Ci n0
n C1 D . Each vertex of K can be written as (v,t) where

v C Sn and t C [0,-). For each (v,t) C K0 , let L(v,t) some i

such that v C Ci.
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Our next step is to set up a V-complex on Sn x [O,w). Let

N fl,...,n) and let = {SjS ZN). For T - ¢, let A(T) =

(, ((eJ,O))) for some fixed j C N; for T / , T C , let A(T) be

the pseudomanifold corresponding to the restriction of C to

((x,O) E Sn x [O]Ii V T U (j) implies xi = 0)

U ((x,t) E Sn  (O,-)Ii V T implies x. = 0)

Figures 5.4 and 5.5 illustrate this construction for n = 2 and 3,

respectively, with i = 1. In Figure 5.5, the triangulation has been

omitted to make the figure more understandable.

For j I T, A(T) corresponds to a nonempty closed convex set.

For T / , j V T, A(T) corresponds to the union of two nonempty closed

convex sets that share a common boundary.

It is simple to show that A(.), Z, and K satisfy 'he conditions

of a V-complex, where K is the complex (an n-psuedomanifold itself)

corresponding to C.

Let us now examine the sets G and B. G is empty, since

= (TIT -- NJ. As far as B is concerned, 0 C B, since A(V) contains

only one O-simplex, ((eJo)}. For T 1, 3'A(T) is empty, and so the

only element of B is V. Thus, the path starting from V C B has

no other endpoint, and so must contain an infinite number of simplices.

Let 0 = xo, X1, x2, ... , be the path of adjacent simplices whose

endpoint x0  is Q. Then for each r > 0, there is an m > 0 such that

for all i > m the diameter of xi is less than k. Thus the simplices

of the path get smaller and smaller in the limit. Let xi have diameter
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less than c. Then choose a vector (v,t) in x.. v then approximately

satisfies the conditions of Theorem 5.9.

The homotopy algorithm consists of following the path

=x O , Xl, x2 , ..

5.h. Extensions of Tucker's Lemma

In this section we make some brief remarks concerning the relation-

ship between Tucker's Lemma and antipodal point theorems. Two established

antipodal point theorems are the Borsuk-Ulam Theorem and the

Lusternik-Schnirelman Theorem (see Lefschetz [27]).

Borsuk-Ulam Theorem. Let B =x E n = ),

n-l n-ln-i
f(.):B M be continuous. Then there exists x* E B such

that f(x) = f(-x*).

Lusternik-Schnirelman Theorem: Let Bn-l x :nI I 1xJJ2 = 1), and let

C , i = ,. ..,n, be closed sets in IRn such that P_ Ci D Bn .
Then there is an i E and an x* E Bnl such that both

x* and -x* are elements of C

We have the following relationships:

.p

Lemma 5.15. Tucker's Lemma implies the Borsuk-Ulam Theorem.

Lemma 5.15. Tucker's Lemma implies the Lusternik-Schnrelmal Theorem.
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The proofs of these two lemmas can be found in Tucker [421, or in termi-

nology more familiar to operations researchers, in Freund and Todd [11].

We also have:

Lemma 5.16. The Borsuk-Ulam Theorem implies Tucker's lemma.

PROOF: Let Cn = -x Z n I-pe < x < pe) and let C be the Union-Jack

triangulation J of ]BRn  (see Todd [41)) restricted to Cn . The

vertex set K of C is the set of integral points of C. Let
K0

L('):K - 1,...,n,-l,...,-n) be a labelling function which is odd

on the boundary of C. For each v c- K0, define f(v) = sign(L(v))-e(L(v))

and extend f(.) in a piece-wise linear manner over all of Cn. Note

that f(.) is continuous, and since J is symmetric, f(.) is odd on

the boundary of C

Let Bn . x n+ l , let Bn+  = ix E Bnx+ > 0),

and let Bn - = jx E Bnlxn+1 < 0). Let g:B n+ -_,Cn be the following map:

iP(Xl,-.. x n )  11 x l' . .. xn1i2p(x ,.x) 11x... x (l"""(x1,...,xn) 
/ 0.

g(x) 
n

0 (X1 ,...,xn) 0

Note that g(*) is bicontinuous and onto. For x Bn let

f.g(x) , x B n +

h(x)=
"x -fog(x) , x C Bn-
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h(.) is an odd continuous function from Bn  into ]Rn. By the

Borsuk-Ulam Theorem, there exists x* such that h(x*) = h(-x*).

Without loss of generality, we may assume x* E Bn . Thus h(x*) 0,

whereby fog(x*) = 0. Setting i = g(x*), we see there exists x eC n

such that f(i) = 0. f(i) = E X sign(L(vi)) - eIL (v i )I for appropriate
i il 2

v and )i > 0. Thus there must be a pair of vertices v , suchi2

that L(v i l ) -L(v ), proving Tucker's Lemma. 
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CHAPTER VI

ORIENTATION AND H-COMPLEXES

6.0. Introduction

In this chapter, we return to the abstract setting of V- and

H-complexes, and deal with orientation of H-complexes on a deeper level.

Assuming an H-complex is orientable, we show how to pivot on adjacent

simplices in a way that preserves certain properties of the orientation

of the simplices. We are thus able to give further insight into the paths

and endpoints of paths on H-complexes. In the last section we give mild

sufficient conditions that ensure the orientability of an H-complex.

The use of orientation in complementary pivot schemes was first

developed by Shapley [38] for the linear complementarity problem, advanced

by Eaves and Scarf ( 8 3 and Eaves [6 ] for . bdivided manifolds, and

extended to pseudomanifolds by Lemke and Grotzinger [30]. Our set-up

is slightly different than that of Lemke and Grotzinger; however, the

interested reader can easily establish the similarity.

6.1. Pivots and C-Pivots on Pseudomanifolds

Let K be an orientable H-complex of dimension n, oriented

-00by Or(.), with vertex set K . Let N = (1,...,n) and let L(.):K -N.

We define the set

I -

D = x K lxi = n+l, L(x) N) U [£E K lx n, L(i) = N).
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D consists then of n-simplices of K whose labels exhaust N, and

simplicies on the boundary of K whose labels exhaust N. We remark

that the two sets above whose union is D are disjoint. Let these sets

be D1 and D2, respectively.

Let x d D. There is a very natural way to order the elements

of x. If x EDI, we can write x = (Vo,.. .,vnJ. The ordering

(vo ,.... v. ) of x is called a C-ordering if and only if:
0n

L(v.) = j, j = 1,...,n

Note there are always two orderings of x. The reason for this is that

among the labels of x, there is some unique r E N such that two

thvertices of x have the label r. For j E N \ [r), the jt component

of a C-ordering of x must be the unique vertex v. E for which

L(v. ) j. Denote by v' and v" those two vertices in x whose

labels are r. Then the two C-orderings of £ are:

(v", v. ... , v i  v' v r ... , v i )1l r-i ' r+l n

and

(v, v , v V" ri i r-I' ir+l n

Also note that these two orderings have opposite orientations, i.e. one

is (+) and the other is (-).

If D 2 , we can write x (Vl..., V n). The ordering

(v ...,v ) is called a C-ordering if and only if
' 1 n

L(v.) j, j = 1,..., n.
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The C-ordering for x E D2  is unique.

With the notion of a pivot in mind, we now define a C-pivot on

elements of D. For x E D let (v.i,..., vi ) be a C-ordering of Xo
0 n

A C-pivot is performed on x as follows:

Case 1. (v. ,.., v* C € K. In this case, simply drop vi from x,

n
and let y =v Vi, ... , V. nj. The derived ordering on y is

vi 1i i n

Case 2. jv. vin ) " In this case, there is a unique v : R0

1 n
such that iv. , v i , v R K. L(v) = r for some r € N. Set

1 n
(vii , , v i  v) and form the new ordering (v. vin r r-1

v,v . ... ., v ) of Y.
r+l n

If x D,, let (vi,... , v ) be the C-ordering of i. A
C1 n

C-pivot on x is performed as follows:

-0
Let v be the unique element of K such that x U t9- is an

n-simplex of K. L(v) = r for some r i N. Set Y = (Vil V

and from the new ordering (vi , vi ,.... vi  , v, v. , ... , vi
r 1r-l r+1 n

of y.

We have the following results on C-pivots:

Proposition 6.1. Let y be derived from a C-pivot on x . D Then

the ordering of y is a C-ordering and the orderings on x and 9

as specified in the C-pivot have the same orientation.
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PROOF: The first conclusion of the proposition follows immediately

from the ordering defined on . The second conclusion follows from a

case analysis.

Case 1. Y 6 - K. Then Or(vrio''" Vi ) (-1)O Or(v "...vn ) =Or(vi.'' 'V
S0 n 1 n 1 n

Case 2. y K. Then

Or(v. ,...,Vn) = -Or(v, v. I... Vin
S0 n '1 n

= Or(v i v , v.... v v, V. v )r r! -rln

Proposition 6.2. Let y be derived from a C-pivot on x C D2. fhen

the ordering of is a C-ordering and the orderings on x and y,

as specified in the C-pivot, have opposite orientation.

PROOF: The first con" dsion follows directly from the ordering fixed

on y. For the second conclusion, note that

' v'

r 1r-l r+l n

= -Or(V. v. vi ) -Or(v. v... ,

n n
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6.2. Orientations on Paths Generated by C-Pivots

In Section 5. , we characterized paths generated by a labelling

L(') on H-complexes. In this section, we show the connection between

C-pivots and these paths, and prove a result on orientation along paths.

Let K be an orientable H-complex oriented by Or(.), 0 its

vertex set, and assume, without loss of generality, that N = l,...,n).

Let L('):K -N be a labelling function. Let (X). be a path on

possibly without left and/or right endpoints.

Choose x an element of the path. Note that L(x) = N. If X

is an endpoint of the path (say a left endpoint, and we can assume

x = X07 without loss of generality), there is a unique C-ordering of

x0  Let y be derived from xO by a C-pivot on x0  Then y = xi,

and Or(x1) = -Or(x O) from Proposition 6.2. We can keep performing

C-pivots xi, until we reach the right endpoint of the path, if it exists.

For each of these pivots, we have Or(xi) Or(xi) by Proposition 6.1.

We have just proved the following

Lemma (.3. Let x- i  be a path with left endpoint x 0 If xi+l

is obtained from x.i by a C-pivot, Or(xo 0 -Or(xi) for all i > 0.

In particular, we have

Coi-ollary (.4. Let 'x. be a path with left- and right-endpoints

" and Xm' generated by a series of C-pivots starting at xo" Then
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i) Or() =-Or(xm

and

ii) Or(x) = Or(x.) for all 0 < i, j < m.

Corollary 6.4 is analogous to other path orientation theorems

presented elsewhere, see, for example, Shapley [5], Eaves and Scarf [ 8 3,

Eaves [ 6 ]. and Lemke and Grot:zinger [50]. All of these theorems assert

that the orientation along a path is constant except at the endpoints,

whose orientations are opposite in sign.

Now suppose ht is an element of the path \x.). and!i i

x. is not an endroint. Then xi D1 , Since L(x) = N, we can choose

two C-orderings of x, each one opposite in sign. C-pivoting on one of

these orderings will yieli X,+l, and the C-ordering of xi+1 will have

the same orientation as the C-ordering of x.. Continuing the C-pivot

process, we will generate the path elements xi, xi 1 , xi 2 , ...

terminating if and only if ,x has a right endpoint. By Proposition 6.1,

r Oxr) Or~x for all 1 A parallel argument for the other C-order-

ing completes the proof of the following

Lemma 6.". Let x. be a path on K and let x. be an element of

this path that is not an endpoint. Let the entire path be generated

from xi by its two C-orderings. We have Or(x.) -Or(xk) for all

< i<k. <

In particular, we have
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Corollary 6.6. Let (x )i be a path on R with left and right endpoints

;o and Xm, respectively. If this path is generated from i 0 < i < m,

by the two C-orderings of X,, then

i) Or( O ) =-Or(x m),

and

ii) Or(xj) = -Or(- ) for all j < i < k.
k

Corollaries 6.14 and 6.6 are illustrated schematically in Figures 6.1

and 6.2.

Figure 6.1

Figure 6.2
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By way of concluding Sections 6.1 and 6.2, we remark that the usual

path orientation results for manifolds carry over to H-complexes.

Actually, they do more than this--they carry over to orientable n-pseudo-

manifolds. For the only properties of H-complexes used in these two

sections was that K is an orientable n-pseudomanifold and that the label

set N contains n elements.

6.3. Conditions for which an H-complex is Orientable

In this section we give conditions on R that guarantee that

is orientable. Let K, 2, and A(.) define a V-complex, and let R be

the H-complex associated with K. Let INI = n. Assume that

i) for each T E %, A(T) is locally finite and orientable, and

hence homogeneous, and

ii) for all S, T E , S Z T, there is a sequence il,...,IM,

such that S U (il,...,ik ) E %, k l,...,m, and

S U 2il,.,im T.

We will show that if K, , and A(-) satisfy the above two

assumptions, then R is orientable.

Y In Section 6.4, we will discuss ways to test assumptions (i) and

(ii) for specific V-complexes. Obviously, verifying condition (ii) is

very straightforward. Condition (i), however, requires special attention.

Our first result is:
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Proposition 6.7. For all S, T E , there is a sequence So, ... , Sm

such that Si E, i =O,...,m, S0 = S, S m = T, and is 1i 1 AS = 1,

i = l,...,M.

PROOF: If S = T, the conclusion is trivial. If S T, S n T E .

We can write

S = S n T U tSl,...Sk 1
,  T = S n T U ttl,...,t

for appropriate k, 2, si, and t. We can assume as well that the

si are distinct and that the t. are distinct. By assumption (ii), we

can assume that S n T U t Sl,...'s i ) C for i < k, and

S n T U ttl,...,t i) C ZS for j < 2. Then the sequence

S, S\sk, S \ sksk ,..., S nT, S OT U (t1j, SfTUtl, t2),..., T

is a sequence of elements of 3, and successive members Sil, Si
satisfy ISi- 1 A Sil = 1.

Towards proving our main result, we make the following:

Definition. For T C Z, define

A(T) = (x U Q~x E A(T), QC QT, x U Q#

A(T) can be thought of as a conical construction of A(T) with each

qi, i V T. We have:
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Lemma 6.8. A(T) is an orientable n-pseudomanifold.

PROOF: Clearly A(T) is closed under nonempty subsets. Let x U Q E X(T).

Then there is a y in A(T) such that T = T, since A(T) is a pseudo-Y

manifold. Then x U Q :y U QT, and lY U QT = ITI + 1 + n- ITI = n+l.

Any n-simplex of X(T) is of the form y U QT, where y is a

ITI-simplex in A(T). Let x U Q be an (n-l)-simplex in A(T), that

is a subset of y U Q. Suppose x U Q C z U Qz, 1z U QzI = n+l, and

z U Q / y U QT. But then Qz = QT, and since A(T) is a pseudomanifold,

the choice of z is unique. This proves A(T) is an n-pseudomanifold.

Now let x U and y U QT be n-simplices in X(T). Then x

and y are ITI-simplices in A(T). Since A(T) is homogeneous, there

is a sequence x = l, s2' "' sm = y of ITI-simplices in A(T) such

that isi n s i+l = ITI, i = 1,...,m-1. Then x U Q = s 1 U Q' s2 U ,

sm U QT = y U T is a sequence of n-simplices in A(T) and

I(si u UT) n (si+1 U QT)I = n, i = l,...,m-1. Therefore A(T) is

homogeneous.

Finally, we show that X(T) is orientable. Let Or(*) be

a coherent orientation of ITI-simplices of A(T). Let x U QT be an

n-simplex of A(T). Let ITI = t. Order the vertices of x U

as (v0,..., vn), and let p be the number of transpositions needed to

"push" those vi E T to the last n-t places of the ordering, while

preserving the local ordering of those v1 E ACT) and the local order-

ing of those vi E QT. Then we define Or(v O,...,v n ) = (- 1 )p Or(x).

91

__ *-. •- - -. - --



If y U QT is obtained from x by a pivot, Or(y U QT) = (-i)p Or(y)

= (-i)p (-Or(x))= -Or(x U QT). Thus A(T) is orientable. @

Lemma 6.9. k = U A(T).

PROOF: Let i E K. Then we can write x=x U Q where x E K, and

Q C 4, and Q Z QT . But then E E A(Tx). Conversely, let x U Q E A(T).
x

x
Then Qz QT and so x UQ .

x

Lemma 6.10. Any n-simplex of R is an element of exactly one A(T).

PROOF: Let x U Q be an n-simplex in R. Then Q = T and x is full.
x

Thus x U Q E A(Tx). Suppose x U Q E A(S) for some S E Z. Then

x E A(S) and hence S DTx. Also QT xCQ which implies S OTx. Thus
x

S=T.x

Thus we see that as T ranges over all elements of Z, the A(T)

partition K into "disjoint" n-pseudomanifolds. We use disjoint

cautiously since this partitioning only takes place among the n-simplices

of R.I :

Next we have

Proposition 6.11. 9 is homogeneous.

PROOF: Let i and y be n-simplices in K. We can write x = x 0QT'
X

y = y U QT for appropriate x, y E K. By Proposition 6.7, there in a

y 92

* .- ,- w



sequence T x T1,9... , T T ysuch that T i E , ,...

and ITiAT i I= 1, i =

We shall now show how to construct a sequence of neighboring

siinplices in R that have i and j as endpoints, using an induction

argument on mn. If m = 1, then such a sequence of neighboring simplice.

exists because x, j E A(T) CAK, and X(T) is homnogeneous. Suppose a

sequence of neighboring simplices exists (s i e= whose endpoints are

x an E T Then either T = T U (k) for some k VT

or T~ m T M 1 \ (k) for some k E T Mi. In the former case,

Z \ {q) U (w) is an n-simplex in F., that is in X(T ). for some

unique w E *o Since X(T ) is homogeneous, there is a sequence of

neighboring n-simplices (tii0 where to = Z' t y. Thus the

sequence

X sop. P~ S'e =~ Z = tZ. tJ Y

of neighboring simplices has x and j as its endpoints. An analogous
argument establishes the result when T~ = T 1 \(i

The next few results will also be used in the proof that

is orientable.

Proposition 6.12. There is a unique set T E!3y such that 8SE 23

* implies S D T.

*PROOF: Define T* =fn S. Then T* E Z and any S E Z3 contains T*..2 SEIZ
Clearly T* is uniquely determined.
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Proposition 6.13. Let S, T E Z, S T, ISI = ITI. Then A(S) n ACT)

contains no (n-l)-simplices.

PROOF: Let x U C A(S) n X(T). Let t = ISI = ITI. We have

x E A(S), x E A(T), so x E A(S n T). But Is n TI _S t-1. Thus Ix_ 1.

Also QCC S Q ST <r n- (t+l). Thus IxUQI <t - +n -t -1

< n - 2. Therefore x U Q cannot be an (n-l)-simplex.

K LeWe are now ready to describe an inductive procedure for orienting

Let T* E Z be the set described in Proposition 6.12. Let

d = IT*I. Let m = maxITi - d. Then we partition Z into m+l classes,

' " d+' where = T C ZIITI=d+k). Note that Z = Um k Z+

and for all k / J, Zk A = . Our procedure for orienting X1 is

as follows.

Step 0. Orient X(T*). Let Or(*) denote the orientation on X(T*).

Set K0 = X(T*).

S i (il,...,m): Let K =i-i U(UTEZi X(T)). Extend the orientation

Or(') to i by using the induced orientation on U to orient
i-I.

<)A(T), T C 2. We now show that each step of this procedure is executable

* and the result is a coherent orientation of K. Note R =. Our
a

proof is as follows:
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Clearly Step 0 is executable, since X(T*) is orientable.

Suppose steps 0,..., i-i are executable and result in a coherent orienta-

tion of i-l" The following lemma serves as a basis for our proof:

Lemma 6.14. Suppose T' C 2 Then n -i A(T') is an orientable

(n-l)-pseudomanifold and is a subset of K and 3A(T').

PROOF: By the induction hypothesis - is an orientable n-pseudomanifold.

So is A(T'). Let us denote L = K1- fA(T') for notational convenience.

L then is closed under nonempty subsets, and so is a complex. Let

x U q E L. Then x E A(T) for some T, ITI < d + i, and x E A(T'),

G Z ,. By assumption (ii), there exists k E T' such that

x E A(T' \ (k)). Let y £ A(T'\ (k)) contain x (x c y), such that

T = T' Ok). Then x U Q C y U QT'" Note y U QT, E L. Furthermore

{y U Q, } : d + i + n - (d + i) = n. Thus every element of L is a sub-

set of an (n-l)-simplex of L.

Now let x U q be an (n-l)-simplex of L. From the preceding

remarks,w= T'w \nk) for some k E T', and Q = Q, Let
x U Q\ (aj be an (n-2)-simplex of L, and suppose x U Q\ tal U to]

is an (n-l)-simplex of L, 0 a. We need to show that there is at most

one choice of P. Clearly, ax V Q, so c E x. We have two cases:

Case I. xx (a is not full. Then since x\ tcd U (0) must be full,

0 is the unique element of K0  such that x\ (c) U to) is a (d+i-l)-

simplex of A(T'\ [k)).
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Case 2. x\ta) is full. In this case T = T'\(kl\ j)j

for some j / k, j E T'.

Since x\L CJ U {0) must be a full (d + i - l)-simplex, 1 is the unique

element of )0  such that x \ (a) U [oJ is a (d + i - l)-simplex of

A(T'\ (j)).

Thus we see that L is a pseudomanifold of dimension (n-i).

Our next task is to show that L is homogeneous. Let x U QT-

y U QT, be distinct (n-l)-simplices in L. If Tx = Ty, then since

A(Tx) is homogeneous, there is a sequence x = so, ...I sk = y of

neighbors such that each sj E A(Tx) , j = 0,..., k. Then

x U qT, = sU T,..., s U QT" "' Sk U T, is a sequence of neighbors

in L. Suppose then Tx #T . T =T' (J, T T \ (k), for some
y y

J J, k, where j j k, j -T', k E T'. Le zEA(T' \tj] \ (k). Then

there exists a, a E K0  such that z U a) E A(T' \ :i),\ I
z U (0) E A(T'\ (k)). Let x = go , ... , Sp z U (a) be a sequence

of neighbors in A(T' \ {j)), z U (0) = to, ... , tr =y a sequence

of neighbors in A(T' \ (k)). Then the sequence x U QT,= sOUQT,,...,sp U ,,

to U T" . t U = y U QT, is a sequence of neighbors in L.

Thus L is homogeneous.

Next we show that L . Let x U T, be an (n-1)-simplex

of L. Since T = T' \ [k) for some k -T, we can write X U QT

x U Q\ k . Any n-simplex of i-i is of the form y U where
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ITy I< d + i - 1. Thus the unique n-simplex of !i-1 containing x U Q,

is x U ,X, and hence x E - A similar argument shows that

L C 6(T').

It only remains to show that L is orientable. Since Ki-I is

orientable, Or(-) on i induces an orientation Or(.) on L c _

We need to show that this induced orientation is coherent. Let , L

be neighbors. Let us assign labels to elements of R i- as follows:

For v E - v xUy, let L(v) = 1. We can write (v V Vn} ,

= [vn+l, v, ..- , vn  and let L(v1 ) = L(Vn+l) = 1, L(v ) = i,

i = 2,..., n. Let us do C-pivots on the C-ordering of i. This will trace

a path of simplices of Ki-1 , which if it has a right endpoint, the

right endpoint will be j. Furthermore, by the nature of our labelling

function, all elements of the path will contain ; n j. At least one

element of i n j will be an element of K0 , and since K is locally

finite, the path will have a right endpoint. By the results of Section 6.2,

Or(x) = -Or(j), thus establishing that Or(.) is coherent on L. ®

With Lemma 6.14 established, we can orient L using the induced

orientation Or(.) from i Now let i = (vl,..., va) be a fixed ordered

element of L. Since x E _l, i E A(T'), there exist unique elementsi-l

or, 1 0  such that [, vl,,..., V) v..., v] e A(T').

Define Or(9, v, v) = -Or(a, v, , vn), and extend Or(,)

to all of A(t') by using 10, vI ,..., v. ) as a "seed". This makes

X(T') coherently oriented, and also K U A(T') coherently oriented.
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We can repeat this procedure for all T' E i-V since for any

S, T T A(s) n A(T) contains no (n-l)-simplices or n-simplices,

i.e. A(S) and A(T) share no common boundary.

Thus Step i, i =,..., m, of our procedure is executable and

results in a coherent orientation of !.. Hence F . is orientable.

We have just proved:

Theorem 6.15. Let A(-), 3, N, K satisfy assumptions (i) and (ii) of

this section. Then K is orientable.

6.4. Concluding Remarks

We first discuss ways to verify assumptions (i) and (ii) of

Section 6.3. Assumption (ii) can be verified by a case by case analysis

of elements of 2, if need be. However, notice that if £Z is closed

under subsets, then assumption (ii) is satisfied. In all of the applica-

ions of V-complexes discussed in this thesis, the only instance where Z

is not closed under subsets occurs in Kuhn's algorithm for the Sperner

Lemma, where

and in this case, Assumption (ii) is satisfied.

Assumption (i) can be difficult to verify, in general. However,

it can be shown that if an n-pseudomanifold J can be realized as a

triangulation C of a set S in IR n, then J is orientable. The
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proof of this statement involves the use of determinants and the notion

of an orientable piecewise-linear subdivided manifold, and as it is not

central to our discussion, we omit it. All of the sets A(T) in all of

our applications are realizable as triangulations of sets in m ITI,

and so every specific H-complex of this thesis is orientable.

A final remark concerns whether or not R can be realized as

a triangulation in JR n, where n = INI. In Eaves ( 6], it is shown that

for Shapley's algorithm, R can be realized as such a triangulation.

In general, the complex K can be realized as a triangulation JRn

The problem then becomes how to place "artificial" vertices qi,

i-l,...,n, in JRn in such a way that K can be realized as a tri-

angulation. This is an open question.

I
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CHAPTER VII

KNOWN VARIABLE-DIMENSION ALGORITHMS INTERPRETED ON V-COMPLEXES

7.0. Introduction

The original ideas behind the development of V-complexes came

from reading the papers of van der Laan and Talman [24], Reiser [33],

and Luthi [31], who present variable-dimension algorithms for computing

fixed-points or nonlinear complementarity points. In this chapter, we

show that these and other variable-dimension algorithms can be interpreted

as path-following on a V-complex.

In Section 1, we present fixed-point algorithms, namely those of

Kuhn [44], Garcia [12], and van der Laan and Talman [23] and [24].

In Section 2, we present the algorithms of Luthi [31] and Reiser [33]

for the nonlinear complementarity problem. In Section 3, we present the

algorithm of van der Laan and Talman [25] for equilibrium points in n-person

game theory.

7.1. Fixed Point Algorithms

As was shown in Chapter V, Sperner's Lemma and Brouwer's Fixed-

Point Theorem are "equivalent," in the sense that one provides a quick

proof of the other. The first variable-dimension algorithm known to the

author is Kuhn's algorithm [44] for the Sperner Lemma which, as we

have shown in Chapter V, can be used to compute approximate fixed-points.
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Since we have already cast this algorithm as an instance of path-following

on a V-complex, refer to Chapter V, Section 1, for the details.

Garcia's Algorithm

SThe second variable-dimension algorithm for computing fixed-points

was Garcia's "hybrid" algorithm (12]. Our treatment of this algorithm

draws heavily on the material in Chapter V, Section 3. Let
S n = (x E Rn l e T = 1, x > 0), and let N = (1,...,n). Let j E N be

fixed. Then construct C, !, A(-), and K, K, as in Chapter V, Section 3.

Let f:Sn -*S be a given continuous function. For each (v,t) E K0 , let

L(v,t) = min~ilfi(v) > vi.i!
- F

The algorithm consists of following the infinite path from q E B; the

proof that this path is infinite appears in Section 3 of Chapter V. Let

(x ]00  be the simplices encountered in the path. There exists T CN,
i i=0

T / $, such that L(xi) = for infinitely many i. For each xi

such that Lx = T, choose a point (s ,t i ) E x., and let s* be a

cluster point of the si. By the continuity of f('), fi(s*) > s* forii

all i E T. For all i T, s* = 0, since for all k sufficiently large
i

tk > 0. Thus fi(s*) > s* for all i, which implies that f(s*) = s*,

T T *since e f(s*) = e s 1.

van der Laan and Talman's First Algorithm

In (24], van der Laan and Talman presented a variable-dimension

algorithm for Sperner's Lemma and for computing fixed-points. The pivot
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rules and a sample path for this algorithm appear in Chapter II, Section 2.

Here we present the algorithm as a path-following procedure on a V-complex.

n n T
Let Sn = x E JR le x = 1, x > 03 and let C be the Scarf-Hansen

triangulation of Sn . Let N = (l,...,n) and let S = tT CNIT / N).

Let w > 0 be a fixed vertex of C, and let

-1 0 0 1

00

0 1 .

-1 0

0 0 1 -1j

i th

where Q is an n x n matrix. Let q denote the i-- column of Q.

For each t € Z , let A(T) be the pseudomanifold corresponding to the

restriction of C to

(x E snjx = w + 7 Niqi > 0)

iCT 
-

Finally, let K be the pseudomanifold corresponding to C. It can be

shown that K, A() and define a V-complex. See Figure 7.1.

Now let L(') be a proper labelling (see Chapter IV, Section 1)

of K , and let us examine the sets B and G. Clearly q E B, since

A() = ($,(w). Suppose q / x E B. We have Tx = L(x), and x E 'A(T x).

Let x , ... , v ]. Then v t = 0 for some J E T and all
j x

i= t Thus since L(.) is proper, j ' L(x), a contradiction.

Therefore B = (q).
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Suppose x E 0. Then by Definition of !j, L(x) = N, and x is

a completely-labelled simplex. The algorithm consists of following the

path whose endpoint is V E B. The other endpoint must be an element of

G, and so is a completely labelled simplex. A sample path of this

algorithm appears in Figure 7.2.

van der Laan and Talman's Second Algorithm

In [23], van der Laan and Talman presented a variable-dimension

algorithm for computing fixed points on unbounded regions. An analysis

of this algorithm as a V-complex is as follows:

Let K be the pseudomanifold corresponding to Kuhn's triangulation

of PR , and let f:Pt n IRn be continuous. Let Q be the n x (n+l)

matrix

1 0 . .0 -1

o 1
* 0 1 . . .

Q = . . . . . .

* . .. . . 0

0 0 " 0 1 -1.

Also, let v E KO be fixed. Let N ( 1,...,n+lI, and let

Z =(T C NIT / N). Define A() qtwj), and for V 1 T E 3, define

A(T) to be the pseudomanifold corresponding to the restriction of Kuhn's

triangulation to

{x (X nx w+ i NT 1q i' 
i, ?0)
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i th
where q is the i- column of Q. It can be verified that A(.), Z,

and N define a V-complex. See Figure 7.3. Now let L(.):K 0 -+N be

a labelling function defined by

( i if f i(v) - v, >f k(v) - vk for all k and

L(v) 
fi(v) - vi > 0

fTv))-v<
Sn+1 if f(v) - v < 0.

Let us now examine B and G. Clearly q E B, since A($) = (q, jw)j.

Also since 3'A(T) =$ for all T i $, B - i$1. Also, by definition of

3, G = (x E KIL(x) = N).

The algorithm consists of following the path from V C B. If

this path is finite, then its other endpoint is an element of G.

The usual limiting argument shows that for sufficiently small diameter of the

triangulation, any element of a simplex in G is an approximate fixed-point of

f(.). In [23] and [321, sufficient conditions are given which guarantee

the finiteness of the path from V E B, thus assuring that an element of

G, and hence an approximate fixed-point, is found. A sample path appears

in Figure 7.4.

7.2. Algorithms for the Nonlinear Complementarity Problem

The nonlinear complementarity problem (NLCP) is as follows:

let f:n+- Pn be given. Find x* E C n+ such that f(x*) > 0

and x*f(x*) = 0. This problem, central to mathematical programming,

arises in constrained optimization, game theory, and economic equilibrium

theory. See, for example, Cottle and Dantzig [ 2], Eaves [ 3 ), Lemke

* [281 and [291, and Scarf [35].
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In (11, Luthi presented a variable-dimension algorithm for the

NLCP. In our presentation of his algorithm as an instance of path-following

on a V-complex, we only treat the basic algorithm, and not the restart

procedure.

Let f: JR - R be given, let C be a triangulation of JRn+

and let K be the pseudomanifold corresponding to C. Let N = (1,...,n+lJ,

and let 1 = tTC Njn+l V T). Let A(V) = 10, tO)), and for V / T C ,

define A(T) to be the pseudomanifold corresponding to the restriction

of C to the set

Lx Rn+Ix, = 0 for all i V T)

It can be verifed that B, N, and A(,) define a V-complex. See

Figure 7.5.

Now let the labelling function L(.):K -4N be defined as

follows:

LV {n+l if f(v) > 0

LV any i such that f i(v) < f.(v) for all j if f(v) 0.

Let us now examine the sets B and G. Clearly, E E B, since

A(O) = {(, 0). Furthermore, for T C S, T 6 , ('A(T) :, so there-

fore B 4(.

Let x - G. Then L(x) = T U tn+l), by definition of N and .x

Let s be an element of the real simplex corresponding x. Then if the

diameter of x is sufficiently small, we have that f(s) > 0 (where

"" denotes approximately), since (n+l) £ L(x). Suppose s > 0 for some i.

1
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Then we must have i T . Thus i 6 L(x), and so f.(s) < 0, whichThnw ms av x .  i =

implies fi(s) 0- . Thus we have that s.f(x) 0, and so s solves

the NLCP.

The algorithm consists of following the path from q C B.

If this path is finite, then any element of the terminal simplex x G G

is an approximate solution to the NLCP. Conditions which guarantee the

finiteness of the path are given in Kojima [19]. A sample path appears

in Figure 7.6.

Reiser's algorithm

In [33], Reiser presented a variable-dimension algorithm for the

NLCP, and first introduced the use of negative-valued integer labels.

Reiser's exact algorithm is slightly different from that which appears

in Chapter II, Section 1. The analysis of Reiser's algorithm as an

instance of path-following on a V-complex is as follows:

Let f-R. Jn+ ]Rn be continuous. Let K be the pseudomanifold

corresponding to Kuhn's triangulation of JR +, and let

N = tl,..., n, -1, ... , -n). Let w > 0 be a fixed element of K O .

Let = cTC Nji C T implies -i V T) and define A(q) ($, tw) •

For $ # T E , define A(T) to be the pseudomanifold corresponding to

the restriction of Kuhn's triangulation to

[x EI n+ j V T, -j V T implies xj - wi, and j E T implies J-(x-w)lj, <0).

See Figure 7.7. It can be verified that K, A(.), N, and 3 define a

V-complex. Let L(.):K - N be the labelling function
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ji if min fj(v) + max f.(v) >0j=l, ... n vj> O

and fi(v) > f'.(v) for any v > 0, and v > 0.

L(v) = -i if min fj(v) + max f.(v) <0
n v.>0

and fi(v.) < f V) for any j = 1,..., n

0 if v = 0, f(v) > 0 .

If L(v) = 0, then v = 0 solves the NLCP and we are done. So we assume

that L(O) / 0. In the above labelling function, choose the least index i

in case of ties.

Let us now examine the sets B and G. Clearly V E B, since

A(V) = to, tw)). Suppose ¢ / x C B. Then x C 6'A(T x). Thus for all

v E x, there is some i E. Tx  such that v. = 0. But then we cannot have

L(v) = i, so that L(x) / Tx. This contradicts the definition of B.

Therefore x V B and so B =

Now let x C G. Then there are vertices v', v" C x such that

L(v') = -L(v"). In [33], Reiser shows that for sufficiently small

diameter of C, v' or v" is an approximate solution to the NLCP.

Reiser's algorithm consists of following the path from q E B.

If this path is finite, it must terminate with an element x of G.

In [33], Reisergives sufficient conditions on f that guarantee that

the path from E B is finite. See Figure 7.8 for a sample path.
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7.3. Algorithms for Equilibrium Points in n-Person Noncooperative

Game Theory

An n-person noncooperative (finite) game can be described as

follows: There are N players (I < N < oo), each of whom have m n

pure strategies, n = 1, ... , N. Let m = n m. The given quantitiesn=1 n

a(n; il,..1 . iN) , ij = 1,..., inn; n = 1,..., N; J =,.., N

represent the loss per play to player n if player j plays his/her

ijth pure strategy. These quantities are assumed to be positive without

loss of generality. We denote the strategy vector

_ (i , . .  I x  X I

where
I= (1,..., ion, n = 1,..., N.

Let
m

Sn = (x e I n le Tx = 1, x > 0)

be the set of mixed strategies for player n, n 1,..., N. Furthermore,

1 N
let S = S X ... X SN . S, then, is the set of all mixed strategies

for all players. Let I = I X ... x IN  Define
;1

N
f(n;i,x) = . a(n, i1,  i, i) iY x(k,ik)

I k=l
k.n
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where x(k,j) is the coefficient of the jth term of the kt - mixed

strategy. f(n;i,x) is the marginal loss to player n under the mixed

strategy x C S, for each i E In.

A strategy vector x is a (Nash) equlibrium point if and only

if x satisfies:

i) ixCX

ii) [f(n;i,i) -h(n,i)j i(n,i) = 0, n = 1,..., N; i = 1,..., m,

where h(n,x) = min f(nyi,i).
ic I n

In [25], van der Laan and Talman present an algorithm that

computes an approximation of x. To do so, they also present a neat way

to triangulate S. Before interpreting their algorithm as path-following

on a V-complex, we first need to describe their triangulation.

Let d, ... , dN  be fixed positive integers, and let w > 0

be a fixed element of S such that dn w(n,i) is integral for all

n=,..., N, i=l,..., mn. Let

-10 0 1'

00
11- "

1 0 1 .

n ...
n

-1 0

0... 0 1 -I

where n is an (mn) X (mn) matrix. Let Q be defined by:
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Furthermore, let q be the JA column of Q. Let v0  be any point in

the affine hull of S, such that d nv(n,i) is integral for n = 1,..., N,
n

i = . m n . Choose indices kl, ... , N such that kn E I,

n = I, , N. And let 7r be a permutation of I\{k.,..., kN). Define

for J = 1,..., n-N,

vi vj =J-1 + qf(j)•

Then it can be shown that (v,..., v ) is an (-N)-dimensional real

simplex in the affine hull of S. The collection of all such simplices

on S can be shown to be a triangulation of S. Call this triangulation C.

Let us now set up our V-complex related to S. Let

= (n,i)li C I n = ,..., N).

Let = (T cRIfor each n, ((n,i)I(n,i) E T) / ((n,l),..., (n,mn)),

n = 1,..., NJ. Define A(q) = ( , w). For each T E , T / , define

A(T) to be the pseudomanifold corresponding to the restriction of C to

the set

nSX wT k(n,i)q (n,i)' (n,i) > 0) ,. (n, i)ET
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n-1
where q(ni) is the ( E m. m+ i) h column of Q.

j=l *

It can be shown that this restriction is well-defined, and that

SK, I, 7K , and A(-) define a V-complex, where K denotes the psueodmanifold

corresponding to C.

0 -We now define a labelling function L(.):K -*N, by the rule:

L(v) = (n,i) if (n,i) is the lexicographic least index with x(n,i) > 0

and f(nji,v) - h(n,v) > f(mgj,v) - h(m,v) for all other (m,j) E i.

It can be shown that this labelling rule is well-defined.

Let us now examine the sets B and G. Clearly $ C B, since

A(O) = (q, (w)}. Suppose, 0 /x C B, where x ( v1 , .. ., Vt) for

some t > 0. Then L(x) = Tx  and x E 3'A(T x). Thus, for some (h,i) C T ,

v~hi) 0 for all j = 1,..., t. But then, by definition of L(.),

(n,i) V L(x), contradicting the fact that L(x) = T . Thus B = 4).i x

Since B contains only one element, G must contain an odd

number of elements, by Corollary 3.11. Let x C G. Then, for some

n E li,..., N), L(x) D ((n,l),..., (n, n)). As is pointed out in [25],

any element of x represents an approximate equilibrium point, for

sufficiently small diameter of C. van der Laan and Talman's algorithm

consists of following the path from C E B to its other endpoint, an

element of G.
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7.4. Concluding Remarks

In this chapter, we have shown that a number of variable-dimension

algorithms can be formulated as path-following schemes on a V-complex.

There are two noteworthy variable-dimension algorithms whose formulation

in the context of a V-complex appears doubtful. These are the game-theory

algorithm of Garcia, Lemke, and Luthi [131, and the algorithm of van der

Heyden [16] for the linear complementarity problem.

The algorithm of Garcia, Lemke, and Luthi [13] for equilibrium

points in noncooperative n-person games is truly a variable-dimension

algorithm. However, it uses neither integer nor vector labels, but rather

uses a sequence of labels, called p-labels, in its execution. The label

function varies as a function of the state of the algorithm. It is the

lack of a unique labelling function in the algorithm which makes it

difficult to interpret the algorithm on a V-complex.

Van der Heyden's algorithm [16] for the linear complementarity

problem is also a variable-dimension algorithm. In this algorithm, the

dimension of the "simplex" (actually the set of relevent non-basic

variables) can jump by more than one-dimension between two "adjacent"

states. This makes the interpretation of the algorithm on a V-complex

very doubtful as well.

With the exception of these two algorithms, all variable-dimension

simplicial algorithms that have come to my attention can be interpreted

as path-following schemes on a V-complex.
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CHAPTER VIII

CONCLUDIN REMARKS

8.0. Introduction

In this chapter, we make some summary remarks and conclusions

regarding V-complexes, H-complexes, and their extensions. To begin with,

let us summarize the development of the last five chapters of this

dissertation. In Chapter III, we axiomatically defined a V-complex.

We then showed how to "lift" a V-complex into an n-dimensional pseudo-

manifold called an H-complex. With a labelling function specified, we

showed how to do path following on V-complexes and equivalently on H-com-

plexes. In Chapter IV, we used V-complexes to prove a variety of results

in combinatorial topology, some new, some old. In Chapter V, we applied

these results to prove a number of existence theorems in the mathematical

theory of operations research, where we interpret operations research

broadly to include optimization, game theory, and fixed-point theory,

;. among other fields. In Chapter VI, we developed an orientation theory

and an associated result on path orientation. Finally, in Chapter VII,

we show how most variable-dimension simplicial algorithms can be interpreted

as path-following algorithms on a V-complex.

* 8.1. Vector Labelling

In most simplicial algorithms, vector-valued rather than integer-

valued labelling functions are used. A typical algorithm traces a path of
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zeroes of a piecevise-linear (PWL) map induced by the labelling function.

When integer labels are used, the algorithm can still be interpreted as

tracing a path of zeroes of a PWL map, but is more naturally interpreted

via the "ghost story" as stepping between "almost-completely-labelled"

simplexes of an n-pseudomanifold.

In this dissertation, we have restricted ourselves, for the sake

of clarity, to integer-labelling functions. However, the extension of path-

following on a V-complex to vector-valued labels is not difficult. The

following summary remarks show briefly how to extend our results to

vector labelling:

Let K be a V-complex, and let R be its associated H-complex.

Let = [ql,..., qn) be the artifical vertices used in R. Assume

can be realized as a triangulation C of some n-dimensional set S in

M P where p > n, with vertices K . Let 11, " be pre-specified
- nl

(n-1)-vectors in ]Rn-l  such that the system

n
XiIi = 0 , i  0, i = 1,.., n

eTXe~X = 1

has a unique solution. Then let L(.):KO -_ be any vector labelling

Sfunction, and extend L(-) to by the rule

L(qi) = i ' i = 1,..., n.

Then we can perform PWL path-following on K much as in Eaves [6].

Of course, we need to assume a regularity condition on L(") or specify
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a perturbation scheme in order to guarantee our path is well-behaved

(i.e. no bifurcation takes place), but the essential ingredients are all

as stated above.

8.2. Kojima's Work

In [20], Kojima has presented an interpretation of variable-

dimension algorithms as PWL path-following on a special type of subdivided

manifold with primal and dual elements. His work is neither a generalization

nor a special case of our own. In his approach, the notion of triangulation

is not used, but rather he works with subdivided manifolds. His dual sub-

divided manifolds correspond loosely with our simplices that are subsets

of q, but his dual manifolds are not necessarily simplices. In this sense,

his work is more general. In another sense, our work is more general,

since we are not restricted to simplicial structures that can be imbedded

in real n-dimensional space, i.e. our results depend only on pseudomanifolds.

8.3. V-Complex Topology

The structure of a V-complex, as we have seen, is a tool that

is useful in other mathematical systems. However, its straightforward

axioms make it somewhat interesting in its own right. One is led

naturally to ask, "What kinds of sets can be realized as triangulations

derived from V-complexes?" Although we have no definitive answer to this

question, some remarks are in order.
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Consider a 2-pseudomanifold K that is combinatorially equivalent

to the Mobius strip (see Chapter I, Section 3). After many attempts, we

have been unable to design a nontrivial V-complex with K as the under-

lying complex, where by nontrivial we mean a V-complex such that % contains

more than one element.

Furthermore, we have been unable to construct a nontrivial V-complex

associated with the two-dimensional torus.

Of course, both the torus and the Mobius strip are non-convex

sets. This naturally leads to the question as to whether or not any

nonconvex set can be realized as a nontrivial V-complex. This question

is resolved in Freund [10], where we present a non-trivial V-complex

associated with the n-sphere, a non-convex set for n > 0.

A final question is, "Under what circumstances can the (n-pseudo-

manifold) H-complex ! be realized in JR as a triangulation?" The

H-complexes R associated with the V-complexes in this dissertation

are all realizable in IR n, but this by no means answers the question.

8.4. Applications to Polyhedra

Associated with a real n-dimensional polytope is an (n-l)-pseudo-

manifold derived from its boundary (see Adler and Dantzig [ 1], for

example). Researchers in linear programming and combinatorial optimization

have studied the structures of these pseudomanifolds in relation to the

Hirsch conjecture on the diameter of polytopes and other problems as well.
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Although we have not applied V-complexes to polyhedra, there appears to

be potential use for V-complexes in the combinatorial study of polyhedra

and their related pseudomanifolds.

8.5. More on the Combinatorial Lemmas

As a final note, we make some remarks regarding the combinatorial

lemmas of Chapter IV. As is summarized at the end of Chapter V, the

Generalized Sperner Lemma provides a direct proof of both Sperner's

Lemma and Scarf's dual lemma. These latter two results provide a direct

proof of Brouwer's Fixed-Point Theorem, and vice versa. However, whereas

Lemma 4.6 and Kuhn's Lemma both imply Brouwer's Theorem, we have been

unable to use Brouwer's Theorem to prove either result. In [21 1, Kuhn

proves a weaker version of his lemma by appeal to Brouwer's Theorem.

A natural question, still unanswered, is "Is there a similarly weaker

version of Lemma 4.6 that is implied by Brouwer's Theorem?"

In Chapter V, we showed how combinatorial lemmas on the simplex

and the cube can be used to prove Brouwer's Theorem. Are there combinatorial

results on other polyhedra that prove Brouwer's Theorem? All of the combi-

natorial results on the simplex and cube are derivable by appeal to a

V-complex. On other polyhedra, what sorts of V-complexes (associatedy
with the polyhedra) could give rise to new combinatorial results?

Although we have no answers to these questions, we are confident

that further study may give partial or complete answers, and look forward

to the possibilities that new research can offer.
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