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PREFACE

In the past several years, researchers in simplicial pivoting
algorithms have developed a new class of algorithms, called variable-

dimension algorithms. The dimension of the simplices encountered in the

execution of these algorithms can vary significantly and it is this

variability that sets these algorithms apart from other simplicial pivot-
ing algorithms.
With the partial goal of presenting a unified view of these variable-

dimension algorithms, we introduce a new mathematical structure called a

V-complex (which is short for "variable-dimension complex"). A
V-complex is axiomatically defined using elementary concepts from alge-
braic topology. With the addition of a labelling function on a

V-complex, we develop a theory and a characterization of paths generated

by V-complexes, that are reminiscent of the paths generated by typical
simplicial pivoting algorithms.

For a given V-complex, we define its associated H-complex
(which is short for "homogeneous-dimension complex"). We then show that
an H-complex is an n-dimensional pseudomanifold; furthermore, path-follow-
ing on V-complexes is equivalent to and is a "projection" of the well-

known path-following scheme on a pseudomanifold, as applied to the

He-complex.
Path-following on V-complexes gives rise to comstructive proofs of
a host of lemmas from combinatorial topology, including the Sperner Lemma,

Scarf's Dual Sperner Lemma, Kuhn's Strong Cubical Sperner Lemma, and

Tucker's Lemma on the n-cube. Exploiting the structure V-complexes, we
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present two new combinatorial lemmas, the Generalized Sperner Lemma,

and a new lemma on the n-cube. These combinatorial lemmas have interest-
ing relationships with existence theorems for fixed-points, antipodal
points, stationary points, nonlinear complementarity points, and
equilibrium points in n-person non-cooperative game theory. The
Generalized Sperner Lemma results in a new Covering Theorem on the simplex,
as well as two other new results on the simplex.

V-complexes are also used to present a unifying theory of variable~
dimension simplicial pivoting algorithms. We show that essentially all of
these algorithms can be viewed as path-following schemes on & V-complex.

Similar to the orientation theory for pseudomanifolds, we present
an orientation theory for H-complexes, which gives insight into the behavior
of the paths on H- and V-complexes. We then give sufficient conditions
on a V-complex that guarantee that the associated H-complex is orientable.

In Chapter I, we review some basic concepts from algebraic topology
and triangulations. In Chapter II, we motivate our study by presenting
Reiser's algorithm for the nonlinear complementarity problem, and
vander Laan and Talman's first fixed-point algorithm. In Chapter III, we
introduce and develop the theory of V-complexes and H-complexes. In
Chapter IV, we present and give constructive proofs of the combinatorial
lemmas noted above. In Chapter V, we show the relationship between thesge
lemmas and certain existence theorems. We also prove new results using

these lemmas., In Chapter VI, we present an orientation theory for

H-complexes, and give sufficient conditions for the orientability of




H-complexes, In Chapter VII, we demonstrate that virtually all

variable-dimension algorithms can be viewed in terms of a V-complex.
In Chapter VIII, we make some concluding remarks and give suggestions

for further research,.
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NOTATION

real n-dimensional space

(x€ R" |x >0)

the vector of 1's, (1, 1, 1, ... , 1)
the empty set

symmetric difference operator on sets;

SAT - (x|x €S UT, xgd S NT)

difference operator on sets;

SN\T=1{x|x€s, x¢T

the Euclidean norm; Hx”2 = \/xi +oeee 4 xi

“x”oo = m:'xlxil

Let o be a real n-gimplex, The diameter of ¢ is

equal to max [[x-yl, where ||-|| is any norm.
xs¥5 g

Let C Ye a triangulation. The diameter of C 1is

equal to sup [diameter of o].
ceC

the 1-1"-!—1 column of a matrix A

the 122 row of a matrix A.

the igh unit vector in lfl.

|
|
i
:
i
i




CHAPTER 1

COMPLEXES, PSEUDOMANIFOLDS, ORIENTATION, TRIANGULATIONS

; 1.0, Introduction
In this first chapter, we review some basic concepts from algebraic
topology that provide a basis for the material which follows. Specifically,
we discuss the notions of an abstract complex, pseudomanifolds, orientation,
] and triangulations. Most of this material is not new, but a review is

helpful.

1.1. Complexes

An ebstract complex consists of a set of vertices Kp and a set

of finite nonempty subsets of Kp, denoted K, such that

i) v € Kp implies {v} € K

ii) g #xCy€K implies x € K.

The elements of K are called simplices. Suppose x € K and |x| = n+l,

where |[-| denotes cardinality. Then x is called an n-dimensional

simplex, or simply an n-simplex. Condition (1) above means that all

members of KO are O-simplices, and condition (ii) means that K is

——- e r———ct ——— -

|

i

¢

' closed under subsets. Technically, an abstract complex is defined by the
i

E C pair (K,Ko). However, since the set © is implied by K, it is con-

|

) ; venient to simply denote the complex by K alone.

As an example, consider

K = {{a), [V}, (c), {a,b}, (a,c}, (b,c], (a,b,c}, (a,d) (d)}.




Then Kp = {a,b,c,d}. {a,b} 1is & l-simplex, {a,b,c} 1is a 2-simplex,
and ({d} 1is a O-~simplex.
An sbstract complex K is said to be finite if the set Kp is

finite. An abstract complex K 1is said to be locally finite if for each

v E Kp, the set of simplices containing v 1is a finite set. More formally,

K 1is locally finite if and only if for each v € Kp,
{x € K|]v € x} is a finite set.

Clearly, if K 1s finite, it is locally finite. The converse is not always

true.

The previous example is a finite complex, As an example of a

locally finite complex that is not finite, let

K = {{1]: [2}} {3]) cee [1;2]1 [2,5], {3:“), PR ] .

As an example of a non-locally finite complex, let

~
1]

[{1)) [2}: {3]7 e {1:2]) [193), [l,l&}, [1;5}:--- ]‘

A subset L of K {is said to be a subcomplex of K if L 1itself is

a complex.

1.2. Pseudomanifolds

A particular class of complexes, called pseudomanifolds, is central

to the theory to be developed. An n-dimensional pseudomanifold, or more

simply an n-pseudomanifold, is a complex K such that
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1) x € K implies there exists y € K with |y| = n+l,

and x Cy.

i1) If x€ K and |x| = n, then there are at most two n-simplices

that contain x.

Let

K= {(a:b:c]r (a:bsd}: (a,c,d], (aub]’ (a’c]) {a,d}, {b:c]; {v,d],
(c,d), (a}, (b}, (e}, (d}} .

Then K 1is a 2-dimensional pseudomanifold.

As an example of a complex which 1s not a pseudomanifold, let

X = {{s,b,c}, (a,b,d), {a,b,e}, (a,b}, (a,c}, (b,c}, (8,4}, {b,d]

{a)e)) [b)e): {a}, [b}; {c], [d], {e}} .

Here (a,b] is contained in three 2-simplices.

Let K be an n-pseudomanifold. The boundary of K, denoted OK,
is defined to be the set of simplices x € K such that x is contained
in an (n-1)-simplex y € K, and y is a subset of exactly one n-simplex
of K.

Let K = {{a}, {b}, {c}, {4}, {a,b}, {b,c}, {c,d}}. Then
oK = {{a}, (d}}.

Not all pseudomanifolds have & nonempty boundary. For example,

let

K= [{a}, {b]; {e], {d}) [a}b]’ [b;c]; (e,d}, {d,a}} .

Then OK = ¢,




- o

An n-pseudomanifold K is said to be homogeneous if for any
pair of n-simplices x, y € K, there is a finite sequence
x=ﬁ,ﬁ,%,”.,xm=yofmﬂwnmsnzK wwtmtxinﬁﬂ
is an (n-l)-simplex in K, for i =1, ..., m-l. The preceding examples

of pseudomanifolds are all homogeneous.

As an example of a non~homogeneous pseudomanifold, let

K= {{a,b,C], {c,d,e}, (a,b]}, {a,c}, (Db,c}, (c;d)r {c,e}, (d,e)

{a}, [b}: [C}) {a}, (e}} .

There is no "path" of n-simplices connecting (a,b,c} and {¢,d,e}.

Before closing this section, we define the notion of a pivot and
8 neighboring pair. Let K be an n-pseudomanifold and let x be an
n-simplex in K. Let x = {vo, oo vn]. Let y = {vl, vee vn}.
If y ¢ OK, there is a unique w € K° such that (W) Vyr eee s v, is

an n-simplex in K, The process of exchanging v. for w to obtain a

0

new n-simplex is called a pivot, In general, if x and 2z are n-simplices

and 2z can be obtained from x by a pivot, x and 2z are sald to be a

neighboring pair, or simply neighbors.

1.5. Orientation
Let K be a homogeneous n-pseudomanifold, and let x be an
n-simplex in K, Let (vo, ey vn) be some fixed ordering of the

vertices of x. For an arbitrary ordering (vJ ) eee s V. ) of x,

J
0 n
this ordering is said to have a (+) orientation if and only if the

permutation

(3gr =vv 2 3p)

is even; otherwise the orientation is ().




]

|
!
l
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Now let us extend this notion to all of K. Fix an ordering of
all n-simplices of K. Let x be an n-simplex and let y be an n-simplex
obtained by pivoting on an element vJ_1 of x and replacing vji by w.
We say that the pair (x,y) 1is coherently-oriented if the orderings
(vjo, cee vjn) and (vjo, oo vji_l, W, vj1+1’ vee s vjn) are
differently oriented, i.e. one is (+) and the other is (-). K is

said to be orientable if it is possible to specify orientations on all
n-simplices of K 1in a way that all neighboring n-gimplices x, y are
coherently-oriented.

It is important to note a convenient way to go about orienting
K, if K 1is orientable, Choose an n-simplex x and an ordering of its
vertices and designate this ordering as (+). Then, by the homogeneity of
K, we can orient all simplices that form & neighboring pair with x, and
hence all n-simplices of K,

A natural question to ask at this point is whether or not all

homogeneous pseudomenifolds are orienteble, The answer is no. Figure 1.1

schematically represents a non-orientable 2-pseudomanifold that is equivalent

to the famous Mdbius strip. The maximal elements of K 4re
la,b,c}, (a,c,d}, (c,d,e}, (d,e,f}, (e,f,a}l, and {f,a,b). It is a simple

exercise to verify that K cannot be oriented.

e el
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Figure 1.1

Figure 1.2, on the other hand, represents an orientable 2~pseudomanifold.

(a,b,c)
(c,b,d)
(c,d,e)
(c,e,f)
(f,e,g)

(g,e,h)
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Finally, we define induced orientation on the boundary of K. Let
K be a homogeneous orientable n-pseudomanifold such that OK 4is not
empty. Let y be an (n-1)-simplex in OK. Then there is a unique
n-simplex x € K such that y Cx. Orient K coherently. Let
(V.5 voe » V., ) be an ordering of the vertices of x. y =x \\[v )
Jo dn Iy
for some i uniquely determined., Denote the orientation of the ordering

(v, , vee , v, ) by Or(v,, ... , v, ). Then we define the induced
‘jO Jn 'jO Jn —

orientation on y as

Or(v, , sev , Vv, , V y eee v, ) = (-1 ortv ) eee V. )
Jo Ji1 9 " g Jo "

Proposition 1.1. Induced orientation is well-defined.

PROOF., Let y be an (n-l)-simplex in OK, and let x be the unique
n-simplex in K that contains y. Let (10, cee s in-l) be an ordering
of the vertices of y, and let (jo, cee s jn) and (zo, cee s ln) be
orderings of the vertices of x, from which (io, cen s in-l) is derived.

y = x\v for some unique V€ x, V=v, = v, for some unique T, s.
r s

If r = s, then (jo, eee Jn) = (20’ ceo g Zn)’ and

Or(igy «ve » 1 4) = (1) 0r(3gs o 5 3p) = (L)% Or(sg, ouv s £))

trivially.
So suppose s > r. It takes s-r transpositions to change

(Jor =+ s dy) to (fg, «ov s £). Hence (-1)7 0r(jg, «ov ) 3p)

= (<17 (-1)% or(gy, ..., £) = (<)% 0r(gy, oo, 2). B
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1.4, Triangulations

The pseudomanifolds discussed so far are very abstract objects.
They can be schematically represented, but trying to picture what they
are all about is not easy. An n-dimensional pseudomanifold is an abstrac-
tion of a triangulation of an n-dimensional set in R". The p-simplices
of pseudomanifolds correspond to geometric objects, which by an unfortunate
tradition, are also called m-simplices., In order to formally define a
triangulation, we first need to define a real m-simplex in ZRn.

0 m

Let vo, vee s v® be vectors in Zmn. vV, ... s v are said to

be affinely independent if the matrix

has rank mtl, If vo, cee v® are affinely independent then their

convex hull, denoted (vo, eee , V) is said to be an m-dimensional

gsimplex, or more simply an m-simplex., All m-simplices are closed and
J J
0

bounded polyhedral convex sets. Let (v ~, ..., Vv k] be a subset of

0 m 1 Ik
(vy vee , V). Then (v, ..., v ) 4is called a k~dimensional face of

k-face of (0, ... , v%). Any k-face of {(v°, ... , v®) is & k-simplex

itself. An (m-1)-face of an m-simplex is called a facet of the m-simplex,
With the notions of simplices and faces in mind, we are ready
to define a triangulation, Let H be an m-dimensional convex set in

ZBn. Let C be a collection of m-simplices o together with all of

their faces. C is a triangulation of H if
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i1) o, T€C imply o NTEC

ii1) If o is an (m-1) simplex of C, ¢ is a face of at most

two m-simplices of C,

The connection between triangulations and pseudomanifolds should be clear.
Corresponding to each simplex o in C 1is its set of vertices [vo,...,vk).
Let K be the collection of these sets of vertices. Then K 1ig an
m-dimensional pseudomanifold.

Before concluding this section, we describe two useful triangulations,

A
one of JRn, and one of T" 2 (x € ]RnleTx= 1).

1.4.1. Kuhn's triangulation of K"

Let 2" denote the integral points in Rn, let N = (1

’ooo,n),

and let 7 be a permutation of N. We define the simplex
0 0 1
oy, ™ =4y, ¥y, ... ,¥") where y =yt +el 1=1,,.., n,

where yo € Zn, and ei is the igl- unit vector in R", The collection
of all such o(y,m) as y ranges over all of z? and 7 ranges over
all permutations, together with all faces of o(y,w), is a triangulation
of ]Rn . By scaling these simplices, we obtain triangulations of ]Rn

with arbitrarily small diameters of the simplices.




1.4.2, The Scarf-Hansen triangulation of s"

Let ¢ be a fixed positive integer. Let Q be the following
nxn matrix:
-1 O . . . 0 +1 7

+1 -1 . 0

et . . L L. )
c
. . . -1 O
Lo . . « 0 +1 _1-
Let the :I.E-t-l column of Q be denoted by qi. Let 7 be a permutation
of N=(1,...,n}] with any one element of N missing. Finally, let yp

be an element of 2" such that eTy0 = ¢, Then we define the simplex

0
0 1 -1
O'(y ) Tr) = %: Y5 eony yn )’

s
where yi = yi-l + q i. The collection of &ll such a(yo,w) together

with all faces of o(y’,7), is a triangulation of T°. Let
s? = {x € If‘|eTx =1, x >0}, Then the restriction of this triangulation

to s® 1s also a triangulation of s" and all faces of Sn.

1.5. A Word on O-Dimensional Pseudomanifolds
In the definition of a complex, the empty set ¢ is not an
admissible element of the complex K., However, it 1s extremely desirable

to allow, and insist, that the empty set be an element of K, if K ig a

10
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O-dimensional pseudomanifold. O-dimengional pseudomanifolds either consist
of one element or two elements. Hence X = {{a}) or K = {{a), (b]}.

We shall allow the empty set to be the unique (-1)-dimensional simplex
contained in K, If K has one element, then upon amending K, we

have K = (¢, {a)), and we say ¢ € 3K, If K has two elements, the

amended K is (¢, (a), {b}}, and OK = ¢; hence ¢ ¢ K,

1.6. References

Pertinent references for complexes and pseudomanifolds are
Spanier [39] and Eaves [ 4]. Some of the material on orientation was
taken from Lemke and Grotzinger {30], The material on triangulations
is based on Kuhn [21], Scarf [35], and Todd [41].

It should be noted that the notion of orienting pseudomanifolds
can be extended to triangulations by the use of determinants. The
interested reader can refer to Eaves [6] and Eaves and Scarf [8] for a

development on orienting triangulations.
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CHAPTER II

THE ALGORITHMS OF REISER AND VAN DER LAAN AND TALMAN

2.0 Introduction

In the past few year, researchers in mathematical programming
have developed a new class of algorithms for computing fixed-points,
solutions to the nonlinear complementarity problem, and equilibrium
points in non-cooperative games. Unlike previous algorithms, these
particular algorithms generate simplices of varying dimensions, and

hence are called variable-dimension simplicial algorithms. As stated

in the introduction, this dissertation presents a unifying view of
these variable-dimension algorithms. In order to motivate the reader
for the material of Chapter III and beyond, we present two of these
algorithms in this chapter. The first algorithm, due to Reiser [33],
is used to find an approximate solution to the nonlinear complementarity
problem. The second algorithm, due to van der Laan and Talman [24],
is used to find an approximate fixed point on the unit simplex.

The aim of this chapter is to illustrate certain properties of
the paths generated by these algorithms. Hence, we only state the
algorithms' pivot rules and present sample paths that each algorithm

could generate. For complete descriptions of these algorithms, see

the references above.

2.1, Reiser's Algorithm

Reiser's algorithm, mutatis mutandis, is based on Kuhn's triangu-

lation (denoted T) of R" scaled by a constant ¢ >0, Let w be

12
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a fixed vertex of the triangulation., Let L(*) Dbe a labelling function
that assigns to each vertex of T an element of (*l, ... , + n}. The

algorithm is as follows:

Step O (Initialization), Set vi= w, g =1 (q is the index of the
vertex to be labelled), m = 1 (number of vertices of the actual simplex §).

Go to Step 1.

Step 1 (Labelling). Let £ = L(v%). If there exists a vertex v of 8
with L(v) = -£, go to Step 4. If there is a vertex vk, k #q, of S

with L(vk) = 4, go to Step 2. Otherwise go to Step 3. .

Step 2 (Dropping or Replacing & Vertex). vk is replaced by the only vertex
-k

v~ which can be added in order to obtain another (m-1)-simplex of T in

the affine hull of S. If there is an i € {1,...,n) with (Gli‘-wi)(v‘i‘-wi)<o,
determine that j € (1,...,m} with lL(vj)l = i, drop Gk, let ke« j,
m+—m-1, and go to Step 2. Otherwise let vk«-w';k, g+«—k, and go to

Step 1.

Step 3 (Adding a Vertex). Let v1 < vee < vt

-+
If £ >0, let v 1-o--vm + coez. Otherwise, let v

be the vertices of S.

ml 1 | 2]
«—V = C*e o

let m+emtl, q«m and go to Step 1.

i
Step 4 (Termination). A simplex has been found with two vertices, v 1,
I 4 1
v <, such that L(v ~) = -L(v ©). Stop,
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It can be proven that this algorithm can always be executed and
that cycling cannot occur. Finite termination depends on regularity

conditions imposed on L(-) either directly or through a function f£(-)

from which L(-) 1s derived.

! Figure 2.1 illustrates a sample path that could be generated by
the algorithm in ZR2. With the aid of this sample path, we make some
observations about paths generated by the algorithm.

Pirst, we see that the algorithm generates simplices of varying

- e

dimensions, but it does not do so arbitrarily! When the simplices are

i strictly inside a given quadrant (relative to w), it generates 2-simplices.
1 When the algorithm is moving along a coordinate axis, it usually generates
l-simplices, Were we to examine a sample path generated in ]Rn, the

above remarks would generalize.

Second, the adjacency rules appear to be different for each quad-

rant, In the southeast quadrant, adjacent 2-simplices share the labels

-————

| {1,-2}. In the southwest quadrant, adjacent 2-simplices share the labels

{=1,-2}, etc. Along the coordinate axes, a related phenomenon takes

2

place. In the north pointing axis, adjacent l-simplices share the label
{2}. In the south pointing axis, adjacent l-simplices share the label
S {-2}, etc.

Finally, we remark that we have made no real use of the fact that

—— o
.
- - e “_

the simplices of T have relative interiors, Indeed, we only use the
vertices of the simplices, and the only extensively used property of

T 1is its relation to a pseudomanifold.

1k
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The above remarks suggest that we redefine adjacency between two
simplices in terms of the region of IRn in which they are located.
Furthermore, they suggest that we assign labels to entire regions of

:mn. We could (and later on we shall) refer to the northeast region

|

of Figure 2.1 as the "{1,2)}-region” and the north-pointing axis as the
"(1)-region." Finally, the remarks suggest we look at the algorithm

combinatorially, in terms related to pseudomanifolds.

2.2, van der Laan and Talman's First Algorithm

van der Laan and Talman's first algorithm for computing fixed

points on the unit simplex uses Scarf's triangulation of Sn, which we denote

by C. Let c¢ be the scaling factor for the triangulation, and fix w,
a vertex of C. Let L(*) be a labelling function that assigns to each
vertex of C an element of (1,...,n}. van der Laan and Talman's
algorithm sppears below. In the notation of the algorithm, N = {1,...,n]
and TC N, YT is a permutation of the elements of T used to define
the simplex. t is the dimension of the current simplex under scrutiny,
q is the index of the incoming vertex, and k is the index of the out-

n

going vertex. R 1is a work vector, RS R q(i) 1is the 128 column

of Q defined in Chapter 1, section 4,2, A simplex encountered in the

algorithm is described by vo, T, YT, where for i =1,...,t, vi

Step O (Initialization). Set T, YT4—¢, t «0, R0, v — W,

q+~0,

16

i-1, T
=v*heg(r}).




Step 1 (Labelling a Vertex). Set £ =L(v®). Iz (LGO),..., L(v®))
= {1,...,n}, go to Step 4. If £ 1is different from the labels of all other

vertices, go to Step 3. Otherwise [ = L(vk) for some k € {O,...,t}\{q].
Go to Step 2.

Present
value New value T New
of k of O New value of R q
0 T T T T T
0 T T T T T
l<k<t-l)v COTRRRVS HRTR WP PN o I k
_ 0 T T T T T
1 k =t v o= alry) (rgsT seesliy) R-elry)| O
% Table 2.1
}

Step 2 (Replacing or Deleting a Vertex). Determine new values of vo, rT,

R, and q from Table 2,1. If R >0, go to Step 1. Otherwise, set k

' equal to the index j such that L(V'J) = YT

T
o Set R<—R+e(rt),

| T <—T\[YT}, rT - (YT, ...,YT ), t+—1t-1, Go to Step 2.
‘ t 1 t-1
i
: t+1 t
Step 3 (Adding a Vertex). Set v =v +q(L)., Set T«TuU (¢},

T
YT _ (Y'{’---:Yt’z)’ t—t+l, g«t. Go to Step 1.

Step 4 (Termination). A simplex has been found with [L(vo),..., L(vt)]

. = {1,...,n}, and hence t = n-1, Stop.

17
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Under suitable conditions imposed on L(*) (i.e. that L(*)

be a "proper" labelling, see Chapter IV, Section 1), it can be proven

that the steps of the algorithm generate a unique finite sequence of

simplices, and that the last simplex of the sequence satisfies the
termination conditions of Step 4.

A sample path that the algorithm could generate in S5 appears
in Figure 2.2. As in the case of Reiser's algorithm, we see that in
different regions of the simplex, the adjacency properties of the generated
simplices varies. In the upper right region of the simplex, adjacent

2-simplices share the labels ({1,2), in the central left region of the

3 simplex, adjacent 2-simplices share the labels {2,3). Along the right-
L]

pointing axis from w, adjacent l-simplices share the label {1}, etc.
z And, as in Reiser's algorithm, we only take advantage of the pseudo-
{
1
H

manifold properties of the triangulation in the execution of the algorithm.

' ! 2.3. Conclusion and Final Remarks

We have seen that the variable-dimension algorithms of Reiser

and van der Laan-Talman have a number of properties in common. As

ey S

it turns out, numerous other variable-~dimension algorithms (i.e., all

— ——

such that have come to my attention) share these properties. In the

-

next chapter, we shall define a gpecial complex which has the above-

mentioned properties. And we shall show in Chapters IV and VII that
the variable-dimensional simplicial algorithms can be viewed as acting

on specific realizations of this complex.




———— Aepa Y

Figure 2,2
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CHAPTER III

V-COMPLEXES AND H-COMPLEXES

3.0. Introduction

In this chapter, we define a particular type of complex, called
a V-complex. We define adjacency between two simplices of a V-complex
in a general manner, and then proceed to characterize paths generated
by the adjacency properties of V-complexes. The net result is a path
following scheme, or algorithm, that encompasses & variety of known
algorithms, and lays a foundation for new algorithms as well.

The concept of a V-complex and the adjacency rule for simplices
are the central theme of this dissertation.

The development of this chapter is fairly abstract, and directly

uses the material of Chapter I,

3.1. V-Complexes
Let X be a simplicial complex with vertices KO. Let N be

a fixed finite nonempty set, which we call the label set. Let J denote
a collection of subsets of N, which we call the admissible subsets of N.
Let A(*) be a set-to-set map, A:3 —aZK\\{¢], where 2° denotes the

collection of subsets of a set 8. K 1s said to be a V-complex if the

following eight conditions are met:




g vawoe . —

———

. er A ———— g £ PEI————

i) K 1is a complex with vertices K
11) sc2b
iji) TEQY, SE Y implies S NTE Y

iv) A(+):% —+2K\[¢}

v) For any x € K, thereisa TE€ S such that x € A(T)
vi) For any S, TE€ S, A(S NT) = A(S) N A(T)
vii) For T € %, A(T) 1is a subcomplex of K and is a pseudommanifold

of dimension |T|, where |:| denotes the cardinality of the set.

viii) TE€Q, TU({J1 €S, ¢ T implies A(T) C JA(T U {J)).

Let us examine these properties. (i), (ii), and (iv) reiterate what
has been said in the preceding paragraph. (iii) imposes some structure
on %, namely that it is closed under intersections. (v) states that the
map A(*) covers all simplices of K. (vi) states that A(-) 1is a
homomorphism with respect to intersections. (vii) states that each A(T)
is an appropriately-dimensioned pseudomanifold. Condition (viii) stipulates
how the pseudomanifolds A(T) are arranged relative to each other,
namely that A(T) is part of the boundary of A(T U {j)).

As an example of a V-complex, consider Kuhn's subdivision of
:me, as is used in Reiser's algorithm. Let N = {#, +2}, Let I be
the collection of sets (1}, (-1}, (2}, (-2}, (1,2}, (1,-2}, (-1,2}, (-1,-2}
and ¢, Let K be the complex (actually a pseudomanifold itself)
associated with Kuhn's triangulation. Then for each T € §, we define

A(T) = {(x £K|v € x implies i-v >0 foreach 1€ T,and v, =0
11| = ’ 1

if £ €T and -1 € T).




A(2)

A(-1,2) AQ1,2

A(¢)\
A (-1 (1

A(-1,-2) A(-2) A(L,-2)

Figure 3.1

Figure 3.1 illustrates this V-complex. Note that for matters of convenience,
the set brackets { )} have been deleted, In the figure, A(¢) is the
origin, A(i) corresponds to one of the four axes emanating from the origin,
and A(i,j) corresponds to one of the four quadrants.

Figure 3.1 is by no means the only V-complex associated with
E@ . Figures 3,2 and 3.3 demonstrate other V-complexes associated with

2
R , with the triangulations omitted.
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A(2,3)

A(2)
AQ1,2)

AQY———

A(d)

A(3)
A(1,3)

Figure 3.2

Figure 3.3




Suppose K 1is & V-complex. Let x I K, We define

(3

T = N T
X  reg
x< A(T)

Tx then is the smallest set T such that x € A(T). We say x 1is full
if x| = ITxI +1. x is a full simplex if it is a maximum-dimension
simplex in A(Tx).

For each T € %, we also define J'A(T) as

J'A(T) = (x € OA(T)|T =T) .

We illustrate the above definitions in the V-complex in Figure 3.k,
In the figure, the left-most vertex of the 2-simplex is A(¢), the
"bottom" line segment is A(l), the left-sided line segment is A(2),

and the simplex itself is A(1,2),

f

Figure 3.4

24
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For x = (4,e], Tx = (1,2}, for x = {£,g)}, Tx = {1}. For
x = {e,£,h], T, = (1,2). The simplices (&}, {f,g), and (e,h,f} are
all full. We have O'A(1l) = {c}, 3'A(2) = (b}, and 0J'A(1,2) is the
pseudomanifold corresponding to the line segment from b to c. Thus,
while both (k,£4) and (f,g} are elements of JA(1,2), {k,2} € 3'A(1,2),
whereas (f,g} € 3'A(1,2).

When T = ¢, and A(T) contains only one vertex, we define

‘@), so in this case J'A(¢) = JA(¢d) = {@). Thus, in Figure 3.k,
(¢).

J'A(P)
J'A(F)

L}

1]

3.2, Labelling Vertices and Adjacency on V-Complexes

Let K be & V-complex with label set N. Let L(-) be a function
that assigns to each v € K° an element i € N. Such a function L(")

is a labelling function. For a simplex x = {vo,...,vm} € K, we define

L(x) = U e x L(v). L(x) 1is the set of labels spanned by the elements
of x.

We define two distinct simplices x, y € K to be adjacent (written
x~y) if

i) x and y are full
and i1) Lxny) = T, U Ty.
Note that adjacency is symmetric: x ~y 1if and only if y ~ x,

Figure 3.5 represents a V-complex whose vertices KO have

labels (*). In the figure, we have the following adjacent simplices:

25
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r"‘!”"“! - - i = - - -‘-:--—‘.- _.—————a—‘-:r
l
| 3'A(2)
: s/ K e 'AL2) ~ j 4
[N
"\
| 3'A(1,2)
g
3'A(D)
i /
i
L
! : Figure 3.5
L
. (a}~(a,b)~(b,c}~{c,d]~ic,d,u)~(u,d,wl~(u,w, V]
]
{u,s,v)~(s,u,t)~(t,s,pl~(p,t,a)~{p,q}~(p,n)~{n,m}~(n,m,r)~{m, r,k)~(k,T,8)~{ 5, k, V)
A (h,g,w)~(8g,w,e]~(w,e,d]}~Ia,e}~e, 1) .

|
. |
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Observe that, in the figure, any full simplex is adjacent to at most two
other simplices. We shall see later on that this is true in general,
Observe also that the adjacency relationship results in the formation of
three distinct "paths" of simplices, each path being a string of simplices
adjacent to one another.

lhe purpose of the remainder of this chapter is to give a character-
ization of these paths. However, we must develop the theory of V-

complexes further before a complete characterization is possible.

3.3. H-Complexes

Let K Dbe a V-complex with label set N and admissible sets
¥. We wish to "1lift" K 1into a pseudomanifold of dimension n where
n = |[N|. Without loss of generality, assume N = {1,...,n}. Let
Kp be the set of vertices of K, We define artifical vertices
q)s--+sq,. Let g = fql,...,qn]. Define B = K° U Q. Define

Qp = (q; € G|t - N\T). We now define:

=t

={xUQxuQ#fg xIK QC Qp }.
X

We have the following:

Theorem 3.1. K 1is an n-dimensional pseudomanifold.

PROOF. Clearly R 1is closed under nonempty subsets, and so is a complex.

Let x U Q< R. Then there exists y = A(Tx) that is full and y D x.

27




Let P =Gy . Thenwe have x UGT y UPE R. Furthermore,
x
| ly UPl = Iyl + 1B} = Iyl v n - |70 = [y| + 0 - (ly[-1) = as1 .
)
i
; -
‘ ' Therefore every simplex in K 1is a subset of an n-simplex in R. And

clearly, K 1is closed under nonempty subsets. It only remains to show
that each (n-1)-simplex of K is contained in at most two n-simplices.
Let x =x U ¢, Dbe an n-simplex in R, and let y C x be an
(n-1)-simplex in K. Suppose y ¢ z # x, and z is an n-simplex in R,
We aim to show that 2z 1is uniquely determined by x and ; Since x

is an n-simplex, x 1is full and Cx = CT . We have three cases:
x

—— s -

Cage 1. y = X \xqi; for some q

(T,

¢. Let z=2zU6G. If z=x,
i X A

then €, Cx’ and so 2z = X, & contradiction., Therefore z # x. But

since z Dx, we must have z = x U {w) for some w. Therefore CZ = Gx\ [qi},

and so Tz =T U (1j. By property (viii) of V-complexes, the choice of

"

w, and hence 2z, is unique.

e = w———

Cagse 2. y = i\yv' for some v < x, and X \;v; is not full, We
‘ can write y = y ! Gx where y = x \ (v}. Since y 1is not full, we
' 3 must have 2z =y U (w} for some w Ko, w ¢ y, and hence Qz = Cx,
’3 whence 'I‘z = 'I’x. The choice of w is uniquely determined, since A(Tx)

is & pseudomanifold.
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Case 3. y = X \ (v] for some v € x, and x \ {vl 1is full, Again we

ﬁ write y =y UQ, where y =x \ (v]. Since y 1is full, Ty =T, \ (1}

for some i € T, and by property (viii) of V-complexes, y € bA(Tx).

! Hence we cannot have 2z =y U {wj for any w € KO. Therefore the unique

n-simplex of K containing y is z =y U Qx ] {qi}. D

We illustrate this result in Figures 3.6, 3.7, and 3.8.

; K 3 = {9, {1}, {2}, {1,2}}

~i

Figure 3.6




K 3= {¢, {1}, {2}} K

—
- - — % - —e - - - - - -
A(2) T A(l)
A($)

: Figure 3.7

!

| K S = {o, {1}, {2}} K

}

A$)

———— kg, v

A
o N\ v

A(¢)

Figure 3.8
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In Figure 3.8, A(¢) consists of the north and south "poles" of the circle

and A(1l), A(2) are the right and left arcs, respectively.

Our next task is a characterization of the boundary of K.

Theorem 3.2. 3K = S, Us,, vhere

wn
]

{yu Q € K|y € 8'A(Ty)}, and

w
[]

lyuog € RIN\ {i]q € Q) ¢ g,

1
element of S.. Then y € B‘A(Ty) and Qy = QT . The only n-simplex that

PROOF, We first prove that S, C 0K, Let y=y U Qy be & maximal

contains y is of the form y U (v} U Qy, wherey v is uniquely determined
since y € B'A(Ty). Therefore 8, C )
Next we prove that §, C OR, Let y=y U Qy be & maximal element
of Sy Then y is full and Qy =QT \ {qi} for some i, where
Ty U{i}) €3, Let x =3 U {a) be an n-simplex in K, We need to show
o is uniquely determined, We cannot have « € Ko, since the set
Ty Ui} ¢ 9, Hence a = a; for some j., Suppose j # i, Then
T, U (1}\ () € 9, and in fact T, =T, U (1} \\ (], whereby j = i,
a contradiction, Therefore o = P and so 82 C K. Therefore
s, Us, < oK,

Now let us prove the converse, Let x =x U Q‘I be an n-simplex
x

in K and let y Cx be an element of OR, where y =y UQ. We have

two cages:




!
’
- |

Case 1. x =y U {v]., Clearly we must have y € aA(Tx). If y were

full, then y Ty U Qp » and so y ¢ OR, Therefore y is not full,
y

Hence y € 8.

Case 2, Qp = QU {qj] for some a; d Q. Suppose N\ [1|qi €Q)<c 9.

x
This means that Tx U {3} € . But then, by property (viii) of V-complexes,
there is a unique v € st y U {v]) € A(Tx U {3)). Hence

yCy U vl UQ€E R, and hence y ¢ OR, a contradiction, Therefore

N\(ilg €@} ¢ S, and y€ S,

Therefore K <, US,, so ok =5, Us,. 2 i

3.4, Labelling Vertices and Adjacency on H~Complexes

Let K be a V-complex and K its associated H-complex. Let
L(-): K >N be & labelling function on K. We extend L(-) to K
by the simple rule that L(qi) =i for each q; € Q, thereby obtaining
a labelling function on K°. Let X bvea simplex in K, We define
L(x) = Uz Lv).
We define two distinct n-simplices x, y € K to be adjacent
(written x~ y) if
i) x and y are n-simplices
and ii) L(xny) =N,
The above definition of adjacency is quite standard for labelling functions
on pseudomanifolds (see Gould and Tolle [14] or Lemke and Grotzinger [30]).

Note that if X~ y, X and y must be neighbors,
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3.5. Characterization of Paths on H-Complexes

Let K be a V-complex, K its associated H-complex, and let
L(+) bve a labelling function on K, extended to R, The following theorem,
whose proof we omit, follows from the standard "ghost story’ argument
of complementary pivot theory (see Lemke {29], Gould and Tolle

[14], Kuhn [22], Eaves [ 5], or Scarf [34]).

Theorem 3.3. Let X be an n-simplex of K. Then X is adjacent to at
most two other n-simplices of R. If X is adjacent to only one n-simplex
of K, then there is a unique (n-1)-simplex ¥ C x such that L(y) = N

and y € IK, ®
We define B = (X ¢ S |L(X) =N) amd G =(x¢€ SQIL(i) =N},

Proposition. B NG = ¢,

PROOF. Suppose x < G. Then |x| =n, so X is a maximal element of
So. We can write X = x U Q, where x is full, But then x ¢ 8.

since otherwise x is not full. Therefore x ¢ B . &

With the help of Theorem 3.3, we can construct and characterize
"paths" on K. Let <§i>i be a maximal sequence of n-simplices of R

such that L(xi) =N, x, ~ %, and x, ) £ X;4 for any i. If X

is a right-endpoint of the sequence, define ik+1 to be the unique subset

of x, such that L(x

K ko) = Nand x o = 3R, 1f x, 1is a left-endpoint

of the sequence, define ik-l to be the unique subset of X, such that

k
L(ik_l) = N and ik-l € YR. The new sequence, with possible endpoints

added, is called a path on K. Note that endpoints are elements of § U B.
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We can characterize paths on K as one of six types.

t

| Type I. (ii)i where the sequence has no endpoints, and
i X. ~ X —~c0 i +o

} i) Xy~ Xy for all <ic<

ii) Xy # x'j for any i # j.

Type II. (ii>i where the sequence has no endpoints, and

b i) R For all ~» < i < 4w
) - - - -*-w
i) X, 1 # X4 for 8ll = <i <
iii) There is an m > 2 such that ii = ii+m for all —o < i < 4w

i % X <k <
iv) X, # X4 Tor any O <k <m

Type III. <xi>i where the sequence consists of only three elements,

say X, x1; xg, and

o e e ¢ = i na

1) %y %X, € G UB, Xy # X,

ii) L(il) =N

| T ] - > - - - -
iii) x;, is ann simplex and X, X, C X,

; Type IV. (ii)i has more than three elements, and has two endpoints,

say io and im, and

i) Xy X, € G UBE, ana Xy # X

ii) X; ™ X4 for all 0 < i < m-1

111) iia!ij forany i #J, 0<4i, j<m.
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Type V. (:-ci)i has only a left endpoint, say x., and

i) iOEGuB
1+1 forall 1i>0
iii) ’-‘1 #ij for all i, j >0, i # j.

e VI. (x,), has only a right endpoint, say x , and
i'i m
i) x €Gu8B
i) Xy 4~ X% for all i<nm
iii) )-ci ;!ij for all i, j<m, i # j.

A type I path stretches infinitely in both directions. A type II
path is a loop., A type III path is a "degenerate" path consisting of
one n-simplex and two of its {(n-1) subsimplices. A type IV path is a
path with two endpoints, A Type V or Type VI path consists of one
endpoint and stretches infinitely in one direction. A Type III path
is illustrated in Figure 3.9,

In the applications of V-complexes and H-complexes, it is the

endpoints of paths that are of interest. We have the following lemmas.

Lemma 3.4, Let x € K. Then x 4is an endpoint of a path if and only

PROOF, If x 4is an endpoint of a path, by definition x € § U B.
Conversely, let x € G U B, There is a unique n-simplex z = x U {(a}

for some o € Ko, and L(z) = N. We can construct a path starting at

X = X0 ;(1 =z, etc,.
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4
A) AQ1,2)
v
i 9
. j A(4) -—A(l)
|
‘ S={¢, {1}, {2}, {1,2}}
: }—C = {ayb}
: _O
‘ x, = {a,b,c}
} q2 )-(2 = {b,c} {
|
i

Figure 3.9




Corollary 3.5. If K is finite, B and G have the same parity.

PROOF, If K is finite, the total number of endpoints of paths is finite

and even. Each endpoint is in exactly one of the two sets above; hence,

they have the same parity. Q

3.6. Characterization of Paths on V-Complexes

E The characterization of paths on V-complexes is achieved by

establishing a certain equivalence relationships between V-complexes and

H-complexes. The first equivalence is given in the following lemma.

Lemma 3.6, Let X and y be n-simplices on K. Let x =x U Qo

§z=yUQy. Then X ~y if and only if x ~ y.

N. We have

PROOF. Suppose X ~ y. This means L(x Ny)

N=L(xNy) =L{x Ny) UL@QN Qy) =L{x Ny) U ((N\Tx) ﬂ(N\Ty)).
Therefore

L(x Ny) = N\ ((N\T) N (N\Ty)) = N\ ("\ (T, U Ty)) =T, UT.

Thus we see that L(x Ny) = Tx U Ty’ and so x ~ y. The same argument

in reverse shows that if x ~y, then x ~ y. ?

Define G = x € K|x 1is full, L(x) DT, and L(x) & 3.
G can be thought of as the goal set, for in most applications of V-complexes,

the algorithm searches for an element of G,

Define B = {x € K|x € a'A(Tx), and L(x) Tx]. We have the
following lemmes:
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Lemma 3.7. Let x € K, and let x =x U Q. Then x€ B if and only
x

B.

m

if x

PROOF., Let x € B. L(x)

]

X

T. LX) =L(x) UL(Q, ) =T u(N\1T) =

X
Furthermore, x € B'A(Tx), so X€ S Therefore x € B,

2.
Conversely let x £ B. Then x < B'A(Tx) and L(x) = N\L(QT )
x

= N\(N\T) = T,, whence x Z B. ®

Lemma 3.8. Let x K and L(x) D T, and let x =x U QL(x)‘ Then

x € G if and only if x € G.

PROOF. Let x € G. Then L(x) = T U {j) for some j 7 T » where

T, U (i) ¢ s U(x) = Q‘T\ ]"QT,so x € K. Also,

N\ (il € S (x )} =N\ (N\(T U {j])) T U ) d . Furthermore,
L(x) = L(x) U L(QL( ) = L(x) U (N \ (L(x)) = N. Therefore x € G.

N\ (i]qi € QL(X)] ¢3 .

Conversely, let x € G. Then L(x)

Hence x € G, 02

Let x € K be full, We define the degree of x, written deg(x),
to be the number of distinct simplices of K adjacent to x.
Lemma 3.9. For any x € K, deg(x) <2

PROOF. From Lemma 3.6, we have x ~ y if and only if x ~ y, where
x=xU G, and y=yU Qp . Since x 1is adjacent to at most two
x

simplices, so is x.
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With the help of Lemma 3.9, we can construct paths on K. Let (xi)i

be a maximal sequence of full simplices in K such that xi ~ xi+1,
X1 # Xi 4y angd L(xi) :)Txi. (Note that if X~ X then L(xi) :)Txi.)
Let x, be a left endpoint of the sequence. Then x,_ is a left endpoint

k k

of the associated sequence in K, Define ik-l as in Section 3.5, and
define X1 such that X1 T %1 U Q for appropriate Q = 8. Like-
is a right endpoint, define x

wise, if x analogously, The new

k k+1

sequence, with possible endpoints added, is a path on K.
We have the following characterization of endpoints of paths

on K.

Lemma 3.10, Let x € K. Then x 1is an endpoint of a path on K if

and only if x € G U B,

PROOF. Let x be an endpoint of a path on K. Then x =x UQ (for
appropriate choice of Q = §) is an endpoint of a path on K.

X€EGUB., So xEGUB., R

Lemma 3,11, If K 1is finite, B and G have the same parity.

PROOF, B and G, by definition, have no simplices in common. There is
a one-to-one correspondence between elements of B (G) and elements of B
(G). Also, if K 4is finite, so is K. Thus, by Corollary 3.5, B and

G have the same parity. d

We thus see a complete equivalence between paths on K and on R.

Hence we can classify paths on K as one of six types,
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Type I. (xi>i, where the sequence has no endpoints, and

i) Xy~ X4 for all i

ii) X, %xj for all i # j.

Type II. (xi>i, where the sequence has no endpoints, and

i) Xg o~ X for all i

ii) X 4 ¥# X for all i
iii) There is an m > 2 such that X, % Xio for all i

iv) x; # X, forall i, all 0<k<m,

Type ITI. (xi\i, where the sequence consists of only three elements,

say X, X, X, and
i) Xgr X, € G UB
ii) L(xl) cT,

iii) x, 1is full and x, X, CX;.

Type IV. (xi)i has more than three elements, and has two endpoints,

say X and X and

0
i ol U
i) Xgr X, G UB and x, # X,

ii) Xy~ X444 for all 0 < i < m-1

i) x; # X5 for any i #j, 0<1i, j<m,

Type V. (xi>i has only a left endpoint, say x., and

O}

i) X, €GUB

Lo
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ii) X; ~ X5,y forall i>0

iit) X, # X5 for any i, j >0, i # J.

Type VI. <xi>i has only & right endpoint, say x , and
i) x, € GUB

i1) x x, for all i<m

i-1 "

111) x; # X5 for all i, j<m, i # J.

3.7. The Algorithmic Development

There are two ways to develop an algorithm based on a V-complex
and a labelling function L(*), depending on the nature of the set A({).

If A(¢) consists of a single O-simplex, say ({w} and the
empty set ¢, then ¢ € B, since ¢ € J'A(¢) and L(¢) =¢ = Td. Thus
our algorithm consists of following a path whose endpoint is ¢.

If A(¢) consists of two O-simplices, say (v} and (w}, we
have v ~ w, since L({v} N {(w}) =L(@) =g =¢ug = T{v] U T{w}' Thus
the algorithm consists of following the path containing (v} and ({w)

in one or both directions.

3,8. Concluding Remarks

The purpose of this chapter has been to show how to construct and
follow paths on V-complexes. We used the construction of an H-complex to

expedite the development of the theory. However, path following on

H-complexes is an "ordinary” phenomenon familiar to researchers in

41
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complement v pivot tneory, since arn li-complex is an n-dimensional pseudo-
manifold. The. 'ore, viewed properly, patn following on Vecomplexes,
which seems to be .t of the orlinary, is equivalent to path-following

on n-dimensional ys¢ : manifolds, and can ve viewed as the "projection”
onto K of path-follow:r on K.

In most algorithms *4sed on V-complexes, we search for an element
of 3. We have seen that the ¢t 4 is Jerived from the structural
properties ¢f ., 2nd nence the w.s our complex K 1is diviaed up into
the A{T) 1is intimately connected '.. s/hat we can expect to look for in
an algorithm on K. Conversely, suppc - we wish to find elements x of
K with certain labels L.x, . G, where ¢ _- some set. If we can

divide the space into A{T), T . =, such that ' arises from <,

we are close to our stated purpose,
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CHAPTER IV

COMBINATORIAL LEMMAS

Introduction
In Chapter III, we develored the theory of V-complexes and

H-complexes, and showed how to trace paths on these complexes, In this
chapter, we apply this theory to give constructive proofs of five com-
ninatorial lemmas. We prove Sperner's Lemma [40], and show that Kuhn's
algorithm for Sperner's Lemma [44] is a specific instance of path-feollow-
ing on a V-complex. We next prove a generalization of Sperner's lemma.
We then pr-ve three lemmas on the n-cube: the Tucker lemma [L2], Kuhn's

lemma 71], and a new combinatorial lemma on the n-cube,

«.1. GSperner's Lemma and Kuhn's Algorithm

] T \
Let 3" - x I R'|x>0, ex =1', and let C be a triangulation

s

o) a%, tote that  induces a triangulation of each face of Sn. Let

K consizt of the vertices of the triangulation C, and let K be the

psewinmanifold corresponding to C, L('):KO - {l,...,n} 1is defined to

ne & proper labelling of KO if for each v € KO, v, = 0 implies

L'v) # i. A simplex x K 1is said to be completely labelled if

'S f1,...,n . We can now siate and prove:

Lemma .1 '“rerner's Lemma), Let C triangulate s” and let L(+) be

a proper labelling. Then there are an odd number of completely labelled

simplices of C,
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PROOF, Our first task is to set up a V-complex on K. To do so, we

define N = (1,...,n; and S ={TCNn¢ T, 1<igT

implies i-1 < T},

% is then the collection:

¢, (1), (1,2}, (1,2,3), ..., {1,2,3,...,n=1],

For T =, we define A(T) = (¢, (el}}). For ¢ #T €S, T=1,...,m

for some unique integer m. Then we define A{(T) to be the pseudomanifold

induced on the face (x € Snlxi =0 for i >m+l). (This construction is

illustrated for n = 2 in Figure L.1,)
3
e
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Figure L. 1,
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It is simple to verify that K, §,and A(-) define a V-complex.

Our second task is to examine the set B. We know that ¢ € B,

t

since A(d) contains only one O-simplex. Suppose ¢ # X = {vl,...,v } £ B.

Then L(x) =T  and x € O'A(T). Thus |[x| = [Tx| = t, and so

T=1(1,...,t}). Therefore L(x) =(1,...,t}). But x = a'A(Tx) implies
that thefe iz an i, 1 <1i < t+l, such that vg =0 forall j =1,...,t.
If 1 < t+l, then we cannot have L(VJ) =i forany j=1,...,t since

L(*) 1is a proper labelling. But i < L(x). Therefore i = t+l. But

o
oy
[}
s
3

"

!

= {1,...,t-1}, a contradiction., Therefore B consists only of
g, i.e. B = i¢j.

OQur third task is to examine the set G. Let x = Lvl,...,vt+1]
be in G,

Then TX ={1,...,t). L(x) :>Tx and L(x) § 3. Therefore
either L(x) = {1,...,n), or L(x) = (1,...,t, s; where s > t+1, The
latter cannot occur, since for s > t+1, vg =0 forall J=1,...,t+],
and hence s ¢ L{x) because L(-) is a proper labelling. Thus G is
the set of completely labelled simplices.

From Lemma 35,11, we know that G and B have the same parity.

Therefore G 1s odd, proving that there are an odd number of completely

lavelled simplices. “

Kuhn's algorithm for Sperner's lemma [44] corresponds to follow-

ing the path from B = ‘¢, to an element of G. Figure 1,2 illustrates

this algorithm,
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of G.




4.2, A Generalization of Sperner's Lemma

As in Section 4.1, we define s" = (x € R%|x >0, eTx = 1)

and let C be a triangulation of Sn. Let Kp be the set of vertices
of C, and let K be the pseudomanifold corresponding to C. Let
L(.);KO - tl,...,n}] Dbe a labelling function. Let x = tvo,...,vtj

be a simplex of K. We define S(x) = [i|vg >0 for some j =1,...,t}.

We have the following:

Lemma 4.2, (Generalized Sperner Lemma). Let C triangulate s™. Then

there are an odd number of nonempty simplices x such that L(x) = S(x).

Before proving this lemma, we make a few observations. For a
given simplex x, S(x) 1is the "index set” of the smallest face contain-
ing x. Thus if the smallest face of s” containing x is

i i

(e ,...,e ™), then S(x) = (ij,..58 ). If S(x) = L(x), then

L(x) = {1

l,...,im}. Such a simplex x is said tc be "completely labelled

in its face."

The reason this lemma is a "generalization" of Sperner's
lemma is that we have relaxed the requirement that L(+) be a proper

labelling; yet we still are able to deduce an interesting conclusion,

PROOF, As in the proof of lemma 4,1, we first construct a V-complex.
Let N =(1,...,n), and let S = (T N|ng T}). We define A(¢) = (¢, (e")],

and for TE S, T # ¢, we define A(T) to be the pseudomanifold induced

by C on the face (x& 8%|x, =0, i #n, 1 ¢ T). It is simple to verify

i
that K, A('), and ¢ define a V-complex. (This V-complex is illustrated

in Figure 4.3, for n = 2,)
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Let x € G. Then x is full, and L(x) DT, and Lix) g s.
Then L(x) = T, U {n}. Also, since x is full 8S(x) = Tx U (n}.
Thus x 1is completely labelled in its face,

Suppose x € B, and x # ¢. Then L(x) = T, and x € B'A(Tx).
Let x be written as x = Lvl,...,vt}. x € B'A(Tx) implies vz =0
for all i =1,...,t. Therefore S(x) = T,. Thus x is completely
labelled in its face.

Conversely, suppose S(x) = L(x) for a given x. Then if
n € S(x), we must have L{x) § $ . But also L(x) :>Tx. Therefore
x € G. On the other hand, if n ¢ S(x), we have T, = S(x) = L(x)
and x € a'A(Tx). So x € B,

Thus, G U B\ ¢ is the set of nonempty x such that L(x) = S(x).
By Lemma 3.11, G U B\ (¢} has an odd number of elements, proving the

lemma, 2

An algorithm for computing an element G U B \\{¢] consists of
following the path whose endpoint is ¢. The other endpoint of the path
is a simplex x # ¢ for which L(x) = S(x). See Figure 4.k,
‘ As a byproduct of the Generalized Sperner Lemma, we have a lemma
due to Scarf [35], which is a "dual” of the Sperner Lemma, In Scerf's
' lemma, vertices on the boundary receive labels in the complement of the

set that gives rise to a proper labelling.

Corollary 4.3 (Scarf's Lemma), Let C triangulate S°, such that no

simplex of C has a nonempty intersection with every face of Sn.

. - . -
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Let L('):K0 -~ {1,...,n} Dbe a labelling function such that if v & Kp,

v € 3sh, v; >0 then L(v) # i. Then there are an odd number of simplices

X such that L(x) = (1,...,nl.
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Figure 4.4. Path from ¢ to an element x such that L(x) = S(x).
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PROOF. The proof follows directly from the Generalized Sperner Lemma,
Since L(-):Kp - {1,...,n), there are an odd number of simplices x

that are completely labelled in their face. Let x be one such simplex,
Suppose L(x) =T # (1,...,n}. Then for each v € x, v, =0 for 1§ g T,
But by design of L(*), for each 1 Z T, there is & v 2 x such that

v; = 0. Thus x meets every face of Sn, a contradiction. Thus

L(x) = {1,.ou,n}- ¥

4,3, Tucker's Lemma on the n-Cube

Let p be a positive integer and let c® = (xc¢ ]Rn|-pe < x < pe},
an n-dimensional cube in IRn. Let C Ybe Todd's Union-Jack triangulation
[L1] of R" restricted to C". Let Kp be the vertices of C and let
K be the pseudomanifold corresponding to C. Let x = [vo,...,vt} € K.
Then, by the symmetry of the Union-Jack triangulation, {-vo,...,-vt] € K,
We define -x 9‘[-v0,...,-vt}. Let L('):Kp -(1,...,n,-1,...,-n} be a
labelling of K such that v z 3K implies L(v) = -L(-v), i.e. L(+)
is odd on the boundary K.

Note that Kp is simply the integral points of Cn.

We have the following:

Lemma L.4 (Tucker's Lemma), Let L(-) be a labelling of the integral

points of Cn, which is odd on the boundary of c®, Then there exists

integral points v', v", such that || v'-v"|| =1, and L(v') = -L(v").




PROOF. We first construct a V-complex, Let N = {1,...,n,-1,...,-n},

and let § = (TCTN|Li 5T implies -i¢ Tj. Let A(¢) = {¢, (0}), and
for ¢ % T €S, let A(T) be the pseudomanifold corresponding to the

restriction of C +to the region

(x € ]R“li.xlil >0 for 1€T, and x, =0 if neither i nor -1€T).
It is simple to verify that K, &, and A(-) define a V-complex. (Such
a V-complex is illustrated in Figure 4.5, for n =2 and p = 4.)

Let us now examine the set B, ¢ € B, so B has at least one
element. Let ¢ # x € B, Then x ¢ a'A(TX). For any ¢ # T€ %,
3*A(T) < oK.

Therefore, x € 0K, Also L(x) = T,. Furthermore, -x € JK,
and L(-x) = [-iliETx), and in fact T_= c-i)ig T ). Therefore,
-x € B, Thus we see that except for ¢, B consists of pairs of the I
form x, -x, Therefore B has an odd number of elements, and so must
G, by Lemma 3,11.

Thus there is an element x < G, Thus there are two vertices
of x, say v' and V", such that L(v') = -L(v"). And since v' and

v" are elements of x, ]Iv'-v"anz 1, proving the lemma. &

An algorithm for finding a pair v', v' consists of following
the path that orignates with . If its endpoint is an element of G,
stop. If it is an element x of B, reinitiate the path at -x. Con-
tinuing in this fashion, an element of G will be found. For a complete

description of the pivot rules for this algorithm, see Freund and Todd [11].

See Figure L.6 for a sample path,
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Unlike the first two combinatorial lemmas of this chapter, we
cannot assert that there are an odd number of pairs v', v' with
L(v') = -L{v") and |/ v'-v"|| =1, This is because not all such pairs
are subsets of elements of G. Nevertheless, we can assert that there is

at least one pair, Figure 4,7 illustrates an instance of Tucker's lemma

where the number of such pairs is six, an even number.
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L. L4, Kuhn's Lemma

Let p be a positive integer and let = (xe€ Ifw 0 < x < pe),
an n-dimensional cube in IBn. Let C be Kuhn's triangulation of R"
restricted to C%, Let Kp be the vertices of C, i.e. the integral
points of Cn. Let K Dbe the pseudomanifold corresponding to C, Let
I-=(yeEly, =0 orl for 1=1,...,n). Let £(:}:K 51 be

a function such that

i) v

i}
(o]

4 =0 implies zi(v)

1
i

ii) v, =p implies £ (v) = 1.

i

We define L(v) = the number of leading zeroes of £(v) for each v < x°

.

We have the following:




e -

Lemma 4.5 (Kuhn's lemma). There exists an odd number of simplices x < K

such that L(x) = {0,1,...,n}.

PROCF. We first construct & V-complex. Let N = (0,1,...,nj, and let

¥ =(PT<{1l,...,n)|0<iIT implies i-1 & Tj. § then is the collection

4, {0}, (0,1}, {0,1,2}, ... , {0,1,...,n0-1) .

We define A(¢¥) ={¢,ipel), and for g #T€ S, T = (0,...,m) for

some m < n., We then define A(T) to be the pseudomanifold corresponding

to the restriction of C to

(x € cn|xi =p for i >m+l) .

It is simple to verify that K, %, and A(-) define a V-complex. (Figure 4.8

illustrates such a V-complex for n = 2,)

Let us now examine the set B. We know that ¢ € B. Suppose

@ # x € B, where x = [vl,...,vm} for some m. Then T = (0,...,m-1)

and L(x) = T, and x & B'A(Tx). Since x &€ B'A(Tx), either vg =0 for
all j=1,...,m and some i€ (1,...,m}, or vg =p for all j

l,...,m
and some i £ {1,...,m}. Suppose the former ig true. Then i-1 ¢ L{x),
a contradiction. If the latter is true, then i ¢ L(x), which is a con-
tradiction unless i = m, But then x € A({0,...,m-2}), so that
T, = {0,...,m-2}, a contradiction. Therefore B = ({}.

Next we examine the set G, Let x € G, Then '1‘x = {0,...,m)
for some m < n, and L(x) DT, L(x) € §. Therefore either L(x) =

{0,1,...,n}, or m < n-1 and there is an s > m+1 such that

56




Y AR
A%
3
~— A(0) = e« A($)
/
1 A(0,1)
)
0 -
*1
. Figure 4.8
H
|
!
}
A %2
1 0 1 1 0 0

™
\N

R
\

1
o 4 /‘/ 0

i v 0
) ’ 1 0

A 0

y

[}

: 1 ]

2

—

Figure 4.9




L(x) = (0,...,m,s]. Suppose the latter is true. Let x = {vo,...,vm+l].

Since Tx = {0,...,m), Vv 5 =P for all j€ :0,..., mtl}, But then
L(vj) < mtl for all j, and so s ¥ L(x), a contradiction, Therefore
L(x) = {0,...,n}.

Furthermore, if L(x) = {0,...,n}], then clearly x < G. Therefore

G consists precisely of those x for which L(x) = {0,...,n}. By

Lemma 3.11, G has an odd number of elements, which proves the lemma., &
An algorithm for finding an element of G consists of following

the path starting at ¢ € B, and terminating at its other endpoint, an

element of G. See Figure 4.9 for a sample path.

L,5, Another Combinatorial- Lemme on the n-Cube

Let p be a positive integer and let C" = (x € R"|0 < x < pe}.

; Let C Dbe a triangulation of c. Let Kp be the vertices of C, and

: let K be the pseudomanifold corresponding to C. Let L(:): © 5

{1,...,n,-1,...,-n} be a labelling of KO, with the restriction on

, L(+) that
0

i) vekK, v,

i

0 implies L(vi) # -i, and

i

1) ve€ KO, v, =p implies L(vi) £i.
We have the following:

*y Lemma 4.6. Let C triangulate C? and let L(-) be as above. Then
there exists a pair of vertices v', v" in some simplex of C

such that L{v') = -L(v").
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PROOF. Let N = (1,...,n,-1,...,-n) and let § = (TCN[1€T
implies 1 > 0}. Let A(¢) = (¢,{0)}, and for ¢ #T € &, we define

A(T) to be the pseudomanifold corresponding to the restriction of C to

{x € Cnli g T implies X, = 0}

It is simple to verify that K, <, and A(+) define a V-complex.

Figure 4.10 illustrates such a V-complex for n = 2,

First let us examine the set B. We know that ¢ € B, since

A(¢) has only one O-simplex. Let ¢ # x = {vl,...,vt] € B. Then

(h

T v? = p for all

_ iy 1 '
L{x) = T, and x < d A(TX). Thus for some i Vi

j=1,...,t. But then L(vi) i forany j=1,...,t. Thus i ¢ L(x),
a contradiction. Therefore B = (¢}.

By Lemma 3.11, G must have an odd aumber of elements, and hence
at least one. Let x < G, Then L(x) Z)Tx and L(x) € % This means
there is an i > 0 such that L(x) = -i. Suppose i ¥ T.. Then for
each v € x, v, =0 and so by the restriction on L(-), -i £ L(x), a
contradiction. Therefore {1i,-i} = L(x). Thus there are two elements

v' and v' of x such that L(v') = <L(v"), proving the lemma. &

An algorithm for finding v', v' consists of following the path
whose endpoint is g < B, until an element of G is found. Figure 4.11
illustrates a sample path. As in the case of the Tucker lemma, we ceannot
assert that there are odd number of pairs, since not all pairs are contained

in elements of G.
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L 6. Concluding Remarks

In this chapter, we have given "constructive" proofs of six com-
binatorial lemmas in topology. The proofs are constructive in the sense
that, for most standard triangulations of the n-simplex and the n-cube,
it is possible to write down the pivot rules of an algorithm that will
compute the simplices of a path from ¢ € B to the desired simplex as
stated in the conclusion of the lemma.

Sperner's lemma leads to a very elegant proof the Brouwer fixed-
point theorem. In the next chapter, we show that Kuhn's lemma and
Lemme 4,6 also lead (independently) to a proof of this famous fixed-point
theorem. Tucker's lemma can be used to provide a proof of the Borsuk-Ulam
and Lusternik-Schnirelmann antipodal point theorems {11,27].

The Generalized Sperner Lemma (Lemma L4.2) has been independently
developed by Ky Fan [ 9 ], and inadvertently by Liithi [31]. The algorithm
of Luthi in [ 31] for the nonlinear complementarity problem is precisely the
path follcwing routine used in our proof the Generalized Sperner Lemma.,

In his 1960 paper, "Some Combinatorial Lemmas in Topology" [21],
Kuhn derives the Tucker lemma from his lemma, for the case n =2, He asks
"Is there a derivation of Tucker's Lemma from the Strong Cubical Sperner
{Kuhn] Lemma for all n?" [21]. Although this question is still unresolved,
we see that both Tucker's and Kuhn's lemma are specific instances of

labelling on V-complexes, and that the proofs of both are similar in

nature.
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CHAPTER V

EXTENSIONS OF THE COMBINATORIAL LEMMAS

5.0. Introduction

In Chapter IV, we demonstrated six combinatorial lemmas. 1In
this chapter, we present various extensions of these lemmas. 1In Section
5.1, we show the relationship between Brouwer's fixed-point theorem and
five of the combinatorial lemmas. In Section 5.2, we use the Generalized
Sperner Lemma to prove other mathematical results. In Section 5.3, we
present a "homotopy' -type V-complex and suggest an algorithm based on
the Generalized Sperner Lemma. In Section 5.4, we show the relationship

between the Tucker lemma and antipodal point theorems.

5.1. Brouwer's Theorem and Combinatorial Lemmas

Simplicial methods were first developed in the 1960's for the
computation of fixed points of continuous mappings, the existence of
which was first demonstrated by Brouwer's celebrated Fixed-Point Theorem.
It is only appropriate therefore to show the relationship between
Brouwer's Theorem and five of the combinatorial lemmas of Chapter IV.
Although some of the material of this section is not new, it is included

for the sake of completeness. Brouwer's Theorem can be stated as

follows:




Theorem 5.1 (Brouwer). Let f(-):S —» S, where S 1is a compact convex
set in ﬁ#ﬂ and f(:) 1is continuous. Then there exists a fixed point

of f(+), i.e. a point x* € S such that f(x*) = x*,

An elegant proof of Brouwer's Theorem is provided by using Sperner's

Lemma. We have

Lemma 5.2. Sperner's Lemma implies Brouwer's Theoremn.

T
s"8(xe R[e x -1,

PROOF: Without loss of generality, we can assume S =
x > 0). Let C bve a triangulation of S and consider the following

labelling function on the vertices of C:
IL(v) =1 if v, >0 and f,(v) <v,
i i - i

If more than one such i exists for a particular vertex v, let L(v)

be the smallest such i. L(:) 1is readily seen to be & proper labelling

of the vertex set of C, and so by Sperner's lemma, there exists a com-
pletely labelled simplex. If we take an infinite sequence of triangulations
C with diameter approaching zero, the sequence of completely labelled
simplices must have at least one subsequence that converges to a single
point, say x*. At this point, we have fi(x*) < x;, i=1,...,n since
f(+) 1is continuous. But since eT-f(x*) = eTx* = 1, this means that

f(x*) = x*, proving the theorem, 3

Furthermore, we have:
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Lemma 5.3. Brouwer's Theorem implies Sperner's Lemma.

PROOF: Let C triangulate S" and let L{-) be a proper labelling

of KO, the vertices of C. For each v € Ko, define f(v) = eL(V)'l,

and for the purposes of this proof alone, we define eO = en. Extend
£(-) to all of st in a piece-wise linear manner on each subsimplex.

Then f(*) 1is continuous and maps st into Sn. Thus there is a fixed

point x* of f, Let vl,...,vm be the unique smallest simplex of C

that contains x*. We have x* = L iivl = Xi f(vl) for appropriate A,

where eTi =1, and Py > 0. Suppose x* % 0. Then there is an 1

such that x; = 0. But then vg = 0 for all j, whereby

id {L(vl), ..., L(VY)), since L(*) is a proper labelling. This implies

that f,_ (x*) = 0, and hence x¥_, = 0. (If i =1, it implies x¥ = 0.)

1 1
Proceeding likewise,we have that x* = O, a contradiction. Therefore

s L Leh-1]

x*¥ > 0, and since f(x*) =2 Al ’ we must have that

[L(vl), cee L(v")} = {1,...,n}, and so m = n. Therefore, the simplex

{vl, eery VOY s completely labelled, completing the proof. ®

Actually, we have not proved Sperner's Lemma in its entirety, since we
have not shown that there are an odd number of completely labelled
simplices, so the equivalence between Brouwer's Theorem and Sperner's

Lemma is not complete.

Similarly, we can show:




.
.

Lemma 5.4, Brouwer's Theorem implies the Generalized Sperner Lemma.

PROOF: Let C triangulate s and let L(:) bea labelling function
as in the Generalized Sperner Lemma. For each v 1in the vertex set

© of C, define f(v) = eL(v)

, and extend this map in a piece-wise
linear manner. f satisfies the conditions of Brouwer's Theorem, and
so there exists a fixed point of f, say x*. Let (vl, oo vm) be
the unique smallest simplex of C +that contains x*. We have x{ >0
if and only if i€ S({vl,..., vn]), wvhere S(*) is defined in Section
4,2, Furthermore, by the construction of #£(-), x; >0 1if and only if
ic [L(vl), ... , L(¥™)). Thus there exists a simplex of C that is

completely labelled in its face, proving the lemma, 3

As in Lemma 5.3, we have not proven the Generalized Sperner in its full
force, since we have not shown that there are an odd number of simplices

that are completely labelled in their faces. Finally, we show:
Lemma 5.5. The Generalized Sperner Lemma implies Sperner's Lemma.

PROOF: Let 8" = (x € R" |x >0, e'x = 1). Our proof is by induction
on n, For n =1, the two lemmas are trivially identical. Suppose the
implication is true for all k < n, Let N

g # T TN, define st - {x<EZRn|x >0, eTx =1, X

{1,...,n} and for

4

g =0 for i g T).

Let C triangulate st = SN with vertex set Kp. Let L(:) be a

proper labelling of s® and note L(:) is a "proper" labelling of ST,
f.e. vE K NS implies L(v) € T. Thus for ¢ #T, N # T, we induc-

tively have that there are an odd number of simplices in ST that have

65

o e




-

e mi——— . -

label set T, We have

# simplices in S™ that are completely labelled

+ 2, (# simplices in ST that have label set T)
gATAN
TCN

= an odd number,

by the Generalized Sperner lemma. Each term in our summation I is odd,
and there are (2% - 2) terms, an even number for n > 1, Thus the total
number in the summation term is even. Hence, the number of simplices

in s" that are completely labelled is odd, proving Sperner's lemma. &

Our next task is to show the relationship between Brouwer's

Theorem and Kuhn's Lemma, We have:

Lemma 5.6. Kuhn's Lemma implies Brouwer's Theorem.

PROOF: Here let S =C" = (x€ R"[0 < x < e}, and let £(-):8 -8

be continuous. Let C be a triangulation of c® with vertex set KQ.

For each vertex v & Ko, let

0 if £,(v) >x #1

zi(V) =
1 if fi(v)gxi;!o, i=1,..., n

If there is more than one choice for ti(v), choose Zi(v) = 0, Let
L(v) bve as described in Section 4.4, Note £(°) satisfies the conditions

of Kuhn's Lemma. Thus there exists a simplex of C that has labels
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{0,1,...,n}., Take a sequence of such simplices as the diameter of C
approaches 0; such a sequence will have a cluster point, say x*. By
the continuity of f£(-), we have fi(x*) < x; and fi(x*) > x; for

i=1,...,n. Thus f£(x*) = x*, proving Brouwer's Theorem. &

We cannot assert that Brouwer's Theorem implies
Kuhn's Lemma, However, there is a weak form of Kuhn's lemma, called the
Cubical Sperner Lemma in [21], that as Kuhn shows, implies Brouwer's
Theorem. See [21] for details of this proof.

Last of all, we show the relationship between Lemma 4.6 and

Brouwer's Theorem. We have:

Lemma 5.7. Lemma 4.6 implies Brouwer's Theorem. L

PROOF: Let § =C" = (x< R%|0 < x <e), and let £(-):5 -5 be

continuous, Let C be a triangulation of Cn with vertex set Kp.

We define for each v < Ko,

e e g

i i |Iflv) - v|[n

1
)
[
P
<
g
[}
P
[N
<
[
Ko
'_l

3 : l - !‘ =
i af If(v) - vi, = v, - £

!
<
1
=y
N
-
<
[N
Ho
o

If there is more than one choice for i, let i be the smallest such
index. L{+) satisfies restrictions (i) and (ii) of Section 4.5, and so
by Lemma 4.6, there exists a pair of vertices v' and V' of &° in

some simplex of C, such that L(v') = -L(v"). As we let the diameter
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of C go to zero, and take a limiting sequence of the pairs (v',v"),

we must have at least one cluster point, say x¥. But by the continuity
of f(-), we have [f(x*) - x*Hm = 0, and so x* 1is a fixed-point,

proving Brouwer's Theorem. &

Finally, we remark that Scarf's Lemma (Corollary 4.3) is
equivalent to Brouwer's Theorem. The proof follows along the same

lines as Lemmas 5.2 and 5.3.

By way of concluding this section, Figure 5.1 shows the relation-
1" "n

ships contained herein, where "' denotes "implies" in the direction

of the arrow.

Generglized Sperner Lemma E

Scarf's Lemma y————ﬂ Brouwer's Theorem [~ Sperner's Lemma
[ ——————
{

Lemma 4.6 Kuhn's Lemma

Figure 5.1

68




oL Y <

5.2. Extensions of the Generalized Sperner Lemma

In this section we prove four mathematical results that are by-
products of the Generalized Sperner Lemma.
The first result, a covering theorem, is used to prove the other three
results. Throughout this section, let 8% = (x € ]RnIeTx =1, x >0J.
We have
Theorem 5.9 (Covering Theorem). Let Ci, i=1,...,n be closed sets

in R” such that U;=l ct D S"™, Then there is at least one point x*

in §" such that (ilx¥ >0} < (i|x* € CT).

PROOF: Let C triangulate Sn with vertex set KQ, and let L(-)

be a labelling of KO, where for each v € KO,

L(v) € (ilve chy

By Lemma 4.2, there is a simplex x of C that is completely labelled
in its face., Take a seguence of triangulations whose diameter goes to
zero in the limit. Then there is a sequence of simplices x, completely
labelled in their faces, that have a limit point, say x*, Since each

i

C* 1is a closed set, we have {i|x; > 0} T {i|x* € C), proving the

theorem. vy

This theorem is illustrated in Figures 5.2 and 5.3. In Figure 5.3,
" n

a type of "degeneracy" occurs at x*, showing that strict inclusion "X

of the theorem can indeed occur.
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Figure 5.2

Figure 5.3
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Theorem 5.9 can be generalized. Let S be an n-simplex in

R" and for each x € S, let a(x) be the barycentric representation

Rk

of x. Then we have

Theorem 5.10 (Covering Theorem). Let Ci, i =0,...,n, be closed sets

in R® such that U?=O Ci D S. Then there is at least one point x*
in S such that

[ilai(x*) >0) < {i]x* € cly. ®

Our next lemma demonstrates the existence of stationary points

. + +
(see Eaves [ 3], and Luthi [31]). Let s? L. {{x,w) € r" l|eTx +w =1,

x >0, w >0}, where it is understood that x < ', Let

; p” = (x EIglleTx <1, x >0)}. Clearly D" is the projection of g+l

onto the x-coordinates. Let f(-):Dn-eimn be continuous. A point x
p

in D% is said to be a stationary point of the pair (f,Dn) (see Eaves

[3]1) 1f and only if there exists z € R and y € Igl such that

; i) y>0, z>0
i1) f(x) =y - ze
iii) »y =0

iv) =z(1 - eTx) =0,

We have the following:

i 1 e J R S e S e eI A X8

71

W s i o i ot e e 5 A R ¢ = T




Lemma 5.11 (Hartman and Stampacchia [1%]), and Karamardian [17a], [17b],

{18]). There exists a stationary point x* of (f,Dn).
PROOF: Our proof is based on Theorem 5.9, For 1 =1,...,n, define

cl - {((x,w) £ sn+1} f(x) #0 and fi(x) < fj(x) for any j =1,...,n)

Define C™1 = ((x,w) € ™'Y £(x) > 0}. Note that each C- (i =1,...,n+l)
s
is closed, and that u?zi ¢t 58™1. Thus by Theorem 5.9, there exists

+
(x*,w*) in 8" 1 such that

a
a
i
H
F

i) x} >0 implies (x*,w*) € .,n, and

(1
Q

ii) w* > 0 implies (x*,w*) <€

We now show that x* 1is a stationary point of (f,Dn). We have two

cases:
+
Case I. (x*,w*) e c® 1 In this case, let z =0, and let y = f(x*).
+
(x*,w*) € ¢t implies f(x*) >0, and so y > 0. Also, x{ >0 implies

fi(x*) < 0, but f(x*) >0, therefore fi(x*) = 0, Thus x-y = x-f(x) = 0,
T

Finally, z(1 - e +x*) =0 since z = 0. Therefore, x* is a stationary

point.

1

+ /
Case 2. (x*,w*) ¢ ¢ ~. Let z = ~min( %) (x*), ..., £ (x*)). Note

z >0. Let y = f(x*) + ze. We have -z < fi(x*) for each i. Hence

1

y = £(x*) + ze > 0. Furthermore, x} >0 implies fi(x*) < fj(x*) for
any Jj, and since f(x*) 20, fi(x*) = -z. Therefore y, =0, and so

+
x*.y = 0, Finally, since (x*,w) ¢ c? l, we must have w* = 0, so
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eTx* = 1, which implies z(1 - eTx*) = 0. Thus x* is a stationary

point of (f,D"). ®

Our proof suggests an algorithm for computing x*. Choose a
triangulation of Sn+1 with small diameter and compute & simplex x which
is completely labelled in its face by following the path starting at
g€ B (see Section 4.2). Any point in x almost satisfies the conclusion
of Theorem 5.9, and hence is an approximate stationary point, In
Section 5.3, we suggest an algorithm for finding points guaranteed by
Theorem 5.9, using a "homotopy" principle.

We conclude this section with two theorems that follow directly
from the covering theorem, Theorem 5.10. The set-up for these theorems
is as follows:

Let A be an n x (n+l) matrix such that the AN =y, A >0,

has a solution for any y < Rr" (i.e. the cone space of the columns of

A is R"). We state without proof the following:

Remark: For fixed y, ¢, y = c + A\, N> 0 has a unique semi-

positive sclution where by semi-positive we mean nonnegative and

not positive. ®

AT ot

n :
Let S be an n-simplex in R”  and let f(+):5 » R" be continuous.

For each y = 'Rn, let A(y) be the unique non-positive solution A

to y =c¢+ A\ AN>0. We have the following theorem:
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Theorem 5.12. For x < S, let «(x) be the barycentric representation

of x. Then there exists a point x* € S such that «(x*)-A(f(x*)) = 0.

PROOF: Let R slxi(f(x)) =0} for i=0,...,n. Each x I8

is an element of at least one Ci. Furthermore, since f is continuous
and A(*) 1is continuous, ¢! is closed for each i. Applying Theorem 5,10,
we have that there is an x* € S such that ui(x*) >0 implies

x* = CT. Therefore, a(x*) A(f(x*)) = 0. &

Theorem 5.13. For x € S, let «(x) bve the barycentric representation

of x. Then there exists at least one point x* € S such that

. . T T .
Mo, (x* Sl e : ,
1|ui(x ) >0} < (i f(x*) L W

PROOF: For i =0,...,n, let C' = (x< s|{f(x)]TA_i - c‘A_i}. I claim

that U?jo ct 8. Suppose not. Then there is an x = S such that
f(x)"A >c’A, Let 7 =c¢ - f{x). We have -A < O. We have -~ = A\

for some \ > 0. Therefore O > 7AN = 7.7 > C, Therefore 7 = 0,

n
i=0

Applying Theorem %.10, we have that there exists x* ¢ S such that

But then f(x)TA = cTA, a contradiction. Thus U c* s,

{ilx,(i(xw) -0} . {i'f(x*)TA.. < CTA -i]‘ . ¥

TS I R T
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5.3, A Homotopy Algorithm for Computing x* of Theorem 5.9

In Section 5.2, we showed that the covering theorem, Theorem 5.9,
can be used to prove three other theorems, including the existence of
stationary points. The covering theorem is proved by applying the
Generalized Sperner Lemma in a limiting sense. To compute the point x¥
of the covering theorem, one could set up & triangulation of small
diemeter, and follow the path from @ € B, as suggested in Section k.2,
to its other endpoint. Any vector in the endpoint simplex approximates

the properties of x*. The problem with this technique is that the

number of simplices enc: -*. - {: the path may be very large.

Eaves [ &7 an’ : ~aigal { ] introduced the idea of a homotopy
methe: . o -tollowing methods, and computational experience has proven
*te c.perior nature of homotopy methods in path-following algorithms

(see Wilmuth [L3]).
In this section, we present a homotopy approach
to calculating e point x* of Theorem 5.9, Let st = {x € lflleTx =1,
X > 0}, the unit simplex in R, Let C bea locally finite triangulation
of 8" x [0,o) with the property that for every ¢ > 0O, there isa t >0
such that any simplex of C in s™ x [t,o}) has diameter less than «<.
Such triangulations exist and specific pivot rules have been calculated
J for some of these (see Eaves | L], Todd [L41], and van der Laan and
Talman [26]). Let KO denote the vertices of C.

Let Ci, i=1,...,n, be closed sets in r® such that

n
i=1

ve S

U ¢! 58" Each vertex of K’ can be written as (v,t) where

" and t € [0,). For each (v,t) < Ko, let L(v,t) = some i

such that v ¢ Ci.




Our next step is to set up a V-complex on s” x [0,»). Let
N =-{1,...,n) and let § = {S[SCN). For T = ¢, let A(T) =
(#, ((e3,0))] for some fixed FC N; for T #¢, T€ S, let A(T) be

the pseudomanifold corresponding to the restriction of C to
((x,0) € s" x [0]]i & T U (j) implies x; = 0]

U{(x,t) € 8" x (0,0)]i & T implies x, = O)
1

Figures 5.4 and 5.5 illustrate this construction for n = 2 and 3,
respectively, with j = 1. In Figure 5.5, the triangulation has been
omitted to make the figure more understandable.

For j I T, A(T) corresponds to a nonempty closed convex set.

For T#¢, j¢ T, A(T) corresponds to the union of two nonempty closed
convex sets that share a common boundary.

It is simple to show that A(-), ¥, and K satisfy ‘he conditions
of a V-complex, where K 1is the complex (an n-psuedomanifold itself)
corresponding to C.

Let us now examine the sets G and B. G 1is empty, since
S = (T|T 2 Nj. As far as B is concerned, ¢ < B, since A(¢) contains
only one O-simplex, {(ej,O)}. For T # ¢, 3'A(T) is empty, and so the
only element of B is ¢. Thus, the path starting from ¢ € B has
no other endpoint, and so must contain an infinite number of simplices.
Let ¢ = Xy» X1s X5, ... , Dbe the path of adjacent simplices whose
endpoint Xy is d. Then for each ¢ > O, there is an m > 0 such that
for all { > m the diameter of x, 1is less than ¢. Thus the simplices

i

of the path get smaller and smaller in the limit. Let Xy have diameter
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less than ¢. Then choose a vector (v,t) in X5 v then approximately

satisfies the conditions of Theorem 5.9.

The homotopy algorithm consists of following the path

¢ =xo) xl, x2) s e e

5.4, Extensions of Tucker's Lemma

In this section we make some brief remarks concerning the relation-
ship between Tucker's Lemme and antipodal point theorems. Two established
antipodal point theorems are the Borsuk-Ulam Theorem and the

Lusternik-Schnirelman Theorem (see Lefschetz [27]).

Borsuk-Ulam Theorem, Let B L = (x € Hfl}quz =1}, and let

f('):Bn'l L R™) pe continuous. Then there exists x* € B such

that f£(x*) = f(~x*).

Lusternik-Schnirelman Theorem: Let BYL = (x ¢ ﬂgllﬂx”2= 1), and let
cl, 1 =1,...,n, be closed sets in R" such that u’.l‘=1 ¢l 5 gt
Then there is an 1 - (1,...,n) and an x* € B"' such that both

i
x* and -x* are elements of C~,

We have the following relationships:

Lemma 5.14%, Tucker's Lemma implies the Borsuk-Ulam Theorem,
Lemma 5.15, Tucker's Lemma implies the Lusternik-Schnirelman Theorem.
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The proofs of these two lemmas can be found in Tucker [L42], or in termi-
t
} nology more familiar to operations researchers, in Freund and Todd [11].

We also have:

Lemma 5.16. The Borsuk-Ulam Theorem implies Tucker's lemma.

PROOF: Let C" = (x I R"|-pe < x < pe) and let C be the Union-Jack
triangulation gt of R" (see Todd [L41]) restricted to c™. Tne
vertex set KO of C 1is the set of integral points of C. Let
L('):Ko -{1,...,n,-1,...,-n} be a labelling function which is odd

on the boundary of C. For each v ¢ KO, define f(v) = sign(L(v))-e(L(v))

and extend f(*) in a piece-wise linear manner over all of Cn. Note

that f(+) 1is continuous, and since s symmetric, f(.) is odd on

the boundary of Co.

_ o+l +
Let B" = (x = R" |||x|[, = 1}, let B" = x€ B%x_,, > 0J,

- +
and let B" = (x = B”}xn < 0}, Let g:B" -C" be the following map:

+1

1; plxy,..px)) | RIPRPR an2 . ) 40
g ﬂ’(xl,...,xn)lloo ’ 1"’ "n :

b
i 0 , (xl,...,x ) =0,

n

Note that g(*) is bicontinuous and onto. For x &£ Bn, let

(1]
o

fog(x) , X

h{x) =
'f°g(x) )




h(.) 1is an odd continuous function from B® into RP, By the

Borsuk-Ulam Theorem, there exists x* such that h(x*) = h(-x*).

n+

~

Without loss of generality, we may assume x* € B Thus h(x*) = 0,

whereby fog(x*) = 0. Setting x = g(x*), we see there exists x ec®

Lol

such that f(x) =0, f(x) = & )‘i sign(L(vi)) - e for appropriate
i i

v} and >\1 > 0. Thus there must be a pair of vertices v 1, v 2 such
i i
that L(v 1) = L(v 2), proving Tucker's Lemma. ®
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CHAPTER VI
ORIENTATION AND H-COMPLEXES

6.0. Introduction

In this chapter, we return to the abstract setting of V- and
H-complexes, and deal with orientation of H-complexes on a deeper level.
Assuming an H-complex is orientable, we show how to pivot on adjacent
simplices in a way that preserves certain properties of the orientation
of the simplices. We are thus able to give further insight into the paths
and endpoints of paths on H-complexes. In the last section we give mild
sufficient conditions that ensure the orientability of an H-complex.

The use of orientation in complementary pivot schemes was first
developed by Shapley [38] for the linear complementarity problem, advanced
by Eaves and Scarf [ 8 ] and Eaves [ 6 ] for :.bdivided menifolds, and
extended to pseudomanifolds by Lemke and Grotzinger [30]. Our set-up
is slightly different than that of Lemke and Grotzinger; however, the

interested reader can easily establish the similarity.

6.1. Pivots and C-Pivots on Pseudomanifolds

Let K be an orientable H-complex of dimension n, oriented
by Or(-), with vertex set 1‘{0. Let N = {1,...,n] and let L(-):KO SN,

We define the set

D= 15€&||R] = n*1, LE) = M) U (%€ 3R||%| = n, LG = N).
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D consists then of n-simplices of K whose labels exhaust N, and
simplicies on the boundary of K whose labels exhaust N. We remark
that the two sets above whose union is D are disjoint. Let these sets
be Dl and D2, respectively.

Let x < D, There is a very natural way to order the elements
of x, If x 3 D,, we can write X = (vgs+-+»v, ). The ordering
(vi sevey V. ) of X 1is called a C-ordering if and only if:

Liv, ) =4, J=1..,n.

Note there are always two orderings of x. The reason for this is that
among the labels of x, there is some unique r € N such that two

. - . o~ .th
vertices of x have the label r. For j e N \\{r), the j— component

of a C-ordering of x must be the unigue vertex A € X for which

J

L(v. ) = j. Denote by v' and v" those two vertices in X whose

1.
3

labels are r, Then the two C-orderings of X are:

(V' V. e, v, , V', W

i i S TR

and

Also note that these two orderings have opposite orientations, i.e. one

is (+) and the other is (-).

If x< D, we can write X = [vl,..., vn]. The ordering
(vil,...,vin) is called a C-ordering if and only if
L(vi ) =, J=1..., n,
J
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The C-ordering for x € D

is unique.
> q

With the notion of a pivot in mind, we now define a C-pivot on

elements of D. For x € Dy, let (v.l yeees Yy ) be a C-ordering of X.
0 n
A C-pivot is performed on x as follows:

Case L. (V; y.eey Vy } € OK. In this case, simply drop v, from X,
1 n 0
and let y = LV 5 e s Yy }. The derived ordering on y is

Case 2. [V, ,.uus v } & OK. 1In this case, there is a unigue v 2 0
1 n
such that tvi seies Vi vl K. L(¥) =r for some r < N. Set
1 n
v=1{v., ,..., v. , vl and form the new ordering (vi s V. sewey V.o,
) ! n } r N fra1
v, Vv, y wes , V. ) of y.
Lrel ‘n
If x - D, let (vi,, ., vV, ) be the C-ordering of x. A

C-pivot on x is performed as follows:

Let v be the unique element of P such that *x U {v} 1is an
n-simplex of K. L(v) =r for some r : N, Set y = (Vi seees vy ,v)
1 n
and from the new ordering (v.l s V. seea, V. , Vv, Vi s nees Vs )
_ r 1 tpol r+l *n
of y.

We have the following results on C-pivots:

Proposition 6.1, Let y be derived from a C-pivot on x - D Then

X
the ordering of y 1is a C-ordering and the orderings on X and ¥y

as specified in the C-pivot have the same orientation.
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PROOF: The first conclusion of the proposition follows immediately
from the ordering defined on y. The second conclusion follows from a

[ case analysis.

&

- - 0
Case 1. y < JK. Then Or(vi yeees Vo ) = (-1) Or(vi senesVy ) = Or(vi seees, Ve )

0 n 1 n 1 ln

Case 2. y ¢ OK. Then

=0r(v, , Vv, ,..., Vv Vs Vi eeey Vo ). 2
r-1 ST+l n

! Proposition 6.2, Let y be derived from a C-pivot on x € D, Then

the ordering of y 1is a C-ordering and the orderings on X and Yy,

as specified in the C-pivot, have opposite orientation.

PROOF: The first concluzion follows directly from the ordering fixed

on y. For the second conclusion, note that




-

6.2. Orientations on Paths Generated by C-Pivots

In Section 3.5, we characterized paths generated by a labelling
L(*) on H-complexes. In this section, we show the connection between
C-pivots and these paths, and prove a result on orientation along paths.

Let K Dbe an orientable H-complex oriented by Or('), KO its
vertex set, and assume, without loss of generality, that N = 1,...,n}.
Let L(-):E° -»N be a labelling function. Let <§<>i be a path on K,
possibly without left and/or right endpoints,
Choose X an element of the path., Note that L{(x) = N. If x

is an endpoint of the path (say a left endpoint, and we can assume

X = X., without loss of generality), there is a unique C-ordering of

0
iO' Let y be derived from X, by a C-pivot on io. Then y = il’
and Or(il) = -Or(io) from Proposition 6.2, We can keep performing

C-pivots ii’ until we reach the right endpoint of the path, if it exists.

For each of these pivots, we have Or&§i+ } = Or(ii) by Proposition 6.1.

1

We have just proved the following

. (% ) 3 3 <
Lemma €.3. Let \xy ', De a path with left endpoint x. If X1

is obtained from §<i by s C-pivot, Or(x.) = -Or(ii) for all i >0. &

O)

In particular, we have

Corollary (,L., Let (ii>i be a path with left- and right-endpoints
iO and im, generated by a series of C-pivots starting at io. Then
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i) Or(io) -Or(im),

and

i

1i) Or(ii) Or(ij) for all 0 < i, j<m.

Corollary 6.4 is analogous to other path orientation theorems
presented elsewhere, see, for example, Shapley [3%], Eaves and Scarf [ 8],
Eaves [ ¢ ). and Lemke and Grotzinger [30]. All of these theorems assert
that the orientation alorg a path is constant except at the endpoints,
whose orientations are opposite in sign.

Now suppose tha® X, 1is an element of the path \ii>i and

ii is not an endceint. Then ii-i Dl' Since L(x) = N, we can choose

two C-orderings of X, each one opposite in sign. C-pivoting on one of

these orderings will yield x and the C-ordering of §i+ will have

1

the same orientation as the C-ordering of ii' Continuing the C-pivot

i+1

process, we will generate the path elements i., X. iy Xeiovigunn
i i+l i+2

terminating if and only if gi\i has a right endpoin%i. By FProposition €.1,

Or(ii) = Or(%i) for all § > i, A parallel argument for the other C-order-

ing completes the proof of the following

Lemma $.%, Let ;Qi:i be a path on K and let ii be an element of
this path that is not an endpoint. Let the entire path be generated

from ;i by its two C-orderings. We have Or(ii) = -Or(ik) for all

P <1< Kk, <

In particular, we have
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Corollary 6.6. Let (xi)i be a path on K with left and right endpoints

iO and im, respectively. If this path is generated from ii’ 0<4i<m,
by the two C-orderings of ii’ then

1) or(xy) = -or(x)),
and

ii) Or(xj) = -Or(xk) for all j < i<k,

Corollaries 6.4 and 6.6 are illustrated schematically in Figures 6.1

and 6.2,

o#el
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»e
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+ () (<) (<) e («) (=) (-)

Figure 6.1

(+) (+) (+) . (+) (+)
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Figure 6.2
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By way of concluding Sections 6.1 and 6.2, we remark that the usual

path orientation results for manifolds carry over to H-complexes.
Actually, they do more than this--they carry over to orientable n-pseudo-
manifolds, For the only properties of H-complexes used in these two
sections was that K 1is an orientable n-pseudomanifold and that the label

set N contains n elements,

6.3, Conditions for which an H~complex is Orientable

In this section we give conditions on R that guarantee that R
is orientable, Let K, ¥, and A(-) define a V-complex, and let K be
the H-complex associated with XK. Let |N| = n. Assume that

i) for each T € §, A(T) 1is locally finite and orientable, and

hence homogeneous, and
ii) for all 8, TE€ §, S T T, there is a sequence il,...,im,
such that S U [il,...,ik} €9, k=1,...,m, and

s Ui im] =T,

1,.-.,
We will show that if K, §, and A(-) satisfy the above two

assumptions, then K is orientable.

In Section 6.4, we will discuss ways to test assumptions (i) and
(11) for specific V-complexes. Obviously, verifying condition (ii) is
very straightforward, Condition (1), however, requires special attention.

Our first result is:
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Proposition 6.7. For all S, T € I, there is a sequence SO’ cee 5 S

such that S, €%, 1 =0,.,.,m, S

o =S, 8, =T, and Is

ASiI =1,

i i-1

i=1,...,m

PROOF: If S = T, the conclusion is trivial, If S #T, SNTE¢€ Q.

We can write

S=SNTU/ s T=85NTUI(t,...,t,

l"",sk}’

for appropriate k, ¢, 855 and tj. We can assume ag well that the

s, are distinct and that the tJ. are distinct. By assumption (ii), we

i
can assume that S NT U [sl”"’si} €3 for i<k, and

SsNTU ltl,...,tj] €3 for J<¢. Then the sequence

s, S\‘sk*’ S \8s8g_q)seaes SNT, S NT U (8], SNTU(ty,ty),.0, T

S

is a sequence of elements of I, and successive members Si-l’ N

satisfy A si| =1, ?

1541

Towards proving our main result, we make the following:

Definition. For T € J, define

A(T) = (xU Q|x € A(T),Q:Qr,xUQaldJ .

A(T) can be thought of as a conical construction of A(T) with each

ay» 1 ¢ T. We have:
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Lemma 6.8. K(T) 1is an orientable n-pseudomanifold.

PROOF: Clearly A(T) is closed under nonempty subsets. Let x U Q € X(T).
Then there is a y in A(T) such that Ty =T, since A(T) is a pseudo-.
manifold. Then x UQCy UQy and |y UQy| = |T| +1+n - || = o1,
Any n-simplex of XK(T) 1is of the form y U Qp, vhere y 1is a
|T|~simplex in A(T). Let x'U Q be an (n-1)-simplex in A(T), that
is a subset of y UQp. Suppose x UQ Tz UQ, [z U Qz| = n+l, and
zUQ, Fyu Qp. But then Q = Qp, and since A(T) 1is a pseudomanifold,
the choice of 2z 4s unique. This proves A(T) islan n-pseudomanifold.
Now let x UQp and y UQ, be n-simplices in E(T). Then x
and y are |T|-simplices in A(T). Since A(T) is homogeneous, there
is a sequence x = 8q» 32, cee s 8 = y of |T|-simplices in A(T) such
that |si n si+1| =|T|, 1=1,...,m-1, Then x U Qp =8 UQy 5, UGy
cees 8By U QT =y U QT is a sequence of n-simplices in A(T) and
|(si UQp) N(sy,y UG)| =n, 1 =1,...,m-1. Therefore K(T) is
homogeneous,
Finally, we show that A(T) is orientable, Let Or(‘) be
& coherent orientation of |T|-simplices of A(T). Let x UQp be an
n-simplex of A(T). Let |T| = t. Order the vertices of x U Qs |
as (vo,..., vn), and let p be the number of transpositions needed to
"push” those v, € @ to the last n-t places of the ordering, while

preserving the local ordering of those v, € A(T) and the local order- ﬁ

i
ing of those v, € Q,. Then we define Or(vo,...,vn) = (-1)P or(x).
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If y UQp is obtained from x by a pivot, Or(y U QT) = (-1)P or(y)

= (-'.I.)p (-or(x)) = -or(x v QT). Thus XA(T) is orientable. &
Lemma 6.9. K= U A(T).
TS
PROOF: Let x € K. Then we can write x = x UQ where x I K, and
QCq, and Q C Qp . But then X € K(Tx). Conversely, let x U Q € A(T).
x

Then Q:QT and so x UQ€ R. b2
X

Lemma 6.10. Any n-simplex of R is an element of exactly one A(T).

PROOF: Let x U Q be an n-simplex in K. Then Q = Qy and x is full.
x

Thus x UQE A(Tx). Suppose x UQ € E(S) for some S € S, Then
x € A(S) and hence S D Tx' Also QTxC QS which implies S C 'I‘x. Thus
S = Tx’ 3

Thus we see that as T ranges over all elements of S, the A(T)
partition K into "disjoint" n-pseudomanifolds. We use disjoint
cautiously since this partitioning only takes place among the n-simplices
of K.

Next we have

Proposition 6.11. R 1is homogeneous.

PROOF: Let X and y be n-simplices in R. We can write x =x U Q>
b 4

y=yu Q‘I‘ for appropriate x, y € K. By Proposition 6.7, there is a
y 9
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sequence '.l‘x = '1‘1,..., Tln = Ty such that Ti. €3 ,1=1,...,m

and ,TiAT , =1, i=1,oo.,m-ln

i+l
We shall now show how to construct a sequence of neighboring
simplices in K that have X and y as endpoints, using an induction
argument on m. If m =1, then such a sequence of neighboring simplices
exists because x, y € A(T) TR, and A(T) is homogeneous. Suppose a
sequence of neighboring siﬁplices exists .(si)i =0 whose endpoints are

X and z€T ,. Then either T =T , U (k] for some k¢ T

1 m- 1’

or T = Tm-l\ {k}] for some k€ Tm- In the former case,

1.
Z =z \ [qk} U {w} 1is an n-simplex in K, that is in K(Tm), for some
unique w € 1-(0. Since T\(Tm) is homogeneous, there is a sequence of
J ~ -

neighboring n-simplices (ti>i=0’ where t, =%, t;j =y. Thus the
sequence

)-(=So,-.., Sl-"i’;:to’-oo, t'j:i
of neighboring simplices has x and y as its endpoints. An analogous

argument establishes the result when T = Tm-l\ (kj. ®

The next few results will also be used in the proof that R

is orientable,

Proposition 6,12, There is a unique set T € g such that S € gy

implies S DT,

PROOF: Define T*= N S, Then T*€JI and any S €3 contains T*.
SE]
Clearly T* is uniquely determined. ?
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Proposition 6.13. Let S, TE S, S #T, |S| = |T|. Then A(S) nA(T)

contains no (n-1)-simplices.

PROOF: Let x U ¢ € K(S) NA(T). Let t = |S| = |T|. We have
x € A(S), x€ A(T), so x€E A(SNT). But | NT| <t-l. Thus |x| <1.
o Sn-(t+l). Thus [xUQ <t-1l+n-t-1
< n -2, Therefore x UG cannot be an (n-1)-simplex. 67

Also QC CS n QT = Cs

We are now ready to describe an inductive procedure for orienting
K. Let TS 3 be the set described in Proposition 6.12, Let
d = |T*|. Let m = max|T| - d. Then we partition I into m+l classes,
%d, oo Sd+m’ where Sk = (Te€ %||T|=d+k}. Note that = U;=O sd+m’
and for all k # J, 3N Sj = ¢. Our procedure for orienting K 1is

as follows. 1

Step 0. Orient A(T*). Let Or(*) denote the orientation on K(T*).

Set 1'(0 = R(T*).

Step i (1 =1,...,m): Let 1'(1 = Ri_l U(U'IESi A(T)). Extend the orientation
or(*) to Ri by using the induced orientation on bi;_l to orient

A(T), Te Si. We now show that each step of this procedure is executable
and the result is a coherent orientation of K. Note Rm =K. our

proof is as follows:

9k
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Clearly Step O is executable, since A(T*) is orientable.

Suppose steps 0,..., i-1 are executable and result in a coherent orienta-

tion of Ki-l' The following lemma serves as & basis for our proof:

Lemma 6,14, Suppose T' %,. Then ki-l N A(T') 1is an orientable

and OA(T').

(n-1)-pseudomanifold and is a subset of 3‘-‘1-1

PROOF: By the induction hypothesis Ki-l is an orientable n-pseudomanifold.

So is A(T'). Let us denote L = Ri-l N K(T') for notational convenience,
L then is closed under nonempty subsets, and so is a complex. Let

x UGE L, Then x € A(T) for some T, |T| <d+ i, and x € A(T'),

¢ C Gy, By assumption (ii), there exists k € T' such that

x € A(T \ (x}). Let y < A(T'\ (k})) contain x (x <), such that

'I’y =T'\ ik}). Then x UG CyUG§¢ Note y U Qp, € L. Furthermore

oy
lyuQu| =a+i+n-(d+1i) =n Thus every element of L is a sub-
set of an (n-1)-simplex of L.

Now let x UQ be an (n-1)-simplex of L. From the preceding
remarks, we know Tx =T \ {k) for some X € T', and Q = QT" Let
x U Q\ {a] be an (n~2)-simplex of L, and suppose x U Q\ la} U {8}
is an (n-1)-simplex of L, B # . We need to show that there is at most

one choice of B. Clearly, a ¢ @, so @ € x. We have two cases:

Case I. x\ {a} is not full. Then since x\ ta} U (B} must be full,
B 1is the unigue element of KO such that x\ (2} U B} 1is a (a+i-1)-

simplex of A(T'\ tk}).
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Case 2. x \(a} is full. In this case 'rx\w} = T'\[k}\ (3}

for some j #k, jE T'.

Since x\ (@) U (B} must be a full (d + i - 1)-simplex, B is the unique
element of %0 such that x \ {(a} U (B} is a (@ + i - 1)-simplex of
AT\ {4)).

Thus we see that L is a pseudomanifold of dimension (n-1).

Our next task is to show that L is homogeneous. Let x U QT"
y u QT' be distinct (n-1)-simplices in L. If Tx = Ty’ then since
A(Tx) is homogeneous, there is a sequence x = By o5 S = y of
neighbors such that each 85 € A(Tx), j=0,..., k. Then
x U QT' =85 U QTl,..., Sj u QT" cee sy 8y U QT' is a sequence of neighbors
in L. Suppose then T, # Ty. Tx = T'\\{j], Ty = T'\\ {k}, for some
AT \ {3} \ (x}). Then
A(T \ {3)),
zU (8} 2 A(T'\ (k}). Let x =54 ..., s, =2 U {a) Dbe a sequence

J, k, wvhere j #k, JST', kST, Let z

m

n

there exists «a, B € x° such that 2z U {(a]

of neighbors in A(T' \lij)), z U (B} = to, ees tr =y a seguence

of neighbors in A(T'\\ {k}). Then the sequence x U QT.= solJQT,,...,sleQT,,
to u QT" cre tr U QT' =y U QT' is a sequence of neighbors in L,

Thus L 1is homogeneous.

Next we show that L = 3K Let x UQp, bean (n=1)-simplex

i-1°
of L. Since T =T\ (k) for some kI T', we can write x UG, =
x U QT;\ {qkl. Any n-simplex of xi-l is of the form y U QTy where
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|Ty| <d+1 -1, Thus the unique n-simplex of K, . containing x U S
is x U QTx, and hence x € Bki_l. A similar argument shows that
L < oKk(T').

If only remains to show that L 1s orientable. Since Ki-l is
orientable, Or(+) on Ki-l induces an orientation Or(:) on L Z aRi_l.
We need to show fhat this induced orientation is coherent; Let x, y €L
be neighbors. Let us assign labels to elements of Ki-l ag follows:

For vE€R, ,, v§XUJ, let L(v) =1. We canwrite X = (v;,...,v},
) =1, L(v,) = 4,

y = [Vn+l, V2, s v e

i

, vn] and let L(vl) = L(vn+l

2,..., n. Let us do C-pivots on the C-ordering of x. This will trace

a path of simplices of ii-l’ which if it has a right endpoint, the

right endpoint will be i. Furthermore, by the nature of our labelling
function, all elements of the path will contain x Ny. At least one
element of X Ny will be an element of Kp, and since K is locally
finite, the path will have a right endpoint. By the results of Section 6.2,

Or(x) = -Or(y), thus establishing that Or(:) 4s coherent on L. ?

With Lemma 6,1k established, we can orient L using the induced
orientation Or(-) from Ki' Now let X = {vl,..., vn} be a fixed ordered
element of L. Since x € aKi-l’ x € JA(T'), there exist unique elements
% B < K such that [a, Vppeens VI ER L, (B v, V) € ).
Define Or(s, Vir eee vn) = -0r(a, Vs see s vn), and extend Or(*)
to all of K(t') by using (B, Vireeos vn} as a "seed". This makes

A(T') coherently oriented, and also Ri-l U E(T') coherently oriented.
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We can repeat this procedure for all T' € 31-1’ since for any
S, T<9 4 A(s) n E(T) contains no (n-1)-simplices or n-simplices,
i.e. KA(S) and K(T) share no common boundary,

Thus Step i, 1 =1,..., m, of our procedure is executable and

! results in a coherent orientation of Ki‘ Hence Km = R is orientable,

We have just proved:

Theorem 6.15. Let A(:), 9, N, X satisfy assumptions (i) and (ii) of

i this section. Then K is orientable. ;

—

6.4, Concluding Remarks

We first discuss ways to verify assumptions (i) and (ii) of

Section 6.3, Assumption (ii) can be verified by a case by case analysis

of elements of &, if need be. However, notice that if ¢ 1is closed

under subsets, then assumption (ii) is satisfied. In all of the applica-

‘ ions of V-complexes discussed in this thesis, the only instance where
5 is not closed under subsets occurs in Kuhn's algorithm for the Spermer

I ; Lemma, where
{

s = (¢, (1}, (1,2}, ..., (3,2,...,n=1}} .

N m—— .

and in this case, Assumption (1i) is satisfied.

b Assumption (i) can be difficult to verify, in general, However,
it can be shown that if an n-pseudomanifold J can be realized as a

triangulation C of a set 8 in Iin, then J 1s orientable. The
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proof of this statement involves the use of determinants and the notion
of an orientable piecewise-linear subdivided manifold, and as it is not

central to our discussion, we omit it. All of the sets A(T) in all of
||
2

our applications are realizable as triangulations of sets in R

and so every specific H-complex of this thesis is orientable,
A final remark concerns whether or not K can be realized as
a triangulation in R", where n = |N|. In Esves [ 6], it is shown that
for Shapley's algorithm, K can be realized as such a triangulation.
In general, the complex K can be realized as a triangulation Kin.
The problem then becomes how to place "artificial" vertices a5
i 1i=1,...,n, in R™ in such a way that K can be realized as & tri-

angulation. This is an open question,

v ———
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CHAPTER VII

KNOWN VARIABLE-DIMENSION ALGORITHMS INTERPRETED ON V-COMPLEXES

7.0. Introduction

The original ideas behind the development of V-complexes came
from reading the papers of van der Laan and Talman [24], Reiser [33],
and Luthi [31], who present variable-dimension algorithms for computing
fixed-points or nonlinear complementarity points. In this chapter, we
show that these and other variable-dimension algorithms can be interpreted
as path-following on a V-complex.

In Section 1, we present fixed-point algorithms, namely those of
Kuhn [44], Garcia [12]), and van der Laan and Talman [23] and [24].
In Section 2, we present the algorithms of Luthi [31] and Reiser [33]
for the nonlinear complementarity problem, In Section 3, we present the

algorithm of van der Laan and Talman [25] for equilibrium points in n-person

game theory.

7.1. Fixed Point Algorithms

As was shown in Chapter V, Sperner's Lemma and Brouwer's Fixed-
Point Theorem are "equivalent," in the sense that one provides a quick
proof of the other. The firct variable-dimension algorithm known to the

author 1is Kuhn's algorithm [44] for the Sperner Lemma which, as we

have shown in Chapter V, can be used to compute approximate fixed-points.




Since we have already cast this algorithm as an instance of path-following

on a V-complex, refer to Chapter V, Section 1, for the details.

Garcia's Algorithm

The second variable-dimension algorithm for computing fixed-points
was Garcia's "hybrid" algorithm [12]. Our treatment of this algorithm
draws heavily on the material in Chapter V, Section 3. Let
s® = (x€ B®|e’x =1, x >0), and let N = (1,...,n}. Let JE€ N be
fixed, Then construct C, S, A(:), and K, Kp, as in Chapter V, Section 3.

Let £:8% »8? bea given continuous function. For each (v,t) € Kp, let

L(v,t) = min[ilfi(v) > vi}.

The algorithm consists of following the infinite path from ¢ € B; the

proof that this path is infinite appears in Section 3 of Chapter V. Let

{xi]:=0 be the simplices encountered in the path. There exists TCN,
T # ¢, such that L(x,) = T for infinitely many i. For each X,
such thet L(x,) = T, choose a point (s},tl) ¢ x;, and let &* be a

cluster point of the si. By the contimuity of £(¢), fi(s*) > s§ for

all 1€ T, Forall i¢ 17T, sf = 0, since for all k sufficiently large
tk > 0, Thus fi(s*) > s{ for all i, which implies that f(s*) = g¥,
*

since eTf(s*) =els = 1.

van der Laan and Talman's First Algorithm

In (24], van der Laan and Talman presented a variable-~dimension

algorithm for Sperner's Lemma and for computing fixed-points, The pivot
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rules and a sample path for this algorithm appear in Chapter II, Section 2.
Here we present the algorithm as a path-following procedure on a V-complex.

Let s" = (x € ]RnleTx =1, x

v

0} and let C be the Scarf-Hansen
triangulation of S". Let N = (1,...,n] and let = (T CN|T £N),

Let w >0 be a fixed vertex of C, and let

r_l 0 e & e 0 1..
1 -1 _ 0
0 1 .
Q = e e . .
I . a0
L 0 e e . 0 1 -l

vhere Q is an n xn matrix, Let qi denote the im column of Q,
For each t € &, let A(T) be the pseudomanifold corresponding to the
restriction of C +to
xestx=w+ I NG, N 20) .
1€T .

Finally, let K be the pseudomanifold corresponding to C. It can be
shown that K, A(+) and Q define a V-complex, See Figure 7.1.

Now let L(*) be a proper labelling (see Chapter IV, Section 1)
of KO, and let us examine the sets B and G. Clearly ¢ ¢ B, since

A(g) = (¢,(w)). Suppose ¢ # x € B, We have T, = L(x), and x € a'A(Tx).

1

s eee s vt]. Then v

Let x = (v 3‘=0 for some ;jETx and all

i=1,...,t. Thus since L(-) 4is proper, j 7 L(x), a contradiction.
Therefore B = {¢}.
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Suppose x € G. Then by Definition of , L(x) =N, and x is
a completely-labelled simplex. The algorithm consists of following the
path whose endpoint is ¢ € B, The other endpoint must be an element of

G, and so is a completely labelled simplex, A sample path of this

algorithm appears in Figure 7.2,

van der Laan and Talman's Second Algorithm

In (23], van der Laan and Talman presented a variable-dimension
! algorithm for computing fixed points on unbounded regions. An analysis
of this algorithm as a V-complex is as follows:
} Let K Dbe the pseudomanifold corresponding to Kuhn's triangulation
} of R" and let £:R” 5 R® be continuous. Let Q be the n x (n+l)
matrix

(10--'-0-17

' 0 1 . . .
3 . o . . L] .
i

Q = . . . . . . .

L0 O * - 0 1 -1

|

, . . . 0o .
}
|

| Also, let w < K be fixed. Let N = (1,...,n+1), and let
S = {TTN|T £ N). Define A(¢) = (@,(w)), and for ¢ # TE€ 3, define
A(T) to be the pseudomanifold corresponding to the restriction of Kuhn's

triangulation to
{x € Bnlx =w+ L )xiqi

’ )‘1 ZO] ’
1€T
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where qi is the ;h column of Q. It can be verified that A(-), %,
and N define a V-complex. See Figure 7.3, Now let L(-):Ko -+ N be

a labelling function defined by

i if fi(v) -v

v

fk(v) -v, forall k and

i k

fi(v) -v 0

v

L{v) = i

n+tl if f(v) - v <0,

Let us now examine B and G. Clearly ¢ € B, since A(¢) = (¢, (w}}).

Also since J'A(TY = ¢ forall T #¢, B= (¢J}. Also, by definition of

i

3, G = {x € K|L(x) = N}.

The algorithm consists of following the path from ¢ € B, If
this path is finite, then its other endpoint is an element of G,
The usual limiting argument shows that for sufficiently small diameter of the
triangulation, any element of a simplex in G is an approximate fixed-point of
£(*). In [23] and [32], sufficient conditions are given which guarantee
the finiteness of the path from ¢f € B, thus assuring that an element of

G, and hence an approximate fixed-point, is found. A sample path appears

in Figure 7.4.

7.2. Algorithms for the Nonlinear Complementarity Problem

The nonlinear complementarity problem (NLCP) is as follows:
let f:]Rn+-’ R® be given, Find x* ¢ R such that £(x*) >0
and x*f(x*) = 0, This problem, central to mathematical programming,
arises in constrained optimization, game theory, and economic equilidbrium

theory, See, for example, Cottle and Dantzig [ 2], Eaves [ 3], Lemke

[28] and [29], and Scarf [35].
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In {31], Luthi presented a variable-dimension algorithm for the
NLCP. 1In our presentation of his algorithm as an instance of path-following J
on a V-complex, we only treat the basic algorithm, and not the restart F
procedure,

Let £:R"" - R® be given, let C be a triangulation of R,
and let K be the pseudomanifold corresponding to C, Let N = {1,...,ntl],
and let 9§ = (TC Nint1 ¢ T). Let A(¢) = ¢, 0)), and for ¢ #TEST,
define A(T) to be the pseudomanifold corresponding to the restriction
of C to the set

xR |x, =0 forell i¢T).

It can be verifed that <, N, and A(+) define a V-complex. See
Figure 7.5.

Now let the labelling function L(’):KO - N be defined as
follows:

n+tl if f{v) >0
L(v) =
any i such that f‘i(v) < fj(v) for all j if f(v) # 0.

Let us now examine the sets B and G. Clearly, ¥ € B, since
A(¢) = (¢, (0})). Furthermore, for T3, T # ¢, O'A(T) = @, so there- l
fore B = §). h

Let x . G, Then L(x) = T U {n*1l}, by definition of N and %.
Let s be an element of the real simplex corresponding x. Then if the
diameter of x 1is sufficiently small, we have that f(s) > O (where

"=" denotes approximately), since (n+l) € L(x). Suppose s, >0 for some i,
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Then we must have 1€ T . Thus i ¢ L(x), and so fi(s) < 0, which
implies fi(s) ~ 0. Thus we have that s-f(x) ~ O, and so s solves

the NLCP,

The algorithm consists of following the path from @ € B,

} If this path is finite, then any element of the terminal simplex x € G
is an approximate solution to the NLCP. Conditions which guarantee the
finiteness of the path are given in Kojima {19]). A sample path appears

in Figure 7.6.

i Reiser's algorithm

In [33], Reiser presented a variable-dimension algorithm for the

NLCP, and first introduced the use of negative-valued integer labels.

Reiser's exact algorithm is slightly different from that which appears

in Chapter II, Section 1. The analysis of Reiser's algorithm as an

instance of path-following on a V-complex is as followss

D e continuous, Let K be the pseudomanifold

Let f£:R"5 R
corresponding to Kuhn's triangulation of Iln+, and let
N=14,...,n =1, ..., =-n). Let w>0 be a fixed element of KO.

Let § =({(TCN[1€T implies -i ¢ T) and define A(¢) = (¢, {w]].

e St PO ———t

For @ # T € 3, define A(T) to be the pseudomanifold corresponding to

the restriction of Kuhn's triangulation to

. em e

+
{x € R" |34 T, -3¢ T implies x, = Wy and j € T implies 3-(x-w),3|50}.

J

See Figure 7,7. It can be verified that K, A(-), N, and ¥ define a

V-complex. Let L(-):Kp —» N be the labelling function
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i if min f.(v) + max f.(v) >0
3=1,...,n 9 v,>0

and fi(v) > fj(v) for any v, >0, and v, >0.

L{v) =4-i if  min £ (v) + max f (v) <O
J=l,...,n J vj>C

and fi(v) < fj\v) forany j=1,..., n

L 0 if v =0, £f(v) >0.

If L(v) =0, then v =0 solves the NLCP and we are done. So we assume
that L(0) # 0. 1In the above labelling function, choose the least index i
in case of ties.

Let us now examine the sets B and G. Clearly ¢ € B, since
A(g) = (¥, {w)}. Suppose @ #x€ B. Then x¢€ B'A(Tx). Thus for all
v € x, there is some 1 ¢ Tx such that v, = O. But then we cannot have
L(v) = i, so that L(x) # T,- This contradicts the definition of B.
Therefore x ¢ B and so B = {{].

Now let x € G. Then there are vertices v', v"' € x such that
L(v') = <L(v"). 1In [33], Reiser shows that for sufficiently small
diameter of C, v' or V" 1is an approximate solution to the NLCP.

Reiser's algorithm consists of following the path from @ € B,
If this path is finite, it must terminate with an element x of G,

In [33), Reisergives sufficient conditions on f that guarantee that

the path from d € B 1is finite. See Figure 7.8 for a sample path,
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7.3. Algorithms for Equilibrium Points in n-Person Noncooperative

Game Theory

An n-person noncooperative (finite) game can be described as

follows: There are N players (L<N< m), each of whom have m

n
pure strategies, n=1, ... , N, Let n = Z§=l m . The given quantities
a(ni il)---) iN) » ij =1,..., mn5 n=1,..., N; J=1..., N

represent the loss per play to player n if player j plays his/her
ijEH pure strategy. These quantities are assumed to be positive without

loss of generality. We denote the strategy vector

i= (il,...’ iN) E Il X eee X IN,

where
I, = (3,..., mn), n=1,..., N.
Let

n “n,.T
S'=Iix€R |ex =1, x>0}

be the set of mixed strategies for player n, n =1,..., N, Furthermore,

let S = Sl X e X SN. S, then, is the set of all mixed strategies ]

for all players, Let I = Il X eo0 X IN' Define

N
f(n;i,x) = 1?1 a(ny SPRPRPIE SURVIE "R NIUPRPRR 1N) kgl x(k,ik) ’

i =1
n

k#n




-

s Sl | PP

. w e e

-

where x(k,j) is the coefficient of the ;2 term of the k' mixed
strategy. f(n;i,x) is the marginal loss to player n under the mixed
strategy x € S, for each 1 € In’

A strategy vector x 1is a (Nash) equlibrium point if and only
if x satisfies:

i) x€eX

ii) [f(n;i,x) - h(n,x)] x(n,i) =0, n=1,..., N3 1 =1,..., m,

where h(n,x) = min f(nyi,x).
iEIn

In (25], van der Laan and Talman present an algorithm that
computes an approximation of x. To do so, they also present a neat way
to triangulate S, Before interpreting their algorithm as path-following
on a V-complex, we first need to describe their triangulation.

Let 4., ..., dN be fixed positive integers, and let w >0

l}
be a fixed element of S such that dn-w(n,i) is integral for all

n=1,..., N i=1,..., m. Let

(-1 0 + + 0 17

1 -1 . 0

Q =L o 1 - - .

n d . e e .
n

. -1 0

| 0 .- 0 1 -1

where Q is an (mn) X (mn) matrix, Let Q be defined by:
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Furthermore, let q.j be the JEE column of Q. Let vo be any point in
the affine hull of S, such that dn-v(n,i) is integral for n =1,..., N,
i=),..., m . Choose indices kl, cee 3 kN such that kn € In’

1,..., N. And let 7 be a permutation of I\\[kl,..., kN]' Define

n

for j=1,..., n=N,

J

= J-l +
vy % (3)
Then it can be shown that (vo,..., vn'N) is an (n-N)-dimensional real
simplex in the affine hull of S. The collection of all such simplices
on S can be shown to be a triangulation of S. Call this triangulation C.

Let us now set up our V-complex related to S. Let

T e o P AT~

F=((ni)|t e I,n=1,..., N}

Let S = (T CN|for each n, {(n,i)|(n,1) € T) # {(n,1),..., (n,mn)],
n=1..., NJ. Define A(¢d) = (@, (w)). For each T'E S, T #¢, define
A(T) to be the pseudomanifold corresponding to the restriction of C to
the set

(x€ES|lx=w+ L

(n,j_)eT )\(nyi)q(n,i)’ )\(n,i) ZO] ’
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n-l th
where q(nyi) 1is the (X2 mj + i)=— column of €.
Jj=1

It can be shown that this restriction is well-defined, and that

K, R, 9§, and A(*) define a V-complex, where K denotes the psueodmanifold
corresponding to C.

We now define a labelling function L('):KO - N, by the rule:
L(v) = (n,i) if (n,i) 4is the lexicographic least index with x(n,i) >0
and f(nyi,v) - h(n,v) > f(myj,v) - h(m,v) for all other (m,J) € &,
It can be shown that this labelling rule is well-defined.

Let us now examine the sets B and G. Clearly ¢ € B, since

1 t}

A(g) = (¢, {(w}}. Suppose, # # x € B, where x = {(v,..., v} for

some t >0, Then L(x) = T, and x € B'A(Tx). Thus, for some (h,i) € T

"gh 1) =0 forall j=1,..., t. But then, by definition of L(-),
! 04

(n,1) ¢ L(x), contradicting the fact that L(x) = Tx‘ Thus B = {@).

-~ —

Since B contains only one element, G must contain an odd
number of elements, by Corollary 3.11. Let x € G. Then, for some
n€ (1,..., N}, L(x) D {(n,1),..., (n,mh)}. As is pointed out in [25],
' any element of x represents an approximate equilibrium point, for

. sufficiently small diameter of C. van der Laan and Talman's algorithm !

] consists of following the path from ¢ € B to its other endpoint, an

i element of G.
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7.4, Concluding Remarks

In this chapter, we have shown that a number of variable-dimension
algorithms can be formulated as path-following schemes on a V-complex,

There are two noteworthy variable~dimension algorithms whose formulation

in the context of a V-complex appears doubtful. These are the game-theory
algorithm of Garcia, Lemke, and Luthi (13], and the algorithm of van der
Heyden [16] for the linear complementarity problem.

The algorithm of Garcia, Lemke, and Luthi [13] for equilibrium
points in noncooperative n-person games is truly a variable-dimension
algorithm. However, it uses neither integer nor vector labels, but rather i

uses a sequence of labels, called p-labels, in its execution. The label

function varies as & function of the state of the algorithm. It is the

lack of a unique labelling function in the algorithm which makes it

difficult to interpret the algorithm on a V-complex,
Van der Heyden's algorithm [16] for the linear complementarity
i problem is also a variable-dimension algorithm. In this algorithm, the

dimension of the "simplex" (actually the set of relevent non-basic

variables) can jump by more than one-dimension between two "adjacent"
states, This makes the interpretation of the algorithm on a V-complex

very doubtful as well,

With the exception of these two algorithms, all variable-dimension

simplicial algorithms that have come to my attention can be interpreted

as path-following schemes on a V-complex.
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CHAPTER VIII

CONCLUDING REMARKS

8.0, Introduction

In this chapter, we make some summary remarks and conclusions
regarding V-complexes, H-complexes, and their extensions, To begin with,
let us summarize the development of the last five chapters of this
dissertation, In Chapter III, we axiomatically defined a V~complex,
We then showed how to "1ift" a V-complex into an n-dimensional pseudo-
manifold called an H-complex, With a labelling function specified, we
showed how to do path following on V-complexes and equivalently on H-com-
plexes. In Chapter IV, we used V-complexes to prove a variety of results
in combinatorial topology, some new, some old. In Chapter V, we applied
these results to prove a number of existence theorems in the mathematical
theory of operations research, where we interpret operations researéh
broadly to include optimization, game theory, and fixed-point theory,
among other fields. In Chapter VI, we developed an orientation theory

and an associated result on path orientation., Finally, in Chapter VII,

we show how most variable-dimension simplicial algorithms can be interpreted

as path-following algorithms on a V-complex,

8.1, Vector Labelling
In most simplicial algorithms, vector-valued rather than integer-

valued labelling functions are used, A typical algorithm traces a path of
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zeroes of & piecewise-linear (FWL) map induced by the labelling function,
When integer labels are used, the algorithm can still be interpreted as |
tracing a path of zeroes of a PWL map, but is more naturally interpreted

via the "ghost story" as stepping between "almost-completely-labelled"

simplexes of an n-pseudomanifold.

! In this dissertation, we have restricted ourselves, for the sake
of clarity. to integer-labelling functions, However, the extension of path-
following on a V-complex to vector-valued labels is not difficult. The

' following summary remarks show briefly how to extend our results to

. vector labelling:

| Let K be a V-complex, and let K be its associated H-complex,
Let § = [ql,..., qn] be the artifical vertices used in K. Assume K

can be realized as a triangulation C of some n-dimensional set S in

R’ where p > n, with vertices I'(o Let zl, coe zn be pre-gpecified

' (n-1)=vectors in R such that the system
i % N2, =0 AN >0, 1 =1 n
X jmp 11 ’ 1= reees
‘ |
eT)\ =1

» 7
| » has & unique solution. Then let L(-):K0 - mn-l be any vector labelling
' f .)‘ function, and extend L(:) to RC by the rule

] v

L(qi) =li’ 1=l’ooo’ n.

Then we can perform PWL path-following on R much as in Eaves (6].-

Of course, we need to assume & regularity condition on L(*) or specify
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a perturbation scheme in order to guarantee our path is well-behaved
(i.e, no bifurcation takes place), but the essential ingredients are all

as stated above.

8.2. Kojima's Work
In [20], Kojima has presented an interpretation of variable-

dimension elgorithms as PWL path-following on a special type of subdivided
manifold with primal and dual elements, His work is neither a generalization
nor & special case of our own, In his approach, the notion of triangulation
is not used, but rather he works with subdivided manifolds, His dual sub-
divided manifolds correspond loosely with our simplices that are subsets

of Q, but his dual manifolds are not necessarily simplices. In this sense,
his work is more general, In another sense, our work is more general,

since we are not restricted to simplicial structures that can be imbedded

in real n-dimensional space, i.e, our results depend only on pseudomanifolds.

8.3, V-Complex Topology

The structure of a V-complex, as we have seen, iz a tool that
is useful in other mathematical systems. However, its straightforward
axioms make it somewhat interesting in its own right., One is led
naturally to ask, "What kinds of sets can be realized as triangulations
derived from V-complexes?”" Although we have no definitive answer to this

question, some remarks are in order.




o —— ——

Consider a 2-pseudomanifold K that 1g combinatorially equivalent
to the M;bius strip (see Chapter I, Section 3), After many attempts, we

have been unable to design & nontrivial V-complex with K as the under-

lying complex, where by nontrivial we mean a V-complex such that I contains

more than one element.

Furthermore, we have been unable to construct a nontrivial V-complex

associated with the two-dimensional torus,

Of course, both the torus and the M;bius strip are non-convex
sets. This naturally leads to the question as to whether or not any
nonconvex set can be realized as a nontrivial V-complex, This question
is resolved in Freund (10], where we present a non-trivial V-complex
associated with the n-sphere, a non-convex set for n > O,

A final question is, "Under what circumstances can the (n-pseudo-
manifold) H-complex K be realized in R’ as e triangulation? The
H-complexes R associated with the V-complexes in this dissertation

are all realizable in Ifl, but this by no means answers the question.

8.4, Applications to Polyhedra

Associated with a real n-dimensional polytope is an (n-l)-pseudo-
manifold derived from its boundary (see Adler and Dantzig [ 1], for
example), Researchers in linear programming and combinatorial optimization
have studied the structures of these pseudomanifolds in relation to the

Hirsch conjecture on the diameter of polytopes and other problems as well,
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Although we have not applied V-complexes to polyhedra, there appears to
be potential use for V-complexes in the combinatorial study of polyhedra

and their related pseudomanifolds.

8.5. More on the Combinatorial Lemmas

As a finsl note, we make some remarks regarding the combinatorial
lemmas of Chapter IV. As is summarized at the end of Chapter V, the
Generalized Sperner Lemma provides a direct proof of both Sperner's
Lemma and Scarf's duasl lemma., These latter two results provide a direct
proof of Brouwer's Fixed-Point Theorem, and vice versa. However, whereas
Lemma 4,6 and Kuhn's Lemma both imply Brouwer's Theorem, we have been
unable to use Brouwer's Theorem to prove either result. In [21], Kuhn
proves a weaker version of his lemma by appeal to Brouwer's Theorem.

A natural question, still unanswered, is "Is there a similarly weaker
version of Lemma 4,6 that is implied by Brouwer's Theorem?"

In Chapter V, we showed how combinatorial lemmas on the simplex
and the cube can be used to prove Brouwer's Theorem, Are there combinatorial
results on other polyhedra that prove Brouwer's Theorem? All of the combi-
natorial results on the simplex and cube are derivable by appeal to a
V-complex., On other polyhedra, what sorts of V-complexes (associated
with the polyhedra) could give rise to new combinatorial results?

Although we have no answers to these questions, we are confident
that further study may give partial or complete answers, and look forward

to the possibilities that new regearch can offer.
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