
AD-AOG9 989 CALIFORNIA UNIV B3ERKELEY OPERATIONS RESEARCH CENTER F/6 12/2
PRODUCTION PLANNING FOR MULTI-RESOURCE NETWORK SYSTEMS. U)
AUG GO R C LEACHNAN N00014-7A C 0134

UNCLASSIFIED OR-80-18N L

El..'



11111 lm*2 12.2

11111 1.25 III~ 111.6

MCROCOPY RESOLUTION TEST CHART
NA11NAL 14,RA H AWI A RD,[ 1. A



MW O"g PLAWIN6 FOR MULTI-RESOURCE NE" RJC SYSTEMS

=1

I 4 LD ricOPERATIONSELEC
RESEARCHS

CENTER 
forp f nl lb~

UNIVERSITY OF CALIFORNIA o



PRODUCTION PLANNING FOR MULTI-RESOURCE NETWORK SYSTEMS "

by

Robert C. Leachman
Department of Industrial Engineering

and Operations Research
University of California, Berkeley

AUGUST 1980 ORC 80-18

t Submitted for publication in the Naval Research Logistics Quarterly.

This research was supported by the Office of Naval Research under
Contract N00014-76-C-0134 with the University of California. Repro-
duction in whole or in part is permitted for any purpose of the
United States Government.

JJA



Unclassified
SECURITY CLASSIFICATION or Tiqis PAGE (Whan Dal* Eaeere*

JROD REPORT DANN ORUMETTIOUPCE BEFORE/ RsrCOh LTGFR
11 max a 12.GOV ACESSON . RPEFOMING CAORG EORUMER

ARE OROK NTNUER

Oprtio Research Cete

University ofSORC CalifrniaU 07 03
I I COTOLNGOFCENMEADADRS 4. I RI ORO.3 RAE POTNME

Officeiofnav Research (42ter

Department of the Navy 7- T.MWW'UP'WAGES ~ i
Arlington, Virginia 22217 15

14. MONITORING AGENCY N AME 0 AoRESs(it dirent from. Controllng Office) IS. SECURITY CLASS. (of this ae")

Unclassified

Is. E~ASI FICATION/ DOWNGRADING
SCMDUl

IS. DISTRIBUTION STATEMENT (of Si. Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract etered I Block 20, It differet be.m Report)

IS1. SUPPLEMENTARY NOTES

19. KEY WORDS (Catimnu atoe-ero aid. of UocessW7 and idenify by' block newmubw)

£ Multistage System
Production Planning
Technical Efficiency
Economic Efficiency
Linear Programin

20. ABSTRACT (Catlhiu do Fowvas* side It neeaend denMtify by block - ew

(SEE ABSTRACT)

W0I 1jAN71 1473 ~;~ "(4
5 OCURYTY CLARMPICAI@W OP temI AE w=3=rDuo

F1~Iepp'-" AL.



ABSTRACT

Production planning for large-scale production
systems requiring the allocation of numerous re-
sources is considered. It is demonstrated how the
dynamic activity analysis developed by Shephard
leads to linear programming solutions of produc-
tion planning problems. Three types of planning
problems are formulated: maximization of output
levels for a given time horizon; minimization of
production duration for given output histories;
and minimization of production costs for given out-
put histories.
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Production Planning for Multi-Resource Network Systems

Robert C. Leachman

University of California, Berkeley

1. Introduction

Previous efforts (von Lanzenauer 141 and Candea (1)) to mathematically model capaci-

tated, multistage production systems have been motivated by manufacturing shop environ-

- ments, in which many products are to be produced using a given network of faciities.* The

problem considered is to determine workforce levels and product lot sizes in each time period

so as to minimize costs to meet external demand schedules [1) 14).

The focus of this paper is planning for production systems in which the production net-

work elements are dedicated to producing a single product, but allocation of numerous

resources among the elements is required, and other kinds of production planning problems are

posed. Shephard et. al. [71 (81 have developed a continuous flow dynamic activity analysis

model of production, in which a network of activities characterizes the component tasks of pro-

duction. Required facilities and other resources are considered as inputs to be allocated among

the activities. The presentation in [81 is taken as an appropriate point of departure here. In the

following, this model is extended to include inventory capacities as in (41, initial inventories of

intermediate products, and classes of exogenous inputs.

Three types of production planning problems are formulated and solved using linear pro-tgramming methods. The problem types considered are maximization of output accumulations

j by a given horizon; minimization of production duration for required output histories; and

minimization of costs for given output requirements.

No Aiempt is fade here to lreferea multiutp modein efforts of unracllted systems of pure eral or
Pralel structures; for a survey of such eflorte, sne Cande Ill.
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2. The Model

Following Shephard and AI-Ayat (8], the production system is viewed as a network of

production activities which are denoted by A,. A 2.... A. In the network, nodes represent

activities and arcs indicate intermediate product transfers. ie, the use of each activity's output as

input by other activities. The operation of each activity A, is measured in terms of an intensity

function z,(). t-O. 1.2. • • •. whose value at time t indicates activity input during [t.,t+l) and

output at time (t+1) when taken with technical coefficients defined as follows:

(a) c,(t). t-O. 1.2 .... i-I . N. where c,(t) is the amount of output of activity A, at

time t per unit intensity of activity A,.

(b) a,&(W, t-O. i,2 ..... k-l,2 ... NK, i-I. N, where a.,() is the amount of exo-

genous input type k required at time t per unit intensity of activity A,. The first NS NK

inputs are designated non-storabk resources which cannot be accumulated; the remaining

exogenous inputs can be accumulated, and are termed storabk resources.

(c) 1,j (r), t-0.1.2. .. 1 . N. j-! .. N. where i,, ) is the amount of inter-

mediate product from activity A, required at time t per unit intensity of operating A,.

For a time horizon T for production activity, we introduce the following technical limita-

tions on the system:
1-)0.1.2 ..... r-1

(a) I, (t) . the activity intensity bounds, natural bounds resulting from available

-, ~1workspece and other limitations not considered as exogenous input;
,-0. 1. 2.. r-I

(b) x(,)l the time histories of non-storable resource levels available for
If 1AI - I ...... ¥VS

input to the system;

(c) I Yk(') , the time histories of storable resources made available to the sys-

tem, where

is

~is the cumulative amount of resource k supplied during 10.t);

4 -. . .. ..

- ~'i
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(d) finvI . the initial inventories of activity product for intermediate uses; and

(e) cap, () , the bounds on accumulations of activity product awaiting inter-

mediate uses, arising from limited storage capacity for in-process inventories.

For our purposes here, the intensity z,(t)of activity A,. i-! ..... N, on each time inter-

val It.t+l), t-O. 1. 2 .... T-1. shall be partitioned into effort producing intermediate product,

z4(t). and effort producing final product, z,(t), where

Z'(t) + zr(t) - (1)

These variables indicate the allocation of activity output produced during [t,,-l) to final and

intermediate uses.

A production pian is a specification over some finite period [0. T) of the activity intensities

1,-o ..... -

Z:/0). ef(t)
I I-i. . .

Such a plan is said to be fsiblt for L(T) if the plan belongs to the set L(T) defined by the fol-

lowing inequalities:

L(T)1. ,a,t ) z!(t) + zF(t) 1J X l). k-I . NS. t-0, 1. T-1.

L(T)2. ± k(r) Izf/(r) +:f(vr) I C, jY.(r), k-NS41. NK.
T-0 01 i-C

t-0. T-I.

L(T)3. i,,(T) Jew + zf(") - 'c,(r+1)'(7) inv]'.

-. N. r-I .... T-I. and

,(0)zf(O) + ,',o 4 ino, j-. . .

L(T)4. c,(,r+|)z,(r)- ± 0(r)z,(,) + ( cap(t) - inv.

i-I.. .,-.... -I. and
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N

- j(O)[(O) + zr(O)J 4 capi(O) - , 0, j-l,.... N.

L(T)5. zftt) + zf(t) 4 F(). j-I ... N, t-,O . T-'.

Zj/(). zjFO) > 0. j-1, .. ... N t- o. .. ... T-1.

Constraints L(T) I and L(T)2 express resource limitations. Constraints L(T)3 insure ade-
quate intermediate product transfers occur to support production activity, while constraints

L(T)4 insure that inventories of intermediate products do not exceed capacities. Finally, con-

straints L(T)5 limit intensities to non-negative values less than intensity bounds.

The set of linear inequalities L(T) constitutes a continuous flow model of production, in

which any positive intensity of activity operation supplies completed product to final or inter-

mediate uses, or to inventory. In the case that intermediate products of a system are large,

discrete units, precedence relations occur between activities output unit by output unit, and

constraints L(T)3 and L(T)4 must be modified. This case will not be treated here, and the

reader is referred to [61, in which a dynamic activity analysis was developed on a critical path

analysis network.

In the case more than one activity produces a certain product, constraints L(T)3 and

L(T)4 must be modified for the activities in question. See [6) and 18). However, with such
revisions L(T) still constitutes a set of linear inequalities. For simplicity of exposition, we

assume in what follows that no two activities produce the same product.

3. Production Programming

3.1. Output Maximization

In this section, programs are formulated for the maximization of value or mix functions

of final output accumulations. We consider first the case where a specific product mix of final
.; output is desired, and the problem is to maximize the scale of this mix accumulated by a time

horizon T.

Let z +t be a variable indexing the scale of the accumulation by time T. The amounts of

the various products will be related by coefficients

a-v . ... .. N.
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where a,.+Iz.+I is the amount of final product from activity A, accumulated. The problem in

question is formulated as a linear program as follows.

Maximize zN.1

subject to

01. ,..+IZN+t < c,(4IzF(.) . N.
1-0

,-0... r-I
02. az (t) . L(T),

03. Zv+ > 0.

In general, the program involves (5(N) + NKI(T) + N + 1 variables, and

3(N) + NK (T) + N constraints. Clearly, the time horizon (ie. the number of time periods)

is the most sensitive factor in terms of problem size which can be handled. The structure of the

constraint set can be modified by rewriting constraints L(T)3 and L(T)4 in terms of intermedi-

ate product inventory variables

i.v(, t-0 .. T-l,

which are the slack variables defined by constraints L(T)3. Using these variables, we reformu-

late constraints L(T)3 and L(T)4 as follows:

LIT)3. E ,,lzf(t) + zF() - c,(t)zf(t-i) - invf(t-l) + invfr) - 0,

i j-I .... Vt-! ... _T-I, and

,a,.(o)[Z/(o) + f(o)w + inv,(o) - ,,,,o. i-i. N.

L(T)4. invf(t) ( cap,(0, - ..... N. t-O ..... T-1.

j With this revision, it is evident that the constraints L(T)I, L(T)4 and L(T)5 apply only

time period by time period, and the constraint matrix exhibits partial block diagonal structure.

Potential is thus offered for application of large-scale programming procedures such as
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decomposition. (See 15].)

We next consider the case where the value of output produced is to be maximized. We

suppose each product i has a constant unit price p,. The maximum value of output accumulated

from production activity during [0, T) is then given by the optimum of the following linear pro-

gram.

Maximize ''pc(t+lDz (,)

t-O 0-1

subject to

z ( )  (°, .. e L (T).

The remarks about problem size and structure concerning the previous program apply here as

well, as only the product mix variable and the N constraints 01 have been deleted.

3.2. Time Minimization

In this kind of planning problem, there are final output demands which must be met, but

the overall production duration is to be minimized. Final output demands are expressed in

cumulative terms as follows. Let

C(1). t-l,2, T. i-I, N,

denote the required cumulative delivery of final product i by time t. Here, we are considering

the situation where early delivery of final products is acceptable or even desirable. These

demands imply constraints

c,(,r+l)zF(,r) ,() i-1 ... , -I . . T. (2)
0 [ ,-0

We first consider the problem of finding the latest starting time for production activity

sufficient to satisfy (2). A feasible production plan for this problem would satisfy the linear ine-
qualities (2) and L(T). An optimal plan would have the characteristic that

z,() z,(l) - z,(2) -... z,(t 0) - 0, i-I .... N, (3)

where to is as large as possible. Such a plan may be found (if one exists) by solving a sequence

•A 0;S .: - , ..

* ' -.. . .



of Phase I linear programs (see (2)) as follows.

The set of inequalities under consideration is of the form

Az + Bx - b
z>O, x>O, (4)

where

[z'm(o), .zf() ... z (0). :1(1). F(1) .... zI(I), Z(l) .

A{ (T-1), (T1...z TDAT-

x- (x?

m-(N)(T). n-(NK)(T) + 3(N)(T), 1-2(N)(T)

A is the (m+n)xl matrix of coefficients of activity intensities in (2) and L(T), where the first

m rows arise from (2);

B is the (m+n)x(m+n) matrix of coefficients of slack variables for said constraints; and

b is the (m+n) vector of right hand side constant terms of the constraints.

For the inequalities organized in this fashion, the solution algorithm is presented below:

Step 0. Initialize 7 - T-1.

Step 1. Solve the Phase I problem with the first (N)(7) columns of the tableau corresponding

to (4) deleted. If a feasible solution is found, stop; then

;,', I i -0 ....r-if jz/(i). z,(t)1
lz"W Zr t -t ......

is an optimal production plan. If the problem is infeasible, go to Step 2.
T

Step 2. If r-0, stop; then the set of inequalities is infeasible. Otherwise, decrease r to 1--I and

go to Step I.

The algorithm is seen to initially ignore all columns in the tableau corresponding to

activity intensities in periods before time (T-i), and to then attempt to find a basic solution. If

none can be found, columns corresponding to

z'(T-2), ;-(T-2), i-I.. N.

,-u.__ _ _ _ __ _ _ _ ____________._.-.___._,________



8

are also considered. The algorithm continues to allow the use of columns corresponding to

activity operation one time period before the earliest period of activity operations allowed by

the previous iteration. The algorithm terminates either the first time a feasible basic solution is

found, or else all columns are adjoined without finding one. In the former case, an optimal pro-

duction plan is found, and in the latter case, the output schedule (2) is infeasible for the limita-

tions L(T).

We next consider the problem of finding the earliest time all product accumulations can

be completed. It is immediately apparent that an approach similar to that considered above can

be used to solve this problem. A sequence of Phase I procedures is again suggested, but in this

case starting with the possibility of positive activity intensities only during [0, 1), and proceed-

ing forwards in time. Later production activity is allowed period by period until either the first

time a feasible basic solution is found, or else the horizon is reached without finding one. In

the former case, an optimal production plan is obtained, and in the latter case, the output

schedule is infeasible for the limitations imposed.

3.3. Cost Minimization

In this section we formulate the problem of determining a minimum cost production plan

which meets a given final output schedule expressed in the form of (2).

Non-storable resources are assumed to have capacity costs corresponding to the peak

demands for each such resource. These resources cannot be accumulated, so that the produc-

tion system must have the capability to accommodate peak loads. Storable resources, however,

have prices: these resources account for the variable cost of production activity. It is assumed

that storable resources can be procured as required, so that inventories of same are ignored. We

assume intermediate product inventories also have capacity costs, corresponding t, peak storage

requirements. These inventories will also bear holding costs representing opotunity charges

for unproductive capital.

Assuming linear capacity costs, the problem is formulated as a linear program as follows.

• [ ;Let

SCv(,) - C111).C.... (r)

be the vector of costs per unit capacity for non-storable resources maintained during [,t1+!); let

S'

a -
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C(t)- '() . ().

be the price vector for storable resources procured for use during 11.1+1): let

06,- (Ci(t). C:(,)

be the vector of costs per unit storage capacity maintained during [t.r+l) for intermediate pro-

ducts; and let

H() - (HI().. H )j.

be the holding costs for intermediate products held during [t,t+l).

To serve as variables in the minimization, let

x -Ix ..... xVs

denote the peak requirements in any unit time interval of non-storable resources; let

cap - leapt,.... cop,.,

denote the required intermediate product inventory storage capacities; and let

inv(t). (i,). F(

I 
" W l ... ...

be the inventory and intensity variables as before.

For given intensity bounds

! ,-o .. .r-,

and initial intermediate product inventories

I 1" 'A ..... V

the minimum cost production plan meeting the output schedule (2) is given by the optimum of

the linear program



to

minimize IEC"(,).X + T. jC(t)a,,(t)Iz'Ge) + (O
t-0 1-0 A-.'S+I 1-1

+ T.C:(t) -cap~+ Y ,Wiv't
1-0 1-01-1

subject to

?-0

C2. a,A()WIz,'(t) + f(I)j X, 4 0. k-I. .. NS, t-0. 1. T- 1.

C3. T.,)[z,'(t) + zrf()I - c()f-)- ini'f(t-I) + invf( -0

j1.N. -i.-T-I. and

5"(0 1"()+ zr(O)JI + invJl(O) - inv'0. j-I1. .. N.

C4. r,'0) - capi& W 0. juwI. .. ,Nt0 .O. .T-1.

C5. z4(t) + zf(t) I. .d Jl N. tO .. .T-1.

C6. X -fx .... X"'; 0o,

Scap - (cap:. capvj > 0.

(MV',) (Iv~),... In"VV(:)j 0, :-0 . 7T-.-

0,(: *I .Fj .0. j . N, -0,. . T1.

Here constraints C2 define the required non-storable resource capacities. and constraints

C4 define the required intermediate product storage capacities. Constraints C3 and C5 deal with

inventory balance and intensity bounds in the same manner as the treatment of output maximi-

zation problems, while constraints CI repeat (2).

In general, the program includes (4N + NS)( T+1) variables and (4N + NS)(T7) con-

straints. As before, the fineness of the time grid is the most sensitive factor in terms of the

problem size which can in practice be solved. A bordered angular configuration for the
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constraint matrix is now displayed, in which constraints C2. C4, and CS exhibit a block diagonal

structure with coupling variables. Although this is a more difficult structure than that for the

output maximization problems, nonetheless it can be exploited. See 15].

As an alternative to the constant capacities for each non-storable resource defined by con-

straints C2, one may allow capacities to be adjusted from time period to time period according

to linear costs. Many authors have formulated labor workforce levels in this fashion, allowing

hiring and firing in each period. See for example 131 or 141. Such formulations may be

integrated here as appropriate.
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